xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CodeGenFunction.h (revision 7c20397b724a55001c2054fa133a768e9d06eb1c)
1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the internal per-function state used for llvm translation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 
16 #include "CGBuilder.h"
17 #include "CGDebugInfo.h"
18 #include "CGLoopInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "EHScopeStack.h"
23 #include "VarBypassDetector.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/CurrentSourceLocExprScope.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/StmtOpenMP.h"
30 #include "clang/AST/Type.h"
31 #include "clang/Basic/ABI.h"
32 #include "clang/Basic/CapturedStmt.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/OpenMPKinds.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/MapVector.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Transforms/Utils/SanitizerStats.h"
44 
45 namespace llvm {
46 class BasicBlock;
47 class LLVMContext;
48 class MDNode;
49 class SwitchInst;
50 class Twine;
51 class Value;
52 class CanonicalLoopInfo;
53 }
54 
55 namespace clang {
56 class ASTContext;
57 class CXXDestructorDecl;
58 class CXXForRangeStmt;
59 class CXXTryStmt;
60 class Decl;
61 class LabelDecl;
62 class FunctionDecl;
63 class FunctionProtoType;
64 class LabelStmt;
65 class ObjCContainerDecl;
66 class ObjCInterfaceDecl;
67 class ObjCIvarDecl;
68 class ObjCMethodDecl;
69 class ObjCImplementationDecl;
70 class ObjCPropertyImplDecl;
71 class TargetInfo;
72 class VarDecl;
73 class ObjCForCollectionStmt;
74 class ObjCAtTryStmt;
75 class ObjCAtThrowStmt;
76 class ObjCAtSynchronizedStmt;
77 class ObjCAutoreleasePoolStmt;
78 class OMPUseDevicePtrClause;
79 class OMPUseDeviceAddrClause;
80 class SVETypeFlags;
81 class OMPExecutableDirective;
82 
83 namespace analyze_os_log {
84 class OSLogBufferLayout;
85 }
86 
87 namespace CodeGen {
88 class CodeGenTypes;
89 class CGCallee;
90 class CGFunctionInfo;
91 class CGBlockInfo;
92 class CGCXXABI;
93 class BlockByrefHelpers;
94 class BlockByrefInfo;
95 class BlockFieldFlags;
96 class RegionCodeGenTy;
97 class TargetCodeGenInfo;
98 struct OMPTaskDataTy;
99 struct CGCoroData;
100 
101 /// The kind of evaluation to perform on values of a particular
102 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
103 /// CGExprAgg?
104 ///
105 /// TODO: should vectors maybe be split out into their own thing?
106 enum TypeEvaluationKind {
107   TEK_Scalar,
108   TEK_Complex,
109   TEK_Aggregate
110 };
111 
112 #define LIST_SANITIZER_CHECKS                                                  \
113   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
114   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
115   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
116   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
117   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
118   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
119   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1)             \
120   SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
121   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
122   SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0)                       \
123   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
124   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
125   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
126   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
127   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
128   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
129   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
130   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
131   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
132   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
133   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
134   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
135   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
136   SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0)                \
137   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
138 
139 enum SanitizerHandler {
140 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
141   LIST_SANITIZER_CHECKS
142 #undef SANITIZER_CHECK
143 };
144 
145 /// Helper class with most of the code for saving a value for a
146 /// conditional expression cleanup.
147 struct DominatingLLVMValue {
148   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
149 
150   /// Answer whether the given value needs extra work to be saved.
151   static bool needsSaving(llvm::Value *value) {
152     // If it's not an instruction, we don't need to save.
153     if (!isa<llvm::Instruction>(value)) return false;
154 
155     // If it's an instruction in the entry block, we don't need to save.
156     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
157     return (block != &block->getParent()->getEntryBlock());
158   }
159 
160   static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
161   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
162 };
163 
164 /// A partial specialization of DominatingValue for llvm::Values that
165 /// might be llvm::Instructions.
166 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
167   typedef T *type;
168   static type restore(CodeGenFunction &CGF, saved_type value) {
169     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
170   }
171 };
172 
173 /// A specialization of DominatingValue for Address.
174 template <> struct DominatingValue<Address> {
175   typedef Address type;
176 
177   struct saved_type {
178     DominatingLLVMValue::saved_type SavedValue;
179     llvm::Type *ElementType;
180     CharUnits Alignment;
181   };
182 
183   static bool needsSaving(type value) {
184     return DominatingLLVMValue::needsSaving(value.getPointer());
185   }
186   static saved_type save(CodeGenFunction &CGF, type value) {
187     return { DominatingLLVMValue::save(CGF, value.getPointer()),
188              value.getElementType(), value.getAlignment() };
189   }
190   static type restore(CodeGenFunction &CGF, saved_type value) {
191     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
192                    value.ElementType, value.Alignment);
193   }
194 };
195 
196 /// A specialization of DominatingValue for RValue.
197 template <> struct DominatingValue<RValue> {
198   typedef RValue type;
199   class saved_type {
200     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
201                 AggregateAddress, ComplexAddress };
202 
203     llvm::Value *Value;
204     unsigned K : 3;
205     unsigned Align : 29;
206     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
207       : Value(v), K(k), Align(a) {}
208 
209   public:
210     static bool needsSaving(RValue value);
211     static saved_type save(CodeGenFunction &CGF, RValue value);
212     RValue restore(CodeGenFunction &CGF);
213 
214     // implementations in CGCleanup.cpp
215   };
216 
217   static bool needsSaving(type value) {
218     return saved_type::needsSaving(value);
219   }
220   static saved_type save(CodeGenFunction &CGF, type value) {
221     return saved_type::save(CGF, value);
222   }
223   static type restore(CodeGenFunction &CGF, saved_type value) {
224     return value.restore(CGF);
225   }
226 };
227 
228 /// CodeGenFunction - This class organizes the per-function state that is used
229 /// while generating LLVM code.
230 class CodeGenFunction : public CodeGenTypeCache {
231   CodeGenFunction(const CodeGenFunction &) = delete;
232   void operator=(const CodeGenFunction &) = delete;
233 
234   friend class CGCXXABI;
235 public:
236   /// A jump destination is an abstract label, branching to which may
237   /// require a jump out through normal cleanups.
238   struct JumpDest {
239     JumpDest() : Block(nullptr), Index(0) {}
240     JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth,
241              unsigned Index)
242         : Block(Block), ScopeDepth(Depth), Index(Index) {}
243 
244     bool isValid() const { return Block != nullptr; }
245     llvm::BasicBlock *getBlock() const { return Block; }
246     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
247     unsigned getDestIndex() const { return Index; }
248 
249     // This should be used cautiously.
250     void setScopeDepth(EHScopeStack::stable_iterator depth) {
251       ScopeDepth = depth;
252     }
253 
254   private:
255     llvm::BasicBlock *Block;
256     EHScopeStack::stable_iterator ScopeDepth;
257     unsigned Index;
258   };
259 
260   CodeGenModule &CGM;  // Per-module state.
261   const TargetInfo &Target;
262 
263   // For EH/SEH outlined funclets, this field points to parent's CGF
264   CodeGenFunction *ParentCGF = nullptr;
265 
266   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
267   LoopInfoStack LoopStack;
268   CGBuilderTy Builder;
269 
270   // Stores variables for which we can't generate correct lifetime markers
271   // because of jumps.
272   VarBypassDetector Bypasses;
273 
274   /// List of recently emitted OMPCanonicalLoops.
275   ///
276   /// Since OMPCanonicalLoops are nested inside other statements (in particular
277   /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested
278   /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its
279   /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any
280   /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to
281   /// this stack when done. Entering a new loop requires clearing this list; it
282   /// either means we start parsing a new loop nest (in which case the previous
283   /// loop nest goes out of scope) or a second loop in the same level in which
284   /// case it would be ambiguous into which of the two (or more) loops the loop
285   /// nest would extend.
286   SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack;
287 
288   /// Number of nested loop to be consumed by the last surrounding
289   /// loop-associated directive.
290   int ExpectedOMPLoopDepth = 0;
291 
292   // CodeGen lambda for loops and support for ordered clause
293   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
294                                   JumpDest)>
295       CodeGenLoopTy;
296   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
297                                   const unsigned, const bool)>
298       CodeGenOrderedTy;
299 
300   // Codegen lambda for loop bounds in worksharing loop constructs
301   typedef llvm::function_ref<std::pair<LValue, LValue>(
302       CodeGenFunction &, const OMPExecutableDirective &S)>
303       CodeGenLoopBoundsTy;
304 
305   // Codegen lambda for loop bounds in dispatch-based loop implementation
306   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
307       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
308       Address UB)>
309       CodeGenDispatchBoundsTy;
310 
311   /// CGBuilder insert helper. This function is called after an
312   /// instruction is created using Builder.
313   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
314                     llvm::BasicBlock *BB,
315                     llvm::BasicBlock::iterator InsertPt) const;
316 
317   /// CurFuncDecl - Holds the Decl for the current outermost
318   /// non-closure context.
319   const Decl *CurFuncDecl;
320   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
321   const Decl *CurCodeDecl;
322   const CGFunctionInfo *CurFnInfo;
323   QualType FnRetTy;
324   llvm::Function *CurFn = nullptr;
325 
326   /// Save Parameter Decl for coroutine.
327   llvm::SmallVector<const ParmVarDecl *, 4> FnArgs;
328 
329   // Holds coroutine data if the current function is a coroutine. We use a
330   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
331   // in this header.
332   struct CGCoroInfo {
333     std::unique_ptr<CGCoroData> Data;
334     CGCoroInfo();
335     ~CGCoroInfo();
336   };
337   CGCoroInfo CurCoro;
338 
339   bool isCoroutine() const {
340     return CurCoro.Data != nullptr;
341   }
342 
343   /// CurGD - The GlobalDecl for the current function being compiled.
344   GlobalDecl CurGD;
345 
346   /// PrologueCleanupDepth - The cleanup depth enclosing all the
347   /// cleanups associated with the parameters.
348   EHScopeStack::stable_iterator PrologueCleanupDepth;
349 
350   /// ReturnBlock - Unified return block.
351   JumpDest ReturnBlock;
352 
353   /// ReturnValue - The temporary alloca to hold the return
354   /// value. This is invalid iff the function has no return value.
355   Address ReturnValue = Address::invalid();
356 
357   /// ReturnValuePointer - The temporary alloca to hold a pointer to sret.
358   /// This is invalid if sret is not in use.
359   Address ReturnValuePointer = Address::invalid();
360 
361   /// If a return statement is being visited, this holds the return statment's
362   /// result expression.
363   const Expr *RetExpr = nullptr;
364 
365   /// Return true if a label was seen in the current scope.
366   bool hasLabelBeenSeenInCurrentScope() const {
367     if (CurLexicalScope)
368       return CurLexicalScope->hasLabels();
369     return !LabelMap.empty();
370   }
371 
372   /// AllocaInsertPoint - This is an instruction in the entry block before which
373   /// we prefer to insert allocas.
374   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
375 
376 private:
377   /// PostAllocaInsertPt - This is a place in the prologue where code can be
378   /// inserted that will be dominated by all the static allocas. This helps
379   /// achieve two things:
380   ///   1. Contiguity of all static allocas (within the prologue) is maintained.
381   ///   2. All other prologue code (which are dominated by static allocas) do
382   ///      appear in the source order immediately after all static allocas.
383   ///
384   /// PostAllocaInsertPt will be lazily created when it is *really* required.
385   llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr;
386 
387 public:
388   /// Return PostAllocaInsertPt. If it is not yet created, then insert it
389   /// immediately after AllocaInsertPt.
390   llvm::Instruction *getPostAllocaInsertPoint() {
391     if (!PostAllocaInsertPt) {
392       assert(AllocaInsertPt &&
393              "Expected static alloca insertion point at function prologue");
394       assert(AllocaInsertPt->getParent()->isEntryBlock() &&
395              "EBB should be entry block of the current code gen function");
396       PostAllocaInsertPt = AllocaInsertPt->clone();
397       PostAllocaInsertPt->setName("postallocapt");
398       PostAllocaInsertPt->insertAfter(AllocaInsertPt);
399     }
400 
401     return PostAllocaInsertPt;
402   }
403 
404   /// API for captured statement code generation.
405   class CGCapturedStmtInfo {
406   public:
407     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
408         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
409     explicit CGCapturedStmtInfo(const CapturedStmt &S,
410                                 CapturedRegionKind K = CR_Default)
411       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
412 
413       RecordDecl::field_iterator Field =
414         S.getCapturedRecordDecl()->field_begin();
415       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
416                                                 E = S.capture_end();
417            I != E; ++I, ++Field) {
418         if (I->capturesThis())
419           CXXThisFieldDecl = *Field;
420         else if (I->capturesVariable())
421           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
422         else if (I->capturesVariableByCopy())
423           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
424       }
425     }
426 
427     virtual ~CGCapturedStmtInfo();
428 
429     CapturedRegionKind getKind() const { return Kind; }
430 
431     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
432     // Retrieve the value of the context parameter.
433     virtual llvm::Value *getContextValue() const { return ThisValue; }
434 
435     /// Lookup the captured field decl for a variable.
436     virtual const FieldDecl *lookup(const VarDecl *VD) const {
437       return CaptureFields.lookup(VD->getCanonicalDecl());
438     }
439 
440     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
441     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
442 
443     static bool classof(const CGCapturedStmtInfo *) {
444       return true;
445     }
446 
447     /// Emit the captured statement body.
448     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
449       CGF.incrementProfileCounter(S);
450       CGF.EmitStmt(S);
451     }
452 
453     /// Get the name of the capture helper.
454     virtual StringRef getHelperName() const { return "__captured_stmt"; }
455 
456     /// Get the CaptureFields
457     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() {
458       return CaptureFields;
459     }
460 
461   private:
462     /// The kind of captured statement being generated.
463     CapturedRegionKind Kind;
464 
465     /// Keep the map between VarDecl and FieldDecl.
466     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
467 
468     /// The base address of the captured record, passed in as the first
469     /// argument of the parallel region function.
470     llvm::Value *ThisValue;
471 
472     /// Captured 'this' type.
473     FieldDecl *CXXThisFieldDecl;
474   };
475   CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
476 
477   /// RAII for correct setting/restoring of CapturedStmtInfo.
478   class CGCapturedStmtRAII {
479   private:
480     CodeGenFunction &CGF;
481     CGCapturedStmtInfo *PrevCapturedStmtInfo;
482   public:
483     CGCapturedStmtRAII(CodeGenFunction &CGF,
484                        CGCapturedStmtInfo *NewCapturedStmtInfo)
485         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
486       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
487     }
488     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
489   };
490 
491   /// An abstract representation of regular/ObjC call/message targets.
492   class AbstractCallee {
493     /// The function declaration of the callee.
494     const Decl *CalleeDecl;
495 
496   public:
497     AbstractCallee() : CalleeDecl(nullptr) {}
498     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
499     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
500     bool hasFunctionDecl() const {
501       return isa_and_nonnull<FunctionDecl>(CalleeDecl);
502     }
503     const Decl *getDecl() const { return CalleeDecl; }
504     unsigned getNumParams() const {
505       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
506         return FD->getNumParams();
507       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
508     }
509     const ParmVarDecl *getParamDecl(unsigned I) const {
510       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
511         return FD->getParamDecl(I);
512       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
513     }
514   };
515 
516   /// Sanitizers enabled for this function.
517   SanitizerSet SanOpts;
518 
519   /// True if CodeGen currently emits code implementing sanitizer checks.
520   bool IsSanitizerScope = false;
521 
522   /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
523   class SanitizerScope {
524     CodeGenFunction *CGF;
525   public:
526     SanitizerScope(CodeGenFunction *CGF);
527     ~SanitizerScope();
528   };
529 
530   /// In C++, whether we are code generating a thunk.  This controls whether we
531   /// should emit cleanups.
532   bool CurFuncIsThunk = false;
533 
534   /// In ARC, whether we should autorelease the return value.
535   bool AutoreleaseResult = false;
536 
537   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
538   /// potentially set the return value.
539   bool SawAsmBlock = false;
540 
541   const NamedDecl *CurSEHParent = nullptr;
542 
543   /// True if the current function is an outlined SEH helper. This can be a
544   /// finally block or filter expression.
545   bool IsOutlinedSEHHelper = false;
546 
547   /// True if CodeGen currently emits code inside presereved access index
548   /// region.
549   bool IsInPreservedAIRegion = false;
550 
551   /// True if the current statement has nomerge attribute.
552   bool InNoMergeAttributedStmt = false;
553 
554   // The CallExpr within the current statement that the musttail attribute
555   // applies to.  nullptr if there is no 'musttail' on the current statement.
556   const CallExpr *MustTailCall = nullptr;
557 
558   /// Returns true if a function must make progress, which means the
559   /// mustprogress attribute can be added.
560   bool checkIfFunctionMustProgress() {
561     if (CGM.getCodeGenOpts().getFiniteLoops() ==
562         CodeGenOptions::FiniteLoopsKind::Never)
563       return false;
564 
565     // C++11 and later guarantees that a thread eventually will do one of the
566     // following (6.9.2.3.1 in C++11):
567     // - terminate,
568     //  - make a call to a library I/O function,
569     //  - perform an access through a volatile glvalue, or
570     //  - perform a synchronization operation or an atomic operation.
571     //
572     // Hence each function is 'mustprogress' in C++11 or later.
573     return getLangOpts().CPlusPlus11;
574   }
575 
576   /// Returns true if a loop must make progress, which means the mustprogress
577   /// attribute can be added. \p HasConstantCond indicates whether the branch
578   /// condition is a known constant.
579   bool checkIfLoopMustProgress(bool HasConstantCond) {
580     if (CGM.getCodeGenOpts().getFiniteLoops() ==
581         CodeGenOptions::FiniteLoopsKind::Always)
582       return true;
583     if (CGM.getCodeGenOpts().getFiniteLoops() ==
584         CodeGenOptions::FiniteLoopsKind::Never)
585       return false;
586 
587     // If the containing function must make progress, loops also must make
588     // progress (as in C++11 and later).
589     if (checkIfFunctionMustProgress())
590       return true;
591 
592     // Now apply rules for plain C (see  6.8.5.6 in C11).
593     // Loops with constant conditions do not have to make progress in any C
594     // version.
595     if (HasConstantCond)
596       return false;
597 
598     // Loops with non-constant conditions must make progress in C11 and later.
599     return getLangOpts().C11;
600   }
601 
602   const CodeGen::CGBlockInfo *BlockInfo = nullptr;
603   llvm::Value *BlockPointer = nullptr;
604 
605   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
606   FieldDecl *LambdaThisCaptureField = nullptr;
607 
608   /// A mapping from NRVO variables to the flags used to indicate
609   /// when the NRVO has been applied to this variable.
610   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
611 
612   EHScopeStack EHStack;
613   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
614   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
615 
616   llvm::Instruction *CurrentFuncletPad = nullptr;
617 
618   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
619     bool isRedundantBeforeReturn() override { return true; }
620 
621     llvm::Value *Addr;
622     llvm::Value *Size;
623 
624   public:
625     CallLifetimeEnd(Address addr, llvm::Value *size)
626         : Addr(addr.getPointer()), Size(size) {}
627 
628     void Emit(CodeGenFunction &CGF, Flags flags) override {
629       CGF.EmitLifetimeEnd(Size, Addr);
630     }
631   };
632 
633   /// Header for data within LifetimeExtendedCleanupStack.
634   struct LifetimeExtendedCleanupHeader {
635     /// The size of the following cleanup object.
636     unsigned Size;
637     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
638     unsigned Kind : 31;
639     /// Whether this is a conditional cleanup.
640     unsigned IsConditional : 1;
641 
642     size_t getSize() const { return Size; }
643     CleanupKind getKind() const { return (CleanupKind)Kind; }
644     bool isConditional() const { return IsConditional; }
645   };
646 
647   /// i32s containing the indexes of the cleanup destinations.
648   Address NormalCleanupDest = Address::invalid();
649 
650   unsigned NextCleanupDestIndex = 1;
651 
652   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
653   llvm::BasicBlock *EHResumeBlock = nullptr;
654 
655   /// The exception slot.  All landing pads write the current exception pointer
656   /// into this alloca.
657   llvm::Value *ExceptionSlot = nullptr;
658 
659   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
660   /// write the current selector value into this alloca.
661   llvm::AllocaInst *EHSelectorSlot = nullptr;
662 
663   /// A stack of exception code slots. Entering an __except block pushes a slot
664   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
665   /// a value from the top of the stack.
666   SmallVector<Address, 1> SEHCodeSlotStack;
667 
668   /// Value returned by __exception_info intrinsic.
669   llvm::Value *SEHInfo = nullptr;
670 
671   /// Emits a landing pad for the current EH stack.
672   llvm::BasicBlock *EmitLandingPad();
673 
674   llvm::BasicBlock *getInvokeDestImpl();
675 
676   /// Parent loop-based directive for scan directive.
677   const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr;
678   llvm::BasicBlock *OMPBeforeScanBlock = nullptr;
679   llvm::BasicBlock *OMPAfterScanBlock = nullptr;
680   llvm::BasicBlock *OMPScanExitBlock = nullptr;
681   llvm::BasicBlock *OMPScanDispatch = nullptr;
682   bool OMPFirstScanLoop = false;
683 
684   /// Manages parent directive for scan directives.
685   class ParentLoopDirectiveForScanRegion {
686     CodeGenFunction &CGF;
687     const OMPExecutableDirective *ParentLoopDirectiveForScan;
688 
689   public:
690     ParentLoopDirectiveForScanRegion(
691         CodeGenFunction &CGF,
692         const OMPExecutableDirective &ParentLoopDirectiveForScan)
693         : CGF(CGF),
694           ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) {
695       CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan;
696     }
697     ~ParentLoopDirectiveForScanRegion() {
698       CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan;
699     }
700   };
701 
702   template <class T>
703   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
704     return DominatingValue<T>::save(*this, value);
705   }
706 
707   class CGFPOptionsRAII {
708   public:
709     CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures);
710     CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E);
711     ~CGFPOptionsRAII();
712 
713   private:
714     void ConstructorHelper(FPOptions FPFeatures);
715     CodeGenFunction &CGF;
716     FPOptions OldFPFeatures;
717     llvm::fp::ExceptionBehavior OldExcept;
718     llvm::RoundingMode OldRounding;
719     Optional<CGBuilderTy::FastMathFlagGuard> FMFGuard;
720   };
721   FPOptions CurFPFeatures;
722 
723 public:
724   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
725   /// rethrows.
726   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
727 
728   /// A class controlling the emission of a finally block.
729   class FinallyInfo {
730     /// Where the catchall's edge through the cleanup should go.
731     JumpDest RethrowDest;
732 
733     /// A function to call to enter the catch.
734     llvm::FunctionCallee BeginCatchFn;
735 
736     /// An i1 variable indicating whether or not the @finally is
737     /// running for an exception.
738     llvm::AllocaInst *ForEHVar;
739 
740     /// An i8* variable into which the exception pointer to rethrow
741     /// has been saved.
742     llvm::AllocaInst *SavedExnVar;
743 
744   public:
745     void enter(CodeGenFunction &CGF, const Stmt *Finally,
746                llvm::FunctionCallee beginCatchFn,
747                llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
748     void exit(CodeGenFunction &CGF);
749   };
750 
751   /// Returns true inside SEH __try blocks.
752   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
753 
754   /// Returns true while emitting a cleanuppad.
755   bool isCleanupPadScope() const {
756     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
757   }
758 
759   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
760   /// current full-expression.  Safe against the possibility that
761   /// we're currently inside a conditionally-evaluated expression.
762   template <class T, class... As>
763   void pushFullExprCleanup(CleanupKind kind, As... A) {
764     // If we're not in a conditional branch, or if none of the
765     // arguments requires saving, then use the unconditional cleanup.
766     if (!isInConditionalBranch())
767       return EHStack.pushCleanup<T>(kind, A...);
768 
769     // Stash values in a tuple so we can guarantee the order of saves.
770     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
771     SavedTuple Saved{saveValueInCond(A)...};
772 
773     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
774     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
775     initFullExprCleanup();
776   }
777 
778   /// Queue a cleanup to be pushed after finishing the current full-expression,
779   /// potentially with an active flag.
780   template <class T, class... As>
781   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
782     if (!isInConditionalBranch())
783       return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(),
784                                                        A...);
785 
786     Address ActiveFlag = createCleanupActiveFlag();
787     assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
788            "cleanup active flag should never need saving");
789 
790     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
791     SavedTuple Saved{saveValueInCond(A)...};
792 
793     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
794     pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved);
795   }
796 
797   template <class T, class... As>
798   void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind,
799                                               Address ActiveFlag, As... A) {
800     LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
801                                             ActiveFlag.isValid()};
802 
803     size_t OldSize = LifetimeExtendedCleanupStack.size();
804     LifetimeExtendedCleanupStack.resize(
805         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
806         (Header.IsConditional ? sizeof(ActiveFlag) : 0));
807 
808     static_assert(sizeof(Header) % alignof(T) == 0,
809                   "Cleanup will be allocated on misaligned address");
810     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
811     new (Buffer) LifetimeExtendedCleanupHeader(Header);
812     new (Buffer + sizeof(Header)) T(A...);
813     if (Header.IsConditional)
814       new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
815   }
816 
817   /// Set up the last cleanup that was pushed as a conditional
818   /// full-expression cleanup.
819   void initFullExprCleanup() {
820     initFullExprCleanupWithFlag(createCleanupActiveFlag());
821   }
822 
823   void initFullExprCleanupWithFlag(Address ActiveFlag);
824   Address createCleanupActiveFlag();
825 
826   /// PushDestructorCleanup - Push a cleanup to call the
827   /// complete-object destructor of an object of the given type at the
828   /// given address.  Does nothing if T is not a C++ class type with a
829   /// non-trivial destructor.
830   void PushDestructorCleanup(QualType T, Address Addr);
831 
832   /// PushDestructorCleanup - Push a cleanup to call the
833   /// complete-object variant of the given destructor on the object at
834   /// the given address.
835   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T,
836                              Address Addr);
837 
838   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
839   /// process all branch fixups.
840   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
841 
842   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
843   /// The block cannot be reactivated.  Pops it if it's the top of the
844   /// stack.
845   ///
846   /// \param DominatingIP - An instruction which is known to
847   ///   dominate the current IP (if set) and which lies along
848   ///   all paths of execution between the current IP and the
849   ///   the point at which the cleanup comes into scope.
850   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
851                               llvm::Instruction *DominatingIP);
852 
853   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
854   /// Cannot be used to resurrect a deactivated cleanup.
855   ///
856   /// \param DominatingIP - An instruction which is known to
857   ///   dominate the current IP (if set) and which lies along
858   ///   all paths of execution between the current IP and the
859   ///   the point at which the cleanup comes into scope.
860   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
861                             llvm::Instruction *DominatingIP);
862 
863   /// Enters a new scope for capturing cleanups, all of which
864   /// will be executed once the scope is exited.
865   class RunCleanupsScope {
866     EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
867     size_t LifetimeExtendedCleanupStackSize;
868     bool OldDidCallStackSave;
869   protected:
870     bool PerformCleanup;
871   private:
872 
873     RunCleanupsScope(const RunCleanupsScope &) = delete;
874     void operator=(const RunCleanupsScope &) = delete;
875 
876   protected:
877     CodeGenFunction& CGF;
878 
879   public:
880     /// Enter a new cleanup scope.
881     explicit RunCleanupsScope(CodeGenFunction &CGF)
882       : PerformCleanup(true), CGF(CGF)
883     {
884       CleanupStackDepth = CGF.EHStack.stable_begin();
885       LifetimeExtendedCleanupStackSize =
886           CGF.LifetimeExtendedCleanupStack.size();
887       OldDidCallStackSave = CGF.DidCallStackSave;
888       CGF.DidCallStackSave = false;
889       OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
890       CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
891     }
892 
893     /// Exit this cleanup scope, emitting any accumulated cleanups.
894     ~RunCleanupsScope() {
895       if (PerformCleanup)
896         ForceCleanup();
897     }
898 
899     /// Determine whether this scope requires any cleanups.
900     bool requiresCleanups() const {
901       return CGF.EHStack.stable_begin() != CleanupStackDepth;
902     }
903 
904     /// Force the emission of cleanups now, instead of waiting
905     /// until this object is destroyed.
906     /// \param ValuesToReload - A list of values that need to be available at
907     /// the insertion point after cleanup emission. If cleanup emission created
908     /// a shared cleanup block, these value pointers will be rewritten.
909     /// Otherwise, they not will be modified.
910     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
911       assert(PerformCleanup && "Already forced cleanup");
912       CGF.DidCallStackSave = OldDidCallStackSave;
913       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
914                            ValuesToReload);
915       PerformCleanup = false;
916       CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
917     }
918   };
919 
920   // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
921   EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
922       EHScopeStack::stable_end();
923 
924   class LexicalScope : public RunCleanupsScope {
925     SourceRange Range;
926     SmallVector<const LabelDecl*, 4> Labels;
927     LexicalScope *ParentScope;
928 
929     LexicalScope(const LexicalScope &) = delete;
930     void operator=(const LexicalScope &) = delete;
931 
932   public:
933     /// Enter a new cleanup scope.
934     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
935       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
936       CGF.CurLexicalScope = this;
937       if (CGDebugInfo *DI = CGF.getDebugInfo())
938         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
939     }
940 
941     void addLabel(const LabelDecl *label) {
942       assert(PerformCleanup && "adding label to dead scope?");
943       Labels.push_back(label);
944     }
945 
946     /// Exit this cleanup scope, emitting any accumulated
947     /// cleanups.
948     ~LexicalScope() {
949       if (CGDebugInfo *DI = CGF.getDebugInfo())
950         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
951 
952       // If we should perform a cleanup, force them now.  Note that
953       // this ends the cleanup scope before rescoping any labels.
954       if (PerformCleanup) {
955         ApplyDebugLocation DL(CGF, Range.getEnd());
956         ForceCleanup();
957       }
958     }
959 
960     /// Force the emission of cleanups now, instead of waiting
961     /// until this object is destroyed.
962     void ForceCleanup() {
963       CGF.CurLexicalScope = ParentScope;
964       RunCleanupsScope::ForceCleanup();
965 
966       if (!Labels.empty())
967         rescopeLabels();
968     }
969 
970     bool hasLabels() const {
971       return !Labels.empty();
972     }
973 
974     void rescopeLabels();
975   };
976 
977   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
978 
979   /// The class used to assign some variables some temporarily addresses.
980   class OMPMapVars {
981     DeclMapTy SavedLocals;
982     DeclMapTy SavedTempAddresses;
983     OMPMapVars(const OMPMapVars &) = delete;
984     void operator=(const OMPMapVars &) = delete;
985 
986   public:
987     explicit OMPMapVars() = default;
988     ~OMPMapVars() {
989       assert(SavedLocals.empty() && "Did not restored original addresses.");
990     };
991 
992     /// Sets the address of the variable \p LocalVD to be \p TempAddr in
993     /// function \p CGF.
994     /// \return true if at least one variable was set already, false otherwise.
995     bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
996                     Address TempAddr) {
997       LocalVD = LocalVD->getCanonicalDecl();
998       // Only save it once.
999       if (SavedLocals.count(LocalVD)) return false;
1000 
1001       // Copy the existing local entry to SavedLocals.
1002       auto it = CGF.LocalDeclMap.find(LocalVD);
1003       if (it != CGF.LocalDeclMap.end())
1004         SavedLocals.try_emplace(LocalVD, it->second);
1005       else
1006         SavedLocals.try_emplace(LocalVD, Address::invalid());
1007 
1008       // Generate the private entry.
1009       QualType VarTy = LocalVD->getType();
1010       if (VarTy->isReferenceType()) {
1011         Address Temp = CGF.CreateMemTemp(VarTy);
1012         CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
1013         TempAddr = Temp;
1014       }
1015       SavedTempAddresses.try_emplace(LocalVD, TempAddr);
1016 
1017       return true;
1018     }
1019 
1020     /// Applies new addresses to the list of the variables.
1021     /// \return true if at least one variable is using new address, false
1022     /// otherwise.
1023     bool apply(CodeGenFunction &CGF) {
1024       copyInto(SavedTempAddresses, CGF.LocalDeclMap);
1025       SavedTempAddresses.clear();
1026       return !SavedLocals.empty();
1027     }
1028 
1029     /// Restores original addresses of the variables.
1030     void restore(CodeGenFunction &CGF) {
1031       if (!SavedLocals.empty()) {
1032         copyInto(SavedLocals, CGF.LocalDeclMap);
1033         SavedLocals.clear();
1034       }
1035     }
1036 
1037   private:
1038     /// Copy all the entries in the source map over the corresponding
1039     /// entries in the destination, which must exist.
1040     static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
1041       for (auto &Pair : Src) {
1042         if (!Pair.second.isValid()) {
1043           Dest.erase(Pair.first);
1044           continue;
1045         }
1046 
1047         auto I = Dest.find(Pair.first);
1048         if (I != Dest.end())
1049           I->second = Pair.second;
1050         else
1051           Dest.insert(Pair);
1052       }
1053     }
1054   };
1055 
1056   /// The scope used to remap some variables as private in the OpenMP loop body
1057   /// (or other captured region emitted without outlining), and to restore old
1058   /// vars back on exit.
1059   class OMPPrivateScope : public RunCleanupsScope {
1060     OMPMapVars MappedVars;
1061     OMPPrivateScope(const OMPPrivateScope &) = delete;
1062     void operator=(const OMPPrivateScope &) = delete;
1063 
1064   public:
1065     /// Enter a new OpenMP private scope.
1066     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
1067 
1068     /// Registers \p LocalVD variable as a private and apply \p PrivateGen
1069     /// function for it to generate corresponding private variable. \p
1070     /// PrivateGen returns an address of the generated private variable.
1071     /// \return true if the variable is registered as private, false if it has
1072     /// been privatized already.
1073     bool addPrivate(const VarDecl *LocalVD,
1074                     const llvm::function_ref<Address()> PrivateGen) {
1075       assert(PerformCleanup && "adding private to dead scope");
1076       return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen());
1077     }
1078 
1079     /// Privatizes local variables previously registered as private.
1080     /// Registration is separate from the actual privatization to allow
1081     /// initializers use values of the original variables, not the private one.
1082     /// This is important, for example, if the private variable is a class
1083     /// variable initialized by a constructor that references other private
1084     /// variables. But at initialization original variables must be used, not
1085     /// private copies.
1086     /// \return true if at least one variable was privatized, false otherwise.
1087     bool Privatize() { return MappedVars.apply(CGF); }
1088 
1089     void ForceCleanup() {
1090       RunCleanupsScope::ForceCleanup();
1091       MappedVars.restore(CGF);
1092     }
1093 
1094     /// Exit scope - all the mapped variables are restored.
1095     ~OMPPrivateScope() {
1096       if (PerformCleanup)
1097         ForceCleanup();
1098     }
1099 
1100     /// Checks if the global variable is captured in current function.
1101     bool isGlobalVarCaptured(const VarDecl *VD) const {
1102       VD = VD->getCanonicalDecl();
1103       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
1104     }
1105   };
1106 
1107   /// Save/restore original map of previously emitted local vars in case when we
1108   /// need to duplicate emission of the same code several times in the same
1109   /// function for OpenMP code.
1110   class OMPLocalDeclMapRAII {
1111     CodeGenFunction &CGF;
1112     DeclMapTy SavedMap;
1113 
1114   public:
1115     OMPLocalDeclMapRAII(CodeGenFunction &CGF)
1116         : CGF(CGF), SavedMap(CGF.LocalDeclMap) {}
1117     ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); }
1118   };
1119 
1120   /// Takes the old cleanup stack size and emits the cleanup blocks
1121   /// that have been added.
1122   void
1123   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1124                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1125 
1126   /// Takes the old cleanup stack size and emits the cleanup blocks
1127   /// that have been added, then adds all lifetime-extended cleanups from
1128   /// the given position to the stack.
1129   void
1130   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1131                    size_t OldLifetimeExtendedStackSize,
1132                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1133 
1134   void ResolveBranchFixups(llvm::BasicBlock *Target);
1135 
1136   /// The given basic block lies in the current EH scope, but may be a
1137   /// target of a potentially scope-crossing jump; get a stable handle
1138   /// to which we can perform this jump later.
1139   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
1140     return JumpDest(Target,
1141                     EHStack.getInnermostNormalCleanup(),
1142                     NextCleanupDestIndex++);
1143   }
1144 
1145   /// The given basic block lies in the current EH scope, but may be a
1146   /// target of a potentially scope-crossing jump; get a stable handle
1147   /// to which we can perform this jump later.
1148   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
1149     return getJumpDestInCurrentScope(createBasicBlock(Name));
1150   }
1151 
1152   /// EmitBranchThroughCleanup - Emit a branch from the current insert
1153   /// block through the normal cleanup handling code (if any) and then
1154   /// on to \arg Dest.
1155   void EmitBranchThroughCleanup(JumpDest Dest);
1156 
1157   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
1158   /// specified destination obviously has no cleanups to run.  'false' is always
1159   /// a conservatively correct answer for this method.
1160   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
1161 
1162   /// popCatchScope - Pops the catch scope at the top of the EHScope
1163   /// stack, emitting any required code (other than the catch handlers
1164   /// themselves).
1165   void popCatchScope();
1166 
1167   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
1168   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
1169   llvm::BasicBlock *
1170   getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
1171 
1172   /// An object to manage conditionally-evaluated expressions.
1173   class ConditionalEvaluation {
1174     llvm::BasicBlock *StartBB;
1175 
1176   public:
1177     ConditionalEvaluation(CodeGenFunction &CGF)
1178       : StartBB(CGF.Builder.GetInsertBlock()) {}
1179 
1180     void begin(CodeGenFunction &CGF) {
1181       assert(CGF.OutermostConditional != this);
1182       if (!CGF.OutermostConditional)
1183         CGF.OutermostConditional = this;
1184     }
1185 
1186     void end(CodeGenFunction &CGF) {
1187       assert(CGF.OutermostConditional != nullptr);
1188       if (CGF.OutermostConditional == this)
1189         CGF.OutermostConditional = nullptr;
1190     }
1191 
1192     /// Returns a block which will be executed prior to each
1193     /// evaluation of the conditional code.
1194     llvm::BasicBlock *getStartingBlock() const {
1195       return StartBB;
1196     }
1197   };
1198 
1199   /// isInConditionalBranch - Return true if we're currently emitting
1200   /// one branch or the other of a conditional expression.
1201   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1202 
1203   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
1204     assert(isInConditionalBranch());
1205     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1206     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1207     store->setAlignment(addr.getAlignment().getAsAlign());
1208   }
1209 
1210   /// An RAII object to record that we're evaluating a statement
1211   /// expression.
1212   class StmtExprEvaluation {
1213     CodeGenFunction &CGF;
1214 
1215     /// We have to save the outermost conditional: cleanups in a
1216     /// statement expression aren't conditional just because the
1217     /// StmtExpr is.
1218     ConditionalEvaluation *SavedOutermostConditional;
1219 
1220   public:
1221     StmtExprEvaluation(CodeGenFunction &CGF)
1222       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1223       CGF.OutermostConditional = nullptr;
1224     }
1225 
1226     ~StmtExprEvaluation() {
1227       CGF.OutermostConditional = SavedOutermostConditional;
1228       CGF.EnsureInsertPoint();
1229     }
1230   };
1231 
1232   /// An object which temporarily prevents a value from being
1233   /// destroyed by aggressive peephole optimizations that assume that
1234   /// all uses of a value have been realized in the IR.
1235   class PeepholeProtection {
1236     llvm::Instruction *Inst;
1237     friend class CodeGenFunction;
1238 
1239   public:
1240     PeepholeProtection() : Inst(nullptr) {}
1241   };
1242 
1243   /// A non-RAII class containing all the information about a bound
1244   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1245   /// this which makes individual mappings very simple; using this
1246   /// class directly is useful when you have a variable number of
1247   /// opaque values or don't want the RAII functionality for some
1248   /// reason.
1249   class OpaqueValueMappingData {
1250     const OpaqueValueExpr *OpaqueValue;
1251     bool BoundLValue;
1252     CodeGenFunction::PeepholeProtection Protection;
1253 
1254     OpaqueValueMappingData(const OpaqueValueExpr *ov,
1255                            bool boundLValue)
1256       : OpaqueValue(ov), BoundLValue(boundLValue) {}
1257   public:
1258     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1259 
1260     static bool shouldBindAsLValue(const Expr *expr) {
1261       // gl-values should be bound as l-values for obvious reasons.
1262       // Records should be bound as l-values because IR generation
1263       // always keeps them in memory.  Expressions of function type
1264       // act exactly like l-values but are formally required to be
1265       // r-values in C.
1266       return expr->isGLValue() ||
1267              expr->getType()->isFunctionType() ||
1268              hasAggregateEvaluationKind(expr->getType());
1269     }
1270 
1271     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1272                                        const OpaqueValueExpr *ov,
1273                                        const Expr *e) {
1274       if (shouldBindAsLValue(ov))
1275         return bind(CGF, ov, CGF.EmitLValue(e));
1276       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1277     }
1278 
1279     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1280                                        const OpaqueValueExpr *ov,
1281                                        const LValue &lv) {
1282       assert(shouldBindAsLValue(ov));
1283       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1284       return OpaqueValueMappingData(ov, true);
1285     }
1286 
1287     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1288                                        const OpaqueValueExpr *ov,
1289                                        const RValue &rv) {
1290       assert(!shouldBindAsLValue(ov));
1291       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1292 
1293       OpaqueValueMappingData data(ov, false);
1294 
1295       // Work around an extremely aggressive peephole optimization in
1296       // EmitScalarConversion which assumes that all other uses of a
1297       // value are extant.
1298       data.Protection = CGF.protectFromPeepholes(rv);
1299 
1300       return data;
1301     }
1302 
1303     bool isValid() const { return OpaqueValue != nullptr; }
1304     void clear() { OpaqueValue = nullptr; }
1305 
1306     void unbind(CodeGenFunction &CGF) {
1307       assert(OpaqueValue && "no data to unbind!");
1308 
1309       if (BoundLValue) {
1310         CGF.OpaqueLValues.erase(OpaqueValue);
1311       } else {
1312         CGF.OpaqueRValues.erase(OpaqueValue);
1313         CGF.unprotectFromPeepholes(Protection);
1314       }
1315     }
1316   };
1317 
1318   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1319   class OpaqueValueMapping {
1320     CodeGenFunction &CGF;
1321     OpaqueValueMappingData Data;
1322 
1323   public:
1324     static bool shouldBindAsLValue(const Expr *expr) {
1325       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1326     }
1327 
1328     /// Build the opaque value mapping for the given conditional
1329     /// operator if it's the GNU ?: extension.  This is a common
1330     /// enough pattern that the convenience operator is really
1331     /// helpful.
1332     ///
1333     OpaqueValueMapping(CodeGenFunction &CGF,
1334                        const AbstractConditionalOperator *op) : CGF(CGF) {
1335       if (isa<ConditionalOperator>(op))
1336         // Leave Data empty.
1337         return;
1338 
1339       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1340       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1341                                           e->getCommon());
1342     }
1343 
1344     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1345     /// expression is set to the expression the OVE represents.
1346     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1347         : CGF(CGF) {
1348       if (OV) {
1349         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1350                                       "for OVE with no source expression");
1351         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1352       }
1353     }
1354 
1355     OpaqueValueMapping(CodeGenFunction &CGF,
1356                        const OpaqueValueExpr *opaqueValue,
1357                        LValue lvalue)
1358       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1359     }
1360 
1361     OpaqueValueMapping(CodeGenFunction &CGF,
1362                        const OpaqueValueExpr *opaqueValue,
1363                        RValue rvalue)
1364       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1365     }
1366 
1367     void pop() {
1368       Data.unbind(CGF);
1369       Data.clear();
1370     }
1371 
1372     ~OpaqueValueMapping() {
1373       if (Data.isValid()) Data.unbind(CGF);
1374     }
1375   };
1376 
1377 private:
1378   CGDebugInfo *DebugInfo;
1379   /// Used to create unique names for artificial VLA size debug info variables.
1380   unsigned VLAExprCounter = 0;
1381   bool DisableDebugInfo = false;
1382 
1383   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1384   /// calling llvm.stacksave for multiple VLAs in the same scope.
1385   bool DidCallStackSave = false;
1386 
1387   /// IndirectBranch - The first time an indirect goto is seen we create a block
1388   /// with an indirect branch.  Every time we see the address of a label taken,
1389   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1390   /// codegen'd as a jump to the IndirectBranch's basic block.
1391   llvm::IndirectBrInst *IndirectBranch = nullptr;
1392 
1393   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1394   /// decls.
1395   DeclMapTy LocalDeclMap;
1396 
1397   // Keep track of the cleanups for callee-destructed parameters pushed to the
1398   // cleanup stack so that they can be deactivated later.
1399   llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1400       CalleeDestructedParamCleanups;
1401 
1402   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1403   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1404   /// parameter.
1405   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1406       SizeArguments;
1407 
1408   /// Track escaped local variables with auto storage. Used during SEH
1409   /// outlining to produce a call to llvm.localescape.
1410   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1411 
1412   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1413   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1414 
1415   // BreakContinueStack - This keeps track of where break and continue
1416   // statements should jump to.
1417   struct BreakContinue {
1418     BreakContinue(JumpDest Break, JumpDest Continue)
1419       : BreakBlock(Break), ContinueBlock(Continue) {}
1420 
1421     JumpDest BreakBlock;
1422     JumpDest ContinueBlock;
1423   };
1424   SmallVector<BreakContinue, 8> BreakContinueStack;
1425 
1426   /// Handles cancellation exit points in OpenMP-related constructs.
1427   class OpenMPCancelExitStack {
1428     /// Tracks cancellation exit point and join point for cancel-related exit
1429     /// and normal exit.
1430     struct CancelExit {
1431       CancelExit() = default;
1432       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1433                  JumpDest ContBlock)
1434           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1435       OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown;
1436       /// true if the exit block has been emitted already by the special
1437       /// emitExit() call, false if the default codegen is used.
1438       bool HasBeenEmitted = false;
1439       JumpDest ExitBlock;
1440       JumpDest ContBlock;
1441     };
1442 
1443     SmallVector<CancelExit, 8> Stack;
1444 
1445   public:
1446     OpenMPCancelExitStack() : Stack(1) {}
1447     ~OpenMPCancelExitStack() = default;
1448     /// Fetches the exit block for the current OpenMP construct.
1449     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1450     /// Emits exit block with special codegen procedure specific for the related
1451     /// OpenMP construct + emits code for normal construct cleanup.
1452     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1453                   const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1454       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1455         assert(CGF.getOMPCancelDestination(Kind).isValid());
1456         assert(CGF.HaveInsertPoint());
1457         assert(!Stack.back().HasBeenEmitted);
1458         auto IP = CGF.Builder.saveAndClearIP();
1459         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1460         CodeGen(CGF);
1461         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1462         CGF.Builder.restoreIP(IP);
1463         Stack.back().HasBeenEmitted = true;
1464       }
1465       CodeGen(CGF);
1466     }
1467     /// Enter the cancel supporting \a Kind construct.
1468     /// \param Kind OpenMP directive that supports cancel constructs.
1469     /// \param HasCancel true, if the construct has inner cancel directive,
1470     /// false otherwise.
1471     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1472       Stack.push_back({Kind,
1473                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1474                                  : JumpDest(),
1475                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1476                                  : JumpDest()});
1477     }
1478     /// Emits default exit point for the cancel construct (if the special one
1479     /// has not be used) + join point for cancel/normal exits.
1480     void exit(CodeGenFunction &CGF) {
1481       if (getExitBlock().isValid()) {
1482         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1483         bool HaveIP = CGF.HaveInsertPoint();
1484         if (!Stack.back().HasBeenEmitted) {
1485           if (HaveIP)
1486             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1487           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1488           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1489         }
1490         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1491         if (!HaveIP) {
1492           CGF.Builder.CreateUnreachable();
1493           CGF.Builder.ClearInsertionPoint();
1494         }
1495       }
1496       Stack.pop_back();
1497     }
1498   };
1499   OpenMPCancelExitStack OMPCancelStack;
1500 
1501   /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin.
1502   llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
1503                                                     Stmt::Likelihood LH);
1504 
1505   CodeGenPGO PGO;
1506 
1507   /// Calculate branch weights appropriate for PGO data
1508   llvm::MDNode *createProfileWeights(uint64_t TrueCount,
1509                                      uint64_t FalseCount) const;
1510   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const;
1511   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1512                                             uint64_t LoopCount) const;
1513 
1514 public:
1515   /// Increment the profiler's counter for the given statement by \p StepV.
1516   /// If \p StepV is null, the default increment is 1.
1517   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1518     if (CGM.getCodeGenOpts().hasProfileClangInstr() &&
1519         !CurFn->hasFnAttribute(llvm::Attribute::NoProfile))
1520       PGO.emitCounterIncrement(Builder, S, StepV);
1521     PGO.setCurrentStmt(S);
1522   }
1523 
1524   /// Get the profiler's count for the given statement.
1525   uint64_t getProfileCount(const Stmt *S) {
1526     Optional<uint64_t> Count = PGO.getStmtCount(S);
1527     if (!Count.hasValue())
1528       return 0;
1529     return *Count;
1530   }
1531 
1532   /// Set the profiler's current count.
1533   void setCurrentProfileCount(uint64_t Count) {
1534     PGO.setCurrentRegionCount(Count);
1535   }
1536 
1537   /// Get the profiler's current count. This is generally the count for the most
1538   /// recently incremented counter.
1539   uint64_t getCurrentProfileCount() {
1540     return PGO.getCurrentRegionCount();
1541   }
1542 
1543 private:
1544 
1545   /// SwitchInsn - This is nearest current switch instruction. It is null if
1546   /// current context is not in a switch.
1547   llvm::SwitchInst *SwitchInsn = nullptr;
1548   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1549   SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1550 
1551   /// The likelihood attributes of the SwitchCase.
1552   SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr;
1553 
1554   /// CaseRangeBlock - This block holds if condition check for last case
1555   /// statement range in current switch instruction.
1556   llvm::BasicBlock *CaseRangeBlock = nullptr;
1557 
1558   /// OpaqueLValues - Keeps track of the current set of opaque value
1559   /// expressions.
1560   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1561   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1562 
1563   // VLASizeMap - This keeps track of the associated size for each VLA type.
1564   // We track this by the size expression rather than the type itself because
1565   // in certain situations, like a const qualifier applied to an VLA typedef,
1566   // multiple VLA types can share the same size expression.
1567   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1568   // enter/leave scopes.
1569   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1570 
1571   /// A block containing a single 'unreachable' instruction.  Created
1572   /// lazily by getUnreachableBlock().
1573   llvm::BasicBlock *UnreachableBlock = nullptr;
1574 
1575   /// Counts of the number return expressions in the function.
1576   unsigned NumReturnExprs = 0;
1577 
1578   /// Count the number of simple (constant) return expressions in the function.
1579   unsigned NumSimpleReturnExprs = 0;
1580 
1581   /// The last regular (non-return) debug location (breakpoint) in the function.
1582   SourceLocation LastStopPoint;
1583 
1584 public:
1585   /// Source location information about the default argument or member
1586   /// initializer expression we're evaluating, if any.
1587   CurrentSourceLocExprScope CurSourceLocExprScope;
1588   using SourceLocExprScopeGuard =
1589       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
1590 
1591   /// A scope within which we are constructing the fields of an object which
1592   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1593   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1594   class FieldConstructionScope {
1595   public:
1596     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1597         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1598       CGF.CXXDefaultInitExprThis = This;
1599     }
1600     ~FieldConstructionScope() {
1601       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1602     }
1603 
1604   private:
1605     CodeGenFunction &CGF;
1606     Address OldCXXDefaultInitExprThis;
1607   };
1608 
1609   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1610   /// is overridden to be the object under construction.
1611   class CXXDefaultInitExprScope  {
1612   public:
1613     CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E)
1614         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1615           OldCXXThisAlignment(CGF.CXXThisAlignment),
1616           SourceLocScope(E, CGF.CurSourceLocExprScope) {
1617       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1618       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1619     }
1620     ~CXXDefaultInitExprScope() {
1621       CGF.CXXThisValue = OldCXXThisValue;
1622       CGF.CXXThisAlignment = OldCXXThisAlignment;
1623     }
1624 
1625   public:
1626     CodeGenFunction &CGF;
1627     llvm::Value *OldCXXThisValue;
1628     CharUnits OldCXXThisAlignment;
1629     SourceLocExprScopeGuard SourceLocScope;
1630   };
1631 
1632   struct CXXDefaultArgExprScope : SourceLocExprScopeGuard {
1633     CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E)
1634         : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {}
1635   };
1636 
1637   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1638   /// current loop index is overridden.
1639   class ArrayInitLoopExprScope {
1640   public:
1641     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1642       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1643       CGF.ArrayInitIndex = Index;
1644     }
1645     ~ArrayInitLoopExprScope() {
1646       CGF.ArrayInitIndex = OldArrayInitIndex;
1647     }
1648 
1649   private:
1650     CodeGenFunction &CGF;
1651     llvm::Value *OldArrayInitIndex;
1652   };
1653 
1654   class InlinedInheritingConstructorScope {
1655   public:
1656     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1657         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1658           OldCurCodeDecl(CGF.CurCodeDecl),
1659           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1660           OldCXXABIThisValue(CGF.CXXABIThisValue),
1661           OldCXXThisValue(CGF.CXXThisValue),
1662           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1663           OldCXXThisAlignment(CGF.CXXThisAlignment),
1664           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1665           OldCXXInheritedCtorInitExprArgs(
1666               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1667       CGF.CurGD = GD;
1668       CGF.CurFuncDecl = CGF.CurCodeDecl =
1669           cast<CXXConstructorDecl>(GD.getDecl());
1670       CGF.CXXABIThisDecl = nullptr;
1671       CGF.CXXABIThisValue = nullptr;
1672       CGF.CXXThisValue = nullptr;
1673       CGF.CXXABIThisAlignment = CharUnits();
1674       CGF.CXXThisAlignment = CharUnits();
1675       CGF.ReturnValue = Address::invalid();
1676       CGF.FnRetTy = QualType();
1677       CGF.CXXInheritedCtorInitExprArgs.clear();
1678     }
1679     ~InlinedInheritingConstructorScope() {
1680       CGF.CurGD = OldCurGD;
1681       CGF.CurFuncDecl = OldCurFuncDecl;
1682       CGF.CurCodeDecl = OldCurCodeDecl;
1683       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1684       CGF.CXXABIThisValue = OldCXXABIThisValue;
1685       CGF.CXXThisValue = OldCXXThisValue;
1686       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1687       CGF.CXXThisAlignment = OldCXXThisAlignment;
1688       CGF.ReturnValue = OldReturnValue;
1689       CGF.FnRetTy = OldFnRetTy;
1690       CGF.CXXInheritedCtorInitExprArgs =
1691           std::move(OldCXXInheritedCtorInitExprArgs);
1692     }
1693 
1694   private:
1695     CodeGenFunction &CGF;
1696     GlobalDecl OldCurGD;
1697     const Decl *OldCurFuncDecl;
1698     const Decl *OldCurCodeDecl;
1699     ImplicitParamDecl *OldCXXABIThisDecl;
1700     llvm::Value *OldCXXABIThisValue;
1701     llvm::Value *OldCXXThisValue;
1702     CharUnits OldCXXABIThisAlignment;
1703     CharUnits OldCXXThisAlignment;
1704     Address OldReturnValue;
1705     QualType OldFnRetTy;
1706     CallArgList OldCXXInheritedCtorInitExprArgs;
1707   };
1708 
1709   // Helper class for the OpenMP IR Builder. Allows reusability of code used for
1710   // region body, and finalization codegen callbacks. This will class will also
1711   // contain privatization functions used by the privatization call backs
1712   //
1713   // TODO: this is temporary class for things that are being moved out of
1714   // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or
1715   // utility function for use with the OMPBuilder. Once that move to use the
1716   // OMPBuilder is done, everything here will either become part of CodeGenFunc.
1717   // directly, or a new helper class that will contain functions used by both
1718   // this and the OMPBuilder
1719 
1720   struct OMPBuilderCBHelpers {
1721 
1722     OMPBuilderCBHelpers() = delete;
1723     OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete;
1724     OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete;
1725 
1726     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1727 
1728     /// Cleanup action for allocate support.
1729     class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
1730 
1731     private:
1732       llvm::CallInst *RTLFnCI;
1733 
1734     public:
1735       OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) {
1736         RLFnCI->removeFromParent();
1737       }
1738 
1739       void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
1740         if (!CGF.HaveInsertPoint())
1741           return;
1742         CGF.Builder.Insert(RTLFnCI);
1743       }
1744     };
1745 
1746     /// Returns address of the threadprivate variable for the current
1747     /// thread. This Also create any necessary OMP runtime calls.
1748     ///
1749     /// \param VD VarDecl for Threadprivate variable.
1750     /// \param VDAddr Address of the Vardecl
1751     /// \param Loc  The location where the barrier directive was encountered
1752     static Address getAddrOfThreadPrivate(CodeGenFunction &CGF,
1753                                           const VarDecl *VD, Address VDAddr,
1754                                           SourceLocation Loc);
1755 
1756     /// Gets the OpenMP-specific address of the local variable /p VD.
1757     static Address getAddressOfLocalVariable(CodeGenFunction &CGF,
1758                                              const VarDecl *VD);
1759     /// Get the platform-specific name separator.
1760     /// \param Parts different parts of the final name that needs separation
1761     /// \param FirstSeparator First separator used between the initial two
1762     ///        parts of the name.
1763     /// \param Separator separator used between all of the rest consecutinve
1764     ///        parts of the name
1765     static std::string getNameWithSeparators(ArrayRef<StringRef> Parts,
1766                                              StringRef FirstSeparator = ".",
1767                                              StringRef Separator = ".");
1768     /// Emit the Finalization for an OMP region
1769     /// \param CGF	The Codegen function this belongs to
1770     /// \param IP	Insertion point for generating the finalization code.
1771     static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) {
1772       CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1773       assert(IP.getBlock()->end() != IP.getPoint() &&
1774              "OpenMP IR Builder should cause terminated block!");
1775 
1776       llvm::BasicBlock *IPBB = IP.getBlock();
1777       llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor();
1778       assert(DestBB && "Finalization block should have one successor!");
1779 
1780       // erase and replace with cleanup branch.
1781       IPBB->getTerminator()->eraseFromParent();
1782       CGF.Builder.SetInsertPoint(IPBB);
1783       CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB);
1784       CGF.EmitBranchThroughCleanup(Dest);
1785     }
1786 
1787     /// Emit the body of an OMP region
1788     /// \param CGF	The Codegen function this belongs to
1789     /// \param RegionBodyStmt	The body statement for the OpenMP region being
1790     /// 			 generated
1791     /// \param CodeGenIP	Insertion point for generating the body code.
1792     /// \param FiniBB	The finalization basic block
1793     static void EmitOMPRegionBody(CodeGenFunction &CGF,
1794                                   const Stmt *RegionBodyStmt,
1795                                   InsertPointTy CodeGenIP,
1796                                   llvm::BasicBlock &FiniBB) {
1797       llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1798       if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
1799         CodeGenIPBBTI->eraseFromParent();
1800 
1801       CGF.Builder.SetInsertPoint(CodeGenIPBB);
1802 
1803       CGF.EmitStmt(RegionBodyStmt);
1804 
1805       if (CGF.Builder.saveIP().isSet())
1806         CGF.Builder.CreateBr(&FiniBB);
1807     }
1808 
1809     static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP,
1810                                 llvm::BasicBlock &FiniBB, llvm::Function *Fn,
1811                                 ArrayRef<llvm::Value *> Args) {
1812       llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1813       if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
1814         CodeGenIPBBTI->eraseFromParent();
1815 
1816       CGF.Builder.SetInsertPoint(CodeGenIPBB);
1817 
1818       if (Fn->doesNotThrow())
1819         CGF.EmitNounwindRuntimeCall(Fn, Args);
1820       else
1821         CGF.EmitRuntimeCall(Fn, Args);
1822 
1823       if (CGF.Builder.saveIP().isSet())
1824         CGF.Builder.CreateBr(&FiniBB);
1825     }
1826 
1827     /// RAII for preserving necessary info during Outlined region body codegen.
1828     class OutlinedRegionBodyRAII {
1829 
1830       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1831       CodeGenFunction::JumpDest OldReturnBlock;
1832       CGBuilderTy::InsertPoint IP;
1833       CodeGenFunction &CGF;
1834 
1835     public:
1836       OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1837                              llvm::BasicBlock &RetBB)
1838           : CGF(cgf) {
1839         assert(AllocaIP.isSet() &&
1840                "Must specify Insertion point for allocas of outlined function");
1841         OldAllocaIP = CGF.AllocaInsertPt;
1842         CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1843         IP = CGF.Builder.saveIP();
1844 
1845         OldReturnBlock = CGF.ReturnBlock;
1846         CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB);
1847       }
1848 
1849       ~OutlinedRegionBodyRAII() {
1850         CGF.AllocaInsertPt = OldAllocaIP;
1851         CGF.ReturnBlock = OldReturnBlock;
1852         CGF.Builder.restoreIP(IP);
1853       }
1854     };
1855 
1856     /// RAII for preserving necessary info during inlined region body codegen.
1857     class InlinedRegionBodyRAII {
1858 
1859       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1860       CodeGenFunction &CGF;
1861 
1862     public:
1863       InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1864                             llvm::BasicBlock &FiniBB)
1865           : CGF(cgf) {
1866         // Alloca insertion block should be in the entry block of the containing
1867         // function so it expects an empty AllocaIP in which case will reuse the
1868         // old alloca insertion point, or a new AllocaIP in the same block as
1869         // the old one
1870         assert((!AllocaIP.isSet() ||
1871                 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) &&
1872                "Insertion point should be in the entry block of containing "
1873                "function!");
1874         OldAllocaIP = CGF.AllocaInsertPt;
1875         if (AllocaIP.isSet())
1876           CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1877 
1878         // TODO: Remove the call, after making sure the counter is not used by
1879         //       the EHStack.
1880         // Since this is an inlined region, it should not modify the
1881         // ReturnBlock, and should reuse the one for the enclosing outlined
1882         // region. So, the JumpDest being return by the function is discarded
1883         (void)CGF.getJumpDestInCurrentScope(&FiniBB);
1884       }
1885 
1886       ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; }
1887     };
1888   };
1889 
1890 private:
1891   /// CXXThisDecl - When generating code for a C++ member function,
1892   /// this will hold the implicit 'this' declaration.
1893   ImplicitParamDecl *CXXABIThisDecl = nullptr;
1894   llvm::Value *CXXABIThisValue = nullptr;
1895   llvm::Value *CXXThisValue = nullptr;
1896   CharUnits CXXABIThisAlignment;
1897   CharUnits CXXThisAlignment;
1898 
1899   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1900   /// this expression.
1901   Address CXXDefaultInitExprThis = Address::invalid();
1902 
1903   /// The current array initialization index when evaluating an
1904   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1905   llvm::Value *ArrayInitIndex = nullptr;
1906 
1907   /// The values of function arguments to use when evaluating
1908   /// CXXInheritedCtorInitExprs within this context.
1909   CallArgList CXXInheritedCtorInitExprArgs;
1910 
1911   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1912   /// destructor, this will hold the implicit argument (e.g. VTT).
1913   ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1914   llvm::Value *CXXStructorImplicitParamValue = nullptr;
1915 
1916   /// OutermostConditional - Points to the outermost active
1917   /// conditional control.  This is used so that we know if a
1918   /// temporary should be destroyed conditionally.
1919   ConditionalEvaluation *OutermostConditional = nullptr;
1920 
1921   /// The current lexical scope.
1922   LexicalScope *CurLexicalScope = nullptr;
1923 
1924   /// The current source location that should be used for exception
1925   /// handling code.
1926   SourceLocation CurEHLocation;
1927 
1928   /// BlockByrefInfos - For each __block variable, contains
1929   /// information about the layout of the variable.
1930   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1931 
1932   /// Used by -fsanitize=nullability-return to determine whether the return
1933   /// value can be checked.
1934   llvm::Value *RetValNullabilityPrecondition = nullptr;
1935 
1936   /// Check if -fsanitize=nullability-return instrumentation is required for
1937   /// this function.
1938   bool requiresReturnValueNullabilityCheck() const {
1939     return RetValNullabilityPrecondition;
1940   }
1941 
1942   /// Used to store precise source locations for return statements by the
1943   /// runtime return value checks.
1944   Address ReturnLocation = Address::invalid();
1945 
1946   /// Check if the return value of this function requires sanitization.
1947   bool requiresReturnValueCheck() const;
1948 
1949   llvm::BasicBlock *TerminateLandingPad = nullptr;
1950   llvm::BasicBlock *TerminateHandler = nullptr;
1951   llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs;
1952 
1953   /// Terminate funclets keyed by parent funclet pad.
1954   llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1955 
1956   /// Largest vector width used in ths function. Will be used to create a
1957   /// function attribute.
1958   unsigned LargestVectorWidth = 0;
1959 
1960   /// True if we need emit the life-time markers. This is initially set in
1961   /// the constructor, but could be overwritten to true if this is a coroutine.
1962   bool ShouldEmitLifetimeMarkers;
1963 
1964   /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1965   /// the function metadata.
1966   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1967                                 llvm::Function *Fn);
1968 
1969 public:
1970   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1971   ~CodeGenFunction();
1972 
1973   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1974   ASTContext &getContext() const { return CGM.getContext(); }
1975   CGDebugInfo *getDebugInfo() {
1976     if (DisableDebugInfo)
1977       return nullptr;
1978     return DebugInfo;
1979   }
1980   void disableDebugInfo() { DisableDebugInfo = true; }
1981   void enableDebugInfo() { DisableDebugInfo = false; }
1982 
1983   bool shouldUseFusedARCCalls() {
1984     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1985   }
1986 
1987   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1988 
1989   /// Returns a pointer to the function's exception object and selector slot,
1990   /// which is assigned in every landing pad.
1991   Address getExceptionSlot();
1992   Address getEHSelectorSlot();
1993 
1994   /// Returns the contents of the function's exception object and selector
1995   /// slots.
1996   llvm::Value *getExceptionFromSlot();
1997   llvm::Value *getSelectorFromSlot();
1998 
1999   Address getNormalCleanupDestSlot();
2000 
2001   llvm::BasicBlock *getUnreachableBlock() {
2002     if (!UnreachableBlock) {
2003       UnreachableBlock = createBasicBlock("unreachable");
2004       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
2005     }
2006     return UnreachableBlock;
2007   }
2008 
2009   llvm::BasicBlock *getInvokeDest() {
2010     if (!EHStack.requiresLandingPad()) return nullptr;
2011     return getInvokeDestImpl();
2012   }
2013 
2014   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
2015 
2016   const TargetInfo &getTarget() const { return Target; }
2017   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
2018   const TargetCodeGenInfo &getTargetHooks() const {
2019     return CGM.getTargetCodeGenInfo();
2020   }
2021 
2022   //===--------------------------------------------------------------------===//
2023   //                                  Cleanups
2024   //===--------------------------------------------------------------------===//
2025 
2026   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
2027 
2028   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2029                                         Address arrayEndPointer,
2030                                         QualType elementType,
2031                                         CharUnits elementAlignment,
2032                                         Destroyer *destroyer);
2033   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2034                                       llvm::Value *arrayEnd,
2035                                       QualType elementType,
2036                                       CharUnits elementAlignment,
2037                                       Destroyer *destroyer);
2038 
2039   void pushDestroy(QualType::DestructionKind dtorKind,
2040                    Address addr, QualType type);
2041   void pushEHDestroy(QualType::DestructionKind dtorKind,
2042                      Address addr, QualType type);
2043   void pushDestroy(CleanupKind kind, Address addr, QualType type,
2044                    Destroyer *destroyer, bool useEHCleanupForArray);
2045   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
2046                                    QualType type, Destroyer *destroyer,
2047                                    bool useEHCleanupForArray);
2048   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
2049                                    llvm::Value *CompletePtr,
2050                                    QualType ElementType);
2051   void pushStackRestore(CleanupKind kind, Address SPMem);
2052   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
2053                    bool useEHCleanupForArray);
2054   llvm::Function *generateDestroyHelper(Address addr, QualType type,
2055                                         Destroyer *destroyer,
2056                                         bool useEHCleanupForArray,
2057                                         const VarDecl *VD);
2058   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
2059                         QualType elementType, CharUnits elementAlign,
2060                         Destroyer *destroyer,
2061                         bool checkZeroLength, bool useEHCleanup);
2062 
2063   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
2064 
2065   /// Determines whether an EH cleanup is required to destroy a type
2066   /// with the given destruction kind.
2067   bool needsEHCleanup(QualType::DestructionKind kind) {
2068     switch (kind) {
2069     case QualType::DK_none:
2070       return false;
2071     case QualType::DK_cxx_destructor:
2072     case QualType::DK_objc_weak_lifetime:
2073     case QualType::DK_nontrivial_c_struct:
2074       return getLangOpts().Exceptions;
2075     case QualType::DK_objc_strong_lifetime:
2076       return getLangOpts().Exceptions &&
2077              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
2078     }
2079     llvm_unreachable("bad destruction kind");
2080   }
2081 
2082   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
2083     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
2084   }
2085 
2086   //===--------------------------------------------------------------------===//
2087   //                                  Objective-C
2088   //===--------------------------------------------------------------------===//
2089 
2090   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
2091 
2092   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
2093 
2094   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
2095   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
2096                           const ObjCPropertyImplDecl *PID);
2097   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
2098                               const ObjCPropertyImplDecl *propImpl,
2099                               const ObjCMethodDecl *GetterMothodDecl,
2100                               llvm::Constant *AtomicHelperFn);
2101 
2102   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
2103                                   ObjCMethodDecl *MD, bool ctor);
2104 
2105   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
2106   /// for the given property.
2107   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
2108                           const ObjCPropertyImplDecl *PID);
2109   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
2110                               const ObjCPropertyImplDecl *propImpl,
2111                               llvm::Constant *AtomicHelperFn);
2112 
2113   //===--------------------------------------------------------------------===//
2114   //                                  Block Bits
2115   //===--------------------------------------------------------------------===//
2116 
2117   /// Emit block literal.
2118   /// \return an LLVM value which is a pointer to a struct which contains
2119   /// information about the block, including the block invoke function, the
2120   /// captured variables, etc.
2121   llvm::Value *EmitBlockLiteral(const BlockExpr *);
2122 
2123   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
2124                                         const CGBlockInfo &Info,
2125                                         const DeclMapTy &ldm,
2126                                         bool IsLambdaConversionToBlock,
2127                                         bool BuildGlobalBlock);
2128 
2129   /// Check if \p T is a C++ class that has a destructor that can throw.
2130   static bool cxxDestructorCanThrow(QualType T);
2131 
2132   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
2133   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
2134   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
2135                                              const ObjCPropertyImplDecl *PID);
2136   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
2137                                              const ObjCPropertyImplDecl *PID);
2138   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
2139 
2140   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
2141                          bool CanThrow);
2142 
2143   class AutoVarEmission;
2144 
2145   void emitByrefStructureInit(const AutoVarEmission &emission);
2146 
2147   /// Enter a cleanup to destroy a __block variable.  Note that this
2148   /// cleanup should be a no-op if the variable hasn't left the stack
2149   /// yet; if a cleanup is required for the variable itself, that needs
2150   /// to be done externally.
2151   ///
2152   /// \param Kind Cleanup kind.
2153   ///
2154   /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
2155   /// structure that will be passed to _Block_object_dispose. When
2156   /// \p LoadBlockVarAddr is true, the address of the field of the block
2157   /// structure that holds the address of the __block structure.
2158   ///
2159   /// \param Flags The flag that will be passed to _Block_object_dispose.
2160   ///
2161   /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
2162   /// \p Addr to get the address of the __block structure.
2163   void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
2164                          bool LoadBlockVarAddr, bool CanThrow);
2165 
2166   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
2167                                 llvm::Value *ptr);
2168 
2169   Address LoadBlockStruct();
2170   Address GetAddrOfBlockDecl(const VarDecl *var);
2171 
2172   /// BuildBlockByrefAddress - Computes the location of the
2173   /// data in a variable which is declared as __block.
2174   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
2175                                 bool followForward = true);
2176   Address emitBlockByrefAddress(Address baseAddr,
2177                                 const BlockByrefInfo &info,
2178                                 bool followForward,
2179                                 const llvm::Twine &name);
2180 
2181   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
2182 
2183   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
2184 
2185   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
2186                     const CGFunctionInfo &FnInfo);
2187 
2188   /// Annotate the function with an attribute that disables TSan checking at
2189   /// runtime.
2190   void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
2191 
2192   /// Emit code for the start of a function.
2193   /// \param Loc       The location to be associated with the function.
2194   /// \param StartLoc  The location of the function body.
2195   void StartFunction(GlobalDecl GD,
2196                      QualType RetTy,
2197                      llvm::Function *Fn,
2198                      const CGFunctionInfo &FnInfo,
2199                      const FunctionArgList &Args,
2200                      SourceLocation Loc = SourceLocation(),
2201                      SourceLocation StartLoc = SourceLocation());
2202 
2203   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
2204 
2205   void EmitConstructorBody(FunctionArgList &Args);
2206   void EmitDestructorBody(FunctionArgList &Args);
2207   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
2208   void EmitFunctionBody(const Stmt *Body);
2209   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
2210 
2211   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
2212                                   CallArgList &CallArgs);
2213   void EmitLambdaBlockInvokeBody();
2214   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
2215   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
2216   void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) {
2217     EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2218   }
2219   void EmitAsanPrologueOrEpilogue(bool Prologue);
2220 
2221   /// Emit the unified return block, trying to avoid its emission when
2222   /// possible.
2223   /// \return The debug location of the user written return statement if the
2224   /// return block is is avoided.
2225   llvm::DebugLoc EmitReturnBlock();
2226 
2227   /// FinishFunction - Complete IR generation of the current function. It is
2228   /// legal to call this function even if there is no current insertion point.
2229   void FinishFunction(SourceLocation EndLoc=SourceLocation());
2230 
2231   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
2232                   const CGFunctionInfo &FnInfo, bool IsUnprototyped);
2233 
2234   void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
2235                                  const ThunkInfo *Thunk, bool IsUnprototyped);
2236 
2237   void FinishThunk();
2238 
2239   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
2240   void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
2241                          llvm::FunctionCallee Callee);
2242 
2243   /// Generate a thunk for the given method.
2244   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
2245                      GlobalDecl GD, const ThunkInfo &Thunk,
2246                      bool IsUnprototyped);
2247 
2248   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
2249                                        const CGFunctionInfo &FnInfo,
2250                                        GlobalDecl GD, const ThunkInfo &Thunk);
2251 
2252   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
2253                         FunctionArgList &Args);
2254 
2255   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
2256 
2257   /// Struct with all information about dynamic [sub]class needed to set vptr.
2258   struct VPtr {
2259     BaseSubobject Base;
2260     const CXXRecordDecl *NearestVBase;
2261     CharUnits OffsetFromNearestVBase;
2262     const CXXRecordDecl *VTableClass;
2263   };
2264 
2265   /// Initialize the vtable pointer of the given subobject.
2266   void InitializeVTablePointer(const VPtr &vptr);
2267 
2268   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
2269 
2270   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
2271   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
2272 
2273   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
2274                          CharUnits OffsetFromNearestVBase,
2275                          bool BaseIsNonVirtualPrimaryBase,
2276                          const CXXRecordDecl *VTableClass,
2277                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
2278 
2279   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
2280 
2281   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
2282   /// to by This.
2283   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
2284                             const CXXRecordDecl *VTableClass);
2285 
2286   enum CFITypeCheckKind {
2287     CFITCK_VCall,
2288     CFITCK_NVCall,
2289     CFITCK_DerivedCast,
2290     CFITCK_UnrelatedCast,
2291     CFITCK_ICall,
2292     CFITCK_NVMFCall,
2293     CFITCK_VMFCall,
2294   };
2295 
2296   /// Derived is the presumed address of an object of type T after a
2297   /// cast. If T is a polymorphic class type, emit a check that the virtual
2298   /// table for Derived belongs to a class derived from T.
2299   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
2300                                  bool MayBeNull, CFITypeCheckKind TCK,
2301                                  SourceLocation Loc);
2302 
2303   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
2304   /// If vptr CFI is enabled, emit a check that VTable is valid.
2305   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
2306                                  CFITypeCheckKind TCK, SourceLocation Loc);
2307 
2308   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
2309   /// RD using llvm.type.test.
2310   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
2311                           CFITypeCheckKind TCK, SourceLocation Loc);
2312 
2313   /// If whole-program virtual table optimization is enabled, emit an assumption
2314   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
2315   /// enabled, emit a check that VTable is a member of RD's type identifier.
2316   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2317                                     llvm::Value *VTable, SourceLocation Loc);
2318 
2319   /// Returns whether we should perform a type checked load when loading a
2320   /// virtual function for virtual calls to members of RD. This is generally
2321   /// true when both vcall CFI and whole-program-vtables are enabled.
2322   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
2323 
2324   /// Emit a type checked load from the given vtable.
2325   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
2326                                          uint64_t VTableByteOffset);
2327 
2328   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
2329   /// given phase of destruction for a destructor.  The end result
2330   /// should call destructors on members and base classes in reverse
2331   /// order of their construction.
2332   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
2333 
2334   /// ShouldInstrumentFunction - Return true if the current function should be
2335   /// instrumented with __cyg_profile_func_* calls
2336   bool ShouldInstrumentFunction();
2337 
2338   /// ShouldSkipSanitizerInstrumentation - Return true if the current function
2339   /// should not be instrumented with sanitizers.
2340   bool ShouldSkipSanitizerInstrumentation();
2341 
2342   /// ShouldXRayInstrument - Return true if the current function should be
2343   /// instrumented with XRay nop sleds.
2344   bool ShouldXRayInstrumentFunction() const;
2345 
2346   /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
2347   /// XRay custom event handling calls.
2348   bool AlwaysEmitXRayCustomEvents() const;
2349 
2350   /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
2351   /// XRay typed event handling calls.
2352   bool AlwaysEmitXRayTypedEvents() const;
2353 
2354   /// Encode an address into a form suitable for use in a function prologue.
2355   llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
2356                                              llvm::Constant *Addr);
2357 
2358   /// Decode an address used in a function prologue, encoded by \c
2359   /// EncodeAddrForUseInPrologue.
2360   llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
2361                                         llvm::Value *EncodedAddr);
2362 
2363   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
2364   /// arguments for the given function. This is also responsible for naming the
2365   /// LLVM function arguments.
2366   void EmitFunctionProlog(const CGFunctionInfo &FI,
2367                           llvm::Function *Fn,
2368                           const FunctionArgList &Args);
2369 
2370   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
2371   /// given temporary.
2372   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
2373                           SourceLocation EndLoc);
2374 
2375   /// Emit a test that checks if the return value \p RV is nonnull.
2376   void EmitReturnValueCheck(llvm::Value *RV);
2377 
2378   /// EmitStartEHSpec - Emit the start of the exception spec.
2379   void EmitStartEHSpec(const Decl *D);
2380 
2381   /// EmitEndEHSpec - Emit the end of the exception spec.
2382   void EmitEndEHSpec(const Decl *D);
2383 
2384   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2385   llvm::BasicBlock *getTerminateLandingPad();
2386 
2387   /// getTerminateLandingPad - Return a cleanup funclet that just calls
2388   /// terminate.
2389   llvm::BasicBlock *getTerminateFunclet();
2390 
2391   /// getTerminateHandler - Return a handler (not a landing pad, just
2392   /// a catch handler) that just calls terminate.  This is used when
2393   /// a terminate scope encloses a try.
2394   llvm::BasicBlock *getTerminateHandler();
2395 
2396   llvm::Type *ConvertTypeForMem(QualType T);
2397   llvm::Type *ConvertType(QualType T);
2398   llvm::Type *ConvertType(const TypeDecl *T) {
2399     return ConvertType(getContext().getTypeDeclType(T));
2400   }
2401 
2402   /// LoadObjCSelf - Load the value of self. This function is only valid while
2403   /// generating code for an Objective-C method.
2404   llvm::Value *LoadObjCSelf();
2405 
2406   /// TypeOfSelfObject - Return type of object that this self represents.
2407   QualType TypeOfSelfObject();
2408 
2409   /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2410   static TypeEvaluationKind getEvaluationKind(QualType T);
2411 
2412   static bool hasScalarEvaluationKind(QualType T) {
2413     return getEvaluationKind(T) == TEK_Scalar;
2414   }
2415 
2416   static bool hasAggregateEvaluationKind(QualType T) {
2417     return getEvaluationKind(T) == TEK_Aggregate;
2418   }
2419 
2420   /// createBasicBlock - Create an LLVM basic block.
2421   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2422                                      llvm::Function *parent = nullptr,
2423                                      llvm::BasicBlock *before = nullptr) {
2424     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2425   }
2426 
2427   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2428   /// label maps to.
2429   JumpDest getJumpDestForLabel(const LabelDecl *S);
2430 
2431   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2432   /// another basic block, simplify it. This assumes that no other code could
2433   /// potentially reference the basic block.
2434   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2435 
2436   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2437   /// adding a fall-through branch from the current insert block if
2438   /// necessary. It is legal to call this function even if there is no current
2439   /// insertion point.
2440   ///
2441   /// IsFinished - If true, indicates that the caller has finished emitting
2442   /// branches to the given block and does not expect to emit code into it. This
2443   /// means the block can be ignored if it is unreachable.
2444   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2445 
2446   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2447   /// near its uses, and leave the insertion point in it.
2448   void EmitBlockAfterUses(llvm::BasicBlock *BB);
2449 
2450   /// EmitBranch - Emit a branch to the specified basic block from the current
2451   /// insert block, taking care to avoid creation of branches from dummy
2452   /// blocks. It is legal to call this function even if there is no current
2453   /// insertion point.
2454   ///
2455   /// This function clears the current insertion point. The caller should follow
2456   /// calls to this function with calls to Emit*Block prior to generation new
2457   /// code.
2458   void EmitBranch(llvm::BasicBlock *Block);
2459 
2460   /// HaveInsertPoint - True if an insertion point is defined. If not, this
2461   /// indicates that the current code being emitted is unreachable.
2462   bool HaveInsertPoint() const {
2463     return Builder.GetInsertBlock() != nullptr;
2464   }
2465 
2466   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2467   /// emitted IR has a place to go. Note that by definition, if this function
2468   /// creates a block then that block is unreachable; callers may do better to
2469   /// detect when no insertion point is defined and simply skip IR generation.
2470   void EnsureInsertPoint() {
2471     if (!HaveInsertPoint())
2472       EmitBlock(createBasicBlock());
2473   }
2474 
2475   /// ErrorUnsupported - Print out an error that codegen doesn't support the
2476   /// specified stmt yet.
2477   void ErrorUnsupported(const Stmt *S, const char *Type);
2478 
2479   //===--------------------------------------------------------------------===//
2480   //                                  Helpers
2481   //===--------------------------------------------------------------------===//
2482 
2483   LValue MakeAddrLValue(Address Addr, QualType T,
2484                         AlignmentSource Source = AlignmentSource::Type) {
2485     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2486                             CGM.getTBAAAccessInfo(T));
2487   }
2488 
2489   LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
2490                         TBAAAccessInfo TBAAInfo) {
2491     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2492   }
2493 
2494   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2495                         AlignmentSource Source = AlignmentSource::Type) {
2496     Address Addr(V, ConvertTypeForMem(T), Alignment);
2497     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2498                             CGM.getTBAAAccessInfo(T));
2499   }
2500 
2501   LValue
2502   MakeAddrLValueWithoutTBAA(Address Addr, QualType T,
2503                             AlignmentSource Source = AlignmentSource::Type) {
2504     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2505                             TBAAAccessInfo());
2506   }
2507 
2508   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2509   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
2510 
2511   Address EmitLoadOfReference(LValue RefLVal,
2512                               LValueBaseInfo *PointeeBaseInfo = nullptr,
2513                               TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2514   LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2515   LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
2516                                    AlignmentSource Source =
2517                                        AlignmentSource::Type) {
2518     LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2519                                     CGM.getTBAAAccessInfo(RefTy));
2520     return EmitLoadOfReferenceLValue(RefLVal);
2521   }
2522 
2523   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2524                             LValueBaseInfo *BaseInfo = nullptr,
2525                             TBAAAccessInfo *TBAAInfo = nullptr);
2526   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2527 
2528   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2529   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2530   /// insertion point of the builder. The caller is responsible for setting an
2531   /// appropriate alignment on
2532   /// the alloca.
2533   ///
2534   /// \p ArraySize is the number of array elements to be allocated if it
2535   ///    is not nullptr.
2536   ///
2537   /// LangAS::Default is the address space of pointers to local variables and
2538   /// temporaries, as exposed in the source language. In certain
2539   /// configurations, this is not the same as the alloca address space, and a
2540   /// cast is needed to lift the pointer from the alloca AS into
2541   /// LangAS::Default. This can happen when the target uses a restricted
2542   /// address space for the stack but the source language requires
2543   /// LangAS::Default to be a generic address space. The latter condition is
2544   /// common for most programming languages; OpenCL is an exception in that
2545   /// LangAS::Default is the private address space, which naturally maps
2546   /// to the stack.
2547   ///
2548   /// Because the address of a temporary is often exposed to the program in
2549   /// various ways, this function will perform the cast. The original alloca
2550   /// instruction is returned through \p Alloca if it is not nullptr.
2551   ///
2552   /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2553   /// more efficient if the caller knows that the address will not be exposed.
2554   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2555                                      llvm::Value *ArraySize = nullptr);
2556   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2557                            const Twine &Name = "tmp",
2558                            llvm::Value *ArraySize = nullptr,
2559                            Address *Alloca = nullptr);
2560   Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2561                                       const Twine &Name = "tmp",
2562                                       llvm::Value *ArraySize = nullptr);
2563 
2564   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2565   /// default ABI alignment of the given LLVM type.
2566   ///
2567   /// IMPORTANT NOTE: This is *not* generally the right alignment for
2568   /// any given AST type that happens to have been lowered to the
2569   /// given IR type.  This should only ever be used for function-local,
2570   /// IR-driven manipulations like saving and restoring a value.  Do
2571   /// not hand this address off to arbitrary IRGen routines, and especially
2572   /// do not pass it as an argument to a function that might expect a
2573   /// properly ABI-aligned value.
2574   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2575                                        const Twine &Name = "tmp");
2576 
2577   /// CreateIRTemp - Create a temporary IR object of the given type, with
2578   /// appropriate alignment. This routine should only be used when an temporary
2579   /// value needs to be stored into an alloca (for example, to avoid explicit
2580   /// PHI construction), but the type is the IR type, not the type appropriate
2581   /// for storing in memory.
2582   ///
2583   /// That is, this is exactly equivalent to CreateMemTemp, but calling
2584   /// ConvertType instead of ConvertTypeForMem.
2585   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2586 
2587   /// CreateMemTemp - Create a temporary memory object of the given type, with
2588   /// appropriate alignmen and cast it to the default address space. Returns
2589   /// the original alloca instruction by \p Alloca if it is not nullptr.
2590   Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2591                         Address *Alloca = nullptr);
2592   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2593                         Address *Alloca = nullptr);
2594 
2595   /// CreateMemTemp - Create a temporary memory object of the given type, with
2596   /// appropriate alignmen without casting it to the default address space.
2597   Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2598   Address CreateMemTempWithoutCast(QualType T, CharUnits Align,
2599                                    const Twine &Name = "tmp");
2600 
2601   /// CreateAggTemp - Create a temporary memory object for the given
2602   /// aggregate type.
2603   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp",
2604                              Address *Alloca = nullptr) {
2605     return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca),
2606                                  T.getQualifiers(),
2607                                  AggValueSlot::IsNotDestructed,
2608                                  AggValueSlot::DoesNotNeedGCBarriers,
2609                                  AggValueSlot::IsNotAliased,
2610                                  AggValueSlot::DoesNotOverlap);
2611   }
2612 
2613   /// Emit a cast to void* in the appropriate address space.
2614   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2615 
2616   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2617   /// expression and compare the result against zero, returning an Int1Ty value.
2618   llvm::Value *EvaluateExprAsBool(const Expr *E);
2619 
2620   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2621   void EmitIgnoredExpr(const Expr *E);
2622 
2623   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2624   /// any type.  The result is returned as an RValue struct.  If this is an
2625   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2626   /// the result should be returned.
2627   ///
2628   /// \param ignoreResult True if the resulting value isn't used.
2629   RValue EmitAnyExpr(const Expr *E,
2630                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2631                      bool ignoreResult = false);
2632 
2633   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2634   // or the value of the expression, depending on how va_list is defined.
2635   Address EmitVAListRef(const Expr *E);
2636 
2637   /// Emit a "reference" to a __builtin_ms_va_list; this is
2638   /// always the value of the expression, because a __builtin_ms_va_list is a
2639   /// pointer to a char.
2640   Address EmitMSVAListRef(const Expr *E);
2641 
2642   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2643   /// always be accessible even if no aggregate location is provided.
2644   RValue EmitAnyExprToTemp(const Expr *E);
2645 
2646   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2647   /// arbitrary expression into the given memory location.
2648   void EmitAnyExprToMem(const Expr *E, Address Location,
2649                         Qualifiers Quals, bool IsInitializer);
2650 
2651   void EmitAnyExprToExn(const Expr *E, Address Addr);
2652 
2653   /// EmitExprAsInit - Emits the code necessary to initialize a
2654   /// location in memory with the given initializer.
2655   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2656                       bool capturedByInit);
2657 
2658   /// hasVolatileMember - returns true if aggregate type has a volatile
2659   /// member.
2660   bool hasVolatileMember(QualType T) {
2661     if (const RecordType *RT = T->getAs<RecordType>()) {
2662       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2663       return RD->hasVolatileMember();
2664     }
2665     return false;
2666   }
2667 
2668   /// Determine whether a return value slot may overlap some other object.
2669   AggValueSlot::Overlap_t getOverlapForReturnValue() {
2670     // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2671     // class subobjects. These cases may need to be revisited depending on the
2672     // resolution of the relevant core issue.
2673     return AggValueSlot::DoesNotOverlap;
2674   }
2675 
2676   /// Determine whether a field initialization may overlap some other object.
2677   AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD);
2678 
2679   /// Determine whether a base class initialization may overlap some other
2680   /// object.
2681   AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD,
2682                                                 const CXXRecordDecl *BaseRD,
2683                                                 bool IsVirtual);
2684 
2685   /// Emit an aggregate assignment.
2686   void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2687     bool IsVolatile = hasVolatileMember(EltTy);
2688     EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2689   }
2690 
2691   void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2692                              AggValueSlot::Overlap_t MayOverlap) {
2693     EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2694   }
2695 
2696   /// EmitAggregateCopy - Emit an aggregate copy.
2697   ///
2698   /// \param isVolatile \c true iff either the source or the destination is
2699   ///        volatile.
2700   /// \param MayOverlap Whether the tail padding of the destination might be
2701   ///        occupied by some other object. More efficient code can often be
2702   ///        generated if not.
2703   void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2704                          AggValueSlot::Overlap_t MayOverlap,
2705                          bool isVolatile = false);
2706 
2707   /// GetAddrOfLocalVar - Return the address of a local variable.
2708   Address GetAddrOfLocalVar(const VarDecl *VD) {
2709     auto it = LocalDeclMap.find(VD);
2710     assert(it != LocalDeclMap.end() &&
2711            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2712     return it->second;
2713   }
2714 
2715   /// Given an opaque value expression, return its LValue mapping if it exists,
2716   /// otherwise create one.
2717   LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2718 
2719   /// Given an opaque value expression, return its RValue mapping if it exists,
2720   /// otherwise create one.
2721   RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2722 
2723   /// Get the index of the current ArrayInitLoopExpr, if any.
2724   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2725 
2726   /// getAccessedFieldNo - Given an encoded value and a result number, return
2727   /// the input field number being accessed.
2728   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2729 
2730   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2731   llvm::BasicBlock *GetIndirectGotoBlock();
2732 
2733   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2734   static bool IsWrappedCXXThis(const Expr *E);
2735 
2736   /// EmitNullInitialization - Generate code to set a value of the given type to
2737   /// null, If the type contains data member pointers, they will be initialized
2738   /// to -1 in accordance with the Itanium C++ ABI.
2739   void EmitNullInitialization(Address DestPtr, QualType Ty);
2740 
2741   /// Emits a call to an LLVM variable-argument intrinsic, either
2742   /// \c llvm.va_start or \c llvm.va_end.
2743   /// \param ArgValue A reference to the \c va_list as emitted by either
2744   /// \c EmitVAListRef or \c EmitMSVAListRef.
2745   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2746   /// calls \c llvm.va_end.
2747   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2748 
2749   /// Generate code to get an argument from the passed in pointer
2750   /// and update it accordingly.
2751   /// \param VE The \c VAArgExpr for which to generate code.
2752   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2753   /// either \c EmitVAListRef or \c EmitMSVAListRef.
2754   /// \returns A pointer to the argument.
2755   // FIXME: We should be able to get rid of this method and use the va_arg
2756   // instruction in LLVM instead once it works well enough.
2757   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2758 
2759   /// emitArrayLength - Compute the length of an array, even if it's a
2760   /// VLA, and drill down to the base element type.
2761   llvm::Value *emitArrayLength(const ArrayType *arrayType,
2762                                QualType &baseType,
2763                                Address &addr);
2764 
2765   /// EmitVLASize - Capture all the sizes for the VLA expressions in
2766   /// the given variably-modified type and store them in the VLASizeMap.
2767   ///
2768   /// This function can be called with a null (unreachable) insert point.
2769   void EmitVariablyModifiedType(QualType Ty);
2770 
2771   struct VlaSizePair {
2772     llvm::Value *NumElts;
2773     QualType Type;
2774 
2775     VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2776   };
2777 
2778   /// Return the number of elements for a single dimension
2779   /// for the given array type.
2780   VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2781   VlaSizePair getVLAElements1D(QualType vla);
2782 
2783   /// Returns an LLVM value that corresponds to the size,
2784   /// in non-variably-sized elements, of a variable length array type,
2785   /// plus that largest non-variably-sized element type.  Assumes that
2786   /// the type has already been emitted with EmitVariablyModifiedType.
2787   VlaSizePair getVLASize(const VariableArrayType *vla);
2788   VlaSizePair getVLASize(QualType vla);
2789 
2790   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2791   /// generating code for an C++ member function.
2792   llvm::Value *LoadCXXThis() {
2793     assert(CXXThisValue && "no 'this' value for this function");
2794     return CXXThisValue;
2795   }
2796   Address LoadCXXThisAddress();
2797 
2798   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2799   /// virtual bases.
2800   // FIXME: Every place that calls LoadCXXVTT is something
2801   // that needs to be abstracted properly.
2802   llvm::Value *LoadCXXVTT() {
2803     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2804     return CXXStructorImplicitParamValue;
2805   }
2806 
2807   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2808   /// complete class to the given direct base.
2809   Address
2810   GetAddressOfDirectBaseInCompleteClass(Address Value,
2811                                         const CXXRecordDecl *Derived,
2812                                         const CXXRecordDecl *Base,
2813                                         bool BaseIsVirtual);
2814 
2815   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2816 
2817   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2818   /// load of 'this' and returns address of the base class.
2819   Address GetAddressOfBaseClass(Address Value,
2820                                 const CXXRecordDecl *Derived,
2821                                 CastExpr::path_const_iterator PathBegin,
2822                                 CastExpr::path_const_iterator PathEnd,
2823                                 bool NullCheckValue, SourceLocation Loc);
2824 
2825   Address GetAddressOfDerivedClass(Address Value,
2826                                    const CXXRecordDecl *Derived,
2827                                    CastExpr::path_const_iterator PathBegin,
2828                                    CastExpr::path_const_iterator PathEnd,
2829                                    bool NullCheckValue);
2830 
2831   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2832   /// base constructor/destructor with virtual bases.
2833   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2834   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2835   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2836                                bool Delegating);
2837 
2838   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2839                                       CXXCtorType CtorType,
2840                                       const FunctionArgList &Args,
2841                                       SourceLocation Loc);
2842   // It's important not to confuse this and the previous function. Delegating
2843   // constructors are the C++0x feature. The constructor delegate optimization
2844   // is used to reduce duplication in the base and complete consturctors where
2845   // they are substantially the same.
2846   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2847                                         const FunctionArgList &Args);
2848 
2849   /// Emit a call to an inheriting constructor (that is, one that invokes a
2850   /// constructor inherited from a base class) by inlining its definition. This
2851   /// is necessary if the ABI does not support forwarding the arguments to the
2852   /// base class constructor (because they're variadic or similar).
2853   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2854                                                CXXCtorType CtorType,
2855                                                bool ForVirtualBase,
2856                                                bool Delegating,
2857                                                CallArgList &Args);
2858 
2859   /// Emit a call to a constructor inherited from a base class, passing the
2860   /// current constructor's arguments along unmodified (without even making
2861   /// a copy).
2862   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2863                                        bool ForVirtualBase, Address This,
2864                                        bool InheritedFromVBase,
2865                                        const CXXInheritedCtorInitExpr *E);
2866 
2867   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2868                               bool ForVirtualBase, bool Delegating,
2869                               AggValueSlot ThisAVS, const CXXConstructExpr *E);
2870 
2871   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2872                               bool ForVirtualBase, bool Delegating,
2873                               Address This, CallArgList &Args,
2874                               AggValueSlot::Overlap_t Overlap,
2875                               SourceLocation Loc, bool NewPointerIsChecked);
2876 
2877   /// Emit assumption load for all bases. Requires to be be called only on
2878   /// most-derived class and not under construction of the object.
2879   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2880 
2881   /// Emit assumption that vptr load == global vtable.
2882   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2883 
2884   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2885                                       Address This, Address Src,
2886                                       const CXXConstructExpr *E);
2887 
2888   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2889                                   const ArrayType *ArrayTy,
2890                                   Address ArrayPtr,
2891                                   const CXXConstructExpr *E,
2892                                   bool NewPointerIsChecked,
2893                                   bool ZeroInitialization = false);
2894 
2895   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2896                                   llvm::Value *NumElements,
2897                                   Address ArrayPtr,
2898                                   const CXXConstructExpr *E,
2899                                   bool NewPointerIsChecked,
2900                                   bool ZeroInitialization = false);
2901 
2902   static Destroyer destroyCXXObject;
2903 
2904   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2905                              bool ForVirtualBase, bool Delegating, Address This,
2906                              QualType ThisTy);
2907 
2908   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2909                                llvm::Type *ElementTy, Address NewPtr,
2910                                llvm::Value *NumElements,
2911                                llvm::Value *AllocSizeWithoutCookie);
2912 
2913   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2914                         Address Ptr);
2915 
2916   void EmitSehCppScopeBegin();
2917   void EmitSehCppScopeEnd();
2918   void EmitSehTryScopeBegin();
2919   void EmitSehTryScopeEnd();
2920 
2921   llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr);
2922   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2923 
2924   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2925   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2926 
2927   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2928                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2929                       CharUnits CookieSize = CharUnits());
2930 
2931   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2932                                   const CallExpr *TheCallExpr, bool IsDelete);
2933 
2934   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2935   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2936   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2937 
2938   /// Situations in which we might emit a check for the suitability of a
2939   /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in
2940   /// compiler-rt.
2941   enum TypeCheckKind {
2942     /// Checking the operand of a load. Must be suitably sized and aligned.
2943     TCK_Load,
2944     /// Checking the destination of a store. Must be suitably sized and aligned.
2945     TCK_Store,
2946     /// Checking the bound value in a reference binding. Must be suitably sized
2947     /// and aligned, but is not required to refer to an object (until the
2948     /// reference is used), per core issue 453.
2949     TCK_ReferenceBinding,
2950     /// Checking the object expression in a non-static data member access. Must
2951     /// be an object within its lifetime.
2952     TCK_MemberAccess,
2953     /// Checking the 'this' pointer for a call to a non-static member function.
2954     /// Must be an object within its lifetime.
2955     TCK_MemberCall,
2956     /// Checking the 'this' pointer for a constructor call.
2957     TCK_ConstructorCall,
2958     /// Checking the operand of a static_cast to a derived pointer type. Must be
2959     /// null or an object within its lifetime.
2960     TCK_DowncastPointer,
2961     /// Checking the operand of a static_cast to a derived reference type. Must
2962     /// be an object within its lifetime.
2963     TCK_DowncastReference,
2964     /// Checking the operand of a cast to a base object. Must be suitably sized
2965     /// and aligned.
2966     TCK_Upcast,
2967     /// Checking the operand of a cast to a virtual base object. Must be an
2968     /// object within its lifetime.
2969     TCK_UpcastToVirtualBase,
2970     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2971     TCK_NonnullAssign,
2972     /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
2973     /// null or an object within its lifetime.
2974     TCK_DynamicOperation
2975   };
2976 
2977   /// Determine whether the pointer type check \p TCK permits null pointers.
2978   static bool isNullPointerAllowed(TypeCheckKind TCK);
2979 
2980   /// Determine whether the pointer type check \p TCK requires a vptr check.
2981   static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2982 
2983   /// Whether any type-checking sanitizers are enabled. If \c false,
2984   /// calls to EmitTypeCheck can be skipped.
2985   bool sanitizePerformTypeCheck() const;
2986 
2987   /// Emit a check that \p V is the address of storage of the
2988   /// appropriate size and alignment for an object of type \p Type
2989   /// (or if ArraySize is provided, for an array of that bound).
2990   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2991                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
2992                      SanitizerSet SkippedChecks = SanitizerSet(),
2993                      llvm::Value *ArraySize = nullptr);
2994 
2995   /// Emit a check that \p Base points into an array object, which
2996   /// we can access at index \p Index. \p Accessed should be \c false if we
2997   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2998   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2999                        QualType IndexType, bool Accessed);
3000 
3001   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3002                                        bool isInc, bool isPre);
3003   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
3004                                          bool isInc, bool isPre);
3005 
3006   /// Converts Location to a DebugLoc, if debug information is enabled.
3007   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
3008 
3009   /// Get the record field index as represented in debug info.
3010   unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex);
3011 
3012 
3013   //===--------------------------------------------------------------------===//
3014   //                            Declaration Emission
3015   //===--------------------------------------------------------------------===//
3016 
3017   /// EmitDecl - Emit a declaration.
3018   ///
3019   /// This function can be called with a null (unreachable) insert point.
3020   void EmitDecl(const Decl &D);
3021 
3022   /// EmitVarDecl - Emit a local variable declaration.
3023   ///
3024   /// This function can be called with a null (unreachable) insert point.
3025   void EmitVarDecl(const VarDecl &D);
3026 
3027   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
3028                       bool capturedByInit);
3029 
3030   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
3031                              llvm::Value *Address);
3032 
3033   /// Determine whether the given initializer is trivial in the sense
3034   /// that it requires no code to be generated.
3035   bool isTrivialInitializer(const Expr *Init);
3036 
3037   /// EmitAutoVarDecl - Emit an auto variable declaration.
3038   ///
3039   /// This function can be called with a null (unreachable) insert point.
3040   void EmitAutoVarDecl(const VarDecl &D);
3041 
3042   class AutoVarEmission {
3043     friend class CodeGenFunction;
3044 
3045     const VarDecl *Variable;
3046 
3047     /// The address of the alloca for languages with explicit address space
3048     /// (e.g. OpenCL) or alloca casted to generic pointer for address space
3049     /// agnostic languages (e.g. C++). Invalid if the variable was emitted
3050     /// as a global constant.
3051     Address Addr;
3052 
3053     llvm::Value *NRVOFlag;
3054 
3055     /// True if the variable is a __block variable that is captured by an
3056     /// escaping block.
3057     bool IsEscapingByRef;
3058 
3059     /// True if the variable is of aggregate type and has a constant
3060     /// initializer.
3061     bool IsConstantAggregate;
3062 
3063     /// Non-null if we should use lifetime annotations.
3064     llvm::Value *SizeForLifetimeMarkers;
3065 
3066     /// Address with original alloca instruction. Invalid if the variable was
3067     /// emitted as a global constant.
3068     Address AllocaAddr;
3069 
3070     struct Invalid {};
3071     AutoVarEmission(Invalid)
3072         : Variable(nullptr), Addr(Address::invalid()),
3073           AllocaAddr(Address::invalid()) {}
3074 
3075     AutoVarEmission(const VarDecl &variable)
3076         : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
3077           IsEscapingByRef(false), IsConstantAggregate(false),
3078           SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
3079 
3080     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
3081 
3082   public:
3083     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
3084 
3085     bool useLifetimeMarkers() const {
3086       return SizeForLifetimeMarkers != nullptr;
3087     }
3088     llvm::Value *getSizeForLifetimeMarkers() const {
3089       assert(useLifetimeMarkers());
3090       return SizeForLifetimeMarkers;
3091     }
3092 
3093     /// Returns the raw, allocated address, which is not necessarily
3094     /// the address of the object itself. It is casted to default
3095     /// address space for address space agnostic languages.
3096     Address getAllocatedAddress() const {
3097       return Addr;
3098     }
3099 
3100     /// Returns the address for the original alloca instruction.
3101     Address getOriginalAllocatedAddress() const { return AllocaAddr; }
3102 
3103     /// Returns the address of the object within this declaration.
3104     /// Note that this does not chase the forwarding pointer for
3105     /// __block decls.
3106     Address getObjectAddress(CodeGenFunction &CGF) const {
3107       if (!IsEscapingByRef) return Addr;
3108 
3109       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
3110     }
3111   };
3112   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
3113   void EmitAutoVarInit(const AutoVarEmission &emission);
3114   void EmitAutoVarCleanups(const AutoVarEmission &emission);
3115   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
3116                               QualType::DestructionKind dtorKind);
3117 
3118   /// Emits the alloca and debug information for the size expressions for each
3119   /// dimension of an array. It registers the association of its (1-dimensional)
3120   /// QualTypes and size expression's debug node, so that CGDebugInfo can
3121   /// reference this node when creating the DISubrange object to describe the
3122   /// array types.
3123   void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
3124                                               const VarDecl &D,
3125                                               bool EmitDebugInfo);
3126 
3127   void EmitStaticVarDecl(const VarDecl &D,
3128                          llvm::GlobalValue::LinkageTypes Linkage);
3129 
3130   class ParamValue {
3131     llvm::Value *Value;
3132     llvm::Type *ElementType;
3133     unsigned Alignment;
3134     ParamValue(llvm::Value *V, llvm::Type *T, unsigned A)
3135         : Value(V), ElementType(T), Alignment(A) {}
3136   public:
3137     static ParamValue forDirect(llvm::Value *value) {
3138       return ParamValue(value, nullptr, 0);
3139     }
3140     static ParamValue forIndirect(Address addr) {
3141       assert(!addr.getAlignment().isZero());
3142       return ParamValue(addr.getPointer(), addr.getElementType(),
3143                         addr.getAlignment().getQuantity());
3144     }
3145 
3146     bool isIndirect() const { return Alignment != 0; }
3147     llvm::Value *getAnyValue() const { return Value; }
3148 
3149     llvm::Value *getDirectValue() const {
3150       assert(!isIndirect());
3151       return Value;
3152     }
3153 
3154     Address getIndirectAddress() const {
3155       assert(isIndirect());
3156       return Address(Value, ElementType, CharUnits::fromQuantity(Alignment));
3157     }
3158   };
3159 
3160   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
3161   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
3162 
3163   /// protectFromPeepholes - Protect a value that we're intending to
3164   /// store to the side, but which will probably be used later, from
3165   /// aggressive peepholing optimizations that might delete it.
3166   ///
3167   /// Pass the result to unprotectFromPeepholes to declare that
3168   /// protection is no longer required.
3169   ///
3170   /// There's no particular reason why this shouldn't apply to
3171   /// l-values, it's just that no existing peepholes work on pointers.
3172   PeepholeProtection protectFromPeepholes(RValue rvalue);
3173   void unprotectFromPeepholes(PeepholeProtection protection);
3174 
3175   void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
3176                                     SourceLocation Loc,
3177                                     SourceLocation AssumptionLoc,
3178                                     llvm::Value *Alignment,
3179                                     llvm::Value *OffsetValue,
3180                                     llvm::Value *TheCheck,
3181                                     llvm::Instruction *Assumption);
3182 
3183   void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
3184                                SourceLocation Loc, SourceLocation AssumptionLoc,
3185                                llvm::Value *Alignment,
3186                                llvm::Value *OffsetValue = nullptr);
3187 
3188   void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
3189                                SourceLocation AssumptionLoc,
3190                                llvm::Value *Alignment,
3191                                llvm::Value *OffsetValue = nullptr);
3192 
3193   //===--------------------------------------------------------------------===//
3194   //                             Statement Emission
3195   //===--------------------------------------------------------------------===//
3196 
3197   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
3198   void EmitStopPoint(const Stmt *S);
3199 
3200   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
3201   /// this function even if there is no current insertion point.
3202   ///
3203   /// This function may clear the current insertion point; callers should use
3204   /// EnsureInsertPoint if they wish to subsequently generate code without first
3205   /// calling EmitBlock, EmitBranch, or EmitStmt.
3206   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
3207 
3208   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
3209   /// necessarily require an insertion point or debug information; typically
3210   /// because the statement amounts to a jump or a container of other
3211   /// statements.
3212   ///
3213   /// \return True if the statement was handled.
3214   bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs);
3215 
3216   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
3217                            AggValueSlot AVS = AggValueSlot::ignored());
3218   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
3219                                        bool GetLast = false,
3220                                        AggValueSlot AVS =
3221                                                 AggValueSlot::ignored());
3222 
3223   /// EmitLabel - Emit the block for the given label. It is legal to call this
3224   /// function even if there is no current insertion point.
3225   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
3226 
3227   void EmitLabelStmt(const LabelStmt &S);
3228   void EmitAttributedStmt(const AttributedStmt &S);
3229   void EmitGotoStmt(const GotoStmt &S);
3230   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
3231   void EmitIfStmt(const IfStmt &S);
3232 
3233   void EmitWhileStmt(const WhileStmt &S,
3234                      ArrayRef<const Attr *> Attrs = None);
3235   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
3236   void EmitForStmt(const ForStmt &S,
3237                    ArrayRef<const Attr *> Attrs = None);
3238   void EmitReturnStmt(const ReturnStmt &S);
3239   void EmitDeclStmt(const DeclStmt &S);
3240   void EmitBreakStmt(const BreakStmt &S);
3241   void EmitContinueStmt(const ContinueStmt &S);
3242   void EmitSwitchStmt(const SwitchStmt &S);
3243   void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs);
3244   void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3245   void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3246   void EmitAsmStmt(const AsmStmt &S);
3247 
3248   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
3249   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
3250   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
3251   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
3252   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
3253 
3254   void EmitCoroutineBody(const CoroutineBodyStmt &S);
3255   void EmitCoreturnStmt(const CoreturnStmt &S);
3256   RValue EmitCoawaitExpr(const CoawaitExpr &E,
3257                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3258                          bool ignoreResult = false);
3259   LValue EmitCoawaitLValue(const CoawaitExpr *E);
3260   RValue EmitCoyieldExpr(const CoyieldExpr &E,
3261                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3262                          bool ignoreResult = false);
3263   LValue EmitCoyieldLValue(const CoyieldExpr *E);
3264   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
3265 
3266   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3267   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3268 
3269   void EmitCXXTryStmt(const CXXTryStmt &S);
3270   void EmitSEHTryStmt(const SEHTryStmt &S);
3271   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
3272   void EnterSEHTryStmt(const SEHTryStmt &S);
3273   void ExitSEHTryStmt(const SEHTryStmt &S);
3274   void VolatilizeTryBlocks(llvm::BasicBlock *BB,
3275                            llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V);
3276 
3277   void pushSEHCleanup(CleanupKind kind,
3278                       llvm::Function *FinallyFunc);
3279   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
3280                               const Stmt *OutlinedStmt);
3281 
3282   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
3283                                             const SEHExceptStmt &Except);
3284 
3285   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
3286                                              const SEHFinallyStmt &Finally);
3287 
3288   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
3289                                 llvm::Value *ParentFP,
3290                                 llvm::Value *EntryEBP);
3291   llvm::Value *EmitSEHExceptionCode();
3292   llvm::Value *EmitSEHExceptionInfo();
3293   llvm::Value *EmitSEHAbnormalTermination();
3294 
3295   /// Emit simple code for OpenMP directives in Simd-only mode.
3296   void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
3297 
3298   /// Scan the outlined statement for captures from the parent function. For
3299   /// each capture, mark the capture as escaped and emit a call to
3300   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
3301   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
3302                           bool IsFilter);
3303 
3304   /// Recovers the address of a local in a parent function. ParentVar is the
3305   /// address of the variable used in the immediate parent function. It can
3306   /// either be an alloca or a call to llvm.localrecover if there are nested
3307   /// outlined functions. ParentFP is the frame pointer of the outermost parent
3308   /// frame.
3309   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
3310                                     Address ParentVar,
3311                                     llvm::Value *ParentFP);
3312 
3313   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
3314                            ArrayRef<const Attr *> Attrs = None);
3315 
3316   /// Controls insertion of cancellation exit blocks in worksharing constructs.
3317   class OMPCancelStackRAII {
3318     CodeGenFunction &CGF;
3319 
3320   public:
3321     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
3322                        bool HasCancel)
3323         : CGF(CGF) {
3324       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
3325     }
3326     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
3327   };
3328 
3329   /// Returns calculated size of the specified type.
3330   llvm::Value *getTypeSize(QualType Ty);
3331   LValue InitCapturedStruct(const CapturedStmt &S);
3332   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
3333   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
3334   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
3335   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
3336                                                      SourceLocation Loc);
3337   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
3338                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
3339   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
3340                           SourceLocation Loc);
3341   /// Perform element by element copying of arrays with type \a
3342   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
3343   /// generated by \a CopyGen.
3344   ///
3345   /// \param DestAddr Address of the destination array.
3346   /// \param SrcAddr Address of the source array.
3347   /// \param OriginalType Type of destination and source arrays.
3348   /// \param CopyGen Copying procedure that copies value of single array element
3349   /// to another single array element.
3350   void EmitOMPAggregateAssign(
3351       Address DestAddr, Address SrcAddr, QualType OriginalType,
3352       const llvm::function_ref<void(Address, Address)> CopyGen);
3353   /// Emit proper copying of data from one variable to another.
3354   ///
3355   /// \param OriginalType Original type of the copied variables.
3356   /// \param DestAddr Destination address.
3357   /// \param SrcAddr Source address.
3358   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
3359   /// type of the base array element).
3360   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
3361   /// the base array element).
3362   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
3363   /// DestVD.
3364   void EmitOMPCopy(QualType OriginalType,
3365                    Address DestAddr, Address SrcAddr,
3366                    const VarDecl *DestVD, const VarDecl *SrcVD,
3367                    const Expr *Copy);
3368   /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
3369   /// \a X = \a E \a BO \a E.
3370   ///
3371   /// \param X Value to be updated.
3372   /// \param E Update value.
3373   /// \param BO Binary operation for update operation.
3374   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3375   /// expression, false otherwise.
3376   /// \param AO Atomic ordering of the generated atomic instructions.
3377   /// \param CommonGen Code generator for complex expressions that cannot be
3378   /// expressed through atomicrmw instruction.
3379   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3380   /// generated, <false, RValue::get(nullptr)> otherwise.
3381   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3382       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3383       llvm::AtomicOrdering AO, SourceLocation Loc,
3384       const llvm::function_ref<RValue(RValue)> CommonGen);
3385   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
3386                                  OMPPrivateScope &PrivateScope);
3387   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3388                             OMPPrivateScope &PrivateScope);
3389   void EmitOMPUseDevicePtrClause(
3390       const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope,
3391       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3392   void EmitOMPUseDeviceAddrClause(
3393       const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope,
3394       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3395   /// Emit code for copyin clause in \a D directive. The next code is
3396   /// generated at the start of outlined functions for directives:
3397   /// \code
3398   /// threadprivate_var1 = master_threadprivate_var1;
3399   /// operator=(threadprivate_var2, master_threadprivate_var2);
3400   /// ...
3401   /// __kmpc_barrier(&loc, global_tid);
3402   /// \endcode
3403   ///
3404   /// \param D OpenMP directive possibly with 'copyin' clause(s).
3405   /// \returns true if at least one copyin variable is found, false otherwise.
3406   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3407   /// Emit initial code for lastprivate variables. If some variable is
3408   /// not also firstprivate, then the default initialization is used. Otherwise
3409   /// initialization of this variable is performed by EmitOMPFirstprivateClause
3410   /// method.
3411   ///
3412   /// \param D Directive that may have 'lastprivate' directives.
3413   /// \param PrivateScope Private scope for capturing lastprivate variables for
3414   /// proper codegen in internal captured statement.
3415   ///
3416   /// \returns true if there is at least one lastprivate variable, false
3417   /// otherwise.
3418   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3419                                     OMPPrivateScope &PrivateScope);
3420   /// Emit final copying of lastprivate values to original variables at
3421   /// the end of the worksharing or simd directive.
3422   ///
3423   /// \param D Directive that has at least one 'lastprivate' directives.
3424   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3425   /// it is the last iteration of the loop code in associated directive, or to
3426   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3427   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3428                                      bool NoFinals,
3429                                      llvm::Value *IsLastIterCond = nullptr);
3430   /// Emit initial code for linear clauses.
3431   void EmitOMPLinearClause(const OMPLoopDirective &D,
3432                            CodeGenFunction::OMPPrivateScope &PrivateScope);
3433   /// Emit final code for linear clauses.
3434   /// \param CondGen Optional conditional code for final part of codegen for
3435   /// linear clause.
3436   void EmitOMPLinearClauseFinal(
3437       const OMPLoopDirective &D,
3438       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3439   /// Emit initial code for reduction variables. Creates reduction copies
3440   /// and initializes them with the values according to OpenMP standard.
3441   ///
3442   /// \param D Directive (possibly) with the 'reduction' clause.
3443   /// \param PrivateScope Private scope for capturing reduction variables for
3444   /// proper codegen in internal captured statement.
3445   ///
3446   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3447                                   OMPPrivateScope &PrivateScope,
3448                                   bool ForInscan = false);
3449   /// Emit final update of reduction values to original variables at
3450   /// the end of the directive.
3451   ///
3452   /// \param D Directive that has at least one 'reduction' directives.
3453   /// \param ReductionKind The kind of reduction to perform.
3454   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3455                                    const OpenMPDirectiveKind ReductionKind);
3456   /// Emit initial code for linear variables. Creates private copies
3457   /// and initializes them with the values according to OpenMP standard.
3458   ///
3459   /// \param D Directive (possibly) with the 'linear' clause.
3460   /// \return true if at least one linear variable is found that should be
3461   /// initialized with the value of the original variable, false otherwise.
3462   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3463 
3464   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3465                                         llvm::Function * /*OutlinedFn*/,
3466                                         const OMPTaskDataTy & /*Data*/)>
3467       TaskGenTy;
3468   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3469                                  const OpenMPDirectiveKind CapturedRegion,
3470                                  const RegionCodeGenTy &BodyGen,
3471                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3472   struct OMPTargetDataInfo {
3473     Address BasePointersArray = Address::invalid();
3474     Address PointersArray = Address::invalid();
3475     Address SizesArray = Address::invalid();
3476     Address MappersArray = Address::invalid();
3477     unsigned NumberOfTargetItems = 0;
3478     explicit OMPTargetDataInfo() = default;
3479     OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3480                       Address SizesArray, Address MappersArray,
3481                       unsigned NumberOfTargetItems)
3482         : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3483           SizesArray(SizesArray), MappersArray(MappersArray),
3484           NumberOfTargetItems(NumberOfTargetItems) {}
3485   };
3486   void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3487                                        const RegionCodeGenTy &BodyGen,
3488                                        OMPTargetDataInfo &InputInfo);
3489 
3490   void EmitOMPMetaDirective(const OMPMetaDirective &S);
3491   void EmitOMPParallelDirective(const OMPParallelDirective &S);
3492   void EmitOMPSimdDirective(const OMPSimdDirective &S);
3493   void EmitOMPTileDirective(const OMPTileDirective &S);
3494   void EmitOMPUnrollDirective(const OMPUnrollDirective &S);
3495   void EmitOMPForDirective(const OMPForDirective &S);
3496   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3497   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3498   void EmitOMPSectionDirective(const OMPSectionDirective &S);
3499   void EmitOMPSingleDirective(const OMPSingleDirective &S);
3500   void EmitOMPMasterDirective(const OMPMasterDirective &S);
3501   void EmitOMPMaskedDirective(const OMPMaskedDirective &S);
3502   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3503   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3504   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3505   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3506   void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S);
3507   void EmitOMPTaskDirective(const OMPTaskDirective &S);
3508   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3509   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3510   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3511   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3512   void EmitOMPFlushDirective(const OMPFlushDirective &S);
3513   void EmitOMPDepobjDirective(const OMPDepobjDirective &S);
3514   void EmitOMPScanDirective(const OMPScanDirective &S);
3515   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3516   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3517   void EmitOMPTargetDirective(const OMPTargetDirective &S);
3518   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3519   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3520   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3521   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3522   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3523   void
3524   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3525   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3526   void
3527   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3528   void EmitOMPCancelDirective(const OMPCancelDirective &S);
3529   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3530   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3531   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3532   void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S);
3533   void
3534   EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S);
3535   void EmitOMPParallelMasterTaskLoopDirective(
3536       const OMPParallelMasterTaskLoopDirective &S);
3537   void EmitOMPParallelMasterTaskLoopSimdDirective(
3538       const OMPParallelMasterTaskLoopSimdDirective &S);
3539   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3540   void EmitOMPDistributeParallelForDirective(
3541       const OMPDistributeParallelForDirective &S);
3542   void EmitOMPDistributeParallelForSimdDirective(
3543       const OMPDistributeParallelForSimdDirective &S);
3544   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3545   void EmitOMPTargetParallelForSimdDirective(
3546       const OMPTargetParallelForSimdDirective &S);
3547   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3548   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3549   void
3550   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3551   void EmitOMPTeamsDistributeParallelForSimdDirective(
3552       const OMPTeamsDistributeParallelForSimdDirective &S);
3553   void EmitOMPTeamsDistributeParallelForDirective(
3554       const OMPTeamsDistributeParallelForDirective &S);
3555   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3556   void EmitOMPTargetTeamsDistributeDirective(
3557       const OMPTargetTeamsDistributeDirective &S);
3558   void EmitOMPTargetTeamsDistributeParallelForDirective(
3559       const OMPTargetTeamsDistributeParallelForDirective &S);
3560   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3561       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3562   void EmitOMPTargetTeamsDistributeSimdDirective(
3563       const OMPTargetTeamsDistributeSimdDirective &S);
3564   void EmitOMPGenericLoopDirective(const OMPGenericLoopDirective &S);
3565   void EmitOMPInteropDirective(const OMPInteropDirective &S);
3566 
3567   /// Emit device code for the target directive.
3568   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3569                                           StringRef ParentName,
3570                                           const OMPTargetDirective &S);
3571   static void
3572   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3573                                       const OMPTargetParallelDirective &S);
3574   /// Emit device code for the target parallel for directive.
3575   static void EmitOMPTargetParallelForDeviceFunction(
3576       CodeGenModule &CGM, StringRef ParentName,
3577       const OMPTargetParallelForDirective &S);
3578   /// Emit device code for the target parallel for simd directive.
3579   static void EmitOMPTargetParallelForSimdDeviceFunction(
3580       CodeGenModule &CGM, StringRef ParentName,
3581       const OMPTargetParallelForSimdDirective &S);
3582   /// Emit device code for the target teams directive.
3583   static void
3584   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3585                                    const OMPTargetTeamsDirective &S);
3586   /// Emit device code for the target teams distribute directive.
3587   static void EmitOMPTargetTeamsDistributeDeviceFunction(
3588       CodeGenModule &CGM, StringRef ParentName,
3589       const OMPTargetTeamsDistributeDirective &S);
3590   /// Emit device code for the target teams distribute simd directive.
3591   static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3592       CodeGenModule &CGM, StringRef ParentName,
3593       const OMPTargetTeamsDistributeSimdDirective &S);
3594   /// Emit device code for the target simd directive.
3595   static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3596                                               StringRef ParentName,
3597                                               const OMPTargetSimdDirective &S);
3598   /// Emit device code for the target teams distribute parallel for simd
3599   /// directive.
3600   static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3601       CodeGenModule &CGM, StringRef ParentName,
3602       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3603 
3604   static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3605       CodeGenModule &CGM, StringRef ParentName,
3606       const OMPTargetTeamsDistributeParallelForDirective &S);
3607 
3608   /// Emit the Stmt \p S and return its topmost canonical loop, if any.
3609   /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the
3610   /// future it is meant to be the number of loops expected in the loop nests
3611   /// (usually specified by the "collapse" clause) that are collapsed to a
3612   /// single loop by this function.
3613   llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S,
3614                                                              int Depth);
3615 
3616   /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder.
3617   void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S);
3618 
3619   /// Emit inner loop of the worksharing/simd construct.
3620   ///
3621   /// \param S Directive, for which the inner loop must be emitted.
3622   /// \param RequiresCleanup true, if directive has some associated private
3623   /// variables.
3624   /// \param LoopCond Bollean condition for loop continuation.
3625   /// \param IncExpr Increment expression for loop control variable.
3626   /// \param BodyGen Generator for the inner body of the inner loop.
3627   /// \param PostIncGen Genrator for post-increment code (required for ordered
3628   /// loop directvies).
3629   void EmitOMPInnerLoop(
3630       const OMPExecutableDirective &S, bool RequiresCleanup,
3631       const Expr *LoopCond, const Expr *IncExpr,
3632       const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3633       const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3634 
3635   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3636   /// Emit initial code for loop counters of loop-based directives.
3637   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3638                                   OMPPrivateScope &LoopScope);
3639 
3640   /// Helper for the OpenMP loop directives.
3641   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3642 
3643   /// Emit code for the worksharing loop-based directive.
3644   /// \return true, if this construct has any lastprivate clause, false -
3645   /// otherwise.
3646   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3647                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3648                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
3649 
3650   /// Emit code for the distribute loop-based directive.
3651   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3652                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3653 
3654   /// Helpers for the OpenMP loop directives.
3655   void EmitOMPSimdInit(const OMPLoopDirective &D);
3656   void EmitOMPSimdFinal(
3657       const OMPLoopDirective &D,
3658       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3659 
3660   /// Emits the lvalue for the expression with possibly captured variable.
3661   LValue EmitOMPSharedLValue(const Expr *E);
3662 
3663 private:
3664   /// Helpers for blocks.
3665   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3666 
3667   /// struct with the values to be passed to the OpenMP loop-related functions
3668   struct OMPLoopArguments {
3669     /// loop lower bound
3670     Address LB = Address::invalid();
3671     /// loop upper bound
3672     Address UB = Address::invalid();
3673     /// loop stride
3674     Address ST = Address::invalid();
3675     /// isLastIteration argument for runtime functions
3676     Address IL = Address::invalid();
3677     /// Chunk value generated by sema
3678     llvm::Value *Chunk = nullptr;
3679     /// EnsureUpperBound
3680     Expr *EUB = nullptr;
3681     /// IncrementExpression
3682     Expr *IncExpr = nullptr;
3683     /// Loop initialization
3684     Expr *Init = nullptr;
3685     /// Loop exit condition
3686     Expr *Cond = nullptr;
3687     /// Update of LB after a whole chunk has been executed
3688     Expr *NextLB = nullptr;
3689     /// Update of UB after a whole chunk has been executed
3690     Expr *NextUB = nullptr;
3691     OMPLoopArguments() = default;
3692     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3693                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3694                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
3695                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
3696                      Expr *NextUB = nullptr)
3697         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3698           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3699           NextUB(NextUB) {}
3700   };
3701   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3702                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3703                         const OMPLoopArguments &LoopArgs,
3704                         const CodeGenLoopTy &CodeGenLoop,
3705                         const CodeGenOrderedTy &CodeGenOrdered);
3706   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3707                            bool IsMonotonic, const OMPLoopDirective &S,
3708                            OMPPrivateScope &LoopScope, bool Ordered,
3709                            const OMPLoopArguments &LoopArgs,
3710                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
3711   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3712                                   const OMPLoopDirective &S,
3713                                   OMPPrivateScope &LoopScope,
3714                                   const OMPLoopArguments &LoopArgs,
3715                                   const CodeGenLoopTy &CodeGenLoopContent);
3716   /// Emit code for sections directive.
3717   void EmitSections(const OMPExecutableDirective &S);
3718 
3719 public:
3720 
3721   //===--------------------------------------------------------------------===//
3722   //                         LValue Expression Emission
3723   //===--------------------------------------------------------------------===//
3724 
3725   /// Create a check that a scalar RValue is non-null.
3726   llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T);
3727 
3728   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3729   RValue GetUndefRValue(QualType Ty);
3730 
3731   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3732   /// and issue an ErrorUnsupported style diagnostic (using the
3733   /// provided Name).
3734   RValue EmitUnsupportedRValue(const Expr *E,
3735                                const char *Name);
3736 
3737   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3738   /// an ErrorUnsupported style diagnostic (using the provided Name).
3739   LValue EmitUnsupportedLValue(const Expr *E,
3740                                const char *Name);
3741 
3742   /// EmitLValue - Emit code to compute a designator that specifies the location
3743   /// of the expression.
3744   ///
3745   /// This can return one of two things: a simple address or a bitfield
3746   /// reference.  In either case, the LLVM Value* in the LValue structure is
3747   /// guaranteed to be an LLVM pointer type.
3748   ///
3749   /// If this returns a bitfield reference, nothing about the pointee type of
3750   /// the LLVM value is known: For example, it may not be a pointer to an
3751   /// integer.
3752   ///
3753   /// If this returns a normal address, and if the lvalue's C type is fixed
3754   /// size, this method guarantees that the returned pointer type will point to
3755   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3756   /// variable length type, this is not possible.
3757   ///
3758   LValue EmitLValue(const Expr *E);
3759 
3760   /// Same as EmitLValue but additionally we generate checking code to
3761   /// guard against undefined behavior.  This is only suitable when we know
3762   /// that the address will be used to access the object.
3763   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3764 
3765   RValue convertTempToRValue(Address addr, QualType type,
3766                              SourceLocation Loc);
3767 
3768   void EmitAtomicInit(Expr *E, LValue lvalue);
3769 
3770   bool LValueIsSuitableForInlineAtomic(LValue Src);
3771 
3772   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3773                         AggValueSlot Slot = AggValueSlot::ignored());
3774 
3775   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3776                         llvm::AtomicOrdering AO, bool IsVolatile = false,
3777                         AggValueSlot slot = AggValueSlot::ignored());
3778 
3779   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3780 
3781   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3782                        bool IsVolatile, bool isInit);
3783 
3784   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3785       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3786       llvm::AtomicOrdering Success =
3787           llvm::AtomicOrdering::SequentiallyConsistent,
3788       llvm::AtomicOrdering Failure =
3789           llvm::AtomicOrdering::SequentiallyConsistent,
3790       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3791 
3792   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3793                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
3794                         bool IsVolatile);
3795 
3796   /// EmitToMemory - Change a scalar value from its value
3797   /// representation to its in-memory representation.
3798   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3799 
3800   /// EmitFromMemory - Change a scalar value from its memory
3801   /// representation to its value representation.
3802   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3803 
3804   /// Check if the scalar \p Value is within the valid range for the given
3805   /// type \p Ty.
3806   ///
3807   /// Returns true if a check is needed (even if the range is unknown).
3808   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3809                             SourceLocation Loc);
3810 
3811   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3812   /// care to appropriately convert from the memory representation to
3813   /// the LLVM value representation.
3814   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3815                                 SourceLocation Loc,
3816                                 AlignmentSource Source = AlignmentSource::Type,
3817                                 bool isNontemporal = false) {
3818     return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3819                             CGM.getTBAAAccessInfo(Ty), isNontemporal);
3820   }
3821 
3822   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3823                                 SourceLocation Loc, LValueBaseInfo BaseInfo,
3824                                 TBAAAccessInfo TBAAInfo,
3825                                 bool isNontemporal = false);
3826 
3827   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3828   /// care to appropriately convert from the memory representation to
3829   /// the LLVM value representation.  The l-value must be a simple
3830   /// l-value.
3831   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3832 
3833   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3834   /// care to appropriately convert from the memory representation to
3835   /// the LLVM value representation.
3836   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3837                          bool Volatile, QualType Ty,
3838                          AlignmentSource Source = AlignmentSource::Type,
3839                          bool isInit = false, bool isNontemporal = false) {
3840     EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3841                       CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3842   }
3843 
3844   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3845                          bool Volatile, QualType Ty,
3846                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3847                          bool isInit = false, bool isNontemporal = false);
3848 
3849   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3850   /// care to appropriately convert from the memory representation to
3851   /// the LLVM value representation.  The l-value must be a simple
3852   /// l-value.  The isInit flag indicates whether this is an initialization.
3853   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3854   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3855 
3856   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3857   /// this method emits the address of the lvalue, then loads the result as an
3858   /// rvalue, returning the rvalue.
3859   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3860   RValue EmitLoadOfExtVectorElementLValue(LValue V);
3861   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3862   RValue EmitLoadOfGlobalRegLValue(LValue LV);
3863 
3864   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3865   /// lvalue, where both are guaranteed to the have the same type, and that type
3866   /// is 'Ty'.
3867   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3868   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3869   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3870 
3871   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3872   /// as EmitStoreThroughLValue.
3873   ///
3874   /// \param Result [out] - If non-null, this will be set to a Value* for the
3875   /// bit-field contents after the store, appropriate for use as the result of
3876   /// an assignment to the bit-field.
3877   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3878                                       llvm::Value **Result=nullptr);
3879 
3880   /// Emit an l-value for an assignment (simple or compound) of complex type.
3881   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3882   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3883   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3884                                              llvm::Value *&Result);
3885 
3886   // Note: only available for agg return types
3887   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3888   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3889   // Note: only available for agg return types
3890   LValue EmitCallExprLValue(const CallExpr *E);
3891   // Note: only available for agg return types
3892   LValue EmitVAArgExprLValue(const VAArgExpr *E);
3893   LValue EmitDeclRefLValue(const DeclRefExpr *E);
3894   LValue EmitStringLiteralLValue(const StringLiteral *E);
3895   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3896   LValue EmitPredefinedLValue(const PredefinedExpr *E);
3897   LValue EmitUnaryOpLValue(const UnaryOperator *E);
3898   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3899                                 bool Accessed = false);
3900   LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E);
3901   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3902                                  bool IsLowerBound = true);
3903   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3904   LValue EmitMemberExpr(const MemberExpr *E);
3905   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3906   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3907   LValue EmitInitListLValue(const InitListExpr *E);
3908   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3909   LValue EmitCastLValue(const CastExpr *E);
3910   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3911   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3912 
3913   Address EmitExtVectorElementLValue(LValue V);
3914 
3915   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3916 
3917   Address EmitArrayToPointerDecay(const Expr *Array,
3918                                   LValueBaseInfo *BaseInfo = nullptr,
3919                                   TBAAAccessInfo *TBAAInfo = nullptr);
3920 
3921   class ConstantEmission {
3922     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3923     ConstantEmission(llvm::Constant *C, bool isReference)
3924       : ValueAndIsReference(C, isReference) {}
3925   public:
3926     ConstantEmission() {}
3927     static ConstantEmission forReference(llvm::Constant *C) {
3928       return ConstantEmission(C, true);
3929     }
3930     static ConstantEmission forValue(llvm::Constant *C) {
3931       return ConstantEmission(C, false);
3932     }
3933 
3934     explicit operator bool() const {
3935       return ValueAndIsReference.getOpaqueValue() != nullptr;
3936     }
3937 
3938     bool isReference() const { return ValueAndIsReference.getInt(); }
3939     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3940       assert(isReference());
3941       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3942                                             refExpr->getType());
3943     }
3944 
3945     llvm::Constant *getValue() const {
3946       assert(!isReference());
3947       return ValueAndIsReference.getPointer();
3948     }
3949   };
3950 
3951   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3952   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3953   llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
3954 
3955   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3956                                 AggValueSlot slot = AggValueSlot::ignored());
3957   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3958 
3959   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3960                               const ObjCIvarDecl *Ivar);
3961   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3962   LValue EmitLValueForLambdaField(const FieldDecl *Field);
3963 
3964   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3965   /// if the Field is a reference, this will return the address of the reference
3966   /// and not the address of the value stored in the reference.
3967   LValue EmitLValueForFieldInitialization(LValue Base,
3968                                           const FieldDecl* Field);
3969 
3970   LValue EmitLValueForIvar(QualType ObjectTy,
3971                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
3972                            unsigned CVRQualifiers);
3973 
3974   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3975   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3976   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3977   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3978 
3979   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3980   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3981   LValue EmitStmtExprLValue(const StmtExpr *E);
3982   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3983   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3984   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3985 
3986   //===--------------------------------------------------------------------===//
3987   //                         Scalar Expression Emission
3988   //===--------------------------------------------------------------------===//
3989 
3990   /// EmitCall - Generate a call of the given function, expecting the given
3991   /// result type, and using the given argument list which specifies both the
3992   /// LLVM arguments and the types they were derived from.
3993   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3994                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3995                   llvm::CallBase **callOrInvoke, bool IsMustTail,
3996                   SourceLocation Loc);
3997   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3998                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3999                   llvm::CallBase **callOrInvoke = nullptr,
4000                   bool IsMustTail = false) {
4001     return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
4002                     IsMustTail, SourceLocation());
4003   }
4004   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
4005                   ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
4006   RValue EmitCallExpr(const CallExpr *E,
4007                       ReturnValueSlot ReturnValue = ReturnValueSlot());
4008   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
4009   CGCallee EmitCallee(const Expr *E);
4010 
4011   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
4012   void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl);
4013 
4014   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4015                                   const Twine &name = "");
4016   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4017                                   ArrayRef<llvm::Value *> args,
4018                                   const Twine &name = "");
4019   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4020                                           const Twine &name = "");
4021   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4022                                           ArrayRef<llvm::Value *> args,
4023                                           const Twine &name = "");
4024 
4025   SmallVector<llvm::OperandBundleDef, 1>
4026   getBundlesForFunclet(llvm::Value *Callee);
4027 
4028   llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
4029                                    ArrayRef<llvm::Value *> Args,
4030                                    const Twine &Name = "");
4031   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4032                                           ArrayRef<llvm::Value *> args,
4033                                           const Twine &name = "");
4034   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4035                                           const Twine &name = "");
4036   void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4037                                        ArrayRef<llvm::Value *> args);
4038 
4039   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
4040                                      NestedNameSpecifier *Qual,
4041                                      llvm::Type *Ty);
4042 
4043   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
4044                                                CXXDtorType Type,
4045                                                const CXXRecordDecl *RD);
4046 
4047   // Return the copy constructor name with the prefix "__copy_constructor_"
4048   // removed.
4049   static std::string getNonTrivialCopyConstructorStr(QualType QT,
4050                                                      CharUnits Alignment,
4051                                                      bool IsVolatile,
4052                                                      ASTContext &Ctx);
4053 
4054   // Return the destructor name with the prefix "__destructor_" removed.
4055   static std::string getNonTrivialDestructorStr(QualType QT,
4056                                                 CharUnits Alignment,
4057                                                 bool IsVolatile,
4058                                                 ASTContext &Ctx);
4059 
4060   // These functions emit calls to the special functions of non-trivial C
4061   // structs.
4062   void defaultInitNonTrivialCStructVar(LValue Dst);
4063   void callCStructDefaultConstructor(LValue Dst);
4064   void callCStructDestructor(LValue Dst);
4065   void callCStructCopyConstructor(LValue Dst, LValue Src);
4066   void callCStructMoveConstructor(LValue Dst, LValue Src);
4067   void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
4068   void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
4069 
4070   RValue
4071   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
4072                               const CGCallee &Callee,
4073                               ReturnValueSlot ReturnValue, llvm::Value *This,
4074                               llvm::Value *ImplicitParam,
4075                               QualType ImplicitParamTy, const CallExpr *E,
4076                               CallArgList *RtlArgs);
4077   RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee,
4078                                llvm::Value *This, QualType ThisTy,
4079                                llvm::Value *ImplicitParam,
4080                                QualType ImplicitParamTy, const CallExpr *E);
4081   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
4082                                ReturnValueSlot ReturnValue);
4083   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
4084                                                const CXXMethodDecl *MD,
4085                                                ReturnValueSlot ReturnValue,
4086                                                bool HasQualifier,
4087                                                NestedNameSpecifier *Qualifier,
4088                                                bool IsArrow, const Expr *Base);
4089   // Compute the object pointer.
4090   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
4091                                           llvm::Value *memberPtr,
4092                                           const MemberPointerType *memberPtrType,
4093                                           LValueBaseInfo *BaseInfo = nullptr,
4094                                           TBAAAccessInfo *TBAAInfo = nullptr);
4095   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
4096                                       ReturnValueSlot ReturnValue);
4097 
4098   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
4099                                        const CXXMethodDecl *MD,
4100                                        ReturnValueSlot ReturnValue);
4101   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
4102 
4103   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
4104                                 ReturnValueSlot ReturnValue);
4105 
4106   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E);
4107   RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E);
4108   RValue EmitOpenMPDevicePrintfCallExpr(const CallExpr *E);
4109 
4110   RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
4111                          const CallExpr *E, ReturnValueSlot ReturnValue);
4112 
4113   RValue emitRotate(const CallExpr *E, bool IsRotateRight);
4114 
4115   /// Emit IR for __builtin_os_log_format.
4116   RValue emitBuiltinOSLogFormat(const CallExpr &E);
4117 
4118   /// Emit IR for __builtin_is_aligned.
4119   RValue EmitBuiltinIsAligned(const CallExpr *E);
4120   /// Emit IR for __builtin_align_up/__builtin_align_down.
4121   RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp);
4122 
4123   llvm::Function *generateBuiltinOSLogHelperFunction(
4124       const analyze_os_log::OSLogBufferLayout &Layout,
4125       CharUnits BufferAlignment);
4126 
4127   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
4128 
4129   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
4130   /// is unhandled by the current target.
4131   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4132                                      ReturnValueSlot ReturnValue);
4133 
4134   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
4135                                              const llvm::CmpInst::Predicate Fp,
4136                                              const llvm::CmpInst::Predicate Ip,
4137                                              const llvm::Twine &Name = "");
4138   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4139                                   ReturnValueSlot ReturnValue,
4140                                   llvm::Triple::ArchType Arch);
4141   llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4142                                      ReturnValueSlot ReturnValue,
4143                                      llvm::Triple::ArchType Arch);
4144   llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4145                                      ReturnValueSlot ReturnValue,
4146                                      llvm::Triple::ArchType Arch);
4147   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy,
4148                                    QualType RTy);
4149   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy,
4150                                    QualType RTy);
4151 
4152   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
4153                                          unsigned LLVMIntrinsic,
4154                                          unsigned AltLLVMIntrinsic,
4155                                          const char *NameHint,
4156                                          unsigned Modifier,
4157                                          const CallExpr *E,
4158                                          SmallVectorImpl<llvm::Value *> &Ops,
4159                                          Address PtrOp0, Address PtrOp1,
4160                                          llvm::Triple::ArchType Arch);
4161 
4162   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
4163                                           unsigned Modifier, llvm::Type *ArgTy,
4164                                           const CallExpr *E);
4165   llvm::Value *EmitNeonCall(llvm::Function *F,
4166                             SmallVectorImpl<llvm::Value*> &O,
4167                             const char *name,
4168                             unsigned shift = 0, bool rightshift = false);
4169   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx,
4170                              const llvm::ElementCount &Count);
4171   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
4172   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
4173                                    bool negateForRightShift);
4174   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
4175                                  llvm::Type *Ty, bool usgn, const char *name);
4176   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
4177   /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
4178   /// access builtin.  Only required if it can't be inferred from the base
4179   /// pointer operand.
4180   llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags);
4181 
4182   SmallVector<llvm::Type *, 2>
4183   getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType,
4184                       ArrayRef<llvm::Value *> Ops);
4185   llvm::Type *getEltType(const SVETypeFlags &TypeFlags);
4186   llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags);
4187   llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags);
4188   llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags);
4189   llvm::Value *EmitSVEDupX(llvm::Value *Scalar);
4190   llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty);
4191   llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty);
4192   llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags,
4193                             llvm::SmallVectorImpl<llvm::Value *> &Ops,
4194                             unsigned BuiltinID);
4195   llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags,
4196                            llvm::ArrayRef<llvm::Value *> Ops,
4197                            unsigned BuiltinID);
4198   llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred,
4199                                     llvm::ScalableVectorType *VTy);
4200   llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags,
4201                                  llvm::SmallVectorImpl<llvm::Value *> &Ops,
4202                                  unsigned IntID);
4203   llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags,
4204                                    llvm::SmallVectorImpl<llvm::Value *> &Ops,
4205                                    unsigned IntID);
4206   llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy,
4207                                  SmallVectorImpl<llvm::Value *> &Ops,
4208                                  unsigned BuiltinID, bool IsZExtReturn);
4209   llvm::Value *EmitSVEMaskedStore(const CallExpr *,
4210                                   SmallVectorImpl<llvm::Value *> &Ops,
4211                                   unsigned BuiltinID);
4212   llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags,
4213                                    SmallVectorImpl<llvm::Value *> &Ops,
4214                                    unsigned BuiltinID);
4215   llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags,
4216                                      SmallVectorImpl<llvm::Value *> &Ops,
4217                                      unsigned IntID);
4218   llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags,
4219                                  SmallVectorImpl<llvm::Value *> &Ops,
4220                                  unsigned IntID);
4221   llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags,
4222                                   SmallVectorImpl<llvm::Value *> &Ops,
4223                                   unsigned IntID);
4224   llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4225 
4226   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4227                                       llvm::Triple::ArchType Arch);
4228   llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4229 
4230   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
4231   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4232   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4233   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4234   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4235   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4236   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
4237                                           const CallExpr *E);
4238   llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4239   llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4240                                     ReturnValueSlot ReturnValue);
4241   bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope,
4242                                llvm::AtomicOrdering &AO,
4243                                llvm::SyncScope::ID &SSID);
4244 
4245   enum class MSVCIntrin;
4246   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
4247 
4248   llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version);
4249 
4250   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
4251   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
4252   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
4253   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
4254   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
4255   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
4256                                 const ObjCMethodDecl *MethodWithObjects);
4257   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
4258   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
4259                              ReturnValueSlot Return = ReturnValueSlot());
4260 
4261   /// Retrieves the default cleanup kind for an ARC cleanup.
4262   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
4263   CleanupKind getARCCleanupKind() {
4264     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
4265              ? NormalAndEHCleanup : NormalCleanup;
4266   }
4267 
4268   // ARC primitives.
4269   void EmitARCInitWeak(Address addr, llvm::Value *value);
4270   void EmitARCDestroyWeak(Address addr);
4271   llvm::Value *EmitARCLoadWeak(Address addr);
4272   llvm::Value *EmitARCLoadWeakRetained(Address addr);
4273   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
4274   void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4275   void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4276   void EmitARCCopyWeak(Address dst, Address src);
4277   void EmitARCMoveWeak(Address dst, Address src);
4278   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
4279   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
4280   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
4281                                   bool resultIgnored);
4282   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
4283                                       bool resultIgnored);
4284   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
4285   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
4286   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
4287   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
4288   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4289   llvm::Value *EmitARCAutorelease(llvm::Value *value);
4290   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
4291   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
4292   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
4293   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
4294 
4295   llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
4296   llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
4297                                       llvm::Type *returnType);
4298   void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4299 
4300   std::pair<LValue,llvm::Value*>
4301   EmitARCStoreAutoreleasing(const BinaryOperator *e);
4302   std::pair<LValue,llvm::Value*>
4303   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
4304   std::pair<LValue,llvm::Value*>
4305   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
4306 
4307   llvm::Value *EmitObjCAlloc(llvm::Value *value,
4308                              llvm::Type *returnType);
4309   llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
4310                                      llvm::Type *returnType);
4311   llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
4312 
4313   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
4314   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
4315   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
4316 
4317   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
4318   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
4319                                             bool allowUnsafeClaim);
4320   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
4321   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
4322   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
4323 
4324   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
4325 
4326   void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values);
4327 
4328   static Destroyer destroyARCStrongImprecise;
4329   static Destroyer destroyARCStrongPrecise;
4330   static Destroyer destroyARCWeak;
4331   static Destroyer emitARCIntrinsicUse;
4332   static Destroyer destroyNonTrivialCStruct;
4333 
4334   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
4335   llvm::Value *EmitObjCAutoreleasePoolPush();
4336   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
4337   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
4338   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
4339 
4340   /// Emits a reference binding to the passed in expression.
4341   RValue EmitReferenceBindingToExpr(const Expr *E);
4342 
4343   //===--------------------------------------------------------------------===//
4344   //                           Expression Emission
4345   //===--------------------------------------------------------------------===//
4346 
4347   // Expressions are broken into three classes: scalar, complex, aggregate.
4348 
4349   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
4350   /// scalar type, returning the result.
4351   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
4352 
4353   /// Emit a conversion from the specified type to the specified destination
4354   /// type, both of which are LLVM scalar types.
4355   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
4356                                     QualType DstTy, SourceLocation Loc);
4357 
4358   /// Emit a conversion from the specified complex type to the specified
4359   /// destination type, where the destination type is an LLVM scalar type.
4360   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
4361                                              QualType DstTy,
4362                                              SourceLocation Loc);
4363 
4364   /// EmitAggExpr - Emit the computation of the specified expression
4365   /// of aggregate type.  The result is computed into the given slot,
4366   /// which may be null to indicate that the value is not needed.
4367   void EmitAggExpr(const Expr *E, AggValueSlot AS);
4368 
4369   /// EmitAggExprToLValue - Emit the computation of the specified expression of
4370   /// aggregate type into a temporary LValue.
4371   LValue EmitAggExprToLValue(const Expr *E);
4372 
4373   /// Build all the stores needed to initialize an aggregate at Dest with the
4374   /// value Val.
4375   void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile);
4376 
4377   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
4378   /// make sure it survives garbage collection until this point.
4379   void EmitExtendGCLifetime(llvm::Value *object);
4380 
4381   /// EmitComplexExpr - Emit the computation of the specified expression of
4382   /// complex type, returning the result.
4383   ComplexPairTy EmitComplexExpr(const Expr *E,
4384                                 bool IgnoreReal = false,
4385                                 bool IgnoreImag = false);
4386 
4387   /// EmitComplexExprIntoLValue - Emit the given expression of complex
4388   /// type and place its result into the specified l-value.
4389   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
4390 
4391   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
4392   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
4393 
4394   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
4395   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
4396 
4397   Address emitAddrOfRealComponent(Address complex, QualType complexType);
4398   Address emitAddrOfImagComponent(Address complex, QualType complexType);
4399 
4400   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
4401   /// global variable that has already been created for it.  If the initializer
4402   /// has a different type than GV does, this may free GV and return a different
4403   /// one.  Otherwise it just returns GV.
4404   llvm::GlobalVariable *
4405   AddInitializerToStaticVarDecl(const VarDecl &D,
4406                                 llvm::GlobalVariable *GV);
4407 
4408   // Emit an @llvm.invariant.start call for the given memory region.
4409   void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
4410 
4411   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
4412   /// variable with global storage.
4413   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV,
4414                                 bool PerformInit);
4415 
4416   llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
4417                                    llvm::Constant *Addr);
4418 
4419   llvm::Function *createTLSAtExitStub(const VarDecl &VD,
4420                                       llvm::FunctionCallee Dtor,
4421                                       llvm::Constant *Addr,
4422                                       llvm::FunctionCallee &AtExit);
4423 
4424   /// Call atexit() with a function that passes the given argument to
4425   /// the given function.
4426   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
4427                                     llvm::Constant *addr);
4428 
4429   /// Call atexit() with function dtorStub.
4430   void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
4431 
4432   /// Call unatexit() with function dtorStub.
4433   llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub);
4434 
4435   /// Emit code in this function to perform a guarded variable
4436   /// initialization.  Guarded initializations are used when it's not
4437   /// possible to prove that an initialization will be done exactly
4438   /// once, e.g. with a static local variable or a static data member
4439   /// of a class template.
4440   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
4441                           bool PerformInit);
4442 
4443   enum class GuardKind { VariableGuard, TlsGuard };
4444 
4445   /// Emit a branch to select whether or not to perform guarded initialization.
4446   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
4447                                 llvm::BasicBlock *InitBlock,
4448                                 llvm::BasicBlock *NoInitBlock,
4449                                 GuardKind Kind, const VarDecl *D);
4450 
4451   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
4452   /// variables.
4453   void
4454   GenerateCXXGlobalInitFunc(llvm::Function *Fn,
4455                             ArrayRef<llvm::Function *> CXXThreadLocals,
4456                             ConstantAddress Guard = ConstantAddress::invalid());
4457 
4458   /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global
4459   /// variables.
4460   void GenerateCXXGlobalCleanUpFunc(
4461       llvm::Function *Fn,
4462       ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
4463                           llvm::Constant *>>
4464           DtorsOrStermFinalizers);
4465 
4466   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
4467                                         const VarDecl *D,
4468                                         llvm::GlobalVariable *Addr,
4469                                         bool PerformInit);
4470 
4471   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
4472 
4473   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
4474 
4475   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
4476 
4477   RValue EmitAtomicExpr(AtomicExpr *E);
4478 
4479   //===--------------------------------------------------------------------===//
4480   //                         Annotations Emission
4481   //===--------------------------------------------------------------------===//
4482 
4483   /// Emit an annotation call (intrinsic).
4484   llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
4485                                   llvm::Value *AnnotatedVal,
4486                                   StringRef AnnotationStr,
4487                                   SourceLocation Location,
4488                                   const AnnotateAttr *Attr);
4489 
4490   /// Emit local annotations for the local variable V, declared by D.
4491   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
4492 
4493   /// Emit field annotations for the given field & value. Returns the
4494   /// annotation result.
4495   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
4496 
4497   //===--------------------------------------------------------------------===//
4498   //                             Internal Helpers
4499   //===--------------------------------------------------------------------===//
4500 
4501   /// ContainsLabel - Return true if the statement contains a label in it.  If
4502   /// this statement is not executed normally, it not containing a label means
4503   /// that we can just remove the code.
4504   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
4505 
4506   /// containsBreak - Return true if the statement contains a break out of it.
4507   /// If the statement (recursively) contains a switch or loop with a break
4508   /// inside of it, this is fine.
4509   static bool containsBreak(const Stmt *S);
4510 
4511   /// Determine if the given statement might introduce a declaration into the
4512   /// current scope, by being a (possibly-labelled) DeclStmt.
4513   static bool mightAddDeclToScope(const Stmt *S);
4514 
4515   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4516   /// to a constant, or if it does but contains a label, return false.  If it
4517   /// constant folds return true and set the boolean result in Result.
4518   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
4519                                     bool AllowLabels = false);
4520 
4521   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4522   /// to a constant, or if it does but contains a label, return false.  If it
4523   /// constant folds return true and set the folded value.
4524   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
4525                                     bool AllowLabels = false);
4526 
4527   /// isInstrumentedCondition - Determine whether the given condition is an
4528   /// instrumentable condition (i.e. no "&&" or "||").
4529   static bool isInstrumentedCondition(const Expr *C);
4530 
4531   /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
4532   /// increments a profile counter based on the semantics of the given logical
4533   /// operator opcode.  This is used to instrument branch condition coverage
4534   /// for logical operators.
4535   void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp,
4536                                 llvm::BasicBlock *TrueBlock,
4537                                 llvm::BasicBlock *FalseBlock,
4538                                 uint64_t TrueCount = 0,
4539                                 Stmt::Likelihood LH = Stmt::LH_None,
4540                                 const Expr *CntrIdx = nullptr);
4541 
4542   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
4543   /// if statement) to the specified blocks.  Based on the condition, this might
4544   /// try to simplify the codegen of the conditional based on the branch.
4545   /// TrueCount should be the number of times we expect the condition to
4546   /// evaluate to true based on PGO data.
4547   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
4548                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount,
4549                             Stmt::Likelihood LH = Stmt::LH_None);
4550 
4551   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
4552   /// nonnull, if \p LHS is marked _Nonnull.
4553   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
4554 
4555   /// An enumeration which makes it easier to specify whether or not an
4556   /// operation is a subtraction.
4557   enum { NotSubtraction = false, IsSubtraction = true };
4558 
4559   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
4560   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
4561   /// \p SignedIndices indicates whether any of the GEP indices are signed.
4562   /// \p IsSubtraction indicates whether the expression used to form the GEP
4563   /// is a subtraction.
4564   llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr,
4565                                       ArrayRef<llvm::Value *> IdxList,
4566                                       bool SignedIndices,
4567                                       bool IsSubtraction,
4568                                       SourceLocation Loc,
4569                                       const Twine &Name = "");
4570 
4571   /// Specifies which type of sanitizer check to apply when handling a
4572   /// particular builtin.
4573   enum BuiltinCheckKind {
4574     BCK_CTZPassedZero,
4575     BCK_CLZPassedZero,
4576   };
4577 
4578   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
4579   /// enabled, a runtime check specified by \p Kind is also emitted.
4580   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
4581 
4582   /// Emit a description of a type in a format suitable for passing to
4583   /// a runtime sanitizer handler.
4584   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
4585 
4586   /// Convert a value into a format suitable for passing to a runtime
4587   /// sanitizer handler.
4588   llvm::Value *EmitCheckValue(llvm::Value *V);
4589 
4590   /// Emit a description of a source location in a format suitable for
4591   /// passing to a runtime sanitizer handler.
4592   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
4593 
4594   /// Create a basic block that will either trap or call a handler function in
4595   /// the UBSan runtime with the provided arguments, and create a conditional
4596   /// branch to it.
4597   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
4598                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
4599                  ArrayRef<llvm::Value *> DynamicArgs);
4600 
4601   /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
4602   /// if Cond if false.
4603   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
4604                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
4605                             ArrayRef<llvm::Constant *> StaticArgs);
4606 
4607   /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
4608   /// checking is enabled. Otherwise, just emit an unreachable instruction.
4609   void EmitUnreachable(SourceLocation Loc);
4610 
4611   /// Create a basic block that will call the trap intrinsic, and emit a
4612   /// conditional branch to it, for the -ftrapv checks.
4613   void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID);
4614 
4615   /// Emit a call to trap or debugtrap and attach function attribute
4616   /// "trap-func-name" if specified.
4617   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
4618 
4619   /// Emit a stub for the cross-DSO CFI check function.
4620   void EmitCfiCheckStub();
4621 
4622   /// Emit a cross-DSO CFI failure handling function.
4623   void EmitCfiCheckFail();
4624 
4625   /// Create a check for a function parameter that may potentially be
4626   /// declared as non-null.
4627   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
4628                            AbstractCallee AC, unsigned ParmNum);
4629 
4630   /// EmitCallArg - Emit a single call argument.
4631   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
4632 
4633   /// EmitDelegateCallArg - We are performing a delegate call; that
4634   /// is, the current function is delegating to another one.  Produce
4635   /// a r-value suitable for passing the given parameter.
4636   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
4637                            SourceLocation loc);
4638 
4639   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
4640   /// point operation, expressed as the maximum relative error in ulp.
4641   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
4642 
4643   /// Set the codegen fast-math flags.
4644   void SetFastMathFlags(FPOptions FPFeatures);
4645 
4646 private:
4647   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
4648   void EmitReturnOfRValue(RValue RV, QualType Ty);
4649 
4650   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
4651 
4652   llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4>
4653       DeferredReplacements;
4654 
4655   /// Set the address of a local variable.
4656   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
4657     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
4658     LocalDeclMap.insert({VD, Addr});
4659   }
4660 
4661   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
4662   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
4663   ///
4664   /// \param AI - The first function argument of the expansion.
4665   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
4666                           llvm::Function::arg_iterator &AI);
4667 
4668   /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
4669   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
4670   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
4671   void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
4672                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
4673                         unsigned &IRCallArgPos);
4674 
4675   std::pair<llvm::Value *, llvm::Type *>
4676   EmitAsmInput(const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr,
4677                std::string &ConstraintStr);
4678 
4679   std::pair<llvm::Value *, llvm::Type *>
4680   EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, LValue InputValue,
4681                      QualType InputType, std::string &ConstraintStr,
4682                      SourceLocation Loc);
4683 
4684   /// Attempts to statically evaluate the object size of E. If that
4685   /// fails, emits code to figure the size of E out for us. This is
4686   /// pass_object_size aware.
4687   ///
4688   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
4689   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
4690                                                llvm::IntegerType *ResType,
4691                                                llvm::Value *EmittedE,
4692                                                bool IsDynamic);
4693 
4694   /// Emits the size of E, as required by __builtin_object_size. This
4695   /// function is aware of pass_object_size parameters, and will act accordingly
4696   /// if E is a parameter with the pass_object_size attribute.
4697   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
4698                                      llvm::IntegerType *ResType,
4699                                      llvm::Value *EmittedE,
4700                                      bool IsDynamic);
4701 
4702   void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D,
4703                                        Address Loc);
4704 
4705 public:
4706   enum class EvaluationOrder {
4707     ///! No language constraints on evaluation order.
4708     Default,
4709     ///! Language semantics require left-to-right evaluation.
4710     ForceLeftToRight,
4711     ///! Language semantics require right-to-left evaluation.
4712     ForceRightToLeft
4713   };
4714 
4715   // Wrapper for function prototype sources. Wraps either a FunctionProtoType or
4716   // an ObjCMethodDecl.
4717   struct PrototypeWrapper {
4718     llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P;
4719 
4720     PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {}
4721     PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {}
4722   };
4723 
4724   void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype,
4725                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4726                     AbstractCallee AC = AbstractCallee(),
4727                     unsigned ParamsToSkip = 0,
4728                     EvaluationOrder Order = EvaluationOrder::Default);
4729 
4730   /// EmitPointerWithAlignment - Given an expression with a pointer type,
4731   /// emit the value and compute our best estimate of the alignment of the
4732   /// pointee.
4733   ///
4734   /// \param BaseInfo - If non-null, this will be initialized with
4735   /// information about the source of the alignment and the may-alias
4736   /// attribute.  Note that this function will conservatively fall back on
4737   /// the type when it doesn't recognize the expression and may-alias will
4738   /// be set to false.
4739   ///
4740   /// One reasonable way to use this information is when there's a language
4741   /// guarantee that the pointer must be aligned to some stricter value, and
4742   /// we're simply trying to ensure that sufficiently obvious uses of under-
4743   /// aligned objects don't get miscompiled; for example, a placement new
4744   /// into the address of a local variable.  In such a case, it's quite
4745   /// reasonable to just ignore the returned alignment when it isn't from an
4746   /// explicit source.
4747   Address EmitPointerWithAlignment(const Expr *Addr,
4748                                    LValueBaseInfo *BaseInfo = nullptr,
4749                                    TBAAAccessInfo *TBAAInfo = nullptr);
4750 
4751   /// If \p E references a parameter with pass_object_size info or a constant
4752   /// array size modifier, emit the object size divided by the size of \p EltTy.
4753   /// Otherwise return null.
4754   llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4755 
4756   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4757 
4758   struct MultiVersionResolverOption {
4759     llvm::Function *Function;
4760     struct Conds {
4761       StringRef Architecture;
4762       llvm::SmallVector<StringRef, 8> Features;
4763 
4764       Conds(StringRef Arch, ArrayRef<StringRef> Feats)
4765           : Architecture(Arch), Features(Feats.begin(), Feats.end()) {}
4766     } Conditions;
4767 
4768     MultiVersionResolverOption(llvm::Function *F, StringRef Arch,
4769                                ArrayRef<StringRef> Feats)
4770         : Function(F), Conditions(Arch, Feats) {}
4771   };
4772 
4773   // Emits the body of a multiversion function's resolver. Assumes that the
4774   // options are already sorted in the proper order, with the 'default' option
4775   // last (if it exists).
4776   void EmitMultiVersionResolver(llvm::Function *Resolver,
4777                                 ArrayRef<MultiVersionResolverOption> Options);
4778 
4779 private:
4780   QualType getVarArgType(const Expr *Arg);
4781 
4782   void EmitDeclMetadata();
4783 
4784   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4785                                   const AutoVarEmission &emission);
4786 
4787   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4788 
4789   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4790   llvm::Value *EmitX86CpuIs(const CallExpr *E);
4791   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4792   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4793   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4794   llvm::Value *EmitX86CpuSupports(uint64_t Mask);
4795   llvm::Value *EmitX86CpuInit();
4796   llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
4797 };
4798 
4799 /// TargetFeatures - This class is used to check whether the builtin function
4800 /// has the required tagert specific features. It is able to support the
4801 /// combination of ','(and), '|'(or), and '()'. By default, the priority of
4802 /// ',' is higher than that of '|' .
4803 /// E.g:
4804 /// A,B|C means the builtin function requires both A and B, or C.
4805 /// If we want the builtin function requires both A and B, or both A and C,
4806 /// there are two ways: A,B|A,C or A,(B|C).
4807 /// The FeaturesList should not contain spaces, and brackets must appear in
4808 /// pairs.
4809 class TargetFeatures {
4810   struct FeatureListStatus {
4811     bool HasFeatures;
4812     StringRef CurFeaturesList;
4813   };
4814 
4815   const llvm::StringMap<bool> &CallerFeatureMap;
4816 
4817   FeatureListStatus getAndFeatures(StringRef FeatureList) {
4818     int InParentheses = 0;
4819     bool HasFeatures = true;
4820     size_t SubexpressionStart = 0;
4821     for (size_t i = 0, e = FeatureList.size(); i < e; ++i) {
4822       char CurrentToken = FeatureList[i];
4823       switch (CurrentToken) {
4824       default:
4825         break;
4826       case '(':
4827         if (InParentheses == 0)
4828           SubexpressionStart = i + 1;
4829         ++InParentheses;
4830         break;
4831       case ')':
4832         --InParentheses;
4833         assert(InParentheses >= 0 && "Parentheses are not in pair");
4834         LLVM_FALLTHROUGH;
4835       case '|':
4836       case ',':
4837         if (InParentheses == 0) {
4838           if (HasFeatures && i != SubexpressionStart) {
4839             StringRef F = FeatureList.slice(SubexpressionStart, i);
4840             HasFeatures = CurrentToken == ')' ? hasRequiredFeatures(F)
4841                                               : CallerFeatureMap.lookup(F);
4842           }
4843           SubexpressionStart = i + 1;
4844           if (CurrentToken == '|') {
4845             return {HasFeatures, FeatureList.substr(SubexpressionStart)};
4846           }
4847         }
4848         break;
4849       }
4850     }
4851     assert(InParentheses == 0 && "Parentheses are not in pair");
4852     if (HasFeatures && SubexpressionStart != FeatureList.size())
4853       HasFeatures =
4854           CallerFeatureMap.lookup(FeatureList.substr(SubexpressionStart));
4855     return {HasFeatures, StringRef()};
4856   }
4857 
4858 public:
4859   bool hasRequiredFeatures(StringRef FeatureList) {
4860     FeatureListStatus FS = {false, FeatureList};
4861     while (!FS.HasFeatures && !FS.CurFeaturesList.empty())
4862       FS = getAndFeatures(FS.CurFeaturesList);
4863     return FS.HasFeatures;
4864   }
4865 
4866   TargetFeatures(const llvm::StringMap<bool> &CallerFeatureMap)
4867       : CallerFeatureMap(CallerFeatureMap) {}
4868 };
4869 
4870 inline DominatingLLVMValue::saved_type
4871 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
4872   if (!needsSaving(value)) return saved_type(value, false);
4873 
4874   // Otherwise, we need an alloca.
4875   auto align = CharUnits::fromQuantity(
4876             CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4877   Address alloca =
4878     CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4879   CGF.Builder.CreateStore(value, alloca);
4880 
4881   return saved_type(alloca.getPointer(), true);
4882 }
4883 
4884 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
4885                                                  saved_type value) {
4886   // If the value says it wasn't saved, trust that it's still dominating.
4887   if (!value.getInt()) return value.getPointer();
4888 
4889   // Otherwise, it should be an alloca instruction, as set up in save().
4890   auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4891   return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca,
4892                                        alloca->getAlign());
4893 }
4894 
4895 }  // end namespace CodeGen
4896 
4897 // Map the LangOption for floating point exception behavior into
4898 // the corresponding enum in the IR.
4899 llvm::fp::ExceptionBehavior
4900 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind);
4901 }  // end namespace clang
4902 
4903 #endif
4904