1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the internal per-function state used for llvm translation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 16 #include "CGBuilder.h" 17 #include "CGDebugInfo.h" 18 #include "CGLoopInfo.h" 19 #include "CGValue.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "EHScopeStack.h" 23 #include "VarBypassDetector.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/CurrentSourceLocExprScope.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/Type.h" 30 #include "clang/Basic/ABI.h" 31 #include "clang/Basic/CapturedStmt.h" 32 #include "clang/Basic/CodeGenOptions.h" 33 #include "clang/Basic/OpenMPKinds.h" 34 #include "clang/Basic/TargetInfo.h" 35 #include "llvm/ADT/ArrayRef.h" 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/MapVector.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Transforms/Utils/SanitizerStats.h" 42 43 namespace llvm { 44 class BasicBlock; 45 class LLVMContext; 46 class MDNode; 47 class Module; 48 class SwitchInst; 49 class Twine; 50 class Value; 51 } 52 53 namespace clang { 54 class ASTContext; 55 class BlockDecl; 56 class CXXDestructorDecl; 57 class CXXForRangeStmt; 58 class CXXTryStmt; 59 class Decl; 60 class LabelDecl; 61 class EnumConstantDecl; 62 class FunctionDecl; 63 class FunctionProtoType; 64 class LabelStmt; 65 class ObjCContainerDecl; 66 class ObjCInterfaceDecl; 67 class ObjCIvarDecl; 68 class ObjCMethodDecl; 69 class ObjCImplementationDecl; 70 class ObjCPropertyImplDecl; 71 class TargetInfo; 72 class VarDecl; 73 class ObjCForCollectionStmt; 74 class ObjCAtTryStmt; 75 class ObjCAtThrowStmt; 76 class ObjCAtSynchronizedStmt; 77 class ObjCAutoreleasePoolStmt; 78 class ReturnsNonNullAttr; 79 80 namespace analyze_os_log { 81 class OSLogBufferLayout; 82 } 83 84 namespace CodeGen { 85 class CodeGenTypes; 86 class CGCallee; 87 class CGFunctionInfo; 88 class CGRecordLayout; 89 class CGBlockInfo; 90 class CGCXXABI; 91 class BlockByrefHelpers; 92 class BlockByrefInfo; 93 class BlockFlags; 94 class BlockFieldFlags; 95 class RegionCodeGenTy; 96 class TargetCodeGenInfo; 97 struct OMPTaskDataTy; 98 struct CGCoroData; 99 100 /// The kind of evaluation to perform on values of a particular 101 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 102 /// CGExprAgg? 103 /// 104 /// TODO: should vectors maybe be split out into their own thing? 105 enum TypeEvaluationKind { 106 TEK_Scalar, 107 TEK_Complex, 108 TEK_Aggregate 109 }; 110 111 #define LIST_SANITIZER_CHECKS \ 112 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 113 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 114 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 115 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 116 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 117 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 118 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1) \ 119 SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \ 120 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 121 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 122 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 123 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 124 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 125 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 126 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 127 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 128 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 129 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 130 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 131 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 132 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 133 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 134 SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \ 135 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 136 137 enum SanitizerHandler { 138 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 139 LIST_SANITIZER_CHECKS 140 #undef SANITIZER_CHECK 141 }; 142 143 /// Helper class with most of the code for saving a value for a 144 /// conditional expression cleanup. 145 struct DominatingLLVMValue { 146 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 147 148 /// Answer whether the given value needs extra work to be saved. 149 static bool needsSaving(llvm::Value *value) { 150 // If it's not an instruction, we don't need to save. 151 if (!isa<llvm::Instruction>(value)) return false; 152 153 // If it's an instruction in the entry block, we don't need to save. 154 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 155 return (block != &block->getParent()->getEntryBlock()); 156 } 157 158 static saved_type save(CodeGenFunction &CGF, llvm::Value *value); 159 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); 160 }; 161 162 /// A partial specialization of DominatingValue for llvm::Values that 163 /// might be llvm::Instructions. 164 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 165 typedef T *type; 166 static type restore(CodeGenFunction &CGF, saved_type value) { 167 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 168 } 169 }; 170 171 /// A specialization of DominatingValue for Address. 172 template <> struct DominatingValue<Address> { 173 typedef Address type; 174 175 struct saved_type { 176 DominatingLLVMValue::saved_type SavedValue; 177 CharUnits Alignment; 178 }; 179 180 static bool needsSaving(type value) { 181 return DominatingLLVMValue::needsSaving(value.getPointer()); 182 } 183 static saved_type save(CodeGenFunction &CGF, type value) { 184 return { DominatingLLVMValue::save(CGF, value.getPointer()), 185 value.getAlignment() }; 186 } 187 static type restore(CodeGenFunction &CGF, saved_type value) { 188 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 189 value.Alignment); 190 } 191 }; 192 193 /// A specialization of DominatingValue for RValue. 194 template <> struct DominatingValue<RValue> { 195 typedef RValue type; 196 class saved_type { 197 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 198 AggregateAddress, ComplexAddress }; 199 200 llvm::Value *Value; 201 unsigned K : 3; 202 unsigned Align : 29; 203 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 204 : Value(v), K(k), Align(a) {} 205 206 public: 207 static bool needsSaving(RValue value); 208 static saved_type save(CodeGenFunction &CGF, RValue value); 209 RValue restore(CodeGenFunction &CGF); 210 211 // implementations in CGCleanup.cpp 212 }; 213 214 static bool needsSaving(type value) { 215 return saved_type::needsSaving(value); 216 } 217 static saved_type save(CodeGenFunction &CGF, type value) { 218 return saved_type::save(CGF, value); 219 } 220 static type restore(CodeGenFunction &CGF, saved_type value) { 221 return value.restore(CGF); 222 } 223 }; 224 225 /// CodeGenFunction - This class organizes the per-function state that is used 226 /// while generating LLVM code. 227 class CodeGenFunction : public CodeGenTypeCache { 228 CodeGenFunction(const CodeGenFunction &) = delete; 229 void operator=(const CodeGenFunction &) = delete; 230 231 friend class CGCXXABI; 232 public: 233 /// A jump destination is an abstract label, branching to which may 234 /// require a jump out through normal cleanups. 235 struct JumpDest { 236 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 237 JumpDest(llvm::BasicBlock *Block, 238 EHScopeStack::stable_iterator Depth, 239 unsigned Index) 240 : Block(Block), ScopeDepth(Depth), Index(Index) {} 241 242 bool isValid() const { return Block != nullptr; } 243 llvm::BasicBlock *getBlock() const { return Block; } 244 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 245 unsigned getDestIndex() const { return Index; } 246 247 // This should be used cautiously. 248 void setScopeDepth(EHScopeStack::stable_iterator depth) { 249 ScopeDepth = depth; 250 } 251 252 private: 253 llvm::BasicBlock *Block; 254 EHScopeStack::stable_iterator ScopeDepth; 255 unsigned Index; 256 }; 257 258 CodeGenModule &CGM; // Per-module state. 259 const TargetInfo &Target; 260 261 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 262 LoopInfoStack LoopStack; 263 CGBuilderTy Builder; 264 265 // Stores variables for which we can't generate correct lifetime markers 266 // because of jumps. 267 VarBypassDetector Bypasses; 268 269 // CodeGen lambda for loops and support for ordered clause 270 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 271 JumpDest)> 272 CodeGenLoopTy; 273 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 274 const unsigned, const bool)> 275 CodeGenOrderedTy; 276 277 // Codegen lambda for loop bounds in worksharing loop constructs 278 typedef llvm::function_ref<std::pair<LValue, LValue>( 279 CodeGenFunction &, const OMPExecutableDirective &S)> 280 CodeGenLoopBoundsTy; 281 282 // Codegen lambda for loop bounds in dispatch-based loop implementation 283 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 284 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 285 Address UB)> 286 CodeGenDispatchBoundsTy; 287 288 /// CGBuilder insert helper. This function is called after an 289 /// instruction is created using Builder. 290 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 291 llvm::BasicBlock *BB, 292 llvm::BasicBlock::iterator InsertPt) const; 293 294 /// CurFuncDecl - Holds the Decl for the current outermost 295 /// non-closure context. 296 const Decl *CurFuncDecl; 297 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 298 const Decl *CurCodeDecl; 299 const CGFunctionInfo *CurFnInfo; 300 QualType FnRetTy; 301 llvm::Function *CurFn = nullptr; 302 303 // Holds coroutine data if the current function is a coroutine. We use a 304 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 305 // in this header. 306 struct CGCoroInfo { 307 std::unique_ptr<CGCoroData> Data; 308 CGCoroInfo(); 309 ~CGCoroInfo(); 310 }; 311 CGCoroInfo CurCoro; 312 313 bool isCoroutine() const { 314 return CurCoro.Data != nullptr; 315 } 316 317 /// CurGD - The GlobalDecl for the current function being compiled. 318 GlobalDecl CurGD; 319 320 /// PrologueCleanupDepth - The cleanup depth enclosing all the 321 /// cleanups associated with the parameters. 322 EHScopeStack::stable_iterator PrologueCleanupDepth; 323 324 /// ReturnBlock - Unified return block. 325 JumpDest ReturnBlock; 326 327 /// ReturnValue - The temporary alloca to hold the return 328 /// value. This is invalid iff the function has no return value. 329 Address ReturnValue = Address::invalid(); 330 331 /// ReturnValuePointer - The temporary alloca to hold a pointer to sret. 332 /// This is invalid if sret is not in use. 333 Address ReturnValuePointer = Address::invalid(); 334 335 /// Return true if a label was seen in the current scope. 336 bool hasLabelBeenSeenInCurrentScope() const { 337 if (CurLexicalScope) 338 return CurLexicalScope->hasLabels(); 339 return !LabelMap.empty(); 340 } 341 342 /// AllocaInsertPoint - This is an instruction in the entry block before which 343 /// we prefer to insert allocas. 344 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 345 346 /// API for captured statement code generation. 347 class CGCapturedStmtInfo { 348 public: 349 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 350 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 351 explicit CGCapturedStmtInfo(const CapturedStmt &S, 352 CapturedRegionKind K = CR_Default) 353 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 354 355 RecordDecl::field_iterator Field = 356 S.getCapturedRecordDecl()->field_begin(); 357 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 358 E = S.capture_end(); 359 I != E; ++I, ++Field) { 360 if (I->capturesThis()) 361 CXXThisFieldDecl = *Field; 362 else if (I->capturesVariable()) 363 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 364 else if (I->capturesVariableByCopy()) 365 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 366 } 367 } 368 369 virtual ~CGCapturedStmtInfo(); 370 371 CapturedRegionKind getKind() const { return Kind; } 372 373 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 374 // Retrieve the value of the context parameter. 375 virtual llvm::Value *getContextValue() const { return ThisValue; } 376 377 /// Lookup the captured field decl for a variable. 378 virtual const FieldDecl *lookup(const VarDecl *VD) const { 379 return CaptureFields.lookup(VD->getCanonicalDecl()); 380 } 381 382 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 383 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 384 385 static bool classof(const CGCapturedStmtInfo *) { 386 return true; 387 } 388 389 /// Emit the captured statement body. 390 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 391 CGF.incrementProfileCounter(S); 392 CGF.EmitStmt(S); 393 } 394 395 /// Get the name of the capture helper. 396 virtual StringRef getHelperName() const { return "__captured_stmt"; } 397 398 private: 399 /// The kind of captured statement being generated. 400 CapturedRegionKind Kind; 401 402 /// Keep the map between VarDecl and FieldDecl. 403 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 404 405 /// The base address of the captured record, passed in as the first 406 /// argument of the parallel region function. 407 llvm::Value *ThisValue; 408 409 /// Captured 'this' type. 410 FieldDecl *CXXThisFieldDecl; 411 }; 412 CGCapturedStmtInfo *CapturedStmtInfo = nullptr; 413 414 /// RAII for correct setting/restoring of CapturedStmtInfo. 415 class CGCapturedStmtRAII { 416 private: 417 CodeGenFunction &CGF; 418 CGCapturedStmtInfo *PrevCapturedStmtInfo; 419 public: 420 CGCapturedStmtRAII(CodeGenFunction &CGF, 421 CGCapturedStmtInfo *NewCapturedStmtInfo) 422 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 423 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 424 } 425 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 426 }; 427 428 /// An abstract representation of regular/ObjC call/message targets. 429 class AbstractCallee { 430 /// The function declaration of the callee. 431 const Decl *CalleeDecl; 432 433 public: 434 AbstractCallee() : CalleeDecl(nullptr) {} 435 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 436 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 437 bool hasFunctionDecl() const { 438 return dyn_cast_or_null<FunctionDecl>(CalleeDecl); 439 } 440 const Decl *getDecl() const { return CalleeDecl; } 441 unsigned getNumParams() const { 442 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 443 return FD->getNumParams(); 444 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 445 } 446 const ParmVarDecl *getParamDecl(unsigned I) const { 447 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 448 return FD->getParamDecl(I); 449 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 450 } 451 }; 452 453 /// Sanitizers enabled for this function. 454 SanitizerSet SanOpts; 455 456 /// True if CodeGen currently emits code implementing sanitizer checks. 457 bool IsSanitizerScope = false; 458 459 /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. 460 class SanitizerScope { 461 CodeGenFunction *CGF; 462 public: 463 SanitizerScope(CodeGenFunction *CGF); 464 ~SanitizerScope(); 465 }; 466 467 /// In C++, whether we are code generating a thunk. This controls whether we 468 /// should emit cleanups. 469 bool CurFuncIsThunk = false; 470 471 /// In ARC, whether we should autorelease the return value. 472 bool AutoreleaseResult = false; 473 474 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 475 /// potentially set the return value. 476 bool SawAsmBlock = false; 477 478 const NamedDecl *CurSEHParent = nullptr; 479 480 /// True if the current function is an outlined SEH helper. This can be a 481 /// finally block or filter expression. 482 bool IsOutlinedSEHHelper = false; 483 484 /// True if CodeGen currently emits code inside presereved access index 485 /// region. 486 bool IsInPreservedAIRegion = false; 487 488 const CodeGen::CGBlockInfo *BlockInfo = nullptr; 489 llvm::Value *BlockPointer = nullptr; 490 491 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 492 FieldDecl *LambdaThisCaptureField = nullptr; 493 494 /// A mapping from NRVO variables to the flags used to indicate 495 /// when the NRVO has been applied to this variable. 496 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 497 498 EHScopeStack EHStack; 499 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 500 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 501 502 llvm::Instruction *CurrentFuncletPad = nullptr; 503 504 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 505 llvm::Value *Addr; 506 llvm::Value *Size; 507 508 public: 509 CallLifetimeEnd(Address addr, llvm::Value *size) 510 : Addr(addr.getPointer()), Size(size) {} 511 512 void Emit(CodeGenFunction &CGF, Flags flags) override { 513 CGF.EmitLifetimeEnd(Size, Addr); 514 } 515 }; 516 517 /// Header for data within LifetimeExtendedCleanupStack. 518 struct LifetimeExtendedCleanupHeader { 519 /// The size of the following cleanup object. 520 unsigned Size; 521 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 522 unsigned Kind : 31; 523 /// Whether this is a conditional cleanup. 524 unsigned IsConditional : 1; 525 526 size_t getSize() const { return Size; } 527 CleanupKind getKind() const { return (CleanupKind)Kind; } 528 bool isConditional() const { return IsConditional; } 529 }; 530 531 /// i32s containing the indexes of the cleanup destinations. 532 Address NormalCleanupDest = Address::invalid(); 533 534 unsigned NextCleanupDestIndex = 1; 535 536 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 537 CGBlockInfo *FirstBlockInfo = nullptr; 538 539 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 540 llvm::BasicBlock *EHResumeBlock = nullptr; 541 542 /// The exception slot. All landing pads write the current exception pointer 543 /// into this alloca. 544 llvm::Value *ExceptionSlot = nullptr; 545 546 /// The selector slot. Under the MandatoryCleanup model, all landing pads 547 /// write the current selector value into this alloca. 548 llvm::AllocaInst *EHSelectorSlot = nullptr; 549 550 /// A stack of exception code slots. Entering an __except block pushes a slot 551 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 552 /// a value from the top of the stack. 553 SmallVector<Address, 1> SEHCodeSlotStack; 554 555 /// Value returned by __exception_info intrinsic. 556 llvm::Value *SEHInfo = nullptr; 557 558 /// Emits a landing pad for the current EH stack. 559 llvm::BasicBlock *EmitLandingPad(); 560 561 llvm::BasicBlock *getInvokeDestImpl(); 562 563 template <class T> 564 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 565 return DominatingValue<T>::save(*this, value); 566 } 567 568 public: 569 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 570 /// rethrows. 571 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 572 573 /// A class controlling the emission of a finally block. 574 class FinallyInfo { 575 /// Where the catchall's edge through the cleanup should go. 576 JumpDest RethrowDest; 577 578 /// A function to call to enter the catch. 579 llvm::FunctionCallee BeginCatchFn; 580 581 /// An i1 variable indicating whether or not the @finally is 582 /// running for an exception. 583 llvm::AllocaInst *ForEHVar; 584 585 /// An i8* variable into which the exception pointer to rethrow 586 /// has been saved. 587 llvm::AllocaInst *SavedExnVar; 588 589 public: 590 void enter(CodeGenFunction &CGF, const Stmt *Finally, 591 llvm::FunctionCallee beginCatchFn, 592 llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn); 593 void exit(CodeGenFunction &CGF); 594 }; 595 596 /// Returns true inside SEH __try blocks. 597 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 598 599 /// Returns true while emitting a cleanuppad. 600 bool isCleanupPadScope() const { 601 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 602 } 603 604 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 605 /// current full-expression. Safe against the possibility that 606 /// we're currently inside a conditionally-evaluated expression. 607 template <class T, class... As> 608 void pushFullExprCleanup(CleanupKind kind, As... A) { 609 // If we're not in a conditional branch, or if none of the 610 // arguments requires saving, then use the unconditional cleanup. 611 if (!isInConditionalBranch()) 612 return EHStack.pushCleanup<T>(kind, A...); 613 614 // Stash values in a tuple so we can guarantee the order of saves. 615 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 616 SavedTuple Saved{saveValueInCond(A)...}; 617 618 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 619 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 620 initFullExprCleanup(); 621 } 622 623 /// Queue a cleanup to be pushed after finishing the current 624 /// full-expression. 625 template <class T, class... As> 626 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 627 if (!isInConditionalBranch()) 628 return pushCleanupAfterFullExprImpl<T>(Kind, Address::invalid(), A...); 629 630 Address ActiveFlag = createCleanupActiveFlag(); 631 assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && 632 "cleanup active flag should never need saving"); 633 634 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 635 SavedTuple Saved{saveValueInCond(A)...}; 636 637 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 638 pushCleanupAfterFullExprImpl<CleanupType>(Kind, ActiveFlag, Saved); 639 } 640 641 template <class T, class... As> 642 void pushCleanupAfterFullExprImpl(CleanupKind Kind, Address ActiveFlag, 643 As... A) { 644 LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind, 645 ActiveFlag.isValid()}; 646 647 size_t OldSize = LifetimeExtendedCleanupStack.size(); 648 LifetimeExtendedCleanupStack.resize( 649 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + 650 (Header.IsConditional ? sizeof(ActiveFlag) : 0)); 651 652 static_assert(sizeof(Header) % alignof(T) == 0, 653 "Cleanup will be allocated on misaligned address"); 654 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 655 new (Buffer) LifetimeExtendedCleanupHeader(Header); 656 new (Buffer + sizeof(Header)) T(A...); 657 if (Header.IsConditional) 658 new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag); 659 } 660 661 /// Set up the last cleanup that was pushed as a conditional 662 /// full-expression cleanup. 663 void initFullExprCleanup() { 664 initFullExprCleanupWithFlag(createCleanupActiveFlag()); 665 } 666 667 void initFullExprCleanupWithFlag(Address ActiveFlag); 668 Address createCleanupActiveFlag(); 669 670 /// PushDestructorCleanup - Push a cleanup to call the 671 /// complete-object destructor of an object of the given type at the 672 /// given address. Does nothing if T is not a C++ class type with a 673 /// non-trivial destructor. 674 void PushDestructorCleanup(QualType T, Address Addr); 675 676 /// PushDestructorCleanup - Push a cleanup to call the 677 /// complete-object variant of the given destructor on the object at 678 /// the given address. 679 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T, 680 Address Addr); 681 682 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 683 /// process all branch fixups. 684 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 685 686 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 687 /// The block cannot be reactivated. Pops it if it's the top of the 688 /// stack. 689 /// 690 /// \param DominatingIP - An instruction which is known to 691 /// dominate the current IP (if set) and which lies along 692 /// all paths of execution between the current IP and the 693 /// the point at which the cleanup comes into scope. 694 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 695 llvm::Instruction *DominatingIP); 696 697 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 698 /// Cannot be used to resurrect a deactivated cleanup. 699 /// 700 /// \param DominatingIP - An instruction which is known to 701 /// dominate the current IP (if set) and which lies along 702 /// all paths of execution between the current IP and the 703 /// the point at which the cleanup comes into scope. 704 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 705 llvm::Instruction *DominatingIP); 706 707 /// Enters a new scope for capturing cleanups, all of which 708 /// will be executed once the scope is exited. 709 class RunCleanupsScope { 710 EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; 711 size_t LifetimeExtendedCleanupStackSize; 712 bool OldDidCallStackSave; 713 protected: 714 bool PerformCleanup; 715 private: 716 717 RunCleanupsScope(const RunCleanupsScope &) = delete; 718 void operator=(const RunCleanupsScope &) = delete; 719 720 protected: 721 CodeGenFunction& CGF; 722 723 public: 724 /// Enter a new cleanup scope. 725 explicit RunCleanupsScope(CodeGenFunction &CGF) 726 : PerformCleanup(true), CGF(CGF) 727 { 728 CleanupStackDepth = CGF.EHStack.stable_begin(); 729 LifetimeExtendedCleanupStackSize = 730 CGF.LifetimeExtendedCleanupStack.size(); 731 OldDidCallStackSave = CGF.DidCallStackSave; 732 CGF.DidCallStackSave = false; 733 OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; 734 CGF.CurrentCleanupScopeDepth = CleanupStackDepth; 735 } 736 737 /// Exit this cleanup scope, emitting any accumulated cleanups. 738 ~RunCleanupsScope() { 739 if (PerformCleanup) 740 ForceCleanup(); 741 } 742 743 /// Determine whether this scope requires any cleanups. 744 bool requiresCleanups() const { 745 return CGF.EHStack.stable_begin() != CleanupStackDepth; 746 } 747 748 /// Force the emission of cleanups now, instead of waiting 749 /// until this object is destroyed. 750 /// \param ValuesToReload - A list of values that need to be available at 751 /// the insertion point after cleanup emission. If cleanup emission created 752 /// a shared cleanup block, these value pointers will be rewritten. 753 /// Otherwise, they not will be modified. 754 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 755 assert(PerformCleanup && "Already forced cleanup"); 756 CGF.DidCallStackSave = OldDidCallStackSave; 757 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 758 ValuesToReload); 759 PerformCleanup = false; 760 CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; 761 } 762 }; 763 764 // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. 765 EHScopeStack::stable_iterator CurrentCleanupScopeDepth = 766 EHScopeStack::stable_end(); 767 768 class LexicalScope : public RunCleanupsScope { 769 SourceRange Range; 770 SmallVector<const LabelDecl*, 4> Labels; 771 LexicalScope *ParentScope; 772 773 LexicalScope(const LexicalScope &) = delete; 774 void operator=(const LexicalScope &) = delete; 775 776 public: 777 /// Enter a new cleanup scope. 778 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 779 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 780 CGF.CurLexicalScope = this; 781 if (CGDebugInfo *DI = CGF.getDebugInfo()) 782 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 783 } 784 785 void addLabel(const LabelDecl *label) { 786 assert(PerformCleanup && "adding label to dead scope?"); 787 Labels.push_back(label); 788 } 789 790 /// Exit this cleanup scope, emitting any accumulated 791 /// cleanups. 792 ~LexicalScope() { 793 if (CGDebugInfo *DI = CGF.getDebugInfo()) 794 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 795 796 // If we should perform a cleanup, force them now. Note that 797 // this ends the cleanup scope before rescoping any labels. 798 if (PerformCleanup) { 799 ApplyDebugLocation DL(CGF, Range.getEnd()); 800 ForceCleanup(); 801 } 802 } 803 804 /// Force the emission of cleanups now, instead of waiting 805 /// until this object is destroyed. 806 void ForceCleanup() { 807 CGF.CurLexicalScope = ParentScope; 808 RunCleanupsScope::ForceCleanup(); 809 810 if (!Labels.empty()) 811 rescopeLabels(); 812 } 813 814 bool hasLabels() const { 815 return !Labels.empty(); 816 } 817 818 void rescopeLabels(); 819 }; 820 821 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 822 823 /// The class used to assign some variables some temporarily addresses. 824 class OMPMapVars { 825 DeclMapTy SavedLocals; 826 DeclMapTy SavedTempAddresses; 827 OMPMapVars(const OMPMapVars &) = delete; 828 void operator=(const OMPMapVars &) = delete; 829 830 public: 831 explicit OMPMapVars() = default; 832 ~OMPMapVars() { 833 assert(SavedLocals.empty() && "Did not restored original addresses."); 834 }; 835 836 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 837 /// function \p CGF. 838 /// \return true if at least one variable was set already, false otherwise. 839 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 840 Address TempAddr) { 841 LocalVD = LocalVD->getCanonicalDecl(); 842 // Only save it once. 843 if (SavedLocals.count(LocalVD)) return false; 844 845 // Copy the existing local entry to SavedLocals. 846 auto it = CGF.LocalDeclMap.find(LocalVD); 847 if (it != CGF.LocalDeclMap.end()) 848 SavedLocals.try_emplace(LocalVD, it->second); 849 else 850 SavedLocals.try_emplace(LocalVD, Address::invalid()); 851 852 // Generate the private entry. 853 QualType VarTy = LocalVD->getType(); 854 if (VarTy->isReferenceType()) { 855 Address Temp = CGF.CreateMemTemp(VarTy); 856 CGF.Builder.CreateStore(TempAddr.getPointer(), Temp); 857 TempAddr = Temp; 858 } 859 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 860 861 return true; 862 } 863 864 /// Applies new addresses to the list of the variables. 865 /// \return true if at least one variable is using new address, false 866 /// otherwise. 867 bool apply(CodeGenFunction &CGF) { 868 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 869 SavedTempAddresses.clear(); 870 return !SavedLocals.empty(); 871 } 872 873 /// Restores original addresses of the variables. 874 void restore(CodeGenFunction &CGF) { 875 if (!SavedLocals.empty()) { 876 copyInto(SavedLocals, CGF.LocalDeclMap); 877 SavedLocals.clear(); 878 } 879 } 880 881 private: 882 /// Copy all the entries in the source map over the corresponding 883 /// entries in the destination, which must exist. 884 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 885 for (auto &Pair : Src) { 886 if (!Pair.second.isValid()) { 887 Dest.erase(Pair.first); 888 continue; 889 } 890 891 auto I = Dest.find(Pair.first); 892 if (I != Dest.end()) 893 I->second = Pair.second; 894 else 895 Dest.insert(Pair); 896 } 897 } 898 }; 899 900 /// The scope used to remap some variables as private in the OpenMP loop body 901 /// (or other captured region emitted without outlining), and to restore old 902 /// vars back on exit. 903 class OMPPrivateScope : public RunCleanupsScope { 904 OMPMapVars MappedVars; 905 OMPPrivateScope(const OMPPrivateScope &) = delete; 906 void operator=(const OMPPrivateScope &) = delete; 907 908 public: 909 /// Enter a new OpenMP private scope. 910 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 911 912 /// Registers \p LocalVD variable as a private and apply \p PrivateGen 913 /// function for it to generate corresponding private variable. \p 914 /// PrivateGen returns an address of the generated private variable. 915 /// \return true if the variable is registered as private, false if it has 916 /// been privatized already. 917 bool addPrivate(const VarDecl *LocalVD, 918 const llvm::function_ref<Address()> PrivateGen) { 919 assert(PerformCleanup && "adding private to dead scope"); 920 return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen()); 921 } 922 923 /// Privatizes local variables previously registered as private. 924 /// Registration is separate from the actual privatization to allow 925 /// initializers use values of the original variables, not the private one. 926 /// This is important, for example, if the private variable is a class 927 /// variable initialized by a constructor that references other private 928 /// variables. But at initialization original variables must be used, not 929 /// private copies. 930 /// \return true if at least one variable was privatized, false otherwise. 931 bool Privatize() { return MappedVars.apply(CGF); } 932 933 void ForceCleanup() { 934 RunCleanupsScope::ForceCleanup(); 935 MappedVars.restore(CGF); 936 } 937 938 /// Exit scope - all the mapped variables are restored. 939 ~OMPPrivateScope() { 940 if (PerformCleanup) 941 ForceCleanup(); 942 } 943 944 /// Checks if the global variable is captured in current function. 945 bool isGlobalVarCaptured(const VarDecl *VD) const { 946 VD = VD->getCanonicalDecl(); 947 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 948 } 949 }; 950 951 /// Save/restore original map of previously emitted local vars in case when we 952 /// need to duplicate emission of the same code several times in the same 953 /// function for OpenMP code. 954 class OMPLocalDeclMapRAII { 955 CodeGenFunction &CGF; 956 DeclMapTy SavedMap; 957 958 public: 959 OMPLocalDeclMapRAII(CodeGenFunction &CGF) 960 : CGF(CGF), SavedMap(CGF.LocalDeclMap) {} 961 ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); } 962 }; 963 964 /// Takes the old cleanup stack size and emits the cleanup blocks 965 /// that have been added. 966 void 967 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 968 std::initializer_list<llvm::Value **> ValuesToReload = {}); 969 970 /// Takes the old cleanup stack size and emits the cleanup blocks 971 /// that have been added, then adds all lifetime-extended cleanups from 972 /// the given position to the stack. 973 void 974 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 975 size_t OldLifetimeExtendedStackSize, 976 std::initializer_list<llvm::Value **> ValuesToReload = {}); 977 978 void ResolveBranchFixups(llvm::BasicBlock *Target); 979 980 /// The given basic block lies in the current EH scope, but may be a 981 /// target of a potentially scope-crossing jump; get a stable handle 982 /// to which we can perform this jump later. 983 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 984 return JumpDest(Target, 985 EHStack.getInnermostNormalCleanup(), 986 NextCleanupDestIndex++); 987 } 988 989 /// The given basic block lies in the current EH scope, but may be a 990 /// target of a potentially scope-crossing jump; get a stable handle 991 /// to which we can perform this jump later. 992 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 993 return getJumpDestInCurrentScope(createBasicBlock(Name)); 994 } 995 996 /// EmitBranchThroughCleanup - Emit a branch from the current insert 997 /// block through the normal cleanup handling code (if any) and then 998 /// on to \arg Dest. 999 void EmitBranchThroughCleanup(JumpDest Dest); 1000 1001 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 1002 /// specified destination obviously has no cleanups to run. 'false' is always 1003 /// a conservatively correct answer for this method. 1004 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 1005 1006 /// popCatchScope - Pops the catch scope at the top of the EHScope 1007 /// stack, emitting any required code (other than the catch handlers 1008 /// themselves). 1009 void popCatchScope(); 1010 1011 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 1012 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 1013 llvm::BasicBlock * 1014 getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); 1015 1016 /// An object to manage conditionally-evaluated expressions. 1017 class ConditionalEvaluation { 1018 llvm::BasicBlock *StartBB; 1019 1020 public: 1021 ConditionalEvaluation(CodeGenFunction &CGF) 1022 : StartBB(CGF.Builder.GetInsertBlock()) {} 1023 1024 void begin(CodeGenFunction &CGF) { 1025 assert(CGF.OutermostConditional != this); 1026 if (!CGF.OutermostConditional) 1027 CGF.OutermostConditional = this; 1028 } 1029 1030 void end(CodeGenFunction &CGF) { 1031 assert(CGF.OutermostConditional != nullptr); 1032 if (CGF.OutermostConditional == this) 1033 CGF.OutermostConditional = nullptr; 1034 } 1035 1036 /// Returns a block which will be executed prior to each 1037 /// evaluation of the conditional code. 1038 llvm::BasicBlock *getStartingBlock() const { 1039 return StartBB; 1040 } 1041 }; 1042 1043 /// isInConditionalBranch - Return true if we're currently emitting 1044 /// one branch or the other of a conditional expression. 1045 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 1046 1047 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 1048 assert(isInConditionalBranch()); 1049 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 1050 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 1051 store->setAlignment(addr.getAlignment().getAsAlign()); 1052 } 1053 1054 /// An RAII object to record that we're evaluating a statement 1055 /// expression. 1056 class StmtExprEvaluation { 1057 CodeGenFunction &CGF; 1058 1059 /// We have to save the outermost conditional: cleanups in a 1060 /// statement expression aren't conditional just because the 1061 /// StmtExpr is. 1062 ConditionalEvaluation *SavedOutermostConditional; 1063 1064 public: 1065 StmtExprEvaluation(CodeGenFunction &CGF) 1066 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 1067 CGF.OutermostConditional = nullptr; 1068 } 1069 1070 ~StmtExprEvaluation() { 1071 CGF.OutermostConditional = SavedOutermostConditional; 1072 CGF.EnsureInsertPoint(); 1073 } 1074 }; 1075 1076 /// An object which temporarily prevents a value from being 1077 /// destroyed by aggressive peephole optimizations that assume that 1078 /// all uses of a value have been realized in the IR. 1079 class PeepholeProtection { 1080 llvm::Instruction *Inst; 1081 friend class CodeGenFunction; 1082 1083 public: 1084 PeepholeProtection() : Inst(nullptr) {} 1085 }; 1086 1087 /// A non-RAII class containing all the information about a bound 1088 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 1089 /// this which makes individual mappings very simple; using this 1090 /// class directly is useful when you have a variable number of 1091 /// opaque values or don't want the RAII functionality for some 1092 /// reason. 1093 class OpaqueValueMappingData { 1094 const OpaqueValueExpr *OpaqueValue; 1095 bool BoundLValue; 1096 CodeGenFunction::PeepholeProtection Protection; 1097 1098 OpaqueValueMappingData(const OpaqueValueExpr *ov, 1099 bool boundLValue) 1100 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1101 public: 1102 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 1103 1104 static bool shouldBindAsLValue(const Expr *expr) { 1105 // gl-values should be bound as l-values for obvious reasons. 1106 // Records should be bound as l-values because IR generation 1107 // always keeps them in memory. Expressions of function type 1108 // act exactly like l-values but are formally required to be 1109 // r-values in C. 1110 return expr->isGLValue() || 1111 expr->getType()->isFunctionType() || 1112 hasAggregateEvaluationKind(expr->getType()); 1113 } 1114 1115 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1116 const OpaqueValueExpr *ov, 1117 const Expr *e) { 1118 if (shouldBindAsLValue(ov)) 1119 return bind(CGF, ov, CGF.EmitLValue(e)); 1120 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1121 } 1122 1123 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1124 const OpaqueValueExpr *ov, 1125 const LValue &lv) { 1126 assert(shouldBindAsLValue(ov)); 1127 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1128 return OpaqueValueMappingData(ov, true); 1129 } 1130 1131 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1132 const OpaqueValueExpr *ov, 1133 const RValue &rv) { 1134 assert(!shouldBindAsLValue(ov)); 1135 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1136 1137 OpaqueValueMappingData data(ov, false); 1138 1139 // Work around an extremely aggressive peephole optimization in 1140 // EmitScalarConversion which assumes that all other uses of a 1141 // value are extant. 1142 data.Protection = CGF.protectFromPeepholes(rv); 1143 1144 return data; 1145 } 1146 1147 bool isValid() const { return OpaqueValue != nullptr; } 1148 void clear() { OpaqueValue = nullptr; } 1149 1150 void unbind(CodeGenFunction &CGF) { 1151 assert(OpaqueValue && "no data to unbind!"); 1152 1153 if (BoundLValue) { 1154 CGF.OpaqueLValues.erase(OpaqueValue); 1155 } else { 1156 CGF.OpaqueRValues.erase(OpaqueValue); 1157 CGF.unprotectFromPeepholes(Protection); 1158 } 1159 } 1160 }; 1161 1162 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1163 class OpaqueValueMapping { 1164 CodeGenFunction &CGF; 1165 OpaqueValueMappingData Data; 1166 1167 public: 1168 static bool shouldBindAsLValue(const Expr *expr) { 1169 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1170 } 1171 1172 /// Build the opaque value mapping for the given conditional 1173 /// operator if it's the GNU ?: extension. This is a common 1174 /// enough pattern that the convenience operator is really 1175 /// helpful. 1176 /// 1177 OpaqueValueMapping(CodeGenFunction &CGF, 1178 const AbstractConditionalOperator *op) : CGF(CGF) { 1179 if (isa<ConditionalOperator>(op)) 1180 // Leave Data empty. 1181 return; 1182 1183 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1184 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1185 e->getCommon()); 1186 } 1187 1188 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1189 /// expression is set to the expression the OVE represents. 1190 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1191 : CGF(CGF) { 1192 if (OV) { 1193 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1194 "for OVE with no source expression"); 1195 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1196 } 1197 } 1198 1199 OpaqueValueMapping(CodeGenFunction &CGF, 1200 const OpaqueValueExpr *opaqueValue, 1201 LValue lvalue) 1202 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1203 } 1204 1205 OpaqueValueMapping(CodeGenFunction &CGF, 1206 const OpaqueValueExpr *opaqueValue, 1207 RValue rvalue) 1208 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1209 } 1210 1211 void pop() { 1212 Data.unbind(CGF); 1213 Data.clear(); 1214 } 1215 1216 ~OpaqueValueMapping() { 1217 if (Data.isValid()) Data.unbind(CGF); 1218 } 1219 }; 1220 1221 private: 1222 CGDebugInfo *DebugInfo; 1223 /// Used to create unique names for artificial VLA size debug info variables. 1224 unsigned VLAExprCounter = 0; 1225 bool DisableDebugInfo = false; 1226 1227 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1228 /// calling llvm.stacksave for multiple VLAs in the same scope. 1229 bool DidCallStackSave = false; 1230 1231 /// IndirectBranch - The first time an indirect goto is seen we create a block 1232 /// with an indirect branch. Every time we see the address of a label taken, 1233 /// we add the label to the indirect goto. Every subsequent indirect goto is 1234 /// codegen'd as a jump to the IndirectBranch's basic block. 1235 llvm::IndirectBrInst *IndirectBranch = nullptr; 1236 1237 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1238 /// decls. 1239 DeclMapTy LocalDeclMap; 1240 1241 // Keep track of the cleanups for callee-destructed parameters pushed to the 1242 // cleanup stack so that they can be deactivated later. 1243 llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> 1244 CalleeDestructedParamCleanups; 1245 1246 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1247 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1248 /// parameter. 1249 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1250 SizeArguments; 1251 1252 /// Track escaped local variables with auto storage. Used during SEH 1253 /// outlining to produce a call to llvm.localescape. 1254 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1255 1256 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1257 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1258 1259 // BreakContinueStack - This keeps track of where break and continue 1260 // statements should jump to. 1261 struct BreakContinue { 1262 BreakContinue(JumpDest Break, JumpDest Continue) 1263 : BreakBlock(Break), ContinueBlock(Continue) {} 1264 1265 JumpDest BreakBlock; 1266 JumpDest ContinueBlock; 1267 }; 1268 SmallVector<BreakContinue, 8> BreakContinueStack; 1269 1270 /// Handles cancellation exit points in OpenMP-related constructs. 1271 class OpenMPCancelExitStack { 1272 /// Tracks cancellation exit point and join point for cancel-related exit 1273 /// and normal exit. 1274 struct CancelExit { 1275 CancelExit() = default; 1276 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1277 JumpDest ContBlock) 1278 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1279 OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown; 1280 /// true if the exit block has been emitted already by the special 1281 /// emitExit() call, false if the default codegen is used. 1282 bool HasBeenEmitted = false; 1283 JumpDest ExitBlock; 1284 JumpDest ContBlock; 1285 }; 1286 1287 SmallVector<CancelExit, 8> Stack; 1288 1289 public: 1290 OpenMPCancelExitStack() : Stack(1) {} 1291 ~OpenMPCancelExitStack() = default; 1292 /// Fetches the exit block for the current OpenMP construct. 1293 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1294 /// Emits exit block with special codegen procedure specific for the related 1295 /// OpenMP construct + emits code for normal construct cleanup. 1296 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1297 const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { 1298 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1299 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1300 assert(CGF.HaveInsertPoint()); 1301 assert(!Stack.back().HasBeenEmitted); 1302 auto IP = CGF.Builder.saveAndClearIP(); 1303 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1304 CodeGen(CGF); 1305 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1306 CGF.Builder.restoreIP(IP); 1307 Stack.back().HasBeenEmitted = true; 1308 } 1309 CodeGen(CGF); 1310 } 1311 /// Enter the cancel supporting \a Kind construct. 1312 /// \param Kind OpenMP directive that supports cancel constructs. 1313 /// \param HasCancel true, if the construct has inner cancel directive, 1314 /// false otherwise. 1315 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1316 Stack.push_back({Kind, 1317 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1318 : JumpDest(), 1319 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1320 : JumpDest()}); 1321 } 1322 /// Emits default exit point for the cancel construct (if the special one 1323 /// has not be used) + join point for cancel/normal exits. 1324 void exit(CodeGenFunction &CGF) { 1325 if (getExitBlock().isValid()) { 1326 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1327 bool HaveIP = CGF.HaveInsertPoint(); 1328 if (!Stack.back().HasBeenEmitted) { 1329 if (HaveIP) 1330 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1331 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1332 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1333 } 1334 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1335 if (!HaveIP) { 1336 CGF.Builder.CreateUnreachable(); 1337 CGF.Builder.ClearInsertionPoint(); 1338 } 1339 } 1340 Stack.pop_back(); 1341 } 1342 }; 1343 OpenMPCancelExitStack OMPCancelStack; 1344 1345 CodeGenPGO PGO; 1346 1347 /// Calculate branch weights appropriate for PGO data 1348 llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); 1349 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); 1350 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1351 uint64_t LoopCount); 1352 1353 public: 1354 /// Increment the profiler's counter for the given statement by \p StepV. 1355 /// If \p StepV is null, the default increment is 1. 1356 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1357 if (CGM.getCodeGenOpts().hasProfileClangInstr()) 1358 PGO.emitCounterIncrement(Builder, S, StepV); 1359 PGO.setCurrentStmt(S); 1360 } 1361 1362 /// Get the profiler's count for the given statement. 1363 uint64_t getProfileCount(const Stmt *S) { 1364 Optional<uint64_t> Count = PGO.getStmtCount(S); 1365 if (!Count.hasValue()) 1366 return 0; 1367 return *Count; 1368 } 1369 1370 /// Set the profiler's current count. 1371 void setCurrentProfileCount(uint64_t Count) { 1372 PGO.setCurrentRegionCount(Count); 1373 } 1374 1375 /// Get the profiler's current count. This is generally the count for the most 1376 /// recently incremented counter. 1377 uint64_t getCurrentProfileCount() { 1378 return PGO.getCurrentRegionCount(); 1379 } 1380 1381 private: 1382 1383 /// SwitchInsn - This is nearest current switch instruction. It is null if 1384 /// current context is not in a switch. 1385 llvm::SwitchInst *SwitchInsn = nullptr; 1386 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1387 SmallVector<uint64_t, 16> *SwitchWeights = nullptr; 1388 1389 /// CaseRangeBlock - This block holds if condition check for last case 1390 /// statement range in current switch instruction. 1391 llvm::BasicBlock *CaseRangeBlock = nullptr; 1392 1393 /// OpaqueLValues - Keeps track of the current set of opaque value 1394 /// expressions. 1395 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1396 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1397 1398 // VLASizeMap - This keeps track of the associated size for each VLA type. 1399 // We track this by the size expression rather than the type itself because 1400 // in certain situations, like a const qualifier applied to an VLA typedef, 1401 // multiple VLA types can share the same size expression. 1402 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1403 // enter/leave scopes. 1404 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1405 1406 /// A block containing a single 'unreachable' instruction. Created 1407 /// lazily by getUnreachableBlock(). 1408 llvm::BasicBlock *UnreachableBlock = nullptr; 1409 1410 /// Counts of the number return expressions in the function. 1411 unsigned NumReturnExprs = 0; 1412 1413 /// Count the number of simple (constant) return expressions in the function. 1414 unsigned NumSimpleReturnExprs = 0; 1415 1416 /// The last regular (non-return) debug location (breakpoint) in the function. 1417 SourceLocation LastStopPoint; 1418 1419 public: 1420 /// Source location information about the default argument or member 1421 /// initializer expression we're evaluating, if any. 1422 CurrentSourceLocExprScope CurSourceLocExprScope; 1423 using SourceLocExprScopeGuard = 1424 CurrentSourceLocExprScope::SourceLocExprScopeGuard; 1425 1426 /// A scope within which we are constructing the fields of an object which 1427 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1428 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1429 class FieldConstructionScope { 1430 public: 1431 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1432 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1433 CGF.CXXDefaultInitExprThis = This; 1434 } 1435 ~FieldConstructionScope() { 1436 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1437 } 1438 1439 private: 1440 CodeGenFunction &CGF; 1441 Address OldCXXDefaultInitExprThis; 1442 }; 1443 1444 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1445 /// is overridden to be the object under construction. 1446 class CXXDefaultInitExprScope { 1447 public: 1448 CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E) 1449 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1450 OldCXXThisAlignment(CGF.CXXThisAlignment), 1451 SourceLocScope(E, CGF.CurSourceLocExprScope) { 1452 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1453 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1454 } 1455 ~CXXDefaultInitExprScope() { 1456 CGF.CXXThisValue = OldCXXThisValue; 1457 CGF.CXXThisAlignment = OldCXXThisAlignment; 1458 } 1459 1460 public: 1461 CodeGenFunction &CGF; 1462 llvm::Value *OldCXXThisValue; 1463 CharUnits OldCXXThisAlignment; 1464 SourceLocExprScopeGuard SourceLocScope; 1465 }; 1466 1467 struct CXXDefaultArgExprScope : SourceLocExprScopeGuard { 1468 CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E) 1469 : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {} 1470 }; 1471 1472 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1473 /// current loop index is overridden. 1474 class ArrayInitLoopExprScope { 1475 public: 1476 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1477 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1478 CGF.ArrayInitIndex = Index; 1479 } 1480 ~ArrayInitLoopExprScope() { 1481 CGF.ArrayInitIndex = OldArrayInitIndex; 1482 } 1483 1484 private: 1485 CodeGenFunction &CGF; 1486 llvm::Value *OldArrayInitIndex; 1487 }; 1488 1489 class InlinedInheritingConstructorScope { 1490 public: 1491 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1492 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1493 OldCurCodeDecl(CGF.CurCodeDecl), 1494 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1495 OldCXXABIThisValue(CGF.CXXABIThisValue), 1496 OldCXXThisValue(CGF.CXXThisValue), 1497 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1498 OldCXXThisAlignment(CGF.CXXThisAlignment), 1499 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1500 OldCXXInheritedCtorInitExprArgs( 1501 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1502 CGF.CurGD = GD; 1503 CGF.CurFuncDecl = CGF.CurCodeDecl = 1504 cast<CXXConstructorDecl>(GD.getDecl()); 1505 CGF.CXXABIThisDecl = nullptr; 1506 CGF.CXXABIThisValue = nullptr; 1507 CGF.CXXThisValue = nullptr; 1508 CGF.CXXABIThisAlignment = CharUnits(); 1509 CGF.CXXThisAlignment = CharUnits(); 1510 CGF.ReturnValue = Address::invalid(); 1511 CGF.FnRetTy = QualType(); 1512 CGF.CXXInheritedCtorInitExprArgs.clear(); 1513 } 1514 ~InlinedInheritingConstructorScope() { 1515 CGF.CurGD = OldCurGD; 1516 CGF.CurFuncDecl = OldCurFuncDecl; 1517 CGF.CurCodeDecl = OldCurCodeDecl; 1518 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1519 CGF.CXXABIThisValue = OldCXXABIThisValue; 1520 CGF.CXXThisValue = OldCXXThisValue; 1521 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1522 CGF.CXXThisAlignment = OldCXXThisAlignment; 1523 CGF.ReturnValue = OldReturnValue; 1524 CGF.FnRetTy = OldFnRetTy; 1525 CGF.CXXInheritedCtorInitExprArgs = 1526 std::move(OldCXXInheritedCtorInitExprArgs); 1527 } 1528 1529 private: 1530 CodeGenFunction &CGF; 1531 GlobalDecl OldCurGD; 1532 const Decl *OldCurFuncDecl; 1533 const Decl *OldCurCodeDecl; 1534 ImplicitParamDecl *OldCXXABIThisDecl; 1535 llvm::Value *OldCXXABIThisValue; 1536 llvm::Value *OldCXXThisValue; 1537 CharUnits OldCXXABIThisAlignment; 1538 CharUnits OldCXXThisAlignment; 1539 Address OldReturnValue; 1540 QualType OldFnRetTy; 1541 CallArgList OldCXXInheritedCtorInitExprArgs; 1542 }; 1543 1544 private: 1545 /// CXXThisDecl - When generating code for a C++ member function, 1546 /// this will hold the implicit 'this' declaration. 1547 ImplicitParamDecl *CXXABIThisDecl = nullptr; 1548 llvm::Value *CXXABIThisValue = nullptr; 1549 llvm::Value *CXXThisValue = nullptr; 1550 CharUnits CXXABIThisAlignment; 1551 CharUnits CXXThisAlignment; 1552 1553 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1554 /// this expression. 1555 Address CXXDefaultInitExprThis = Address::invalid(); 1556 1557 /// The current array initialization index when evaluating an 1558 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1559 llvm::Value *ArrayInitIndex = nullptr; 1560 1561 /// The values of function arguments to use when evaluating 1562 /// CXXInheritedCtorInitExprs within this context. 1563 CallArgList CXXInheritedCtorInitExprArgs; 1564 1565 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1566 /// destructor, this will hold the implicit argument (e.g. VTT). 1567 ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; 1568 llvm::Value *CXXStructorImplicitParamValue = nullptr; 1569 1570 /// OutermostConditional - Points to the outermost active 1571 /// conditional control. This is used so that we know if a 1572 /// temporary should be destroyed conditionally. 1573 ConditionalEvaluation *OutermostConditional = nullptr; 1574 1575 /// The current lexical scope. 1576 LexicalScope *CurLexicalScope = nullptr; 1577 1578 /// The current source location that should be used for exception 1579 /// handling code. 1580 SourceLocation CurEHLocation; 1581 1582 /// BlockByrefInfos - For each __block variable, contains 1583 /// information about the layout of the variable. 1584 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1585 1586 /// Used by -fsanitize=nullability-return to determine whether the return 1587 /// value can be checked. 1588 llvm::Value *RetValNullabilityPrecondition = nullptr; 1589 1590 /// Check if -fsanitize=nullability-return instrumentation is required for 1591 /// this function. 1592 bool requiresReturnValueNullabilityCheck() const { 1593 return RetValNullabilityPrecondition; 1594 } 1595 1596 /// Used to store precise source locations for return statements by the 1597 /// runtime return value checks. 1598 Address ReturnLocation = Address::invalid(); 1599 1600 /// Check if the return value of this function requires sanitization. 1601 bool requiresReturnValueCheck() const; 1602 1603 llvm::BasicBlock *TerminateLandingPad = nullptr; 1604 llvm::BasicBlock *TerminateHandler = nullptr; 1605 llvm::BasicBlock *TrapBB = nullptr; 1606 1607 /// Terminate funclets keyed by parent funclet pad. 1608 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 1609 1610 /// Largest vector width used in ths function. Will be used to create a 1611 /// function attribute. 1612 unsigned LargestVectorWidth = 0; 1613 1614 /// True if we need emit the life-time markers. 1615 const bool ShouldEmitLifetimeMarkers; 1616 1617 /// Add OpenCL kernel arg metadata and the kernel attribute metadata to 1618 /// the function metadata. 1619 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1620 llvm::Function *Fn); 1621 1622 public: 1623 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1624 ~CodeGenFunction(); 1625 1626 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1627 ASTContext &getContext() const { return CGM.getContext(); } 1628 CGDebugInfo *getDebugInfo() { 1629 if (DisableDebugInfo) 1630 return nullptr; 1631 return DebugInfo; 1632 } 1633 void disableDebugInfo() { DisableDebugInfo = true; } 1634 void enableDebugInfo() { DisableDebugInfo = false; } 1635 1636 bool shouldUseFusedARCCalls() { 1637 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1638 } 1639 1640 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1641 1642 /// Returns a pointer to the function's exception object and selector slot, 1643 /// which is assigned in every landing pad. 1644 Address getExceptionSlot(); 1645 Address getEHSelectorSlot(); 1646 1647 /// Returns the contents of the function's exception object and selector 1648 /// slots. 1649 llvm::Value *getExceptionFromSlot(); 1650 llvm::Value *getSelectorFromSlot(); 1651 1652 Address getNormalCleanupDestSlot(); 1653 1654 llvm::BasicBlock *getUnreachableBlock() { 1655 if (!UnreachableBlock) { 1656 UnreachableBlock = createBasicBlock("unreachable"); 1657 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1658 } 1659 return UnreachableBlock; 1660 } 1661 1662 llvm::BasicBlock *getInvokeDest() { 1663 if (!EHStack.requiresLandingPad()) return nullptr; 1664 return getInvokeDestImpl(); 1665 } 1666 1667 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1668 1669 const TargetInfo &getTarget() const { return Target; } 1670 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1671 const TargetCodeGenInfo &getTargetHooks() const { 1672 return CGM.getTargetCodeGenInfo(); 1673 } 1674 1675 //===--------------------------------------------------------------------===// 1676 // Cleanups 1677 //===--------------------------------------------------------------------===// 1678 1679 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1680 1681 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1682 Address arrayEndPointer, 1683 QualType elementType, 1684 CharUnits elementAlignment, 1685 Destroyer *destroyer); 1686 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1687 llvm::Value *arrayEnd, 1688 QualType elementType, 1689 CharUnits elementAlignment, 1690 Destroyer *destroyer); 1691 1692 void pushDestroy(QualType::DestructionKind dtorKind, 1693 Address addr, QualType type); 1694 void pushEHDestroy(QualType::DestructionKind dtorKind, 1695 Address addr, QualType type); 1696 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1697 Destroyer *destroyer, bool useEHCleanupForArray); 1698 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1699 QualType type, Destroyer *destroyer, 1700 bool useEHCleanupForArray); 1701 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1702 llvm::Value *CompletePtr, 1703 QualType ElementType); 1704 void pushStackRestore(CleanupKind kind, Address SPMem); 1705 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1706 bool useEHCleanupForArray); 1707 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1708 Destroyer *destroyer, 1709 bool useEHCleanupForArray, 1710 const VarDecl *VD); 1711 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1712 QualType elementType, CharUnits elementAlign, 1713 Destroyer *destroyer, 1714 bool checkZeroLength, bool useEHCleanup); 1715 1716 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1717 1718 /// Determines whether an EH cleanup is required to destroy a type 1719 /// with the given destruction kind. 1720 bool needsEHCleanup(QualType::DestructionKind kind) { 1721 switch (kind) { 1722 case QualType::DK_none: 1723 return false; 1724 case QualType::DK_cxx_destructor: 1725 case QualType::DK_objc_weak_lifetime: 1726 case QualType::DK_nontrivial_c_struct: 1727 return getLangOpts().Exceptions; 1728 case QualType::DK_objc_strong_lifetime: 1729 return getLangOpts().Exceptions && 1730 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1731 } 1732 llvm_unreachable("bad destruction kind"); 1733 } 1734 1735 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1736 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1737 } 1738 1739 //===--------------------------------------------------------------------===// 1740 // Objective-C 1741 //===--------------------------------------------------------------------===// 1742 1743 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1744 1745 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1746 1747 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1748 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1749 const ObjCPropertyImplDecl *PID); 1750 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1751 const ObjCPropertyImplDecl *propImpl, 1752 const ObjCMethodDecl *GetterMothodDecl, 1753 llvm::Constant *AtomicHelperFn); 1754 1755 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1756 ObjCMethodDecl *MD, bool ctor); 1757 1758 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1759 /// for the given property. 1760 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1761 const ObjCPropertyImplDecl *PID); 1762 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1763 const ObjCPropertyImplDecl *propImpl, 1764 llvm::Constant *AtomicHelperFn); 1765 1766 //===--------------------------------------------------------------------===// 1767 // Block Bits 1768 //===--------------------------------------------------------------------===// 1769 1770 /// Emit block literal. 1771 /// \return an LLVM value which is a pointer to a struct which contains 1772 /// information about the block, including the block invoke function, the 1773 /// captured variables, etc. 1774 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1775 static void destroyBlockInfos(CGBlockInfo *info); 1776 1777 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1778 const CGBlockInfo &Info, 1779 const DeclMapTy &ldm, 1780 bool IsLambdaConversionToBlock, 1781 bool BuildGlobalBlock); 1782 1783 /// Check if \p T is a C++ class that has a destructor that can throw. 1784 static bool cxxDestructorCanThrow(QualType T); 1785 1786 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1787 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1788 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1789 const ObjCPropertyImplDecl *PID); 1790 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1791 const ObjCPropertyImplDecl *PID); 1792 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1793 1794 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, 1795 bool CanThrow); 1796 1797 class AutoVarEmission; 1798 1799 void emitByrefStructureInit(const AutoVarEmission &emission); 1800 1801 /// Enter a cleanup to destroy a __block variable. Note that this 1802 /// cleanup should be a no-op if the variable hasn't left the stack 1803 /// yet; if a cleanup is required for the variable itself, that needs 1804 /// to be done externally. 1805 /// 1806 /// \param Kind Cleanup kind. 1807 /// 1808 /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block 1809 /// structure that will be passed to _Block_object_dispose. When 1810 /// \p LoadBlockVarAddr is true, the address of the field of the block 1811 /// structure that holds the address of the __block structure. 1812 /// 1813 /// \param Flags The flag that will be passed to _Block_object_dispose. 1814 /// 1815 /// \param LoadBlockVarAddr Indicates whether we need to emit a load from 1816 /// \p Addr to get the address of the __block structure. 1817 void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, 1818 bool LoadBlockVarAddr, bool CanThrow); 1819 1820 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 1821 llvm::Value *ptr); 1822 1823 Address LoadBlockStruct(); 1824 Address GetAddrOfBlockDecl(const VarDecl *var); 1825 1826 /// BuildBlockByrefAddress - Computes the location of the 1827 /// data in a variable which is declared as __block. 1828 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 1829 bool followForward = true); 1830 Address emitBlockByrefAddress(Address baseAddr, 1831 const BlockByrefInfo &info, 1832 bool followForward, 1833 const llvm::Twine &name); 1834 1835 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 1836 1837 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 1838 1839 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1840 const CGFunctionInfo &FnInfo); 1841 1842 /// Annotate the function with an attribute that disables TSan checking at 1843 /// runtime. 1844 void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); 1845 1846 /// Emit code for the start of a function. 1847 /// \param Loc The location to be associated with the function. 1848 /// \param StartLoc The location of the function body. 1849 void StartFunction(GlobalDecl GD, 1850 QualType RetTy, 1851 llvm::Function *Fn, 1852 const CGFunctionInfo &FnInfo, 1853 const FunctionArgList &Args, 1854 SourceLocation Loc = SourceLocation(), 1855 SourceLocation StartLoc = SourceLocation()); 1856 1857 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 1858 1859 void EmitConstructorBody(FunctionArgList &Args); 1860 void EmitDestructorBody(FunctionArgList &Args); 1861 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1862 void EmitFunctionBody(const Stmt *Body); 1863 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 1864 1865 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1866 CallArgList &CallArgs); 1867 void EmitLambdaBlockInvokeBody(); 1868 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1869 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 1870 void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) { 1871 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 1872 } 1873 void EmitAsanPrologueOrEpilogue(bool Prologue); 1874 1875 /// Emit the unified return block, trying to avoid its emission when 1876 /// possible. 1877 /// \return The debug location of the user written return statement if the 1878 /// return block is is avoided. 1879 llvm::DebugLoc EmitReturnBlock(); 1880 1881 /// FinishFunction - Complete IR generation of the current function. It is 1882 /// legal to call this function even if there is no current insertion point. 1883 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1884 1885 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 1886 const CGFunctionInfo &FnInfo, bool IsUnprototyped); 1887 1888 void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 1889 const ThunkInfo *Thunk, bool IsUnprototyped); 1890 1891 void FinishThunk(); 1892 1893 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 1894 void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, 1895 llvm::FunctionCallee Callee); 1896 1897 /// Generate a thunk for the given method. 1898 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1899 GlobalDecl GD, const ThunkInfo &Thunk, 1900 bool IsUnprototyped); 1901 1902 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 1903 const CGFunctionInfo &FnInfo, 1904 GlobalDecl GD, const ThunkInfo &Thunk); 1905 1906 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1907 FunctionArgList &Args); 1908 1909 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 1910 1911 /// Struct with all information about dynamic [sub]class needed to set vptr. 1912 struct VPtr { 1913 BaseSubobject Base; 1914 const CXXRecordDecl *NearestVBase; 1915 CharUnits OffsetFromNearestVBase; 1916 const CXXRecordDecl *VTableClass; 1917 }; 1918 1919 /// Initialize the vtable pointer of the given subobject. 1920 void InitializeVTablePointer(const VPtr &vptr); 1921 1922 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 1923 1924 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1925 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 1926 1927 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 1928 CharUnits OffsetFromNearestVBase, 1929 bool BaseIsNonVirtualPrimaryBase, 1930 const CXXRecordDecl *VTableClass, 1931 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 1932 1933 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1934 1935 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1936 /// to by This. 1937 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 1938 const CXXRecordDecl *VTableClass); 1939 1940 enum CFITypeCheckKind { 1941 CFITCK_VCall, 1942 CFITCK_NVCall, 1943 CFITCK_DerivedCast, 1944 CFITCK_UnrelatedCast, 1945 CFITCK_ICall, 1946 CFITCK_NVMFCall, 1947 CFITCK_VMFCall, 1948 }; 1949 1950 /// Derived is the presumed address of an object of type T after a 1951 /// cast. If T is a polymorphic class type, emit a check that the virtual 1952 /// table for Derived belongs to a class derived from T. 1953 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 1954 bool MayBeNull, CFITypeCheckKind TCK, 1955 SourceLocation Loc); 1956 1957 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 1958 /// If vptr CFI is enabled, emit a check that VTable is valid. 1959 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 1960 CFITypeCheckKind TCK, SourceLocation Loc); 1961 1962 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 1963 /// RD using llvm.type.test. 1964 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 1965 CFITypeCheckKind TCK, SourceLocation Loc); 1966 1967 /// If whole-program virtual table optimization is enabled, emit an assumption 1968 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 1969 /// enabled, emit a check that VTable is a member of RD's type identifier. 1970 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 1971 llvm::Value *VTable, SourceLocation Loc); 1972 1973 /// Returns whether we should perform a type checked load when loading a 1974 /// virtual function for virtual calls to members of RD. This is generally 1975 /// true when both vcall CFI and whole-program-vtables are enabled. 1976 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 1977 1978 /// Emit a type checked load from the given vtable. 1979 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 1980 uint64_t VTableByteOffset); 1981 1982 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1983 /// given phase of destruction for a destructor. The end result 1984 /// should call destructors on members and base classes in reverse 1985 /// order of their construction. 1986 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1987 1988 /// ShouldInstrumentFunction - Return true if the current function should be 1989 /// instrumented with __cyg_profile_func_* calls 1990 bool ShouldInstrumentFunction(); 1991 1992 /// ShouldXRayInstrument - Return true if the current function should be 1993 /// instrumented with XRay nop sleds. 1994 bool ShouldXRayInstrumentFunction() const; 1995 1996 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 1997 /// XRay custom event handling calls. 1998 bool AlwaysEmitXRayCustomEvents() const; 1999 2000 /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit 2001 /// XRay typed event handling calls. 2002 bool AlwaysEmitXRayTypedEvents() const; 2003 2004 /// Encode an address into a form suitable for use in a function prologue. 2005 llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, 2006 llvm::Constant *Addr); 2007 2008 /// Decode an address used in a function prologue, encoded by \c 2009 /// EncodeAddrForUseInPrologue. 2010 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 2011 llvm::Value *EncodedAddr); 2012 2013 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 2014 /// arguments for the given function. This is also responsible for naming the 2015 /// LLVM function arguments. 2016 void EmitFunctionProlog(const CGFunctionInfo &FI, 2017 llvm::Function *Fn, 2018 const FunctionArgList &Args); 2019 2020 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 2021 /// given temporary. 2022 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 2023 SourceLocation EndLoc); 2024 2025 /// Emit a test that checks if the return value \p RV is nonnull. 2026 void EmitReturnValueCheck(llvm::Value *RV); 2027 2028 /// EmitStartEHSpec - Emit the start of the exception spec. 2029 void EmitStartEHSpec(const Decl *D); 2030 2031 /// EmitEndEHSpec - Emit the end of the exception spec. 2032 void EmitEndEHSpec(const Decl *D); 2033 2034 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 2035 llvm::BasicBlock *getTerminateLandingPad(); 2036 2037 /// getTerminateLandingPad - Return a cleanup funclet that just calls 2038 /// terminate. 2039 llvm::BasicBlock *getTerminateFunclet(); 2040 2041 /// getTerminateHandler - Return a handler (not a landing pad, just 2042 /// a catch handler) that just calls terminate. This is used when 2043 /// a terminate scope encloses a try. 2044 llvm::BasicBlock *getTerminateHandler(); 2045 2046 llvm::Type *ConvertTypeForMem(QualType T); 2047 llvm::Type *ConvertType(QualType T); 2048 llvm::Type *ConvertType(const TypeDecl *T) { 2049 return ConvertType(getContext().getTypeDeclType(T)); 2050 } 2051 2052 /// LoadObjCSelf - Load the value of self. This function is only valid while 2053 /// generating code for an Objective-C method. 2054 llvm::Value *LoadObjCSelf(); 2055 2056 /// TypeOfSelfObject - Return type of object that this self represents. 2057 QualType TypeOfSelfObject(); 2058 2059 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 2060 static TypeEvaluationKind getEvaluationKind(QualType T); 2061 2062 static bool hasScalarEvaluationKind(QualType T) { 2063 return getEvaluationKind(T) == TEK_Scalar; 2064 } 2065 2066 static bool hasAggregateEvaluationKind(QualType T) { 2067 return getEvaluationKind(T) == TEK_Aggregate; 2068 } 2069 2070 /// createBasicBlock - Create an LLVM basic block. 2071 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 2072 llvm::Function *parent = nullptr, 2073 llvm::BasicBlock *before = nullptr) { 2074 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 2075 } 2076 2077 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 2078 /// label maps to. 2079 JumpDest getJumpDestForLabel(const LabelDecl *S); 2080 2081 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 2082 /// another basic block, simplify it. This assumes that no other code could 2083 /// potentially reference the basic block. 2084 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 2085 2086 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 2087 /// adding a fall-through branch from the current insert block if 2088 /// necessary. It is legal to call this function even if there is no current 2089 /// insertion point. 2090 /// 2091 /// IsFinished - If true, indicates that the caller has finished emitting 2092 /// branches to the given block and does not expect to emit code into it. This 2093 /// means the block can be ignored if it is unreachable. 2094 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 2095 2096 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 2097 /// near its uses, and leave the insertion point in it. 2098 void EmitBlockAfterUses(llvm::BasicBlock *BB); 2099 2100 /// EmitBranch - Emit a branch to the specified basic block from the current 2101 /// insert block, taking care to avoid creation of branches from dummy 2102 /// blocks. It is legal to call this function even if there is no current 2103 /// insertion point. 2104 /// 2105 /// This function clears the current insertion point. The caller should follow 2106 /// calls to this function with calls to Emit*Block prior to generation new 2107 /// code. 2108 void EmitBranch(llvm::BasicBlock *Block); 2109 2110 /// HaveInsertPoint - True if an insertion point is defined. If not, this 2111 /// indicates that the current code being emitted is unreachable. 2112 bool HaveInsertPoint() const { 2113 return Builder.GetInsertBlock() != nullptr; 2114 } 2115 2116 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 2117 /// emitted IR has a place to go. Note that by definition, if this function 2118 /// creates a block then that block is unreachable; callers may do better to 2119 /// detect when no insertion point is defined and simply skip IR generation. 2120 void EnsureInsertPoint() { 2121 if (!HaveInsertPoint()) 2122 EmitBlock(createBasicBlock()); 2123 } 2124 2125 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2126 /// specified stmt yet. 2127 void ErrorUnsupported(const Stmt *S, const char *Type); 2128 2129 //===--------------------------------------------------------------------===// 2130 // Helpers 2131 //===--------------------------------------------------------------------===// 2132 2133 LValue MakeAddrLValue(Address Addr, QualType T, 2134 AlignmentSource Source = AlignmentSource::Type) { 2135 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2136 CGM.getTBAAAccessInfo(T)); 2137 } 2138 2139 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 2140 TBAAAccessInfo TBAAInfo) { 2141 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 2142 } 2143 2144 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2145 AlignmentSource Source = AlignmentSource::Type) { 2146 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 2147 LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T)); 2148 } 2149 2150 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2151 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { 2152 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 2153 BaseInfo, TBAAInfo); 2154 } 2155 2156 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 2157 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 2158 CharUnits getNaturalTypeAlignment(QualType T, 2159 LValueBaseInfo *BaseInfo = nullptr, 2160 TBAAAccessInfo *TBAAInfo = nullptr, 2161 bool forPointeeType = false); 2162 CharUnits getNaturalPointeeTypeAlignment(QualType T, 2163 LValueBaseInfo *BaseInfo = nullptr, 2164 TBAAAccessInfo *TBAAInfo = nullptr); 2165 2166 Address EmitLoadOfReference(LValue RefLVal, 2167 LValueBaseInfo *PointeeBaseInfo = nullptr, 2168 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 2169 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 2170 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 2171 AlignmentSource Source = 2172 AlignmentSource::Type) { 2173 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 2174 CGM.getTBAAAccessInfo(RefTy)); 2175 return EmitLoadOfReferenceLValue(RefLVal); 2176 } 2177 2178 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 2179 LValueBaseInfo *BaseInfo = nullptr, 2180 TBAAAccessInfo *TBAAInfo = nullptr); 2181 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 2182 2183 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 2184 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 2185 /// insertion point of the builder. The caller is responsible for setting an 2186 /// appropriate alignment on 2187 /// the alloca. 2188 /// 2189 /// \p ArraySize is the number of array elements to be allocated if it 2190 /// is not nullptr. 2191 /// 2192 /// LangAS::Default is the address space of pointers to local variables and 2193 /// temporaries, as exposed in the source language. In certain 2194 /// configurations, this is not the same as the alloca address space, and a 2195 /// cast is needed to lift the pointer from the alloca AS into 2196 /// LangAS::Default. This can happen when the target uses a restricted 2197 /// address space for the stack but the source language requires 2198 /// LangAS::Default to be a generic address space. The latter condition is 2199 /// common for most programming languages; OpenCL is an exception in that 2200 /// LangAS::Default is the private address space, which naturally maps 2201 /// to the stack. 2202 /// 2203 /// Because the address of a temporary is often exposed to the program in 2204 /// various ways, this function will perform the cast. The original alloca 2205 /// instruction is returned through \p Alloca if it is not nullptr. 2206 /// 2207 /// The cast is not performaed in CreateTempAllocaWithoutCast. This is 2208 /// more efficient if the caller knows that the address will not be exposed. 2209 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2210 llvm::Value *ArraySize = nullptr); 2211 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2212 const Twine &Name = "tmp", 2213 llvm::Value *ArraySize = nullptr, 2214 Address *Alloca = nullptr); 2215 Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, 2216 const Twine &Name = "tmp", 2217 llvm::Value *ArraySize = nullptr); 2218 2219 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2220 /// default ABI alignment of the given LLVM type. 2221 /// 2222 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2223 /// any given AST type that happens to have been lowered to the 2224 /// given IR type. This should only ever be used for function-local, 2225 /// IR-driven manipulations like saving and restoring a value. Do 2226 /// not hand this address off to arbitrary IRGen routines, and especially 2227 /// do not pass it as an argument to a function that might expect a 2228 /// properly ABI-aligned value. 2229 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2230 const Twine &Name = "tmp"); 2231 2232 /// InitTempAlloca - Provide an initial value for the given alloca which 2233 /// will be observable at all locations in the function. 2234 /// 2235 /// The address should be something that was returned from one of 2236 /// the CreateTempAlloca or CreateMemTemp routines, and the 2237 /// initializer must be valid in the entry block (i.e. it must 2238 /// either be a constant or an argument value). 2239 void InitTempAlloca(Address Alloca, llvm::Value *Value); 2240 2241 /// CreateIRTemp - Create a temporary IR object of the given type, with 2242 /// appropriate alignment. This routine should only be used when an temporary 2243 /// value needs to be stored into an alloca (for example, to avoid explicit 2244 /// PHI construction), but the type is the IR type, not the type appropriate 2245 /// for storing in memory. 2246 /// 2247 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2248 /// ConvertType instead of ConvertTypeForMem. 2249 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2250 2251 /// CreateMemTemp - Create a temporary memory object of the given type, with 2252 /// appropriate alignmen and cast it to the default address space. Returns 2253 /// the original alloca instruction by \p Alloca if it is not nullptr. 2254 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2255 Address *Alloca = nullptr); 2256 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2257 Address *Alloca = nullptr); 2258 2259 /// CreateMemTemp - Create a temporary memory object of the given type, with 2260 /// appropriate alignmen without casting it to the default address space. 2261 Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp"); 2262 Address CreateMemTempWithoutCast(QualType T, CharUnits Align, 2263 const Twine &Name = "tmp"); 2264 2265 /// CreateAggTemp - Create a temporary memory object for the given 2266 /// aggregate type. 2267 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 2268 return AggValueSlot::forAddr(CreateMemTemp(T, Name), 2269 T.getQualifiers(), 2270 AggValueSlot::IsNotDestructed, 2271 AggValueSlot::DoesNotNeedGCBarriers, 2272 AggValueSlot::IsNotAliased, 2273 AggValueSlot::DoesNotOverlap); 2274 } 2275 2276 /// Emit a cast to void* in the appropriate address space. 2277 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2278 2279 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2280 /// expression and compare the result against zero, returning an Int1Ty value. 2281 llvm::Value *EvaluateExprAsBool(const Expr *E); 2282 2283 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2284 void EmitIgnoredExpr(const Expr *E); 2285 2286 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2287 /// any type. The result is returned as an RValue struct. If this is an 2288 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2289 /// the result should be returned. 2290 /// 2291 /// \param ignoreResult True if the resulting value isn't used. 2292 RValue EmitAnyExpr(const Expr *E, 2293 AggValueSlot aggSlot = AggValueSlot::ignored(), 2294 bool ignoreResult = false); 2295 2296 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2297 // or the value of the expression, depending on how va_list is defined. 2298 Address EmitVAListRef(const Expr *E); 2299 2300 /// Emit a "reference" to a __builtin_ms_va_list; this is 2301 /// always the value of the expression, because a __builtin_ms_va_list is a 2302 /// pointer to a char. 2303 Address EmitMSVAListRef(const Expr *E); 2304 2305 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2306 /// always be accessible even if no aggregate location is provided. 2307 RValue EmitAnyExprToTemp(const Expr *E); 2308 2309 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2310 /// arbitrary expression into the given memory location. 2311 void EmitAnyExprToMem(const Expr *E, Address Location, 2312 Qualifiers Quals, bool IsInitializer); 2313 2314 void EmitAnyExprToExn(const Expr *E, Address Addr); 2315 2316 /// EmitExprAsInit - Emits the code necessary to initialize a 2317 /// location in memory with the given initializer. 2318 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2319 bool capturedByInit); 2320 2321 /// hasVolatileMember - returns true if aggregate type has a volatile 2322 /// member. 2323 bool hasVolatileMember(QualType T) { 2324 if (const RecordType *RT = T->getAs<RecordType>()) { 2325 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2326 return RD->hasVolatileMember(); 2327 } 2328 return false; 2329 } 2330 2331 /// Determine whether a return value slot may overlap some other object. 2332 AggValueSlot::Overlap_t getOverlapForReturnValue() { 2333 // FIXME: Assuming no overlap here breaks guaranteed copy elision for base 2334 // class subobjects. These cases may need to be revisited depending on the 2335 // resolution of the relevant core issue. 2336 return AggValueSlot::DoesNotOverlap; 2337 } 2338 2339 /// Determine whether a field initialization may overlap some other object. 2340 AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD); 2341 2342 /// Determine whether a base class initialization may overlap some other 2343 /// object. 2344 AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD, 2345 const CXXRecordDecl *BaseRD, 2346 bool IsVirtual); 2347 2348 /// Emit an aggregate assignment. 2349 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2350 bool IsVolatile = hasVolatileMember(EltTy); 2351 EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); 2352 } 2353 2354 void EmitAggregateCopyCtor(LValue Dest, LValue Src, 2355 AggValueSlot::Overlap_t MayOverlap) { 2356 EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); 2357 } 2358 2359 /// EmitAggregateCopy - Emit an aggregate copy. 2360 /// 2361 /// \param isVolatile \c true iff either the source or the destination is 2362 /// volatile. 2363 /// \param MayOverlap Whether the tail padding of the destination might be 2364 /// occupied by some other object. More efficient code can often be 2365 /// generated if not. 2366 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2367 AggValueSlot::Overlap_t MayOverlap, 2368 bool isVolatile = false); 2369 2370 /// GetAddrOfLocalVar - Return the address of a local variable. 2371 Address GetAddrOfLocalVar(const VarDecl *VD) { 2372 auto it = LocalDeclMap.find(VD); 2373 assert(it != LocalDeclMap.end() && 2374 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2375 return it->second; 2376 } 2377 2378 /// Given an opaque value expression, return its LValue mapping if it exists, 2379 /// otherwise create one. 2380 LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); 2381 2382 /// Given an opaque value expression, return its RValue mapping if it exists, 2383 /// otherwise create one. 2384 RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); 2385 2386 /// Get the index of the current ArrayInitLoopExpr, if any. 2387 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2388 2389 /// getAccessedFieldNo - Given an encoded value and a result number, return 2390 /// the input field number being accessed. 2391 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2392 2393 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2394 llvm::BasicBlock *GetIndirectGotoBlock(); 2395 2396 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2397 static bool IsWrappedCXXThis(const Expr *E); 2398 2399 /// EmitNullInitialization - Generate code to set a value of the given type to 2400 /// null, If the type contains data member pointers, they will be initialized 2401 /// to -1 in accordance with the Itanium C++ ABI. 2402 void EmitNullInitialization(Address DestPtr, QualType Ty); 2403 2404 /// Emits a call to an LLVM variable-argument intrinsic, either 2405 /// \c llvm.va_start or \c llvm.va_end. 2406 /// \param ArgValue A reference to the \c va_list as emitted by either 2407 /// \c EmitVAListRef or \c EmitMSVAListRef. 2408 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2409 /// calls \c llvm.va_end. 2410 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2411 2412 /// Generate code to get an argument from the passed in pointer 2413 /// and update it accordingly. 2414 /// \param VE The \c VAArgExpr for which to generate code. 2415 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2416 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2417 /// \returns A pointer to the argument. 2418 // FIXME: We should be able to get rid of this method and use the va_arg 2419 // instruction in LLVM instead once it works well enough. 2420 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2421 2422 /// emitArrayLength - Compute the length of an array, even if it's a 2423 /// VLA, and drill down to the base element type. 2424 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2425 QualType &baseType, 2426 Address &addr); 2427 2428 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2429 /// the given variably-modified type and store them in the VLASizeMap. 2430 /// 2431 /// This function can be called with a null (unreachable) insert point. 2432 void EmitVariablyModifiedType(QualType Ty); 2433 2434 struct VlaSizePair { 2435 llvm::Value *NumElts; 2436 QualType Type; 2437 2438 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 2439 }; 2440 2441 /// Return the number of elements for a single dimension 2442 /// for the given array type. 2443 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 2444 VlaSizePair getVLAElements1D(QualType vla); 2445 2446 /// Returns an LLVM value that corresponds to the size, 2447 /// in non-variably-sized elements, of a variable length array type, 2448 /// plus that largest non-variably-sized element type. Assumes that 2449 /// the type has already been emitted with EmitVariablyModifiedType. 2450 VlaSizePair getVLASize(const VariableArrayType *vla); 2451 VlaSizePair getVLASize(QualType vla); 2452 2453 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2454 /// generating code for an C++ member function. 2455 llvm::Value *LoadCXXThis() { 2456 assert(CXXThisValue && "no 'this' value for this function"); 2457 return CXXThisValue; 2458 } 2459 Address LoadCXXThisAddress(); 2460 2461 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2462 /// virtual bases. 2463 // FIXME: Every place that calls LoadCXXVTT is something 2464 // that needs to be abstracted properly. 2465 llvm::Value *LoadCXXVTT() { 2466 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2467 return CXXStructorImplicitParamValue; 2468 } 2469 2470 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2471 /// complete class to the given direct base. 2472 Address 2473 GetAddressOfDirectBaseInCompleteClass(Address Value, 2474 const CXXRecordDecl *Derived, 2475 const CXXRecordDecl *Base, 2476 bool BaseIsVirtual); 2477 2478 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2479 2480 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2481 /// load of 'this' and returns address of the base class. 2482 Address GetAddressOfBaseClass(Address Value, 2483 const CXXRecordDecl *Derived, 2484 CastExpr::path_const_iterator PathBegin, 2485 CastExpr::path_const_iterator PathEnd, 2486 bool NullCheckValue, SourceLocation Loc); 2487 2488 Address GetAddressOfDerivedClass(Address Value, 2489 const CXXRecordDecl *Derived, 2490 CastExpr::path_const_iterator PathBegin, 2491 CastExpr::path_const_iterator PathEnd, 2492 bool NullCheckValue); 2493 2494 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2495 /// base constructor/destructor with virtual bases. 2496 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2497 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2498 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2499 bool Delegating); 2500 2501 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2502 CXXCtorType CtorType, 2503 const FunctionArgList &Args, 2504 SourceLocation Loc); 2505 // It's important not to confuse this and the previous function. Delegating 2506 // constructors are the C++0x feature. The constructor delegate optimization 2507 // is used to reduce duplication in the base and complete consturctors where 2508 // they are substantially the same. 2509 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2510 const FunctionArgList &Args); 2511 2512 /// Emit a call to an inheriting constructor (that is, one that invokes a 2513 /// constructor inherited from a base class) by inlining its definition. This 2514 /// is necessary if the ABI does not support forwarding the arguments to the 2515 /// base class constructor (because they're variadic or similar). 2516 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2517 CXXCtorType CtorType, 2518 bool ForVirtualBase, 2519 bool Delegating, 2520 CallArgList &Args); 2521 2522 /// Emit a call to a constructor inherited from a base class, passing the 2523 /// current constructor's arguments along unmodified (without even making 2524 /// a copy). 2525 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2526 bool ForVirtualBase, Address This, 2527 bool InheritedFromVBase, 2528 const CXXInheritedCtorInitExpr *E); 2529 2530 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2531 bool ForVirtualBase, bool Delegating, 2532 AggValueSlot ThisAVS, const CXXConstructExpr *E); 2533 2534 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2535 bool ForVirtualBase, bool Delegating, 2536 Address This, CallArgList &Args, 2537 AggValueSlot::Overlap_t Overlap, 2538 SourceLocation Loc, bool NewPointerIsChecked); 2539 2540 /// Emit assumption load for all bases. Requires to be be called only on 2541 /// most-derived class and not under construction of the object. 2542 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2543 2544 /// Emit assumption that vptr load == global vtable. 2545 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2546 2547 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2548 Address This, Address Src, 2549 const CXXConstructExpr *E); 2550 2551 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2552 const ArrayType *ArrayTy, 2553 Address ArrayPtr, 2554 const CXXConstructExpr *E, 2555 bool NewPointerIsChecked, 2556 bool ZeroInitialization = false); 2557 2558 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2559 llvm::Value *NumElements, 2560 Address ArrayPtr, 2561 const CXXConstructExpr *E, 2562 bool NewPointerIsChecked, 2563 bool ZeroInitialization = false); 2564 2565 static Destroyer destroyCXXObject; 2566 2567 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2568 bool ForVirtualBase, bool Delegating, Address This, 2569 QualType ThisTy); 2570 2571 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2572 llvm::Type *ElementTy, Address NewPtr, 2573 llvm::Value *NumElements, 2574 llvm::Value *AllocSizeWithoutCookie); 2575 2576 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2577 Address Ptr); 2578 2579 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 2580 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2581 2582 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2583 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2584 2585 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2586 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2587 CharUnits CookieSize = CharUnits()); 2588 2589 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2590 const CallExpr *TheCallExpr, bool IsDelete); 2591 2592 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2593 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2594 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2595 2596 /// Situations in which we might emit a check for the suitability of a 2597 /// pointer or glvalue. 2598 enum TypeCheckKind { 2599 /// Checking the operand of a load. Must be suitably sized and aligned. 2600 TCK_Load, 2601 /// Checking the destination of a store. Must be suitably sized and aligned. 2602 TCK_Store, 2603 /// Checking the bound value in a reference binding. Must be suitably sized 2604 /// and aligned, but is not required to refer to an object (until the 2605 /// reference is used), per core issue 453. 2606 TCK_ReferenceBinding, 2607 /// Checking the object expression in a non-static data member access. Must 2608 /// be an object within its lifetime. 2609 TCK_MemberAccess, 2610 /// Checking the 'this' pointer for a call to a non-static member function. 2611 /// Must be an object within its lifetime. 2612 TCK_MemberCall, 2613 /// Checking the 'this' pointer for a constructor call. 2614 TCK_ConstructorCall, 2615 /// Checking the operand of a static_cast to a derived pointer type. Must be 2616 /// null or an object within its lifetime. 2617 TCK_DowncastPointer, 2618 /// Checking the operand of a static_cast to a derived reference type. Must 2619 /// be an object within its lifetime. 2620 TCK_DowncastReference, 2621 /// Checking the operand of a cast to a base object. Must be suitably sized 2622 /// and aligned. 2623 TCK_Upcast, 2624 /// Checking the operand of a cast to a virtual base object. Must be an 2625 /// object within its lifetime. 2626 TCK_UpcastToVirtualBase, 2627 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2628 TCK_NonnullAssign, 2629 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 2630 /// null or an object within its lifetime. 2631 TCK_DynamicOperation 2632 }; 2633 2634 /// Determine whether the pointer type check \p TCK permits null pointers. 2635 static bool isNullPointerAllowed(TypeCheckKind TCK); 2636 2637 /// Determine whether the pointer type check \p TCK requires a vptr check. 2638 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 2639 2640 /// Whether any type-checking sanitizers are enabled. If \c false, 2641 /// calls to EmitTypeCheck can be skipped. 2642 bool sanitizePerformTypeCheck() const; 2643 2644 /// Emit a check that \p V is the address of storage of the 2645 /// appropriate size and alignment for an object of type \p Type 2646 /// (or if ArraySize is provided, for an array of that bound). 2647 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2648 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2649 SanitizerSet SkippedChecks = SanitizerSet(), 2650 llvm::Value *ArraySize = nullptr); 2651 2652 /// Emit a check that \p Base points into an array object, which 2653 /// we can access at index \p Index. \p Accessed should be \c false if we 2654 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2655 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2656 QualType IndexType, bool Accessed); 2657 2658 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2659 bool isInc, bool isPre); 2660 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 2661 bool isInc, bool isPre); 2662 2663 /// Converts Location to a DebugLoc, if debug information is enabled. 2664 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 2665 2666 /// Get the record field index as represented in debug info. 2667 unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex); 2668 2669 2670 //===--------------------------------------------------------------------===// 2671 // Declaration Emission 2672 //===--------------------------------------------------------------------===// 2673 2674 /// EmitDecl - Emit a declaration. 2675 /// 2676 /// This function can be called with a null (unreachable) insert point. 2677 void EmitDecl(const Decl &D); 2678 2679 /// EmitVarDecl - Emit a local variable declaration. 2680 /// 2681 /// This function can be called with a null (unreachable) insert point. 2682 void EmitVarDecl(const VarDecl &D); 2683 2684 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2685 bool capturedByInit); 2686 2687 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 2688 llvm::Value *Address); 2689 2690 /// Determine whether the given initializer is trivial in the sense 2691 /// that it requires no code to be generated. 2692 bool isTrivialInitializer(const Expr *Init); 2693 2694 /// EmitAutoVarDecl - Emit an auto variable declaration. 2695 /// 2696 /// This function can be called with a null (unreachable) insert point. 2697 void EmitAutoVarDecl(const VarDecl &D); 2698 2699 class AutoVarEmission { 2700 friend class CodeGenFunction; 2701 2702 const VarDecl *Variable; 2703 2704 /// The address of the alloca for languages with explicit address space 2705 /// (e.g. OpenCL) or alloca casted to generic pointer for address space 2706 /// agnostic languages (e.g. C++). Invalid if the variable was emitted 2707 /// as a global constant. 2708 Address Addr; 2709 2710 llvm::Value *NRVOFlag; 2711 2712 /// True if the variable is a __block variable that is captured by an 2713 /// escaping block. 2714 bool IsEscapingByRef; 2715 2716 /// True if the variable is of aggregate type and has a constant 2717 /// initializer. 2718 bool IsConstantAggregate; 2719 2720 /// Non-null if we should use lifetime annotations. 2721 llvm::Value *SizeForLifetimeMarkers; 2722 2723 /// Address with original alloca instruction. Invalid if the variable was 2724 /// emitted as a global constant. 2725 Address AllocaAddr; 2726 2727 struct Invalid {}; 2728 AutoVarEmission(Invalid) 2729 : Variable(nullptr), Addr(Address::invalid()), 2730 AllocaAddr(Address::invalid()) {} 2731 2732 AutoVarEmission(const VarDecl &variable) 2733 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2734 IsEscapingByRef(false), IsConstantAggregate(false), 2735 SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {} 2736 2737 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2738 2739 public: 2740 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2741 2742 bool useLifetimeMarkers() const { 2743 return SizeForLifetimeMarkers != nullptr; 2744 } 2745 llvm::Value *getSizeForLifetimeMarkers() const { 2746 assert(useLifetimeMarkers()); 2747 return SizeForLifetimeMarkers; 2748 } 2749 2750 /// Returns the raw, allocated address, which is not necessarily 2751 /// the address of the object itself. It is casted to default 2752 /// address space for address space agnostic languages. 2753 Address getAllocatedAddress() const { 2754 return Addr; 2755 } 2756 2757 /// Returns the address for the original alloca instruction. 2758 Address getOriginalAllocatedAddress() const { return AllocaAddr; } 2759 2760 /// Returns the address of the object within this declaration. 2761 /// Note that this does not chase the forwarding pointer for 2762 /// __block decls. 2763 Address getObjectAddress(CodeGenFunction &CGF) const { 2764 if (!IsEscapingByRef) return Addr; 2765 2766 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 2767 } 2768 }; 2769 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2770 void EmitAutoVarInit(const AutoVarEmission &emission); 2771 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2772 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2773 QualType::DestructionKind dtorKind); 2774 2775 /// Emits the alloca and debug information for the size expressions for each 2776 /// dimension of an array. It registers the association of its (1-dimensional) 2777 /// QualTypes and size expression's debug node, so that CGDebugInfo can 2778 /// reference this node when creating the DISubrange object to describe the 2779 /// array types. 2780 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 2781 const VarDecl &D, 2782 bool EmitDebugInfo); 2783 2784 void EmitStaticVarDecl(const VarDecl &D, 2785 llvm::GlobalValue::LinkageTypes Linkage); 2786 2787 class ParamValue { 2788 llvm::Value *Value; 2789 unsigned Alignment; 2790 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 2791 public: 2792 static ParamValue forDirect(llvm::Value *value) { 2793 return ParamValue(value, 0); 2794 } 2795 static ParamValue forIndirect(Address addr) { 2796 assert(!addr.getAlignment().isZero()); 2797 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 2798 } 2799 2800 bool isIndirect() const { return Alignment != 0; } 2801 llvm::Value *getAnyValue() const { return Value; } 2802 2803 llvm::Value *getDirectValue() const { 2804 assert(!isIndirect()); 2805 return Value; 2806 } 2807 2808 Address getIndirectAddress() const { 2809 assert(isIndirect()); 2810 return Address(Value, CharUnits::fromQuantity(Alignment)); 2811 } 2812 }; 2813 2814 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 2815 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 2816 2817 /// protectFromPeepholes - Protect a value that we're intending to 2818 /// store to the side, but which will probably be used later, from 2819 /// aggressive peepholing optimizations that might delete it. 2820 /// 2821 /// Pass the result to unprotectFromPeepholes to declare that 2822 /// protection is no longer required. 2823 /// 2824 /// There's no particular reason why this shouldn't apply to 2825 /// l-values, it's just that no existing peepholes work on pointers. 2826 PeepholeProtection protectFromPeepholes(RValue rvalue); 2827 void unprotectFromPeepholes(PeepholeProtection protection); 2828 2829 void EmitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, 2830 SourceLocation Loc, 2831 SourceLocation AssumptionLoc, 2832 llvm::Value *Alignment, 2833 llvm::Value *OffsetValue, 2834 llvm::Value *TheCheck, 2835 llvm::Instruction *Assumption); 2836 2837 void EmitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, 2838 SourceLocation Loc, SourceLocation AssumptionLoc, 2839 llvm::Value *Alignment, 2840 llvm::Value *OffsetValue = nullptr); 2841 2842 void EmitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, 2843 SourceLocation AssumptionLoc, llvm::Value *Alignment, 2844 llvm::Value *OffsetValue = nullptr); 2845 2846 //===--------------------------------------------------------------------===// 2847 // Statement Emission 2848 //===--------------------------------------------------------------------===// 2849 2850 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 2851 void EmitStopPoint(const Stmt *S); 2852 2853 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 2854 /// this function even if there is no current insertion point. 2855 /// 2856 /// This function may clear the current insertion point; callers should use 2857 /// EnsureInsertPoint if they wish to subsequently generate code without first 2858 /// calling EmitBlock, EmitBranch, or EmitStmt. 2859 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); 2860 2861 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2862 /// necessarily require an insertion point or debug information; typically 2863 /// because the statement amounts to a jump or a container of other 2864 /// statements. 2865 /// 2866 /// \return True if the statement was handled. 2867 bool EmitSimpleStmt(const Stmt *S); 2868 2869 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2870 AggValueSlot AVS = AggValueSlot::ignored()); 2871 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 2872 bool GetLast = false, 2873 AggValueSlot AVS = 2874 AggValueSlot::ignored()); 2875 2876 /// EmitLabel - Emit the block for the given label. It is legal to call this 2877 /// function even if there is no current insertion point. 2878 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2879 2880 void EmitLabelStmt(const LabelStmt &S); 2881 void EmitAttributedStmt(const AttributedStmt &S); 2882 void EmitGotoStmt(const GotoStmt &S); 2883 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2884 void EmitIfStmt(const IfStmt &S); 2885 2886 void EmitWhileStmt(const WhileStmt &S, 2887 ArrayRef<const Attr *> Attrs = None); 2888 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 2889 void EmitForStmt(const ForStmt &S, 2890 ArrayRef<const Attr *> Attrs = None); 2891 void EmitReturnStmt(const ReturnStmt &S); 2892 void EmitDeclStmt(const DeclStmt &S); 2893 void EmitBreakStmt(const BreakStmt &S); 2894 void EmitContinueStmt(const ContinueStmt &S); 2895 void EmitSwitchStmt(const SwitchStmt &S); 2896 void EmitDefaultStmt(const DefaultStmt &S); 2897 void EmitCaseStmt(const CaseStmt &S); 2898 void EmitCaseStmtRange(const CaseStmt &S); 2899 void EmitAsmStmt(const AsmStmt &S); 2900 2901 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2902 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2903 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2904 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2905 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2906 2907 void EmitCoroutineBody(const CoroutineBodyStmt &S); 2908 void EmitCoreturnStmt(const CoreturnStmt &S); 2909 RValue EmitCoawaitExpr(const CoawaitExpr &E, 2910 AggValueSlot aggSlot = AggValueSlot::ignored(), 2911 bool ignoreResult = false); 2912 LValue EmitCoawaitLValue(const CoawaitExpr *E); 2913 RValue EmitCoyieldExpr(const CoyieldExpr &E, 2914 AggValueSlot aggSlot = AggValueSlot::ignored(), 2915 bool ignoreResult = false); 2916 LValue EmitCoyieldLValue(const CoyieldExpr *E); 2917 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 2918 2919 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2920 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2921 2922 void EmitCXXTryStmt(const CXXTryStmt &S); 2923 void EmitSEHTryStmt(const SEHTryStmt &S); 2924 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 2925 void EnterSEHTryStmt(const SEHTryStmt &S); 2926 void ExitSEHTryStmt(const SEHTryStmt &S); 2927 2928 void pushSEHCleanup(CleanupKind kind, 2929 llvm::Function *FinallyFunc); 2930 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 2931 const Stmt *OutlinedStmt); 2932 2933 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 2934 const SEHExceptStmt &Except); 2935 2936 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 2937 const SEHFinallyStmt &Finally); 2938 2939 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 2940 llvm::Value *ParentFP, 2941 llvm::Value *EntryEBP); 2942 llvm::Value *EmitSEHExceptionCode(); 2943 llvm::Value *EmitSEHExceptionInfo(); 2944 llvm::Value *EmitSEHAbnormalTermination(); 2945 2946 /// Emit simple code for OpenMP directives in Simd-only mode. 2947 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 2948 2949 /// Scan the outlined statement for captures from the parent function. For 2950 /// each capture, mark the capture as escaped and emit a call to 2951 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 2952 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 2953 bool IsFilter); 2954 2955 /// Recovers the address of a local in a parent function. ParentVar is the 2956 /// address of the variable used in the immediate parent function. It can 2957 /// either be an alloca or a call to llvm.localrecover if there are nested 2958 /// outlined functions. ParentFP is the frame pointer of the outermost parent 2959 /// frame. 2960 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 2961 Address ParentVar, 2962 llvm::Value *ParentFP); 2963 2964 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 2965 ArrayRef<const Attr *> Attrs = None); 2966 2967 /// Controls insertion of cancellation exit blocks in worksharing constructs. 2968 class OMPCancelStackRAII { 2969 CodeGenFunction &CGF; 2970 2971 public: 2972 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 2973 bool HasCancel) 2974 : CGF(CGF) { 2975 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 2976 } 2977 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 2978 }; 2979 2980 /// Returns calculated size of the specified type. 2981 llvm::Value *getTypeSize(QualType Ty); 2982 LValue InitCapturedStruct(const CapturedStmt &S); 2983 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 2984 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 2985 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 2986 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S); 2987 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 2988 SmallVectorImpl<llvm::Value *> &CapturedVars); 2989 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 2990 SourceLocation Loc); 2991 /// Perform element by element copying of arrays with type \a 2992 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 2993 /// generated by \a CopyGen. 2994 /// 2995 /// \param DestAddr Address of the destination array. 2996 /// \param SrcAddr Address of the source array. 2997 /// \param OriginalType Type of destination and source arrays. 2998 /// \param CopyGen Copying procedure that copies value of single array element 2999 /// to another single array element. 3000 void EmitOMPAggregateAssign( 3001 Address DestAddr, Address SrcAddr, QualType OriginalType, 3002 const llvm::function_ref<void(Address, Address)> CopyGen); 3003 /// Emit proper copying of data from one variable to another. 3004 /// 3005 /// \param OriginalType Original type of the copied variables. 3006 /// \param DestAddr Destination address. 3007 /// \param SrcAddr Source address. 3008 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 3009 /// type of the base array element). 3010 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 3011 /// the base array element). 3012 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 3013 /// DestVD. 3014 void EmitOMPCopy(QualType OriginalType, 3015 Address DestAddr, Address SrcAddr, 3016 const VarDecl *DestVD, const VarDecl *SrcVD, 3017 const Expr *Copy); 3018 /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or 3019 /// \a X = \a E \a BO \a E. 3020 /// 3021 /// \param X Value to be updated. 3022 /// \param E Update value. 3023 /// \param BO Binary operation for update operation. 3024 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 3025 /// expression, false otherwise. 3026 /// \param AO Atomic ordering of the generated atomic instructions. 3027 /// \param CommonGen Code generator for complex expressions that cannot be 3028 /// expressed through atomicrmw instruction. 3029 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 3030 /// generated, <false, RValue::get(nullptr)> otherwise. 3031 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 3032 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3033 llvm::AtomicOrdering AO, SourceLocation Loc, 3034 const llvm::function_ref<RValue(RValue)> CommonGen); 3035 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 3036 OMPPrivateScope &PrivateScope); 3037 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 3038 OMPPrivateScope &PrivateScope); 3039 void EmitOMPUseDevicePtrClause( 3040 const OMPClause &C, OMPPrivateScope &PrivateScope, 3041 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3042 /// Emit code for copyin clause in \a D directive. The next code is 3043 /// generated at the start of outlined functions for directives: 3044 /// \code 3045 /// threadprivate_var1 = master_threadprivate_var1; 3046 /// operator=(threadprivate_var2, master_threadprivate_var2); 3047 /// ... 3048 /// __kmpc_barrier(&loc, global_tid); 3049 /// \endcode 3050 /// 3051 /// \param D OpenMP directive possibly with 'copyin' clause(s). 3052 /// \returns true if at least one copyin variable is found, false otherwise. 3053 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 3054 /// Emit initial code for lastprivate variables. If some variable is 3055 /// not also firstprivate, then the default initialization is used. Otherwise 3056 /// initialization of this variable is performed by EmitOMPFirstprivateClause 3057 /// method. 3058 /// 3059 /// \param D Directive that may have 'lastprivate' directives. 3060 /// \param PrivateScope Private scope for capturing lastprivate variables for 3061 /// proper codegen in internal captured statement. 3062 /// 3063 /// \returns true if there is at least one lastprivate variable, false 3064 /// otherwise. 3065 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 3066 OMPPrivateScope &PrivateScope); 3067 /// Emit final copying of lastprivate values to original variables at 3068 /// the end of the worksharing or simd directive. 3069 /// 3070 /// \param D Directive that has at least one 'lastprivate' directives. 3071 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 3072 /// it is the last iteration of the loop code in associated directive, or to 3073 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 3074 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 3075 bool NoFinals, 3076 llvm::Value *IsLastIterCond = nullptr); 3077 /// Emit initial code for linear clauses. 3078 void EmitOMPLinearClause(const OMPLoopDirective &D, 3079 CodeGenFunction::OMPPrivateScope &PrivateScope); 3080 /// Emit final code for linear clauses. 3081 /// \param CondGen Optional conditional code for final part of codegen for 3082 /// linear clause. 3083 void EmitOMPLinearClauseFinal( 3084 const OMPLoopDirective &D, 3085 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3086 /// Emit initial code for reduction variables. Creates reduction copies 3087 /// and initializes them with the values according to OpenMP standard. 3088 /// 3089 /// \param D Directive (possibly) with the 'reduction' clause. 3090 /// \param PrivateScope Private scope for capturing reduction variables for 3091 /// proper codegen in internal captured statement. 3092 /// 3093 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 3094 OMPPrivateScope &PrivateScope); 3095 /// Emit final update of reduction values to original variables at 3096 /// the end of the directive. 3097 /// 3098 /// \param D Directive that has at least one 'reduction' directives. 3099 /// \param ReductionKind The kind of reduction to perform. 3100 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 3101 const OpenMPDirectiveKind ReductionKind); 3102 /// Emit initial code for linear variables. Creates private copies 3103 /// and initializes them with the values according to OpenMP standard. 3104 /// 3105 /// \param D Directive (possibly) with the 'linear' clause. 3106 /// \return true if at least one linear variable is found that should be 3107 /// initialized with the value of the original variable, false otherwise. 3108 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 3109 3110 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 3111 llvm::Function * /*OutlinedFn*/, 3112 const OMPTaskDataTy & /*Data*/)> 3113 TaskGenTy; 3114 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 3115 const OpenMPDirectiveKind CapturedRegion, 3116 const RegionCodeGenTy &BodyGen, 3117 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 3118 struct OMPTargetDataInfo { 3119 Address BasePointersArray = Address::invalid(); 3120 Address PointersArray = Address::invalid(); 3121 Address SizesArray = Address::invalid(); 3122 unsigned NumberOfTargetItems = 0; 3123 explicit OMPTargetDataInfo() = default; 3124 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 3125 Address SizesArray, unsigned NumberOfTargetItems) 3126 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 3127 SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {} 3128 }; 3129 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 3130 const RegionCodeGenTy &BodyGen, 3131 OMPTargetDataInfo &InputInfo); 3132 3133 void EmitOMPParallelDirective(const OMPParallelDirective &S); 3134 void EmitOMPSimdDirective(const OMPSimdDirective &S); 3135 void EmitOMPForDirective(const OMPForDirective &S); 3136 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 3137 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 3138 void EmitOMPSectionDirective(const OMPSectionDirective &S); 3139 void EmitOMPSingleDirective(const OMPSingleDirective &S); 3140 void EmitOMPMasterDirective(const OMPMasterDirective &S); 3141 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 3142 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 3143 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 3144 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 3145 void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S); 3146 void EmitOMPTaskDirective(const OMPTaskDirective &S); 3147 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 3148 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 3149 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 3150 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 3151 void EmitOMPFlushDirective(const OMPFlushDirective &S); 3152 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 3153 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 3154 void EmitOMPTargetDirective(const OMPTargetDirective &S); 3155 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 3156 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 3157 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 3158 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 3159 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 3160 void 3161 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 3162 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 3163 void 3164 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 3165 void EmitOMPCancelDirective(const OMPCancelDirective &S); 3166 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 3167 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 3168 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 3169 void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S); 3170 void 3171 EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S); 3172 void EmitOMPParallelMasterTaskLoopDirective( 3173 const OMPParallelMasterTaskLoopDirective &S); 3174 void EmitOMPParallelMasterTaskLoopSimdDirective( 3175 const OMPParallelMasterTaskLoopSimdDirective &S); 3176 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 3177 void EmitOMPDistributeParallelForDirective( 3178 const OMPDistributeParallelForDirective &S); 3179 void EmitOMPDistributeParallelForSimdDirective( 3180 const OMPDistributeParallelForSimdDirective &S); 3181 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 3182 void EmitOMPTargetParallelForSimdDirective( 3183 const OMPTargetParallelForSimdDirective &S); 3184 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 3185 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 3186 void 3187 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 3188 void EmitOMPTeamsDistributeParallelForSimdDirective( 3189 const OMPTeamsDistributeParallelForSimdDirective &S); 3190 void EmitOMPTeamsDistributeParallelForDirective( 3191 const OMPTeamsDistributeParallelForDirective &S); 3192 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 3193 void EmitOMPTargetTeamsDistributeDirective( 3194 const OMPTargetTeamsDistributeDirective &S); 3195 void EmitOMPTargetTeamsDistributeParallelForDirective( 3196 const OMPTargetTeamsDistributeParallelForDirective &S); 3197 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 3198 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3199 void EmitOMPTargetTeamsDistributeSimdDirective( 3200 const OMPTargetTeamsDistributeSimdDirective &S); 3201 3202 /// Emit device code for the target directive. 3203 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3204 StringRef ParentName, 3205 const OMPTargetDirective &S); 3206 static void 3207 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3208 const OMPTargetParallelDirective &S); 3209 /// Emit device code for the target parallel for directive. 3210 static void EmitOMPTargetParallelForDeviceFunction( 3211 CodeGenModule &CGM, StringRef ParentName, 3212 const OMPTargetParallelForDirective &S); 3213 /// Emit device code for the target parallel for simd directive. 3214 static void EmitOMPTargetParallelForSimdDeviceFunction( 3215 CodeGenModule &CGM, StringRef ParentName, 3216 const OMPTargetParallelForSimdDirective &S); 3217 /// Emit device code for the target teams directive. 3218 static void 3219 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3220 const OMPTargetTeamsDirective &S); 3221 /// Emit device code for the target teams distribute directive. 3222 static void EmitOMPTargetTeamsDistributeDeviceFunction( 3223 CodeGenModule &CGM, StringRef ParentName, 3224 const OMPTargetTeamsDistributeDirective &S); 3225 /// Emit device code for the target teams distribute simd directive. 3226 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 3227 CodeGenModule &CGM, StringRef ParentName, 3228 const OMPTargetTeamsDistributeSimdDirective &S); 3229 /// Emit device code for the target simd directive. 3230 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 3231 StringRef ParentName, 3232 const OMPTargetSimdDirective &S); 3233 /// Emit device code for the target teams distribute parallel for simd 3234 /// directive. 3235 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 3236 CodeGenModule &CGM, StringRef ParentName, 3237 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3238 3239 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 3240 CodeGenModule &CGM, StringRef ParentName, 3241 const OMPTargetTeamsDistributeParallelForDirective &S); 3242 /// Emit inner loop of the worksharing/simd construct. 3243 /// 3244 /// \param S Directive, for which the inner loop must be emitted. 3245 /// \param RequiresCleanup true, if directive has some associated private 3246 /// variables. 3247 /// \param LoopCond Bollean condition for loop continuation. 3248 /// \param IncExpr Increment expression for loop control variable. 3249 /// \param BodyGen Generator for the inner body of the inner loop. 3250 /// \param PostIncGen Genrator for post-increment code (required for ordered 3251 /// loop directvies). 3252 void EmitOMPInnerLoop( 3253 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 3254 const Expr *IncExpr, 3255 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 3256 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); 3257 3258 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 3259 /// Emit initial code for loop counters of loop-based directives. 3260 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 3261 OMPPrivateScope &LoopScope); 3262 3263 /// Helper for the OpenMP loop directives. 3264 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 3265 3266 /// Emit code for the worksharing loop-based directive. 3267 /// \return true, if this construct has any lastprivate clause, false - 3268 /// otherwise. 3269 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 3270 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3271 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3272 3273 /// Emit code for the distribute loop-based directive. 3274 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 3275 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 3276 3277 /// Helpers for the OpenMP loop directives. 3278 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 3279 void EmitOMPSimdFinal( 3280 const OMPLoopDirective &D, 3281 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3282 3283 /// Emits the lvalue for the expression with possibly captured variable. 3284 LValue EmitOMPSharedLValue(const Expr *E); 3285 3286 private: 3287 /// Helpers for blocks. 3288 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 3289 3290 /// struct with the values to be passed to the OpenMP loop-related functions 3291 struct OMPLoopArguments { 3292 /// loop lower bound 3293 Address LB = Address::invalid(); 3294 /// loop upper bound 3295 Address UB = Address::invalid(); 3296 /// loop stride 3297 Address ST = Address::invalid(); 3298 /// isLastIteration argument for runtime functions 3299 Address IL = Address::invalid(); 3300 /// Chunk value generated by sema 3301 llvm::Value *Chunk = nullptr; 3302 /// EnsureUpperBound 3303 Expr *EUB = nullptr; 3304 /// IncrementExpression 3305 Expr *IncExpr = nullptr; 3306 /// Loop initialization 3307 Expr *Init = nullptr; 3308 /// Loop exit condition 3309 Expr *Cond = nullptr; 3310 /// Update of LB after a whole chunk has been executed 3311 Expr *NextLB = nullptr; 3312 /// Update of UB after a whole chunk has been executed 3313 Expr *NextUB = nullptr; 3314 OMPLoopArguments() = default; 3315 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 3316 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 3317 Expr *IncExpr = nullptr, Expr *Init = nullptr, 3318 Expr *Cond = nullptr, Expr *NextLB = nullptr, 3319 Expr *NextUB = nullptr) 3320 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 3321 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 3322 NextUB(NextUB) {} 3323 }; 3324 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 3325 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 3326 const OMPLoopArguments &LoopArgs, 3327 const CodeGenLoopTy &CodeGenLoop, 3328 const CodeGenOrderedTy &CodeGenOrdered); 3329 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 3330 bool IsMonotonic, const OMPLoopDirective &S, 3331 OMPPrivateScope &LoopScope, bool Ordered, 3332 const OMPLoopArguments &LoopArgs, 3333 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3334 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 3335 const OMPLoopDirective &S, 3336 OMPPrivateScope &LoopScope, 3337 const OMPLoopArguments &LoopArgs, 3338 const CodeGenLoopTy &CodeGenLoopContent); 3339 /// Emit code for sections directive. 3340 void EmitSections(const OMPExecutableDirective &S); 3341 3342 public: 3343 3344 //===--------------------------------------------------------------------===// 3345 // LValue Expression Emission 3346 //===--------------------------------------------------------------------===// 3347 3348 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 3349 RValue GetUndefRValue(QualType Ty); 3350 3351 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 3352 /// and issue an ErrorUnsupported style diagnostic (using the 3353 /// provided Name). 3354 RValue EmitUnsupportedRValue(const Expr *E, 3355 const char *Name); 3356 3357 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 3358 /// an ErrorUnsupported style diagnostic (using the provided Name). 3359 LValue EmitUnsupportedLValue(const Expr *E, 3360 const char *Name); 3361 3362 /// EmitLValue - Emit code to compute a designator that specifies the location 3363 /// of the expression. 3364 /// 3365 /// This can return one of two things: a simple address or a bitfield 3366 /// reference. In either case, the LLVM Value* in the LValue structure is 3367 /// guaranteed to be an LLVM pointer type. 3368 /// 3369 /// If this returns a bitfield reference, nothing about the pointee type of 3370 /// the LLVM value is known: For example, it may not be a pointer to an 3371 /// integer. 3372 /// 3373 /// If this returns a normal address, and if the lvalue's C type is fixed 3374 /// size, this method guarantees that the returned pointer type will point to 3375 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3376 /// variable length type, this is not possible. 3377 /// 3378 LValue EmitLValue(const Expr *E); 3379 3380 /// Same as EmitLValue but additionally we generate checking code to 3381 /// guard against undefined behavior. This is only suitable when we know 3382 /// that the address will be used to access the object. 3383 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3384 3385 RValue convertTempToRValue(Address addr, QualType type, 3386 SourceLocation Loc); 3387 3388 void EmitAtomicInit(Expr *E, LValue lvalue); 3389 3390 bool LValueIsSuitableForInlineAtomic(LValue Src); 3391 3392 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3393 AggValueSlot Slot = AggValueSlot::ignored()); 3394 3395 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3396 llvm::AtomicOrdering AO, bool IsVolatile = false, 3397 AggValueSlot slot = AggValueSlot::ignored()); 3398 3399 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3400 3401 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3402 bool IsVolatile, bool isInit); 3403 3404 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3405 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3406 llvm::AtomicOrdering Success = 3407 llvm::AtomicOrdering::SequentiallyConsistent, 3408 llvm::AtomicOrdering Failure = 3409 llvm::AtomicOrdering::SequentiallyConsistent, 3410 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3411 3412 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3413 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3414 bool IsVolatile); 3415 3416 /// EmitToMemory - Change a scalar value from its value 3417 /// representation to its in-memory representation. 3418 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3419 3420 /// EmitFromMemory - Change a scalar value from its memory 3421 /// representation to its value representation. 3422 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3423 3424 /// Check if the scalar \p Value is within the valid range for the given 3425 /// type \p Ty. 3426 /// 3427 /// Returns true if a check is needed (even if the range is unknown). 3428 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3429 SourceLocation Loc); 3430 3431 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3432 /// care to appropriately convert from the memory representation to 3433 /// the LLVM value representation. 3434 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3435 SourceLocation Loc, 3436 AlignmentSource Source = AlignmentSource::Type, 3437 bool isNontemporal = false) { 3438 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 3439 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3440 } 3441 3442 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3443 SourceLocation Loc, LValueBaseInfo BaseInfo, 3444 TBAAAccessInfo TBAAInfo, 3445 bool isNontemporal = false); 3446 3447 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3448 /// care to appropriately convert from the memory representation to 3449 /// the LLVM value representation. The l-value must be a simple 3450 /// l-value. 3451 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3452 3453 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3454 /// care to appropriately convert from the memory representation to 3455 /// the LLVM value representation. 3456 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3457 bool Volatile, QualType Ty, 3458 AlignmentSource Source = AlignmentSource::Type, 3459 bool isInit = false, bool isNontemporal = false) { 3460 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 3461 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3462 } 3463 3464 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3465 bool Volatile, QualType Ty, 3466 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3467 bool isInit = false, bool isNontemporal = false); 3468 3469 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3470 /// care to appropriately convert from the memory representation to 3471 /// the LLVM value representation. The l-value must be a simple 3472 /// l-value. The isInit flag indicates whether this is an initialization. 3473 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3474 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3475 3476 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3477 /// this method emits the address of the lvalue, then loads the result as an 3478 /// rvalue, returning the rvalue. 3479 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3480 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3481 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3482 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3483 3484 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3485 /// lvalue, where both are guaranteed to the have the same type, and that type 3486 /// is 'Ty'. 3487 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3488 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3489 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3490 3491 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3492 /// as EmitStoreThroughLValue. 3493 /// 3494 /// \param Result [out] - If non-null, this will be set to a Value* for the 3495 /// bit-field contents after the store, appropriate for use as the result of 3496 /// an assignment to the bit-field. 3497 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3498 llvm::Value **Result=nullptr); 3499 3500 /// Emit an l-value for an assignment (simple or compound) of complex type. 3501 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3502 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3503 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3504 llvm::Value *&Result); 3505 3506 // Note: only available for agg return types 3507 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3508 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3509 // Note: only available for agg return types 3510 LValue EmitCallExprLValue(const CallExpr *E); 3511 // Note: only available for agg return types 3512 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3513 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3514 LValue EmitStringLiteralLValue(const StringLiteral *E); 3515 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3516 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3517 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3518 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3519 bool Accessed = false); 3520 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3521 bool IsLowerBound = true); 3522 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3523 LValue EmitMemberExpr(const MemberExpr *E); 3524 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3525 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3526 LValue EmitInitListLValue(const InitListExpr *E); 3527 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3528 LValue EmitCastLValue(const CastExpr *E); 3529 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3530 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3531 3532 Address EmitExtVectorElementLValue(LValue V); 3533 3534 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3535 3536 Address EmitArrayToPointerDecay(const Expr *Array, 3537 LValueBaseInfo *BaseInfo = nullptr, 3538 TBAAAccessInfo *TBAAInfo = nullptr); 3539 3540 class ConstantEmission { 3541 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3542 ConstantEmission(llvm::Constant *C, bool isReference) 3543 : ValueAndIsReference(C, isReference) {} 3544 public: 3545 ConstantEmission() {} 3546 static ConstantEmission forReference(llvm::Constant *C) { 3547 return ConstantEmission(C, true); 3548 } 3549 static ConstantEmission forValue(llvm::Constant *C) { 3550 return ConstantEmission(C, false); 3551 } 3552 3553 explicit operator bool() const { 3554 return ValueAndIsReference.getOpaqueValue() != nullptr; 3555 } 3556 3557 bool isReference() const { return ValueAndIsReference.getInt(); } 3558 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3559 assert(isReference()); 3560 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3561 refExpr->getType()); 3562 } 3563 3564 llvm::Constant *getValue() const { 3565 assert(!isReference()); 3566 return ValueAndIsReference.getPointer(); 3567 } 3568 }; 3569 3570 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3571 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3572 llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); 3573 3574 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3575 AggValueSlot slot = AggValueSlot::ignored()); 3576 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3577 3578 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3579 const ObjCIvarDecl *Ivar); 3580 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3581 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3582 3583 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3584 /// if the Field is a reference, this will return the address of the reference 3585 /// and not the address of the value stored in the reference. 3586 LValue EmitLValueForFieldInitialization(LValue Base, 3587 const FieldDecl* Field); 3588 3589 LValue EmitLValueForIvar(QualType ObjectTy, 3590 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3591 unsigned CVRQualifiers); 3592 3593 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3594 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3595 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3596 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3597 3598 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3599 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3600 LValue EmitStmtExprLValue(const StmtExpr *E); 3601 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3602 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3603 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3604 3605 //===--------------------------------------------------------------------===// 3606 // Scalar Expression Emission 3607 //===--------------------------------------------------------------------===// 3608 3609 /// EmitCall - Generate a call of the given function, expecting the given 3610 /// result type, and using the given argument list which specifies both the 3611 /// LLVM arguments and the types they were derived from. 3612 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3613 ReturnValueSlot ReturnValue, const CallArgList &Args, 3614 llvm::CallBase **callOrInvoke, SourceLocation Loc); 3615 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3616 ReturnValueSlot ReturnValue, const CallArgList &Args, 3617 llvm::CallBase **callOrInvoke = nullptr) { 3618 return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, 3619 SourceLocation()); 3620 } 3621 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 3622 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); 3623 RValue EmitCallExpr(const CallExpr *E, 3624 ReturnValueSlot ReturnValue = ReturnValueSlot()); 3625 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3626 CGCallee EmitCallee(const Expr *E); 3627 3628 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 3629 void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl); 3630 3631 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 3632 const Twine &name = ""); 3633 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 3634 ArrayRef<llvm::Value *> args, 3635 const Twine &name = ""); 3636 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3637 const Twine &name = ""); 3638 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3639 ArrayRef<llvm::Value *> args, 3640 const Twine &name = ""); 3641 3642 SmallVector<llvm::OperandBundleDef, 1> 3643 getBundlesForFunclet(llvm::Value *Callee); 3644 3645 llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee, 3646 ArrayRef<llvm::Value *> Args, 3647 const Twine &Name = ""); 3648 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3649 ArrayRef<llvm::Value *> args, 3650 const Twine &name = ""); 3651 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3652 const Twine &name = ""); 3653 void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3654 ArrayRef<llvm::Value *> args); 3655 3656 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 3657 NestedNameSpecifier *Qual, 3658 llvm::Type *Ty); 3659 3660 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 3661 CXXDtorType Type, 3662 const CXXRecordDecl *RD); 3663 3664 // Return the copy constructor name with the prefix "__copy_constructor_" 3665 // removed. 3666 static std::string getNonTrivialCopyConstructorStr(QualType QT, 3667 CharUnits Alignment, 3668 bool IsVolatile, 3669 ASTContext &Ctx); 3670 3671 // Return the destructor name with the prefix "__destructor_" removed. 3672 static std::string getNonTrivialDestructorStr(QualType QT, 3673 CharUnits Alignment, 3674 bool IsVolatile, 3675 ASTContext &Ctx); 3676 3677 // These functions emit calls to the special functions of non-trivial C 3678 // structs. 3679 void defaultInitNonTrivialCStructVar(LValue Dst); 3680 void callCStructDefaultConstructor(LValue Dst); 3681 void callCStructDestructor(LValue Dst); 3682 void callCStructCopyConstructor(LValue Dst, LValue Src); 3683 void callCStructMoveConstructor(LValue Dst, LValue Src); 3684 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 3685 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 3686 3687 RValue 3688 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 3689 const CGCallee &Callee, 3690 ReturnValueSlot ReturnValue, llvm::Value *This, 3691 llvm::Value *ImplicitParam, 3692 QualType ImplicitParamTy, const CallExpr *E, 3693 CallArgList *RtlArgs); 3694 RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee, 3695 llvm::Value *This, QualType ThisTy, 3696 llvm::Value *ImplicitParam, 3697 QualType ImplicitParamTy, const CallExpr *E); 3698 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 3699 ReturnValueSlot ReturnValue); 3700 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 3701 const CXXMethodDecl *MD, 3702 ReturnValueSlot ReturnValue, 3703 bool HasQualifier, 3704 NestedNameSpecifier *Qualifier, 3705 bool IsArrow, const Expr *Base); 3706 // Compute the object pointer. 3707 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 3708 llvm::Value *memberPtr, 3709 const MemberPointerType *memberPtrType, 3710 LValueBaseInfo *BaseInfo = nullptr, 3711 TBAAAccessInfo *TBAAInfo = nullptr); 3712 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 3713 ReturnValueSlot ReturnValue); 3714 3715 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 3716 const CXXMethodDecl *MD, 3717 ReturnValueSlot ReturnValue); 3718 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 3719 3720 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 3721 ReturnValueSlot ReturnValue); 3722 3723 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, 3724 ReturnValueSlot ReturnValue); 3725 3726 RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 3727 const CallExpr *E, ReturnValueSlot ReturnValue); 3728 3729 RValue emitRotate(const CallExpr *E, bool IsRotateRight); 3730 3731 /// Emit IR for __builtin_os_log_format. 3732 RValue emitBuiltinOSLogFormat(const CallExpr &E); 3733 3734 /// Emit IR for __builtin_is_aligned. 3735 RValue EmitBuiltinIsAligned(const CallExpr *E); 3736 /// Emit IR for __builtin_align_up/__builtin_align_down. 3737 RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp); 3738 3739 llvm::Function *generateBuiltinOSLogHelperFunction( 3740 const analyze_os_log::OSLogBufferLayout &Layout, 3741 CharUnits BufferAlignment); 3742 3743 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3744 3745 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 3746 /// is unhandled by the current target. 3747 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3748 ReturnValueSlot ReturnValue); 3749 3750 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 3751 const llvm::CmpInst::Predicate Fp, 3752 const llvm::CmpInst::Predicate Ip, 3753 const llvm::Twine &Name = ""); 3754 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3755 ReturnValueSlot ReturnValue, 3756 llvm::Triple::ArchType Arch); 3757 llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3758 ReturnValueSlot ReturnValue, 3759 llvm::Triple::ArchType Arch); 3760 3761 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 3762 unsigned LLVMIntrinsic, 3763 unsigned AltLLVMIntrinsic, 3764 const char *NameHint, 3765 unsigned Modifier, 3766 const CallExpr *E, 3767 SmallVectorImpl<llvm::Value *> &Ops, 3768 Address PtrOp0, Address PtrOp1, 3769 llvm::Triple::ArchType Arch); 3770 3771 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 3772 unsigned Modifier, llvm::Type *ArgTy, 3773 const CallExpr *E); 3774 llvm::Value *EmitNeonCall(llvm::Function *F, 3775 SmallVectorImpl<llvm::Value*> &O, 3776 const char *name, 3777 unsigned shift = 0, bool rightshift = false); 3778 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 3779 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 3780 bool negateForRightShift); 3781 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 3782 llvm::Type *Ty, bool usgn, const char *name); 3783 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 3784 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3785 llvm::Triple::ArchType Arch); 3786 llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3787 3788 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 3789 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3790 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3791 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3792 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3793 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3794 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 3795 const CallExpr *E); 3796 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3797 3798 private: 3799 enum class MSVCIntrin; 3800 3801 public: 3802 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 3803 3804 llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args); 3805 3806 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 3807 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 3808 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 3809 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 3810 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 3811 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 3812 const ObjCMethodDecl *MethodWithObjects); 3813 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 3814 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 3815 ReturnValueSlot Return = ReturnValueSlot()); 3816 3817 /// Retrieves the default cleanup kind for an ARC cleanup. 3818 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 3819 CleanupKind getARCCleanupKind() { 3820 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 3821 ? NormalAndEHCleanup : NormalCleanup; 3822 } 3823 3824 // ARC primitives. 3825 void EmitARCInitWeak(Address addr, llvm::Value *value); 3826 void EmitARCDestroyWeak(Address addr); 3827 llvm::Value *EmitARCLoadWeak(Address addr); 3828 llvm::Value *EmitARCLoadWeakRetained(Address addr); 3829 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 3830 void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 3831 void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 3832 void EmitARCCopyWeak(Address dst, Address src); 3833 void EmitARCMoveWeak(Address dst, Address src); 3834 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 3835 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 3836 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 3837 bool resultIgnored); 3838 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 3839 bool resultIgnored); 3840 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 3841 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 3842 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 3843 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 3844 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 3845 llvm::Value *EmitARCAutorelease(llvm::Value *value); 3846 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 3847 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 3848 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 3849 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 3850 3851 llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); 3852 llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, 3853 llvm::Type *returnType); 3854 void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 3855 3856 std::pair<LValue,llvm::Value*> 3857 EmitARCStoreAutoreleasing(const BinaryOperator *e); 3858 std::pair<LValue,llvm::Value*> 3859 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 3860 std::pair<LValue,llvm::Value*> 3861 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 3862 3863 llvm::Value *EmitObjCAlloc(llvm::Value *value, 3864 llvm::Type *returnType); 3865 llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, 3866 llvm::Type *returnType); 3867 llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType); 3868 3869 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 3870 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 3871 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 3872 3873 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 3874 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 3875 bool allowUnsafeClaim); 3876 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 3877 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 3878 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 3879 3880 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 3881 3882 static Destroyer destroyARCStrongImprecise; 3883 static Destroyer destroyARCStrongPrecise; 3884 static Destroyer destroyARCWeak; 3885 static Destroyer emitARCIntrinsicUse; 3886 static Destroyer destroyNonTrivialCStruct; 3887 3888 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 3889 llvm::Value *EmitObjCAutoreleasePoolPush(); 3890 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 3891 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 3892 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 3893 3894 /// Emits a reference binding to the passed in expression. 3895 RValue EmitReferenceBindingToExpr(const Expr *E); 3896 3897 //===--------------------------------------------------------------------===// 3898 // Expression Emission 3899 //===--------------------------------------------------------------------===// 3900 3901 // Expressions are broken into three classes: scalar, complex, aggregate. 3902 3903 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 3904 /// scalar type, returning the result. 3905 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 3906 3907 /// Emit a conversion from the specified type to the specified destination 3908 /// type, both of which are LLVM scalar types. 3909 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 3910 QualType DstTy, SourceLocation Loc); 3911 3912 /// Emit a conversion from the specified complex type to the specified 3913 /// destination type, where the destination type is an LLVM scalar type. 3914 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 3915 QualType DstTy, 3916 SourceLocation Loc); 3917 3918 /// EmitAggExpr - Emit the computation of the specified expression 3919 /// of aggregate type. The result is computed into the given slot, 3920 /// which may be null to indicate that the value is not needed. 3921 void EmitAggExpr(const Expr *E, AggValueSlot AS); 3922 3923 /// EmitAggExprToLValue - Emit the computation of the specified expression of 3924 /// aggregate type into a temporary LValue. 3925 LValue EmitAggExprToLValue(const Expr *E); 3926 3927 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3928 /// make sure it survives garbage collection until this point. 3929 void EmitExtendGCLifetime(llvm::Value *object); 3930 3931 /// EmitComplexExpr - Emit the computation of the specified expression of 3932 /// complex type, returning the result. 3933 ComplexPairTy EmitComplexExpr(const Expr *E, 3934 bool IgnoreReal = false, 3935 bool IgnoreImag = false); 3936 3937 /// EmitComplexExprIntoLValue - Emit the given expression of complex 3938 /// type and place its result into the specified l-value. 3939 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 3940 3941 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 3942 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 3943 3944 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 3945 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 3946 3947 Address emitAddrOfRealComponent(Address complex, QualType complexType); 3948 Address emitAddrOfImagComponent(Address complex, QualType complexType); 3949 3950 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 3951 /// global variable that has already been created for it. If the initializer 3952 /// has a different type than GV does, this may free GV and return a different 3953 /// one. Otherwise it just returns GV. 3954 llvm::GlobalVariable * 3955 AddInitializerToStaticVarDecl(const VarDecl &D, 3956 llvm::GlobalVariable *GV); 3957 3958 // Emit an @llvm.invariant.start call for the given memory region. 3959 void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); 3960 3961 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 3962 /// variable with global storage. 3963 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 3964 bool PerformInit); 3965 3966 llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor, 3967 llvm::Constant *Addr); 3968 3969 /// Call atexit() with a function that passes the given argument to 3970 /// the given function. 3971 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn, 3972 llvm::Constant *addr); 3973 3974 /// Call atexit() with function dtorStub. 3975 void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); 3976 3977 /// Emit code in this function to perform a guarded variable 3978 /// initialization. Guarded initializations are used when it's not 3979 /// possible to prove that an initialization will be done exactly 3980 /// once, e.g. with a static local variable or a static data member 3981 /// of a class template. 3982 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 3983 bool PerformInit); 3984 3985 enum class GuardKind { VariableGuard, TlsGuard }; 3986 3987 /// Emit a branch to select whether or not to perform guarded initialization. 3988 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 3989 llvm::BasicBlock *InitBlock, 3990 llvm::BasicBlock *NoInitBlock, 3991 GuardKind Kind, const VarDecl *D); 3992 3993 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 3994 /// variables. 3995 void 3996 GenerateCXXGlobalInitFunc(llvm::Function *Fn, 3997 ArrayRef<llvm::Function *> CXXThreadLocals, 3998 ConstantAddress Guard = ConstantAddress::invalid()); 3999 4000 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 4001 /// variables. 4002 void GenerateCXXGlobalDtorsFunc( 4003 llvm::Function *Fn, 4004 const std::vector<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH, 4005 llvm::Constant *>> &DtorsAndObjects); 4006 4007 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 4008 const VarDecl *D, 4009 llvm::GlobalVariable *Addr, 4010 bool PerformInit); 4011 4012 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 4013 4014 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 4015 4016 void enterFullExpression(const FullExpr *E) { 4017 if (const auto *EWC = dyn_cast<ExprWithCleanups>(E)) 4018 if (EWC->getNumObjects() == 0) 4019 return; 4020 enterNonTrivialFullExpression(E); 4021 } 4022 void enterNonTrivialFullExpression(const FullExpr *E); 4023 4024 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 4025 4026 RValue EmitAtomicExpr(AtomicExpr *E); 4027 4028 //===--------------------------------------------------------------------===// 4029 // Annotations Emission 4030 //===--------------------------------------------------------------------===// 4031 4032 /// Emit an annotation call (intrinsic). 4033 llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn, 4034 llvm::Value *AnnotatedVal, 4035 StringRef AnnotationStr, 4036 SourceLocation Location); 4037 4038 /// Emit local annotations for the local variable V, declared by D. 4039 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 4040 4041 /// Emit field annotations for the given field & value. Returns the 4042 /// annotation result. 4043 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 4044 4045 //===--------------------------------------------------------------------===// 4046 // Internal Helpers 4047 //===--------------------------------------------------------------------===// 4048 4049 /// ContainsLabel - Return true if the statement contains a label in it. If 4050 /// this statement is not executed normally, it not containing a label means 4051 /// that we can just remove the code. 4052 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 4053 4054 /// containsBreak - Return true if the statement contains a break out of it. 4055 /// If the statement (recursively) contains a switch or loop with a break 4056 /// inside of it, this is fine. 4057 static bool containsBreak(const Stmt *S); 4058 4059 /// Determine if the given statement might introduce a declaration into the 4060 /// current scope, by being a (possibly-labelled) DeclStmt. 4061 static bool mightAddDeclToScope(const Stmt *S); 4062 4063 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4064 /// to a constant, or if it does but contains a label, return false. If it 4065 /// constant folds return true and set the boolean result in Result. 4066 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 4067 bool AllowLabels = false); 4068 4069 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4070 /// to a constant, or if it does but contains a label, return false. If it 4071 /// constant folds return true and set the folded value. 4072 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 4073 bool AllowLabels = false); 4074 4075 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 4076 /// if statement) to the specified blocks. Based on the condition, this might 4077 /// try to simplify the codegen of the conditional based on the branch. 4078 /// TrueCount should be the number of times we expect the condition to 4079 /// evaluate to true based on PGO data. 4080 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 4081 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 4082 4083 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 4084 /// nonnull, if \p LHS is marked _Nonnull. 4085 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 4086 4087 /// An enumeration which makes it easier to specify whether or not an 4088 /// operation is a subtraction. 4089 enum { NotSubtraction = false, IsSubtraction = true }; 4090 4091 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 4092 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 4093 /// \p SignedIndices indicates whether any of the GEP indices are signed. 4094 /// \p IsSubtraction indicates whether the expression used to form the GEP 4095 /// is a subtraction. 4096 llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr, 4097 ArrayRef<llvm::Value *> IdxList, 4098 bool SignedIndices, 4099 bool IsSubtraction, 4100 SourceLocation Loc, 4101 const Twine &Name = ""); 4102 4103 /// Specifies which type of sanitizer check to apply when handling a 4104 /// particular builtin. 4105 enum BuiltinCheckKind { 4106 BCK_CTZPassedZero, 4107 BCK_CLZPassedZero, 4108 }; 4109 4110 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 4111 /// enabled, a runtime check specified by \p Kind is also emitted. 4112 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 4113 4114 /// Emit a description of a type in a format suitable for passing to 4115 /// a runtime sanitizer handler. 4116 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 4117 4118 /// Convert a value into a format suitable for passing to a runtime 4119 /// sanitizer handler. 4120 llvm::Value *EmitCheckValue(llvm::Value *V); 4121 4122 /// Emit a description of a source location in a format suitable for 4123 /// passing to a runtime sanitizer handler. 4124 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 4125 4126 /// Create a basic block that will either trap or call a handler function in 4127 /// the UBSan runtime with the provided arguments, and create a conditional 4128 /// branch to it. 4129 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 4130 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 4131 ArrayRef<llvm::Value *> DynamicArgs); 4132 4133 /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 4134 /// if Cond if false. 4135 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 4136 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 4137 ArrayRef<llvm::Constant *> StaticArgs); 4138 4139 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 4140 /// checking is enabled. Otherwise, just emit an unreachable instruction. 4141 void EmitUnreachable(SourceLocation Loc); 4142 4143 /// Create a basic block that will call the trap intrinsic, and emit a 4144 /// conditional branch to it, for the -ftrapv checks. 4145 void EmitTrapCheck(llvm::Value *Checked); 4146 4147 /// Emit a call to trap or debugtrap and attach function attribute 4148 /// "trap-func-name" if specified. 4149 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 4150 4151 /// Emit a stub for the cross-DSO CFI check function. 4152 void EmitCfiCheckStub(); 4153 4154 /// Emit a cross-DSO CFI failure handling function. 4155 void EmitCfiCheckFail(); 4156 4157 /// Create a check for a function parameter that may potentially be 4158 /// declared as non-null. 4159 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 4160 AbstractCallee AC, unsigned ParmNum); 4161 4162 /// EmitCallArg - Emit a single call argument. 4163 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 4164 4165 /// EmitDelegateCallArg - We are performing a delegate call; that 4166 /// is, the current function is delegating to another one. Produce 4167 /// a r-value suitable for passing the given parameter. 4168 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 4169 SourceLocation loc); 4170 4171 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 4172 /// point operation, expressed as the maximum relative error in ulp. 4173 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 4174 4175 /// SetFPModel - Control floating point behavior via fp-model settings. 4176 void SetFPModel(); 4177 4178 private: 4179 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 4180 void EmitReturnOfRValue(RValue RV, QualType Ty); 4181 4182 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 4183 4184 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 4185 DeferredReplacements; 4186 4187 /// Set the address of a local variable. 4188 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 4189 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 4190 LocalDeclMap.insert({VD, Addr}); 4191 } 4192 4193 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 4194 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 4195 /// 4196 /// \param AI - The first function argument of the expansion. 4197 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 4198 SmallVectorImpl<llvm::Value *>::iterator &AI); 4199 4200 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 4201 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 4202 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 4203 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 4204 SmallVectorImpl<llvm::Value *> &IRCallArgs, 4205 unsigned &IRCallArgPos); 4206 4207 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 4208 const Expr *InputExpr, std::string &ConstraintStr); 4209 4210 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 4211 LValue InputValue, QualType InputType, 4212 std::string &ConstraintStr, 4213 SourceLocation Loc); 4214 4215 /// Attempts to statically evaluate the object size of E. If that 4216 /// fails, emits code to figure the size of E out for us. This is 4217 /// pass_object_size aware. 4218 /// 4219 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 4220 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 4221 llvm::IntegerType *ResType, 4222 llvm::Value *EmittedE, 4223 bool IsDynamic); 4224 4225 /// Emits the size of E, as required by __builtin_object_size. This 4226 /// function is aware of pass_object_size parameters, and will act accordingly 4227 /// if E is a parameter with the pass_object_size attribute. 4228 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 4229 llvm::IntegerType *ResType, 4230 llvm::Value *EmittedE, 4231 bool IsDynamic); 4232 4233 void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D, 4234 Address Loc); 4235 4236 public: 4237 #ifndef NDEBUG 4238 // Determine whether the given argument is an Objective-C method 4239 // that may have type parameters in its signature. 4240 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 4241 const DeclContext *dc = method->getDeclContext(); 4242 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 4243 return classDecl->getTypeParamListAsWritten(); 4244 } 4245 4246 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 4247 return catDecl->getTypeParamList(); 4248 } 4249 4250 return false; 4251 } 4252 4253 template<typename T> 4254 static bool isObjCMethodWithTypeParams(const T *) { return false; } 4255 #endif 4256 4257 enum class EvaluationOrder { 4258 ///! No language constraints on evaluation order. 4259 Default, 4260 ///! Language semantics require left-to-right evaluation. 4261 ForceLeftToRight, 4262 ///! Language semantics require right-to-left evaluation. 4263 ForceRightToLeft 4264 }; 4265 4266 /// EmitCallArgs - Emit call arguments for a function. 4267 template <typename T> 4268 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 4269 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4270 AbstractCallee AC = AbstractCallee(), 4271 unsigned ParamsToSkip = 0, 4272 EvaluationOrder Order = EvaluationOrder::Default) { 4273 SmallVector<QualType, 16> ArgTypes; 4274 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 4275 4276 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 4277 "Can't skip parameters if type info is not provided"); 4278 if (CallArgTypeInfo) { 4279 #ifndef NDEBUG 4280 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 4281 #endif 4282 4283 // First, use the argument types that the type info knows about 4284 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 4285 E = CallArgTypeInfo->param_type_end(); 4286 I != E; ++I, ++Arg) { 4287 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 4288 assert((isGenericMethod || 4289 ((*I)->isVariablyModifiedType() || 4290 (*I).getNonReferenceType()->isObjCRetainableType() || 4291 getContext() 4292 .getCanonicalType((*I).getNonReferenceType()) 4293 .getTypePtr() == 4294 getContext() 4295 .getCanonicalType((*Arg)->getType()) 4296 .getTypePtr())) && 4297 "type mismatch in call argument!"); 4298 ArgTypes.push_back(*I); 4299 } 4300 } 4301 4302 // Either we've emitted all the call args, or we have a call to variadic 4303 // function. 4304 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 4305 CallArgTypeInfo->isVariadic()) && 4306 "Extra arguments in non-variadic function!"); 4307 4308 // If we still have any arguments, emit them using the type of the argument. 4309 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 4310 ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType()); 4311 4312 EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order); 4313 } 4314 4315 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 4316 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4317 AbstractCallee AC = AbstractCallee(), 4318 unsigned ParamsToSkip = 0, 4319 EvaluationOrder Order = EvaluationOrder::Default); 4320 4321 /// EmitPointerWithAlignment - Given an expression with a pointer type, 4322 /// emit the value and compute our best estimate of the alignment of the 4323 /// pointee. 4324 /// 4325 /// \param BaseInfo - If non-null, this will be initialized with 4326 /// information about the source of the alignment and the may-alias 4327 /// attribute. Note that this function will conservatively fall back on 4328 /// the type when it doesn't recognize the expression and may-alias will 4329 /// be set to false. 4330 /// 4331 /// One reasonable way to use this information is when there's a language 4332 /// guarantee that the pointer must be aligned to some stricter value, and 4333 /// we're simply trying to ensure that sufficiently obvious uses of under- 4334 /// aligned objects don't get miscompiled; for example, a placement new 4335 /// into the address of a local variable. In such a case, it's quite 4336 /// reasonable to just ignore the returned alignment when it isn't from an 4337 /// explicit source. 4338 Address EmitPointerWithAlignment(const Expr *Addr, 4339 LValueBaseInfo *BaseInfo = nullptr, 4340 TBAAAccessInfo *TBAAInfo = nullptr); 4341 4342 /// If \p E references a parameter with pass_object_size info or a constant 4343 /// array size modifier, emit the object size divided by the size of \p EltTy. 4344 /// Otherwise return null. 4345 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 4346 4347 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 4348 4349 struct MultiVersionResolverOption { 4350 llvm::Function *Function; 4351 FunctionDecl *FD; 4352 struct Conds { 4353 StringRef Architecture; 4354 llvm::SmallVector<StringRef, 8> Features; 4355 4356 Conds(StringRef Arch, ArrayRef<StringRef> Feats) 4357 : Architecture(Arch), Features(Feats.begin(), Feats.end()) {} 4358 } Conditions; 4359 4360 MultiVersionResolverOption(llvm::Function *F, StringRef Arch, 4361 ArrayRef<StringRef> Feats) 4362 : Function(F), Conditions(Arch, Feats) {} 4363 }; 4364 4365 // Emits the body of a multiversion function's resolver. Assumes that the 4366 // options are already sorted in the proper order, with the 'default' option 4367 // last (if it exists). 4368 void EmitMultiVersionResolver(llvm::Function *Resolver, 4369 ArrayRef<MultiVersionResolverOption> Options); 4370 4371 static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs); 4372 4373 private: 4374 QualType getVarArgType(const Expr *Arg); 4375 4376 void EmitDeclMetadata(); 4377 4378 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 4379 const AutoVarEmission &emission); 4380 4381 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 4382 4383 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 4384 llvm::Value *EmitX86CpuIs(const CallExpr *E); 4385 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 4386 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 4387 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 4388 llvm::Value *EmitX86CpuSupports(uint64_t Mask); 4389 llvm::Value *EmitX86CpuInit(); 4390 llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO); 4391 }; 4392 4393 inline DominatingLLVMValue::saved_type 4394 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { 4395 if (!needsSaving(value)) return saved_type(value, false); 4396 4397 // Otherwise, we need an alloca. 4398 auto align = CharUnits::fromQuantity( 4399 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 4400 Address alloca = 4401 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 4402 CGF.Builder.CreateStore(value, alloca); 4403 4404 return saved_type(alloca.getPointer(), true); 4405 } 4406 4407 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, 4408 saved_type value) { 4409 // If the value says it wasn't saved, trust that it's still dominating. 4410 if (!value.getInt()) return value.getPointer(); 4411 4412 // Otherwise, it should be an alloca instruction, as set up in save(). 4413 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 4414 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment()); 4415 } 4416 4417 } // end namespace CodeGen 4418 } // end namespace clang 4419 4420 #endif 4421