1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the internal per-function state used for llvm translation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 16 #include "CGBuilder.h" 17 #include "CGDebugInfo.h" 18 #include "CGLoopInfo.h" 19 #include "CGValue.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "EHScopeStack.h" 23 #include "VarBypassDetector.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/CurrentSourceLocExprScope.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/Type.h" 30 #include "clang/Basic/ABI.h" 31 #include "clang/Basic/CapturedStmt.h" 32 #include "clang/Basic/CodeGenOptions.h" 33 #include "clang/Basic/OpenMPKinds.h" 34 #include "clang/Basic/TargetInfo.h" 35 #include "llvm/ADT/ArrayRef.h" 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/MapVector.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Transforms/Utils/SanitizerStats.h" 42 43 namespace llvm { 44 class BasicBlock; 45 class LLVMContext; 46 class MDNode; 47 class Module; 48 class SwitchInst; 49 class Twine; 50 class Value; 51 } 52 53 namespace clang { 54 class ASTContext; 55 class BlockDecl; 56 class CXXDestructorDecl; 57 class CXXForRangeStmt; 58 class CXXTryStmt; 59 class Decl; 60 class LabelDecl; 61 class EnumConstantDecl; 62 class FunctionDecl; 63 class FunctionProtoType; 64 class LabelStmt; 65 class ObjCContainerDecl; 66 class ObjCInterfaceDecl; 67 class ObjCIvarDecl; 68 class ObjCMethodDecl; 69 class ObjCImplementationDecl; 70 class ObjCPropertyImplDecl; 71 class TargetInfo; 72 class VarDecl; 73 class ObjCForCollectionStmt; 74 class ObjCAtTryStmt; 75 class ObjCAtThrowStmt; 76 class ObjCAtSynchronizedStmt; 77 class ObjCAutoreleasePoolStmt; 78 79 namespace analyze_os_log { 80 class OSLogBufferLayout; 81 } 82 83 namespace CodeGen { 84 class CodeGenTypes; 85 class CGCallee; 86 class CGFunctionInfo; 87 class CGRecordLayout; 88 class CGBlockInfo; 89 class CGCXXABI; 90 class BlockByrefHelpers; 91 class BlockByrefInfo; 92 class BlockFlags; 93 class BlockFieldFlags; 94 class RegionCodeGenTy; 95 class TargetCodeGenInfo; 96 struct OMPTaskDataTy; 97 struct CGCoroData; 98 99 /// The kind of evaluation to perform on values of a particular 100 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 101 /// CGExprAgg? 102 /// 103 /// TODO: should vectors maybe be split out into their own thing? 104 enum TypeEvaluationKind { 105 TEK_Scalar, 106 TEK_Complex, 107 TEK_Aggregate 108 }; 109 110 #define LIST_SANITIZER_CHECKS \ 111 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 112 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 113 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 114 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 115 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 116 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 117 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1) \ 118 SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \ 119 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 120 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 121 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 122 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 123 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 124 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 125 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 126 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 127 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 128 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 129 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 130 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 131 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 132 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 133 SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \ 134 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 135 136 enum SanitizerHandler { 137 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 138 LIST_SANITIZER_CHECKS 139 #undef SANITIZER_CHECK 140 }; 141 142 /// Helper class with most of the code for saving a value for a 143 /// conditional expression cleanup. 144 struct DominatingLLVMValue { 145 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 146 147 /// Answer whether the given value needs extra work to be saved. 148 static bool needsSaving(llvm::Value *value) { 149 // If it's not an instruction, we don't need to save. 150 if (!isa<llvm::Instruction>(value)) return false; 151 152 // If it's an instruction in the entry block, we don't need to save. 153 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 154 return (block != &block->getParent()->getEntryBlock()); 155 } 156 157 static saved_type save(CodeGenFunction &CGF, llvm::Value *value); 158 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); 159 }; 160 161 /// A partial specialization of DominatingValue for llvm::Values that 162 /// might be llvm::Instructions. 163 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 164 typedef T *type; 165 static type restore(CodeGenFunction &CGF, saved_type value) { 166 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 167 } 168 }; 169 170 /// A specialization of DominatingValue for Address. 171 template <> struct DominatingValue<Address> { 172 typedef Address type; 173 174 struct saved_type { 175 DominatingLLVMValue::saved_type SavedValue; 176 CharUnits Alignment; 177 }; 178 179 static bool needsSaving(type value) { 180 return DominatingLLVMValue::needsSaving(value.getPointer()); 181 } 182 static saved_type save(CodeGenFunction &CGF, type value) { 183 return { DominatingLLVMValue::save(CGF, value.getPointer()), 184 value.getAlignment() }; 185 } 186 static type restore(CodeGenFunction &CGF, saved_type value) { 187 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 188 value.Alignment); 189 } 190 }; 191 192 /// A specialization of DominatingValue for RValue. 193 template <> struct DominatingValue<RValue> { 194 typedef RValue type; 195 class saved_type { 196 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 197 AggregateAddress, ComplexAddress }; 198 199 llvm::Value *Value; 200 unsigned K : 3; 201 unsigned Align : 29; 202 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 203 : Value(v), K(k), Align(a) {} 204 205 public: 206 static bool needsSaving(RValue value); 207 static saved_type save(CodeGenFunction &CGF, RValue value); 208 RValue restore(CodeGenFunction &CGF); 209 210 // implementations in CGCleanup.cpp 211 }; 212 213 static bool needsSaving(type value) { 214 return saved_type::needsSaving(value); 215 } 216 static saved_type save(CodeGenFunction &CGF, type value) { 217 return saved_type::save(CGF, value); 218 } 219 static type restore(CodeGenFunction &CGF, saved_type value) { 220 return value.restore(CGF); 221 } 222 }; 223 224 /// CodeGenFunction - This class organizes the per-function state that is used 225 /// while generating LLVM code. 226 class CodeGenFunction : public CodeGenTypeCache { 227 CodeGenFunction(const CodeGenFunction &) = delete; 228 void operator=(const CodeGenFunction &) = delete; 229 230 friend class CGCXXABI; 231 public: 232 /// A jump destination is an abstract label, branching to which may 233 /// require a jump out through normal cleanups. 234 struct JumpDest { 235 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 236 JumpDest(llvm::BasicBlock *Block, 237 EHScopeStack::stable_iterator Depth, 238 unsigned Index) 239 : Block(Block), ScopeDepth(Depth), Index(Index) {} 240 241 bool isValid() const { return Block != nullptr; } 242 llvm::BasicBlock *getBlock() const { return Block; } 243 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 244 unsigned getDestIndex() const { return Index; } 245 246 // This should be used cautiously. 247 void setScopeDepth(EHScopeStack::stable_iterator depth) { 248 ScopeDepth = depth; 249 } 250 251 private: 252 llvm::BasicBlock *Block; 253 EHScopeStack::stable_iterator ScopeDepth; 254 unsigned Index; 255 }; 256 257 CodeGenModule &CGM; // Per-module state. 258 const TargetInfo &Target; 259 260 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 261 LoopInfoStack LoopStack; 262 CGBuilderTy Builder; 263 264 // Stores variables for which we can't generate correct lifetime markers 265 // because of jumps. 266 VarBypassDetector Bypasses; 267 268 // CodeGen lambda for loops and support for ordered clause 269 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 270 JumpDest)> 271 CodeGenLoopTy; 272 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 273 const unsigned, const bool)> 274 CodeGenOrderedTy; 275 276 // Codegen lambda for loop bounds in worksharing loop constructs 277 typedef llvm::function_ref<std::pair<LValue, LValue>( 278 CodeGenFunction &, const OMPExecutableDirective &S)> 279 CodeGenLoopBoundsTy; 280 281 // Codegen lambda for loop bounds in dispatch-based loop implementation 282 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 283 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 284 Address UB)> 285 CodeGenDispatchBoundsTy; 286 287 /// CGBuilder insert helper. This function is called after an 288 /// instruction is created using Builder. 289 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 290 llvm::BasicBlock *BB, 291 llvm::BasicBlock::iterator InsertPt) const; 292 293 /// CurFuncDecl - Holds the Decl for the current outermost 294 /// non-closure context. 295 const Decl *CurFuncDecl; 296 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 297 const Decl *CurCodeDecl; 298 const CGFunctionInfo *CurFnInfo; 299 QualType FnRetTy; 300 llvm::Function *CurFn = nullptr; 301 302 // Holds coroutine data if the current function is a coroutine. We use a 303 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 304 // in this header. 305 struct CGCoroInfo { 306 std::unique_ptr<CGCoroData> Data; 307 CGCoroInfo(); 308 ~CGCoroInfo(); 309 }; 310 CGCoroInfo CurCoro; 311 312 bool isCoroutine() const { 313 return CurCoro.Data != nullptr; 314 } 315 316 /// CurGD - The GlobalDecl for the current function being compiled. 317 GlobalDecl CurGD; 318 319 /// PrologueCleanupDepth - The cleanup depth enclosing all the 320 /// cleanups associated with the parameters. 321 EHScopeStack::stable_iterator PrologueCleanupDepth; 322 323 /// ReturnBlock - Unified return block. 324 JumpDest ReturnBlock; 325 326 /// ReturnValue - The temporary alloca to hold the return 327 /// value. This is invalid iff the function has no return value. 328 Address ReturnValue = Address::invalid(); 329 330 /// ReturnValuePointer - The temporary alloca to hold a pointer to sret. 331 /// This is invalid if sret is not in use. 332 Address ReturnValuePointer = Address::invalid(); 333 334 /// Return true if a label was seen in the current scope. 335 bool hasLabelBeenSeenInCurrentScope() const { 336 if (CurLexicalScope) 337 return CurLexicalScope->hasLabels(); 338 return !LabelMap.empty(); 339 } 340 341 /// AllocaInsertPoint - This is an instruction in the entry block before which 342 /// we prefer to insert allocas. 343 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 344 345 /// API for captured statement code generation. 346 class CGCapturedStmtInfo { 347 public: 348 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 349 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 350 explicit CGCapturedStmtInfo(const CapturedStmt &S, 351 CapturedRegionKind K = CR_Default) 352 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 353 354 RecordDecl::field_iterator Field = 355 S.getCapturedRecordDecl()->field_begin(); 356 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 357 E = S.capture_end(); 358 I != E; ++I, ++Field) { 359 if (I->capturesThis()) 360 CXXThisFieldDecl = *Field; 361 else if (I->capturesVariable()) 362 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 363 else if (I->capturesVariableByCopy()) 364 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 365 } 366 } 367 368 virtual ~CGCapturedStmtInfo(); 369 370 CapturedRegionKind getKind() const { return Kind; } 371 372 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 373 // Retrieve the value of the context parameter. 374 virtual llvm::Value *getContextValue() const { return ThisValue; } 375 376 /// Lookup the captured field decl for a variable. 377 virtual const FieldDecl *lookup(const VarDecl *VD) const { 378 return CaptureFields.lookup(VD->getCanonicalDecl()); 379 } 380 381 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 382 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 383 384 static bool classof(const CGCapturedStmtInfo *) { 385 return true; 386 } 387 388 /// Emit the captured statement body. 389 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 390 CGF.incrementProfileCounter(S); 391 CGF.EmitStmt(S); 392 } 393 394 /// Get the name of the capture helper. 395 virtual StringRef getHelperName() const { return "__captured_stmt"; } 396 397 private: 398 /// The kind of captured statement being generated. 399 CapturedRegionKind Kind; 400 401 /// Keep the map between VarDecl and FieldDecl. 402 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 403 404 /// The base address of the captured record, passed in as the first 405 /// argument of the parallel region function. 406 llvm::Value *ThisValue; 407 408 /// Captured 'this' type. 409 FieldDecl *CXXThisFieldDecl; 410 }; 411 CGCapturedStmtInfo *CapturedStmtInfo = nullptr; 412 413 /// RAII for correct setting/restoring of CapturedStmtInfo. 414 class CGCapturedStmtRAII { 415 private: 416 CodeGenFunction &CGF; 417 CGCapturedStmtInfo *PrevCapturedStmtInfo; 418 public: 419 CGCapturedStmtRAII(CodeGenFunction &CGF, 420 CGCapturedStmtInfo *NewCapturedStmtInfo) 421 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 422 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 423 } 424 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 425 }; 426 427 /// An abstract representation of regular/ObjC call/message targets. 428 class AbstractCallee { 429 /// The function declaration of the callee. 430 const Decl *CalleeDecl; 431 432 public: 433 AbstractCallee() : CalleeDecl(nullptr) {} 434 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 435 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 436 bool hasFunctionDecl() const { 437 return dyn_cast_or_null<FunctionDecl>(CalleeDecl); 438 } 439 const Decl *getDecl() const { return CalleeDecl; } 440 unsigned getNumParams() const { 441 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 442 return FD->getNumParams(); 443 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 444 } 445 const ParmVarDecl *getParamDecl(unsigned I) const { 446 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 447 return FD->getParamDecl(I); 448 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 449 } 450 }; 451 452 /// Sanitizers enabled for this function. 453 SanitizerSet SanOpts; 454 455 /// True if CodeGen currently emits code implementing sanitizer checks. 456 bool IsSanitizerScope = false; 457 458 /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. 459 class SanitizerScope { 460 CodeGenFunction *CGF; 461 public: 462 SanitizerScope(CodeGenFunction *CGF); 463 ~SanitizerScope(); 464 }; 465 466 /// In C++, whether we are code generating a thunk. This controls whether we 467 /// should emit cleanups. 468 bool CurFuncIsThunk = false; 469 470 /// In ARC, whether we should autorelease the return value. 471 bool AutoreleaseResult = false; 472 473 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 474 /// potentially set the return value. 475 bool SawAsmBlock = false; 476 477 const NamedDecl *CurSEHParent = nullptr; 478 479 /// True if the current function is an outlined SEH helper. This can be a 480 /// finally block or filter expression. 481 bool IsOutlinedSEHHelper = false; 482 483 /// True if CodeGen currently emits code inside presereved access index 484 /// region. 485 bool IsInPreservedAIRegion = false; 486 487 const CodeGen::CGBlockInfo *BlockInfo = nullptr; 488 llvm::Value *BlockPointer = nullptr; 489 490 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 491 FieldDecl *LambdaThisCaptureField = nullptr; 492 493 /// A mapping from NRVO variables to the flags used to indicate 494 /// when the NRVO has been applied to this variable. 495 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 496 497 EHScopeStack EHStack; 498 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 499 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 500 501 llvm::Instruction *CurrentFuncletPad = nullptr; 502 503 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 504 llvm::Value *Addr; 505 llvm::Value *Size; 506 507 public: 508 CallLifetimeEnd(Address addr, llvm::Value *size) 509 : Addr(addr.getPointer()), Size(size) {} 510 511 void Emit(CodeGenFunction &CGF, Flags flags) override { 512 CGF.EmitLifetimeEnd(Size, Addr); 513 } 514 }; 515 516 /// Header for data within LifetimeExtendedCleanupStack. 517 struct LifetimeExtendedCleanupHeader { 518 /// The size of the following cleanup object. 519 unsigned Size; 520 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 521 unsigned Kind : 31; 522 /// Whether this is a conditional cleanup. 523 unsigned IsConditional : 1; 524 525 size_t getSize() const { return Size; } 526 CleanupKind getKind() const { return (CleanupKind)Kind; } 527 bool isConditional() const { return IsConditional; } 528 }; 529 530 /// i32s containing the indexes of the cleanup destinations. 531 Address NormalCleanupDest = Address::invalid(); 532 533 unsigned NextCleanupDestIndex = 1; 534 535 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 536 CGBlockInfo *FirstBlockInfo = nullptr; 537 538 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 539 llvm::BasicBlock *EHResumeBlock = nullptr; 540 541 /// The exception slot. All landing pads write the current exception pointer 542 /// into this alloca. 543 llvm::Value *ExceptionSlot = nullptr; 544 545 /// The selector slot. Under the MandatoryCleanup model, all landing pads 546 /// write the current selector value into this alloca. 547 llvm::AllocaInst *EHSelectorSlot = nullptr; 548 549 /// A stack of exception code slots. Entering an __except block pushes a slot 550 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 551 /// a value from the top of the stack. 552 SmallVector<Address, 1> SEHCodeSlotStack; 553 554 /// Value returned by __exception_info intrinsic. 555 llvm::Value *SEHInfo = nullptr; 556 557 /// Emits a landing pad for the current EH stack. 558 llvm::BasicBlock *EmitLandingPad(); 559 560 llvm::BasicBlock *getInvokeDestImpl(); 561 562 template <class T> 563 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 564 return DominatingValue<T>::save(*this, value); 565 } 566 567 public: 568 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 569 /// rethrows. 570 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 571 572 /// A class controlling the emission of a finally block. 573 class FinallyInfo { 574 /// Where the catchall's edge through the cleanup should go. 575 JumpDest RethrowDest; 576 577 /// A function to call to enter the catch. 578 llvm::FunctionCallee BeginCatchFn; 579 580 /// An i1 variable indicating whether or not the @finally is 581 /// running for an exception. 582 llvm::AllocaInst *ForEHVar; 583 584 /// An i8* variable into which the exception pointer to rethrow 585 /// has been saved. 586 llvm::AllocaInst *SavedExnVar; 587 588 public: 589 void enter(CodeGenFunction &CGF, const Stmt *Finally, 590 llvm::FunctionCallee beginCatchFn, 591 llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn); 592 void exit(CodeGenFunction &CGF); 593 }; 594 595 /// Returns true inside SEH __try blocks. 596 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 597 598 /// Returns true while emitting a cleanuppad. 599 bool isCleanupPadScope() const { 600 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 601 } 602 603 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 604 /// current full-expression. Safe against the possibility that 605 /// we're currently inside a conditionally-evaluated expression. 606 template <class T, class... As> 607 void pushFullExprCleanup(CleanupKind kind, As... A) { 608 // If we're not in a conditional branch, or if none of the 609 // arguments requires saving, then use the unconditional cleanup. 610 if (!isInConditionalBranch()) 611 return EHStack.pushCleanup<T>(kind, A...); 612 613 // Stash values in a tuple so we can guarantee the order of saves. 614 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 615 SavedTuple Saved{saveValueInCond(A)...}; 616 617 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 618 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 619 initFullExprCleanup(); 620 } 621 622 /// Queue a cleanup to be pushed after finishing the current 623 /// full-expression. 624 template <class T, class... As> 625 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 626 if (!isInConditionalBranch()) 627 return pushCleanupAfterFullExprImpl<T>(Kind, Address::invalid(), A...); 628 629 Address ActiveFlag = createCleanupActiveFlag(); 630 assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && 631 "cleanup active flag should never need saving"); 632 633 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 634 SavedTuple Saved{saveValueInCond(A)...}; 635 636 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 637 pushCleanupAfterFullExprImpl<CleanupType>(Kind, ActiveFlag, Saved); 638 } 639 640 template <class T, class... As> 641 void pushCleanupAfterFullExprImpl(CleanupKind Kind, Address ActiveFlag, 642 As... A) { 643 LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind, 644 ActiveFlag.isValid()}; 645 646 size_t OldSize = LifetimeExtendedCleanupStack.size(); 647 LifetimeExtendedCleanupStack.resize( 648 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + 649 (Header.IsConditional ? sizeof(ActiveFlag) : 0)); 650 651 static_assert(sizeof(Header) % alignof(T) == 0, 652 "Cleanup will be allocated on misaligned address"); 653 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 654 new (Buffer) LifetimeExtendedCleanupHeader(Header); 655 new (Buffer + sizeof(Header)) T(A...); 656 if (Header.IsConditional) 657 new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag); 658 } 659 660 /// Set up the last cleanup that was pushed as a conditional 661 /// full-expression cleanup. 662 void initFullExprCleanup() { 663 initFullExprCleanupWithFlag(createCleanupActiveFlag()); 664 } 665 666 void initFullExprCleanupWithFlag(Address ActiveFlag); 667 Address createCleanupActiveFlag(); 668 669 /// PushDestructorCleanup - Push a cleanup to call the 670 /// complete-object destructor of an object of the given type at the 671 /// given address. Does nothing if T is not a C++ class type with a 672 /// non-trivial destructor. 673 void PushDestructorCleanup(QualType T, Address Addr); 674 675 /// PushDestructorCleanup - Push a cleanup to call the 676 /// complete-object variant of the given destructor on the object at 677 /// the given address. 678 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T, 679 Address Addr); 680 681 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 682 /// process all branch fixups. 683 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 684 685 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 686 /// The block cannot be reactivated. Pops it if it's the top of the 687 /// stack. 688 /// 689 /// \param DominatingIP - An instruction which is known to 690 /// dominate the current IP (if set) and which lies along 691 /// all paths of execution between the current IP and the 692 /// the point at which the cleanup comes into scope. 693 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 694 llvm::Instruction *DominatingIP); 695 696 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 697 /// Cannot be used to resurrect a deactivated cleanup. 698 /// 699 /// \param DominatingIP - An instruction which is known to 700 /// dominate the current IP (if set) and which lies along 701 /// all paths of execution between the current IP and the 702 /// the point at which the cleanup comes into scope. 703 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 704 llvm::Instruction *DominatingIP); 705 706 /// Enters a new scope for capturing cleanups, all of which 707 /// will be executed once the scope is exited. 708 class RunCleanupsScope { 709 EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; 710 size_t LifetimeExtendedCleanupStackSize; 711 bool OldDidCallStackSave; 712 protected: 713 bool PerformCleanup; 714 private: 715 716 RunCleanupsScope(const RunCleanupsScope &) = delete; 717 void operator=(const RunCleanupsScope &) = delete; 718 719 protected: 720 CodeGenFunction& CGF; 721 722 public: 723 /// Enter a new cleanup scope. 724 explicit RunCleanupsScope(CodeGenFunction &CGF) 725 : PerformCleanup(true), CGF(CGF) 726 { 727 CleanupStackDepth = CGF.EHStack.stable_begin(); 728 LifetimeExtendedCleanupStackSize = 729 CGF.LifetimeExtendedCleanupStack.size(); 730 OldDidCallStackSave = CGF.DidCallStackSave; 731 CGF.DidCallStackSave = false; 732 OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; 733 CGF.CurrentCleanupScopeDepth = CleanupStackDepth; 734 } 735 736 /// Exit this cleanup scope, emitting any accumulated cleanups. 737 ~RunCleanupsScope() { 738 if (PerformCleanup) 739 ForceCleanup(); 740 } 741 742 /// Determine whether this scope requires any cleanups. 743 bool requiresCleanups() const { 744 return CGF.EHStack.stable_begin() != CleanupStackDepth; 745 } 746 747 /// Force the emission of cleanups now, instead of waiting 748 /// until this object is destroyed. 749 /// \param ValuesToReload - A list of values that need to be available at 750 /// the insertion point after cleanup emission. If cleanup emission created 751 /// a shared cleanup block, these value pointers will be rewritten. 752 /// Otherwise, they not will be modified. 753 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 754 assert(PerformCleanup && "Already forced cleanup"); 755 CGF.DidCallStackSave = OldDidCallStackSave; 756 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 757 ValuesToReload); 758 PerformCleanup = false; 759 CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; 760 } 761 }; 762 763 // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. 764 EHScopeStack::stable_iterator CurrentCleanupScopeDepth = 765 EHScopeStack::stable_end(); 766 767 class LexicalScope : public RunCleanupsScope { 768 SourceRange Range; 769 SmallVector<const LabelDecl*, 4> Labels; 770 LexicalScope *ParentScope; 771 772 LexicalScope(const LexicalScope &) = delete; 773 void operator=(const LexicalScope &) = delete; 774 775 public: 776 /// Enter a new cleanup scope. 777 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 778 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 779 CGF.CurLexicalScope = this; 780 if (CGDebugInfo *DI = CGF.getDebugInfo()) 781 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 782 } 783 784 void addLabel(const LabelDecl *label) { 785 assert(PerformCleanup && "adding label to dead scope?"); 786 Labels.push_back(label); 787 } 788 789 /// Exit this cleanup scope, emitting any accumulated 790 /// cleanups. 791 ~LexicalScope() { 792 if (CGDebugInfo *DI = CGF.getDebugInfo()) 793 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 794 795 // If we should perform a cleanup, force them now. Note that 796 // this ends the cleanup scope before rescoping any labels. 797 if (PerformCleanup) { 798 ApplyDebugLocation DL(CGF, Range.getEnd()); 799 ForceCleanup(); 800 } 801 } 802 803 /// Force the emission of cleanups now, instead of waiting 804 /// until this object is destroyed. 805 void ForceCleanup() { 806 CGF.CurLexicalScope = ParentScope; 807 RunCleanupsScope::ForceCleanup(); 808 809 if (!Labels.empty()) 810 rescopeLabels(); 811 } 812 813 bool hasLabels() const { 814 return !Labels.empty(); 815 } 816 817 void rescopeLabels(); 818 }; 819 820 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 821 822 /// The class used to assign some variables some temporarily addresses. 823 class OMPMapVars { 824 DeclMapTy SavedLocals; 825 DeclMapTy SavedTempAddresses; 826 OMPMapVars(const OMPMapVars &) = delete; 827 void operator=(const OMPMapVars &) = delete; 828 829 public: 830 explicit OMPMapVars() = default; 831 ~OMPMapVars() { 832 assert(SavedLocals.empty() && "Did not restored original addresses."); 833 }; 834 835 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 836 /// function \p CGF. 837 /// \return true if at least one variable was set already, false otherwise. 838 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 839 Address TempAddr) { 840 LocalVD = LocalVD->getCanonicalDecl(); 841 // Only save it once. 842 if (SavedLocals.count(LocalVD)) return false; 843 844 // Copy the existing local entry to SavedLocals. 845 auto it = CGF.LocalDeclMap.find(LocalVD); 846 if (it != CGF.LocalDeclMap.end()) 847 SavedLocals.try_emplace(LocalVD, it->second); 848 else 849 SavedLocals.try_emplace(LocalVD, Address::invalid()); 850 851 // Generate the private entry. 852 QualType VarTy = LocalVD->getType(); 853 if (VarTy->isReferenceType()) { 854 Address Temp = CGF.CreateMemTemp(VarTy); 855 CGF.Builder.CreateStore(TempAddr.getPointer(), Temp); 856 TempAddr = Temp; 857 } 858 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 859 860 return true; 861 } 862 863 /// Applies new addresses to the list of the variables. 864 /// \return true if at least one variable is using new address, false 865 /// otherwise. 866 bool apply(CodeGenFunction &CGF) { 867 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 868 SavedTempAddresses.clear(); 869 return !SavedLocals.empty(); 870 } 871 872 /// Restores original addresses of the variables. 873 void restore(CodeGenFunction &CGF) { 874 if (!SavedLocals.empty()) { 875 copyInto(SavedLocals, CGF.LocalDeclMap); 876 SavedLocals.clear(); 877 } 878 } 879 880 private: 881 /// Copy all the entries in the source map over the corresponding 882 /// entries in the destination, which must exist. 883 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 884 for (auto &Pair : Src) { 885 if (!Pair.second.isValid()) { 886 Dest.erase(Pair.first); 887 continue; 888 } 889 890 auto I = Dest.find(Pair.first); 891 if (I != Dest.end()) 892 I->second = Pair.second; 893 else 894 Dest.insert(Pair); 895 } 896 } 897 }; 898 899 /// The scope used to remap some variables as private in the OpenMP loop body 900 /// (or other captured region emitted without outlining), and to restore old 901 /// vars back on exit. 902 class OMPPrivateScope : public RunCleanupsScope { 903 OMPMapVars MappedVars; 904 OMPPrivateScope(const OMPPrivateScope &) = delete; 905 void operator=(const OMPPrivateScope &) = delete; 906 907 public: 908 /// Enter a new OpenMP private scope. 909 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 910 911 /// Registers \p LocalVD variable as a private and apply \p PrivateGen 912 /// function for it to generate corresponding private variable. \p 913 /// PrivateGen returns an address of the generated private variable. 914 /// \return true if the variable is registered as private, false if it has 915 /// been privatized already. 916 bool addPrivate(const VarDecl *LocalVD, 917 const llvm::function_ref<Address()> PrivateGen) { 918 assert(PerformCleanup && "adding private to dead scope"); 919 return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen()); 920 } 921 922 /// Privatizes local variables previously registered as private. 923 /// Registration is separate from the actual privatization to allow 924 /// initializers use values of the original variables, not the private one. 925 /// This is important, for example, if the private variable is a class 926 /// variable initialized by a constructor that references other private 927 /// variables. But at initialization original variables must be used, not 928 /// private copies. 929 /// \return true if at least one variable was privatized, false otherwise. 930 bool Privatize() { return MappedVars.apply(CGF); } 931 932 void ForceCleanup() { 933 RunCleanupsScope::ForceCleanup(); 934 MappedVars.restore(CGF); 935 } 936 937 /// Exit scope - all the mapped variables are restored. 938 ~OMPPrivateScope() { 939 if (PerformCleanup) 940 ForceCleanup(); 941 } 942 943 /// Checks if the global variable is captured in current function. 944 bool isGlobalVarCaptured(const VarDecl *VD) const { 945 VD = VD->getCanonicalDecl(); 946 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 947 } 948 }; 949 950 /// Takes the old cleanup stack size and emits the cleanup blocks 951 /// that have been added. 952 void 953 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 954 std::initializer_list<llvm::Value **> ValuesToReload = {}); 955 956 /// Takes the old cleanup stack size and emits the cleanup blocks 957 /// that have been added, then adds all lifetime-extended cleanups from 958 /// the given position to the stack. 959 void 960 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 961 size_t OldLifetimeExtendedStackSize, 962 std::initializer_list<llvm::Value **> ValuesToReload = {}); 963 964 void ResolveBranchFixups(llvm::BasicBlock *Target); 965 966 /// The given basic block lies in the current EH scope, but may be a 967 /// target of a potentially scope-crossing jump; get a stable handle 968 /// to which we can perform this jump later. 969 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 970 return JumpDest(Target, 971 EHStack.getInnermostNormalCleanup(), 972 NextCleanupDestIndex++); 973 } 974 975 /// The given basic block lies in the current EH scope, but may be a 976 /// target of a potentially scope-crossing jump; get a stable handle 977 /// to which we can perform this jump later. 978 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 979 return getJumpDestInCurrentScope(createBasicBlock(Name)); 980 } 981 982 /// EmitBranchThroughCleanup - Emit a branch from the current insert 983 /// block through the normal cleanup handling code (if any) and then 984 /// on to \arg Dest. 985 void EmitBranchThroughCleanup(JumpDest Dest); 986 987 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 988 /// specified destination obviously has no cleanups to run. 'false' is always 989 /// a conservatively correct answer for this method. 990 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 991 992 /// popCatchScope - Pops the catch scope at the top of the EHScope 993 /// stack, emitting any required code (other than the catch handlers 994 /// themselves). 995 void popCatchScope(); 996 997 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 998 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 999 llvm::BasicBlock * 1000 getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); 1001 1002 /// An object to manage conditionally-evaluated expressions. 1003 class ConditionalEvaluation { 1004 llvm::BasicBlock *StartBB; 1005 1006 public: 1007 ConditionalEvaluation(CodeGenFunction &CGF) 1008 : StartBB(CGF.Builder.GetInsertBlock()) {} 1009 1010 void begin(CodeGenFunction &CGF) { 1011 assert(CGF.OutermostConditional != this); 1012 if (!CGF.OutermostConditional) 1013 CGF.OutermostConditional = this; 1014 } 1015 1016 void end(CodeGenFunction &CGF) { 1017 assert(CGF.OutermostConditional != nullptr); 1018 if (CGF.OutermostConditional == this) 1019 CGF.OutermostConditional = nullptr; 1020 } 1021 1022 /// Returns a block which will be executed prior to each 1023 /// evaluation of the conditional code. 1024 llvm::BasicBlock *getStartingBlock() const { 1025 return StartBB; 1026 } 1027 }; 1028 1029 /// isInConditionalBranch - Return true if we're currently emitting 1030 /// one branch or the other of a conditional expression. 1031 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 1032 1033 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 1034 assert(isInConditionalBranch()); 1035 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 1036 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 1037 store->setAlignment(addr.getAlignment().getQuantity()); 1038 } 1039 1040 /// An RAII object to record that we're evaluating a statement 1041 /// expression. 1042 class StmtExprEvaluation { 1043 CodeGenFunction &CGF; 1044 1045 /// We have to save the outermost conditional: cleanups in a 1046 /// statement expression aren't conditional just because the 1047 /// StmtExpr is. 1048 ConditionalEvaluation *SavedOutermostConditional; 1049 1050 public: 1051 StmtExprEvaluation(CodeGenFunction &CGF) 1052 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 1053 CGF.OutermostConditional = nullptr; 1054 } 1055 1056 ~StmtExprEvaluation() { 1057 CGF.OutermostConditional = SavedOutermostConditional; 1058 CGF.EnsureInsertPoint(); 1059 } 1060 }; 1061 1062 /// An object which temporarily prevents a value from being 1063 /// destroyed by aggressive peephole optimizations that assume that 1064 /// all uses of a value have been realized in the IR. 1065 class PeepholeProtection { 1066 llvm::Instruction *Inst; 1067 friend class CodeGenFunction; 1068 1069 public: 1070 PeepholeProtection() : Inst(nullptr) {} 1071 }; 1072 1073 /// A non-RAII class containing all the information about a bound 1074 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 1075 /// this which makes individual mappings very simple; using this 1076 /// class directly is useful when you have a variable number of 1077 /// opaque values or don't want the RAII functionality for some 1078 /// reason. 1079 class OpaqueValueMappingData { 1080 const OpaqueValueExpr *OpaqueValue; 1081 bool BoundLValue; 1082 CodeGenFunction::PeepholeProtection Protection; 1083 1084 OpaqueValueMappingData(const OpaqueValueExpr *ov, 1085 bool boundLValue) 1086 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1087 public: 1088 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 1089 1090 static bool shouldBindAsLValue(const Expr *expr) { 1091 // gl-values should be bound as l-values for obvious reasons. 1092 // Records should be bound as l-values because IR generation 1093 // always keeps them in memory. Expressions of function type 1094 // act exactly like l-values but are formally required to be 1095 // r-values in C. 1096 return expr->isGLValue() || 1097 expr->getType()->isFunctionType() || 1098 hasAggregateEvaluationKind(expr->getType()); 1099 } 1100 1101 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1102 const OpaqueValueExpr *ov, 1103 const Expr *e) { 1104 if (shouldBindAsLValue(ov)) 1105 return bind(CGF, ov, CGF.EmitLValue(e)); 1106 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1107 } 1108 1109 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1110 const OpaqueValueExpr *ov, 1111 const LValue &lv) { 1112 assert(shouldBindAsLValue(ov)); 1113 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1114 return OpaqueValueMappingData(ov, true); 1115 } 1116 1117 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1118 const OpaqueValueExpr *ov, 1119 const RValue &rv) { 1120 assert(!shouldBindAsLValue(ov)); 1121 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1122 1123 OpaqueValueMappingData data(ov, false); 1124 1125 // Work around an extremely aggressive peephole optimization in 1126 // EmitScalarConversion which assumes that all other uses of a 1127 // value are extant. 1128 data.Protection = CGF.protectFromPeepholes(rv); 1129 1130 return data; 1131 } 1132 1133 bool isValid() const { return OpaqueValue != nullptr; } 1134 void clear() { OpaqueValue = nullptr; } 1135 1136 void unbind(CodeGenFunction &CGF) { 1137 assert(OpaqueValue && "no data to unbind!"); 1138 1139 if (BoundLValue) { 1140 CGF.OpaqueLValues.erase(OpaqueValue); 1141 } else { 1142 CGF.OpaqueRValues.erase(OpaqueValue); 1143 CGF.unprotectFromPeepholes(Protection); 1144 } 1145 } 1146 }; 1147 1148 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1149 class OpaqueValueMapping { 1150 CodeGenFunction &CGF; 1151 OpaqueValueMappingData Data; 1152 1153 public: 1154 static bool shouldBindAsLValue(const Expr *expr) { 1155 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1156 } 1157 1158 /// Build the opaque value mapping for the given conditional 1159 /// operator if it's the GNU ?: extension. This is a common 1160 /// enough pattern that the convenience operator is really 1161 /// helpful. 1162 /// 1163 OpaqueValueMapping(CodeGenFunction &CGF, 1164 const AbstractConditionalOperator *op) : CGF(CGF) { 1165 if (isa<ConditionalOperator>(op)) 1166 // Leave Data empty. 1167 return; 1168 1169 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1170 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1171 e->getCommon()); 1172 } 1173 1174 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1175 /// expression is set to the expression the OVE represents. 1176 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1177 : CGF(CGF) { 1178 if (OV) { 1179 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1180 "for OVE with no source expression"); 1181 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1182 } 1183 } 1184 1185 OpaqueValueMapping(CodeGenFunction &CGF, 1186 const OpaqueValueExpr *opaqueValue, 1187 LValue lvalue) 1188 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1189 } 1190 1191 OpaqueValueMapping(CodeGenFunction &CGF, 1192 const OpaqueValueExpr *opaqueValue, 1193 RValue rvalue) 1194 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1195 } 1196 1197 void pop() { 1198 Data.unbind(CGF); 1199 Data.clear(); 1200 } 1201 1202 ~OpaqueValueMapping() { 1203 if (Data.isValid()) Data.unbind(CGF); 1204 } 1205 }; 1206 1207 private: 1208 CGDebugInfo *DebugInfo; 1209 /// Used to create unique names for artificial VLA size debug info variables. 1210 unsigned VLAExprCounter = 0; 1211 bool DisableDebugInfo = false; 1212 1213 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1214 /// calling llvm.stacksave for multiple VLAs in the same scope. 1215 bool DidCallStackSave = false; 1216 1217 /// IndirectBranch - The first time an indirect goto is seen we create a block 1218 /// with an indirect branch. Every time we see the address of a label taken, 1219 /// we add the label to the indirect goto. Every subsequent indirect goto is 1220 /// codegen'd as a jump to the IndirectBranch's basic block. 1221 llvm::IndirectBrInst *IndirectBranch = nullptr; 1222 1223 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1224 /// decls. 1225 DeclMapTy LocalDeclMap; 1226 1227 // Keep track of the cleanups for callee-destructed parameters pushed to the 1228 // cleanup stack so that they can be deactivated later. 1229 llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> 1230 CalleeDestructedParamCleanups; 1231 1232 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1233 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1234 /// parameter. 1235 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1236 SizeArguments; 1237 1238 /// Track escaped local variables with auto storage. Used during SEH 1239 /// outlining to produce a call to llvm.localescape. 1240 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1241 1242 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1243 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1244 1245 // BreakContinueStack - This keeps track of where break and continue 1246 // statements should jump to. 1247 struct BreakContinue { 1248 BreakContinue(JumpDest Break, JumpDest Continue) 1249 : BreakBlock(Break), ContinueBlock(Continue) {} 1250 1251 JumpDest BreakBlock; 1252 JumpDest ContinueBlock; 1253 }; 1254 SmallVector<BreakContinue, 8> BreakContinueStack; 1255 1256 /// Handles cancellation exit points in OpenMP-related constructs. 1257 class OpenMPCancelExitStack { 1258 /// Tracks cancellation exit point and join point for cancel-related exit 1259 /// and normal exit. 1260 struct CancelExit { 1261 CancelExit() = default; 1262 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1263 JumpDest ContBlock) 1264 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1265 OpenMPDirectiveKind Kind = OMPD_unknown; 1266 /// true if the exit block has been emitted already by the special 1267 /// emitExit() call, false if the default codegen is used. 1268 bool HasBeenEmitted = false; 1269 JumpDest ExitBlock; 1270 JumpDest ContBlock; 1271 }; 1272 1273 SmallVector<CancelExit, 8> Stack; 1274 1275 public: 1276 OpenMPCancelExitStack() : Stack(1) {} 1277 ~OpenMPCancelExitStack() = default; 1278 /// Fetches the exit block for the current OpenMP construct. 1279 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1280 /// Emits exit block with special codegen procedure specific for the related 1281 /// OpenMP construct + emits code for normal construct cleanup. 1282 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1283 const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { 1284 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1285 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1286 assert(CGF.HaveInsertPoint()); 1287 assert(!Stack.back().HasBeenEmitted); 1288 auto IP = CGF.Builder.saveAndClearIP(); 1289 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1290 CodeGen(CGF); 1291 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1292 CGF.Builder.restoreIP(IP); 1293 Stack.back().HasBeenEmitted = true; 1294 } 1295 CodeGen(CGF); 1296 } 1297 /// Enter the cancel supporting \a Kind construct. 1298 /// \param Kind OpenMP directive that supports cancel constructs. 1299 /// \param HasCancel true, if the construct has inner cancel directive, 1300 /// false otherwise. 1301 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1302 Stack.push_back({Kind, 1303 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1304 : JumpDest(), 1305 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1306 : JumpDest()}); 1307 } 1308 /// Emits default exit point for the cancel construct (if the special one 1309 /// has not be used) + join point for cancel/normal exits. 1310 void exit(CodeGenFunction &CGF) { 1311 if (getExitBlock().isValid()) { 1312 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1313 bool HaveIP = CGF.HaveInsertPoint(); 1314 if (!Stack.back().HasBeenEmitted) { 1315 if (HaveIP) 1316 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1317 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1318 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1319 } 1320 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1321 if (!HaveIP) { 1322 CGF.Builder.CreateUnreachable(); 1323 CGF.Builder.ClearInsertionPoint(); 1324 } 1325 } 1326 Stack.pop_back(); 1327 } 1328 }; 1329 OpenMPCancelExitStack OMPCancelStack; 1330 1331 CodeGenPGO PGO; 1332 1333 /// Calculate branch weights appropriate for PGO data 1334 llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); 1335 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); 1336 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1337 uint64_t LoopCount); 1338 1339 public: 1340 /// Increment the profiler's counter for the given statement by \p StepV. 1341 /// If \p StepV is null, the default increment is 1. 1342 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1343 if (CGM.getCodeGenOpts().hasProfileClangInstr()) 1344 PGO.emitCounterIncrement(Builder, S, StepV); 1345 PGO.setCurrentStmt(S); 1346 } 1347 1348 /// Get the profiler's count for the given statement. 1349 uint64_t getProfileCount(const Stmt *S) { 1350 Optional<uint64_t> Count = PGO.getStmtCount(S); 1351 if (!Count.hasValue()) 1352 return 0; 1353 return *Count; 1354 } 1355 1356 /// Set the profiler's current count. 1357 void setCurrentProfileCount(uint64_t Count) { 1358 PGO.setCurrentRegionCount(Count); 1359 } 1360 1361 /// Get the profiler's current count. This is generally the count for the most 1362 /// recently incremented counter. 1363 uint64_t getCurrentProfileCount() { 1364 return PGO.getCurrentRegionCount(); 1365 } 1366 1367 private: 1368 1369 /// SwitchInsn - This is nearest current switch instruction. It is null if 1370 /// current context is not in a switch. 1371 llvm::SwitchInst *SwitchInsn = nullptr; 1372 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1373 SmallVector<uint64_t, 16> *SwitchWeights = nullptr; 1374 1375 /// CaseRangeBlock - This block holds if condition check for last case 1376 /// statement range in current switch instruction. 1377 llvm::BasicBlock *CaseRangeBlock = nullptr; 1378 1379 /// OpaqueLValues - Keeps track of the current set of opaque value 1380 /// expressions. 1381 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1382 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1383 1384 // VLASizeMap - This keeps track of the associated size for each VLA type. 1385 // We track this by the size expression rather than the type itself because 1386 // in certain situations, like a const qualifier applied to an VLA typedef, 1387 // multiple VLA types can share the same size expression. 1388 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1389 // enter/leave scopes. 1390 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1391 1392 /// A block containing a single 'unreachable' instruction. Created 1393 /// lazily by getUnreachableBlock(). 1394 llvm::BasicBlock *UnreachableBlock = nullptr; 1395 1396 /// Counts of the number return expressions in the function. 1397 unsigned NumReturnExprs = 0; 1398 1399 /// Count the number of simple (constant) return expressions in the function. 1400 unsigned NumSimpleReturnExprs = 0; 1401 1402 /// The last regular (non-return) debug location (breakpoint) in the function. 1403 SourceLocation LastStopPoint; 1404 1405 public: 1406 /// Source location information about the default argument or member 1407 /// initializer expression we're evaluating, if any. 1408 CurrentSourceLocExprScope CurSourceLocExprScope; 1409 using SourceLocExprScopeGuard = 1410 CurrentSourceLocExprScope::SourceLocExprScopeGuard; 1411 1412 /// A scope within which we are constructing the fields of an object which 1413 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1414 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1415 class FieldConstructionScope { 1416 public: 1417 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1418 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1419 CGF.CXXDefaultInitExprThis = This; 1420 } 1421 ~FieldConstructionScope() { 1422 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1423 } 1424 1425 private: 1426 CodeGenFunction &CGF; 1427 Address OldCXXDefaultInitExprThis; 1428 }; 1429 1430 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1431 /// is overridden to be the object under construction. 1432 class CXXDefaultInitExprScope { 1433 public: 1434 CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E) 1435 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1436 OldCXXThisAlignment(CGF.CXXThisAlignment), 1437 SourceLocScope(E, CGF.CurSourceLocExprScope) { 1438 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1439 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1440 } 1441 ~CXXDefaultInitExprScope() { 1442 CGF.CXXThisValue = OldCXXThisValue; 1443 CGF.CXXThisAlignment = OldCXXThisAlignment; 1444 } 1445 1446 public: 1447 CodeGenFunction &CGF; 1448 llvm::Value *OldCXXThisValue; 1449 CharUnits OldCXXThisAlignment; 1450 SourceLocExprScopeGuard SourceLocScope; 1451 }; 1452 1453 struct CXXDefaultArgExprScope : SourceLocExprScopeGuard { 1454 CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E) 1455 : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {} 1456 }; 1457 1458 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1459 /// current loop index is overridden. 1460 class ArrayInitLoopExprScope { 1461 public: 1462 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1463 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1464 CGF.ArrayInitIndex = Index; 1465 } 1466 ~ArrayInitLoopExprScope() { 1467 CGF.ArrayInitIndex = OldArrayInitIndex; 1468 } 1469 1470 private: 1471 CodeGenFunction &CGF; 1472 llvm::Value *OldArrayInitIndex; 1473 }; 1474 1475 class InlinedInheritingConstructorScope { 1476 public: 1477 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1478 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1479 OldCurCodeDecl(CGF.CurCodeDecl), 1480 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1481 OldCXXABIThisValue(CGF.CXXABIThisValue), 1482 OldCXXThisValue(CGF.CXXThisValue), 1483 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1484 OldCXXThisAlignment(CGF.CXXThisAlignment), 1485 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1486 OldCXXInheritedCtorInitExprArgs( 1487 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1488 CGF.CurGD = GD; 1489 CGF.CurFuncDecl = CGF.CurCodeDecl = 1490 cast<CXXConstructorDecl>(GD.getDecl()); 1491 CGF.CXXABIThisDecl = nullptr; 1492 CGF.CXXABIThisValue = nullptr; 1493 CGF.CXXThisValue = nullptr; 1494 CGF.CXXABIThisAlignment = CharUnits(); 1495 CGF.CXXThisAlignment = CharUnits(); 1496 CGF.ReturnValue = Address::invalid(); 1497 CGF.FnRetTy = QualType(); 1498 CGF.CXXInheritedCtorInitExprArgs.clear(); 1499 } 1500 ~InlinedInheritingConstructorScope() { 1501 CGF.CurGD = OldCurGD; 1502 CGF.CurFuncDecl = OldCurFuncDecl; 1503 CGF.CurCodeDecl = OldCurCodeDecl; 1504 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1505 CGF.CXXABIThisValue = OldCXXABIThisValue; 1506 CGF.CXXThisValue = OldCXXThisValue; 1507 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1508 CGF.CXXThisAlignment = OldCXXThisAlignment; 1509 CGF.ReturnValue = OldReturnValue; 1510 CGF.FnRetTy = OldFnRetTy; 1511 CGF.CXXInheritedCtorInitExprArgs = 1512 std::move(OldCXXInheritedCtorInitExprArgs); 1513 } 1514 1515 private: 1516 CodeGenFunction &CGF; 1517 GlobalDecl OldCurGD; 1518 const Decl *OldCurFuncDecl; 1519 const Decl *OldCurCodeDecl; 1520 ImplicitParamDecl *OldCXXABIThisDecl; 1521 llvm::Value *OldCXXABIThisValue; 1522 llvm::Value *OldCXXThisValue; 1523 CharUnits OldCXXABIThisAlignment; 1524 CharUnits OldCXXThisAlignment; 1525 Address OldReturnValue; 1526 QualType OldFnRetTy; 1527 CallArgList OldCXXInheritedCtorInitExprArgs; 1528 }; 1529 1530 private: 1531 /// CXXThisDecl - When generating code for a C++ member function, 1532 /// this will hold the implicit 'this' declaration. 1533 ImplicitParamDecl *CXXABIThisDecl = nullptr; 1534 llvm::Value *CXXABIThisValue = nullptr; 1535 llvm::Value *CXXThisValue = nullptr; 1536 CharUnits CXXABIThisAlignment; 1537 CharUnits CXXThisAlignment; 1538 1539 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1540 /// this expression. 1541 Address CXXDefaultInitExprThis = Address::invalid(); 1542 1543 /// The current array initialization index when evaluating an 1544 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1545 llvm::Value *ArrayInitIndex = nullptr; 1546 1547 /// The values of function arguments to use when evaluating 1548 /// CXXInheritedCtorInitExprs within this context. 1549 CallArgList CXXInheritedCtorInitExprArgs; 1550 1551 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1552 /// destructor, this will hold the implicit argument (e.g. VTT). 1553 ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; 1554 llvm::Value *CXXStructorImplicitParamValue = nullptr; 1555 1556 /// OutermostConditional - Points to the outermost active 1557 /// conditional control. This is used so that we know if a 1558 /// temporary should be destroyed conditionally. 1559 ConditionalEvaluation *OutermostConditional = nullptr; 1560 1561 /// The current lexical scope. 1562 LexicalScope *CurLexicalScope = nullptr; 1563 1564 /// The current source location that should be used for exception 1565 /// handling code. 1566 SourceLocation CurEHLocation; 1567 1568 /// BlockByrefInfos - For each __block variable, contains 1569 /// information about the layout of the variable. 1570 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1571 1572 /// Used by -fsanitize=nullability-return to determine whether the return 1573 /// value can be checked. 1574 llvm::Value *RetValNullabilityPrecondition = nullptr; 1575 1576 /// Check if -fsanitize=nullability-return instrumentation is required for 1577 /// this function. 1578 bool requiresReturnValueNullabilityCheck() const { 1579 return RetValNullabilityPrecondition; 1580 } 1581 1582 /// Used to store precise source locations for return statements by the 1583 /// runtime return value checks. 1584 Address ReturnLocation = Address::invalid(); 1585 1586 /// Check if the return value of this function requires sanitization. 1587 bool requiresReturnValueCheck() const { 1588 return requiresReturnValueNullabilityCheck() || 1589 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 1590 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 1591 } 1592 1593 llvm::BasicBlock *TerminateLandingPad = nullptr; 1594 llvm::BasicBlock *TerminateHandler = nullptr; 1595 llvm::BasicBlock *TrapBB = nullptr; 1596 1597 /// Terminate funclets keyed by parent funclet pad. 1598 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 1599 1600 /// Largest vector width used in ths function. Will be used to create a 1601 /// function attribute. 1602 unsigned LargestVectorWidth = 0; 1603 1604 /// True if we need emit the life-time markers. 1605 const bool ShouldEmitLifetimeMarkers; 1606 1607 /// Add OpenCL kernel arg metadata and the kernel attribute metadata to 1608 /// the function metadata. 1609 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1610 llvm::Function *Fn); 1611 1612 public: 1613 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1614 ~CodeGenFunction(); 1615 1616 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1617 ASTContext &getContext() const { return CGM.getContext(); } 1618 CGDebugInfo *getDebugInfo() { 1619 if (DisableDebugInfo) 1620 return nullptr; 1621 return DebugInfo; 1622 } 1623 void disableDebugInfo() { DisableDebugInfo = true; } 1624 void enableDebugInfo() { DisableDebugInfo = false; } 1625 1626 bool shouldUseFusedARCCalls() { 1627 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1628 } 1629 1630 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1631 1632 /// Returns a pointer to the function's exception object and selector slot, 1633 /// which is assigned in every landing pad. 1634 Address getExceptionSlot(); 1635 Address getEHSelectorSlot(); 1636 1637 /// Returns the contents of the function's exception object and selector 1638 /// slots. 1639 llvm::Value *getExceptionFromSlot(); 1640 llvm::Value *getSelectorFromSlot(); 1641 1642 Address getNormalCleanupDestSlot(); 1643 1644 llvm::BasicBlock *getUnreachableBlock() { 1645 if (!UnreachableBlock) { 1646 UnreachableBlock = createBasicBlock("unreachable"); 1647 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1648 } 1649 return UnreachableBlock; 1650 } 1651 1652 llvm::BasicBlock *getInvokeDest() { 1653 if (!EHStack.requiresLandingPad()) return nullptr; 1654 return getInvokeDestImpl(); 1655 } 1656 1657 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1658 1659 const TargetInfo &getTarget() const { return Target; } 1660 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1661 const TargetCodeGenInfo &getTargetHooks() const { 1662 return CGM.getTargetCodeGenInfo(); 1663 } 1664 1665 //===--------------------------------------------------------------------===// 1666 // Cleanups 1667 //===--------------------------------------------------------------------===// 1668 1669 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1670 1671 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1672 Address arrayEndPointer, 1673 QualType elementType, 1674 CharUnits elementAlignment, 1675 Destroyer *destroyer); 1676 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1677 llvm::Value *arrayEnd, 1678 QualType elementType, 1679 CharUnits elementAlignment, 1680 Destroyer *destroyer); 1681 1682 void pushDestroy(QualType::DestructionKind dtorKind, 1683 Address addr, QualType type); 1684 void pushEHDestroy(QualType::DestructionKind dtorKind, 1685 Address addr, QualType type); 1686 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1687 Destroyer *destroyer, bool useEHCleanupForArray); 1688 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1689 QualType type, Destroyer *destroyer, 1690 bool useEHCleanupForArray); 1691 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1692 llvm::Value *CompletePtr, 1693 QualType ElementType); 1694 void pushStackRestore(CleanupKind kind, Address SPMem); 1695 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1696 bool useEHCleanupForArray); 1697 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1698 Destroyer *destroyer, 1699 bool useEHCleanupForArray, 1700 const VarDecl *VD); 1701 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1702 QualType elementType, CharUnits elementAlign, 1703 Destroyer *destroyer, 1704 bool checkZeroLength, bool useEHCleanup); 1705 1706 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1707 1708 /// Determines whether an EH cleanup is required to destroy a type 1709 /// with the given destruction kind. 1710 bool needsEHCleanup(QualType::DestructionKind kind) { 1711 switch (kind) { 1712 case QualType::DK_none: 1713 return false; 1714 case QualType::DK_cxx_destructor: 1715 case QualType::DK_objc_weak_lifetime: 1716 case QualType::DK_nontrivial_c_struct: 1717 return getLangOpts().Exceptions; 1718 case QualType::DK_objc_strong_lifetime: 1719 return getLangOpts().Exceptions && 1720 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1721 } 1722 llvm_unreachable("bad destruction kind"); 1723 } 1724 1725 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1726 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1727 } 1728 1729 //===--------------------------------------------------------------------===// 1730 // Objective-C 1731 //===--------------------------------------------------------------------===// 1732 1733 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1734 1735 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1736 1737 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1738 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1739 const ObjCPropertyImplDecl *PID); 1740 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1741 const ObjCPropertyImplDecl *propImpl, 1742 const ObjCMethodDecl *GetterMothodDecl, 1743 llvm::Constant *AtomicHelperFn); 1744 1745 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1746 ObjCMethodDecl *MD, bool ctor); 1747 1748 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1749 /// for the given property. 1750 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1751 const ObjCPropertyImplDecl *PID); 1752 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1753 const ObjCPropertyImplDecl *propImpl, 1754 llvm::Constant *AtomicHelperFn); 1755 1756 //===--------------------------------------------------------------------===// 1757 // Block Bits 1758 //===--------------------------------------------------------------------===// 1759 1760 /// Emit block literal. 1761 /// \return an LLVM value which is a pointer to a struct which contains 1762 /// information about the block, including the block invoke function, the 1763 /// captured variables, etc. 1764 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1765 static void destroyBlockInfos(CGBlockInfo *info); 1766 1767 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1768 const CGBlockInfo &Info, 1769 const DeclMapTy &ldm, 1770 bool IsLambdaConversionToBlock, 1771 bool BuildGlobalBlock); 1772 1773 /// Check if \p T is a C++ class that has a destructor that can throw. 1774 static bool cxxDestructorCanThrow(QualType T); 1775 1776 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1777 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1778 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1779 const ObjCPropertyImplDecl *PID); 1780 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1781 const ObjCPropertyImplDecl *PID); 1782 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1783 1784 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, 1785 bool CanThrow); 1786 1787 class AutoVarEmission; 1788 1789 void emitByrefStructureInit(const AutoVarEmission &emission); 1790 1791 /// Enter a cleanup to destroy a __block variable. Note that this 1792 /// cleanup should be a no-op if the variable hasn't left the stack 1793 /// yet; if a cleanup is required for the variable itself, that needs 1794 /// to be done externally. 1795 /// 1796 /// \param Kind Cleanup kind. 1797 /// 1798 /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block 1799 /// structure that will be passed to _Block_object_dispose. When 1800 /// \p LoadBlockVarAddr is true, the address of the field of the block 1801 /// structure that holds the address of the __block structure. 1802 /// 1803 /// \param Flags The flag that will be passed to _Block_object_dispose. 1804 /// 1805 /// \param LoadBlockVarAddr Indicates whether we need to emit a load from 1806 /// \p Addr to get the address of the __block structure. 1807 void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, 1808 bool LoadBlockVarAddr, bool CanThrow); 1809 1810 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 1811 llvm::Value *ptr); 1812 1813 Address LoadBlockStruct(); 1814 Address GetAddrOfBlockDecl(const VarDecl *var); 1815 1816 /// BuildBlockByrefAddress - Computes the location of the 1817 /// data in a variable which is declared as __block. 1818 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 1819 bool followForward = true); 1820 Address emitBlockByrefAddress(Address baseAddr, 1821 const BlockByrefInfo &info, 1822 bool followForward, 1823 const llvm::Twine &name); 1824 1825 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 1826 1827 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 1828 1829 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1830 const CGFunctionInfo &FnInfo); 1831 1832 /// Annotate the function with an attribute that disables TSan checking at 1833 /// runtime. 1834 void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); 1835 1836 /// Emit code for the start of a function. 1837 /// \param Loc The location to be associated with the function. 1838 /// \param StartLoc The location of the function body. 1839 void StartFunction(GlobalDecl GD, 1840 QualType RetTy, 1841 llvm::Function *Fn, 1842 const CGFunctionInfo &FnInfo, 1843 const FunctionArgList &Args, 1844 SourceLocation Loc = SourceLocation(), 1845 SourceLocation StartLoc = SourceLocation()); 1846 1847 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 1848 1849 void EmitConstructorBody(FunctionArgList &Args); 1850 void EmitDestructorBody(FunctionArgList &Args); 1851 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1852 void EmitFunctionBody(const Stmt *Body); 1853 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 1854 1855 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1856 CallArgList &CallArgs); 1857 void EmitLambdaBlockInvokeBody(); 1858 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1859 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 1860 void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) { 1861 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 1862 } 1863 void EmitAsanPrologueOrEpilogue(bool Prologue); 1864 1865 /// Emit the unified return block, trying to avoid its emission when 1866 /// possible. 1867 /// \return The debug location of the user written return statement if the 1868 /// return block is is avoided. 1869 llvm::DebugLoc EmitReturnBlock(); 1870 1871 /// FinishFunction - Complete IR generation of the current function. It is 1872 /// legal to call this function even if there is no current insertion point. 1873 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1874 1875 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 1876 const CGFunctionInfo &FnInfo, bool IsUnprototyped); 1877 1878 void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 1879 const ThunkInfo *Thunk, bool IsUnprototyped); 1880 1881 void FinishThunk(); 1882 1883 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 1884 void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, 1885 llvm::FunctionCallee Callee); 1886 1887 /// Generate a thunk for the given method. 1888 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1889 GlobalDecl GD, const ThunkInfo &Thunk, 1890 bool IsUnprototyped); 1891 1892 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 1893 const CGFunctionInfo &FnInfo, 1894 GlobalDecl GD, const ThunkInfo &Thunk); 1895 1896 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1897 FunctionArgList &Args); 1898 1899 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 1900 1901 /// Struct with all information about dynamic [sub]class needed to set vptr. 1902 struct VPtr { 1903 BaseSubobject Base; 1904 const CXXRecordDecl *NearestVBase; 1905 CharUnits OffsetFromNearestVBase; 1906 const CXXRecordDecl *VTableClass; 1907 }; 1908 1909 /// Initialize the vtable pointer of the given subobject. 1910 void InitializeVTablePointer(const VPtr &vptr); 1911 1912 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 1913 1914 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1915 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 1916 1917 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 1918 CharUnits OffsetFromNearestVBase, 1919 bool BaseIsNonVirtualPrimaryBase, 1920 const CXXRecordDecl *VTableClass, 1921 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 1922 1923 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1924 1925 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1926 /// to by This. 1927 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 1928 const CXXRecordDecl *VTableClass); 1929 1930 enum CFITypeCheckKind { 1931 CFITCK_VCall, 1932 CFITCK_NVCall, 1933 CFITCK_DerivedCast, 1934 CFITCK_UnrelatedCast, 1935 CFITCK_ICall, 1936 CFITCK_NVMFCall, 1937 CFITCK_VMFCall, 1938 }; 1939 1940 /// Derived is the presumed address of an object of type T after a 1941 /// cast. If T is a polymorphic class type, emit a check that the virtual 1942 /// table for Derived belongs to a class derived from T. 1943 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 1944 bool MayBeNull, CFITypeCheckKind TCK, 1945 SourceLocation Loc); 1946 1947 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 1948 /// If vptr CFI is enabled, emit a check that VTable is valid. 1949 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 1950 CFITypeCheckKind TCK, SourceLocation Loc); 1951 1952 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 1953 /// RD using llvm.type.test. 1954 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 1955 CFITypeCheckKind TCK, SourceLocation Loc); 1956 1957 /// If whole-program virtual table optimization is enabled, emit an assumption 1958 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 1959 /// enabled, emit a check that VTable is a member of RD's type identifier. 1960 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 1961 llvm::Value *VTable, SourceLocation Loc); 1962 1963 /// Returns whether we should perform a type checked load when loading a 1964 /// virtual function for virtual calls to members of RD. This is generally 1965 /// true when both vcall CFI and whole-program-vtables are enabled. 1966 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 1967 1968 /// Emit a type checked load from the given vtable. 1969 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 1970 uint64_t VTableByteOffset); 1971 1972 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1973 /// given phase of destruction for a destructor. The end result 1974 /// should call destructors on members and base classes in reverse 1975 /// order of their construction. 1976 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1977 1978 /// ShouldInstrumentFunction - Return true if the current function should be 1979 /// instrumented with __cyg_profile_func_* calls 1980 bool ShouldInstrumentFunction(); 1981 1982 /// ShouldXRayInstrument - Return true if the current function should be 1983 /// instrumented with XRay nop sleds. 1984 bool ShouldXRayInstrumentFunction() const; 1985 1986 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 1987 /// XRay custom event handling calls. 1988 bool AlwaysEmitXRayCustomEvents() const; 1989 1990 /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit 1991 /// XRay typed event handling calls. 1992 bool AlwaysEmitXRayTypedEvents() const; 1993 1994 /// Encode an address into a form suitable for use in a function prologue. 1995 llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, 1996 llvm::Constant *Addr); 1997 1998 /// Decode an address used in a function prologue, encoded by \c 1999 /// EncodeAddrForUseInPrologue. 2000 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 2001 llvm::Value *EncodedAddr); 2002 2003 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 2004 /// arguments for the given function. This is also responsible for naming the 2005 /// LLVM function arguments. 2006 void EmitFunctionProlog(const CGFunctionInfo &FI, 2007 llvm::Function *Fn, 2008 const FunctionArgList &Args); 2009 2010 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 2011 /// given temporary. 2012 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 2013 SourceLocation EndLoc); 2014 2015 /// Emit a test that checks if the return value \p RV is nonnull. 2016 void EmitReturnValueCheck(llvm::Value *RV); 2017 2018 /// EmitStartEHSpec - Emit the start of the exception spec. 2019 void EmitStartEHSpec(const Decl *D); 2020 2021 /// EmitEndEHSpec - Emit the end of the exception spec. 2022 void EmitEndEHSpec(const Decl *D); 2023 2024 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 2025 llvm::BasicBlock *getTerminateLandingPad(); 2026 2027 /// getTerminateLandingPad - Return a cleanup funclet that just calls 2028 /// terminate. 2029 llvm::BasicBlock *getTerminateFunclet(); 2030 2031 /// getTerminateHandler - Return a handler (not a landing pad, just 2032 /// a catch handler) that just calls terminate. This is used when 2033 /// a terminate scope encloses a try. 2034 llvm::BasicBlock *getTerminateHandler(); 2035 2036 llvm::Type *ConvertTypeForMem(QualType T); 2037 llvm::Type *ConvertType(QualType T); 2038 llvm::Type *ConvertType(const TypeDecl *T) { 2039 return ConvertType(getContext().getTypeDeclType(T)); 2040 } 2041 2042 /// LoadObjCSelf - Load the value of self. This function is only valid while 2043 /// generating code for an Objective-C method. 2044 llvm::Value *LoadObjCSelf(); 2045 2046 /// TypeOfSelfObject - Return type of object that this self represents. 2047 QualType TypeOfSelfObject(); 2048 2049 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 2050 static TypeEvaluationKind getEvaluationKind(QualType T); 2051 2052 static bool hasScalarEvaluationKind(QualType T) { 2053 return getEvaluationKind(T) == TEK_Scalar; 2054 } 2055 2056 static bool hasAggregateEvaluationKind(QualType T) { 2057 return getEvaluationKind(T) == TEK_Aggregate; 2058 } 2059 2060 /// createBasicBlock - Create an LLVM basic block. 2061 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 2062 llvm::Function *parent = nullptr, 2063 llvm::BasicBlock *before = nullptr) { 2064 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 2065 } 2066 2067 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 2068 /// label maps to. 2069 JumpDest getJumpDestForLabel(const LabelDecl *S); 2070 2071 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 2072 /// another basic block, simplify it. This assumes that no other code could 2073 /// potentially reference the basic block. 2074 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 2075 2076 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 2077 /// adding a fall-through branch from the current insert block if 2078 /// necessary. It is legal to call this function even if there is no current 2079 /// insertion point. 2080 /// 2081 /// IsFinished - If true, indicates that the caller has finished emitting 2082 /// branches to the given block and does not expect to emit code into it. This 2083 /// means the block can be ignored if it is unreachable. 2084 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 2085 2086 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 2087 /// near its uses, and leave the insertion point in it. 2088 void EmitBlockAfterUses(llvm::BasicBlock *BB); 2089 2090 /// EmitBranch - Emit a branch to the specified basic block from the current 2091 /// insert block, taking care to avoid creation of branches from dummy 2092 /// blocks. It is legal to call this function even if there is no current 2093 /// insertion point. 2094 /// 2095 /// This function clears the current insertion point. The caller should follow 2096 /// calls to this function with calls to Emit*Block prior to generation new 2097 /// code. 2098 void EmitBranch(llvm::BasicBlock *Block); 2099 2100 /// HaveInsertPoint - True if an insertion point is defined. If not, this 2101 /// indicates that the current code being emitted is unreachable. 2102 bool HaveInsertPoint() const { 2103 return Builder.GetInsertBlock() != nullptr; 2104 } 2105 2106 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 2107 /// emitted IR has a place to go. Note that by definition, if this function 2108 /// creates a block then that block is unreachable; callers may do better to 2109 /// detect when no insertion point is defined and simply skip IR generation. 2110 void EnsureInsertPoint() { 2111 if (!HaveInsertPoint()) 2112 EmitBlock(createBasicBlock()); 2113 } 2114 2115 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2116 /// specified stmt yet. 2117 void ErrorUnsupported(const Stmt *S, const char *Type); 2118 2119 //===--------------------------------------------------------------------===// 2120 // Helpers 2121 //===--------------------------------------------------------------------===// 2122 2123 LValue MakeAddrLValue(Address Addr, QualType T, 2124 AlignmentSource Source = AlignmentSource::Type) { 2125 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2126 CGM.getTBAAAccessInfo(T)); 2127 } 2128 2129 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 2130 TBAAAccessInfo TBAAInfo) { 2131 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 2132 } 2133 2134 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2135 AlignmentSource Source = AlignmentSource::Type) { 2136 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 2137 LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T)); 2138 } 2139 2140 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2141 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { 2142 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 2143 BaseInfo, TBAAInfo); 2144 } 2145 2146 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 2147 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 2148 CharUnits getNaturalTypeAlignment(QualType T, 2149 LValueBaseInfo *BaseInfo = nullptr, 2150 TBAAAccessInfo *TBAAInfo = nullptr, 2151 bool forPointeeType = false); 2152 CharUnits getNaturalPointeeTypeAlignment(QualType T, 2153 LValueBaseInfo *BaseInfo = nullptr, 2154 TBAAAccessInfo *TBAAInfo = nullptr); 2155 2156 Address EmitLoadOfReference(LValue RefLVal, 2157 LValueBaseInfo *PointeeBaseInfo = nullptr, 2158 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 2159 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 2160 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 2161 AlignmentSource Source = 2162 AlignmentSource::Type) { 2163 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 2164 CGM.getTBAAAccessInfo(RefTy)); 2165 return EmitLoadOfReferenceLValue(RefLVal); 2166 } 2167 2168 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 2169 LValueBaseInfo *BaseInfo = nullptr, 2170 TBAAAccessInfo *TBAAInfo = nullptr); 2171 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 2172 2173 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 2174 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 2175 /// insertion point of the builder. The caller is responsible for setting an 2176 /// appropriate alignment on 2177 /// the alloca. 2178 /// 2179 /// \p ArraySize is the number of array elements to be allocated if it 2180 /// is not nullptr. 2181 /// 2182 /// LangAS::Default is the address space of pointers to local variables and 2183 /// temporaries, as exposed in the source language. In certain 2184 /// configurations, this is not the same as the alloca address space, and a 2185 /// cast is needed to lift the pointer from the alloca AS into 2186 /// LangAS::Default. This can happen when the target uses a restricted 2187 /// address space for the stack but the source language requires 2188 /// LangAS::Default to be a generic address space. The latter condition is 2189 /// common for most programming languages; OpenCL is an exception in that 2190 /// LangAS::Default is the private address space, which naturally maps 2191 /// to the stack. 2192 /// 2193 /// Because the address of a temporary is often exposed to the program in 2194 /// various ways, this function will perform the cast. The original alloca 2195 /// instruction is returned through \p Alloca if it is not nullptr. 2196 /// 2197 /// The cast is not performaed in CreateTempAllocaWithoutCast. This is 2198 /// more efficient if the caller knows that the address will not be exposed. 2199 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2200 llvm::Value *ArraySize = nullptr); 2201 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2202 const Twine &Name = "tmp", 2203 llvm::Value *ArraySize = nullptr, 2204 Address *Alloca = nullptr); 2205 Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, 2206 const Twine &Name = "tmp", 2207 llvm::Value *ArraySize = nullptr); 2208 2209 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2210 /// default ABI alignment of the given LLVM type. 2211 /// 2212 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2213 /// any given AST type that happens to have been lowered to the 2214 /// given IR type. This should only ever be used for function-local, 2215 /// IR-driven manipulations like saving and restoring a value. Do 2216 /// not hand this address off to arbitrary IRGen routines, and especially 2217 /// do not pass it as an argument to a function that might expect a 2218 /// properly ABI-aligned value. 2219 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2220 const Twine &Name = "tmp"); 2221 2222 /// InitTempAlloca - Provide an initial value for the given alloca which 2223 /// will be observable at all locations in the function. 2224 /// 2225 /// The address should be something that was returned from one of 2226 /// the CreateTempAlloca or CreateMemTemp routines, and the 2227 /// initializer must be valid in the entry block (i.e. it must 2228 /// either be a constant or an argument value). 2229 void InitTempAlloca(Address Alloca, llvm::Value *Value); 2230 2231 /// CreateIRTemp - Create a temporary IR object of the given type, with 2232 /// appropriate alignment. This routine should only be used when an temporary 2233 /// value needs to be stored into an alloca (for example, to avoid explicit 2234 /// PHI construction), but the type is the IR type, not the type appropriate 2235 /// for storing in memory. 2236 /// 2237 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2238 /// ConvertType instead of ConvertTypeForMem. 2239 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2240 2241 /// CreateMemTemp - Create a temporary memory object of the given type, with 2242 /// appropriate alignmen and cast it to the default address space. Returns 2243 /// the original alloca instruction by \p Alloca if it is not nullptr. 2244 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2245 Address *Alloca = nullptr); 2246 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2247 Address *Alloca = nullptr); 2248 2249 /// CreateMemTemp - Create a temporary memory object of the given type, with 2250 /// appropriate alignmen without casting it to the default address space. 2251 Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp"); 2252 Address CreateMemTempWithoutCast(QualType T, CharUnits Align, 2253 const Twine &Name = "tmp"); 2254 2255 /// CreateAggTemp - Create a temporary memory object for the given 2256 /// aggregate type. 2257 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 2258 return AggValueSlot::forAddr(CreateMemTemp(T, Name), 2259 T.getQualifiers(), 2260 AggValueSlot::IsNotDestructed, 2261 AggValueSlot::DoesNotNeedGCBarriers, 2262 AggValueSlot::IsNotAliased, 2263 AggValueSlot::DoesNotOverlap); 2264 } 2265 2266 /// Emit a cast to void* in the appropriate address space. 2267 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2268 2269 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2270 /// expression and compare the result against zero, returning an Int1Ty value. 2271 llvm::Value *EvaluateExprAsBool(const Expr *E); 2272 2273 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2274 void EmitIgnoredExpr(const Expr *E); 2275 2276 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2277 /// any type. The result is returned as an RValue struct. If this is an 2278 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2279 /// the result should be returned. 2280 /// 2281 /// \param ignoreResult True if the resulting value isn't used. 2282 RValue EmitAnyExpr(const Expr *E, 2283 AggValueSlot aggSlot = AggValueSlot::ignored(), 2284 bool ignoreResult = false); 2285 2286 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2287 // or the value of the expression, depending on how va_list is defined. 2288 Address EmitVAListRef(const Expr *E); 2289 2290 /// Emit a "reference" to a __builtin_ms_va_list; this is 2291 /// always the value of the expression, because a __builtin_ms_va_list is a 2292 /// pointer to a char. 2293 Address EmitMSVAListRef(const Expr *E); 2294 2295 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2296 /// always be accessible even if no aggregate location is provided. 2297 RValue EmitAnyExprToTemp(const Expr *E); 2298 2299 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2300 /// arbitrary expression into the given memory location. 2301 void EmitAnyExprToMem(const Expr *E, Address Location, 2302 Qualifiers Quals, bool IsInitializer); 2303 2304 void EmitAnyExprToExn(const Expr *E, Address Addr); 2305 2306 /// EmitExprAsInit - Emits the code necessary to initialize a 2307 /// location in memory with the given initializer. 2308 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2309 bool capturedByInit); 2310 2311 /// hasVolatileMember - returns true if aggregate type has a volatile 2312 /// member. 2313 bool hasVolatileMember(QualType T) { 2314 if (const RecordType *RT = T->getAs<RecordType>()) { 2315 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2316 return RD->hasVolatileMember(); 2317 } 2318 return false; 2319 } 2320 2321 /// Determine whether a return value slot may overlap some other object. 2322 AggValueSlot::Overlap_t getOverlapForReturnValue() { 2323 // FIXME: Assuming no overlap here breaks guaranteed copy elision for base 2324 // class subobjects. These cases may need to be revisited depending on the 2325 // resolution of the relevant core issue. 2326 return AggValueSlot::DoesNotOverlap; 2327 } 2328 2329 /// Determine whether a field initialization may overlap some other object. 2330 AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD); 2331 2332 /// Determine whether a base class initialization may overlap some other 2333 /// object. 2334 AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD, 2335 const CXXRecordDecl *BaseRD, 2336 bool IsVirtual); 2337 2338 /// Emit an aggregate assignment. 2339 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2340 bool IsVolatile = hasVolatileMember(EltTy); 2341 EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); 2342 } 2343 2344 void EmitAggregateCopyCtor(LValue Dest, LValue Src, 2345 AggValueSlot::Overlap_t MayOverlap) { 2346 EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); 2347 } 2348 2349 /// EmitAggregateCopy - Emit an aggregate copy. 2350 /// 2351 /// \param isVolatile \c true iff either the source or the destination is 2352 /// volatile. 2353 /// \param MayOverlap Whether the tail padding of the destination might be 2354 /// occupied by some other object. More efficient code can often be 2355 /// generated if not. 2356 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2357 AggValueSlot::Overlap_t MayOverlap, 2358 bool isVolatile = false); 2359 2360 /// GetAddrOfLocalVar - Return the address of a local variable. 2361 Address GetAddrOfLocalVar(const VarDecl *VD) { 2362 auto it = LocalDeclMap.find(VD); 2363 assert(it != LocalDeclMap.end() && 2364 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2365 return it->second; 2366 } 2367 2368 /// Given an opaque value expression, return its LValue mapping if it exists, 2369 /// otherwise create one. 2370 LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); 2371 2372 /// Given an opaque value expression, return its RValue mapping if it exists, 2373 /// otherwise create one. 2374 RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); 2375 2376 /// Get the index of the current ArrayInitLoopExpr, if any. 2377 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2378 2379 /// getAccessedFieldNo - Given an encoded value and a result number, return 2380 /// the input field number being accessed. 2381 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2382 2383 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2384 llvm::BasicBlock *GetIndirectGotoBlock(); 2385 2386 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2387 static bool IsWrappedCXXThis(const Expr *E); 2388 2389 /// EmitNullInitialization - Generate code to set a value of the given type to 2390 /// null, If the type contains data member pointers, they will be initialized 2391 /// to -1 in accordance with the Itanium C++ ABI. 2392 void EmitNullInitialization(Address DestPtr, QualType Ty); 2393 2394 /// Emits a call to an LLVM variable-argument intrinsic, either 2395 /// \c llvm.va_start or \c llvm.va_end. 2396 /// \param ArgValue A reference to the \c va_list as emitted by either 2397 /// \c EmitVAListRef or \c EmitMSVAListRef. 2398 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2399 /// calls \c llvm.va_end. 2400 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2401 2402 /// Generate code to get an argument from the passed in pointer 2403 /// and update it accordingly. 2404 /// \param VE The \c VAArgExpr for which to generate code. 2405 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2406 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2407 /// \returns A pointer to the argument. 2408 // FIXME: We should be able to get rid of this method and use the va_arg 2409 // instruction in LLVM instead once it works well enough. 2410 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2411 2412 /// emitArrayLength - Compute the length of an array, even if it's a 2413 /// VLA, and drill down to the base element type. 2414 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2415 QualType &baseType, 2416 Address &addr); 2417 2418 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2419 /// the given variably-modified type and store them in the VLASizeMap. 2420 /// 2421 /// This function can be called with a null (unreachable) insert point. 2422 void EmitVariablyModifiedType(QualType Ty); 2423 2424 struct VlaSizePair { 2425 llvm::Value *NumElts; 2426 QualType Type; 2427 2428 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 2429 }; 2430 2431 /// Return the number of elements for a single dimension 2432 /// for the given array type. 2433 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 2434 VlaSizePair getVLAElements1D(QualType vla); 2435 2436 /// Returns an LLVM value that corresponds to the size, 2437 /// in non-variably-sized elements, of a variable length array type, 2438 /// plus that largest non-variably-sized element type. Assumes that 2439 /// the type has already been emitted with EmitVariablyModifiedType. 2440 VlaSizePair getVLASize(const VariableArrayType *vla); 2441 VlaSizePair getVLASize(QualType vla); 2442 2443 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2444 /// generating code for an C++ member function. 2445 llvm::Value *LoadCXXThis() { 2446 assert(CXXThisValue && "no 'this' value for this function"); 2447 return CXXThisValue; 2448 } 2449 Address LoadCXXThisAddress(); 2450 2451 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2452 /// virtual bases. 2453 // FIXME: Every place that calls LoadCXXVTT is something 2454 // that needs to be abstracted properly. 2455 llvm::Value *LoadCXXVTT() { 2456 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2457 return CXXStructorImplicitParamValue; 2458 } 2459 2460 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2461 /// complete class to the given direct base. 2462 Address 2463 GetAddressOfDirectBaseInCompleteClass(Address Value, 2464 const CXXRecordDecl *Derived, 2465 const CXXRecordDecl *Base, 2466 bool BaseIsVirtual); 2467 2468 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2469 2470 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2471 /// load of 'this' and returns address of the base class. 2472 Address GetAddressOfBaseClass(Address Value, 2473 const CXXRecordDecl *Derived, 2474 CastExpr::path_const_iterator PathBegin, 2475 CastExpr::path_const_iterator PathEnd, 2476 bool NullCheckValue, SourceLocation Loc); 2477 2478 Address GetAddressOfDerivedClass(Address Value, 2479 const CXXRecordDecl *Derived, 2480 CastExpr::path_const_iterator PathBegin, 2481 CastExpr::path_const_iterator PathEnd, 2482 bool NullCheckValue); 2483 2484 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2485 /// base constructor/destructor with virtual bases. 2486 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2487 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2488 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2489 bool Delegating); 2490 2491 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2492 CXXCtorType CtorType, 2493 const FunctionArgList &Args, 2494 SourceLocation Loc); 2495 // It's important not to confuse this and the previous function. Delegating 2496 // constructors are the C++0x feature. The constructor delegate optimization 2497 // is used to reduce duplication in the base and complete consturctors where 2498 // they are substantially the same. 2499 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2500 const FunctionArgList &Args); 2501 2502 /// Emit a call to an inheriting constructor (that is, one that invokes a 2503 /// constructor inherited from a base class) by inlining its definition. This 2504 /// is necessary if the ABI does not support forwarding the arguments to the 2505 /// base class constructor (because they're variadic or similar). 2506 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2507 CXXCtorType CtorType, 2508 bool ForVirtualBase, 2509 bool Delegating, 2510 CallArgList &Args); 2511 2512 /// Emit a call to a constructor inherited from a base class, passing the 2513 /// current constructor's arguments along unmodified (without even making 2514 /// a copy). 2515 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2516 bool ForVirtualBase, Address This, 2517 bool InheritedFromVBase, 2518 const CXXInheritedCtorInitExpr *E); 2519 2520 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2521 bool ForVirtualBase, bool Delegating, 2522 AggValueSlot ThisAVS, const CXXConstructExpr *E); 2523 2524 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2525 bool ForVirtualBase, bool Delegating, 2526 Address This, CallArgList &Args, 2527 AggValueSlot::Overlap_t Overlap, 2528 SourceLocation Loc, bool NewPointerIsChecked); 2529 2530 /// Emit assumption load for all bases. Requires to be be called only on 2531 /// most-derived class and not under construction of the object. 2532 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2533 2534 /// Emit assumption that vptr load == global vtable. 2535 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2536 2537 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2538 Address This, Address Src, 2539 const CXXConstructExpr *E); 2540 2541 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2542 const ArrayType *ArrayTy, 2543 Address ArrayPtr, 2544 const CXXConstructExpr *E, 2545 bool NewPointerIsChecked, 2546 bool ZeroInitialization = false); 2547 2548 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2549 llvm::Value *NumElements, 2550 Address ArrayPtr, 2551 const CXXConstructExpr *E, 2552 bool NewPointerIsChecked, 2553 bool ZeroInitialization = false); 2554 2555 static Destroyer destroyCXXObject; 2556 2557 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2558 bool ForVirtualBase, bool Delegating, Address This, 2559 QualType ThisTy); 2560 2561 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2562 llvm::Type *ElementTy, Address NewPtr, 2563 llvm::Value *NumElements, 2564 llvm::Value *AllocSizeWithoutCookie); 2565 2566 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2567 Address Ptr); 2568 2569 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 2570 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2571 2572 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2573 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2574 2575 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2576 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2577 CharUnits CookieSize = CharUnits()); 2578 2579 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2580 const CallExpr *TheCallExpr, bool IsDelete); 2581 2582 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2583 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2584 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2585 2586 /// Situations in which we might emit a check for the suitability of a 2587 /// pointer or glvalue. 2588 enum TypeCheckKind { 2589 /// Checking the operand of a load. Must be suitably sized and aligned. 2590 TCK_Load, 2591 /// Checking the destination of a store. Must be suitably sized and aligned. 2592 TCK_Store, 2593 /// Checking the bound value in a reference binding. Must be suitably sized 2594 /// and aligned, but is not required to refer to an object (until the 2595 /// reference is used), per core issue 453. 2596 TCK_ReferenceBinding, 2597 /// Checking the object expression in a non-static data member access. Must 2598 /// be an object within its lifetime. 2599 TCK_MemberAccess, 2600 /// Checking the 'this' pointer for a call to a non-static member function. 2601 /// Must be an object within its lifetime. 2602 TCK_MemberCall, 2603 /// Checking the 'this' pointer for a constructor call. 2604 TCK_ConstructorCall, 2605 /// Checking the operand of a static_cast to a derived pointer type. Must be 2606 /// null or an object within its lifetime. 2607 TCK_DowncastPointer, 2608 /// Checking the operand of a static_cast to a derived reference type. Must 2609 /// be an object within its lifetime. 2610 TCK_DowncastReference, 2611 /// Checking the operand of a cast to a base object. Must be suitably sized 2612 /// and aligned. 2613 TCK_Upcast, 2614 /// Checking the operand of a cast to a virtual base object. Must be an 2615 /// object within its lifetime. 2616 TCK_UpcastToVirtualBase, 2617 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2618 TCK_NonnullAssign, 2619 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 2620 /// null or an object within its lifetime. 2621 TCK_DynamicOperation 2622 }; 2623 2624 /// Determine whether the pointer type check \p TCK permits null pointers. 2625 static bool isNullPointerAllowed(TypeCheckKind TCK); 2626 2627 /// Determine whether the pointer type check \p TCK requires a vptr check. 2628 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 2629 2630 /// Whether any type-checking sanitizers are enabled. If \c false, 2631 /// calls to EmitTypeCheck can be skipped. 2632 bool sanitizePerformTypeCheck() const; 2633 2634 /// Emit a check that \p V is the address of storage of the 2635 /// appropriate size and alignment for an object of type \p Type 2636 /// (or if ArraySize is provided, for an array of that bound). 2637 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2638 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2639 SanitizerSet SkippedChecks = SanitizerSet(), 2640 llvm::Value *ArraySize = nullptr); 2641 2642 /// Emit a check that \p Base points into an array object, which 2643 /// we can access at index \p Index. \p Accessed should be \c false if we 2644 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2645 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2646 QualType IndexType, bool Accessed); 2647 2648 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2649 bool isInc, bool isPre); 2650 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 2651 bool isInc, bool isPre); 2652 2653 /// Converts Location to a DebugLoc, if debug information is enabled. 2654 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 2655 2656 /// Get the record field index as represented in debug info. 2657 unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex); 2658 2659 2660 //===--------------------------------------------------------------------===// 2661 // Declaration Emission 2662 //===--------------------------------------------------------------------===// 2663 2664 /// EmitDecl - Emit a declaration. 2665 /// 2666 /// This function can be called with a null (unreachable) insert point. 2667 void EmitDecl(const Decl &D); 2668 2669 /// EmitVarDecl - Emit a local variable declaration. 2670 /// 2671 /// This function can be called with a null (unreachable) insert point. 2672 void EmitVarDecl(const VarDecl &D); 2673 2674 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2675 bool capturedByInit); 2676 2677 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 2678 llvm::Value *Address); 2679 2680 /// Determine whether the given initializer is trivial in the sense 2681 /// that it requires no code to be generated. 2682 bool isTrivialInitializer(const Expr *Init); 2683 2684 /// EmitAutoVarDecl - Emit an auto variable declaration. 2685 /// 2686 /// This function can be called with a null (unreachable) insert point. 2687 void EmitAutoVarDecl(const VarDecl &D); 2688 2689 class AutoVarEmission { 2690 friend class CodeGenFunction; 2691 2692 const VarDecl *Variable; 2693 2694 /// The address of the alloca for languages with explicit address space 2695 /// (e.g. OpenCL) or alloca casted to generic pointer for address space 2696 /// agnostic languages (e.g. C++). Invalid if the variable was emitted 2697 /// as a global constant. 2698 Address Addr; 2699 2700 llvm::Value *NRVOFlag; 2701 2702 /// True if the variable is a __block variable that is captured by an 2703 /// escaping block. 2704 bool IsEscapingByRef; 2705 2706 /// True if the variable is of aggregate type and has a constant 2707 /// initializer. 2708 bool IsConstantAggregate; 2709 2710 /// Non-null if we should use lifetime annotations. 2711 llvm::Value *SizeForLifetimeMarkers; 2712 2713 /// Address with original alloca instruction. Invalid if the variable was 2714 /// emitted as a global constant. 2715 Address AllocaAddr; 2716 2717 struct Invalid {}; 2718 AutoVarEmission(Invalid) 2719 : Variable(nullptr), Addr(Address::invalid()), 2720 AllocaAddr(Address::invalid()) {} 2721 2722 AutoVarEmission(const VarDecl &variable) 2723 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2724 IsEscapingByRef(false), IsConstantAggregate(false), 2725 SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {} 2726 2727 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2728 2729 public: 2730 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2731 2732 bool useLifetimeMarkers() const { 2733 return SizeForLifetimeMarkers != nullptr; 2734 } 2735 llvm::Value *getSizeForLifetimeMarkers() const { 2736 assert(useLifetimeMarkers()); 2737 return SizeForLifetimeMarkers; 2738 } 2739 2740 /// Returns the raw, allocated address, which is not necessarily 2741 /// the address of the object itself. It is casted to default 2742 /// address space for address space agnostic languages. 2743 Address getAllocatedAddress() const { 2744 return Addr; 2745 } 2746 2747 /// Returns the address for the original alloca instruction. 2748 Address getOriginalAllocatedAddress() const { return AllocaAddr; } 2749 2750 /// Returns the address of the object within this declaration. 2751 /// Note that this does not chase the forwarding pointer for 2752 /// __block decls. 2753 Address getObjectAddress(CodeGenFunction &CGF) const { 2754 if (!IsEscapingByRef) return Addr; 2755 2756 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 2757 } 2758 }; 2759 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2760 void EmitAutoVarInit(const AutoVarEmission &emission); 2761 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2762 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2763 QualType::DestructionKind dtorKind); 2764 2765 /// Emits the alloca and debug information for the size expressions for each 2766 /// dimension of an array. It registers the association of its (1-dimensional) 2767 /// QualTypes and size expression's debug node, so that CGDebugInfo can 2768 /// reference this node when creating the DISubrange object to describe the 2769 /// array types. 2770 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 2771 const VarDecl &D, 2772 bool EmitDebugInfo); 2773 2774 void EmitStaticVarDecl(const VarDecl &D, 2775 llvm::GlobalValue::LinkageTypes Linkage); 2776 2777 class ParamValue { 2778 llvm::Value *Value; 2779 unsigned Alignment; 2780 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 2781 public: 2782 static ParamValue forDirect(llvm::Value *value) { 2783 return ParamValue(value, 0); 2784 } 2785 static ParamValue forIndirect(Address addr) { 2786 assert(!addr.getAlignment().isZero()); 2787 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 2788 } 2789 2790 bool isIndirect() const { return Alignment != 0; } 2791 llvm::Value *getAnyValue() const { return Value; } 2792 2793 llvm::Value *getDirectValue() const { 2794 assert(!isIndirect()); 2795 return Value; 2796 } 2797 2798 Address getIndirectAddress() const { 2799 assert(isIndirect()); 2800 return Address(Value, CharUnits::fromQuantity(Alignment)); 2801 } 2802 }; 2803 2804 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 2805 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 2806 2807 /// protectFromPeepholes - Protect a value that we're intending to 2808 /// store to the side, but which will probably be used later, from 2809 /// aggressive peepholing optimizations that might delete it. 2810 /// 2811 /// Pass the result to unprotectFromPeepholes to declare that 2812 /// protection is no longer required. 2813 /// 2814 /// There's no particular reason why this shouldn't apply to 2815 /// l-values, it's just that no existing peepholes work on pointers. 2816 PeepholeProtection protectFromPeepholes(RValue rvalue); 2817 void unprotectFromPeepholes(PeepholeProtection protection); 2818 2819 void EmitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, 2820 SourceLocation Loc, 2821 SourceLocation AssumptionLoc, 2822 llvm::Value *Alignment, 2823 llvm::Value *OffsetValue, 2824 llvm::Value *TheCheck, 2825 llvm::Instruction *Assumption); 2826 2827 void EmitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, 2828 SourceLocation Loc, SourceLocation AssumptionLoc, 2829 llvm::Value *Alignment, 2830 llvm::Value *OffsetValue = nullptr); 2831 2832 void EmitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, 2833 SourceLocation Loc, SourceLocation AssumptionLoc, 2834 unsigned Alignment, 2835 llvm::Value *OffsetValue = nullptr); 2836 2837 void EmitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, 2838 SourceLocation AssumptionLoc, unsigned Alignment, 2839 llvm::Value *OffsetValue = nullptr); 2840 2841 //===--------------------------------------------------------------------===// 2842 // Statement Emission 2843 //===--------------------------------------------------------------------===// 2844 2845 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 2846 void EmitStopPoint(const Stmt *S); 2847 2848 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 2849 /// this function even if there is no current insertion point. 2850 /// 2851 /// This function may clear the current insertion point; callers should use 2852 /// EnsureInsertPoint if they wish to subsequently generate code without first 2853 /// calling EmitBlock, EmitBranch, or EmitStmt. 2854 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); 2855 2856 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2857 /// necessarily require an insertion point or debug information; typically 2858 /// because the statement amounts to a jump or a container of other 2859 /// statements. 2860 /// 2861 /// \return True if the statement was handled. 2862 bool EmitSimpleStmt(const Stmt *S); 2863 2864 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2865 AggValueSlot AVS = AggValueSlot::ignored()); 2866 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 2867 bool GetLast = false, 2868 AggValueSlot AVS = 2869 AggValueSlot::ignored()); 2870 2871 /// EmitLabel - Emit the block for the given label. It is legal to call this 2872 /// function even if there is no current insertion point. 2873 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2874 2875 void EmitLabelStmt(const LabelStmt &S); 2876 void EmitAttributedStmt(const AttributedStmt &S); 2877 void EmitGotoStmt(const GotoStmt &S); 2878 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2879 void EmitIfStmt(const IfStmt &S); 2880 2881 void EmitWhileStmt(const WhileStmt &S, 2882 ArrayRef<const Attr *> Attrs = None); 2883 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 2884 void EmitForStmt(const ForStmt &S, 2885 ArrayRef<const Attr *> Attrs = None); 2886 void EmitReturnStmt(const ReturnStmt &S); 2887 void EmitDeclStmt(const DeclStmt &S); 2888 void EmitBreakStmt(const BreakStmt &S); 2889 void EmitContinueStmt(const ContinueStmt &S); 2890 void EmitSwitchStmt(const SwitchStmt &S); 2891 void EmitDefaultStmt(const DefaultStmt &S); 2892 void EmitCaseStmt(const CaseStmt &S); 2893 void EmitCaseStmtRange(const CaseStmt &S); 2894 void EmitAsmStmt(const AsmStmt &S); 2895 2896 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2897 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2898 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2899 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2900 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2901 2902 void EmitCoroutineBody(const CoroutineBodyStmt &S); 2903 void EmitCoreturnStmt(const CoreturnStmt &S); 2904 RValue EmitCoawaitExpr(const CoawaitExpr &E, 2905 AggValueSlot aggSlot = AggValueSlot::ignored(), 2906 bool ignoreResult = false); 2907 LValue EmitCoawaitLValue(const CoawaitExpr *E); 2908 RValue EmitCoyieldExpr(const CoyieldExpr &E, 2909 AggValueSlot aggSlot = AggValueSlot::ignored(), 2910 bool ignoreResult = false); 2911 LValue EmitCoyieldLValue(const CoyieldExpr *E); 2912 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 2913 2914 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2915 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2916 2917 void EmitCXXTryStmt(const CXXTryStmt &S); 2918 void EmitSEHTryStmt(const SEHTryStmt &S); 2919 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 2920 void EnterSEHTryStmt(const SEHTryStmt &S); 2921 void ExitSEHTryStmt(const SEHTryStmt &S); 2922 2923 void pushSEHCleanup(CleanupKind kind, 2924 llvm::Function *FinallyFunc); 2925 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 2926 const Stmt *OutlinedStmt); 2927 2928 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 2929 const SEHExceptStmt &Except); 2930 2931 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 2932 const SEHFinallyStmt &Finally); 2933 2934 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 2935 llvm::Value *ParentFP, 2936 llvm::Value *EntryEBP); 2937 llvm::Value *EmitSEHExceptionCode(); 2938 llvm::Value *EmitSEHExceptionInfo(); 2939 llvm::Value *EmitSEHAbnormalTermination(); 2940 2941 /// Emit simple code for OpenMP directives in Simd-only mode. 2942 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 2943 2944 /// Scan the outlined statement for captures from the parent function. For 2945 /// each capture, mark the capture as escaped and emit a call to 2946 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 2947 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 2948 bool IsFilter); 2949 2950 /// Recovers the address of a local in a parent function. ParentVar is the 2951 /// address of the variable used in the immediate parent function. It can 2952 /// either be an alloca or a call to llvm.localrecover if there are nested 2953 /// outlined functions. ParentFP is the frame pointer of the outermost parent 2954 /// frame. 2955 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 2956 Address ParentVar, 2957 llvm::Value *ParentFP); 2958 2959 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 2960 ArrayRef<const Attr *> Attrs = None); 2961 2962 /// Controls insertion of cancellation exit blocks in worksharing constructs. 2963 class OMPCancelStackRAII { 2964 CodeGenFunction &CGF; 2965 2966 public: 2967 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 2968 bool HasCancel) 2969 : CGF(CGF) { 2970 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 2971 } 2972 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 2973 }; 2974 2975 /// Returns calculated size of the specified type. 2976 llvm::Value *getTypeSize(QualType Ty); 2977 LValue InitCapturedStruct(const CapturedStmt &S); 2978 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 2979 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 2980 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 2981 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S); 2982 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 2983 SmallVectorImpl<llvm::Value *> &CapturedVars); 2984 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 2985 SourceLocation Loc); 2986 /// Perform element by element copying of arrays with type \a 2987 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 2988 /// generated by \a CopyGen. 2989 /// 2990 /// \param DestAddr Address of the destination array. 2991 /// \param SrcAddr Address of the source array. 2992 /// \param OriginalType Type of destination and source arrays. 2993 /// \param CopyGen Copying procedure that copies value of single array element 2994 /// to another single array element. 2995 void EmitOMPAggregateAssign( 2996 Address DestAddr, Address SrcAddr, QualType OriginalType, 2997 const llvm::function_ref<void(Address, Address)> CopyGen); 2998 /// Emit proper copying of data from one variable to another. 2999 /// 3000 /// \param OriginalType Original type of the copied variables. 3001 /// \param DestAddr Destination address. 3002 /// \param SrcAddr Source address. 3003 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 3004 /// type of the base array element). 3005 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 3006 /// the base array element). 3007 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 3008 /// DestVD. 3009 void EmitOMPCopy(QualType OriginalType, 3010 Address DestAddr, Address SrcAddr, 3011 const VarDecl *DestVD, const VarDecl *SrcVD, 3012 const Expr *Copy); 3013 /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or 3014 /// \a X = \a E \a BO \a E. 3015 /// 3016 /// \param X Value to be updated. 3017 /// \param E Update value. 3018 /// \param BO Binary operation for update operation. 3019 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 3020 /// expression, false otherwise. 3021 /// \param AO Atomic ordering of the generated atomic instructions. 3022 /// \param CommonGen Code generator for complex expressions that cannot be 3023 /// expressed through atomicrmw instruction. 3024 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 3025 /// generated, <false, RValue::get(nullptr)> otherwise. 3026 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 3027 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3028 llvm::AtomicOrdering AO, SourceLocation Loc, 3029 const llvm::function_ref<RValue(RValue)> CommonGen); 3030 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 3031 OMPPrivateScope &PrivateScope); 3032 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 3033 OMPPrivateScope &PrivateScope); 3034 void EmitOMPUseDevicePtrClause( 3035 const OMPClause &C, OMPPrivateScope &PrivateScope, 3036 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3037 /// Emit code for copyin clause in \a D directive. The next code is 3038 /// generated at the start of outlined functions for directives: 3039 /// \code 3040 /// threadprivate_var1 = master_threadprivate_var1; 3041 /// operator=(threadprivate_var2, master_threadprivate_var2); 3042 /// ... 3043 /// __kmpc_barrier(&loc, global_tid); 3044 /// \endcode 3045 /// 3046 /// \param D OpenMP directive possibly with 'copyin' clause(s). 3047 /// \returns true if at least one copyin variable is found, false otherwise. 3048 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 3049 /// Emit initial code for lastprivate variables. If some variable is 3050 /// not also firstprivate, then the default initialization is used. Otherwise 3051 /// initialization of this variable is performed by EmitOMPFirstprivateClause 3052 /// method. 3053 /// 3054 /// \param D Directive that may have 'lastprivate' directives. 3055 /// \param PrivateScope Private scope for capturing lastprivate variables for 3056 /// proper codegen in internal captured statement. 3057 /// 3058 /// \returns true if there is at least one lastprivate variable, false 3059 /// otherwise. 3060 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 3061 OMPPrivateScope &PrivateScope); 3062 /// Emit final copying of lastprivate values to original variables at 3063 /// the end of the worksharing or simd directive. 3064 /// 3065 /// \param D Directive that has at least one 'lastprivate' directives. 3066 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 3067 /// it is the last iteration of the loop code in associated directive, or to 3068 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 3069 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 3070 bool NoFinals, 3071 llvm::Value *IsLastIterCond = nullptr); 3072 /// Emit initial code for linear clauses. 3073 void EmitOMPLinearClause(const OMPLoopDirective &D, 3074 CodeGenFunction::OMPPrivateScope &PrivateScope); 3075 /// Emit final code for linear clauses. 3076 /// \param CondGen Optional conditional code for final part of codegen for 3077 /// linear clause. 3078 void EmitOMPLinearClauseFinal( 3079 const OMPLoopDirective &D, 3080 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3081 /// Emit initial code for reduction variables. Creates reduction copies 3082 /// and initializes them with the values according to OpenMP standard. 3083 /// 3084 /// \param D Directive (possibly) with the 'reduction' clause. 3085 /// \param PrivateScope Private scope for capturing reduction variables for 3086 /// proper codegen in internal captured statement. 3087 /// 3088 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 3089 OMPPrivateScope &PrivateScope); 3090 /// Emit final update of reduction values to original variables at 3091 /// the end of the directive. 3092 /// 3093 /// \param D Directive that has at least one 'reduction' directives. 3094 /// \param ReductionKind The kind of reduction to perform. 3095 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 3096 const OpenMPDirectiveKind ReductionKind); 3097 /// Emit initial code for linear variables. Creates private copies 3098 /// and initializes them with the values according to OpenMP standard. 3099 /// 3100 /// \param D Directive (possibly) with the 'linear' clause. 3101 /// \return true if at least one linear variable is found that should be 3102 /// initialized with the value of the original variable, false otherwise. 3103 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 3104 3105 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 3106 llvm::Function * /*OutlinedFn*/, 3107 const OMPTaskDataTy & /*Data*/)> 3108 TaskGenTy; 3109 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 3110 const OpenMPDirectiveKind CapturedRegion, 3111 const RegionCodeGenTy &BodyGen, 3112 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 3113 struct OMPTargetDataInfo { 3114 Address BasePointersArray = Address::invalid(); 3115 Address PointersArray = Address::invalid(); 3116 Address SizesArray = Address::invalid(); 3117 unsigned NumberOfTargetItems = 0; 3118 explicit OMPTargetDataInfo() = default; 3119 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 3120 Address SizesArray, unsigned NumberOfTargetItems) 3121 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 3122 SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {} 3123 }; 3124 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 3125 const RegionCodeGenTy &BodyGen, 3126 OMPTargetDataInfo &InputInfo); 3127 3128 void EmitOMPParallelDirective(const OMPParallelDirective &S); 3129 void EmitOMPSimdDirective(const OMPSimdDirective &S); 3130 void EmitOMPForDirective(const OMPForDirective &S); 3131 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 3132 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 3133 void EmitOMPSectionDirective(const OMPSectionDirective &S); 3134 void EmitOMPSingleDirective(const OMPSingleDirective &S); 3135 void EmitOMPMasterDirective(const OMPMasterDirective &S); 3136 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 3137 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 3138 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 3139 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 3140 void EmitOMPTaskDirective(const OMPTaskDirective &S); 3141 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 3142 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 3143 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 3144 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 3145 void EmitOMPFlushDirective(const OMPFlushDirective &S); 3146 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 3147 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 3148 void EmitOMPTargetDirective(const OMPTargetDirective &S); 3149 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 3150 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 3151 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 3152 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 3153 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 3154 void 3155 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 3156 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 3157 void 3158 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 3159 void EmitOMPCancelDirective(const OMPCancelDirective &S); 3160 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 3161 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 3162 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 3163 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 3164 void EmitOMPDistributeParallelForDirective( 3165 const OMPDistributeParallelForDirective &S); 3166 void EmitOMPDistributeParallelForSimdDirective( 3167 const OMPDistributeParallelForSimdDirective &S); 3168 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 3169 void EmitOMPTargetParallelForSimdDirective( 3170 const OMPTargetParallelForSimdDirective &S); 3171 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 3172 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 3173 void 3174 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 3175 void EmitOMPTeamsDistributeParallelForSimdDirective( 3176 const OMPTeamsDistributeParallelForSimdDirective &S); 3177 void EmitOMPTeamsDistributeParallelForDirective( 3178 const OMPTeamsDistributeParallelForDirective &S); 3179 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 3180 void EmitOMPTargetTeamsDistributeDirective( 3181 const OMPTargetTeamsDistributeDirective &S); 3182 void EmitOMPTargetTeamsDistributeParallelForDirective( 3183 const OMPTargetTeamsDistributeParallelForDirective &S); 3184 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 3185 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3186 void EmitOMPTargetTeamsDistributeSimdDirective( 3187 const OMPTargetTeamsDistributeSimdDirective &S); 3188 3189 /// Emit device code for the target directive. 3190 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3191 StringRef ParentName, 3192 const OMPTargetDirective &S); 3193 static void 3194 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3195 const OMPTargetParallelDirective &S); 3196 /// Emit device code for the target parallel for directive. 3197 static void EmitOMPTargetParallelForDeviceFunction( 3198 CodeGenModule &CGM, StringRef ParentName, 3199 const OMPTargetParallelForDirective &S); 3200 /// Emit device code for the target parallel for simd directive. 3201 static void EmitOMPTargetParallelForSimdDeviceFunction( 3202 CodeGenModule &CGM, StringRef ParentName, 3203 const OMPTargetParallelForSimdDirective &S); 3204 /// Emit device code for the target teams directive. 3205 static void 3206 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3207 const OMPTargetTeamsDirective &S); 3208 /// Emit device code for the target teams distribute directive. 3209 static void EmitOMPTargetTeamsDistributeDeviceFunction( 3210 CodeGenModule &CGM, StringRef ParentName, 3211 const OMPTargetTeamsDistributeDirective &S); 3212 /// Emit device code for the target teams distribute simd directive. 3213 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 3214 CodeGenModule &CGM, StringRef ParentName, 3215 const OMPTargetTeamsDistributeSimdDirective &S); 3216 /// Emit device code for the target simd directive. 3217 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 3218 StringRef ParentName, 3219 const OMPTargetSimdDirective &S); 3220 /// Emit device code for the target teams distribute parallel for simd 3221 /// directive. 3222 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 3223 CodeGenModule &CGM, StringRef ParentName, 3224 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3225 3226 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 3227 CodeGenModule &CGM, StringRef ParentName, 3228 const OMPTargetTeamsDistributeParallelForDirective &S); 3229 /// Emit inner loop of the worksharing/simd construct. 3230 /// 3231 /// \param S Directive, for which the inner loop must be emitted. 3232 /// \param RequiresCleanup true, if directive has some associated private 3233 /// variables. 3234 /// \param LoopCond Bollean condition for loop continuation. 3235 /// \param IncExpr Increment expression for loop control variable. 3236 /// \param BodyGen Generator for the inner body of the inner loop. 3237 /// \param PostIncGen Genrator for post-increment code (required for ordered 3238 /// loop directvies). 3239 void EmitOMPInnerLoop( 3240 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 3241 const Expr *IncExpr, 3242 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 3243 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); 3244 3245 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 3246 /// Emit initial code for loop counters of loop-based directives. 3247 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 3248 OMPPrivateScope &LoopScope); 3249 3250 /// Helper for the OpenMP loop directives. 3251 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 3252 3253 /// Emit code for the worksharing loop-based directive. 3254 /// \return true, if this construct has any lastprivate clause, false - 3255 /// otherwise. 3256 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 3257 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3258 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3259 3260 /// Emit code for the distribute loop-based directive. 3261 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 3262 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 3263 3264 /// Helpers for the OpenMP loop directives. 3265 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 3266 void EmitOMPSimdFinal( 3267 const OMPLoopDirective &D, 3268 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3269 3270 /// Emits the lvalue for the expression with possibly captured variable. 3271 LValue EmitOMPSharedLValue(const Expr *E); 3272 3273 private: 3274 /// Helpers for blocks. 3275 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 3276 3277 /// struct with the values to be passed to the OpenMP loop-related functions 3278 struct OMPLoopArguments { 3279 /// loop lower bound 3280 Address LB = Address::invalid(); 3281 /// loop upper bound 3282 Address UB = Address::invalid(); 3283 /// loop stride 3284 Address ST = Address::invalid(); 3285 /// isLastIteration argument for runtime functions 3286 Address IL = Address::invalid(); 3287 /// Chunk value generated by sema 3288 llvm::Value *Chunk = nullptr; 3289 /// EnsureUpperBound 3290 Expr *EUB = nullptr; 3291 /// IncrementExpression 3292 Expr *IncExpr = nullptr; 3293 /// Loop initialization 3294 Expr *Init = nullptr; 3295 /// Loop exit condition 3296 Expr *Cond = nullptr; 3297 /// Update of LB after a whole chunk has been executed 3298 Expr *NextLB = nullptr; 3299 /// Update of UB after a whole chunk has been executed 3300 Expr *NextUB = nullptr; 3301 OMPLoopArguments() = default; 3302 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 3303 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 3304 Expr *IncExpr = nullptr, Expr *Init = nullptr, 3305 Expr *Cond = nullptr, Expr *NextLB = nullptr, 3306 Expr *NextUB = nullptr) 3307 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 3308 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 3309 NextUB(NextUB) {} 3310 }; 3311 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 3312 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 3313 const OMPLoopArguments &LoopArgs, 3314 const CodeGenLoopTy &CodeGenLoop, 3315 const CodeGenOrderedTy &CodeGenOrdered); 3316 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 3317 bool IsMonotonic, const OMPLoopDirective &S, 3318 OMPPrivateScope &LoopScope, bool Ordered, 3319 const OMPLoopArguments &LoopArgs, 3320 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3321 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 3322 const OMPLoopDirective &S, 3323 OMPPrivateScope &LoopScope, 3324 const OMPLoopArguments &LoopArgs, 3325 const CodeGenLoopTy &CodeGenLoopContent); 3326 /// Emit code for sections directive. 3327 void EmitSections(const OMPExecutableDirective &S); 3328 3329 public: 3330 3331 //===--------------------------------------------------------------------===// 3332 // LValue Expression Emission 3333 //===--------------------------------------------------------------------===// 3334 3335 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 3336 RValue GetUndefRValue(QualType Ty); 3337 3338 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 3339 /// and issue an ErrorUnsupported style diagnostic (using the 3340 /// provided Name). 3341 RValue EmitUnsupportedRValue(const Expr *E, 3342 const char *Name); 3343 3344 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 3345 /// an ErrorUnsupported style diagnostic (using the provided Name). 3346 LValue EmitUnsupportedLValue(const Expr *E, 3347 const char *Name); 3348 3349 /// EmitLValue - Emit code to compute a designator that specifies the location 3350 /// of the expression. 3351 /// 3352 /// This can return one of two things: a simple address or a bitfield 3353 /// reference. In either case, the LLVM Value* in the LValue structure is 3354 /// guaranteed to be an LLVM pointer type. 3355 /// 3356 /// If this returns a bitfield reference, nothing about the pointee type of 3357 /// the LLVM value is known: For example, it may not be a pointer to an 3358 /// integer. 3359 /// 3360 /// If this returns a normal address, and if the lvalue's C type is fixed 3361 /// size, this method guarantees that the returned pointer type will point to 3362 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3363 /// variable length type, this is not possible. 3364 /// 3365 LValue EmitLValue(const Expr *E); 3366 3367 /// Same as EmitLValue but additionally we generate checking code to 3368 /// guard against undefined behavior. This is only suitable when we know 3369 /// that the address will be used to access the object. 3370 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3371 3372 RValue convertTempToRValue(Address addr, QualType type, 3373 SourceLocation Loc); 3374 3375 void EmitAtomicInit(Expr *E, LValue lvalue); 3376 3377 bool LValueIsSuitableForInlineAtomic(LValue Src); 3378 3379 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3380 AggValueSlot Slot = AggValueSlot::ignored()); 3381 3382 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3383 llvm::AtomicOrdering AO, bool IsVolatile = false, 3384 AggValueSlot slot = AggValueSlot::ignored()); 3385 3386 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3387 3388 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3389 bool IsVolatile, bool isInit); 3390 3391 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3392 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3393 llvm::AtomicOrdering Success = 3394 llvm::AtomicOrdering::SequentiallyConsistent, 3395 llvm::AtomicOrdering Failure = 3396 llvm::AtomicOrdering::SequentiallyConsistent, 3397 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3398 3399 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3400 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3401 bool IsVolatile); 3402 3403 /// EmitToMemory - Change a scalar value from its value 3404 /// representation to its in-memory representation. 3405 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3406 3407 /// EmitFromMemory - Change a scalar value from its memory 3408 /// representation to its value representation. 3409 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3410 3411 /// Check if the scalar \p Value is within the valid range for the given 3412 /// type \p Ty. 3413 /// 3414 /// Returns true if a check is needed (even if the range is unknown). 3415 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3416 SourceLocation Loc); 3417 3418 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3419 /// care to appropriately convert from the memory representation to 3420 /// the LLVM value representation. 3421 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3422 SourceLocation Loc, 3423 AlignmentSource Source = AlignmentSource::Type, 3424 bool isNontemporal = false) { 3425 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 3426 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3427 } 3428 3429 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3430 SourceLocation Loc, LValueBaseInfo BaseInfo, 3431 TBAAAccessInfo TBAAInfo, 3432 bool isNontemporal = false); 3433 3434 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3435 /// care to appropriately convert from the memory representation to 3436 /// the LLVM value representation. The l-value must be a simple 3437 /// l-value. 3438 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3439 3440 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3441 /// care to appropriately convert from the memory representation to 3442 /// the LLVM value representation. 3443 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3444 bool Volatile, QualType Ty, 3445 AlignmentSource Source = AlignmentSource::Type, 3446 bool isInit = false, bool isNontemporal = false) { 3447 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 3448 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3449 } 3450 3451 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3452 bool Volatile, QualType Ty, 3453 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3454 bool isInit = false, bool isNontemporal = false); 3455 3456 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3457 /// care to appropriately convert from the memory representation to 3458 /// the LLVM value representation. The l-value must be a simple 3459 /// l-value. The isInit flag indicates whether this is an initialization. 3460 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3461 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3462 3463 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3464 /// this method emits the address of the lvalue, then loads the result as an 3465 /// rvalue, returning the rvalue. 3466 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3467 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3468 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3469 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3470 3471 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3472 /// lvalue, where both are guaranteed to the have the same type, and that type 3473 /// is 'Ty'. 3474 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3475 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3476 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3477 3478 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3479 /// as EmitStoreThroughLValue. 3480 /// 3481 /// \param Result [out] - If non-null, this will be set to a Value* for the 3482 /// bit-field contents after the store, appropriate for use as the result of 3483 /// an assignment to the bit-field. 3484 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3485 llvm::Value **Result=nullptr); 3486 3487 /// Emit an l-value for an assignment (simple or compound) of complex type. 3488 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3489 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3490 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3491 llvm::Value *&Result); 3492 3493 // Note: only available for agg return types 3494 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3495 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3496 // Note: only available for agg return types 3497 LValue EmitCallExprLValue(const CallExpr *E); 3498 // Note: only available for agg return types 3499 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3500 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3501 LValue EmitStringLiteralLValue(const StringLiteral *E); 3502 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3503 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3504 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3505 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3506 bool Accessed = false); 3507 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3508 bool IsLowerBound = true); 3509 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3510 LValue EmitMemberExpr(const MemberExpr *E); 3511 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3512 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3513 LValue EmitInitListLValue(const InitListExpr *E); 3514 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3515 LValue EmitCastLValue(const CastExpr *E); 3516 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3517 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3518 3519 Address EmitExtVectorElementLValue(LValue V); 3520 3521 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3522 3523 Address EmitArrayToPointerDecay(const Expr *Array, 3524 LValueBaseInfo *BaseInfo = nullptr, 3525 TBAAAccessInfo *TBAAInfo = nullptr); 3526 3527 class ConstantEmission { 3528 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3529 ConstantEmission(llvm::Constant *C, bool isReference) 3530 : ValueAndIsReference(C, isReference) {} 3531 public: 3532 ConstantEmission() {} 3533 static ConstantEmission forReference(llvm::Constant *C) { 3534 return ConstantEmission(C, true); 3535 } 3536 static ConstantEmission forValue(llvm::Constant *C) { 3537 return ConstantEmission(C, false); 3538 } 3539 3540 explicit operator bool() const { 3541 return ValueAndIsReference.getOpaqueValue() != nullptr; 3542 } 3543 3544 bool isReference() const { return ValueAndIsReference.getInt(); } 3545 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3546 assert(isReference()); 3547 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3548 refExpr->getType()); 3549 } 3550 3551 llvm::Constant *getValue() const { 3552 assert(!isReference()); 3553 return ValueAndIsReference.getPointer(); 3554 } 3555 }; 3556 3557 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3558 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3559 llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); 3560 3561 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3562 AggValueSlot slot = AggValueSlot::ignored()); 3563 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3564 3565 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3566 const ObjCIvarDecl *Ivar); 3567 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3568 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3569 3570 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3571 /// if the Field is a reference, this will return the address of the reference 3572 /// and not the address of the value stored in the reference. 3573 LValue EmitLValueForFieldInitialization(LValue Base, 3574 const FieldDecl* Field); 3575 3576 LValue EmitLValueForIvar(QualType ObjectTy, 3577 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3578 unsigned CVRQualifiers); 3579 3580 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3581 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3582 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3583 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3584 3585 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3586 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3587 LValue EmitStmtExprLValue(const StmtExpr *E); 3588 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3589 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3590 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3591 3592 //===--------------------------------------------------------------------===// 3593 // Scalar Expression Emission 3594 //===--------------------------------------------------------------------===// 3595 3596 /// EmitCall - Generate a call of the given function, expecting the given 3597 /// result type, and using the given argument list which specifies both the 3598 /// LLVM arguments and the types they were derived from. 3599 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3600 ReturnValueSlot ReturnValue, const CallArgList &Args, 3601 llvm::CallBase **callOrInvoke, SourceLocation Loc); 3602 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3603 ReturnValueSlot ReturnValue, const CallArgList &Args, 3604 llvm::CallBase **callOrInvoke = nullptr) { 3605 return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, 3606 SourceLocation()); 3607 } 3608 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 3609 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); 3610 RValue EmitCallExpr(const CallExpr *E, 3611 ReturnValueSlot ReturnValue = ReturnValueSlot()); 3612 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3613 CGCallee EmitCallee(const Expr *E); 3614 3615 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 3616 void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl); 3617 3618 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 3619 const Twine &name = ""); 3620 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 3621 ArrayRef<llvm::Value *> args, 3622 const Twine &name = ""); 3623 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3624 const Twine &name = ""); 3625 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3626 ArrayRef<llvm::Value *> args, 3627 const Twine &name = ""); 3628 3629 SmallVector<llvm::OperandBundleDef, 1> 3630 getBundlesForFunclet(llvm::Value *Callee); 3631 3632 llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee, 3633 ArrayRef<llvm::Value *> Args, 3634 const Twine &Name = ""); 3635 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3636 ArrayRef<llvm::Value *> args, 3637 const Twine &name = ""); 3638 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3639 const Twine &name = ""); 3640 void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3641 ArrayRef<llvm::Value *> args); 3642 3643 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 3644 NestedNameSpecifier *Qual, 3645 llvm::Type *Ty); 3646 3647 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 3648 CXXDtorType Type, 3649 const CXXRecordDecl *RD); 3650 3651 // Return the copy constructor name with the prefix "__copy_constructor_" 3652 // removed. 3653 static std::string getNonTrivialCopyConstructorStr(QualType QT, 3654 CharUnits Alignment, 3655 bool IsVolatile, 3656 ASTContext &Ctx); 3657 3658 // Return the destructor name with the prefix "__destructor_" removed. 3659 static std::string getNonTrivialDestructorStr(QualType QT, 3660 CharUnits Alignment, 3661 bool IsVolatile, 3662 ASTContext &Ctx); 3663 3664 // These functions emit calls to the special functions of non-trivial C 3665 // structs. 3666 void defaultInitNonTrivialCStructVar(LValue Dst); 3667 void callCStructDefaultConstructor(LValue Dst); 3668 void callCStructDestructor(LValue Dst); 3669 void callCStructCopyConstructor(LValue Dst, LValue Src); 3670 void callCStructMoveConstructor(LValue Dst, LValue Src); 3671 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 3672 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 3673 3674 RValue 3675 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 3676 const CGCallee &Callee, 3677 ReturnValueSlot ReturnValue, llvm::Value *This, 3678 llvm::Value *ImplicitParam, 3679 QualType ImplicitParamTy, const CallExpr *E, 3680 CallArgList *RtlArgs); 3681 RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee, 3682 llvm::Value *This, QualType ThisTy, 3683 llvm::Value *ImplicitParam, 3684 QualType ImplicitParamTy, const CallExpr *E); 3685 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 3686 ReturnValueSlot ReturnValue); 3687 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 3688 const CXXMethodDecl *MD, 3689 ReturnValueSlot ReturnValue, 3690 bool HasQualifier, 3691 NestedNameSpecifier *Qualifier, 3692 bool IsArrow, const Expr *Base); 3693 // Compute the object pointer. 3694 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 3695 llvm::Value *memberPtr, 3696 const MemberPointerType *memberPtrType, 3697 LValueBaseInfo *BaseInfo = nullptr, 3698 TBAAAccessInfo *TBAAInfo = nullptr); 3699 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 3700 ReturnValueSlot ReturnValue); 3701 3702 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 3703 const CXXMethodDecl *MD, 3704 ReturnValueSlot ReturnValue); 3705 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 3706 3707 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 3708 ReturnValueSlot ReturnValue); 3709 3710 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, 3711 ReturnValueSlot ReturnValue); 3712 3713 RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 3714 const CallExpr *E, ReturnValueSlot ReturnValue); 3715 3716 RValue emitRotate(const CallExpr *E, bool IsRotateRight); 3717 3718 /// Emit IR for __builtin_os_log_format. 3719 RValue emitBuiltinOSLogFormat(const CallExpr &E); 3720 3721 llvm::Function *generateBuiltinOSLogHelperFunction( 3722 const analyze_os_log::OSLogBufferLayout &Layout, 3723 CharUnits BufferAlignment); 3724 3725 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3726 3727 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 3728 /// is unhandled by the current target. 3729 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3730 3731 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 3732 const llvm::CmpInst::Predicate Fp, 3733 const llvm::CmpInst::Predicate Ip, 3734 const llvm::Twine &Name = ""); 3735 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3736 llvm::Triple::ArchType Arch); 3737 3738 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 3739 unsigned LLVMIntrinsic, 3740 unsigned AltLLVMIntrinsic, 3741 const char *NameHint, 3742 unsigned Modifier, 3743 const CallExpr *E, 3744 SmallVectorImpl<llvm::Value *> &Ops, 3745 Address PtrOp0, Address PtrOp1, 3746 llvm::Triple::ArchType Arch); 3747 3748 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 3749 unsigned Modifier, llvm::Type *ArgTy, 3750 const CallExpr *E); 3751 llvm::Value *EmitNeonCall(llvm::Function *F, 3752 SmallVectorImpl<llvm::Value*> &O, 3753 const char *name, 3754 unsigned shift = 0, bool rightshift = false); 3755 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 3756 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 3757 bool negateForRightShift); 3758 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 3759 llvm::Type *Ty, bool usgn, const char *name); 3760 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 3761 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3762 llvm::Triple::ArchType Arch); 3763 3764 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 3765 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3766 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3767 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3768 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3769 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3770 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 3771 const CallExpr *E); 3772 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3773 3774 private: 3775 enum class MSVCIntrin; 3776 3777 public: 3778 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 3779 3780 llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args); 3781 3782 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 3783 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 3784 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 3785 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 3786 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 3787 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 3788 const ObjCMethodDecl *MethodWithObjects); 3789 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 3790 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 3791 ReturnValueSlot Return = ReturnValueSlot()); 3792 3793 /// Retrieves the default cleanup kind for an ARC cleanup. 3794 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 3795 CleanupKind getARCCleanupKind() { 3796 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 3797 ? NormalAndEHCleanup : NormalCleanup; 3798 } 3799 3800 // ARC primitives. 3801 void EmitARCInitWeak(Address addr, llvm::Value *value); 3802 void EmitARCDestroyWeak(Address addr); 3803 llvm::Value *EmitARCLoadWeak(Address addr); 3804 llvm::Value *EmitARCLoadWeakRetained(Address addr); 3805 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 3806 void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 3807 void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 3808 void EmitARCCopyWeak(Address dst, Address src); 3809 void EmitARCMoveWeak(Address dst, Address src); 3810 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 3811 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 3812 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 3813 bool resultIgnored); 3814 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 3815 bool resultIgnored); 3816 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 3817 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 3818 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 3819 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 3820 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 3821 llvm::Value *EmitARCAutorelease(llvm::Value *value); 3822 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 3823 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 3824 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 3825 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 3826 3827 llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); 3828 llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, 3829 llvm::Type *returnType); 3830 void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 3831 3832 std::pair<LValue,llvm::Value*> 3833 EmitARCStoreAutoreleasing(const BinaryOperator *e); 3834 std::pair<LValue,llvm::Value*> 3835 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 3836 std::pair<LValue,llvm::Value*> 3837 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 3838 3839 llvm::Value *EmitObjCAlloc(llvm::Value *value, 3840 llvm::Type *returnType); 3841 llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, 3842 llvm::Type *returnType); 3843 llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType); 3844 3845 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 3846 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 3847 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 3848 3849 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 3850 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 3851 bool allowUnsafeClaim); 3852 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 3853 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 3854 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 3855 3856 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 3857 3858 static Destroyer destroyARCStrongImprecise; 3859 static Destroyer destroyARCStrongPrecise; 3860 static Destroyer destroyARCWeak; 3861 static Destroyer emitARCIntrinsicUse; 3862 static Destroyer destroyNonTrivialCStruct; 3863 3864 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 3865 llvm::Value *EmitObjCAutoreleasePoolPush(); 3866 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 3867 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 3868 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 3869 3870 /// Emits a reference binding to the passed in expression. 3871 RValue EmitReferenceBindingToExpr(const Expr *E); 3872 3873 //===--------------------------------------------------------------------===// 3874 // Expression Emission 3875 //===--------------------------------------------------------------------===// 3876 3877 // Expressions are broken into three classes: scalar, complex, aggregate. 3878 3879 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 3880 /// scalar type, returning the result. 3881 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 3882 3883 /// Emit a conversion from the specified type to the specified destination 3884 /// type, both of which are LLVM scalar types. 3885 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 3886 QualType DstTy, SourceLocation Loc); 3887 3888 /// Emit a conversion from the specified complex type to the specified 3889 /// destination type, where the destination type is an LLVM scalar type. 3890 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 3891 QualType DstTy, 3892 SourceLocation Loc); 3893 3894 /// EmitAggExpr - Emit the computation of the specified expression 3895 /// of aggregate type. The result is computed into the given slot, 3896 /// which may be null to indicate that the value is not needed. 3897 void EmitAggExpr(const Expr *E, AggValueSlot AS); 3898 3899 /// EmitAggExprToLValue - Emit the computation of the specified expression of 3900 /// aggregate type into a temporary LValue. 3901 LValue EmitAggExprToLValue(const Expr *E); 3902 3903 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3904 /// make sure it survives garbage collection until this point. 3905 void EmitExtendGCLifetime(llvm::Value *object); 3906 3907 /// EmitComplexExpr - Emit the computation of the specified expression of 3908 /// complex type, returning the result. 3909 ComplexPairTy EmitComplexExpr(const Expr *E, 3910 bool IgnoreReal = false, 3911 bool IgnoreImag = false); 3912 3913 /// EmitComplexExprIntoLValue - Emit the given expression of complex 3914 /// type and place its result into the specified l-value. 3915 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 3916 3917 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 3918 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 3919 3920 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 3921 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 3922 3923 Address emitAddrOfRealComponent(Address complex, QualType complexType); 3924 Address emitAddrOfImagComponent(Address complex, QualType complexType); 3925 3926 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 3927 /// global variable that has already been created for it. If the initializer 3928 /// has a different type than GV does, this may free GV and return a different 3929 /// one. Otherwise it just returns GV. 3930 llvm::GlobalVariable * 3931 AddInitializerToStaticVarDecl(const VarDecl &D, 3932 llvm::GlobalVariable *GV); 3933 3934 // Emit an @llvm.invariant.start call for the given memory region. 3935 void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); 3936 3937 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 3938 /// variable with global storage. 3939 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 3940 bool PerformInit); 3941 3942 llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor, 3943 llvm::Constant *Addr); 3944 3945 /// Call atexit() with a function that passes the given argument to 3946 /// the given function. 3947 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn, 3948 llvm::Constant *addr); 3949 3950 /// Call atexit() with function dtorStub. 3951 void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); 3952 3953 /// Emit code in this function to perform a guarded variable 3954 /// initialization. Guarded initializations are used when it's not 3955 /// possible to prove that an initialization will be done exactly 3956 /// once, e.g. with a static local variable or a static data member 3957 /// of a class template. 3958 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 3959 bool PerformInit); 3960 3961 enum class GuardKind { VariableGuard, TlsGuard }; 3962 3963 /// Emit a branch to select whether or not to perform guarded initialization. 3964 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 3965 llvm::BasicBlock *InitBlock, 3966 llvm::BasicBlock *NoInitBlock, 3967 GuardKind Kind, const VarDecl *D); 3968 3969 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 3970 /// variables. 3971 void 3972 GenerateCXXGlobalInitFunc(llvm::Function *Fn, 3973 ArrayRef<llvm::Function *> CXXThreadLocals, 3974 ConstantAddress Guard = ConstantAddress::invalid()); 3975 3976 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 3977 /// variables. 3978 void GenerateCXXGlobalDtorsFunc( 3979 llvm::Function *Fn, 3980 const std::vector<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH, 3981 llvm::Constant *>> &DtorsAndObjects); 3982 3983 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 3984 const VarDecl *D, 3985 llvm::GlobalVariable *Addr, 3986 bool PerformInit); 3987 3988 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 3989 3990 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 3991 3992 void enterFullExpression(const FullExpr *E) { 3993 if (const auto *EWC = dyn_cast<ExprWithCleanups>(E)) 3994 if (EWC->getNumObjects() == 0) 3995 return; 3996 enterNonTrivialFullExpression(E); 3997 } 3998 void enterNonTrivialFullExpression(const FullExpr *E); 3999 4000 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 4001 4002 RValue EmitAtomicExpr(AtomicExpr *E); 4003 4004 //===--------------------------------------------------------------------===// 4005 // Annotations Emission 4006 //===--------------------------------------------------------------------===// 4007 4008 /// Emit an annotation call (intrinsic). 4009 llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn, 4010 llvm::Value *AnnotatedVal, 4011 StringRef AnnotationStr, 4012 SourceLocation Location); 4013 4014 /// Emit local annotations for the local variable V, declared by D. 4015 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 4016 4017 /// Emit field annotations for the given field & value. Returns the 4018 /// annotation result. 4019 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 4020 4021 //===--------------------------------------------------------------------===// 4022 // Internal Helpers 4023 //===--------------------------------------------------------------------===// 4024 4025 /// ContainsLabel - Return true if the statement contains a label in it. If 4026 /// this statement is not executed normally, it not containing a label means 4027 /// that we can just remove the code. 4028 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 4029 4030 /// containsBreak - Return true if the statement contains a break out of it. 4031 /// If the statement (recursively) contains a switch or loop with a break 4032 /// inside of it, this is fine. 4033 static bool containsBreak(const Stmt *S); 4034 4035 /// Determine if the given statement might introduce a declaration into the 4036 /// current scope, by being a (possibly-labelled) DeclStmt. 4037 static bool mightAddDeclToScope(const Stmt *S); 4038 4039 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4040 /// to a constant, or if it does but contains a label, return false. If it 4041 /// constant folds return true and set the boolean result in Result. 4042 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 4043 bool AllowLabels = false); 4044 4045 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4046 /// to a constant, or if it does but contains a label, return false. If it 4047 /// constant folds return true and set the folded value. 4048 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 4049 bool AllowLabels = false); 4050 4051 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 4052 /// if statement) to the specified blocks. Based on the condition, this might 4053 /// try to simplify the codegen of the conditional based on the branch. 4054 /// TrueCount should be the number of times we expect the condition to 4055 /// evaluate to true based on PGO data. 4056 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 4057 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 4058 4059 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 4060 /// nonnull, if \p LHS is marked _Nonnull. 4061 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 4062 4063 /// An enumeration which makes it easier to specify whether or not an 4064 /// operation is a subtraction. 4065 enum { NotSubtraction = false, IsSubtraction = true }; 4066 4067 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 4068 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 4069 /// \p SignedIndices indicates whether any of the GEP indices are signed. 4070 /// \p IsSubtraction indicates whether the expression used to form the GEP 4071 /// is a subtraction. 4072 llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr, 4073 ArrayRef<llvm::Value *> IdxList, 4074 bool SignedIndices, 4075 bool IsSubtraction, 4076 SourceLocation Loc, 4077 const Twine &Name = ""); 4078 4079 /// Specifies which type of sanitizer check to apply when handling a 4080 /// particular builtin. 4081 enum BuiltinCheckKind { 4082 BCK_CTZPassedZero, 4083 BCK_CLZPassedZero, 4084 }; 4085 4086 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 4087 /// enabled, a runtime check specified by \p Kind is also emitted. 4088 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 4089 4090 /// Emit a description of a type in a format suitable for passing to 4091 /// a runtime sanitizer handler. 4092 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 4093 4094 /// Convert a value into a format suitable for passing to a runtime 4095 /// sanitizer handler. 4096 llvm::Value *EmitCheckValue(llvm::Value *V); 4097 4098 /// Emit a description of a source location in a format suitable for 4099 /// passing to a runtime sanitizer handler. 4100 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 4101 4102 /// Create a basic block that will either trap or call a handler function in 4103 /// the UBSan runtime with the provided arguments, and create a conditional 4104 /// branch to it. 4105 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 4106 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 4107 ArrayRef<llvm::Value *> DynamicArgs); 4108 4109 /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 4110 /// if Cond if false. 4111 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 4112 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 4113 ArrayRef<llvm::Constant *> StaticArgs); 4114 4115 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 4116 /// checking is enabled. Otherwise, just emit an unreachable instruction. 4117 void EmitUnreachable(SourceLocation Loc); 4118 4119 /// Create a basic block that will call the trap intrinsic, and emit a 4120 /// conditional branch to it, for the -ftrapv checks. 4121 void EmitTrapCheck(llvm::Value *Checked); 4122 4123 /// Emit a call to trap or debugtrap and attach function attribute 4124 /// "trap-func-name" if specified. 4125 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 4126 4127 /// Emit a stub for the cross-DSO CFI check function. 4128 void EmitCfiCheckStub(); 4129 4130 /// Emit a cross-DSO CFI failure handling function. 4131 void EmitCfiCheckFail(); 4132 4133 /// Create a check for a function parameter that may potentially be 4134 /// declared as non-null. 4135 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 4136 AbstractCallee AC, unsigned ParmNum); 4137 4138 /// EmitCallArg - Emit a single call argument. 4139 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 4140 4141 /// EmitDelegateCallArg - We are performing a delegate call; that 4142 /// is, the current function is delegating to another one. Produce 4143 /// a r-value suitable for passing the given parameter. 4144 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 4145 SourceLocation loc); 4146 4147 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 4148 /// point operation, expressed as the maximum relative error in ulp. 4149 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 4150 4151 private: 4152 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 4153 void EmitReturnOfRValue(RValue RV, QualType Ty); 4154 4155 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 4156 4157 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 4158 DeferredReplacements; 4159 4160 /// Set the address of a local variable. 4161 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 4162 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 4163 LocalDeclMap.insert({VD, Addr}); 4164 } 4165 4166 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 4167 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 4168 /// 4169 /// \param AI - The first function argument of the expansion. 4170 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 4171 SmallVectorImpl<llvm::Value *>::iterator &AI); 4172 4173 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 4174 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 4175 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 4176 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 4177 SmallVectorImpl<llvm::Value *> &IRCallArgs, 4178 unsigned &IRCallArgPos); 4179 4180 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 4181 const Expr *InputExpr, std::string &ConstraintStr); 4182 4183 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 4184 LValue InputValue, QualType InputType, 4185 std::string &ConstraintStr, 4186 SourceLocation Loc); 4187 4188 /// Attempts to statically evaluate the object size of E. If that 4189 /// fails, emits code to figure the size of E out for us. This is 4190 /// pass_object_size aware. 4191 /// 4192 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 4193 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 4194 llvm::IntegerType *ResType, 4195 llvm::Value *EmittedE, 4196 bool IsDynamic); 4197 4198 /// Emits the size of E, as required by __builtin_object_size. This 4199 /// function is aware of pass_object_size parameters, and will act accordingly 4200 /// if E is a parameter with the pass_object_size attribute. 4201 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 4202 llvm::IntegerType *ResType, 4203 llvm::Value *EmittedE, 4204 bool IsDynamic); 4205 4206 void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D, 4207 Address Loc); 4208 4209 public: 4210 #ifndef NDEBUG 4211 // Determine whether the given argument is an Objective-C method 4212 // that may have type parameters in its signature. 4213 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 4214 const DeclContext *dc = method->getDeclContext(); 4215 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 4216 return classDecl->getTypeParamListAsWritten(); 4217 } 4218 4219 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 4220 return catDecl->getTypeParamList(); 4221 } 4222 4223 return false; 4224 } 4225 4226 template<typename T> 4227 static bool isObjCMethodWithTypeParams(const T *) { return false; } 4228 #endif 4229 4230 enum class EvaluationOrder { 4231 ///! No language constraints on evaluation order. 4232 Default, 4233 ///! Language semantics require left-to-right evaluation. 4234 ForceLeftToRight, 4235 ///! Language semantics require right-to-left evaluation. 4236 ForceRightToLeft 4237 }; 4238 4239 /// EmitCallArgs - Emit call arguments for a function. 4240 template <typename T> 4241 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 4242 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4243 AbstractCallee AC = AbstractCallee(), 4244 unsigned ParamsToSkip = 0, 4245 EvaluationOrder Order = EvaluationOrder::Default) { 4246 SmallVector<QualType, 16> ArgTypes; 4247 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 4248 4249 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 4250 "Can't skip parameters if type info is not provided"); 4251 if (CallArgTypeInfo) { 4252 #ifndef NDEBUG 4253 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 4254 #endif 4255 4256 // First, use the argument types that the type info knows about 4257 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 4258 E = CallArgTypeInfo->param_type_end(); 4259 I != E; ++I, ++Arg) { 4260 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 4261 assert((isGenericMethod || 4262 ((*I)->isVariablyModifiedType() || 4263 (*I).getNonReferenceType()->isObjCRetainableType() || 4264 getContext() 4265 .getCanonicalType((*I).getNonReferenceType()) 4266 .getTypePtr() == 4267 getContext() 4268 .getCanonicalType((*Arg)->getType()) 4269 .getTypePtr())) && 4270 "type mismatch in call argument!"); 4271 ArgTypes.push_back(*I); 4272 } 4273 } 4274 4275 // Either we've emitted all the call args, or we have a call to variadic 4276 // function. 4277 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 4278 CallArgTypeInfo->isVariadic()) && 4279 "Extra arguments in non-variadic function!"); 4280 4281 // If we still have any arguments, emit them using the type of the argument. 4282 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 4283 ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType()); 4284 4285 EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order); 4286 } 4287 4288 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 4289 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4290 AbstractCallee AC = AbstractCallee(), 4291 unsigned ParamsToSkip = 0, 4292 EvaluationOrder Order = EvaluationOrder::Default); 4293 4294 /// EmitPointerWithAlignment - Given an expression with a pointer type, 4295 /// emit the value and compute our best estimate of the alignment of the 4296 /// pointee. 4297 /// 4298 /// \param BaseInfo - If non-null, this will be initialized with 4299 /// information about the source of the alignment and the may-alias 4300 /// attribute. Note that this function will conservatively fall back on 4301 /// the type when it doesn't recognize the expression and may-alias will 4302 /// be set to false. 4303 /// 4304 /// One reasonable way to use this information is when there's a language 4305 /// guarantee that the pointer must be aligned to some stricter value, and 4306 /// we're simply trying to ensure that sufficiently obvious uses of under- 4307 /// aligned objects don't get miscompiled; for example, a placement new 4308 /// into the address of a local variable. In such a case, it's quite 4309 /// reasonable to just ignore the returned alignment when it isn't from an 4310 /// explicit source. 4311 Address EmitPointerWithAlignment(const Expr *Addr, 4312 LValueBaseInfo *BaseInfo = nullptr, 4313 TBAAAccessInfo *TBAAInfo = nullptr); 4314 4315 /// If \p E references a parameter with pass_object_size info or a constant 4316 /// array size modifier, emit the object size divided by the size of \p EltTy. 4317 /// Otherwise return null. 4318 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 4319 4320 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 4321 4322 struct MultiVersionResolverOption { 4323 llvm::Function *Function; 4324 FunctionDecl *FD; 4325 struct Conds { 4326 StringRef Architecture; 4327 llvm::SmallVector<StringRef, 8> Features; 4328 4329 Conds(StringRef Arch, ArrayRef<StringRef> Feats) 4330 : Architecture(Arch), Features(Feats.begin(), Feats.end()) {} 4331 } Conditions; 4332 4333 MultiVersionResolverOption(llvm::Function *F, StringRef Arch, 4334 ArrayRef<StringRef> Feats) 4335 : Function(F), Conditions(Arch, Feats) {} 4336 }; 4337 4338 // Emits the body of a multiversion function's resolver. Assumes that the 4339 // options are already sorted in the proper order, with the 'default' option 4340 // last (if it exists). 4341 void EmitMultiVersionResolver(llvm::Function *Resolver, 4342 ArrayRef<MultiVersionResolverOption> Options); 4343 4344 static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs); 4345 4346 private: 4347 QualType getVarArgType(const Expr *Arg); 4348 4349 void EmitDeclMetadata(); 4350 4351 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 4352 const AutoVarEmission &emission); 4353 4354 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 4355 4356 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 4357 llvm::Value *EmitX86CpuIs(const CallExpr *E); 4358 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 4359 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 4360 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 4361 llvm::Value *EmitX86CpuSupports(uint64_t Mask); 4362 llvm::Value *EmitX86CpuInit(); 4363 llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO); 4364 }; 4365 4366 inline DominatingLLVMValue::saved_type 4367 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { 4368 if (!needsSaving(value)) return saved_type(value, false); 4369 4370 // Otherwise, we need an alloca. 4371 auto align = CharUnits::fromQuantity( 4372 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 4373 Address alloca = 4374 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 4375 CGF.Builder.CreateStore(value, alloca); 4376 4377 return saved_type(alloca.getPointer(), true); 4378 } 4379 4380 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, 4381 saved_type value) { 4382 // If the value says it wasn't saved, trust that it's still dominating. 4383 if (!value.getInt()) return value.getPointer(); 4384 4385 // Otherwise, it should be an alloca instruction, as set up in save(). 4386 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 4387 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment()); 4388 } 4389 4390 } // end namespace CodeGen 4391 } // end namespace clang 4392 4393 #endif 4394