1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGHLSLRuntime.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ASTLambda.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/Decl.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/Expr.h" 30 #include "clang/AST/StmtCXX.h" 31 #include "clang/AST/StmtObjC.h" 32 #include "clang/Basic/Builtins.h" 33 #include "clang/Basic/CodeGenOptions.h" 34 #include "clang/Basic/TargetInfo.h" 35 #include "clang/CodeGen/CGFunctionInfo.h" 36 #include "clang/Frontend/FrontendDiagnostic.h" 37 #include "llvm/ADT/ArrayRef.h" 38 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/Dominators.h" 41 #include "llvm/IR/FPEnv.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/MDBuilder.h" 45 #include "llvm/IR/Operator.h" 46 #include "llvm/Support/CRC.h" 47 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 48 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 49 #include <optional> 50 51 using namespace clang; 52 using namespace CodeGen; 53 54 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 55 /// markers. 56 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 57 const LangOptions &LangOpts) { 58 if (CGOpts.DisableLifetimeMarkers) 59 return false; 60 61 // Sanitizers may use markers. 62 if (CGOpts.SanitizeAddressUseAfterScope || 63 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 64 LangOpts.Sanitize.has(SanitizerKind::Memory)) 65 return true; 66 67 // For now, only in optimized builds. 68 return CGOpts.OptimizationLevel != 0; 69 } 70 71 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 72 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 73 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 74 CGBuilderInserterTy(this)), 75 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 76 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 77 ShouldEmitLifetimeMarkers( 78 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 79 if (!suppressNewContext) 80 CGM.getCXXABI().getMangleContext().startNewFunction(); 81 EHStack.setCGF(this); 82 83 SetFastMathFlags(CurFPFeatures); 84 } 85 86 CodeGenFunction::~CodeGenFunction() { 87 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 88 89 if (getLangOpts().OpenMP && CurFn) 90 CGM.getOpenMPRuntime().functionFinished(*this); 91 92 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 93 // outlining etc) at some point. Doing it once the function codegen is done 94 // seems to be a reasonable spot. We do it here, as opposed to the deletion 95 // time of the CodeGenModule, because we have to ensure the IR has not yet 96 // been "emitted" to the outside, thus, modifications are still sensible. 97 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 98 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 99 } 100 101 // Map the LangOption for exception behavior into 102 // the corresponding enum in the IR. 103 llvm::fp::ExceptionBehavior 104 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 105 106 switch (Kind) { 107 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 108 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 109 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 110 default: 111 llvm_unreachable("Unsupported FP Exception Behavior"); 112 } 113 } 114 115 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 116 llvm::FastMathFlags FMF; 117 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 118 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 119 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 120 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 121 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 122 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 123 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 124 Builder.setFastMathFlags(FMF); 125 } 126 127 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 128 const Expr *E) 129 : CGF(CGF) { 130 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 131 } 132 133 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 134 FPOptions FPFeatures) 135 : CGF(CGF) { 136 ConstructorHelper(FPFeatures); 137 } 138 139 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 140 OldFPFeatures = CGF.CurFPFeatures; 141 CGF.CurFPFeatures = FPFeatures; 142 143 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 144 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 145 146 if (OldFPFeatures == FPFeatures) 147 return; 148 149 FMFGuard.emplace(CGF.Builder); 150 151 llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode(); 152 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 153 auto NewExceptionBehavior = 154 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 155 FPFeatures.getExceptionMode())); 156 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 157 158 CGF.SetFastMathFlags(FPFeatures); 159 160 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 161 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 162 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 163 (NewExceptionBehavior == llvm::fp::ebIgnore && 164 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 165 "FPConstrained should be enabled on entire function"); 166 167 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 168 auto OldValue = 169 CGF.CurFn->getFnAttribute(Name).getValueAsBool(); 170 auto NewValue = OldValue & Value; 171 if (OldValue != NewValue) 172 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 173 }; 174 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 175 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 176 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 177 mergeFnAttrValue( 178 "unsafe-fp-math", 179 FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() && 180 FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() && 181 FPFeatures.allowFPContractAcrossStatement()); 182 } 183 184 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 185 CGF.CurFPFeatures = OldFPFeatures; 186 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 187 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 188 } 189 190 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 191 LValueBaseInfo BaseInfo; 192 TBAAAccessInfo TBAAInfo; 193 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 194 Address Addr(V, ConvertTypeForMem(T), Alignment); 195 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 196 } 197 198 /// Given a value of type T* that may not be to a complete object, 199 /// construct an l-value with the natural pointee alignment of T. 200 LValue 201 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 202 LValueBaseInfo BaseInfo; 203 TBAAAccessInfo TBAAInfo; 204 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 205 /* forPointeeType= */ true); 206 Address Addr(V, ConvertTypeForMem(T), Align); 207 return MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 208 } 209 210 211 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 212 return CGM.getTypes().ConvertTypeForMem(T); 213 } 214 215 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 216 return CGM.getTypes().ConvertType(T); 217 } 218 219 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 220 type = type.getCanonicalType(); 221 while (true) { 222 switch (type->getTypeClass()) { 223 #define TYPE(name, parent) 224 #define ABSTRACT_TYPE(name, parent) 225 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 226 #define DEPENDENT_TYPE(name, parent) case Type::name: 227 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 228 #include "clang/AST/TypeNodes.inc" 229 llvm_unreachable("non-canonical or dependent type in IR-generation"); 230 231 case Type::Auto: 232 case Type::DeducedTemplateSpecialization: 233 llvm_unreachable("undeduced type in IR-generation"); 234 235 // Various scalar types. 236 case Type::Builtin: 237 case Type::Pointer: 238 case Type::BlockPointer: 239 case Type::LValueReference: 240 case Type::RValueReference: 241 case Type::MemberPointer: 242 case Type::Vector: 243 case Type::ExtVector: 244 case Type::ConstantMatrix: 245 case Type::FunctionProto: 246 case Type::FunctionNoProto: 247 case Type::Enum: 248 case Type::ObjCObjectPointer: 249 case Type::Pipe: 250 case Type::BitInt: 251 return TEK_Scalar; 252 253 // Complexes. 254 case Type::Complex: 255 return TEK_Complex; 256 257 // Arrays, records, and Objective-C objects. 258 case Type::ConstantArray: 259 case Type::IncompleteArray: 260 case Type::VariableArray: 261 case Type::Record: 262 case Type::ObjCObject: 263 case Type::ObjCInterface: 264 return TEK_Aggregate; 265 266 // We operate on atomic values according to their underlying type. 267 case Type::Atomic: 268 type = cast<AtomicType>(type)->getValueType(); 269 continue; 270 } 271 llvm_unreachable("unknown type kind!"); 272 } 273 } 274 275 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 276 // For cleanliness, we try to avoid emitting the return block for 277 // simple cases. 278 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 279 280 if (CurBB) { 281 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 282 283 // We have a valid insert point, reuse it if it is empty or there are no 284 // explicit jumps to the return block. 285 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 286 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 287 delete ReturnBlock.getBlock(); 288 ReturnBlock = JumpDest(); 289 } else 290 EmitBlock(ReturnBlock.getBlock()); 291 return llvm::DebugLoc(); 292 } 293 294 // Otherwise, if the return block is the target of a single direct 295 // branch then we can just put the code in that block instead. This 296 // cleans up functions which started with a unified return block. 297 if (ReturnBlock.getBlock()->hasOneUse()) { 298 llvm::BranchInst *BI = 299 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 300 if (BI && BI->isUnconditional() && 301 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 302 // Record/return the DebugLoc of the simple 'return' expression to be used 303 // later by the actual 'ret' instruction. 304 llvm::DebugLoc Loc = BI->getDebugLoc(); 305 Builder.SetInsertPoint(BI->getParent()); 306 BI->eraseFromParent(); 307 delete ReturnBlock.getBlock(); 308 ReturnBlock = JumpDest(); 309 return Loc; 310 } 311 } 312 313 // FIXME: We are at an unreachable point, there is no reason to emit the block 314 // unless it has uses. However, we still need a place to put the debug 315 // region.end for now. 316 317 EmitBlock(ReturnBlock.getBlock()); 318 return llvm::DebugLoc(); 319 } 320 321 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 322 if (!BB) return; 323 if (!BB->use_empty()) { 324 CGF.CurFn->insert(CGF.CurFn->end(), BB); 325 return; 326 } 327 delete BB; 328 } 329 330 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 331 assert(BreakContinueStack.empty() && 332 "mismatched push/pop in break/continue stack!"); 333 334 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 335 && NumSimpleReturnExprs == NumReturnExprs 336 && ReturnBlock.getBlock()->use_empty(); 337 // Usually the return expression is evaluated before the cleanup 338 // code. If the function contains only a simple return statement, 339 // such as a constant, the location before the cleanup code becomes 340 // the last useful breakpoint in the function, because the simple 341 // return expression will be evaluated after the cleanup code. To be 342 // safe, set the debug location for cleanup code to the location of 343 // the return statement. Otherwise the cleanup code should be at the 344 // end of the function's lexical scope. 345 // 346 // If there are multiple branches to the return block, the branch 347 // instructions will get the location of the return statements and 348 // all will be fine. 349 if (CGDebugInfo *DI = getDebugInfo()) { 350 if (OnlySimpleReturnStmts) 351 DI->EmitLocation(Builder, LastStopPoint); 352 else 353 DI->EmitLocation(Builder, EndLoc); 354 } 355 356 // Pop any cleanups that might have been associated with the 357 // parameters. Do this in whatever block we're currently in; it's 358 // important to do this before we enter the return block or return 359 // edges will be *really* confused. 360 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 361 bool HasOnlyLifetimeMarkers = 362 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 363 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 364 365 std::optional<ApplyDebugLocation> OAL; 366 if (HasCleanups) { 367 // Make sure the line table doesn't jump back into the body for 368 // the ret after it's been at EndLoc. 369 if (CGDebugInfo *DI = getDebugInfo()) { 370 if (OnlySimpleReturnStmts) 371 DI->EmitLocation(Builder, EndLoc); 372 else 373 // We may not have a valid end location. Try to apply it anyway, and 374 // fall back to an artificial location if needed. 375 OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 376 } 377 378 PopCleanupBlocks(PrologueCleanupDepth); 379 } 380 381 // Emit function epilog (to return). 382 llvm::DebugLoc Loc = EmitReturnBlock(); 383 384 if (ShouldInstrumentFunction()) { 385 if (CGM.getCodeGenOpts().InstrumentFunctions) 386 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 387 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 388 CurFn->addFnAttr("instrument-function-exit-inlined", 389 "__cyg_profile_func_exit"); 390 } 391 392 // Emit debug descriptor for function end. 393 if (CGDebugInfo *DI = getDebugInfo()) 394 DI->EmitFunctionEnd(Builder, CurFn); 395 396 // Reset the debug location to that of the simple 'return' expression, if any 397 // rather than that of the end of the function's scope '}'. 398 ApplyDebugLocation AL(*this, Loc); 399 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 400 EmitEndEHSpec(CurCodeDecl); 401 402 assert(EHStack.empty() && 403 "did not remove all scopes from cleanup stack!"); 404 405 // If someone did an indirect goto, emit the indirect goto block at the end of 406 // the function. 407 if (IndirectBranch) { 408 EmitBlock(IndirectBranch->getParent()); 409 Builder.ClearInsertionPoint(); 410 } 411 412 // If some of our locals escaped, insert a call to llvm.localescape in the 413 // entry block. 414 if (!EscapedLocals.empty()) { 415 // Invert the map from local to index into a simple vector. There should be 416 // no holes. 417 SmallVector<llvm::Value *, 4> EscapeArgs; 418 EscapeArgs.resize(EscapedLocals.size()); 419 for (auto &Pair : EscapedLocals) 420 EscapeArgs[Pair.second] = Pair.first; 421 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 422 &CGM.getModule(), llvm::Intrinsic::localescape); 423 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 424 } 425 426 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 427 llvm::Instruction *Ptr = AllocaInsertPt; 428 AllocaInsertPt = nullptr; 429 Ptr->eraseFromParent(); 430 431 // PostAllocaInsertPt, if created, was lazily created when it was required, 432 // remove it now since it was just created for our own convenience. 433 if (PostAllocaInsertPt) { 434 llvm::Instruction *PostPtr = PostAllocaInsertPt; 435 PostAllocaInsertPt = nullptr; 436 PostPtr->eraseFromParent(); 437 } 438 439 // If someone took the address of a label but never did an indirect goto, we 440 // made a zero entry PHI node, which is illegal, zap it now. 441 if (IndirectBranch) { 442 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 443 if (PN->getNumIncomingValues() == 0) { 444 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 445 PN->eraseFromParent(); 446 } 447 } 448 449 EmitIfUsed(*this, EHResumeBlock); 450 EmitIfUsed(*this, TerminateLandingPad); 451 EmitIfUsed(*this, TerminateHandler); 452 EmitIfUsed(*this, UnreachableBlock); 453 454 for (const auto &FuncletAndParent : TerminateFunclets) 455 EmitIfUsed(*this, FuncletAndParent.second); 456 457 if (CGM.getCodeGenOpts().EmitDeclMetadata) 458 EmitDeclMetadata(); 459 460 for (const auto &R : DeferredReplacements) { 461 if (llvm::Value *Old = R.first) { 462 Old->replaceAllUsesWith(R.second); 463 cast<llvm::Instruction>(Old)->eraseFromParent(); 464 } 465 } 466 DeferredReplacements.clear(); 467 468 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 469 // PHIs if the current function is a coroutine. We don't do it for all 470 // functions as it may result in slight increase in numbers of instructions 471 // if compiled with no optimizations. We do it for coroutine as the lifetime 472 // of CleanupDestSlot alloca make correct coroutine frame building very 473 // difficult. 474 if (NormalCleanupDest.isValid() && isCoroutine()) { 475 llvm::DominatorTree DT(*CurFn); 476 llvm::PromoteMemToReg( 477 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 478 NormalCleanupDest = Address::invalid(); 479 } 480 481 // Scan function arguments for vector width. 482 for (llvm::Argument &A : CurFn->args()) 483 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 484 LargestVectorWidth = 485 std::max((uint64_t)LargestVectorWidth, 486 VT->getPrimitiveSizeInBits().getKnownMinValue()); 487 488 // Update vector width based on return type. 489 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 490 LargestVectorWidth = 491 std::max((uint64_t)LargestVectorWidth, 492 VT->getPrimitiveSizeInBits().getKnownMinValue()); 493 494 if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth) 495 LargestVectorWidth = CurFnInfo->getMaxVectorWidth(); 496 497 // Add the required-vector-width attribute. This contains the max width from: 498 // 1. min-vector-width attribute used in the source program. 499 // 2. Any builtins used that have a vector width specified. 500 // 3. Values passed in and out of inline assembly. 501 // 4. Width of vector arguments and return types for this function. 502 // 5. Width of vector aguments and return types for functions called by this 503 // function. 504 if (getContext().getTargetInfo().getTriple().isX86()) 505 CurFn->addFnAttr("min-legal-vector-width", 506 llvm::utostr(LargestVectorWidth)); 507 508 // Add vscale_range attribute if appropriate. 509 std::optional<std::pair<unsigned, unsigned>> VScaleRange = 510 getContext().getTargetInfo().getVScaleRange(getLangOpts()); 511 if (VScaleRange) { 512 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( 513 getLLVMContext(), VScaleRange->first, VScaleRange->second)); 514 } 515 516 // If we generated an unreachable return block, delete it now. 517 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 518 Builder.ClearInsertionPoint(); 519 ReturnBlock.getBlock()->eraseFromParent(); 520 } 521 if (ReturnValue.isValid()) { 522 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 523 if (RetAlloca && RetAlloca->use_empty()) { 524 RetAlloca->eraseFromParent(); 525 ReturnValue = Address::invalid(); 526 } 527 } 528 } 529 530 /// ShouldInstrumentFunction - Return true if the current function should be 531 /// instrumented with __cyg_profile_func_* calls 532 bool CodeGenFunction::ShouldInstrumentFunction() { 533 if (!CGM.getCodeGenOpts().InstrumentFunctions && 534 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 535 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 536 return false; 537 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 538 return false; 539 return true; 540 } 541 542 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() { 543 if (!CurFuncDecl) 544 return false; 545 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>(); 546 } 547 548 /// ShouldXRayInstrument - Return true if the current function should be 549 /// instrumented with XRay nop sleds. 550 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 551 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 552 } 553 554 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 555 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 556 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 557 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 558 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 559 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 560 XRayInstrKind::Custom); 561 } 562 563 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 564 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 565 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 566 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 567 XRayInstrKind::Typed); 568 } 569 570 llvm::Value * 571 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 572 llvm::Value *EncodedAddr) { 573 // Reconstruct the address of the global. 574 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 575 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 576 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 577 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 578 579 // Load the original pointer through the global. 580 return Builder.CreateLoad(Address(GOTAddr, Int8PtrTy, getPointerAlign()), 581 "decoded_addr"); 582 } 583 584 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD, 585 llvm::Function *Fn) { 586 if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>()) 587 return; 588 589 llvm::LLVMContext &Context = getLLVMContext(); 590 591 CGM.GenKernelArgMetadata(Fn, FD, this); 592 593 if (!getLangOpts().OpenCL) 594 return; 595 596 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 597 QualType HintQTy = A->getTypeHint(); 598 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 599 bool IsSignedInteger = 600 HintQTy->isSignedIntegerType() || 601 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 602 llvm::Metadata *AttrMDArgs[] = { 603 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 604 CGM.getTypes().ConvertType(A->getTypeHint()))), 605 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 606 llvm::IntegerType::get(Context, 32), 607 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 608 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 609 } 610 611 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 612 llvm::Metadata *AttrMDArgs[] = { 613 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 614 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 615 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 616 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 617 } 618 619 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 620 llvm::Metadata *AttrMDArgs[] = { 621 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 622 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 623 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 624 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 625 } 626 627 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 628 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 629 llvm::Metadata *AttrMDArgs[] = { 630 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 631 Fn->setMetadata("intel_reqd_sub_group_size", 632 llvm::MDNode::get(Context, AttrMDArgs)); 633 } 634 } 635 636 /// Determine whether the function F ends with a return stmt. 637 static bool endsWithReturn(const Decl* F) { 638 const Stmt *Body = nullptr; 639 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 640 Body = FD->getBody(); 641 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 642 Body = OMD->getBody(); 643 644 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 645 auto LastStmt = CS->body_rbegin(); 646 if (LastStmt != CS->body_rend()) 647 return isa<ReturnStmt>(*LastStmt); 648 } 649 return false; 650 } 651 652 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 653 if (SanOpts.has(SanitizerKind::Thread)) { 654 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 655 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 656 } 657 } 658 659 /// Check if the return value of this function requires sanitization. 660 bool CodeGenFunction::requiresReturnValueCheck() const { 661 return requiresReturnValueNullabilityCheck() || 662 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 663 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 664 } 665 666 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 667 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 668 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 669 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 670 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 671 return false; 672 673 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 674 return false; 675 676 if (MD->getNumParams() == 2) { 677 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 678 if (!PT || !PT->isVoidPointerType() || 679 !PT->getPointeeType().isConstQualified()) 680 return false; 681 } 682 683 return true; 684 } 685 686 /// Return the UBSan prologue signature for \p FD if one is available. 687 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 688 const FunctionDecl *FD) { 689 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 690 if (!MD->isStatic()) 691 return nullptr; 692 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 693 } 694 695 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 696 llvm::Function *Fn, 697 const CGFunctionInfo &FnInfo, 698 const FunctionArgList &Args, 699 SourceLocation Loc, 700 SourceLocation StartLoc) { 701 assert(!CurFn && 702 "Do not use a CodeGenFunction object for more than one function"); 703 704 const Decl *D = GD.getDecl(); 705 706 DidCallStackSave = false; 707 CurCodeDecl = D; 708 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 709 if (FD && FD->usesSEHTry()) 710 CurSEHParent = GD; 711 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 712 FnRetTy = RetTy; 713 CurFn = Fn; 714 CurFnInfo = &FnInfo; 715 assert(CurFn->isDeclaration() && "Function already has body?"); 716 717 // If this function is ignored for any of the enabled sanitizers, 718 // disable the sanitizer for the function. 719 do { 720 #define SANITIZER(NAME, ID) \ 721 if (SanOpts.empty()) \ 722 break; \ 723 if (SanOpts.has(SanitizerKind::ID)) \ 724 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 725 SanOpts.set(SanitizerKind::ID, false); 726 727 #include "clang/Basic/Sanitizers.def" 728 #undef SANITIZER 729 } while (false); 730 731 if (D) { 732 const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds); 733 bool NoSanitizeCoverage = false; 734 735 for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) { 736 // Apply the no_sanitize* attributes to SanOpts. 737 SanitizerMask mask = Attr->getMask(); 738 SanOpts.Mask &= ~mask; 739 if (mask & SanitizerKind::Address) 740 SanOpts.set(SanitizerKind::KernelAddress, false); 741 if (mask & SanitizerKind::KernelAddress) 742 SanOpts.set(SanitizerKind::Address, false); 743 if (mask & SanitizerKind::HWAddress) 744 SanOpts.set(SanitizerKind::KernelHWAddress, false); 745 if (mask & SanitizerKind::KernelHWAddress) 746 SanOpts.set(SanitizerKind::HWAddress, false); 747 748 // SanitizeCoverage is not handled by SanOpts. 749 if (Attr->hasCoverage()) 750 NoSanitizeCoverage = true; 751 } 752 753 if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds)) 754 Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds); 755 756 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) 757 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); 758 } 759 760 if (ShouldSkipSanitizerInstrumentation()) { 761 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 762 } else { 763 // Apply sanitizer attributes to the function. 764 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 765 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 766 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | 767 SanitizerKind::KernelHWAddress)) 768 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 769 if (SanOpts.has(SanitizerKind::MemtagStack)) 770 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 771 if (SanOpts.has(SanitizerKind::Thread)) 772 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 773 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 774 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 775 } 776 if (SanOpts.has(SanitizerKind::SafeStack)) 777 Fn->addFnAttr(llvm::Attribute::SafeStack); 778 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 779 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 780 781 // Apply fuzzing attribute to the function. 782 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 783 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 784 785 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 786 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 787 if (SanOpts.has(SanitizerKind::Thread)) { 788 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 789 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 790 if (OMD->getMethodFamily() == OMF_dealloc || 791 OMD->getMethodFamily() == OMF_initialize || 792 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 793 markAsIgnoreThreadCheckingAtRuntime(Fn); 794 } 795 } 796 } 797 798 // Ignore unrelated casts in STL allocate() since the allocator must cast 799 // from void* to T* before object initialization completes. Don't match on the 800 // namespace because not all allocators are in std:: 801 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 802 if (matchesStlAllocatorFn(D, getContext())) 803 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 804 } 805 806 // Ignore null checks in coroutine functions since the coroutines passes 807 // are not aware of how to move the extra UBSan instructions across the split 808 // coroutine boundaries. 809 if (D && SanOpts.has(SanitizerKind::Null)) 810 if (FD && FD->getBody() && 811 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 812 SanOpts.Mask &= ~SanitizerKind::Null; 813 814 // Apply xray attributes to the function (as a string, for now) 815 bool AlwaysXRayAttr = false; 816 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 817 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 818 XRayInstrKind::FunctionEntry) || 819 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 820 XRayInstrKind::FunctionExit)) { 821 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 822 Fn->addFnAttr("function-instrument", "xray-always"); 823 AlwaysXRayAttr = true; 824 } 825 if (XRayAttr->neverXRayInstrument()) 826 Fn->addFnAttr("function-instrument", "xray-never"); 827 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 828 if (ShouldXRayInstrumentFunction()) 829 Fn->addFnAttr("xray-log-args", 830 llvm::utostr(LogArgs->getArgumentCount())); 831 } 832 } else { 833 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 834 Fn->addFnAttr( 835 "xray-instruction-threshold", 836 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 837 } 838 839 if (ShouldXRayInstrumentFunction()) { 840 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 841 Fn->addFnAttr("xray-ignore-loops"); 842 843 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 844 XRayInstrKind::FunctionExit)) 845 Fn->addFnAttr("xray-skip-exit"); 846 847 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 848 XRayInstrKind::FunctionEntry)) 849 Fn->addFnAttr("xray-skip-entry"); 850 851 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 852 if (FuncGroups > 1) { 853 auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(), 854 CurFn->getName().bytes_end()); 855 auto Group = crc32(FuncName) % FuncGroups; 856 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 857 !AlwaysXRayAttr) 858 Fn->addFnAttr("function-instrument", "xray-never"); 859 } 860 } 861 862 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) { 863 switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) { 864 case ProfileList::Skip: 865 Fn->addFnAttr(llvm::Attribute::SkipProfile); 866 break; 867 case ProfileList::Forbid: 868 Fn->addFnAttr(llvm::Attribute::NoProfile); 869 break; 870 case ProfileList::Allow: 871 break; 872 } 873 } 874 875 unsigned Count, Offset; 876 if (const auto *Attr = 877 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 878 Count = Attr->getCount(); 879 Offset = Attr->getOffset(); 880 } else { 881 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 882 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 883 } 884 if (Count && Offset <= Count) { 885 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 886 if (Offset) 887 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 888 } 889 // Instruct that functions for COFF/CodeView targets should start with a 890 // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64 891 // backends as they don't need it -- instructions on these architectures are 892 // always atomically patchable at runtime. 893 if (CGM.getCodeGenOpts().HotPatch && 894 getContext().getTargetInfo().getTriple().isX86() && 895 getContext().getTargetInfo().getTriple().getEnvironment() != 896 llvm::Triple::CODE16) 897 Fn->addFnAttr("patchable-function", "prologue-short-redirect"); 898 899 // Add no-jump-tables value. 900 if (CGM.getCodeGenOpts().NoUseJumpTables) 901 Fn->addFnAttr("no-jump-tables", "true"); 902 903 // Add no-inline-line-tables value. 904 if (CGM.getCodeGenOpts().NoInlineLineTables) 905 Fn->addFnAttr("no-inline-line-tables"); 906 907 // Add profile-sample-accurate value. 908 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 909 Fn->addFnAttr("profile-sample-accurate"); 910 911 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 912 Fn->addFnAttr("use-sample-profile"); 913 914 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 915 Fn->addFnAttr("cfi-canonical-jump-table"); 916 917 if (D && D->hasAttr<NoProfileFunctionAttr>()) 918 Fn->addFnAttr(llvm::Attribute::NoProfile); 919 920 if (D) { 921 // Function attributes take precedence over command line flags. 922 if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) { 923 switch (A->getThunkType()) { 924 case FunctionReturnThunksAttr::Kind::Keep: 925 break; 926 case FunctionReturnThunksAttr::Kind::Extern: 927 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); 928 break; 929 } 930 } else if (CGM.getCodeGenOpts().FunctionReturnThunks) 931 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); 932 } 933 934 if (FD && (getLangOpts().OpenCL || 935 (getLangOpts().HIP && getLangOpts().CUDAIsDevice))) { 936 // Add metadata for a kernel function. 937 EmitKernelMetadata(FD, Fn); 938 } 939 940 // If we are checking function types, emit a function type signature as 941 // prologue data. 942 if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 943 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 944 // Remove any (C++17) exception specifications, to allow calling e.g. a 945 // noexcept function through a non-noexcept pointer. 946 auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec( 947 FD->getType(), EST_None); 948 llvm::Constant *FTRTTIConst = 949 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 950 llvm::GlobalVariable *FTRTTIProxy = 951 CGM.GetOrCreateRTTIProxyGlobalVariable(FTRTTIConst); 952 llvm::LLVMContext &Ctx = Fn->getContext(); 953 llvm::MDBuilder MDB(Ctx); 954 Fn->setMetadata(llvm::LLVMContext::MD_func_sanitize, 955 MDB.createRTTIPointerPrologue(PrologueSig, FTRTTIProxy)); 956 CGM.addCompilerUsedGlobal(FTRTTIProxy); 957 } 958 } 959 960 // If we're checking nullability, we need to know whether we can check the 961 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 962 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 963 auto Nullability = FnRetTy->getNullability(); 964 if (Nullability && *Nullability == NullabilityKind::NonNull) { 965 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 966 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 967 RetValNullabilityPrecondition = 968 llvm::ConstantInt::getTrue(getLLVMContext()); 969 } 970 } 971 972 // If we're in C++ mode and the function name is "main", it is guaranteed 973 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 974 // used within a program"). 975 // 976 // OpenCL C 2.0 v2.2-11 s6.9.i: 977 // Recursion is not supported. 978 // 979 // SYCL v1.2.1 s3.10: 980 // kernels cannot include RTTI information, exception classes, 981 // recursive code, virtual functions or make use of C++ libraries that 982 // are not compiled for the device. 983 if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) || 984 getLangOpts().OpenCL || getLangOpts().SYCLIsDevice || 985 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))) 986 Fn->addFnAttr(llvm::Attribute::NoRecurse); 987 988 llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode(); 989 llvm::fp::ExceptionBehavior FPExceptionBehavior = 990 ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode()); 991 Builder.setDefaultConstrainedRounding(RM); 992 Builder.setDefaultConstrainedExcept(FPExceptionBehavior); 993 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) || 994 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore || 995 RM != llvm::RoundingMode::NearestTiesToEven))) { 996 Builder.setIsFPConstrained(true); 997 Fn->addFnAttr(llvm::Attribute::StrictFP); 998 } 999 1000 // If a custom alignment is used, force realigning to this alignment on 1001 // any main function which certainly will need it. 1002 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 1003 CGM.getCodeGenOpts().StackAlignment)) 1004 Fn->addFnAttr("stackrealign"); 1005 1006 // "main" doesn't need to zero out call-used registers. 1007 if (FD && FD->isMain()) 1008 Fn->removeFnAttr("zero-call-used-regs"); 1009 1010 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 1011 1012 // Create a marker to make it easy to insert allocas into the entryblock 1013 // later. Don't create this with the builder, because we don't want it 1014 // folded. 1015 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 1016 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 1017 1018 ReturnBlock = getJumpDestInCurrentScope("return"); 1019 1020 Builder.SetInsertPoint(EntryBB); 1021 1022 // If we're checking the return value, allocate space for a pointer to a 1023 // precise source location of the checked return statement. 1024 if (requiresReturnValueCheck()) { 1025 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 1026 Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy), 1027 ReturnLocation); 1028 } 1029 1030 // Emit subprogram debug descriptor. 1031 if (CGDebugInfo *DI = getDebugInfo()) { 1032 // Reconstruct the type from the argument list so that implicit parameters, 1033 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 1034 // convention. 1035 DI->emitFunctionStart(GD, Loc, StartLoc, 1036 DI->getFunctionType(FD, RetTy, Args), CurFn, 1037 CurFuncIsThunk); 1038 } 1039 1040 if (ShouldInstrumentFunction()) { 1041 if (CGM.getCodeGenOpts().InstrumentFunctions) 1042 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1043 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1044 CurFn->addFnAttr("instrument-function-entry-inlined", 1045 "__cyg_profile_func_enter"); 1046 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1047 CurFn->addFnAttr("instrument-function-entry-inlined", 1048 "__cyg_profile_func_enter_bare"); 1049 } 1050 1051 // Since emitting the mcount call here impacts optimizations such as function 1052 // inlining, we just add an attribute to insert a mcount call in backend. 1053 // The attribute "counting-function" is set to mcount function name which is 1054 // architecture dependent. 1055 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1056 // Calls to fentry/mcount should not be generated if function has 1057 // the no_instrument_function attribute. 1058 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1059 if (CGM.getCodeGenOpts().CallFEntry) 1060 Fn->addFnAttr("fentry-call", "true"); 1061 else { 1062 Fn->addFnAttr("instrument-function-entry-inlined", 1063 getTarget().getMCountName()); 1064 } 1065 if (CGM.getCodeGenOpts().MNopMCount) { 1066 if (!CGM.getCodeGenOpts().CallFEntry) 1067 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1068 << "-mnop-mcount" << "-mfentry"; 1069 Fn->addFnAttr("mnop-mcount"); 1070 } 1071 1072 if (CGM.getCodeGenOpts().RecordMCount) { 1073 if (!CGM.getCodeGenOpts().CallFEntry) 1074 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1075 << "-mrecord-mcount" << "-mfentry"; 1076 Fn->addFnAttr("mrecord-mcount"); 1077 } 1078 } 1079 } 1080 1081 if (CGM.getCodeGenOpts().PackedStack) { 1082 if (getContext().getTargetInfo().getTriple().getArch() != 1083 llvm::Triple::systemz) 1084 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1085 << "-mpacked-stack"; 1086 Fn->addFnAttr("packed-stack"); 1087 } 1088 1089 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX && 1090 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc)) 1091 Fn->addFnAttr("warn-stack-size", 1092 std::to_string(CGM.getCodeGenOpts().WarnStackSize)); 1093 1094 if (RetTy->isVoidType()) { 1095 // Void type; nothing to return. 1096 ReturnValue = Address::invalid(); 1097 1098 // Count the implicit return. 1099 if (!endsWithReturn(D)) 1100 ++NumReturnExprs; 1101 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1102 // Indirect return; emit returned value directly into sret slot. 1103 // This reduces code size, and affects correctness in C++. 1104 auto AI = CurFn->arg_begin(); 1105 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1106 ++AI; 1107 ReturnValue = Address(&*AI, ConvertType(RetTy), 1108 CurFnInfo->getReturnInfo().getIndirectAlign()); 1109 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1110 ReturnValuePointer = 1111 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 1112 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 1113 ReturnValue.getPointer(), Int8PtrTy), 1114 ReturnValuePointer); 1115 } 1116 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1117 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1118 // Load the sret pointer from the argument struct and return into that. 1119 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1120 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1121 --EI; 1122 llvm::Value *Addr = Builder.CreateStructGEP( 1123 CurFnInfo->getArgStruct(), &*EI, Idx); 1124 llvm::Type *Ty = 1125 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1126 ReturnValuePointer = Address(Addr, Ty, getPointerAlign()); 1127 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1128 ReturnValue = 1129 Address(Addr, ConvertType(RetTy), CGM.getNaturalTypeAlignment(RetTy)); 1130 } else { 1131 ReturnValue = CreateIRTemp(RetTy, "retval"); 1132 1133 // Tell the epilog emitter to autorelease the result. We do this 1134 // now so that various specialized functions can suppress it 1135 // during their IR-generation. 1136 if (getLangOpts().ObjCAutoRefCount && 1137 !CurFnInfo->isReturnsRetained() && 1138 RetTy->isObjCRetainableType()) 1139 AutoreleaseResult = true; 1140 } 1141 1142 EmitStartEHSpec(CurCodeDecl); 1143 1144 PrologueCleanupDepth = EHStack.stable_begin(); 1145 1146 // Emit OpenMP specific initialization of the device functions. 1147 if (getLangOpts().OpenMP && CurCodeDecl) 1148 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1149 1150 // Handle emitting HLSL entry functions. 1151 if (D && D->hasAttr<HLSLShaderAttr>()) 1152 CGM.getHLSLRuntime().emitEntryFunction(FD, Fn); 1153 1154 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1155 1156 if (isa_and_nonnull<CXXMethodDecl>(D) && 1157 cast<CXXMethodDecl>(D)->isInstance()) { 1158 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1159 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1160 if (MD->getParent()->isLambda() && 1161 MD->getOverloadedOperator() == OO_Call) { 1162 // We're in a lambda; figure out the captures. 1163 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1164 LambdaThisCaptureField); 1165 if (LambdaThisCaptureField) { 1166 // If the lambda captures the object referred to by '*this' - either by 1167 // value or by reference, make sure CXXThisValue points to the correct 1168 // object. 1169 1170 // Get the lvalue for the field (which is a copy of the enclosing object 1171 // or contains the address of the enclosing object). 1172 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1173 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1174 // If the enclosing object was captured by value, just use its address. 1175 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1176 } else { 1177 // Load the lvalue pointed to by the field, since '*this' was captured 1178 // by reference. 1179 CXXThisValue = 1180 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1181 } 1182 } 1183 for (auto *FD : MD->getParent()->fields()) { 1184 if (FD->hasCapturedVLAType()) { 1185 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1186 SourceLocation()).getScalarVal(); 1187 auto VAT = FD->getCapturedVLAType(); 1188 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1189 } 1190 } 1191 } else { 1192 // Not in a lambda; just use 'this' from the method. 1193 // FIXME: Should we generate a new load for each use of 'this'? The 1194 // fast register allocator would be happier... 1195 CXXThisValue = CXXABIThisValue; 1196 } 1197 1198 // Check the 'this' pointer once per function, if it's available. 1199 if (CXXABIThisValue) { 1200 SanitizerSet SkippedChecks; 1201 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1202 QualType ThisTy = MD->getThisType(); 1203 1204 // If this is the call operator of a lambda with no capture-default, it 1205 // may have a static invoker function, which may call this operator with 1206 // a null 'this' pointer. 1207 if (isLambdaCallOperator(MD) && 1208 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1209 SkippedChecks.set(SanitizerKind::Null, true); 1210 1211 EmitTypeCheck( 1212 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1213 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1214 } 1215 } 1216 1217 // If any of the arguments have a variably modified type, make sure to 1218 // emit the type size, but only if the function is not naked. Naked functions 1219 // have no prolog to run this evaluation. 1220 if (!FD || !FD->hasAttr<NakedAttr>()) { 1221 for (const VarDecl *VD : Args) { 1222 // Dig out the type as written from ParmVarDecls; it's unclear whether 1223 // the standard (C99 6.9.1p10) requires this, but we're following the 1224 // precedent set by gcc. 1225 QualType Ty; 1226 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1227 Ty = PVD->getOriginalType(); 1228 else 1229 Ty = VD->getType(); 1230 1231 if (Ty->isVariablyModifiedType()) 1232 EmitVariablyModifiedType(Ty); 1233 } 1234 } 1235 // Emit a location at the end of the prologue. 1236 if (CGDebugInfo *DI = getDebugInfo()) 1237 DI->EmitLocation(Builder, StartLoc); 1238 // TODO: Do we need to handle this in two places like we do with 1239 // target-features/target-cpu? 1240 if (CurFuncDecl) 1241 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1242 LargestVectorWidth = VecWidth->getVectorWidth(); 1243 } 1244 1245 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1246 incrementProfileCounter(Body); 1247 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1248 EmitCompoundStmtWithoutScope(*S); 1249 else 1250 EmitStmt(Body); 1251 1252 // This is checked after emitting the function body so we know if there 1253 // are any permitted infinite loops. 1254 if (checkIfFunctionMustProgress()) 1255 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1256 } 1257 1258 /// When instrumenting to collect profile data, the counts for some blocks 1259 /// such as switch cases need to not include the fall-through counts, so 1260 /// emit a branch around the instrumentation code. When not instrumenting, 1261 /// this just calls EmitBlock(). 1262 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1263 const Stmt *S) { 1264 llvm::BasicBlock *SkipCountBB = nullptr; 1265 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1266 // When instrumenting for profiling, the fallthrough to certain 1267 // statements needs to skip over the instrumentation code so that we 1268 // get an accurate count. 1269 SkipCountBB = createBasicBlock("skipcount"); 1270 EmitBranch(SkipCountBB); 1271 } 1272 EmitBlock(BB); 1273 uint64_t CurrentCount = getCurrentProfileCount(); 1274 incrementProfileCounter(S); 1275 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1276 if (SkipCountBB) 1277 EmitBlock(SkipCountBB); 1278 } 1279 1280 /// Tries to mark the given function nounwind based on the 1281 /// non-existence of any throwing calls within it. We believe this is 1282 /// lightweight enough to do at -O0. 1283 static void TryMarkNoThrow(llvm::Function *F) { 1284 // LLVM treats 'nounwind' on a function as part of the type, so we 1285 // can't do this on functions that can be overwritten. 1286 if (F->isInterposable()) return; 1287 1288 for (llvm::BasicBlock &BB : *F) 1289 for (llvm::Instruction &I : BB) 1290 if (I.mayThrow()) 1291 return; 1292 1293 F->setDoesNotThrow(); 1294 } 1295 1296 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1297 FunctionArgList &Args) { 1298 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1299 QualType ResTy = FD->getReturnType(); 1300 1301 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1302 if (MD && MD->isInstance()) { 1303 if (CGM.getCXXABI().HasThisReturn(GD)) 1304 ResTy = MD->getThisType(); 1305 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1306 ResTy = CGM.getContext().VoidPtrTy; 1307 CGM.getCXXABI().buildThisParam(*this, Args); 1308 } 1309 1310 // The base version of an inheriting constructor whose constructed base is a 1311 // virtual base is not passed any arguments (because it doesn't actually call 1312 // the inherited constructor). 1313 bool PassedParams = true; 1314 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1315 if (auto Inherited = CD->getInheritedConstructor()) 1316 PassedParams = 1317 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1318 1319 if (PassedParams) { 1320 for (auto *Param : FD->parameters()) { 1321 Args.push_back(Param); 1322 if (!Param->hasAttr<PassObjectSizeAttr>()) 1323 continue; 1324 1325 auto *Implicit = ImplicitParamDecl::Create( 1326 getContext(), Param->getDeclContext(), Param->getLocation(), 1327 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1328 SizeArguments[Param] = Implicit; 1329 Args.push_back(Implicit); 1330 } 1331 } 1332 1333 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1334 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1335 1336 return ResTy; 1337 } 1338 1339 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1340 const CGFunctionInfo &FnInfo) { 1341 assert(Fn && "generating code for null Function"); 1342 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1343 CurGD = GD; 1344 1345 FunctionArgList Args; 1346 QualType ResTy = BuildFunctionArgList(GD, Args); 1347 1348 if (FD->isInlineBuiltinDeclaration()) { 1349 // When generating code for a builtin with an inline declaration, use a 1350 // mangled name to hold the actual body, while keeping an external 1351 // definition in case the function pointer is referenced somewhere. 1352 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1353 llvm::Module *M = Fn->getParent(); 1354 llvm::Function *Clone = M->getFunction(FDInlineName); 1355 if (!Clone) { 1356 Clone = llvm::Function::Create(Fn->getFunctionType(), 1357 llvm::GlobalValue::InternalLinkage, 1358 Fn->getAddressSpace(), FDInlineName, M); 1359 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 1360 } 1361 Fn->setLinkage(llvm::GlobalValue::ExternalLinkage); 1362 Fn = Clone; 1363 } else { 1364 // Detect the unusual situation where an inline version is shadowed by a 1365 // non-inline version. In that case we should pick the external one 1366 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way 1367 // to detect that situation before we reach codegen, so do some late 1368 // replacement. 1369 for (const FunctionDecl *PD = FD->getPreviousDecl(); PD; 1370 PD = PD->getPreviousDecl()) { 1371 if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) { 1372 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1373 llvm::Module *M = Fn->getParent(); 1374 if (llvm::Function *Clone = M->getFunction(FDInlineName)) { 1375 Clone->replaceAllUsesWith(Fn); 1376 Clone->eraseFromParent(); 1377 } 1378 break; 1379 } 1380 } 1381 } 1382 1383 // Check if we should generate debug info for this function. 1384 if (FD->hasAttr<NoDebugAttr>()) { 1385 // Clear non-distinct debug info that was possibly attached to the function 1386 // due to an earlier declaration without the nodebug attribute 1387 Fn->setSubprogram(nullptr); 1388 // Disable debug info indefinitely for this function 1389 DebugInfo = nullptr; 1390 } 1391 1392 // The function might not have a body if we're generating thunks for a 1393 // function declaration. 1394 SourceRange BodyRange; 1395 if (Stmt *Body = FD->getBody()) 1396 BodyRange = Body->getSourceRange(); 1397 else 1398 BodyRange = FD->getLocation(); 1399 CurEHLocation = BodyRange.getEnd(); 1400 1401 // Use the location of the start of the function to determine where 1402 // the function definition is located. By default use the location 1403 // of the declaration as the location for the subprogram. A function 1404 // may lack a declaration in the source code if it is created by code 1405 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1406 SourceLocation Loc = FD->getLocation(); 1407 1408 // If this is a function specialization then use the pattern body 1409 // as the location for the function. 1410 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1411 if (SpecDecl->hasBody(SpecDecl)) 1412 Loc = SpecDecl->getLocation(); 1413 1414 Stmt *Body = FD->getBody(); 1415 1416 if (Body) { 1417 // Coroutines always emit lifetime markers. 1418 if (isa<CoroutineBodyStmt>(Body)) 1419 ShouldEmitLifetimeMarkers = true; 1420 1421 // Initialize helper which will detect jumps which can cause invalid 1422 // lifetime markers. 1423 if (ShouldEmitLifetimeMarkers) 1424 Bypasses.Init(Body); 1425 } 1426 1427 // Emit the standard function prologue. 1428 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1429 1430 // Save parameters for coroutine function. 1431 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1432 llvm::append_range(FnArgs, FD->parameters()); 1433 1434 // Generate the body of the function. 1435 PGO.assignRegionCounters(GD, CurFn); 1436 if (isa<CXXDestructorDecl>(FD)) 1437 EmitDestructorBody(Args); 1438 else if (isa<CXXConstructorDecl>(FD)) 1439 EmitConstructorBody(Args); 1440 else if (getLangOpts().CUDA && 1441 !getLangOpts().CUDAIsDevice && 1442 FD->hasAttr<CUDAGlobalAttr>()) 1443 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1444 else if (isa<CXXMethodDecl>(FD) && 1445 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1446 // The lambda static invoker function is special, because it forwards or 1447 // clones the body of the function call operator (but is actually static). 1448 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1449 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1450 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1451 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1452 // Implicit copy-assignment gets the same special treatment as implicit 1453 // copy-constructors. 1454 emitImplicitAssignmentOperatorBody(Args); 1455 } else if (Body) { 1456 EmitFunctionBody(Body); 1457 } else 1458 llvm_unreachable("no definition for emitted function"); 1459 1460 // C++11 [stmt.return]p2: 1461 // Flowing off the end of a function [...] results in undefined behavior in 1462 // a value-returning function. 1463 // C11 6.9.1p12: 1464 // If the '}' that terminates a function is reached, and the value of the 1465 // function call is used by the caller, the behavior is undefined. 1466 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1467 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1468 bool ShouldEmitUnreachable = 1469 CGM.getCodeGenOpts().StrictReturn || 1470 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1471 if (SanOpts.has(SanitizerKind::Return)) { 1472 SanitizerScope SanScope(this); 1473 llvm::Value *IsFalse = Builder.getFalse(); 1474 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1475 SanitizerHandler::MissingReturn, 1476 EmitCheckSourceLocation(FD->getLocation()), std::nullopt); 1477 } else if (ShouldEmitUnreachable) { 1478 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1479 EmitTrapCall(llvm::Intrinsic::trap); 1480 } 1481 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1482 Builder.CreateUnreachable(); 1483 Builder.ClearInsertionPoint(); 1484 } 1485 } 1486 1487 // Emit the standard function epilogue. 1488 FinishFunction(BodyRange.getEnd()); 1489 1490 // If we haven't marked the function nothrow through other means, do 1491 // a quick pass now to see if we can. 1492 if (!CurFn->doesNotThrow()) 1493 TryMarkNoThrow(CurFn); 1494 } 1495 1496 /// ContainsLabel - Return true if the statement contains a label in it. If 1497 /// this statement is not executed normally, it not containing a label means 1498 /// that we can just remove the code. 1499 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1500 // Null statement, not a label! 1501 if (!S) return false; 1502 1503 // If this is a label, we have to emit the code, consider something like: 1504 // if (0) { ... foo: bar(); } goto foo; 1505 // 1506 // TODO: If anyone cared, we could track __label__'s, since we know that you 1507 // can't jump to one from outside their declared region. 1508 if (isa<LabelStmt>(S)) 1509 return true; 1510 1511 // If this is a case/default statement, and we haven't seen a switch, we have 1512 // to emit the code. 1513 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1514 return true; 1515 1516 // If this is a switch statement, we want to ignore cases below it. 1517 if (isa<SwitchStmt>(S)) 1518 IgnoreCaseStmts = true; 1519 1520 // Scan subexpressions for verboten labels. 1521 for (const Stmt *SubStmt : S->children()) 1522 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1523 return true; 1524 1525 return false; 1526 } 1527 1528 /// containsBreak - Return true if the statement contains a break out of it. 1529 /// If the statement (recursively) contains a switch or loop with a break 1530 /// inside of it, this is fine. 1531 bool CodeGenFunction::containsBreak(const Stmt *S) { 1532 // Null statement, not a label! 1533 if (!S) return false; 1534 1535 // If this is a switch or loop that defines its own break scope, then we can 1536 // include it and anything inside of it. 1537 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1538 isa<ForStmt>(S)) 1539 return false; 1540 1541 if (isa<BreakStmt>(S)) 1542 return true; 1543 1544 // Scan subexpressions for verboten breaks. 1545 for (const Stmt *SubStmt : S->children()) 1546 if (containsBreak(SubStmt)) 1547 return true; 1548 1549 return false; 1550 } 1551 1552 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1553 if (!S) return false; 1554 1555 // Some statement kinds add a scope and thus never add a decl to the current 1556 // scope. Note, this list is longer than the list of statements that might 1557 // have an unscoped decl nested within them, but this way is conservatively 1558 // correct even if more statement kinds are added. 1559 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1560 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1561 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1562 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1563 return false; 1564 1565 if (isa<DeclStmt>(S)) 1566 return true; 1567 1568 for (const Stmt *SubStmt : S->children()) 1569 if (mightAddDeclToScope(SubStmt)) 1570 return true; 1571 1572 return false; 1573 } 1574 1575 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1576 /// to a constant, or if it does but contains a label, return false. If it 1577 /// constant folds return true and set the boolean result in Result. 1578 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1579 bool &ResultBool, 1580 bool AllowLabels) { 1581 llvm::APSInt ResultInt; 1582 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1583 return false; 1584 1585 ResultBool = ResultInt.getBoolValue(); 1586 return true; 1587 } 1588 1589 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1590 /// to a constant, or if it does but contains a label, return false. If it 1591 /// constant folds return true and set the folded value. 1592 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1593 llvm::APSInt &ResultInt, 1594 bool AllowLabels) { 1595 // FIXME: Rename and handle conversion of other evaluatable things 1596 // to bool. 1597 Expr::EvalResult Result; 1598 if (!Cond->EvaluateAsInt(Result, getContext())) 1599 return false; // Not foldable, not integer or not fully evaluatable. 1600 1601 llvm::APSInt Int = Result.Val.getInt(); 1602 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1603 return false; // Contains a label. 1604 1605 ResultInt = Int; 1606 return true; 1607 } 1608 1609 /// Determine whether the given condition is an instrumentable condition 1610 /// (i.e. no "&&" or "||"). 1611 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1612 // Bypass simplistic logical-NOT operator before determining whether the 1613 // condition contains any other logical operator. 1614 if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens())) 1615 if (UnOp->getOpcode() == UO_LNot) 1616 C = UnOp->getSubExpr(); 1617 1618 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens()); 1619 return (!BOp || !BOp->isLogicalOp()); 1620 } 1621 1622 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1623 /// increments a profile counter based on the semantics of the given logical 1624 /// operator opcode. This is used to instrument branch condition coverage for 1625 /// logical operators. 1626 void CodeGenFunction::EmitBranchToCounterBlock( 1627 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1628 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1629 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1630 // If not instrumenting, just emit a branch. 1631 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1632 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1633 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1634 1635 llvm::BasicBlock *ThenBlock = nullptr; 1636 llvm::BasicBlock *ElseBlock = nullptr; 1637 llvm::BasicBlock *NextBlock = nullptr; 1638 1639 // Create the block we'll use to increment the appropriate counter. 1640 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1641 1642 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1643 // means we need to evaluate the condition and increment the counter on TRUE: 1644 // 1645 // if (Cond) 1646 // goto CounterIncrBlock; 1647 // else 1648 // goto FalseBlock; 1649 // 1650 // CounterIncrBlock: 1651 // Counter++; 1652 // goto TrueBlock; 1653 1654 if (LOp == BO_LAnd) { 1655 ThenBlock = CounterIncrBlock; 1656 ElseBlock = FalseBlock; 1657 NextBlock = TrueBlock; 1658 } 1659 1660 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1661 // we need to evaluate the condition and increment the counter on FALSE: 1662 // 1663 // if (Cond) 1664 // goto TrueBlock; 1665 // else 1666 // goto CounterIncrBlock; 1667 // 1668 // CounterIncrBlock: 1669 // Counter++; 1670 // goto FalseBlock; 1671 1672 else if (LOp == BO_LOr) { 1673 ThenBlock = TrueBlock; 1674 ElseBlock = CounterIncrBlock; 1675 NextBlock = FalseBlock; 1676 } else { 1677 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1678 } 1679 1680 // Emit Branch based on condition. 1681 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1682 1683 // Emit the block containing the counter increment(s). 1684 EmitBlock(CounterIncrBlock); 1685 1686 // Increment corresponding counter; if index not provided, use Cond as index. 1687 incrementProfileCounter(CntrIdx ? CntrIdx : Cond); 1688 1689 // Go to the next block. 1690 EmitBranch(NextBlock); 1691 } 1692 1693 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1694 /// statement) to the specified blocks. Based on the condition, this might try 1695 /// to simplify the codegen of the conditional based on the branch. 1696 /// \param LH The value of the likelihood attribute on the True branch. 1697 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1698 llvm::BasicBlock *TrueBlock, 1699 llvm::BasicBlock *FalseBlock, 1700 uint64_t TrueCount, 1701 Stmt::Likelihood LH) { 1702 Cond = Cond->IgnoreParens(); 1703 1704 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1705 1706 // Handle X && Y in a condition. 1707 if (CondBOp->getOpcode() == BO_LAnd) { 1708 // If we have "1 && X", simplify the code. "0 && X" would have constant 1709 // folded if the case was simple enough. 1710 bool ConstantBool = false; 1711 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1712 ConstantBool) { 1713 // br(1 && X) -> br(X). 1714 incrementProfileCounter(CondBOp); 1715 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1716 FalseBlock, TrueCount, LH); 1717 } 1718 1719 // If we have "X && 1", simplify the code to use an uncond branch. 1720 // "X && 0" would have been constant folded to 0. 1721 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1722 ConstantBool) { 1723 // br(X && 1) -> br(X). 1724 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1725 FalseBlock, TrueCount, LH, CondBOp); 1726 } 1727 1728 // Emit the LHS as a conditional. If the LHS conditional is false, we 1729 // want to jump to the FalseBlock. 1730 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1731 // The counter tells us how often we evaluate RHS, and all of TrueCount 1732 // can be propagated to that branch. 1733 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1734 1735 ConditionalEvaluation eval(*this); 1736 { 1737 ApplyDebugLocation DL(*this, Cond); 1738 // Propagate the likelihood attribute like __builtin_expect 1739 // __builtin_expect(X && Y, 1) -> X and Y are likely 1740 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1741 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1742 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1743 EmitBlock(LHSTrue); 1744 } 1745 1746 incrementProfileCounter(CondBOp); 1747 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1748 1749 // Any temporaries created here are conditional. 1750 eval.begin(*this); 1751 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1752 FalseBlock, TrueCount, LH); 1753 eval.end(*this); 1754 1755 return; 1756 } 1757 1758 if (CondBOp->getOpcode() == BO_LOr) { 1759 // If we have "0 || X", simplify the code. "1 || X" would have constant 1760 // folded if the case was simple enough. 1761 bool ConstantBool = false; 1762 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1763 !ConstantBool) { 1764 // br(0 || X) -> br(X). 1765 incrementProfileCounter(CondBOp); 1766 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1767 FalseBlock, TrueCount, LH); 1768 } 1769 1770 // If we have "X || 0", simplify the code to use an uncond branch. 1771 // "X || 1" would have been constant folded to 1. 1772 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1773 !ConstantBool) { 1774 // br(X || 0) -> br(X). 1775 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1776 FalseBlock, TrueCount, LH, CondBOp); 1777 } 1778 1779 // Emit the LHS as a conditional. If the LHS conditional is true, we 1780 // want to jump to the TrueBlock. 1781 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1782 // We have the count for entry to the RHS and for the whole expression 1783 // being true, so we can divy up True count between the short circuit and 1784 // the RHS. 1785 uint64_t LHSCount = 1786 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1787 uint64_t RHSCount = TrueCount - LHSCount; 1788 1789 ConditionalEvaluation eval(*this); 1790 { 1791 // Propagate the likelihood attribute like __builtin_expect 1792 // __builtin_expect(X || Y, 1) -> only Y is likely 1793 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1794 ApplyDebugLocation DL(*this, Cond); 1795 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1796 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1797 EmitBlock(LHSFalse); 1798 } 1799 1800 incrementProfileCounter(CondBOp); 1801 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1802 1803 // Any temporaries created here are conditional. 1804 eval.begin(*this); 1805 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1806 RHSCount, LH); 1807 1808 eval.end(*this); 1809 1810 return; 1811 } 1812 } 1813 1814 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1815 // br(!x, t, f) -> br(x, f, t) 1816 if (CondUOp->getOpcode() == UO_LNot) { 1817 // Negate the count. 1818 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1819 // The values of the enum are chosen to make this negation possible. 1820 LH = static_cast<Stmt::Likelihood>(-LH); 1821 // Negate the condition and swap the destination blocks. 1822 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1823 FalseCount, LH); 1824 } 1825 } 1826 1827 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1828 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1829 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1830 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1831 1832 // The ConditionalOperator itself has no likelihood information for its 1833 // true and false branches. This matches the behavior of __builtin_expect. 1834 ConditionalEvaluation cond(*this); 1835 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1836 getProfileCount(CondOp), Stmt::LH_None); 1837 1838 // When computing PGO branch weights, we only know the overall count for 1839 // the true block. This code is essentially doing tail duplication of the 1840 // naive code-gen, introducing new edges for which counts are not 1841 // available. Divide the counts proportionally between the LHS and RHS of 1842 // the conditional operator. 1843 uint64_t LHSScaledTrueCount = 0; 1844 if (TrueCount) { 1845 double LHSRatio = 1846 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1847 LHSScaledTrueCount = TrueCount * LHSRatio; 1848 } 1849 1850 cond.begin(*this); 1851 EmitBlock(LHSBlock); 1852 incrementProfileCounter(CondOp); 1853 { 1854 ApplyDebugLocation DL(*this, Cond); 1855 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1856 LHSScaledTrueCount, LH); 1857 } 1858 cond.end(*this); 1859 1860 cond.begin(*this); 1861 EmitBlock(RHSBlock); 1862 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1863 TrueCount - LHSScaledTrueCount, LH); 1864 cond.end(*this); 1865 1866 return; 1867 } 1868 1869 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1870 // Conditional operator handling can give us a throw expression as a 1871 // condition for a case like: 1872 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1873 // Fold this to: 1874 // br(c, throw x, br(y, t, f)) 1875 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1876 return; 1877 } 1878 1879 // Emit the code with the fully general case. 1880 llvm::Value *CondV; 1881 { 1882 ApplyDebugLocation DL(*this, Cond); 1883 CondV = EvaluateExprAsBool(Cond); 1884 } 1885 1886 llvm::MDNode *Weights = nullptr; 1887 llvm::MDNode *Unpredictable = nullptr; 1888 1889 // If the branch has a condition wrapped by __builtin_unpredictable, 1890 // create metadata that specifies that the branch is unpredictable. 1891 // Don't bother if not optimizing because that metadata would not be used. 1892 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1893 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1894 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1895 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1896 llvm::MDBuilder MDHelper(getLLVMContext()); 1897 Unpredictable = MDHelper.createUnpredictable(); 1898 } 1899 } 1900 1901 // If there is a Likelihood knowledge for the cond, lower it. 1902 // Note that if not optimizing this won't emit anything. 1903 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 1904 if (CondV != NewCondV) 1905 CondV = NewCondV; 1906 else { 1907 // Otherwise, lower profile counts. Note that we do this even at -O0. 1908 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1909 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 1910 } 1911 1912 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1913 } 1914 1915 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1916 /// specified stmt yet. 1917 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1918 CGM.ErrorUnsupported(S, Type); 1919 } 1920 1921 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1922 /// variable-length array whose elements have a non-zero bit-pattern. 1923 /// 1924 /// \param baseType the inner-most element type of the array 1925 /// \param src - a char* pointing to the bit-pattern for a single 1926 /// base element of the array 1927 /// \param sizeInChars - the total size of the VLA, in chars 1928 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1929 Address dest, Address src, 1930 llvm::Value *sizeInChars) { 1931 CGBuilderTy &Builder = CGF.Builder; 1932 1933 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1934 llvm::Value *baseSizeInChars 1935 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1936 1937 Address begin = 1938 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1939 llvm::Value *end = Builder.CreateInBoundsGEP( 1940 begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end"); 1941 1942 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1943 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1944 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1945 1946 // Make a loop over the VLA. C99 guarantees that the VLA element 1947 // count must be nonzero. 1948 CGF.EmitBlock(loopBB); 1949 1950 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1951 cur->addIncoming(begin.getPointer(), originBB); 1952 1953 CharUnits curAlign = 1954 dest.getAlignment().alignmentOfArrayElement(baseSize); 1955 1956 // memcpy the individual element bit-pattern. 1957 Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars, 1958 /*volatile*/ false); 1959 1960 // Go to the next element. 1961 llvm::Value *next = 1962 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1963 1964 // Leave if that's the end of the VLA. 1965 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1966 Builder.CreateCondBr(done, contBB, loopBB); 1967 cur->addIncoming(next, loopBB); 1968 1969 CGF.EmitBlock(contBB); 1970 } 1971 1972 void 1973 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1974 // Ignore empty classes in C++. 1975 if (getLangOpts().CPlusPlus) { 1976 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1977 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1978 return; 1979 } 1980 } 1981 1982 // Cast the dest ptr to the appropriate i8 pointer type. 1983 if (DestPtr.getElementType() != Int8Ty) 1984 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1985 1986 // Get size and alignment info for this aggregate. 1987 CharUnits size = getContext().getTypeSizeInChars(Ty); 1988 1989 llvm::Value *SizeVal; 1990 const VariableArrayType *vla; 1991 1992 // Don't bother emitting a zero-byte memset. 1993 if (size.isZero()) { 1994 // But note that getTypeInfo returns 0 for a VLA. 1995 if (const VariableArrayType *vlaType = 1996 dyn_cast_or_null<VariableArrayType>( 1997 getContext().getAsArrayType(Ty))) { 1998 auto VlaSize = getVLASize(vlaType); 1999 SizeVal = VlaSize.NumElts; 2000 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 2001 if (!eltSize.isOne()) 2002 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 2003 vla = vlaType; 2004 } else { 2005 return; 2006 } 2007 } else { 2008 SizeVal = CGM.getSize(size); 2009 vla = nullptr; 2010 } 2011 2012 // If the type contains a pointer to data member we can't memset it to zero. 2013 // Instead, create a null constant and copy it to the destination. 2014 // TODO: there are other patterns besides zero that we can usefully memset, 2015 // like -1, which happens to be the pattern used by member-pointers. 2016 if (!CGM.getTypes().isZeroInitializable(Ty)) { 2017 // For a VLA, emit a single element, then splat that over the VLA. 2018 if (vla) Ty = getContext().getBaseElementType(vla); 2019 2020 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 2021 2022 llvm::GlobalVariable *NullVariable = 2023 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 2024 /*isConstant=*/true, 2025 llvm::GlobalVariable::PrivateLinkage, 2026 NullConstant, Twine()); 2027 CharUnits NullAlign = DestPtr.getAlignment(); 2028 NullVariable->setAlignment(NullAlign.getAsAlign()); 2029 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 2030 Builder.getInt8Ty(), NullAlign); 2031 2032 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 2033 2034 // Get and call the appropriate llvm.memcpy overload. 2035 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 2036 return; 2037 } 2038 2039 // Otherwise, just memset the whole thing to zero. This is legal 2040 // because in LLVM, all default initializers (other than the ones we just 2041 // handled above) are guaranteed to have a bit pattern of all zeros. 2042 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 2043 } 2044 2045 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 2046 // Make sure that there is a block for the indirect goto. 2047 if (!IndirectBranch) 2048 GetIndirectGotoBlock(); 2049 2050 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 2051 2052 // Make sure the indirect branch includes all of the address-taken blocks. 2053 IndirectBranch->addDestination(BB); 2054 return llvm::BlockAddress::get(CurFn, BB); 2055 } 2056 2057 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 2058 // If we already made the indirect branch for indirect goto, return its block. 2059 if (IndirectBranch) return IndirectBranch->getParent(); 2060 2061 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 2062 2063 // Create the PHI node that indirect gotos will add entries to. 2064 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 2065 "indirect.goto.dest"); 2066 2067 // Create the indirect branch instruction. 2068 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 2069 return IndirectBranch->getParent(); 2070 } 2071 2072 /// Computes the length of an array in elements, as well as the base 2073 /// element type and a properly-typed first element pointer. 2074 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 2075 QualType &baseType, 2076 Address &addr) { 2077 const ArrayType *arrayType = origArrayType; 2078 2079 // If it's a VLA, we have to load the stored size. Note that 2080 // this is the size of the VLA in bytes, not its size in elements. 2081 llvm::Value *numVLAElements = nullptr; 2082 if (isa<VariableArrayType>(arrayType)) { 2083 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 2084 2085 // Walk into all VLAs. This doesn't require changes to addr, 2086 // which has type T* where T is the first non-VLA element type. 2087 do { 2088 QualType elementType = arrayType->getElementType(); 2089 arrayType = getContext().getAsArrayType(elementType); 2090 2091 // If we only have VLA components, 'addr' requires no adjustment. 2092 if (!arrayType) { 2093 baseType = elementType; 2094 return numVLAElements; 2095 } 2096 } while (isa<VariableArrayType>(arrayType)); 2097 2098 // We get out here only if we find a constant array type 2099 // inside the VLA. 2100 } 2101 2102 // We have some number of constant-length arrays, so addr should 2103 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2104 // down to the first element of addr. 2105 SmallVector<llvm::Value*, 8> gepIndices; 2106 2107 // GEP down to the array type. 2108 llvm::ConstantInt *zero = Builder.getInt32(0); 2109 gepIndices.push_back(zero); 2110 2111 uint64_t countFromCLAs = 1; 2112 QualType eltType; 2113 2114 llvm::ArrayType *llvmArrayType = 2115 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2116 while (llvmArrayType) { 2117 assert(isa<ConstantArrayType>(arrayType)); 2118 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 2119 == llvmArrayType->getNumElements()); 2120 2121 gepIndices.push_back(zero); 2122 countFromCLAs *= llvmArrayType->getNumElements(); 2123 eltType = arrayType->getElementType(); 2124 2125 llvmArrayType = 2126 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2127 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2128 assert((!llvmArrayType || arrayType) && 2129 "LLVM and Clang types are out-of-synch"); 2130 } 2131 2132 if (arrayType) { 2133 // From this point onwards, the Clang array type has been emitted 2134 // as some other type (probably a packed struct). Compute the array 2135 // size, and just emit the 'begin' expression as a bitcast. 2136 while (arrayType) { 2137 countFromCLAs *= 2138 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 2139 eltType = arrayType->getElementType(); 2140 arrayType = getContext().getAsArrayType(eltType); 2141 } 2142 2143 llvm::Type *baseType = ConvertType(eltType); 2144 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 2145 } else { 2146 // Create the actual GEP. 2147 addr = Address(Builder.CreateInBoundsGEP( 2148 addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"), 2149 ConvertTypeForMem(eltType), 2150 addr.getAlignment()); 2151 } 2152 2153 baseType = eltType; 2154 2155 llvm::Value *numElements 2156 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2157 2158 // If we had any VLA dimensions, factor them in. 2159 if (numVLAElements) 2160 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2161 2162 return numElements; 2163 } 2164 2165 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2166 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2167 assert(vla && "type was not a variable array type!"); 2168 return getVLASize(vla); 2169 } 2170 2171 CodeGenFunction::VlaSizePair 2172 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2173 // The number of elements so far; always size_t. 2174 llvm::Value *numElements = nullptr; 2175 2176 QualType elementType; 2177 do { 2178 elementType = type->getElementType(); 2179 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2180 assert(vlaSize && "no size for VLA!"); 2181 assert(vlaSize->getType() == SizeTy); 2182 2183 if (!numElements) { 2184 numElements = vlaSize; 2185 } else { 2186 // It's undefined behavior if this wraps around, so mark it that way. 2187 // FIXME: Teach -fsanitize=undefined to trap this. 2188 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2189 } 2190 } while ((type = getContext().getAsVariableArrayType(elementType))); 2191 2192 return { numElements, elementType }; 2193 } 2194 2195 CodeGenFunction::VlaSizePair 2196 CodeGenFunction::getVLAElements1D(QualType type) { 2197 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2198 assert(vla && "type was not a variable array type!"); 2199 return getVLAElements1D(vla); 2200 } 2201 2202 CodeGenFunction::VlaSizePair 2203 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2204 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2205 assert(VlaSize && "no size for VLA!"); 2206 assert(VlaSize->getType() == SizeTy); 2207 return { VlaSize, Vla->getElementType() }; 2208 } 2209 2210 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2211 assert(type->isVariablyModifiedType() && 2212 "Must pass variably modified type to EmitVLASizes!"); 2213 2214 EnsureInsertPoint(); 2215 2216 // We're going to walk down into the type and look for VLA 2217 // expressions. 2218 do { 2219 assert(type->isVariablyModifiedType()); 2220 2221 const Type *ty = type.getTypePtr(); 2222 switch (ty->getTypeClass()) { 2223 2224 #define TYPE(Class, Base) 2225 #define ABSTRACT_TYPE(Class, Base) 2226 #define NON_CANONICAL_TYPE(Class, Base) 2227 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2228 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2229 #include "clang/AST/TypeNodes.inc" 2230 llvm_unreachable("unexpected dependent type!"); 2231 2232 // These types are never variably-modified. 2233 case Type::Builtin: 2234 case Type::Complex: 2235 case Type::Vector: 2236 case Type::ExtVector: 2237 case Type::ConstantMatrix: 2238 case Type::Record: 2239 case Type::Enum: 2240 case Type::Using: 2241 case Type::TemplateSpecialization: 2242 case Type::ObjCTypeParam: 2243 case Type::ObjCObject: 2244 case Type::ObjCInterface: 2245 case Type::ObjCObjectPointer: 2246 case Type::BitInt: 2247 llvm_unreachable("type class is never variably-modified!"); 2248 2249 case Type::Elaborated: 2250 type = cast<ElaboratedType>(ty)->getNamedType(); 2251 break; 2252 2253 case Type::Adjusted: 2254 type = cast<AdjustedType>(ty)->getAdjustedType(); 2255 break; 2256 2257 case Type::Decayed: 2258 type = cast<DecayedType>(ty)->getPointeeType(); 2259 break; 2260 2261 case Type::Pointer: 2262 type = cast<PointerType>(ty)->getPointeeType(); 2263 break; 2264 2265 case Type::BlockPointer: 2266 type = cast<BlockPointerType>(ty)->getPointeeType(); 2267 break; 2268 2269 case Type::LValueReference: 2270 case Type::RValueReference: 2271 type = cast<ReferenceType>(ty)->getPointeeType(); 2272 break; 2273 2274 case Type::MemberPointer: 2275 type = cast<MemberPointerType>(ty)->getPointeeType(); 2276 break; 2277 2278 case Type::ConstantArray: 2279 case Type::IncompleteArray: 2280 // Losing element qualification here is fine. 2281 type = cast<ArrayType>(ty)->getElementType(); 2282 break; 2283 2284 case Type::VariableArray: { 2285 // Losing element qualification here is fine. 2286 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2287 2288 // Unknown size indication requires no size computation. 2289 // Otherwise, evaluate and record it. 2290 if (const Expr *sizeExpr = vat->getSizeExpr()) { 2291 // It's possible that we might have emitted this already, 2292 // e.g. with a typedef and a pointer to it. 2293 llvm::Value *&entry = VLASizeMap[sizeExpr]; 2294 if (!entry) { 2295 llvm::Value *size = EmitScalarExpr(sizeExpr); 2296 2297 // C11 6.7.6.2p5: 2298 // If the size is an expression that is not an integer constant 2299 // expression [...] each time it is evaluated it shall have a value 2300 // greater than zero. 2301 if (SanOpts.has(SanitizerKind::VLABound)) { 2302 SanitizerScope SanScope(this); 2303 llvm::Value *Zero = llvm::Constant::getNullValue(size->getType()); 2304 clang::QualType SEType = sizeExpr->getType(); 2305 llvm::Value *CheckCondition = 2306 SEType->isSignedIntegerType() 2307 ? Builder.CreateICmpSGT(size, Zero) 2308 : Builder.CreateICmpUGT(size, Zero); 2309 llvm::Constant *StaticArgs[] = { 2310 EmitCheckSourceLocation(sizeExpr->getBeginLoc()), 2311 EmitCheckTypeDescriptor(SEType)}; 2312 EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound), 2313 SanitizerHandler::VLABoundNotPositive, StaticArgs, size); 2314 } 2315 2316 // Always zexting here would be wrong if it weren't 2317 // undefined behavior to have a negative bound. 2318 // FIXME: What about when size's type is larger than size_t? 2319 entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false); 2320 } 2321 } 2322 type = vat->getElementType(); 2323 break; 2324 } 2325 2326 case Type::FunctionProto: 2327 case Type::FunctionNoProto: 2328 type = cast<FunctionType>(ty)->getReturnType(); 2329 break; 2330 2331 case Type::Paren: 2332 case Type::TypeOf: 2333 case Type::UnaryTransform: 2334 case Type::Attributed: 2335 case Type::BTFTagAttributed: 2336 case Type::SubstTemplateTypeParm: 2337 case Type::MacroQualified: 2338 // Keep walking after single level desugaring. 2339 type = type.getSingleStepDesugaredType(getContext()); 2340 break; 2341 2342 case Type::Typedef: 2343 case Type::Decltype: 2344 case Type::Auto: 2345 case Type::DeducedTemplateSpecialization: 2346 // Stop walking: nothing to do. 2347 return; 2348 2349 case Type::TypeOfExpr: 2350 // Stop walking: emit typeof expression. 2351 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2352 return; 2353 2354 case Type::Atomic: 2355 type = cast<AtomicType>(ty)->getValueType(); 2356 break; 2357 2358 case Type::Pipe: 2359 type = cast<PipeType>(ty)->getElementType(); 2360 break; 2361 } 2362 } while (type->isVariablyModifiedType()); 2363 } 2364 2365 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2366 if (getContext().getBuiltinVaListType()->isArrayType()) 2367 return EmitPointerWithAlignment(E); 2368 return EmitLValue(E).getAddress(*this); 2369 } 2370 2371 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2372 return EmitLValue(E).getAddress(*this); 2373 } 2374 2375 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2376 const APValue &Init) { 2377 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2378 if (CGDebugInfo *Dbg = getDebugInfo()) 2379 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2380 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2381 } 2382 2383 CodeGenFunction::PeepholeProtection 2384 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2385 // At the moment, the only aggressive peephole we do in IR gen 2386 // is trunc(zext) folding, but if we add more, we can easily 2387 // extend this protection. 2388 2389 if (!rvalue.isScalar()) return PeepholeProtection(); 2390 llvm::Value *value = rvalue.getScalarVal(); 2391 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2392 2393 // Just make an extra bitcast. 2394 assert(HaveInsertPoint()); 2395 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2396 Builder.GetInsertBlock()); 2397 2398 PeepholeProtection protection; 2399 protection.Inst = inst; 2400 return protection; 2401 } 2402 2403 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2404 if (!protection.Inst) return; 2405 2406 // In theory, we could try to duplicate the peepholes now, but whatever. 2407 protection.Inst->eraseFromParent(); 2408 } 2409 2410 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2411 QualType Ty, SourceLocation Loc, 2412 SourceLocation AssumptionLoc, 2413 llvm::Value *Alignment, 2414 llvm::Value *OffsetValue) { 2415 if (Alignment->getType() != IntPtrTy) 2416 Alignment = 2417 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2418 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2419 OffsetValue = 2420 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2421 llvm::Value *TheCheck = nullptr; 2422 if (SanOpts.has(SanitizerKind::Alignment)) { 2423 llvm::Value *PtrIntValue = 2424 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2425 2426 if (OffsetValue) { 2427 bool IsOffsetZero = false; 2428 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2429 IsOffsetZero = CI->isZero(); 2430 2431 if (!IsOffsetZero) 2432 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2433 } 2434 2435 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2436 llvm::Value *Mask = 2437 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2438 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2439 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2440 } 2441 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2442 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2443 2444 if (!SanOpts.has(SanitizerKind::Alignment)) 2445 return; 2446 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2447 OffsetValue, TheCheck, Assumption); 2448 } 2449 2450 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2451 const Expr *E, 2452 SourceLocation AssumptionLoc, 2453 llvm::Value *Alignment, 2454 llvm::Value *OffsetValue) { 2455 QualType Ty = E->getType(); 2456 SourceLocation Loc = E->getExprLoc(); 2457 2458 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2459 OffsetValue); 2460 } 2461 2462 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2463 llvm::Value *AnnotatedVal, 2464 StringRef AnnotationStr, 2465 SourceLocation Location, 2466 const AnnotateAttr *Attr) { 2467 SmallVector<llvm::Value *, 5> Args = { 2468 AnnotatedVal, 2469 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), 2470 ConstGlobalsPtrTy), 2471 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), 2472 ConstGlobalsPtrTy), 2473 CGM.EmitAnnotationLineNo(Location), 2474 }; 2475 if (Attr) 2476 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2477 return Builder.CreateCall(AnnotationFn, Args); 2478 } 2479 2480 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2481 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2482 // FIXME We create a new bitcast for every annotation because that's what 2483 // llvm-gcc was doing. 2484 unsigned AS = V->getType()->getPointerAddressSpace(); 2485 llvm::Type *I8PtrTy = Builder.getInt8PtrTy(AS); 2486 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2487 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation, 2488 {I8PtrTy, CGM.ConstGlobalsPtrTy}), 2489 Builder.CreateBitCast(V, I8PtrTy, V->getName()), 2490 I->getAnnotation(), D->getLocation(), I); 2491 } 2492 2493 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2494 Address Addr) { 2495 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2496 llvm::Value *V = Addr.getPointer(); 2497 llvm::Type *VTy = V->getType(); 2498 auto *PTy = dyn_cast<llvm::PointerType>(VTy); 2499 unsigned AS = PTy ? PTy->getAddressSpace() : 0; 2500 llvm::PointerType *IntrinTy = 2501 llvm::PointerType::getWithSamePointeeType(CGM.Int8PtrTy, AS); 2502 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2503 {IntrinTy, CGM.ConstGlobalsPtrTy}); 2504 2505 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2506 // FIXME Always emit the cast inst so we can differentiate between 2507 // annotation on the first field of a struct and annotation on the struct 2508 // itself. 2509 if (VTy != IntrinTy) 2510 V = Builder.CreateBitCast(V, IntrinTy); 2511 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2512 V = Builder.CreateBitCast(V, VTy); 2513 } 2514 2515 return Address(V, Addr.getElementType(), Addr.getAlignment()); 2516 } 2517 2518 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2519 2520 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2521 : CGF(CGF) { 2522 assert(!CGF->IsSanitizerScope); 2523 CGF->IsSanitizerScope = true; 2524 } 2525 2526 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2527 CGF->IsSanitizerScope = false; 2528 } 2529 2530 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2531 const llvm::Twine &Name, 2532 llvm::BasicBlock *BB, 2533 llvm::BasicBlock::iterator InsertPt) const { 2534 LoopStack.InsertHelper(I); 2535 if (IsSanitizerScope) 2536 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2537 } 2538 2539 void CGBuilderInserter::InsertHelper( 2540 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2541 llvm::BasicBlock::iterator InsertPt) const { 2542 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2543 if (CGF) 2544 CGF->InsertHelper(I, Name, BB, InsertPt); 2545 } 2546 2547 // Emits an error if we don't have a valid set of target features for the 2548 // called function. 2549 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2550 const FunctionDecl *TargetDecl) { 2551 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2552 } 2553 2554 // Emits an error if we don't have a valid set of target features for the 2555 // called function. 2556 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2557 const FunctionDecl *TargetDecl) { 2558 // Early exit if this is an indirect call. 2559 if (!TargetDecl) 2560 return; 2561 2562 // Get the current enclosing function if it exists. If it doesn't 2563 // we can't check the target features anyhow. 2564 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2565 if (!FD) 2566 return; 2567 2568 // Grab the required features for the call. For a builtin this is listed in 2569 // the td file with the default cpu, for an always_inline function this is any 2570 // listed cpu and any listed features. 2571 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2572 std::string MissingFeature; 2573 llvm::StringMap<bool> CallerFeatureMap; 2574 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2575 if (BuiltinID) { 2576 StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2577 if (!Builtin::evaluateRequiredTargetFeatures( 2578 FeatureList, CallerFeatureMap)) { 2579 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2580 << TargetDecl->getDeclName() 2581 << FeatureList; 2582 } 2583 } else if (!TargetDecl->isMultiVersion() && 2584 TargetDecl->hasAttr<TargetAttr>()) { 2585 // Get the required features for the callee. 2586 2587 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2588 ParsedTargetAttr ParsedAttr = 2589 CGM.getContext().filterFunctionTargetAttrs(TD); 2590 2591 SmallVector<StringRef, 1> ReqFeatures; 2592 llvm::StringMap<bool> CalleeFeatureMap; 2593 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2594 2595 for (const auto &F : ParsedAttr.Features) { 2596 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2597 ReqFeatures.push_back(StringRef(F).substr(1)); 2598 } 2599 2600 for (const auto &F : CalleeFeatureMap) { 2601 // Only positive features are "required". 2602 if (F.getValue()) 2603 ReqFeatures.push_back(F.getKey()); 2604 } 2605 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2606 if (!CallerFeatureMap.lookup(Feature)) { 2607 MissingFeature = Feature.str(); 2608 return false; 2609 } 2610 return true; 2611 })) 2612 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2613 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2614 } 2615 } 2616 2617 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2618 if (!CGM.getCodeGenOpts().SanitizeStats) 2619 return; 2620 2621 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2622 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2623 CGM.getSanStats().create(IRB, SSK); 2624 } 2625 2626 void CodeGenFunction::EmitKCFIOperandBundle( 2627 const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) { 2628 const FunctionProtoType *FP = 2629 Callee.getAbstractInfo().getCalleeFunctionProtoType(); 2630 if (FP) 2631 Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar())); 2632 } 2633 2634 llvm::Value *CodeGenFunction::FormAArch64ResolverCondition( 2635 const MultiVersionResolverOption &RO) { 2636 llvm::SmallVector<StringRef, 8> CondFeatures; 2637 for (const StringRef &Feature : RO.Conditions.Features) { 2638 // Form condition for features which are not yet enabled in target 2639 if (!getContext().getTargetInfo().hasFeature(Feature)) 2640 CondFeatures.push_back(Feature); 2641 } 2642 if (!CondFeatures.empty()) { 2643 return EmitAArch64CpuSupports(CondFeatures); 2644 } 2645 return nullptr; 2646 } 2647 2648 llvm::Value *CodeGenFunction::FormX86ResolverCondition( 2649 const MultiVersionResolverOption &RO) { 2650 llvm::Value *Condition = nullptr; 2651 2652 if (!RO.Conditions.Architecture.empty()) 2653 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2654 2655 if (!RO.Conditions.Features.empty()) { 2656 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2657 Condition = 2658 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2659 } 2660 return Condition; 2661 } 2662 2663 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2664 llvm::Function *Resolver, 2665 CGBuilderTy &Builder, 2666 llvm::Function *FuncToReturn, 2667 bool SupportsIFunc) { 2668 if (SupportsIFunc) { 2669 Builder.CreateRet(FuncToReturn); 2670 return; 2671 } 2672 2673 llvm::SmallVector<llvm::Value *, 10> Args( 2674 llvm::make_pointer_range(Resolver->args())); 2675 2676 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2677 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2678 2679 if (Resolver->getReturnType()->isVoidTy()) 2680 Builder.CreateRetVoid(); 2681 else 2682 Builder.CreateRet(Result); 2683 } 2684 2685 void CodeGenFunction::EmitMultiVersionResolver( 2686 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2687 2688 llvm::Triple::ArchType ArchType = 2689 getContext().getTargetInfo().getTriple().getArch(); 2690 2691 switch (ArchType) { 2692 case llvm::Triple::x86: 2693 case llvm::Triple::x86_64: 2694 EmitX86MultiVersionResolver(Resolver, Options); 2695 return; 2696 case llvm::Triple::aarch64: 2697 EmitAArch64MultiVersionResolver(Resolver, Options); 2698 return; 2699 2700 default: 2701 assert(false && "Only implemented for x86 and AArch64 targets"); 2702 } 2703 } 2704 2705 void CodeGenFunction::EmitAArch64MultiVersionResolver( 2706 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2707 assert(!Options.empty() && "No multiversion resolver options found"); 2708 assert(Options.back().Conditions.Features.size() == 0 && 2709 "Default case must be last"); 2710 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2711 assert(SupportsIFunc && 2712 "Multiversion resolver requires target IFUNC support"); 2713 bool AArch64CpuInitialized = false; 2714 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2715 2716 for (const MultiVersionResolverOption &RO : Options) { 2717 Builder.SetInsertPoint(CurBlock); 2718 llvm::Value *Condition = FormAArch64ResolverCondition(RO); 2719 2720 // The 'default' or 'all features enabled' case. 2721 if (!Condition) { 2722 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2723 SupportsIFunc); 2724 return; 2725 } 2726 2727 if (!AArch64CpuInitialized) { 2728 Builder.SetInsertPoint(CurBlock, CurBlock->begin()); 2729 EmitAArch64CpuInit(); 2730 AArch64CpuInitialized = true; 2731 Builder.SetInsertPoint(CurBlock); 2732 } 2733 2734 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2735 CGBuilderTy RetBuilder(*this, RetBlock); 2736 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2737 SupportsIFunc); 2738 CurBlock = createBasicBlock("resolver_else", Resolver); 2739 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2740 } 2741 2742 // If no default, emit an unreachable. 2743 Builder.SetInsertPoint(CurBlock); 2744 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2745 TrapCall->setDoesNotReturn(); 2746 TrapCall->setDoesNotThrow(); 2747 Builder.CreateUnreachable(); 2748 Builder.ClearInsertionPoint(); 2749 } 2750 2751 void CodeGenFunction::EmitX86MultiVersionResolver( 2752 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2753 2754 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2755 2756 // Main function's basic block. 2757 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2758 Builder.SetInsertPoint(CurBlock); 2759 EmitX86CpuInit(); 2760 2761 for (const MultiVersionResolverOption &RO : Options) { 2762 Builder.SetInsertPoint(CurBlock); 2763 llvm::Value *Condition = FormX86ResolverCondition(RO); 2764 2765 // The 'default' or 'generic' case. 2766 if (!Condition) { 2767 assert(&RO == Options.end() - 1 && 2768 "Default or Generic case must be last"); 2769 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2770 SupportsIFunc); 2771 return; 2772 } 2773 2774 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2775 CGBuilderTy RetBuilder(*this, RetBlock); 2776 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2777 SupportsIFunc); 2778 CurBlock = createBasicBlock("resolver_else", Resolver); 2779 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2780 } 2781 2782 // If no generic/default, emit an unreachable. 2783 Builder.SetInsertPoint(CurBlock); 2784 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2785 TrapCall->setDoesNotReturn(); 2786 TrapCall->setDoesNotThrow(); 2787 Builder.CreateUnreachable(); 2788 Builder.ClearInsertionPoint(); 2789 } 2790 2791 // Loc - where the diagnostic will point, where in the source code this 2792 // alignment has failed. 2793 // SecondaryLoc - if present (will be present if sufficiently different from 2794 // Loc), the diagnostic will additionally point a "Note:" to this location. 2795 // It should be the location where the __attribute__((assume_aligned)) 2796 // was written e.g. 2797 void CodeGenFunction::emitAlignmentAssumptionCheck( 2798 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2799 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2800 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2801 llvm::Instruction *Assumption) { 2802 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2803 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2804 llvm::Intrinsic::getDeclaration( 2805 Builder.GetInsertBlock()->getParent()->getParent(), 2806 llvm::Intrinsic::assume) && 2807 "Assumption should be a call to llvm.assume()."); 2808 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2809 "Assumption should be the last instruction of the basic block, " 2810 "since the basic block is still being generated."); 2811 2812 if (!SanOpts.has(SanitizerKind::Alignment)) 2813 return; 2814 2815 // Don't check pointers to volatile data. The behavior here is implementation- 2816 // defined. 2817 if (Ty->getPointeeType().isVolatileQualified()) 2818 return; 2819 2820 // We need to temorairly remove the assumption so we can insert the 2821 // sanitizer check before it, else the check will be dropped by optimizations. 2822 Assumption->removeFromParent(); 2823 2824 { 2825 SanitizerScope SanScope(this); 2826 2827 if (!OffsetValue) 2828 OffsetValue = Builder.getInt1(false); // no offset. 2829 2830 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2831 EmitCheckSourceLocation(SecondaryLoc), 2832 EmitCheckTypeDescriptor(Ty)}; 2833 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2834 EmitCheckValue(Alignment), 2835 EmitCheckValue(OffsetValue)}; 2836 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2837 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2838 } 2839 2840 // We are now in the (new, empty) "cont" basic block. 2841 // Reintroduce the assumption. 2842 Builder.Insert(Assumption); 2843 // FIXME: Assumption still has it's original basic block as it's Parent. 2844 } 2845 2846 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2847 if (CGDebugInfo *DI = getDebugInfo()) 2848 return DI->SourceLocToDebugLoc(Location); 2849 2850 return llvm::DebugLoc(); 2851 } 2852 2853 llvm::Value * 2854 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 2855 Stmt::Likelihood LH) { 2856 switch (LH) { 2857 case Stmt::LH_None: 2858 return Cond; 2859 case Stmt::LH_Likely: 2860 case Stmt::LH_Unlikely: 2861 // Don't generate llvm.expect on -O0 as the backend won't use it for 2862 // anything. 2863 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 2864 return Cond; 2865 llvm::Type *CondTy = Cond->getType(); 2866 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 2867 llvm::Function *FnExpect = 2868 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 2869 llvm::Value *ExpectedValueOfCond = 2870 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 2871 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 2872 Cond->getName() + ".expval"); 2873 } 2874 llvm_unreachable("Unknown Likelihood"); 2875 } 2876 2877 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec, 2878 unsigned NumElementsDst, 2879 const llvm::Twine &Name) { 2880 auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType()); 2881 unsigned NumElementsSrc = SrcTy->getNumElements(); 2882 if (NumElementsSrc == NumElementsDst) 2883 return SrcVec; 2884 2885 std::vector<int> ShuffleMask(NumElementsDst, -1); 2886 for (unsigned MaskIdx = 0; 2887 MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx) 2888 ShuffleMask[MaskIdx] = MaskIdx; 2889 2890 return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name); 2891 } 2892