1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGHLSLRuntime.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ASTLambda.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/Decl.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/Expr.h" 30 #include "clang/AST/StmtCXX.h" 31 #include "clang/AST/StmtObjC.h" 32 #include "clang/Basic/Builtins.h" 33 #include "clang/Basic/CodeGenOptions.h" 34 #include "clang/Basic/TargetInfo.h" 35 #include "clang/CodeGen/CGFunctionInfo.h" 36 #include "clang/Frontend/FrontendDiagnostic.h" 37 #include "llvm/ADT/ArrayRef.h" 38 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/Dominators.h" 41 #include "llvm/IR/FPEnv.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/MDBuilder.h" 45 #include "llvm/IR/Operator.h" 46 #include "llvm/Support/CRC.h" 47 #include "llvm/Support/xxhash.h" 48 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 49 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 50 #include <optional> 51 52 using namespace clang; 53 using namespace CodeGen; 54 55 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 56 /// markers. 57 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 58 const LangOptions &LangOpts) { 59 if (CGOpts.DisableLifetimeMarkers) 60 return false; 61 62 // Sanitizers may use markers. 63 if (CGOpts.SanitizeAddressUseAfterScope || 64 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 65 LangOpts.Sanitize.has(SanitizerKind::Memory)) 66 return true; 67 68 // For now, only in optimized builds. 69 return CGOpts.OptimizationLevel != 0; 70 } 71 72 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 73 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 74 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 75 CGBuilderInserterTy(this)), 76 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 77 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 78 ShouldEmitLifetimeMarkers( 79 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 80 if (!suppressNewContext) 81 CGM.getCXXABI().getMangleContext().startNewFunction(); 82 EHStack.setCGF(this); 83 84 SetFastMathFlags(CurFPFeatures); 85 } 86 87 CodeGenFunction::~CodeGenFunction() { 88 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 89 90 if (getLangOpts().OpenMP && CurFn) 91 CGM.getOpenMPRuntime().functionFinished(*this); 92 93 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 94 // outlining etc) at some point. Doing it once the function codegen is done 95 // seems to be a reasonable spot. We do it here, as opposed to the deletion 96 // time of the CodeGenModule, because we have to ensure the IR has not yet 97 // been "emitted" to the outside, thus, modifications are still sensible. 98 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 99 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 100 } 101 102 // Map the LangOption for exception behavior into 103 // the corresponding enum in the IR. 104 llvm::fp::ExceptionBehavior 105 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 106 107 switch (Kind) { 108 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 109 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 110 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 111 default: 112 llvm_unreachable("Unsupported FP Exception Behavior"); 113 } 114 } 115 116 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 117 llvm::FastMathFlags FMF; 118 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 119 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 120 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 121 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 122 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 123 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 124 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 125 Builder.setFastMathFlags(FMF); 126 } 127 128 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 129 const Expr *E) 130 : CGF(CGF) { 131 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 132 } 133 134 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 135 FPOptions FPFeatures) 136 : CGF(CGF) { 137 ConstructorHelper(FPFeatures); 138 } 139 140 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 141 OldFPFeatures = CGF.CurFPFeatures; 142 CGF.CurFPFeatures = FPFeatures; 143 144 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 145 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 146 147 if (OldFPFeatures == FPFeatures) 148 return; 149 150 FMFGuard.emplace(CGF.Builder); 151 152 llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode(); 153 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 154 auto NewExceptionBehavior = 155 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 156 FPFeatures.getExceptionMode())); 157 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 158 159 CGF.SetFastMathFlags(FPFeatures); 160 161 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 162 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 163 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 164 (NewExceptionBehavior == llvm::fp::ebIgnore && 165 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 166 "FPConstrained should be enabled on entire function"); 167 168 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 169 auto OldValue = 170 CGF.CurFn->getFnAttribute(Name).getValueAsBool(); 171 auto NewValue = OldValue & Value; 172 if (OldValue != NewValue) 173 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 174 }; 175 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 176 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 177 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 178 mergeFnAttrValue( 179 "unsafe-fp-math", 180 FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() && 181 FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() && 182 FPFeatures.allowFPContractAcrossStatement()); 183 } 184 185 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 186 CGF.CurFPFeatures = OldFPFeatures; 187 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 188 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 189 } 190 191 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 192 LValueBaseInfo BaseInfo; 193 TBAAAccessInfo TBAAInfo; 194 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 195 Address Addr(V, ConvertTypeForMem(T), Alignment); 196 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 197 } 198 199 /// Given a value of type T* that may not be to a complete object, 200 /// construct an l-value with the natural pointee alignment of T. 201 LValue 202 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 203 LValueBaseInfo BaseInfo; 204 TBAAAccessInfo TBAAInfo; 205 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 206 /* forPointeeType= */ true); 207 Address Addr(V, ConvertTypeForMem(T), Align); 208 return MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 209 } 210 211 212 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 213 return CGM.getTypes().ConvertTypeForMem(T); 214 } 215 216 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 217 return CGM.getTypes().ConvertType(T); 218 } 219 220 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 221 type = type.getCanonicalType(); 222 while (true) { 223 switch (type->getTypeClass()) { 224 #define TYPE(name, parent) 225 #define ABSTRACT_TYPE(name, parent) 226 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 227 #define DEPENDENT_TYPE(name, parent) case Type::name: 228 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 229 #include "clang/AST/TypeNodes.inc" 230 llvm_unreachable("non-canonical or dependent type in IR-generation"); 231 232 case Type::Auto: 233 case Type::DeducedTemplateSpecialization: 234 llvm_unreachable("undeduced type in IR-generation"); 235 236 // Various scalar types. 237 case Type::Builtin: 238 case Type::Pointer: 239 case Type::BlockPointer: 240 case Type::LValueReference: 241 case Type::RValueReference: 242 case Type::MemberPointer: 243 case Type::Vector: 244 case Type::ExtVector: 245 case Type::ConstantMatrix: 246 case Type::FunctionProto: 247 case Type::FunctionNoProto: 248 case Type::Enum: 249 case Type::ObjCObjectPointer: 250 case Type::Pipe: 251 case Type::BitInt: 252 return TEK_Scalar; 253 254 // Complexes. 255 case Type::Complex: 256 return TEK_Complex; 257 258 // Arrays, records, and Objective-C objects. 259 case Type::ConstantArray: 260 case Type::IncompleteArray: 261 case Type::VariableArray: 262 case Type::Record: 263 case Type::ObjCObject: 264 case Type::ObjCInterface: 265 return TEK_Aggregate; 266 267 // We operate on atomic values according to their underlying type. 268 case Type::Atomic: 269 type = cast<AtomicType>(type)->getValueType(); 270 continue; 271 } 272 llvm_unreachable("unknown type kind!"); 273 } 274 } 275 276 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 277 // For cleanliness, we try to avoid emitting the return block for 278 // simple cases. 279 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 280 281 if (CurBB) { 282 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 283 284 // We have a valid insert point, reuse it if it is empty or there are no 285 // explicit jumps to the return block. 286 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 287 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 288 delete ReturnBlock.getBlock(); 289 ReturnBlock = JumpDest(); 290 } else 291 EmitBlock(ReturnBlock.getBlock()); 292 return llvm::DebugLoc(); 293 } 294 295 // Otherwise, if the return block is the target of a single direct 296 // branch then we can just put the code in that block instead. This 297 // cleans up functions which started with a unified return block. 298 if (ReturnBlock.getBlock()->hasOneUse()) { 299 llvm::BranchInst *BI = 300 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 301 if (BI && BI->isUnconditional() && 302 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 303 // Record/return the DebugLoc of the simple 'return' expression to be used 304 // later by the actual 'ret' instruction. 305 llvm::DebugLoc Loc = BI->getDebugLoc(); 306 Builder.SetInsertPoint(BI->getParent()); 307 BI->eraseFromParent(); 308 delete ReturnBlock.getBlock(); 309 ReturnBlock = JumpDest(); 310 return Loc; 311 } 312 } 313 314 // FIXME: We are at an unreachable point, there is no reason to emit the block 315 // unless it has uses. However, we still need a place to put the debug 316 // region.end for now. 317 318 EmitBlock(ReturnBlock.getBlock()); 319 return llvm::DebugLoc(); 320 } 321 322 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 323 if (!BB) return; 324 if (!BB->use_empty()) { 325 CGF.CurFn->insert(CGF.CurFn->end(), BB); 326 return; 327 } 328 delete BB; 329 } 330 331 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 332 assert(BreakContinueStack.empty() && 333 "mismatched push/pop in break/continue stack!"); 334 335 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 336 && NumSimpleReturnExprs == NumReturnExprs 337 && ReturnBlock.getBlock()->use_empty(); 338 // Usually the return expression is evaluated before the cleanup 339 // code. If the function contains only a simple return statement, 340 // such as a constant, the location before the cleanup code becomes 341 // the last useful breakpoint in the function, because the simple 342 // return expression will be evaluated after the cleanup code. To be 343 // safe, set the debug location for cleanup code to the location of 344 // the return statement. Otherwise the cleanup code should be at the 345 // end of the function's lexical scope. 346 // 347 // If there are multiple branches to the return block, the branch 348 // instructions will get the location of the return statements and 349 // all will be fine. 350 if (CGDebugInfo *DI = getDebugInfo()) { 351 if (OnlySimpleReturnStmts) 352 DI->EmitLocation(Builder, LastStopPoint); 353 else 354 DI->EmitLocation(Builder, EndLoc); 355 } 356 357 // Pop any cleanups that might have been associated with the 358 // parameters. Do this in whatever block we're currently in; it's 359 // important to do this before we enter the return block or return 360 // edges will be *really* confused. 361 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 362 bool HasOnlyLifetimeMarkers = 363 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 364 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 365 366 std::optional<ApplyDebugLocation> OAL; 367 if (HasCleanups) { 368 // Make sure the line table doesn't jump back into the body for 369 // the ret after it's been at EndLoc. 370 if (CGDebugInfo *DI = getDebugInfo()) { 371 if (OnlySimpleReturnStmts) 372 DI->EmitLocation(Builder, EndLoc); 373 else 374 // We may not have a valid end location. Try to apply it anyway, and 375 // fall back to an artificial location if needed. 376 OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 377 } 378 379 PopCleanupBlocks(PrologueCleanupDepth); 380 } 381 382 // Emit function epilog (to return). 383 llvm::DebugLoc Loc = EmitReturnBlock(); 384 385 if (ShouldInstrumentFunction()) { 386 if (CGM.getCodeGenOpts().InstrumentFunctions) 387 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 388 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 389 CurFn->addFnAttr("instrument-function-exit-inlined", 390 "__cyg_profile_func_exit"); 391 } 392 393 // Emit debug descriptor for function end. 394 if (CGDebugInfo *DI = getDebugInfo()) 395 DI->EmitFunctionEnd(Builder, CurFn); 396 397 // Reset the debug location to that of the simple 'return' expression, if any 398 // rather than that of the end of the function's scope '}'. 399 ApplyDebugLocation AL(*this, Loc); 400 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 401 EmitEndEHSpec(CurCodeDecl); 402 403 assert(EHStack.empty() && 404 "did not remove all scopes from cleanup stack!"); 405 406 // If someone did an indirect goto, emit the indirect goto block at the end of 407 // the function. 408 if (IndirectBranch) { 409 EmitBlock(IndirectBranch->getParent()); 410 Builder.ClearInsertionPoint(); 411 } 412 413 // If some of our locals escaped, insert a call to llvm.localescape in the 414 // entry block. 415 if (!EscapedLocals.empty()) { 416 // Invert the map from local to index into a simple vector. There should be 417 // no holes. 418 SmallVector<llvm::Value *, 4> EscapeArgs; 419 EscapeArgs.resize(EscapedLocals.size()); 420 for (auto &Pair : EscapedLocals) 421 EscapeArgs[Pair.second] = Pair.first; 422 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 423 &CGM.getModule(), llvm::Intrinsic::localescape); 424 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 425 } 426 427 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 428 llvm::Instruction *Ptr = AllocaInsertPt; 429 AllocaInsertPt = nullptr; 430 Ptr->eraseFromParent(); 431 432 // PostAllocaInsertPt, if created, was lazily created when it was required, 433 // remove it now since it was just created for our own convenience. 434 if (PostAllocaInsertPt) { 435 llvm::Instruction *PostPtr = PostAllocaInsertPt; 436 PostAllocaInsertPt = nullptr; 437 PostPtr->eraseFromParent(); 438 } 439 440 // If someone took the address of a label but never did an indirect goto, we 441 // made a zero entry PHI node, which is illegal, zap it now. 442 if (IndirectBranch) { 443 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 444 if (PN->getNumIncomingValues() == 0) { 445 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 446 PN->eraseFromParent(); 447 } 448 } 449 450 EmitIfUsed(*this, EHResumeBlock); 451 EmitIfUsed(*this, TerminateLandingPad); 452 EmitIfUsed(*this, TerminateHandler); 453 EmitIfUsed(*this, UnreachableBlock); 454 455 for (const auto &FuncletAndParent : TerminateFunclets) 456 EmitIfUsed(*this, FuncletAndParent.second); 457 458 if (CGM.getCodeGenOpts().EmitDeclMetadata) 459 EmitDeclMetadata(); 460 461 for (const auto &R : DeferredReplacements) { 462 if (llvm::Value *Old = R.first) { 463 Old->replaceAllUsesWith(R.second); 464 cast<llvm::Instruction>(Old)->eraseFromParent(); 465 } 466 } 467 DeferredReplacements.clear(); 468 469 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 470 // PHIs if the current function is a coroutine. We don't do it for all 471 // functions as it may result in slight increase in numbers of instructions 472 // if compiled with no optimizations. We do it for coroutine as the lifetime 473 // of CleanupDestSlot alloca make correct coroutine frame building very 474 // difficult. 475 if (NormalCleanupDest.isValid() && isCoroutine()) { 476 llvm::DominatorTree DT(*CurFn); 477 llvm::PromoteMemToReg( 478 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 479 NormalCleanupDest = Address::invalid(); 480 } 481 482 // Scan function arguments for vector width. 483 for (llvm::Argument &A : CurFn->args()) 484 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 485 LargestVectorWidth = 486 std::max((uint64_t)LargestVectorWidth, 487 VT->getPrimitiveSizeInBits().getKnownMinValue()); 488 489 // Update vector width based on return type. 490 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 491 LargestVectorWidth = 492 std::max((uint64_t)LargestVectorWidth, 493 VT->getPrimitiveSizeInBits().getKnownMinValue()); 494 495 if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth) 496 LargestVectorWidth = CurFnInfo->getMaxVectorWidth(); 497 498 // Add the min-legal-vector-width attribute. This contains the max width from: 499 // 1. min-vector-width attribute used in the source program. 500 // 2. Any builtins used that have a vector width specified. 501 // 3. Values passed in and out of inline assembly. 502 // 4. Width of vector arguments and return types for this function. 503 // 5. Width of vector arguments and return types for functions called by this 504 // function. 505 if (getContext().getTargetInfo().getTriple().isX86()) 506 CurFn->addFnAttr("min-legal-vector-width", 507 llvm::utostr(LargestVectorWidth)); 508 509 // Add vscale_range attribute if appropriate. 510 std::optional<std::pair<unsigned, unsigned>> VScaleRange = 511 getContext().getTargetInfo().getVScaleRange(getLangOpts()); 512 if (VScaleRange) { 513 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( 514 getLLVMContext(), VScaleRange->first, VScaleRange->second)); 515 } 516 517 // If we generated an unreachable return block, delete it now. 518 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 519 Builder.ClearInsertionPoint(); 520 ReturnBlock.getBlock()->eraseFromParent(); 521 } 522 if (ReturnValue.isValid()) { 523 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 524 if (RetAlloca && RetAlloca->use_empty()) { 525 RetAlloca->eraseFromParent(); 526 ReturnValue = Address::invalid(); 527 } 528 } 529 } 530 531 /// ShouldInstrumentFunction - Return true if the current function should be 532 /// instrumented with __cyg_profile_func_* calls 533 bool CodeGenFunction::ShouldInstrumentFunction() { 534 if (!CGM.getCodeGenOpts().InstrumentFunctions && 535 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 536 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 537 return false; 538 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 539 return false; 540 return true; 541 } 542 543 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() { 544 if (!CurFuncDecl) 545 return false; 546 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>(); 547 } 548 549 /// ShouldXRayInstrument - Return true if the current function should be 550 /// instrumented with XRay nop sleds. 551 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 552 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 553 } 554 555 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 556 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 557 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 558 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 559 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 560 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 561 XRayInstrKind::Custom); 562 } 563 564 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 565 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 566 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 567 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 568 XRayInstrKind::Typed); 569 } 570 571 llvm::ConstantInt * 572 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const { 573 // Remove any (C++17) exception specifications, to allow calling e.g. a 574 // noexcept function through a non-noexcept pointer. 575 if (!Ty->isFunctionNoProtoType()) 576 Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None); 577 std::string Mangled; 578 llvm::raw_string_ostream Out(Mangled); 579 CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false); 580 return llvm::ConstantInt::get( 581 CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled))); 582 } 583 584 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD, 585 llvm::Function *Fn) { 586 if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>()) 587 return; 588 589 llvm::LLVMContext &Context = getLLVMContext(); 590 591 CGM.GenKernelArgMetadata(Fn, FD, this); 592 593 if (!getLangOpts().OpenCL) 594 return; 595 596 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 597 QualType HintQTy = A->getTypeHint(); 598 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 599 bool IsSignedInteger = 600 HintQTy->isSignedIntegerType() || 601 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 602 llvm::Metadata *AttrMDArgs[] = { 603 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 604 CGM.getTypes().ConvertType(A->getTypeHint()))), 605 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 606 llvm::IntegerType::get(Context, 32), 607 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 608 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 609 } 610 611 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 612 llvm::Metadata *AttrMDArgs[] = { 613 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 614 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 615 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 616 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 617 } 618 619 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 620 llvm::Metadata *AttrMDArgs[] = { 621 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 622 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 623 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 624 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 625 } 626 627 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 628 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 629 llvm::Metadata *AttrMDArgs[] = { 630 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 631 Fn->setMetadata("intel_reqd_sub_group_size", 632 llvm::MDNode::get(Context, AttrMDArgs)); 633 } 634 } 635 636 /// Determine whether the function F ends with a return stmt. 637 static bool endsWithReturn(const Decl* F) { 638 const Stmt *Body = nullptr; 639 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 640 Body = FD->getBody(); 641 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 642 Body = OMD->getBody(); 643 644 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 645 auto LastStmt = CS->body_rbegin(); 646 if (LastStmt != CS->body_rend()) 647 return isa<ReturnStmt>(*LastStmt); 648 } 649 return false; 650 } 651 652 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 653 if (SanOpts.has(SanitizerKind::Thread)) { 654 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 655 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 656 } 657 } 658 659 /// Check if the return value of this function requires sanitization. 660 bool CodeGenFunction::requiresReturnValueCheck() const { 661 return requiresReturnValueNullabilityCheck() || 662 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 663 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 664 } 665 666 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 667 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 668 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 669 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 670 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 671 return false; 672 673 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 674 return false; 675 676 if (MD->getNumParams() == 2) { 677 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 678 if (!PT || !PT->isVoidPointerType() || 679 !PT->getPointeeType().isConstQualified()) 680 return false; 681 } 682 683 return true; 684 } 685 686 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) { 687 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 688 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 689 } 690 691 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) { 692 return getTarget().getTriple().getArch() == llvm::Triple::x86 && 693 getTarget().getCXXABI().isMicrosoft() && 694 llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) { 695 return isInAllocaArgument(CGM.getCXXABI(), P->getType()); 696 }); 697 } 698 699 /// Return the UBSan prologue signature for \p FD if one is available. 700 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 701 const FunctionDecl *FD) { 702 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 703 if (!MD->isStatic()) 704 return nullptr; 705 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 706 } 707 708 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 709 llvm::Function *Fn, 710 const CGFunctionInfo &FnInfo, 711 const FunctionArgList &Args, 712 SourceLocation Loc, 713 SourceLocation StartLoc) { 714 assert(!CurFn && 715 "Do not use a CodeGenFunction object for more than one function"); 716 717 const Decl *D = GD.getDecl(); 718 719 DidCallStackSave = false; 720 CurCodeDecl = D; 721 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 722 if (FD && FD->usesSEHTry()) 723 CurSEHParent = GD; 724 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 725 FnRetTy = RetTy; 726 CurFn = Fn; 727 CurFnInfo = &FnInfo; 728 assert(CurFn->isDeclaration() && "Function already has body?"); 729 730 // If this function is ignored for any of the enabled sanitizers, 731 // disable the sanitizer for the function. 732 do { 733 #define SANITIZER(NAME, ID) \ 734 if (SanOpts.empty()) \ 735 break; \ 736 if (SanOpts.has(SanitizerKind::ID)) \ 737 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 738 SanOpts.set(SanitizerKind::ID, false); 739 740 #include "clang/Basic/Sanitizers.def" 741 #undef SANITIZER 742 } while (false); 743 744 if (D) { 745 const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds); 746 SanitizerMask no_sanitize_mask; 747 bool NoSanitizeCoverage = false; 748 749 for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) { 750 no_sanitize_mask |= Attr->getMask(); 751 // SanitizeCoverage is not handled by SanOpts. 752 if (Attr->hasCoverage()) 753 NoSanitizeCoverage = true; 754 } 755 756 // Apply the no_sanitize* attributes to SanOpts. 757 SanOpts.Mask &= ~no_sanitize_mask; 758 if (no_sanitize_mask & SanitizerKind::Address) 759 SanOpts.set(SanitizerKind::KernelAddress, false); 760 if (no_sanitize_mask & SanitizerKind::KernelAddress) 761 SanOpts.set(SanitizerKind::Address, false); 762 if (no_sanitize_mask & SanitizerKind::HWAddress) 763 SanOpts.set(SanitizerKind::KernelHWAddress, false); 764 if (no_sanitize_mask & SanitizerKind::KernelHWAddress) 765 SanOpts.set(SanitizerKind::HWAddress, false); 766 767 if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds)) 768 Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds); 769 770 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) 771 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); 772 773 // Some passes need the non-negated no_sanitize attribute. Pass them on. 774 if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) { 775 if (no_sanitize_mask & SanitizerKind::Thread) 776 Fn->addFnAttr("no_sanitize_thread"); 777 } 778 } 779 780 if (ShouldSkipSanitizerInstrumentation()) { 781 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 782 } else { 783 // Apply sanitizer attributes to the function. 784 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 785 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 786 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | 787 SanitizerKind::KernelHWAddress)) 788 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 789 if (SanOpts.has(SanitizerKind::MemtagStack)) 790 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 791 if (SanOpts.has(SanitizerKind::Thread)) 792 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 793 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 794 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 795 } 796 if (SanOpts.has(SanitizerKind::SafeStack)) 797 Fn->addFnAttr(llvm::Attribute::SafeStack); 798 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 799 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 800 801 // Apply fuzzing attribute to the function. 802 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 803 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 804 805 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 806 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 807 if (SanOpts.has(SanitizerKind::Thread)) { 808 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 809 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 810 if (OMD->getMethodFamily() == OMF_dealloc || 811 OMD->getMethodFamily() == OMF_initialize || 812 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 813 markAsIgnoreThreadCheckingAtRuntime(Fn); 814 } 815 } 816 } 817 818 // Ignore unrelated casts in STL allocate() since the allocator must cast 819 // from void* to T* before object initialization completes. Don't match on the 820 // namespace because not all allocators are in std:: 821 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 822 if (matchesStlAllocatorFn(D, getContext())) 823 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 824 } 825 826 // Ignore null checks in coroutine functions since the coroutines passes 827 // are not aware of how to move the extra UBSan instructions across the split 828 // coroutine boundaries. 829 if (D && SanOpts.has(SanitizerKind::Null)) 830 if (FD && FD->getBody() && 831 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 832 SanOpts.Mask &= ~SanitizerKind::Null; 833 834 // Apply xray attributes to the function (as a string, for now) 835 bool AlwaysXRayAttr = false; 836 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 837 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 838 XRayInstrKind::FunctionEntry) || 839 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 840 XRayInstrKind::FunctionExit)) { 841 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 842 Fn->addFnAttr("function-instrument", "xray-always"); 843 AlwaysXRayAttr = true; 844 } 845 if (XRayAttr->neverXRayInstrument()) 846 Fn->addFnAttr("function-instrument", "xray-never"); 847 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 848 if (ShouldXRayInstrumentFunction()) 849 Fn->addFnAttr("xray-log-args", 850 llvm::utostr(LogArgs->getArgumentCount())); 851 } 852 } else { 853 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 854 Fn->addFnAttr( 855 "xray-instruction-threshold", 856 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 857 } 858 859 if (ShouldXRayInstrumentFunction()) { 860 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 861 Fn->addFnAttr("xray-ignore-loops"); 862 863 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 864 XRayInstrKind::FunctionExit)) 865 Fn->addFnAttr("xray-skip-exit"); 866 867 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 868 XRayInstrKind::FunctionEntry)) 869 Fn->addFnAttr("xray-skip-entry"); 870 871 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 872 if (FuncGroups > 1) { 873 auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(), 874 CurFn->getName().bytes_end()); 875 auto Group = crc32(FuncName) % FuncGroups; 876 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 877 !AlwaysXRayAttr) 878 Fn->addFnAttr("function-instrument", "xray-never"); 879 } 880 } 881 882 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) { 883 switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) { 884 case ProfileList::Skip: 885 Fn->addFnAttr(llvm::Attribute::SkipProfile); 886 break; 887 case ProfileList::Forbid: 888 Fn->addFnAttr(llvm::Attribute::NoProfile); 889 break; 890 case ProfileList::Allow: 891 break; 892 } 893 } 894 895 unsigned Count, Offset; 896 if (const auto *Attr = 897 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 898 Count = Attr->getCount(); 899 Offset = Attr->getOffset(); 900 } else { 901 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 902 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 903 } 904 if (Count && Offset <= Count) { 905 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 906 if (Offset) 907 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 908 } 909 // Instruct that functions for COFF/CodeView targets should start with a 910 // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64 911 // backends as they don't need it -- instructions on these architectures are 912 // always atomically patchable at runtime. 913 if (CGM.getCodeGenOpts().HotPatch && 914 getContext().getTargetInfo().getTriple().isX86() && 915 getContext().getTargetInfo().getTriple().getEnvironment() != 916 llvm::Triple::CODE16) 917 Fn->addFnAttr("patchable-function", "prologue-short-redirect"); 918 919 // Add no-jump-tables value. 920 if (CGM.getCodeGenOpts().NoUseJumpTables) 921 Fn->addFnAttr("no-jump-tables", "true"); 922 923 // Add no-inline-line-tables value. 924 if (CGM.getCodeGenOpts().NoInlineLineTables) 925 Fn->addFnAttr("no-inline-line-tables"); 926 927 // Add profile-sample-accurate value. 928 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 929 Fn->addFnAttr("profile-sample-accurate"); 930 931 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 932 Fn->addFnAttr("use-sample-profile"); 933 934 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 935 Fn->addFnAttr("cfi-canonical-jump-table"); 936 937 if (D && D->hasAttr<NoProfileFunctionAttr>()) 938 Fn->addFnAttr(llvm::Attribute::NoProfile); 939 940 if (D) { 941 // Function attributes take precedence over command line flags. 942 if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) { 943 switch (A->getThunkType()) { 944 case FunctionReturnThunksAttr::Kind::Keep: 945 break; 946 case FunctionReturnThunksAttr::Kind::Extern: 947 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); 948 break; 949 } 950 } else if (CGM.getCodeGenOpts().FunctionReturnThunks) 951 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); 952 } 953 954 if (FD && (getLangOpts().OpenCL || 955 (getLangOpts().HIP && getLangOpts().CUDAIsDevice))) { 956 // Add metadata for a kernel function. 957 EmitKernelMetadata(FD, Fn); 958 } 959 960 // If we are checking function types, emit a function type signature as 961 // prologue data. 962 if (FD && SanOpts.has(SanitizerKind::Function)) { 963 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 964 llvm::LLVMContext &Ctx = Fn->getContext(); 965 llvm::MDBuilder MDB(Ctx); 966 Fn->setMetadata( 967 llvm::LLVMContext::MD_func_sanitize, 968 MDB.createRTTIPointerPrologue( 969 PrologueSig, getUBSanFunctionTypeHash(FD->getType()))); 970 } 971 } 972 973 // If we're checking nullability, we need to know whether we can check the 974 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 975 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 976 auto Nullability = FnRetTy->getNullability(); 977 if (Nullability && *Nullability == NullabilityKind::NonNull) { 978 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 979 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 980 RetValNullabilityPrecondition = 981 llvm::ConstantInt::getTrue(getLLVMContext()); 982 } 983 } 984 985 // If we're in C++ mode and the function name is "main", it is guaranteed 986 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 987 // used within a program"). 988 // 989 // OpenCL C 2.0 v2.2-11 s6.9.i: 990 // Recursion is not supported. 991 // 992 // SYCL v1.2.1 s3.10: 993 // kernels cannot include RTTI information, exception classes, 994 // recursive code, virtual functions or make use of C++ libraries that 995 // are not compiled for the device. 996 if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) || 997 getLangOpts().OpenCL || getLangOpts().SYCLIsDevice || 998 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))) 999 Fn->addFnAttr(llvm::Attribute::NoRecurse); 1000 1001 llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode(); 1002 llvm::fp::ExceptionBehavior FPExceptionBehavior = 1003 ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode()); 1004 Builder.setDefaultConstrainedRounding(RM); 1005 Builder.setDefaultConstrainedExcept(FPExceptionBehavior); 1006 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) || 1007 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore || 1008 RM != llvm::RoundingMode::NearestTiesToEven))) { 1009 Builder.setIsFPConstrained(true); 1010 Fn->addFnAttr(llvm::Attribute::StrictFP); 1011 } 1012 1013 // If a custom alignment is used, force realigning to this alignment on 1014 // any main function which certainly will need it. 1015 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 1016 CGM.getCodeGenOpts().StackAlignment)) 1017 Fn->addFnAttr("stackrealign"); 1018 1019 // "main" doesn't need to zero out call-used registers. 1020 if (FD && FD->isMain()) 1021 Fn->removeFnAttr("zero-call-used-regs"); 1022 1023 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 1024 1025 // Create a marker to make it easy to insert allocas into the entryblock 1026 // later. Don't create this with the builder, because we don't want it 1027 // folded. 1028 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 1029 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 1030 1031 ReturnBlock = getJumpDestInCurrentScope("return"); 1032 1033 Builder.SetInsertPoint(EntryBB); 1034 1035 // If we're checking the return value, allocate space for a pointer to a 1036 // precise source location of the checked return statement. 1037 if (requiresReturnValueCheck()) { 1038 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 1039 Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy), 1040 ReturnLocation); 1041 } 1042 1043 // Emit subprogram debug descriptor. 1044 if (CGDebugInfo *DI = getDebugInfo()) { 1045 // Reconstruct the type from the argument list so that implicit parameters, 1046 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 1047 // convention. 1048 DI->emitFunctionStart(GD, Loc, StartLoc, 1049 DI->getFunctionType(FD, RetTy, Args), CurFn, 1050 CurFuncIsThunk); 1051 } 1052 1053 if (ShouldInstrumentFunction()) { 1054 if (CGM.getCodeGenOpts().InstrumentFunctions) 1055 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1056 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1057 CurFn->addFnAttr("instrument-function-entry-inlined", 1058 "__cyg_profile_func_enter"); 1059 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1060 CurFn->addFnAttr("instrument-function-entry-inlined", 1061 "__cyg_profile_func_enter_bare"); 1062 } 1063 1064 // Since emitting the mcount call here impacts optimizations such as function 1065 // inlining, we just add an attribute to insert a mcount call in backend. 1066 // The attribute "counting-function" is set to mcount function name which is 1067 // architecture dependent. 1068 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1069 // Calls to fentry/mcount should not be generated if function has 1070 // the no_instrument_function attribute. 1071 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1072 if (CGM.getCodeGenOpts().CallFEntry) 1073 Fn->addFnAttr("fentry-call", "true"); 1074 else { 1075 Fn->addFnAttr("instrument-function-entry-inlined", 1076 getTarget().getMCountName()); 1077 } 1078 if (CGM.getCodeGenOpts().MNopMCount) { 1079 if (!CGM.getCodeGenOpts().CallFEntry) 1080 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1081 << "-mnop-mcount" << "-mfentry"; 1082 Fn->addFnAttr("mnop-mcount"); 1083 } 1084 1085 if (CGM.getCodeGenOpts().RecordMCount) { 1086 if (!CGM.getCodeGenOpts().CallFEntry) 1087 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1088 << "-mrecord-mcount" << "-mfentry"; 1089 Fn->addFnAttr("mrecord-mcount"); 1090 } 1091 } 1092 } 1093 1094 if (CGM.getCodeGenOpts().PackedStack) { 1095 if (getContext().getTargetInfo().getTriple().getArch() != 1096 llvm::Triple::systemz) 1097 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1098 << "-mpacked-stack"; 1099 Fn->addFnAttr("packed-stack"); 1100 } 1101 1102 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX && 1103 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc)) 1104 Fn->addFnAttr("warn-stack-size", 1105 std::to_string(CGM.getCodeGenOpts().WarnStackSize)); 1106 1107 if (RetTy->isVoidType()) { 1108 // Void type; nothing to return. 1109 ReturnValue = Address::invalid(); 1110 1111 // Count the implicit return. 1112 if (!endsWithReturn(D)) 1113 ++NumReturnExprs; 1114 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1115 // Indirect return; emit returned value directly into sret slot. 1116 // This reduces code size, and affects correctness in C++. 1117 auto AI = CurFn->arg_begin(); 1118 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1119 ++AI; 1120 ReturnValue = 1121 Address(&*AI, ConvertType(RetTy), 1122 CurFnInfo->getReturnInfo().getIndirectAlign(), KnownNonNull); 1123 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1124 ReturnValuePointer = CreateDefaultAlignTempAlloca( 1125 ReturnValue.getPointer()->getType(), "result.ptr"); 1126 Builder.CreateStore(ReturnValue.getPointer(), ReturnValuePointer); 1127 } 1128 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1129 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1130 // Load the sret pointer from the argument struct and return into that. 1131 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1132 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1133 --EI; 1134 llvm::Value *Addr = Builder.CreateStructGEP( 1135 CurFnInfo->getArgStruct(), &*EI, Idx); 1136 llvm::Type *Ty = 1137 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1138 ReturnValuePointer = Address(Addr, Ty, getPointerAlign()); 1139 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1140 ReturnValue = Address(Addr, ConvertType(RetTy), 1141 CGM.getNaturalTypeAlignment(RetTy), KnownNonNull); 1142 } else { 1143 ReturnValue = CreateIRTemp(RetTy, "retval"); 1144 1145 // Tell the epilog emitter to autorelease the result. We do this 1146 // now so that various specialized functions can suppress it 1147 // during their IR-generation. 1148 if (getLangOpts().ObjCAutoRefCount && 1149 !CurFnInfo->isReturnsRetained() && 1150 RetTy->isObjCRetainableType()) 1151 AutoreleaseResult = true; 1152 } 1153 1154 EmitStartEHSpec(CurCodeDecl); 1155 1156 PrologueCleanupDepth = EHStack.stable_begin(); 1157 1158 // Emit OpenMP specific initialization of the device functions. 1159 if (getLangOpts().OpenMP && CurCodeDecl) 1160 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1161 1162 // Handle emitting HLSL entry functions. 1163 if (D && D->hasAttr<HLSLShaderAttr>()) 1164 CGM.getHLSLRuntime().emitEntryFunction(FD, Fn); 1165 1166 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1167 1168 if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D); 1169 MD && !MD->isStatic()) { 1170 bool IsInLambda = 1171 MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call; 1172 if (MD->isImplicitObjectMemberFunction()) 1173 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1174 if (IsInLambda) { 1175 // We're in a lambda; figure out the captures. 1176 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1177 LambdaThisCaptureField); 1178 if (LambdaThisCaptureField) { 1179 // If the lambda captures the object referred to by '*this' - either by 1180 // value or by reference, make sure CXXThisValue points to the correct 1181 // object. 1182 1183 // Get the lvalue for the field (which is a copy of the enclosing object 1184 // or contains the address of the enclosing object). 1185 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1186 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1187 // If the enclosing object was captured by value, just use its address. 1188 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1189 } else { 1190 // Load the lvalue pointed to by the field, since '*this' was captured 1191 // by reference. 1192 CXXThisValue = 1193 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1194 } 1195 } 1196 for (auto *FD : MD->getParent()->fields()) { 1197 if (FD->hasCapturedVLAType()) { 1198 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1199 SourceLocation()).getScalarVal(); 1200 auto VAT = FD->getCapturedVLAType(); 1201 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1202 } 1203 } 1204 } else if (MD->isImplicitObjectMemberFunction()) { 1205 // Not in a lambda; just use 'this' from the method. 1206 // FIXME: Should we generate a new load for each use of 'this'? The 1207 // fast register allocator would be happier... 1208 CXXThisValue = CXXABIThisValue; 1209 } 1210 1211 // Check the 'this' pointer once per function, if it's available. 1212 if (CXXABIThisValue) { 1213 SanitizerSet SkippedChecks; 1214 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1215 QualType ThisTy = MD->getThisType(); 1216 1217 // If this is the call operator of a lambda with no captures, it 1218 // may have a static invoker function, which may call this operator with 1219 // a null 'this' pointer. 1220 if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda()) 1221 SkippedChecks.set(SanitizerKind::Null, true); 1222 1223 EmitTypeCheck( 1224 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1225 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1226 } 1227 } 1228 1229 // If any of the arguments have a variably modified type, make sure to 1230 // emit the type size, but only if the function is not naked. Naked functions 1231 // have no prolog to run this evaluation. 1232 if (!FD || !FD->hasAttr<NakedAttr>()) { 1233 for (const VarDecl *VD : Args) { 1234 // Dig out the type as written from ParmVarDecls; it's unclear whether 1235 // the standard (C99 6.9.1p10) requires this, but we're following the 1236 // precedent set by gcc. 1237 QualType Ty; 1238 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1239 Ty = PVD->getOriginalType(); 1240 else 1241 Ty = VD->getType(); 1242 1243 if (Ty->isVariablyModifiedType()) 1244 EmitVariablyModifiedType(Ty); 1245 } 1246 } 1247 // Emit a location at the end of the prologue. 1248 if (CGDebugInfo *DI = getDebugInfo()) 1249 DI->EmitLocation(Builder, StartLoc); 1250 // TODO: Do we need to handle this in two places like we do with 1251 // target-features/target-cpu? 1252 if (CurFuncDecl) 1253 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1254 LargestVectorWidth = VecWidth->getVectorWidth(); 1255 } 1256 1257 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1258 incrementProfileCounter(Body); 1259 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1260 EmitCompoundStmtWithoutScope(*S); 1261 else 1262 EmitStmt(Body); 1263 } 1264 1265 /// When instrumenting to collect profile data, the counts for some blocks 1266 /// such as switch cases need to not include the fall-through counts, so 1267 /// emit a branch around the instrumentation code. When not instrumenting, 1268 /// this just calls EmitBlock(). 1269 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1270 const Stmt *S) { 1271 llvm::BasicBlock *SkipCountBB = nullptr; 1272 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1273 // When instrumenting for profiling, the fallthrough to certain 1274 // statements needs to skip over the instrumentation code so that we 1275 // get an accurate count. 1276 SkipCountBB = createBasicBlock("skipcount"); 1277 EmitBranch(SkipCountBB); 1278 } 1279 EmitBlock(BB); 1280 uint64_t CurrentCount = getCurrentProfileCount(); 1281 incrementProfileCounter(S); 1282 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1283 if (SkipCountBB) 1284 EmitBlock(SkipCountBB); 1285 } 1286 1287 /// Tries to mark the given function nounwind based on the 1288 /// non-existence of any throwing calls within it. We believe this is 1289 /// lightweight enough to do at -O0. 1290 static void TryMarkNoThrow(llvm::Function *F) { 1291 // LLVM treats 'nounwind' on a function as part of the type, so we 1292 // can't do this on functions that can be overwritten. 1293 if (F->isInterposable()) return; 1294 1295 for (llvm::BasicBlock &BB : *F) 1296 for (llvm::Instruction &I : BB) 1297 if (I.mayThrow()) 1298 return; 1299 1300 F->setDoesNotThrow(); 1301 } 1302 1303 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1304 FunctionArgList &Args) { 1305 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1306 QualType ResTy = FD->getReturnType(); 1307 1308 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1309 if (MD && MD->isImplicitObjectMemberFunction()) { 1310 if (CGM.getCXXABI().HasThisReturn(GD)) 1311 ResTy = MD->getThisType(); 1312 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1313 ResTy = CGM.getContext().VoidPtrTy; 1314 CGM.getCXXABI().buildThisParam(*this, Args); 1315 } 1316 1317 // The base version of an inheriting constructor whose constructed base is a 1318 // virtual base is not passed any arguments (because it doesn't actually call 1319 // the inherited constructor). 1320 bool PassedParams = true; 1321 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1322 if (auto Inherited = CD->getInheritedConstructor()) 1323 PassedParams = 1324 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1325 1326 if (PassedParams) { 1327 for (auto *Param : FD->parameters()) { 1328 Args.push_back(Param); 1329 if (!Param->hasAttr<PassObjectSizeAttr>()) 1330 continue; 1331 1332 auto *Implicit = ImplicitParamDecl::Create( 1333 getContext(), Param->getDeclContext(), Param->getLocation(), 1334 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other); 1335 SizeArguments[Param] = Implicit; 1336 Args.push_back(Implicit); 1337 } 1338 } 1339 1340 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1341 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1342 1343 return ResTy; 1344 } 1345 1346 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1347 const CGFunctionInfo &FnInfo) { 1348 assert(Fn && "generating code for null Function"); 1349 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1350 CurGD = GD; 1351 1352 FunctionArgList Args; 1353 QualType ResTy = BuildFunctionArgList(GD, Args); 1354 1355 if (FD->isInlineBuiltinDeclaration()) { 1356 // When generating code for a builtin with an inline declaration, use a 1357 // mangled name to hold the actual body, while keeping an external 1358 // definition in case the function pointer is referenced somewhere. 1359 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1360 llvm::Module *M = Fn->getParent(); 1361 llvm::Function *Clone = M->getFunction(FDInlineName); 1362 if (!Clone) { 1363 Clone = llvm::Function::Create(Fn->getFunctionType(), 1364 llvm::GlobalValue::InternalLinkage, 1365 Fn->getAddressSpace(), FDInlineName, M); 1366 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 1367 } 1368 Fn->setLinkage(llvm::GlobalValue::ExternalLinkage); 1369 Fn = Clone; 1370 } else { 1371 // Detect the unusual situation where an inline version is shadowed by a 1372 // non-inline version. In that case we should pick the external one 1373 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way 1374 // to detect that situation before we reach codegen, so do some late 1375 // replacement. 1376 for (const FunctionDecl *PD = FD->getPreviousDecl(); PD; 1377 PD = PD->getPreviousDecl()) { 1378 if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) { 1379 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1380 llvm::Module *M = Fn->getParent(); 1381 if (llvm::Function *Clone = M->getFunction(FDInlineName)) { 1382 Clone->replaceAllUsesWith(Fn); 1383 Clone->eraseFromParent(); 1384 } 1385 break; 1386 } 1387 } 1388 } 1389 1390 // Check if we should generate debug info for this function. 1391 if (FD->hasAttr<NoDebugAttr>()) { 1392 // Clear non-distinct debug info that was possibly attached to the function 1393 // due to an earlier declaration without the nodebug attribute 1394 Fn->setSubprogram(nullptr); 1395 // Disable debug info indefinitely for this function 1396 DebugInfo = nullptr; 1397 } 1398 1399 // The function might not have a body if we're generating thunks for a 1400 // function declaration. 1401 SourceRange BodyRange; 1402 if (Stmt *Body = FD->getBody()) 1403 BodyRange = Body->getSourceRange(); 1404 else 1405 BodyRange = FD->getLocation(); 1406 CurEHLocation = BodyRange.getEnd(); 1407 1408 // Use the location of the start of the function to determine where 1409 // the function definition is located. By default use the location 1410 // of the declaration as the location for the subprogram. A function 1411 // may lack a declaration in the source code if it is created by code 1412 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1413 SourceLocation Loc = FD->getLocation(); 1414 1415 // If this is a function specialization then use the pattern body 1416 // as the location for the function. 1417 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1418 if (SpecDecl->hasBody(SpecDecl)) 1419 Loc = SpecDecl->getLocation(); 1420 1421 Stmt *Body = FD->getBody(); 1422 1423 if (Body) { 1424 // Coroutines always emit lifetime markers. 1425 if (isa<CoroutineBodyStmt>(Body)) 1426 ShouldEmitLifetimeMarkers = true; 1427 1428 // Initialize helper which will detect jumps which can cause invalid 1429 // lifetime markers. 1430 if (ShouldEmitLifetimeMarkers) 1431 Bypasses.Init(Body); 1432 } 1433 1434 // Emit the standard function prologue. 1435 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1436 1437 // Save parameters for coroutine function. 1438 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1439 llvm::append_range(FnArgs, FD->parameters()); 1440 1441 // Ensure that the function adheres to the forward progress guarantee, which 1442 // is required by certain optimizations. 1443 if (checkIfFunctionMustProgress()) 1444 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1445 1446 // Generate the body of the function. 1447 PGO.assignRegionCounters(GD, CurFn); 1448 if (isa<CXXDestructorDecl>(FD)) 1449 EmitDestructorBody(Args); 1450 else if (isa<CXXConstructorDecl>(FD)) 1451 EmitConstructorBody(Args); 1452 else if (getLangOpts().CUDA && 1453 !getLangOpts().CUDAIsDevice && 1454 FD->hasAttr<CUDAGlobalAttr>()) 1455 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1456 else if (isa<CXXMethodDecl>(FD) && 1457 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1458 // The lambda static invoker function is special, because it forwards or 1459 // clones the body of the function call operator (but is actually static). 1460 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1461 } else if (isa<CXXMethodDecl>(FD) && 1462 isLambdaCallOperator(cast<CXXMethodDecl>(FD)) && 1463 !FnInfo.isDelegateCall() && 1464 cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() && 1465 hasInAllocaArg(cast<CXXMethodDecl>(FD))) { 1466 // If emitting a lambda with static invoker on X86 Windows, change 1467 // the call operator body. 1468 // Make sure that this is a call operator with an inalloca arg and check 1469 // for delegate call to make sure this is the original call op and not the 1470 // new forwarding function for the static invoker. 1471 EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD)); 1472 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1473 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1474 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1475 // Implicit copy-assignment gets the same special treatment as implicit 1476 // copy-constructors. 1477 emitImplicitAssignmentOperatorBody(Args); 1478 } else if (Body) { 1479 EmitFunctionBody(Body); 1480 } else 1481 llvm_unreachable("no definition for emitted function"); 1482 1483 // C++11 [stmt.return]p2: 1484 // Flowing off the end of a function [...] results in undefined behavior in 1485 // a value-returning function. 1486 // C11 6.9.1p12: 1487 // If the '}' that terminates a function is reached, and the value of the 1488 // function call is used by the caller, the behavior is undefined. 1489 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1490 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1491 bool ShouldEmitUnreachable = 1492 CGM.getCodeGenOpts().StrictReturn || 1493 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1494 if (SanOpts.has(SanitizerKind::Return)) { 1495 SanitizerScope SanScope(this); 1496 llvm::Value *IsFalse = Builder.getFalse(); 1497 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1498 SanitizerHandler::MissingReturn, 1499 EmitCheckSourceLocation(FD->getLocation()), std::nullopt); 1500 } else if (ShouldEmitUnreachable) { 1501 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1502 EmitTrapCall(llvm::Intrinsic::trap); 1503 } 1504 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1505 Builder.CreateUnreachable(); 1506 Builder.ClearInsertionPoint(); 1507 } 1508 } 1509 1510 // Emit the standard function epilogue. 1511 FinishFunction(BodyRange.getEnd()); 1512 1513 // If we haven't marked the function nothrow through other means, do 1514 // a quick pass now to see if we can. 1515 if (!CurFn->doesNotThrow()) 1516 TryMarkNoThrow(CurFn); 1517 } 1518 1519 /// ContainsLabel - Return true if the statement contains a label in it. If 1520 /// this statement is not executed normally, it not containing a label means 1521 /// that we can just remove the code. 1522 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1523 // Null statement, not a label! 1524 if (!S) return false; 1525 1526 // If this is a label, we have to emit the code, consider something like: 1527 // if (0) { ... foo: bar(); } goto foo; 1528 // 1529 // TODO: If anyone cared, we could track __label__'s, since we know that you 1530 // can't jump to one from outside their declared region. 1531 if (isa<LabelStmt>(S)) 1532 return true; 1533 1534 // If this is a case/default statement, and we haven't seen a switch, we have 1535 // to emit the code. 1536 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1537 return true; 1538 1539 // If this is a switch statement, we want to ignore cases below it. 1540 if (isa<SwitchStmt>(S)) 1541 IgnoreCaseStmts = true; 1542 1543 // Scan subexpressions for verboten labels. 1544 for (const Stmt *SubStmt : S->children()) 1545 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1546 return true; 1547 1548 return false; 1549 } 1550 1551 /// containsBreak - Return true if the statement contains a break out of it. 1552 /// If the statement (recursively) contains a switch or loop with a break 1553 /// inside of it, this is fine. 1554 bool CodeGenFunction::containsBreak(const Stmt *S) { 1555 // Null statement, not a label! 1556 if (!S) return false; 1557 1558 // If this is a switch or loop that defines its own break scope, then we can 1559 // include it and anything inside of it. 1560 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1561 isa<ForStmt>(S)) 1562 return false; 1563 1564 if (isa<BreakStmt>(S)) 1565 return true; 1566 1567 // Scan subexpressions for verboten breaks. 1568 for (const Stmt *SubStmt : S->children()) 1569 if (containsBreak(SubStmt)) 1570 return true; 1571 1572 return false; 1573 } 1574 1575 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1576 if (!S) return false; 1577 1578 // Some statement kinds add a scope and thus never add a decl to the current 1579 // scope. Note, this list is longer than the list of statements that might 1580 // have an unscoped decl nested within them, but this way is conservatively 1581 // correct even if more statement kinds are added. 1582 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1583 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1584 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1585 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1586 return false; 1587 1588 if (isa<DeclStmt>(S)) 1589 return true; 1590 1591 for (const Stmt *SubStmt : S->children()) 1592 if (mightAddDeclToScope(SubStmt)) 1593 return true; 1594 1595 return false; 1596 } 1597 1598 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1599 /// to a constant, or if it does but contains a label, return false. If it 1600 /// constant folds return true and set the boolean result in Result. 1601 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1602 bool &ResultBool, 1603 bool AllowLabels) { 1604 llvm::APSInt ResultInt; 1605 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1606 return false; 1607 1608 ResultBool = ResultInt.getBoolValue(); 1609 return true; 1610 } 1611 1612 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1613 /// to a constant, or if it does but contains a label, return false. If it 1614 /// constant folds return true and set the folded value. 1615 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1616 llvm::APSInt &ResultInt, 1617 bool AllowLabels) { 1618 // FIXME: Rename and handle conversion of other evaluatable things 1619 // to bool. 1620 Expr::EvalResult Result; 1621 if (!Cond->EvaluateAsInt(Result, getContext())) 1622 return false; // Not foldable, not integer or not fully evaluatable. 1623 1624 llvm::APSInt Int = Result.Val.getInt(); 1625 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1626 return false; // Contains a label. 1627 1628 ResultInt = Int; 1629 return true; 1630 } 1631 1632 /// Determine whether the given condition is an instrumentable condition 1633 /// (i.e. no "&&" or "||"). 1634 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1635 // Bypass simplistic logical-NOT operator before determining whether the 1636 // condition contains any other logical operator. 1637 if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens())) 1638 if (UnOp->getOpcode() == UO_LNot) 1639 C = UnOp->getSubExpr(); 1640 1641 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens()); 1642 return (!BOp || !BOp->isLogicalOp()); 1643 } 1644 1645 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1646 /// increments a profile counter based on the semantics of the given logical 1647 /// operator opcode. This is used to instrument branch condition coverage for 1648 /// logical operators. 1649 void CodeGenFunction::EmitBranchToCounterBlock( 1650 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1651 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1652 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1653 // If not instrumenting, just emit a branch. 1654 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1655 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1656 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1657 1658 llvm::BasicBlock *ThenBlock = nullptr; 1659 llvm::BasicBlock *ElseBlock = nullptr; 1660 llvm::BasicBlock *NextBlock = nullptr; 1661 1662 // Create the block we'll use to increment the appropriate counter. 1663 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1664 1665 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1666 // means we need to evaluate the condition and increment the counter on TRUE: 1667 // 1668 // if (Cond) 1669 // goto CounterIncrBlock; 1670 // else 1671 // goto FalseBlock; 1672 // 1673 // CounterIncrBlock: 1674 // Counter++; 1675 // goto TrueBlock; 1676 1677 if (LOp == BO_LAnd) { 1678 ThenBlock = CounterIncrBlock; 1679 ElseBlock = FalseBlock; 1680 NextBlock = TrueBlock; 1681 } 1682 1683 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1684 // we need to evaluate the condition and increment the counter on FALSE: 1685 // 1686 // if (Cond) 1687 // goto TrueBlock; 1688 // else 1689 // goto CounterIncrBlock; 1690 // 1691 // CounterIncrBlock: 1692 // Counter++; 1693 // goto FalseBlock; 1694 1695 else if (LOp == BO_LOr) { 1696 ThenBlock = TrueBlock; 1697 ElseBlock = CounterIncrBlock; 1698 NextBlock = FalseBlock; 1699 } else { 1700 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1701 } 1702 1703 // Emit Branch based on condition. 1704 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1705 1706 // Emit the block containing the counter increment(s). 1707 EmitBlock(CounterIncrBlock); 1708 1709 // Increment corresponding counter; if index not provided, use Cond as index. 1710 incrementProfileCounter(CntrIdx ? CntrIdx : Cond); 1711 1712 // Go to the next block. 1713 EmitBranch(NextBlock); 1714 } 1715 1716 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1717 /// statement) to the specified blocks. Based on the condition, this might try 1718 /// to simplify the codegen of the conditional based on the branch. 1719 /// \param LH The value of the likelihood attribute on the True branch. 1720 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1721 llvm::BasicBlock *TrueBlock, 1722 llvm::BasicBlock *FalseBlock, 1723 uint64_t TrueCount, 1724 Stmt::Likelihood LH) { 1725 Cond = Cond->IgnoreParens(); 1726 1727 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1728 1729 // Handle X && Y in a condition. 1730 if (CondBOp->getOpcode() == BO_LAnd) { 1731 // If we have "1 && X", simplify the code. "0 && X" would have constant 1732 // folded if the case was simple enough. 1733 bool ConstantBool = false; 1734 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1735 ConstantBool) { 1736 // br(1 && X) -> br(X). 1737 incrementProfileCounter(CondBOp); 1738 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1739 FalseBlock, TrueCount, LH); 1740 } 1741 1742 // If we have "X && 1", simplify the code to use an uncond branch. 1743 // "X && 0" would have been constant folded to 0. 1744 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1745 ConstantBool) { 1746 // br(X && 1) -> br(X). 1747 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1748 FalseBlock, TrueCount, LH, CondBOp); 1749 } 1750 1751 // Emit the LHS as a conditional. If the LHS conditional is false, we 1752 // want to jump to the FalseBlock. 1753 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1754 // The counter tells us how often we evaluate RHS, and all of TrueCount 1755 // can be propagated to that branch. 1756 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1757 1758 ConditionalEvaluation eval(*this); 1759 { 1760 ApplyDebugLocation DL(*this, Cond); 1761 // Propagate the likelihood attribute like __builtin_expect 1762 // __builtin_expect(X && Y, 1) -> X and Y are likely 1763 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1764 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1765 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1766 EmitBlock(LHSTrue); 1767 } 1768 1769 incrementProfileCounter(CondBOp); 1770 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1771 1772 // Any temporaries created here are conditional. 1773 eval.begin(*this); 1774 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1775 FalseBlock, TrueCount, LH); 1776 eval.end(*this); 1777 1778 return; 1779 } 1780 1781 if (CondBOp->getOpcode() == BO_LOr) { 1782 // If we have "0 || X", simplify the code. "1 || X" would have constant 1783 // folded if the case was simple enough. 1784 bool ConstantBool = false; 1785 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1786 !ConstantBool) { 1787 // br(0 || X) -> br(X). 1788 incrementProfileCounter(CondBOp); 1789 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1790 FalseBlock, TrueCount, LH); 1791 } 1792 1793 // If we have "X || 0", simplify the code to use an uncond branch. 1794 // "X || 1" would have been constant folded to 1. 1795 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1796 !ConstantBool) { 1797 // br(X || 0) -> br(X). 1798 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1799 FalseBlock, TrueCount, LH, CondBOp); 1800 } 1801 1802 // Emit the LHS as a conditional. If the LHS conditional is true, we 1803 // want to jump to the TrueBlock. 1804 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1805 // We have the count for entry to the RHS and for the whole expression 1806 // being true, so we can divy up True count between the short circuit and 1807 // the RHS. 1808 uint64_t LHSCount = 1809 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1810 uint64_t RHSCount = TrueCount - LHSCount; 1811 1812 ConditionalEvaluation eval(*this); 1813 { 1814 // Propagate the likelihood attribute like __builtin_expect 1815 // __builtin_expect(X || Y, 1) -> only Y is likely 1816 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1817 ApplyDebugLocation DL(*this, Cond); 1818 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1819 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1820 EmitBlock(LHSFalse); 1821 } 1822 1823 incrementProfileCounter(CondBOp); 1824 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1825 1826 // Any temporaries created here are conditional. 1827 eval.begin(*this); 1828 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1829 RHSCount, LH); 1830 1831 eval.end(*this); 1832 1833 return; 1834 } 1835 } 1836 1837 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1838 // br(!x, t, f) -> br(x, f, t) 1839 if (CondUOp->getOpcode() == UO_LNot) { 1840 // Negate the count. 1841 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1842 // The values of the enum are chosen to make this negation possible. 1843 LH = static_cast<Stmt::Likelihood>(-LH); 1844 // Negate the condition and swap the destination blocks. 1845 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1846 FalseCount, LH); 1847 } 1848 } 1849 1850 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1851 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1852 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1853 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1854 1855 // The ConditionalOperator itself has no likelihood information for its 1856 // true and false branches. This matches the behavior of __builtin_expect. 1857 ConditionalEvaluation cond(*this); 1858 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1859 getProfileCount(CondOp), Stmt::LH_None); 1860 1861 // When computing PGO branch weights, we only know the overall count for 1862 // the true block. This code is essentially doing tail duplication of the 1863 // naive code-gen, introducing new edges for which counts are not 1864 // available. Divide the counts proportionally between the LHS and RHS of 1865 // the conditional operator. 1866 uint64_t LHSScaledTrueCount = 0; 1867 if (TrueCount) { 1868 double LHSRatio = 1869 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1870 LHSScaledTrueCount = TrueCount * LHSRatio; 1871 } 1872 1873 cond.begin(*this); 1874 EmitBlock(LHSBlock); 1875 incrementProfileCounter(CondOp); 1876 { 1877 ApplyDebugLocation DL(*this, Cond); 1878 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1879 LHSScaledTrueCount, LH); 1880 } 1881 cond.end(*this); 1882 1883 cond.begin(*this); 1884 EmitBlock(RHSBlock); 1885 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1886 TrueCount - LHSScaledTrueCount, LH); 1887 cond.end(*this); 1888 1889 return; 1890 } 1891 1892 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1893 // Conditional operator handling can give us a throw expression as a 1894 // condition for a case like: 1895 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1896 // Fold this to: 1897 // br(c, throw x, br(y, t, f)) 1898 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1899 return; 1900 } 1901 1902 // Emit the code with the fully general case. 1903 llvm::Value *CondV; 1904 { 1905 ApplyDebugLocation DL(*this, Cond); 1906 CondV = EvaluateExprAsBool(Cond); 1907 } 1908 1909 llvm::MDNode *Weights = nullptr; 1910 llvm::MDNode *Unpredictable = nullptr; 1911 1912 // If the branch has a condition wrapped by __builtin_unpredictable, 1913 // create metadata that specifies that the branch is unpredictable. 1914 // Don't bother if not optimizing because that metadata would not be used. 1915 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1916 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1917 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1918 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1919 llvm::MDBuilder MDHelper(getLLVMContext()); 1920 Unpredictable = MDHelper.createUnpredictable(); 1921 } 1922 } 1923 1924 // If there is a Likelihood knowledge for the cond, lower it. 1925 // Note that if not optimizing this won't emit anything. 1926 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 1927 if (CondV != NewCondV) 1928 CondV = NewCondV; 1929 else { 1930 // Otherwise, lower profile counts. Note that we do this even at -O0. 1931 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1932 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 1933 } 1934 1935 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1936 } 1937 1938 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1939 /// specified stmt yet. 1940 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1941 CGM.ErrorUnsupported(S, Type); 1942 } 1943 1944 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1945 /// variable-length array whose elements have a non-zero bit-pattern. 1946 /// 1947 /// \param baseType the inner-most element type of the array 1948 /// \param src - a char* pointing to the bit-pattern for a single 1949 /// base element of the array 1950 /// \param sizeInChars - the total size of the VLA, in chars 1951 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1952 Address dest, Address src, 1953 llvm::Value *sizeInChars) { 1954 CGBuilderTy &Builder = CGF.Builder; 1955 1956 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1957 llvm::Value *baseSizeInChars 1958 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1959 1960 Address begin = dest.withElementType(CGF.Int8Ty); 1961 llvm::Value *end = Builder.CreateInBoundsGEP( 1962 begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end"); 1963 1964 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1965 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1966 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1967 1968 // Make a loop over the VLA. C99 guarantees that the VLA element 1969 // count must be nonzero. 1970 CGF.EmitBlock(loopBB); 1971 1972 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1973 cur->addIncoming(begin.getPointer(), originBB); 1974 1975 CharUnits curAlign = 1976 dest.getAlignment().alignmentOfArrayElement(baseSize); 1977 1978 // memcpy the individual element bit-pattern. 1979 Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars, 1980 /*volatile*/ false); 1981 1982 // Go to the next element. 1983 llvm::Value *next = 1984 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1985 1986 // Leave if that's the end of the VLA. 1987 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1988 Builder.CreateCondBr(done, contBB, loopBB); 1989 cur->addIncoming(next, loopBB); 1990 1991 CGF.EmitBlock(contBB); 1992 } 1993 1994 void 1995 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1996 // Ignore empty classes in C++. 1997 if (getLangOpts().CPlusPlus) { 1998 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1999 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 2000 return; 2001 } 2002 } 2003 2004 if (DestPtr.getElementType() != Int8Ty) 2005 DestPtr = DestPtr.withElementType(Int8Ty); 2006 2007 // Get size and alignment info for this aggregate. 2008 CharUnits size = getContext().getTypeSizeInChars(Ty); 2009 2010 llvm::Value *SizeVal; 2011 const VariableArrayType *vla; 2012 2013 // Don't bother emitting a zero-byte memset. 2014 if (size.isZero()) { 2015 // But note that getTypeInfo returns 0 for a VLA. 2016 if (const VariableArrayType *vlaType = 2017 dyn_cast_or_null<VariableArrayType>( 2018 getContext().getAsArrayType(Ty))) { 2019 auto VlaSize = getVLASize(vlaType); 2020 SizeVal = VlaSize.NumElts; 2021 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 2022 if (!eltSize.isOne()) 2023 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 2024 vla = vlaType; 2025 } else { 2026 return; 2027 } 2028 } else { 2029 SizeVal = CGM.getSize(size); 2030 vla = nullptr; 2031 } 2032 2033 // If the type contains a pointer to data member we can't memset it to zero. 2034 // Instead, create a null constant and copy it to the destination. 2035 // TODO: there are other patterns besides zero that we can usefully memset, 2036 // like -1, which happens to be the pattern used by member-pointers. 2037 if (!CGM.getTypes().isZeroInitializable(Ty)) { 2038 // For a VLA, emit a single element, then splat that over the VLA. 2039 if (vla) Ty = getContext().getBaseElementType(vla); 2040 2041 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 2042 2043 llvm::GlobalVariable *NullVariable = 2044 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 2045 /*isConstant=*/true, 2046 llvm::GlobalVariable::PrivateLinkage, 2047 NullConstant, Twine()); 2048 CharUnits NullAlign = DestPtr.getAlignment(); 2049 NullVariable->setAlignment(NullAlign.getAsAlign()); 2050 Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign); 2051 2052 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 2053 2054 // Get and call the appropriate llvm.memcpy overload. 2055 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 2056 return; 2057 } 2058 2059 // Otherwise, just memset the whole thing to zero. This is legal 2060 // because in LLVM, all default initializers (other than the ones we just 2061 // handled above) are guaranteed to have a bit pattern of all zeros. 2062 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 2063 } 2064 2065 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 2066 // Make sure that there is a block for the indirect goto. 2067 if (!IndirectBranch) 2068 GetIndirectGotoBlock(); 2069 2070 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 2071 2072 // Make sure the indirect branch includes all of the address-taken blocks. 2073 IndirectBranch->addDestination(BB); 2074 return llvm::BlockAddress::get(CurFn, BB); 2075 } 2076 2077 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 2078 // If we already made the indirect branch for indirect goto, return its block. 2079 if (IndirectBranch) return IndirectBranch->getParent(); 2080 2081 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 2082 2083 // Create the PHI node that indirect gotos will add entries to. 2084 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 2085 "indirect.goto.dest"); 2086 2087 // Create the indirect branch instruction. 2088 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 2089 return IndirectBranch->getParent(); 2090 } 2091 2092 /// Computes the length of an array in elements, as well as the base 2093 /// element type and a properly-typed first element pointer. 2094 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 2095 QualType &baseType, 2096 Address &addr) { 2097 const ArrayType *arrayType = origArrayType; 2098 2099 // If it's a VLA, we have to load the stored size. Note that 2100 // this is the size of the VLA in bytes, not its size in elements. 2101 llvm::Value *numVLAElements = nullptr; 2102 if (isa<VariableArrayType>(arrayType)) { 2103 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 2104 2105 // Walk into all VLAs. This doesn't require changes to addr, 2106 // which has type T* where T is the first non-VLA element type. 2107 do { 2108 QualType elementType = arrayType->getElementType(); 2109 arrayType = getContext().getAsArrayType(elementType); 2110 2111 // If we only have VLA components, 'addr' requires no adjustment. 2112 if (!arrayType) { 2113 baseType = elementType; 2114 return numVLAElements; 2115 } 2116 } while (isa<VariableArrayType>(arrayType)); 2117 2118 // We get out here only if we find a constant array type 2119 // inside the VLA. 2120 } 2121 2122 // We have some number of constant-length arrays, so addr should 2123 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2124 // down to the first element of addr. 2125 SmallVector<llvm::Value*, 8> gepIndices; 2126 2127 // GEP down to the array type. 2128 llvm::ConstantInt *zero = Builder.getInt32(0); 2129 gepIndices.push_back(zero); 2130 2131 uint64_t countFromCLAs = 1; 2132 QualType eltType; 2133 2134 llvm::ArrayType *llvmArrayType = 2135 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2136 while (llvmArrayType) { 2137 assert(isa<ConstantArrayType>(arrayType)); 2138 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 2139 == llvmArrayType->getNumElements()); 2140 2141 gepIndices.push_back(zero); 2142 countFromCLAs *= llvmArrayType->getNumElements(); 2143 eltType = arrayType->getElementType(); 2144 2145 llvmArrayType = 2146 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2147 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2148 assert((!llvmArrayType || arrayType) && 2149 "LLVM and Clang types are out-of-synch"); 2150 } 2151 2152 if (arrayType) { 2153 // From this point onwards, the Clang array type has been emitted 2154 // as some other type (probably a packed struct). Compute the array 2155 // size, and just emit the 'begin' expression as a bitcast. 2156 while (arrayType) { 2157 countFromCLAs *= 2158 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 2159 eltType = arrayType->getElementType(); 2160 arrayType = getContext().getAsArrayType(eltType); 2161 } 2162 2163 llvm::Type *baseType = ConvertType(eltType); 2164 addr = addr.withElementType(baseType); 2165 } else { 2166 // Create the actual GEP. 2167 addr = Address(Builder.CreateInBoundsGEP( 2168 addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"), 2169 ConvertTypeForMem(eltType), 2170 addr.getAlignment()); 2171 } 2172 2173 baseType = eltType; 2174 2175 llvm::Value *numElements 2176 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2177 2178 // If we had any VLA dimensions, factor them in. 2179 if (numVLAElements) 2180 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2181 2182 return numElements; 2183 } 2184 2185 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2186 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2187 assert(vla && "type was not a variable array type!"); 2188 return getVLASize(vla); 2189 } 2190 2191 CodeGenFunction::VlaSizePair 2192 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2193 // The number of elements so far; always size_t. 2194 llvm::Value *numElements = nullptr; 2195 2196 QualType elementType; 2197 do { 2198 elementType = type->getElementType(); 2199 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2200 assert(vlaSize && "no size for VLA!"); 2201 assert(vlaSize->getType() == SizeTy); 2202 2203 if (!numElements) { 2204 numElements = vlaSize; 2205 } else { 2206 // It's undefined behavior if this wraps around, so mark it that way. 2207 // FIXME: Teach -fsanitize=undefined to trap this. 2208 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2209 } 2210 } while ((type = getContext().getAsVariableArrayType(elementType))); 2211 2212 return { numElements, elementType }; 2213 } 2214 2215 CodeGenFunction::VlaSizePair 2216 CodeGenFunction::getVLAElements1D(QualType type) { 2217 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2218 assert(vla && "type was not a variable array type!"); 2219 return getVLAElements1D(vla); 2220 } 2221 2222 CodeGenFunction::VlaSizePair 2223 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2224 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2225 assert(VlaSize && "no size for VLA!"); 2226 assert(VlaSize->getType() == SizeTy); 2227 return { VlaSize, Vla->getElementType() }; 2228 } 2229 2230 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2231 assert(type->isVariablyModifiedType() && 2232 "Must pass variably modified type to EmitVLASizes!"); 2233 2234 EnsureInsertPoint(); 2235 2236 // We're going to walk down into the type and look for VLA 2237 // expressions. 2238 do { 2239 assert(type->isVariablyModifiedType()); 2240 2241 const Type *ty = type.getTypePtr(); 2242 switch (ty->getTypeClass()) { 2243 2244 #define TYPE(Class, Base) 2245 #define ABSTRACT_TYPE(Class, Base) 2246 #define NON_CANONICAL_TYPE(Class, Base) 2247 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2248 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2249 #include "clang/AST/TypeNodes.inc" 2250 llvm_unreachable("unexpected dependent type!"); 2251 2252 // These types are never variably-modified. 2253 case Type::Builtin: 2254 case Type::Complex: 2255 case Type::Vector: 2256 case Type::ExtVector: 2257 case Type::ConstantMatrix: 2258 case Type::Record: 2259 case Type::Enum: 2260 case Type::Using: 2261 case Type::TemplateSpecialization: 2262 case Type::ObjCTypeParam: 2263 case Type::ObjCObject: 2264 case Type::ObjCInterface: 2265 case Type::ObjCObjectPointer: 2266 case Type::BitInt: 2267 llvm_unreachable("type class is never variably-modified!"); 2268 2269 case Type::Elaborated: 2270 type = cast<ElaboratedType>(ty)->getNamedType(); 2271 break; 2272 2273 case Type::Adjusted: 2274 type = cast<AdjustedType>(ty)->getAdjustedType(); 2275 break; 2276 2277 case Type::Decayed: 2278 type = cast<DecayedType>(ty)->getPointeeType(); 2279 break; 2280 2281 case Type::Pointer: 2282 type = cast<PointerType>(ty)->getPointeeType(); 2283 break; 2284 2285 case Type::BlockPointer: 2286 type = cast<BlockPointerType>(ty)->getPointeeType(); 2287 break; 2288 2289 case Type::LValueReference: 2290 case Type::RValueReference: 2291 type = cast<ReferenceType>(ty)->getPointeeType(); 2292 break; 2293 2294 case Type::MemberPointer: 2295 type = cast<MemberPointerType>(ty)->getPointeeType(); 2296 break; 2297 2298 case Type::ConstantArray: 2299 case Type::IncompleteArray: 2300 // Losing element qualification here is fine. 2301 type = cast<ArrayType>(ty)->getElementType(); 2302 break; 2303 2304 case Type::VariableArray: { 2305 // Losing element qualification here is fine. 2306 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2307 2308 // Unknown size indication requires no size computation. 2309 // Otherwise, evaluate and record it. 2310 if (const Expr *sizeExpr = vat->getSizeExpr()) { 2311 // It's possible that we might have emitted this already, 2312 // e.g. with a typedef and a pointer to it. 2313 llvm::Value *&entry = VLASizeMap[sizeExpr]; 2314 if (!entry) { 2315 llvm::Value *size = EmitScalarExpr(sizeExpr); 2316 2317 // C11 6.7.6.2p5: 2318 // If the size is an expression that is not an integer constant 2319 // expression [...] each time it is evaluated it shall have a value 2320 // greater than zero. 2321 if (SanOpts.has(SanitizerKind::VLABound)) { 2322 SanitizerScope SanScope(this); 2323 llvm::Value *Zero = llvm::Constant::getNullValue(size->getType()); 2324 clang::QualType SEType = sizeExpr->getType(); 2325 llvm::Value *CheckCondition = 2326 SEType->isSignedIntegerType() 2327 ? Builder.CreateICmpSGT(size, Zero) 2328 : Builder.CreateICmpUGT(size, Zero); 2329 llvm::Constant *StaticArgs[] = { 2330 EmitCheckSourceLocation(sizeExpr->getBeginLoc()), 2331 EmitCheckTypeDescriptor(SEType)}; 2332 EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound), 2333 SanitizerHandler::VLABoundNotPositive, StaticArgs, size); 2334 } 2335 2336 // Always zexting here would be wrong if it weren't 2337 // undefined behavior to have a negative bound. 2338 // FIXME: What about when size's type is larger than size_t? 2339 entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false); 2340 } 2341 } 2342 type = vat->getElementType(); 2343 break; 2344 } 2345 2346 case Type::FunctionProto: 2347 case Type::FunctionNoProto: 2348 type = cast<FunctionType>(ty)->getReturnType(); 2349 break; 2350 2351 case Type::Paren: 2352 case Type::TypeOf: 2353 case Type::UnaryTransform: 2354 case Type::Attributed: 2355 case Type::BTFTagAttributed: 2356 case Type::SubstTemplateTypeParm: 2357 case Type::MacroQualified: 2358 // Keep walking after single level desugaring. 2359 type = type.getSingleStepDesugaredType(getContext()); 2360 break; 2361 2362 case Type::Typedef: 2363 case Type::Decltype: 2364 case Type::Auto: 2365 case Type::DeducedTemplateSpecialization: 2366 // Stop walking: nothing to do. 2367 return; 2368 2369 case Type::TypeOfExpr: 2370 // Stop walking: emit typeof expression. 2371 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2372 return; 2373 2374 case Type::Atomic: 2375 type = cast<AtomicType>(ty)->getValueType(); 2376 break; 2377 2378 case Type::Pipe: 2379 type = cast<PipeType>(ty)->getElementType(); 2380 break; 2381 } 2382 } while (type->isVariablyModifiedType()); 2383 } 2384 2385 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2386 if (getContext().getBuiltinVaListType()->isArrayType()) 2387 return EmitPointerWithAlignment(E); 2388 return EmitLValue(E).getAddress(*this); 2389 } 2390 2391 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2392 return EmitLValue(E).getAddress(*this); 2393 } 2394 2395 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2396 const APValue &Init) { 2397 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2398 if (CGDebugInfo *Dbg = getDebugInfo()) 2399 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2400 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2401 } 2402 2403 CodeGenFunction::PeepholeProtection 2404 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2405 // At the moment, the only aggressive peephole we do in IR gen 2406 // is trunc(zext) folding, but if we add more, we can easily 2407 // extend this protection. 2408 2409 if (!rvalue.isScalar()) return PeepholeProtection(); 2410 llvm::Value *value = rvalue.getScalarVal(); 2411 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2412 2413 // Just make an extra bitcast. 2414 assert(HaveInsertPoint()); 2415 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2416 Builder.GetInsertBlock()); 2417 2418 PeepholeProtection protection; 2419 protection.Inst = inst; 2420 return protection; 2421 } 2422 2423 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2424 if (!protection.Inst) return; 2425 2426 // In theory, we could try to duplicate the peepholes now, but whatever. 2427 protection.Inst->eraseFromParent(); 2428 } 2429 2430 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2431 QualType Ty, SourceLocation Loc, 2432 SourceLocation AssumptionLoc, 2433 llvm::Value *Alignment, 2434 llvm::Value *OffsetValue) { 2435 if (Alignment->getType() != IntPtrTy) 2436 Alignment = 2437 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2438 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2439 OffsetValue = 2440 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2441 llvm::Value *TheCheck = nullptr; 2442 if (SanOpts.has(SanitizerKind::Alignment)) { 2443 llvm::Value *PtrIntValue = 2444 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2445 2446 if (OffsetValue) { 2447 bool IsOffsetZero = false; 2448 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2449 IsOffsetZero = CI->isZero(); 2450 2451 if (!IsOffsetZero) 2452 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2453 } 2454 2455 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2456 llvm::Value *Mask = 2457 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2458 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2459 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2460 } 2461 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2462 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2463 2464 if (!SanOpts.has(SanitizerKind::Alignment)) 2465 return; 2466 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2467 OffsetValue, TheCheck, Assumption); 2468 } 2469 2470 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2471 const Expr *E, 2472 SourceLocation AssumptionLoc, 2473 llvm::Value *Alignment, 2474 llvm::Value *OffsetValue) { 2475 QualType Ty = E->getType(); 2476 SourceLocation Loc = E->getExprLoc(); 2477 2478 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2479 OffsetValue); 2480 } 2481 2482 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2483 llvm::Value *AnnotatedVal, 2484 StringRef AnnotationStr, 2485 SourceLocation Location, 2486 const AnnotateAttr *Attr) { 2487 SmallVector<llvm::Value *, 5> Args = { 2488 AnnotatedVal, 2489 CGM.EmitAnnotationString(AnnotationStr), 2490 CGM.EmitAnnotationUnit(Location), 2491 CGM.EmitAnnotationLineNo(Location), 2492 }; 2493 if (Attr) 2494 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2495 return Builder.CreateCall(AnnotationFn, Args); 2496 } 2497 2498 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2499 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2500 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2501 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation, 2502 {V->getType(), CGM.ConstGlobalsPtrTy}), 2503 V, I->getAnnotation(), D->getLocation(), I); 2504 } 2505 2506 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2507 Address Addr) { 2508 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2509 llvm::Value *V = Addr.getPointer(); 2510 llvm::Type *VTy = V->getType(); 2511 auto *PTy = dyn_cast<llvm::PointerType>(VTy); 2512 unsigned AS = PTy ? PTy->getAddressSpace() : 0; 2513 llvm::PointerType *IntrinTy = 2514 llvm::PointerType::get(CGM.getLLVMContext(), AS); 2515 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2516 {IntrinTy, CGM.ConstGlobalsPtrTy}); 2517 2518 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2519 // FIXME Always emit the cast inst so we can differentiate between 2520 // annotation on the first field of a struct and annotation on the struct 2521 // itself. 2522 if (VTy != IntrinTy) 2523 V = Builder.CreateBitCast(V, IntrinTy); 2524 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2525 V = Builder.CreateBitCast(V, VTy); 2526 } 2527 2528 return Address(V, Addr.getElementType(), Addr.getAlignment()); 2529 } 2530 2531 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2532 2533 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2534 : CGF(CGF) { 2535 assert(!CGF->IsSanitizerScope); 2536 CGF->IsSanitizerScope = true; 2537 } 2538 2539 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2540 CGF->IsSanitizerScope = false; 2541 } 2542 2543 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2544 const llvm::Twine &Name, 2545 llvm::BasicBlock *BB, 2546 llvm::BasicBlock::iterator InsertPt) const { 2547 LoopStack.InsertHelper(I); 2548 if (IsSanitizerScope) 2549 I->setNoSanitizeMetadata(); 2550 } 2551 2552 void CGBuilderInserter::InsertHelper( 2553 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2554 llvm::BasicBlock::iterator InsertPt) const { 2555 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2556 if (CGF) 2557 CGF->InsertHelper(I, Name, BB, InsertPt); 2558 } 2559 2560 // Emits an error if we don't have a valid set of target features for the 2561 // called function. 2562 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2563 const FunctionDecl *TargetDecl) { 2564 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2565 } 2566 2567 // Emits an error if we don't have a valid set of target features for the 2568 // called function. 2569 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2570 const FunctionDecl *TargetDecl) { 2571 // Early exit if this is an indirect call. 2572 if (!TargetDecl) 2573 return; 2574 2575 // Get the current enclosing function if it exists. If it doesn't 2576 // we can't check the target features anyhow. 2577 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2578 if (!FD) 2579 return; 2580 2581 // Grab the required features for the call. For a builtin this is listed in 2582 // the td file with the default cpu, for an always_inline function this is any 2583 // listed cpu and any listed features. 2584 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2585 std::string MissingFeature; 2586 llvm::StringMap<bool> CallerFeatureMap; 2587 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2588 // When compiling in HipStdPar mode we have to be conservative in rejecting 2589 // target specific features in the FE, and defer the possible error to the 2590 // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is 2591 // referenced by an accelerator executable function, we emit an error. 2592 bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice; 2593 if (BuiltinID) { 2594 StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2595 if (!Builtin::evaluateRequiredTargetFeatures( 2596 FeatureList, CallerFeatureMap) && !IsHipStdPar) { 2597 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2598 << TargetDecl->getDeclName() 2599 << FeatureList; 2600 } 2601 } else if (!TargetDecl->isMultiVersion() && 2602 TargetDecl->hasAttr<TargetAttr>()) { 2603 // Get the required features for the callee. 2604 2605 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2606 ParsedTargetAttr ParsedAttr = 2607 CGM.getContext().filterFunctionTargetAttrs(TD); 2608 2609 SmallVector<StringRef, 1> ReqFeatures; 2610 llvm::StringMap<bool> CalleeFeatureMap; 2611 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2612 2613 for (const auto &F : ParsedAttr.Features) { 2614 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2615 ReqFeatures.push_back(StringRef(F).substr(1)); 2616 } 2617 2618 for (const auto &F : CalleeFeatureMap) { 2619 // Only positive features are "required". 2620 if (F.getValue()) 2621 ReqFeatures.push_back(F.getKey()); 2622 } 2623 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2624 if (!CallerFeatureMap.lookup(Feature)) { 2625 MissingFeature = Feature.str(); 2626 return false; 2627 } 2628 return true; 2629 }) && !IsHipStdPar) 2630 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2631 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2632 } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) { 2633 llvm::StringMap<bool> CalleeFeatureMap; 2634 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2635 2636 for (const auto &F : CalleeFeatureMap) { 2637 if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) || 2638 !CallerFeatureMap.find(F.getKey())->getValue()) && 2639 !IsHipStdPar) 2640 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2641 << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey(); 2642 } 2643 } 2644 } 2645 2646 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2647 if (!CGM.getCodeGenOpts().SanitizeStats) 2648 return; 2649 2650 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2651 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2652 CGM.getSanStats().create(IRB, SSK); 2653 } 2654 2655 void CodeGenFunction::EmitKCFIOperandBundle( 2656 const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) { 2657 const FunctionProtoType *FP = 2658 Callee.getAbstractInfo().getCalleeFunctionProtoType(); 2659 if (FP) 2660 Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar())); 2661 } 2662 2663 llvm::Value *CodeGenFunction::FormAArch64ResolverCondition( 2664 const MultiVersionResolverOption &RO) { 2665 llvm::SmallVector<StringRef, 8> CondFeatures; 2666 for (const StringRef &Feature : RO.Conditions.Features) { 2667 // Form condition for features which are not yet enabled in target 2668 if (!getContext().getTargetInfo().hasFeature(Feature)) 2669 CondFeatures.push_back(Feature); 2670 } 2671 if (!CondFeatures.empty()) { 2672 return EmitAArch64CpuSupports(CondFeatures); 2673 } 2674 return nullptr; 2675 } 2676 2677 llvm::Value *CodeGenFunction::FormX86ResolverCondition( 2678 const MultiVersionResolverOption &RO) { 2679 llvm::Value *Condition = nullptr; 2680 2681 if (!RO.Conditions.Architecture.empty()) { 2682 StringRef Arch = RO.Conditions.Architecture; 2683 // If arch= specifies an x86-64 micro-architecture level, test the feature 2684 // with __builtin_cpu_supports, otherwise use __builtin_cpu_is. 2685 if (Arch.starts_with("x86-64")) 2686 Condition = EmitX86CpuSupports({Arch}); 2687 else 2688 Condition = EmitX86CpuIs(Arch); 2689 } 2690 2691 if (!RO.Conditions.Features.empty()) { 2692 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2693 Condition = 2694 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2695 } 2696 return Condition; 2697 } 2698 2699 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2700 llvm::Function *Resolver, 2701 CGBuilderTy &Builder, 2702 llvm::Function *FuncToReturn, 2703 bool SupportsIFunc) { 2704 if (SupportsIFunc) { 2705 Builder.CreateRet(FuncToReturn); 2706 return; 2707 } 2708 2709 llvm::SmallVector<llvm::Value *, 10> Args( 2710 llvm::make_pointer_range(Resolver->args())); 2711 2712 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2713 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2714 2715 if (Resolver->getReturnType()->isVoidTy()) 2716 Builder.CreateRetVoid(); 2717 else 2718 Builder.CreateRet(Result); 2719 } 2720 2721 void CodeGenFunction::EmitMultiVersionResolver( 2722 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2723 2724 llvm::Triple::ArchType ArchType = 2725 getContext().getTargetInfo().getTriple().getArch(); 2726 2727 switch (ArchType) { 2728 case llvm::Triple::x86: 2729 case llvm::Triple::x86_64: 2730 EmitX86MultiVersionResolver(Resolver, Options); 2731 return; 2732 case llvm::Triple::aarch64: 2733 EmitAArch64MultiVersionResolver(Resolver, Options); 2734 return; 2735 2736 default: 2737 assert(false && "Only implemented for x86 and AArch64 targets"); 2738 } 2739 } 2740 2741 void CodeGenFunction::EmitAArch64MultiVersionResolver( 2742 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2743 assert(!Options.empty() && "No multiversion resolver options found"); 2744 assert(Options.back().Conditions.Features.size() == 0 && 2745 "Default case must be last"); 2746 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2747 assert(SupportsIFunc && 2748 "Multiversion resolver requires target IFUNC support"); 2749 bool AArch64CpuInitialized = false; 2750 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2751 2752 for (const MultiVersionResolverOption &RO : Options) { 2753 Builder.SetInsertPoint(CurBlock); 2754 llvm::Value *Condition = FormAArch64ResolverCondition(RO); 2755 2756 // The 'default' or 'all features enabled' case. 2757 if (!Condition) { 2758 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2759 SupportsIFunc); 2760 return; 2761 } 2762 2763 if (!AArch64CpuInitialized) { 2764 Builder.SetInsertPoint(CurBlock, CurBlock->begin()); 2765 EmitAArch64CpuInit(); 2766 AArch64CpuInitialized = true; 2767 Builder.SetInsertPoint(CurBlock); 2768 } 2769 2770 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2771 CGBuilderTy RetBuilder(*this, RetBlock); 2772 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2773 SupportsIFunc); 2774 CurBlock = createBasicBlock("resolver_else", Resolver); 2775 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2776 } 2777 2778 // If no default, emit an unreachable. 2779 Builder.SetInsertPoint(CurBlock); 2780 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2781 TrapCall->setDoesNotReturn(); 2782 TrapCall->setDoesNotThrow(); 2783 Builder.CreateUnreachable(); 2784 Builder.ClearInsertionPoint(); 2785 } 2786 2787 void CodeGenFunction::EmitX86MultiVersionResolver( 2788 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2789 2790 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2791 2792 // Main function's basic block. 2793 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2794 Builder.SetInsertPoint(CurBlock); 2795 EmitX86CpuInit(); 2796 2797 for (const MultiVersionResolverOption &RO : Options) { 2798 Builder.SetInsertPoint(CurBlock); 2799 llvm::Value *Condition = FormX86ResolverCondition(RO); 2800 2801 // The 'default' or 'generic' case. 2802 if (!Condition) { 2803 assert(&RO == Options.end() - 1 && 2804 "Default or Generic case must be last"); 2805 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2806 SupportsIFunc); 2807 return; 2808 } 2809 2810 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2811 CGBuilderTy RetBuilder(*this, RetBlock); 2812 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2813 SupportsIFunc); 2814 CurBlock = createBasicBlock("resolver_else", Resolver); 2815 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2816 } 2817 2818 // If no generic/default, emit an unreachable. 2819 Builder.SetInsertPoint(CurBlock); 2820 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2821 TrapCall->setDoesNotReturn(); 2822 TrapCall->setDoesNotThrow(); 2823 Builder.CreateUnreachable(); 2824 Builder.ClearInsertionPoint(); 2825 } 2826 2827 // Loc - where the diagnostic will point, where in the source code this 2828 // alignment has failed. 2829 // SecondaryLoc - if present (will be present if sufficiently different from 2830 // Loc), the diagnostic will additionally point a "Note:" to this location. 2831 // It should be the location where the __attribute__((assume_aligned)) 2832 // was written e.g. 2833 void CodeGenFunction::emitAlignmentAssumptionCheck( 2834 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2835 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2836 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2837 llvm::Instruction *Assumption) { 2838 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2839 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2840 llvm::Intrinsic::getDeclaration( 2841 Builder.GetInsertBlock()->getParent()->getParent(), 2842 llvm::Intrinsic::assume) && 2843 "Assumption should be a call to llvm.assume()."); 2844 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2845 "Assumption should be the last instruction of the basic block, " 2846 "since the basic block is still being generated."); 2847 2848 if (!SanOpts.has(SanitizerKind::Alignment)) 2849 return; 2850 2851 // Don't check pointers to volatile data. The behavior here is implementation- 2852 // defined. 2853 if (Ty->getPointeeType().isVolatileQualified()) 2854 return; 2855 2856 // We need to temorairly remove the assumption so we can insert the 2857 // sanitizer check before it, else the check will be dropped by optimizations. 2858 Assumption->removeFromParent(); 2859 2860 { 2861 SanitizerScope SanScope(this); 2862 2863 if (!OffsetValue) 2864 OffsetValue = Builder.getInt1(false); // no offset. 2865 2866 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2867 EmitCheckSourceLocation(SecondaryLoc), 2868 EmitCheckTypeDescriptor(Ty)}; 2869 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2870 EmitCheckValue(Alignment), 2871 EmitCheckValue(OffsetValue)}; 2872 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2873 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2874 } 2875 2876 // We are now in the (new, empty) "cont" basic block. 2877 // Reintroduce the assumption. 2878 Builder.Insert(Assumption); 2879 // FIXME: Assumption still has it's original basic block as it's Parent. 2880 } 2881 2882 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2883 if (CGDebugInfo *DI = getDebugInfo()) 2884 return DI->SourceLocToDebugLoc(Location); 2885 2886 return llvm::DebugLoc(); 2887 } 2888 2889 llvm::Value * 2890 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 2891 Stmt::Likelihood LH) { 2892 switch (LH) { 2893 case Stmt::LH_None: 2894 return Cond; 2895 case Stmt::LH_Likely: 2896 case Stmt::LH_Unlikely: 2897 // Don't generate llvm.expect on -O0 as the backend won't use it for 2898 // anything. 2899 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 2900 return Cond; 2901 llvm::Type *CondTy = Cond->getType(); 2902 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 2903 llvm::Function *FnExpect = 2904 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 2905 llvm::Value *ExpectedValueOfCond = 2906 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 2907 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 2908 Cond->getName() + ".expval"); 2909 } 2910 llvm_unreachable("Unknown Likelihood"); 2911 } 2912 2913 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec, 2914 unsigned NumElementsDst, 2915 const llvm::Twine &Name) { 2916 auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType()); 2917 unsigned NumElementsSrc = SrcTy->getNumElements(); 2918 if (NumElementsSrc == NumElementsDst) 2919 return SrcVec; 2920 2921 std::vector<int> ShuffleMask(NumElementsDst, -1); 2922 for (unsigned MaskIdx = 0; 2923 MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx) 2924 ShuffleMask[MaskIdx] = MaskIdx; 2925 2926 return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name); 2927 } 2928