1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGHLSLRuntime.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ASTLambda.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/Decl.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/Expr.h" 30 #include "clang/AST/StmtCXX.h" 31 #include "clang/AST/StmtObjC.h" 32 #include "clang/Basic/Builtins.h" 33 #include "clang/Basic/CodeGenOptions.h" 34 #include "clang/Basic/TargetBuiltins.h" 35 #include "clang/Basic/TargetInfo.h" 36 #include "clang/CodeGen/CGFunctionInfo.h" 37 #include "clang/Frontend/FrontendDiagnostic.h" 38 #include "llvm/ADT/ArrayRef.h" 39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/FPEnv.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/Intrinsics.h" 45 #include "llvm/IR/MDBuilder.h" 46 #include "llvm/IR/Operator.h" 47 #include "llvm/Support/CRC.h" 48 #include "llvm/Support/xxhash.h" 49 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 50 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 51 #include <optional> 52 53 using namespace clang; 54 using namespace CodeGen; 55 56 namespace llvm { 57 extern cl::opt<bool> EnableSingleByteCoverage; 58 } // namespace llvm 59 60 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 61 /// markers. 62 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 63 const LangOptions &LangOpts) { 64 if (CGOpts.DisableLifetimeMarkers) 65 return false; 66 67 // Sanitizers may use markers. 68 if (CGOpts.SanitizeAddressUseAfterScope || 69 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 70 LangOpts.Sanitize.has(SanitizerKind::Memory)) 71 return true; 72 73 // For now, only in optimized builds. 74 return CGOpts.OptimizationLevel != 0; 75 } 76 77 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 78 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 79 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 80 CGBuilderInserterTy(this)), 81 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 82 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 83 ShouldEmitLifetimeMarkers( 84 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 85 if (!suppressNewContext) 86 CGM.getCXXABI().getMangleContext().startNewFunction(); 87 EHStack.setCGF(this); 88 89 SetFastMathFlags(CurFPFeatures); 90 } 91 92 CodeGenFunction::~CodeGenFunction() { 93 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 94 assert(DeferredDeactivationCleanupStack.empty() && 95 "missed to deactivate a cleanup"); 96 97 if (getLangOpts().OpenMP && CurFn) 98 CGM.getOpenMPRuntime().functionFinished(*this); 99 100 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 101 // outlining etc) at some point. Doing it once the function codegen is done 102 // seems to be a reasonable spot. We do it here, as opposed to the deletion 103 // time of the CodeGenModule, because we have to ensure the IR has not yet 104 // been "emitted" to the outside, thus, modifications are still sensible. 105 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 106 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 107 } 108 109 // Map the LangOption for exception behavior into 110 // the corresponding enum in the IR. 111 llvm::fp::ExceptionBehavior 112 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 113 114 switch (Kind) { 115 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 116 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 117 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 118 default: 119 llvm_unreachable("Unsupported FP Exception Behavior"); 120 } 121 } 122 123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 124 llvm::FastMathFlags FMF; 125 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 126 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 127 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 128 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 129 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 130 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 131 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 132 Builder.setFastMathFlags(FMF); 133 } 134 135 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 136 const Expr *E) 137 : CGF(CGF) { 138 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 139 } 140 141 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 142 FPOptions FPFeatures) 143 : CGF(CGF) { 144 ConstructorHelper(FPFeatures); 145 } 146 147 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 148 OldFPFeatures = CGF.CurFPFeatures; 149 CGF.CurFPFeatures = FPFeatures; 150 151 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 152 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 153 154 if (OldFPFeatures == FPFeatures) 155 return; 156 157 FMFGuard.emplace(CGF.Builder); 158 159 llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode(); 160 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 161 auto NewExceptionBehavior = 162 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 163 FPFeatures.getExceptionMode())); 164 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 165 166 CGF.SetFastMathFlags(FPFeatures); 167 168 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 169 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 170 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 171 (NewExceptionBehavior == llvm::fp::ebIgnore && 172 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 173 "FPConstrained should be enabled on entire function"); 174 175 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 176 auto OldValue = 177 CGF.CurFn->getFnAttribute(Name).getValueAsBool(); 178 auto NewValue = OldValue & Value; 179 if (OldValue != NewValue) 180 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 181 }; 182 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 183 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 184 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 185 mergeFnAttrValue( 186 "unsafe-fp-math", 187 FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() && 188 FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() && 189 FPFeatures.allowFPContractAcrossStatement()); 190 } 191 192 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 193 CGF.CurFPFeatures = OldFPFeatures; 194 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 195 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 196 } 197 198 static LValue 199 makeNaturalAlignAddrLValue(llvm::Value *V, QualType T, bool ForPointeeType, 200 bool MightBeSigned, CodeGenFunction &CGF, 201 KnownNonNull_t IsKnownNonNull = NotKnownNonNull) { 202 LValueBaseInfo BaseInfo; 203 TBAAAccessInfo TBAAInfo; 204 CharUnits Alignment = 205 CGF.CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, ForPointeeType); 206 Address Addr = 207 MightBeSigned 208 ? CGF.makeNaturalAddressForPointer(V, T, Alignment, false, nullptr, 209 nullptr, IsKnownNonNull) 210 : Address(V, CGF.ConvertTypeForMem(T), Alignment, IsKnownNonNull); 211 return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 212 } 213 214 LValue 215 CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T, 216 KnownNonNull_t IsKnownNonNull) { 217 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, 218 /*MightBeSigned*/ true, *this, 219 IsKnownNonNull); 220 } 221 222 LValue 223 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 224 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, 225 /*MightBeSigned*/ true, *this); 226 } 227 228 LValue CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value *V, 229 QualType T) { 230 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, 231 /*MightBeSigned*/ false, *this); 232 } 233 234 LValue CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V, 235 QualType T) { 236 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, 237 /*MightBeSigned*/ false, *this); 238 } 239 240 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 241 return CGM.getTypes().ConvertTypeForMem(T); 242 } 243 244 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 245 return CGM.getTypes().ConvertType(T); 246 } 247 248 llvm::Type *CodeGenFunction::convertTypeForLoadStore(QualType ASTTy, 249 llvm::Type *LLVMTy) { 250 return CGM.getTypes().convertTypeForLoadStore(ASTTy, LLVMTy); 251 } 252 253 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 254 type = type.getCanonicalType(); 255 while (true) { 256 switch (type->getTypeClass()) { 257 #define TYPE(name, parent) 258 #define ABSTRACT_TYPE(name, parent) 259 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 260 #define DEPENDENT_TYPE(name, parent) case Type::name: 261 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 262 #include "clang/AST/TypeNodes.inc" 263 llvm_unreachable("non-canonical or dependent type in IR-generation"); 264 265 case Type::Auto: 266 case Type::DeducedTemplateSpecialization: 267 llvm_unreachable("undeduced type in IR-generation"); 268 269 // Various scalar types. 270 case Type::Builtin: 271 case Type::Pointer: 272 case Type::BlockPointer: 273 case Type::LValueReference: 274 case Type::RValueReference: 275 case Type::MemberPointer: 276 case Type::Vector: 277 case Type::ExtVector: 278 case Type::ConstantMatrix: 279 case Type::FunctionProto: 280 case Type::FunctionNoProto: 281 case Type::Enum: 282 case Type::ObjCObjectPointer: 283 case Type::Pipe: 284 case Type::BitInt: 285 return TEK_Scalar; 286 287 // Complexes. 288 case Type::Complex: 289 return TEK_Complex; 290 291 // Arrays, records, and Objective-C objects. 292 case Type::ConstantArray: 293 case Type::IncompleteArray: 294 case Type::VariableArray: 295 case Type::Record: 296 case Type::ObjCObject: 297 case Type::ObjCInterface: 298 case Type::ArrayParameter: 299 return TEK_Aggregate; 300 301 // We operate on atomic values according to their underlying type. 302 case Type::Atomic: 303 type = cast<AtomicType>(type)->getValueType(); 304 continue; 305 } 306 llvm_unreachable("unknown type kind!"); 307 } 308 } 309 310 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 311 // For cleanliness, we try to avoid emitting the return block for 312 // simple cases. 313 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 314 315 if (CurBB) { 316 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 317 318 // We have a valid insert point, reuse it if it is empty or there are no 319 // explicit jumps to the return block. 320 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 321 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 322 delete ReturnBlock.getBlock(); 323 ReturnBlock = JumpDest(); 324 } else 325 EmitBlock(ReturnBlock.getBlock()); 326 return llvm::DebugLoc(); 327 } 328 329 // Otherwise, if the return block is the target of a single direct 330 // branch then we can just put the code in that block instead. This 331 // cleans up functions which started with a unified return block. 332 if (ReturnBlock.getBlock()->hasOneUse()) { 333 llvm::BranchInst *BI = 334 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 335 if (BI && BI->isUnconditional() && 336 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 337 // Record/return the DebugLoc of the simple 'return' expression to be used 338 // later by the actual 'ret' instruction. 339 llvm::DebugLoc Loc = BI->getDebugLoc(); 340 Builder.SetInsertPoint(BI->getParent()); 341 BI->eraseFromParent(); 342 delete ReturnBlock.getBlock(); 343 ReturnBlock = JumpDest(); 344 return Loc; 345 } 346 } 347 348 // FIXME: We are at an unreachable point, there is no reason to emit the block 349 // unless it has uses. However, we still need a place to put the debug 350 // region.end for now. 351 352 EmitBlock(ReturnBlock.getBlock()); 353 return llvm::DebugLoc(); 354 } 355 356 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 357 if (!BB) return; 358 if (!BB->use_empty()) { 359 CGF.CurFn->insert(CGF.CurFn->end(), BB); 360 return; 361 } 362 delete BB; 363 } 364 365 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 366 assert(BreakContinueStack.empty() && 367 "mismatched push/pop in break/continue stack!"); 368 assert(LifetimeExtendedCleanupStack.empty() && 369 "mismatched push/pop of cleanups in EHStack!"); 370 assert(DeferredDeactivationCleanupStack.empty() && 371 "mismatched activate/deactivate of cleanups!"); 372 373 if (CGM.shouldEmitConvergenceTokens()) { 374 ConvergenceTokenStack.pop_back(); 375 assert(ConvergenceTokenStack.empty() && 376 "mismatched push/pop in convergence stack!"); 377 } 378 379 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 380 && NumSimpleReturnExprs == NumReturnExprs 381 && ReturnBlock.getBlock()->use_empty(); 382 // Usually the return expression is evaluated before the cleanup 383 // code. If the function contains only a simple return statement, 384 // such as a constant, the location before the cleanup code becomes 385 // the last useful breakpoint in the function, because the simple 386 // return expression will be evaluated after the cleanup code. To be 387 // safe, set the debug location for cleanup code to the location of 388 // the return statement. Otherwise the cleanup code should be at the 389 // end of the function's lexical scope. 390 // 391 // If there are multiple branches to the return block, the branch 392 // instructions will get the location of the return statements and 393 // all will be fine. 394 if (CGDebugInfo *DI = getDebugInfo()) { 395 if (OnlySimpleReturnStmts) 396 DI->EmitLocation(Builder, LastStopPoint); 397 else 398 DI->EmitLocation(Builder, EndLoc); 399 } 400 401 // Pop any cleanups that might have been associated with the 402 // parameters. Do this in whatever block we're currently in; it's 403 // important to do this before we enter the return block or return 404 // edges will be *really* confused. 405 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 406 bool HasOnlyLifetimeMarkers = 407 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 408 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 409 410 std::optional<ApplyDebugLocation> OAL; 411 if (HasCleanups) { 412 // Make sure the line table doesn't jump back into the body for 413 // the ret after it's been at EndLoc. 414 if (CGDebugInfo *DI = getDebugInfo()) { 415 if (OnlySimpleReturnStmts) 416 DI->EmitLocation(Builder, EndLoc); 417 else 418 // We may not have a valid end location. Try to apply it anyway, and 419 // fall back to an artificial location if needed. 420 OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 421 } 422 423 PopCleanupBlocks(PrologueCleanupDepth); 424 } 425 426 // Emit function epilog (to return). 427 llvm::DebugLoc Loc = EmitReturnBlock(); 428 429 if (ShouldInstrumentFunction()) { 430 if (CGM.getCodeGenOpts().InstrumentFunctions) 431 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 432 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 433 CurFn->addFnAttr("instrument-function-exit-inlined", 434 "__cyg_profile_func_exit"); 435 } 436 437 // Emit debug descriptor for function end. 438 if (CGDebugInfo *DI = getDebugInfo()) 439 DI->EmitFunctionEnd(Builder, CurFn); 440 441 // Reset the debug location to that of the simple 'return' expression, if any 442 // rather than that of the end of the function's scope '}'. 443 ApplyDebugLocation AL(*this, Loc); 444 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 445 EmitEndEHSpec(CurCodeDecl); 446 447 assert(EHStack.empty() && 448 "did not remove all scopes from cleanup stack!"); 449 450 // If someone did an indirect goto, emit the indirect goto block at the end of 451 // the function. 452 if (IndirectBranch) { 453 EmitBlock(IndirectBranch->getParent()); 454 Builder.ClearInsertionPoint(); 455 } 456 457 // If some of our locals escaped, insert a call to llvm.localescape in the 458 // entry block. 459 if (!EscapedLocals.empty()) { 460 // Invert the map from local to index into a simple vector. There should be 461 // no holes. 462 SmallVector<llvm::Value *, 4> EscapeArgs; 463 EscapeArgs.resize(EscapedLocals.size()); 464 for (auto &Pair : EscapedLocals) 465 EscapeArgs[Pair.second] = Pair.first; 466 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 467 &CGM.getModule(), llvm::Intrinsic::localescape); 468 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 469 } 470 471 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 472 llvm::Instruction *Ptr = AllocaInsertPt; 473 AllocaInsertPt = nullptr; 474 Ptr->eraseFromParent(); 475 476 // PostAllocaInsertPt, if created, was lazily created when it was required, 477 // remove it now since it was just created for our own convenience. 478 if (PostAllocaInsertPt) { 479 llvm::Instruction *PostPtr = PostAllocaInsertPt; 480 PostAllocaInsertPt = nullptr; 481 PostPtr->eraseFromParent(); 482 } 483 484 // If someone took the address of a label but never did an indirect goto, we 485 // made a zero entry PHI node, which is illegal, zap it now. 486 if (IndirectBranch) { 487 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 488 if (PN->getNumIncomingValues() == 0) { 489 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 490 PN->eraseFromParent(); 491 } 492 } 493 494 EmitIfUsed(*this, EHResumeBlock); 495 EmitIfUsed(*this, TerminateLandingPad); 496 EmitIfUsed(*this, TerminateHandler); 497 EmitIfUsed(*this, UnreachableBlock); 498 499 for (const auto &FuncletAndParent : TerminateFunclets) 500 EmitIfUsed(*this, FuncletAndParent.second); 501 502 if (CGM.getCodeGenOpts().EmitDeclMetadata) 503 EmitDeclMetadata(); 504 505 for (const auto &R : DeferredReplacements) { 506 if (llvm::Value *Old = R.first) { 507 Old->replaceAllUsesWith(R.second); 508 cast<llvm::Instruction>(Old)->eraseFromParent(); 509 } 510 } 511 DeferredReplacements.clear(); 512 513 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 514 // PHIs if the current function is a coroutine. We don't do it for all 515 // functions as it may result in slight increase in numbers of instructions 516 // if compiled with no optimizations. We do it for coroutine as the lifetime 517 // of CleanupDestSlot alloca make correct coroutine frame building very 518 // difficult. 519 if (NormalCleanupDest.isValid() && isCoroutine()) { 520 llvm::DominatorTree DT(*CurFn); 521 llvm::PromoteMemToReg( 522 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 523 NormalCleanupDest = Address::invalid(); 524 } 525 526 // Scan function arguments for vector width. 527 for (llvm::Argument &A : CurFn->args()) 528 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 529 LargestVectorWidth = 530 std::max((uint64_t)LargestVectorWidth, 531 VT->getPrimitiveSizeInBits().getKnownMinValue()); 532 533 // Update vector width based on return type. 534 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 535 LargestVectorWidth = 536 std::max((uint64_t)LargestVectorWidth, 537 VT->getPrimitiveSizeInBits().getKnownMinValue()); 538 539 if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth) 540 LargestVectorWidth = CurFnInfo->getMaxVectorWidth(); 541 542 // Add the min-legal-vector-width attribute. This contains the max width from: 543 // 1. min-vector-width attribute used in the source program. 544 // 2. Any builtins used that have a vector width specified. 545 // 3. Values passed in and out of inline assembly. 546 // 4. Width of vector arguments and return types for this function. 547 // 5. Width of vector arguments and return types for functions called by this 548 // function. 549 if (getContext().getTargetInfo().getTriple().isX86()) 550 CurFn->addFnAttr("min-legal-vector-width", 551 llvm::utostr(LargestVectorWidth)); 552 553 // Add vscale_range attribute if appropriate. 554 std::optional<std::pair<unsigned, unsigned>> VScaleRange = 555 getContext().getTargetInfo().getVScaleRange(getLangOpts()); 556 if (VScaleRange) { 557 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( 558 getLLVMContext(), VScaleRange->first, VScaleRange->second)); 559 } 560 561 // If we generated an unreachable return block, delete it now. 562 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 563 Builder.ClearInsertionPoint(); 564 ReturnBlock.getBlock()->eraseFromParent(); 565 } 566 if (ReturnValue.isValid()) { 567 auto *RetAlloca = 568 dyn_cast<llvm::AllocaInst>(ReturnValue.emitRawPointer(*this)); 569 if (RetAlloca && RetAlloca->use_empty()) { 570 RetAlloca->eraseFromParent(); 571 ReturnValue = Address::invalid(); 572 } 573 } 574 } 575 576 /// ShouldInstrumentFunction - Return true if the current function should be 577 /// instrumented with __cyg_profile_func_* calls 578 bool CodeGenFunction::ShouldInstrumentFunction() { 579 if (!CGM.getCodeGenOpts().InstrumentFunctions && 580 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 581 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 582 return false; 583 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 584 return false; 585 return true; 586 } 587 588 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() { 589 if (!CurFuncDecl) 590 return false; 591 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>(); 592 } 593 594 /// ShouldXRayInstrument - Return true if the current function should be 595 /// instrumented with XRay nop sleds. 596 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 597 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 598 } 599 600 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 601 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 602 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 603 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 604 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 605 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 606 XRayInstrKind::Custom); 607 } 608 609 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 610 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 611 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 612 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 613 XRayInstrKind::Typed); 614 } 615 616 llvm::ConstantInt * 617 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const { 618 // Remove any (C++17) exception specifications, to allow calling e.g. a 619 // noexcept function through a non-noexcept pointer. 620 if (!Ty->isFunctionNoProtoType()) 621 Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None); 622 std::string Mangled; 623 llvm::raw_string_ostream Out(Mangled); 624 CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false); 625 return llvm::ConstantInt::get( 626 CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled))); 627 } 628 629 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD, 630 llvm::Function *Fn) { 631 if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>()) 632 return; 633 634 llvm::LLVMContext &Context = getLLVMContext(); 635 636 CGM.GenKernelArgMetadata(Fn, FD, this); 637 638 if (!getLangOpts().OpenCL) 639 return; 640 641 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 642 QualType HintQTy = A->getTypeHint(); 643 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 644 bool IsSignedInteger = 645 HintQTy->isSignedIntegerType() || 646 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 647 llvm::Metadata *AttrMDArgs[] = { 648 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 649 CGM.getTypes().ConvertType(A->getTypeHint()))), 650 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 651 llvm::IntegerType::get(Context, 32), 652 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 653 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 654 } 655 656 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 657 llvm::Metadata *AttrMDArgs[] = { 658 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 659 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 660 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 661 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 662 } 663 664 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 665 llvm::Metadata *AttrMDArgs[] = { 666 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 667 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 668 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 669 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 670 } 671 672 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 673 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 674 llvm::Metadata *AttrMDArgs[] = { 675 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 676 Fn->setMetadata("intel_reqd_sub_group_size", 677 llvm::MDNode::get(Context, AttrMDArgs)); 678 } 679 } 680 681 /// Determine whether the function F ends with a return stmt. 682 static bool endsWithReturn(const Decl* F) { 683 const Stmt *Body = nullptr; 684 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 685 Body = FD->getBody(); 686 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 687 Body = OMD->getBody(); 688 689 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 690 auto LastStmt = CS->body_rbegin(); 691 if (LastStmt != CS->body_rend()) 692 return isa<ReturnStmt>(*LastStmt); 693 } 694 return false; 695 } 696 697 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 698 if (SanOpts.has(SanitizerKind::Thread)) { 699 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 700 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 701 } 702 } 703 704 /// Check if the return value of this function requires sanitization. 705 bool CodeGenFunction::requiresReturnValueCheck() const { 706 return requiresReturnValueNullabilityCheck() || 707 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 708 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 709 } 710 711 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 712 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 713 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 714 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 715 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 716 return false; 717 718 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 719 return false; 720 721 if (MD->getNumParams() == 2) { 722 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 723 if (!PT || !PT->isVoidPointerType() || 724 !PT->getPointeeType().isConstQualified()) 725 return false; 726 } 727 728 return true; 729 } 730 731 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) { 732 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 733 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 734 } 735 736 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) { 737 return getTarget().getTriple().getArch() == llvm::Triple::x86 && 738 getTarget().getCXXABI().isMicrosoft() && 739 llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) { 740 return isInAllocaArgument(CGM.getCXXABI(), P->getType()); 741 }); 742 } 743 744 /// Return the UBSan prologue signature for \p FD if one is available. 745 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 746 const FunctionDecl *FD) { 747 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 748 if (!MD->isStatic()) 749 return nullptr; 750 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 751 } 752 753 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 754 llvm::Function *Fn, 755 const CGFunctionInfo &FnInfo, 756 const FunctionArgList &Args, 757 SourceLocation Loc, 758 SourceLocation StartLoc) { 759 assert(!CurFn && 760 "Do not use a CodeGenFunction object for more than one function"); 761 762 const Decl *D = GD.getDecl(); 763 764 DidCallStackSave = false; 765 CurCodeDecl = D; 766 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 767 if (FD && FD->usesSEHTry()) 768 CurSEHParent = GD; 769 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 770 FnRetTy = RetTy; 771 CurFn = Fn; 772 CurFnInfo = &FnInfo; 773 assert(CurFn->isDeclaration() && "Function already has body?"); 774 775 // If this function is ignored for any of the enabled sanitizers, 776 // disable the sanitizer for the function. 777 do { 778 #define SANITIZER(NAME, ID) \ 779 if (SanOpts.empty()) \ 780 break; \ 781 if (SanOpts.has(SanitizerKind::ID)) \ 782 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 783 SanOpts.set(SanitizerKind::ID, false); 784 785 #include "clang/Basic/Sanitizers.def" 786 #undef SANITIZER 787 } while (false); 788 789 if (D) { 790 const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds); 791 SanitizerMask no_sanitize_mask; 792 bool NoSanitizeCoverage = false; 793 794 for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) { 795 no_sanitize_mask |= Attr->getMask(); 796 // SanitizeCoverage is not handled by SanOpts. 797 if (Attr->hasCoverage()) 798 NoSanitizeCoverage = true; 799 } 800 801 // Apply the no_sanitize* attributes to SanOpts. 802 SanOpts.Mask &= ~no_sanitize_mask; 803 if (no_sanitize_mask & SanitizerKind::Address) 804 SanOpts.set(SanitizerKind::KernelAddress, false); 805 if (no_sanitize_mask & SanitizerKind::KernelAddress) 806 SanOpts.set(SanitizerKind::Address, false); 807 if (no_sanitize_mask & SanitizerKind::HWAddress) 808 SanOpts.set(SanitizerKind::KernelHWAddress, false); 809 if (no_sanitize_mask & SanitizerKind::KernelHWAddress) 810 SanOpts.set(SanitizerKind::HWAddress, false); 811 812 if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds)) 813 Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds); 814 815 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) 816 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); 817 818 // Some passes need the non-negated no_sanitize attribute. Pass them on. 819 if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) { 820 if (no_sanitize_mask & SanitizerKind::Thread) 821 Fn->addFnAttr("no_sanitize_thread"); 822 } 823 } 824 825 if (ShouldSkipSanitizerInstrumentation()) { 826 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 827 } else { 828 // Apply sanitizer attributes to the function. 829 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 830 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 831 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | 832 SanitizerKind::KernelHWAddress)) 833 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 834 if (SanOpts.has(SanitizerKind::MemtagStack)) 835 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 836 if (SanOpts.has(SanitizerKind::Thread)) 837 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 838 if (SanOpts.has(SanitizerKind::NumericalStability)) 839 Fn->addFnAttr(llvm::Attribute::SanitizeNumericalStability); 840 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 841 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 842 } 843 if (SanOpts.has(SanitizerKind::SafeStack)) 844 Fn->addFnAttr(llvm::Attribute::SafeStack); 845 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 846 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 847 848 // Apply fuzzing attribute to the function. 849 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 850 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 851 852 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 853 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 854 if (SanOpts.has(SanitizerKind::Thread)) { 855 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 856 const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 857 if (OMD->getMethodFamily() == OMF_dealloc || 858 OMD->getMethodFamily() == OMF_initialize || 859 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 860 markAsIgnoreThreadCheckingAtRuntime(Fn); 861 } 862 } 863 } 864 865 // Ignore unrelated casts in STL allocate() since the allocator must cast 866 // from void* to T* before object initialization completes. Don't match on the 867 // namespace because not all allocators are in std:: 868 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 869 if (matchesStlAllocatorFn(D, getContext())) 870 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 871 } 872 873 // Ignore null checks in coroutine functions since the coroutines passes 874 // are not aware of how to move the extra UBSan instructions across the split 875 // coroutine boundaries. 876 if (D && SanOpts.has(SanitizerKind::Null)) 877 if (FD && FD->getBody() && 878 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 879 SanOpts.Mask &= ~SanitizerKind::Null; 880 881 // Add pointer authentication attributes. 882 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 883 if (CodeGenOpts.PointerAuth.ReturnAddresses) 884 Fn->addFnAttr("ptrauth-returns"); 885 if (CodeGenOpts.PointerAuth.FunctionPointers) 886 Fn->addFnAttr("ptrauth-calls"); 887 if (CodeGenOpts.PointerAuth.AuthTraps) 888 Fn->addFnAttr("ptrauth-auth-traps"); 889 if (CodeGenOpts.PointerAuth.IndirectGotos) 890 Fn->addFnAttr("ptrauth-indirect-gotos"); 891 892 // Apply xray attributes to the function (as a string, for now) 893 bool AlwaysXRayAttr = false; 894 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 895 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 896 XRayInstrKind::FunctionEntry) || 897 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 898 XRayInstrKind::FunctionExit)) { 899 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 900 Fn->addFnAttr("function-instrument", "xray-always"); 901 AlwaysXRayAttr = true; 902 } 903 if (XRayAttr->neverXRayInstrument()) 904 Fn->addFnAttr("function-instrument", "xray-never"); 905 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 906 if (ShouldXRayInstrumentFunction()) 907 Fn->addFnAttr("xray-log-args", 908 llvm::utostr(LogArgs->getArgumentCount())); 909 } 910 } else { 911 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 912 Fn->addFnAttr( 913 "xray-instruction-threshold", 914 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 915 } 916 917 if (ShouldXRayInstrumentFunction()) { 918 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 919 Fn->addFnAttr("xray-ignore-loops"); 920 921 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 922 XRayInstrKind::FunctionExit)) 923 Fn->addFnAttr("xray-skip-exit"); 924 925 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 926 XRayInstrKind::FunctionEntry)) 927 Fn->addFnAttr("xray-skip-entry"); 928 929 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 930 if (FuncGroups > 1) { 931 auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(), 932 CurFn->getName().bytes_end()); 933 auto Group = crc32(FuncName) % FuncGroups; 934 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 935 !AlwaysXRayAttr) 936 Fn->addFnAttr("function-instrument", "xray-never"); 937 } 938 } 939 940 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) { 941 switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) { 942 case ProfileList::Skip: 943 Fn->addFnAttr(llvm::Attribute::SkipProfile); 944 break; 945 case ProfileList::Forbid: 946 Fn->addFnAttr(llvm::Attribute::NoProfile); 947 break; 948 case ProfileList::Allow: 949 break; 950 } 951 } 952 953 unsigned Count, Offset; 954 if (const auto *Attr = 955 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 956 Count = Attr->getCount(); 957 Offset = Attr->getOffset(); 958 } else { 959 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 960 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 961 } 962 if (Count && Offset <= Count) { 963 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 964 if (Offset) 965 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 966 } 967 // Instruct that functions for COFF/CodeView targets should start with a 968 // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64 969 // backends as they don't need it -- instructions on these architectures are 970 // always atomically patchable at runtime. 971 if (CGM.getCodeGenOpts().HotPatch && 972 getContext().getTargetInfo().getTriple().isX86() && 973 getContext().getTargetInfo().getTriple().getEnvironment() != 974 llvm::Triple::CODE16) 975 Fn->addFnAttr("patchable-function", "prologue-short-redirect"); 976 977 // Add no-jump-tables value. 978 if (CGM.getCodeGenOpts().NoUseJumpTables) 979 Fn->addFnAttr("no-jump-tables", "true"); 980 981 // Add no-inline-line-tables value. 982 if (CGM.getCodeGenOpts().NoInlineLineTables) 983 Fn->addFnAttr("no-inline-line-tables"); 984 985 // Add profile-sample-accurate value. 986 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 987 Fn->addFnAttr("profile-sample-accurate"); 988 989 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 990 Fn->addFnAttr("use-sample-profile"); 991 992 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 993 Fn->addFnAttr("cfi-canonical-jump-table"); 994 995 if (D && D->hasAttr<NoProfileFunctionAttr>()) 996 Fn->addFnAttr(llvm::Attribute::NoProfile); 997 998 if (D && D->hasAttr<HybridPatchableAttr>()) 999 Fn->addFnAttr(llvm::Attribute::HybridPatchable); 1000 1001 if (D) { 1002 // Function attributes take precedence over command line flags. 1003 if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) { 1004 switch (A->getThunkType()) { 1005 case FunctionReturnThunksAttr::Kind::Keep: 1006 break; 1007 case FunctionReturnThunksAttr::Kind::Extern: 1008 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); 1009 break; 1010 } 1011 } else if (CGM.getCodeGenOpts().FunctionReturnThunks) 1012 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); 1013 } 1014 1015 if (FD && (getLangOpts().OpenCL || 1016 (getLangOpts().HIP && getLangOpts().CUDAIsDevice))) { 1017 // Add metadata for a kernel function. 1018 EmitKernelMetadata(FD, Fn); 1019 } 1020 1021 if (FD && FD->hasAttr<ClspvLibclcBuiltinAttr>()) { 1022 Fn->setMetadata("clspv_libclc_builtin", 1023 llvm::MDNode::get(getLLVMContext(), {})); 1024 } 1025 1026 // If we are checking function types, emit a function type signature as 1027 // prologue data. 1028 if (FD && SanOpts.has(SanitizerKind::Function)) { 1029 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 1030 llvm::LLVMContext &Ctx = Fn->getContext(); 1031 llvm::MDBuilder MDB(Ctx); 1032 Fn->setMetadata( 1033 llvm::LLVMContext::MD_func_sanitize, 1034 MDB.createRTTIPointerPrologue( 1035 PrologueSig, getUBSanFunctionTypeHash(FD->getType()))); 1036 } 1037 } 1038 1039 // If we're checking nullability, we need to know whether we can check the 1040 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 1041 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 1042 auto Nullability = FnRetTy->getNullability(); 1043 if (Nullability && *Nullability == NullabilityKind::NonNull && 1044 !FnRetTy->isRecordType()) { 1045 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 1046 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 1047 RetValNullabilityPrecondition = 1048 llvm::ConstantInt::getTrue(getLLVMContext()); 1049 } 1050 } 1051 1052 // If we're in C++ mode and the function name is "main", it is guaranteed 1053 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 1054 // used within a program"). 1055 // 1056 // OpenCL C 2.0 v2.2-11 s6.9.i: 1057 // Recursion is not supported. 1058 // 1059 // SYCL v1.2.1 s3.10: 1060 // kernels cannot include RTTI information, exception classes, 1061 // recursive code, virtual functions or make use of C++ libraries that 1062 // are not compiled for the device. 1063 if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) || 1064 getLangOpts().OpenCL || getLangOpts().SYCLIsDevice || 1065 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))) 1066 Fn->addFnAttr(llvm::Attribute::NoRecurse); 1067 1068 llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode(); 1069 llvm::fp::ExceptionBehavior FPExceptionBehavior = 1070 ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode()); 1071 Builder.setDefaultConstrainedRounding(RM); 1072 Builder.setDefaultConstrainedExcept(FPExceptionBehavior); 1073 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) || 1074 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore || 1075 RM != llvm::RoundingMode::NearestTiesToEven))) { 1076 Builder.setIsFPConstrained(true); 1077 Fn->addFnAttr(llvm::Attribute::StrictFP); 1078 } 1079 1080 // If a custom alignment is used, force realigning to this alignment on 1081 // any main function which certainly will need it. 1082 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 1083 CGM.getCodeGenOpts().StackAlignment)) 1084 Fn->addFnAttr("stackrealign"); 1085 1086 // "main" doesn't need to zero out call-used registers. 1087 if (FD && FD->isMain()) 1088 Fn->removeFnAttr("zero-call-used-regs"); 1089 1090 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 1091 1092 // Create a marker to make it easy to insert allocas into the entryblock 1093 // later. Don't create this with the builder, because we don't want it 1094 // folded. 1095 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 1096 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 1097 1098 ReturnBlock = getJumpDestInCurrentScope("return"); 1099 1100 Builder.SetInsertPoint(EntryBB); 1101 1102 // If we're checking the return value, allocate space for a pointer to a 1103 // precise source location of the checked return statement. 1104 if (requiresReturnValueCheck()) { 1105 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 1106 Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy), 1107 ReturnLocation); 1108 } 1109 1110 // Emit subprogram debug descriptor. 1111 if (CGDebugInfo *DI = getDebugInfo()) { 1112 // Reconstruct the type from the argument list so that implicit parameters, 1113 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 1114 // convention. 1115 DI->emitFunctionStart(GD, Loc, StartLoc, 1116 DI->getFunctionType(FD, RetTy, Args), CurFn, 1117 CurFuncIsThunk); 1118 } 1119 1120 if (ShouldInstrumentFunction()) { 1121 if (CGM.getCodeGenOpts().InstrumentFunctions) 1122 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1123 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1124 CurFn->addFnAttr("instrument-function-entry-inlined", 1125 "__cyg_profile_func_enter"); 1126 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1127 CurFn->addFnAttr("instrument-function-entry-inlined", 1128 "__cyg_profile_func_enter_bare"); 1129 } 1130 1131 // Since emitting the mcount call here impacts optimizations such as function 1132 // inlining, we just add an attribute to insert a mcount call in backend. 1133 // The attribute "counting-function" is set to mcount function name which is 1134 // architecture dependent. 1135 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1136 // Calls to fentry/mcount should not be generated if function has 1137 // the no_instrument_function attribute. 1138 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1139 if (CGM.getCodeGenOpts().CallFEntry) 1140 Fn->addFnAttr("fentry-call", "true"); 1141 else { 1142 Fn->addFnAttr("instrument-function-entry-inlined", 1143 getTarget().getMCountName()); 1144 } 1145 if (CGM.getCodeGenOpts().MNopMCount) { 1146 if (!CGM.getCodeGenOpts().CallFEntry) 1147 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1148 << "-mnop-mcount" << "-mfentry"; 1149 Fn->addFnAttr("mnop-mcount"); 1150 } 1151 1152 if (CGM.getCodeGenOpts().RecordMCount) { 1153 if (!CGM.getCodeGenOpts().CallFEntry) 1154 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1155 << "-mrecord-mcount" << "-mfentry"; 1156 Fn->addFnAttr("mrecord-mcount"); 1157 } 1158 } 1159 } 1160 1161 if (CGM.getCodeGenOpts().PackedStack) { 1162 if (getContext().getTargetInfo().getTriple().getArch() != 1163 llvm::Triple::systemz) 1164 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1165 << "-mpacked-stack"; 1166 Fn->addFnAttr("packed-stack"); 1167 } 1168 1169 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX && 1170 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc)) 1171 Fn->addFnAttr("warn-stack-size", 1172 std::to_string(CGM.getCodeGenOpts().WarnStackSize)); 1173 1174 if (RetTy->isVoidType()) { 1175 // Void type; nothing to return. 1176 ReturnValue = Address::invalid(); 1177 1178 // Count the implicit return. 1179 if (!endsWithReturn(D)) 1180 ++NumReturnExprs; 1181 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1182 // Indirect return; emit returned value directly into sret slot. 1183 // This reduces code size, and affects correctness in C++. 1184 auto AI = CurFn->arg_begin(); 1185 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1186 ++AI; 1187 ReturnValue = makeNaturalAddressForPointer( 1188 &*AI, RetTy, CurFnInfo->getReturnInfo().getIndirectAlign(), false, 1189 nullptr, nullptr, KnownNonNull); 1190 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1191 ReturnValuePointer = 1192 CreateDefaultAlignTempAlloca(ReturnValue.getType(), "result.ptr"); 1193 Builder.CreateStore(ReturnValue.emitRawPointer(*this), 1194 ReturnValuePointer); 1195 } 1196 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1197 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1198 // Load the sret pointer from the argument struct and return into that. 1199 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1200 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1201 --EI; 1202 llvm::Value *Addr = Builder.CreateStructGEP( 1203 CurFnInfo->getArgStruct(), &*EI, Idx); 1204 llvm::Type *Ty = 1205 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1206 ReturnValuePointer = Address(Addr, Ty, getPointerAlign()); 1207 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1208 ReturnValue = Address(Addr, ConvertType(RetTy), 1209 CGM.getNaturalTypeAlignment(RetTy), KnownNonNull); 1210 } else { 1211 ReturnValue = CreateIRTemp(RetTy, "retval"); 1212 1213 // Tell the epilog emitter to autorelease the result. We do this 1214 // now so that various specialized functions can suppress it 1215 // during their IR-generation. 1216 if (getLangOpts().ObjCAutoRefCount && 1217 !CurFnInfo->isReturnsRetained() && 1218 RetTy->isObjCRetainableType()) 1219 AutoreleaseResult = true; 1220 } 1221 1222 EmitStartEHSpec(CurCodeDecl); 1223 1224 PrologueCleanupDepth = EHStack.stable_begin(); 1225 1226 // Emit OpenMP specific initialization of the device functions. 1227 if (getLangOpts().OpenMP && CurCodeDecl) 1228 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1229 1230 // Handle emitting HLSL entry functions. 1231 if (D && D->hasAttr<HLSLShaderAttr>()) 1232 CGM.getHLSLRuntime().emitEntryFunction(FD, Fn); 1233 1234 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1235 1236 if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D); 1237 MD && !MD->isStatic()) { 1238 bool IsInLambda = 1239 MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call; 1240 if (MD->isImplicitObjectMemberFunction()) 1241 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1242 if (IsInLambda) { 1243 // We're in a lambda; figure out the captures. 1244 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1245 LambdaThisCaptureField); 1246 if (LambdaThisCaptureField) { 1247 // If the lambda captures the object referred to by '*this' - either by 1248 // value or by reference, make sure CXXThisValue points to the correct 1249 // object. 1250 1251 // Get the lvalue for the field (which is a copy of the enclosing object 1252 // or contains the address of the enclosing object). 1253 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1254 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1255 // If the enclosing object was captured by value, just use its 1256 // address. Sign this pointer. 1257 CXXThisValue = ThisFieldLValue.getPointer(*this); 1258 } else { 1259 // Load the lvalue pointed to by the field, since '*this' was captured 1260 // by reference. 1261 CXXThisValue = 1262 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1263 } 1264 } 1265 for (auto *FD : MD->getParent()->fields()) { 1266 if (FD->hasCapturedVLAType()) { 1267 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1268 SourceLocation()).getScalarVal(); 1269 auto VAT = FD->getCapturedVLAType(); 1270 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1271 } 1272 } 1273 } else if (MD->isImplicitObjectMemberFunction()) { 1274 // Not in a lambda; just use 'this' from the method. 1275 // FIXME: Should we generate a new load for each use of 'this'? The 1276 // fast register allocator would be happier... 1277 CXXThisValue = CXXABIThisValue; 1278 } 1279 1280 // Check the 'this' pointer once per function, if it's available. 1281 if (CXXABIThisValue) { 1282 SanitizerSet SkippedChecks; 1283 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1284 QualType ThisTy = MD->getThisType(); 1285 1286 // If this is the call operator of a lambda with no captures, it 1287 // may have a static invoker function, which may call this operator with 1288 // a null 'this' pointer. 1289 if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda()) 1290 SkippedChecks.set(SanitizerKind::Null, true); 1291 1292 EmitTypeCheck( 1293 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1294 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1295 } 1296 } 1297 1298 // If any of the arguments have a variably modified type, make sure to 1299 // emit the type size, but only if the function is not naked. Naked functions 1300 // have no prolog to run this evaluation. 1301 if (!FD || !FD->hasAttr<NakedAttr>()) { 1302 for (const VarDecl *VD : Args) { 1303 // Dig out the type as written from ParmVarDecls; it's unclear whether 1304 // the standard (C99 6.9.1p10) requires this, but we're following the 1305 // precedent set by gcc. 1306 QualType Ty; 1307 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1308 Ty = PVD->getOriginalType(); 1309 else 1310 Ty = VD->getType(); 1311 1312 if (Ty->isVariablyModifiedType()) 1313 EmitVariablyModifiedType(Ty); 1314 } 1315 } 1316 // Emit a location at the end of the prologue. 1317 if (CGDebugInfo *DI = getDebugInfo()) 1318 DI->EmitLocation(Builder, StartLoc); 1319 // TODO: Do we need to handle this in two places like we do with 1320 // target-features/target-cpu? 1321 if (CurFuncDecl) 1322 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1323 LargestVectorWidth = VecWidth->getVectorWidth(); 1324 1325 if (CGM.shouldEmitConvergenceTokens()) 1326 ConvergenceTokenStack.push_back(getOrEmitConvergenceEntryToken(CurFn)); 1327 } 1328 1329 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1330 incrementProfileCounter(Body); 1331 maybeCreateMCDCCondBitmap(); 1332 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1333 EmitCompoundStmtWithoutScope(*S); 1334 else 1335 EmitStmt(Body); 1336 } 1337 1338 /// When instrumenting to collect profile data, the counts for some blocks 1339 /// such as switch cases need to not include the fall-through counts, so 1340 /// emit a branch around the instrumentation code. When not instrumenting, 1341 /// this just calls EmitBlock(). 1342 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1343 const Stmt *S) { 1344 llvm::BasicBlock *SkipCountBB = nullptr; 1345 // Do not skip over the instrumentation when single byte coverage mode is 1346 // enabled. 1347 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() && 1348 !llvm::EnableSingleByteCoverage) { 1349 // When instrumenting for profiling, the fallthrough to certain 1350 // statements needs to skip over the instrumentation code so that we 1351 // get an accurate count. 1352 SkipCountBB = createBasicBlock("skipcount"); 1353 EmitBranch(SkipCountBB); 1354 } 1355 EmitBlock(BB); 1356 uint64_t CurrentCount = getCurrentProfileCount(); 1357 incrementProfileCounter(S); 1358 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1359 if (SkipCountBB) 1360 EmitBlock(SkipCountBB); 1361 } 1362 1363 /// Tries to mark the given function nounwind based on the 1364 /// non-existence of any throwing calls within it. We believe this is 1365 /// lightweight enough to do at -O0. 1366 static void TryMarkNoThrow(llvm::Function *F) { 1367 // LLVM treats 'nounwind' on a function as part of the type, so we 1368 // can't do this on functions that can be overwritten. 1369 if (F->isInterposable()) return; 1370 1371 for (llvm::BasicBlock &BB : *F) 1372 for (llvm::Instruction &I : BB) 1373 if (I.mayThrow()) 1374 return; 1375 1376 F->setDoesNotThrow(); 1377 } 1378 1379 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1380 FunctionArgList &Args) { 1381 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1382 QualType ResTy = FD->getReturnType(); 1383 1384 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1385 if (MD && MD->isImplicitObjectMemberFunction()) { 1386 if (CGM.getCXXABI().HasThisReturn(GD)) 1387 ResTy = MD->getThisType(); 1388 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1389 ResTy = CGM.getContext().VoidPtrTy; 1390 CGM.getCXXABI().buildThisParam(*this, Args); 1391 } 1392 1393 // The base version of an inheriting constructor whose constructed base is a 1394 // virtual base is not passed any arguments (because it doesn't actually call 1395 // the inherited constructor). 1396 bool PassedParams = true; 1397 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1398 if (auto Inherited = CD->getInheritedConstructor()) 1399 PassedParams = 1400 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1401 1402 if (PassedParams) { 1403 for (auto *Param : FD->parameters()) { 1404 Args.push_back(Param); 1405 if (!Param->hasAttr<PassObjectSizeAttr>()) 1406 continue; 1407 1408 auto *Implicit = ImplicitParamDecl::Create( 1409 getContext(), Param->getDeclContext(), Param->getLocation(), 1410 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other); 1411 SizeArguments[Param] = Implicit; 1412 Args.push_back(Implicit); 1413 } 1414 } 1415 1416 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1417 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1418 1419 return ResTy; 1420 } 1421 1422 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1423 const CGFunctionInfo &FnInfo) { 1424 assert(Fn && "generating code for null Function"); 1425 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1426 CurGD = GD; 1427 1428 FunctionArgList Args; 1429 QualType ResTy = BuildFunctionArgList(GD, Args); 1430 1431 CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, FD); 1432 1433 if (FD->isInlineBuiltinDeclaration()) { 1434 // When generating code for a builtin with an inline declaration, use a 1435 // mangled name to hold the actual body, while keeping an external 1436 // definition in case the function pointer is referenced somewhere. 1437 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1438 llvm::Module *M = Fn->getParent(); 1439 llvm::Function *Clone = M->getFunction(FDInlineName); 1440 if (!Clone) { 1441 Clone = llvm::Function::Create(Fn->getFunctionType(), 1442 llvm::GlobalValue::InternalLinkage, 1443 Fn->getAddressSpace(), FDInlineName, M); 1444 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 1445 } 1446 Fn->setLinkage(llvm::GlobalValue::ExternalLinkage); 1447 Fn = Clone; 1448 } else { 1449 // Detect the unusual situation where an inline version is shadowed by a 1450 // non-inline version. In that case we should pick the external one 1451 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way 1452 // to detect that situation before we reach codegen, so do some late 1453 // replacement. 1454 for (const FunctionDecl *PD = FD->getPreviousDecl(); PD; 1455 PD = PD->getPreviousDecl()) { 1456 if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) { 1457 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1458 llvm::Module *M = Fn->getParent(); 1459 if (llvm::Function *Clone = M->getFunction(FDInlineName)) { 1460 Clone->replaceAllUsesWith(Fn); 1461 Clone->eraseFromParent(); 1462 } 1463 break; 1464 } 1465 } 1466 } 1467 1468 // Check if we should generate debug info for this function. 1469 if (FD->hasAttr<NoDebugAttr>()) { 1470 // Clear non-distinct debug info that was possibly attached to the function 1471 // due to an earlier declaration without the nodebug attribute 1472 Fn->setSubprogram(nullptr); 1473 // Disable debug info indefinitely for this function 1474 DebugInfo = nullptr; 1475 } 1476 1477 // The function might not have a body if we're generating thunks for a 1478 // function declaration. 1479 SourceRange BodyRange; 1480 if (Stmt *Body = FD->getBody()) 1481 BodyRange = Body->getSourceRange(); 1482 else 1483 BodyRange = FD->getLocation(); 1484 CurEHLocation = BodyRange.getEnd(); 1485 1486 // Use the location of the start of the function to determine where 1487 // the function definition is located. By default use the location 1488 // of the declaration as the location for the subprogram. A function 1489 // may lack a declaration in the source code if it is created by code 1490 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1491 SourceLocation Loc = FD->getLocation(); 1492 1493 // If this is a function specialization then use the pattern body 1494 // as the location for the function. 1495 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1496 if (SpecDecl->hasBody(SpecDecl)) 1497 Loc = SpecDecl->getLocation(); 1498 1499 Stmt *Body = FD->getBody(); 1500 1501 if (Body) { 1502 // Coroutines always emit lifetime markers. 1503 if (isa<CoroutineBodyStmt>(Body)) 1504 ShouldEmitLifetimeMarkers = true; 1505 1506 // Initialize helper which will detect jumps which can cause invalid 1507 // lifetime markers. 1508 if (ShouldEmitLifetimeMarkers) 1509 Bypasses.Init(Body); 1510 } 1511 1512 // Emit the standard function prologue. 1513 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1514 1515 // Save parameters for coroutine function. 1516 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1517 llvm::append_range(FnArgs, FD->parameters()); 1518 1519 // Ensure that the function adheres to the forward progress guarantee, which 1520 // is required by certain optimizations. 1521 // In C++11 and up, the attribute will be removed if the body contains a 1522 // trivial empty loop. 1523 if (checkIfFunctionMustProgress()) 1524 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1525 1526 // Generate the body of the function. 1527 PGO.assignRegionCounters(GD, CurFn); 1528 if (isa<CXXDestructorDecl>(FD)) 1529 EmitDestructorBody(Args); 1530 else if (isa<CXXConstructorDecl>(FD)) 1531 EmitConstructorBody(Args); 1532 else if (getLangOpts().CUDA && 1533 !getLangOpts().CUDAIsDevice && 1534 FD->hasAttr<CUDAGlobalAttr>()) 1535 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1536 else if (isa<CXXMethodDecl>(FD) && 1537 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1538 // The lambda static invoker function is special, because it forwards or 1539 // clones the body of the function call operator (but is actually static). 1540 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1541 } else if (isa<CXXMethodDecl>(FD) && 1542 isLambdaCallOperator(cast<CXXMethodDecl>(FD)) && 1543 !FnInfo.isDelegateCall() && 1544 cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() && 1545 hasInAllocaArg(cast<CXXMethodDecl>(FD))) { 1546 // If emitting a lambda with static invoker on X86 Windows, change 1547 // the call operator body. 1548 // Make sure that this is a call operator with an inalloca arg and check 1549 // for delegate call to make sure this is the original call op and not the 1550 // new forwarding function for the static invoker. 1551 EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD)); 1552 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1553 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1554 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1555 // Implicit copy-assignment gets the same special treatment as implicit 1556 // copy-constructors. 1557 emitImplicitAssignmentOperatorBody(Args); 1558 } else if (Body) { 1559 EmitFunctionBody(Body); 1560 } else 1561 llvm_unreachable("no definition for emitted function"); 1562 1563 // C++11 [stmt.return]p2: 1564 // Flowing off the end of a function [...] results in undefined behavior in 1565 // a value-returning function. 1566 // C11 6.9.1p12: 1567 // If the '}' that terminates a function is reached, and the value of the 1568 // function call is used by the caller, the behavior is undefined. 1569 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1570 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1571 bool ShouldEmitUnreachable = 1572 CGM.getCodeGenOpts().StrictReturn || 1573 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1574 if (SanOpts.has(SanitizerKind::Return)) { 1575 SanitizerScope SanScope(this); 1576 llvm::Value *IsFalse = Builder.getFalse(); 1577 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1578 SanitizerHandler::MissingReturn, 1579 EmitCheckSourceLocation(FD->getLocation()), std::nullopt); 1580 } else if (ShouldEmitUnreachable) { 1581 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1582 EmitTrapCall(llvm::Intrinsic::trap); 1583 } 1584 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1585 Builder.CreateUnreachable(); 1586 Builder.ClearInsertionPoint(); 1587 } 1588 } 1589 1590 // Emit the standard function epilogue. 1591 FinishFunction(BodyRange.getEnd()); 1592 1593 // If we haven't marked the function nothrow through other means, do 1594 // a quick pass now to see if we can. 1595 if (!CurFn->doesNotThrow()) 1596 TryMarkNoThrow(CurFn); 1597 } 1598 1599 /// ContainsLabel - Return true if the statement contains a label in it. If 1600 /// this statement is not executed normally, it not containing a label means 1601 /// that we can just remove the code. 1602 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1603 // Null statement, not a label! 1604 if (!S) return false; 1605 1606 // If this is a label, we have to emit the code, consider something like: 1607 // if (0) { ... foo: bar(); } goto foo; 1608 // 1609 // TODO: If anyone cared, we could track __label__'s, since we know that you 1610 // can't jump to one from outside their declared region. 1611 if (isa<LabelStmt>(S)) 1612 return true; 1613 1614 // If this is a case/default statement, and we haven't seen a switch, we have 1615 // to emit the code. 1616 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1617 return true; 1618 1619 // If this is a switch statement, we want to ignore cases below it. 1620 if (isa<SwitchStmt>(S)) 1621 IgnoreCaseStmts = true; 1622 1623 // Scan subexpressions for verboten labels. 1624 for (const Stmt *SubStmt : S->children()) 1625 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1626 return true; 1627 1628 return false; 1629 } 1630 1631 /// containsBreak - Return true if the statement contains a break out of it. 1632 /// If the statement (recursively) contains a switch or loop with a break 1633 /// inside of it, this is fine. 1634 bool CodeGenFunction::containsBreak(const Stmt *S) { 1635 // Null statement, not a label! 1636 if (!S) return false; 1637 1638 // If this is a switch or loop that defines its own break scope, then we can 1639 // include it and anything inside of it. 1640 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1641 isa<ForStmt>(S)) 1642 return false; 1643 1644 if (isa<BreakStmt>(S)) 1645 return true; 1646 1647 // Scan subexpressions for verboten breaks. 1648 for (const Stmt *SubStmt : S->children()) 1649 if (containsBreak(SubStmt)) 1650 return true; 1651 1652 return false; 1653 } 1654 1655 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1656 if (!S) return false; 1657 1658 // Some statement kinds add a scope and thus never add a decl to the current 1659 // scope. Note, this list is longer than the list of statements that might 1660 // have an unscoped decl nested within them, but this way is conservatively 1661 // correct even if more statement kinds are added. 1662 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1663 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1664 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1665 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1666 return false; 1667 1668 if (isa<DeclStmt>(S)) 1669 return true; 1670 1671 for (const Stmt *SubStmt : S->children()) 1672 if (mightAddDeclToScope(SubStmt)) 1673 return true; 1674 1675 return false; 1676 } 1677 1678 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1679 /// to a constant, or if it does but contains a label, return false. If it 1680 /// constant folds return true and set the boolean result in Result. 1681 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1682 bool &ResultBool, 1683 bool AllowLabels) { 1684 // If MC/DC is enabled, disable folding so that we can instrument all 1685 // conditions to yield complete test vectors. We still keep track of 1686 // folded conditions during region mapping and visualization. 1687 if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() && 1688 CGM.getCodeGenOpts().MCDCCoverage) 1689 return false; 1690 1691 llvm::APSInt ResultInt; 1692 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1693 return false; 1694 1695 ResultBool = ResultInt.getBoolValue(); 1696 return true; 1697 } 1698 1699 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1700 /// to a constant, or if it does but contains a label, return false. If it 1701 /// constant folds return true and set the folded value. 1702 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1703 llvm::APSInt &ResultInt, 1704 bool AllowLabels) { 1705 // FIXME: Rename and handle conversion of other evaluatable things 1706 // to bool. 1707 Expr::EvalResult Result; 1708 if (!Cond->EvaluateAsInt(Result, getContext())) 1709 return false; // Not foldable, not integer or not fully evaluatable. 1710 1711 llvm::APSInt Int = Result.Val.getInt(); 1712 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1713 return false; // Contains a label. 1714 1715 ResultInt = Int; 1716 return true; 1717 } 1718 1719 /// Strip parentheses and simplistic logical-NOT operators. 1720 const Expr *CodeGenFunction::stripCond(const Expr *C) { 1721 while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) { 1722 if (Op->getOpcode() != UO_LNot) 1723 break; 1724 C = Op->getSubExpr(); 1725 } 1726 return C->IgnoreParens(); 1727 } 1728 1729 /// Determine whether the given condition is an instrumentable condition 1730 /// (i.e. no "&&" or "||"). 1731 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1732 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C)); 1733 return (!BOp || !BOp->isLogicalOp()); 1734 } 1735 1736 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1737 /// increments a profile counter based on the semantics of the given logical 1738 /// operator opcode. This is used to instrument branch condition coverage for 1739 /// logical operators. 1740 void CodeGenFunction::EmitBranchToCounterBlock( 1741 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1742 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1743 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1744 // If not instrumenting, just emit a branch. 1745 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1746 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1747 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1748 1749 llvm::BasicBlock *ThenBlock = nullptr; 1750 llvm::BasicBlock *ElseBlock = nullptr; 1751 llvm::BasicBlock *NextBlock = nullptr; 1752 1753 // Create the block we'll use to increment the appropriate counter. 1754 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1755 1756 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1757 // means we need to evaluate the condition and increment the counter on TRUE: 1758 // 1759 // if (Cond) 1760 // goto CounterIncrBlock; 1761 // else 1762 // goto FalseBlock; 1763 // 1764 // CounterIncrBlock: 1765 // Counter++; 1766 // goto TrueBlock; 1767 1768 if (LOp == BO_LAnd) { 1769 ThenBlock = CounterIncrBlock; 1770 ElseBlock = FalseBlock; 1771 NextBlock = TrueBlock; 1772 } 1773 1774 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1775 // we need to evaluate the condition and increment the counter on FALSE: 1776 // 1777 // if (Cond) 1778 // goto TrueBlock; 1779 // else 1780 // goto CounterIncrBlock; 1781 // 1782 // CounterIncrBlock: 1783 // Counter++; 1784 // goto FalseBlock; 1785 1786 else if (LOp == BO_LOr) { 1787 ThenBlock = TrueBlock; 1788 ElseBlock = CounterIncrBlock; 1789 NextBlock = FalseBlock; 1790 } else { 1791 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1792 } 1793 1794 // Emit Branch based on condition. 1795 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1796 1797 // Emit the block containing the counter increment(s). 1798 EmitBlock(CounterIncrBlock); 1799 1800 // Increment corresponding counter; if index not provided, use Cond as index. 1801 incrementProfileCounter(CntrIdx ? CntrIdx : Cond); 1802 1803 // Go to the next block. 1804 EmitBranch(NextBlock); 1805 } 1806 1807 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1808 /// statement) to the specified blocks. Based on the condition, this might try 1809 /// to simplify the codegen of the conditional based on the branch. 1810 /// \param LH The value of the likelihood attribute on the True branch. 1811 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the 1812 /// ConditionalOperator (ternary) through a recursive call for the operator's 1813 /// LHS and RHS nodes. 1814 void CodeGenFunction::EmitBranchOnBoolExpr( 1815 const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock, 1816 uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) { 1817 Cond = Cond->IgnoreParens(); 1818 1819 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1820 // Handle X && Y in a condition. 1821 if (CondBOp->getOpcode() == BO_LAnd) { 1822 MCDCLogOpStack.push_back(CondBOp); 1823 1824 // If we have "1 && X", simplify the code. "0 && X" would have constant 1825 // folded if the case was simple enough. 1826 bool ConstantBool = false; 1827 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1828 ConstantBool) { 1829 // br(1 && X) -> br(X). 1830 incrementProfileCounter(CondBOp); 1831 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1832 FalseBlock, TrueCount, LH); 1833 MCDCLogOpStack.pop_back(); 1834 return; 1835 } 1836 1837 // If we have "X && 1", simplify the code to use an uncond branch. 1838 // "X && 0" would have been constant folded to 0. 1839 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1840 ConstantBool) { 1841 // br(X && 1) -> br(X). 1842 EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1843 FalseBlock, TrueCount, LH, CondBOp); 1844 MCDCLogOpStack.pop_back(); 1845 return; 1846 } 1847 1848 // Emit the LHS as a conditional. If the LHS conditional is false, we 1849 // want to jump to the FalseBlock. 1850 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1851 // The counter tells us how often we evaluate RHS, and all of TrueCount 1852 // can be propagated to that branch. 1853 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1854 1855 ConditionalEvaluation eval(*this); 1856 { 1857 ApplyDebugLocation DL(*this, Cond); 1858 // Propagate the likelihood attribute like __builtin_expect 1859 // __builtin_expect(X && Y, 1) -> X and Y are likely 1860 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1861 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1862 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1863 EmitBlock(LHSTrue); 1864 } 1865 1866 incrementProfileCounter(CondBOp); 1867 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1868 1869 // Any temporaries created here are conditional. 1870 eval.begin(*this); 1871 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1872 FalseBlock, TrueCount, LH); 1873 eval.end(*this); 1874 MCDCLogOpStack.pop_back(); 1875 return; 1876 } 1877 1878 if (CondBOp->getOpcode() == BO_LOr) { 1879 MCDCLogOpStack.push_back(CondBOp); 1880 1881 // If we have "0 || X", simplify the code. "1 || X" would have constant 1882 // folded if the case was simple enough. 1883 bool ConstantBool = false; 1884 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1885 !ConstantBool) { 1886 // br(0 || X) -> br(X). 1887 incrementProfileCounter(CondBOp); 1888 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1889 FalseBlock, TrueCount, LH); 1890 MCDCLogOpStack.pop_back(); 1891 return; 1892 } 1893 1894 // If we have "X || 0", simplify the code to use an uncond branch. 1895 // "X || 1" would have been constant folded to 1. 1896 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1897 !ConstantBool) { 1898 // br(X || 0) -> br(X). 1899 EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1900 FalseBlock, TrueCount, LH, CondBOp); 1901 MCDCLogOpStack.pop_back(); 1902 return; 1903 } 1904 // Emit the LHS as a conditional. If the LHS conditional is true, we 1905 // want to jump to the TrueBlock. 1906 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1907 // We have the count for entry to the RHS and for the whole expression 1908 // being true, so we can divy up True count between the short circuit and 1909 // the RHS. 1910 uint64_t LHSCount = 1911 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1912 uint64_t RHSCount = TrueCount - LHSCount; 1913 1914 ConditionalEvaluation eval(*this); 1915 { 1916 // Propagate the likelihood attribute like __builtin_expect 1917 // __builtin_expect(X || Y, 1) -> only Y is likely 1918 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1919 ApplyDebugLocation DL(*this, Cond); 1920 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1921 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1922 EmitBlock(LHSFalse); 1923 } 1924 1925 incrementProfileCounter(CondBOp); 1926 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1927 1928 // Any temporaries created here are conditional. 1929 eval.begin(*this); 1930 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1931 RHSCount, LH); 1932 1933 eval.end(*this); 1934 MCDCLogOpStack.pop_back(); 1935 return; 1936 } 1937 } 1938 1939 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1940 // br(!x, t, f) -> br(x, f, t) 1941 // Avoid doing this optimization when instrumenting a condition for MC/DC. 1942 // LNot is taken as part of the condition for simplicity, and changing its 1943 // sense negatively impacts test vector tracking. 1944 bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() && 1945 CGM.getCodeGenOpts().MCDCCoverage && 1946 isInstrumentedCondition(Cond); 1947 if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) { 1948 // Negate the count. 1949 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1950 // The values of the enum are chosen to make this negation possible. 1951 LH = static_cast<Stmt::Likelihood>(-LH); 1952 // Negate the condition and swap the destination blocks. 1953 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1954 FalseCount, LH); 1955 } 1956 } 1957 1958 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1959 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1960 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1961 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1962 1963 // The ConditionalOperator itself has no likelihood information for its 1964 // true and false branches. This matches the behavior of __builtin_expect. 1965 ConditionalEvaluation cond(*this); 1966 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1967 getProfileCount(CondOp), Stmt::LH_None); 1968 1969 // When computing PGO branch weights, we only know the overall count for 1970 // the true block. This code is essentially doing tail duplication of the 1971 // naive code-gen, introducing new edges for which counts are not 1972 // available. Divide the counts proportionally between the LHS and RHS of 1973 // the conditional operator. 1974 uint64_t LHSScaledTrueCount = 0; 1975 if (TrueCount) { 1976 double LHSRatio = 1977 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1978 LHSScaledTrueCount = TrueCount * LHSRatio; 1979 } 1980 1981 cond.begin(*this); 1982 EmitBlock(LHSBlock); 1983 incrementProfileCounter(CondOp); 1984 { 1985 ApplyDebugLocation DL(*this, Cond); 1986 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1987 LHSScaledTrueCount, LH, CondOp); 1988 } 1989 cond.end(*this); 1990 1991 cond.begin(*this); 1992 EmitBlock(RHSBlock); 1993 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1994 TrueCount - LHSScaledTrueCount, LH, CondOp); 1995 cond.end(*this); 1996 1997 return; 1998 } 1999 2000 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 2001 // Conditional operator handling can give us a throw expression as a 2002 // condition for a case like: 2003 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 2004 // Fold this to: 2005 // br(c, throw x, br(y, t, f)) 2006 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 2007 return; 2008 } 2009 2010 // Emit the code with the fully general case. 2011 llvm::Value *CondV; 2012 { 2013 ApplyDebugLocation DL(*this, Cond); 2014 CondV = EvaluateExprAsBool(Cond); 2015 } 2016 2017 // If not at the top of the logical operator nest, update MCDC temp with the 2018 // boolean result of the evaluated condition. 2019 if (!MCDCLogOpStack.empty()) { 2020 const Expr *MCDCBaseExpr = Cond; 2021 // When a nested ConditionalOperator (ternary) is encountered in a boolean 2022 // expression, MC/DC tracks the result of the ternary, and this is tied to 2023 // the ConditionalOperator expression and not the ternary's LHS or RHS. If 2024 // this is the case, the ConditionalOperator expression is passed through 2025 // the ConditionalOp parameter and then used as the MCDC base expression. 2026 if (ConditionalOp) 2027 MCDCBaseExpr = ConditionalOp; 2028 2029 maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV); 2030 } 2031 2032 llvm::MDNode *Weights = nullptr; 2033 llvm::MDNode *Unpredictable = nullptr; 2034 2035 // If the branch has a condition wrapped by __builtin_unpredictable, 2036 // create metadata that specifies that the branch is unpredictable. 2037 // Don't bother if not optimizing because that metadata would not be used. 2038 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 2039 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 2040 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 2041 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 2042 llvm::MDBuilder MDHelper(getLLVMContext()); 2043 Unpredictable = MDHelper.createUnpredictable(); 2044 } 2045 } 2046 2047 // If there is a Likelihood knowledge for the cond, lower it. 2048 // Note that if not optimizing this won't emit anything. 2049 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 2050 if (CondV != NewCondV) 2051 CondV = NewCondV; 2052 else { 2053 // Otherwise, lower profile counts. Note that we do this even at -O0. 2054 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 2055 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 2056 } 2057 2058 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 2059 } 2060 2061 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2062 /// specified stmt yet. 2063 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 2064 CGM.ErrorUnsupported(S, Type); 2065 } 2066 2067 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 2068 /// variable-length array whose elements have a non-zero bit-pattern. 2069 /// 2070 /// \param baseType the inner-most element type of the array 2071 /// \param src - a char* pointing to the bit-pattern for a single 2072 /// base element of the array 2073 /// \param sizeInChars - the total size of the VLA, in chars 2074 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 2075 Address dest, Address src, 2076 llvm::Value *sizeInChars) { 2077 CGBuilderTy &Builder = CGF.Builder; 2078 2079 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 2080 llvm::Value *baseSizeInChars 2081 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 2082 2083 Address begin = dest.withElementType(CGF.Int8Ty); 2084 llvm::Value *end = Builder.CreateInBoundsGEP(begin.getElementType(), 2085 begin.emitRawPointer(CGF), 2086 sizeInChars, "vla.end"); 2087 2088 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 2089 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 2090 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 2091 2092 // Make a loop over the VLA. C99 guarantees that the VLA element 2093 // count must be nonzero. 2094 CGF.EmitBlock(loopBB); 2095 2096 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 2097 cur->addIncoming(begin.emitRawPointer(CGF), originBB); 2098 2099 CharUnits curAlign = 2100 dest.getAlignment().alignmentOfArrayElement(baseSize); 2101 2102 // memcpy the individual element bit-pattern. 2103 Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars, 2104 /*volatile*/ false); 2105 2106 // Go to the next element. 2107 llvm::Value *next = 2108 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 2109 2110 // Leave if that's the end of the VLA. 2111 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 2112 Builder.CreateCondBr(done, contBB, loopBB); 2113 cur->addIncoming(next, loopBB); 2114 2115 CGF.EmitBlock(contBB); 2116 } 2117 2118 void 2119 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 2120 // Ignore empty classes in C++. 2121 if (getLangOpts().CPlusPlus) { 2122 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2123 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 2124 return; 2125 } 2126 } 2127 2128 if (DestPtr.getElementType() != Int8Ty) 2129 DestPtr = DestPtr.withElementType(Int8Ty); 2130 2131 // Get size and alignment info for this aggregate. 2132 CharUnits size = getContext().getTypeSizeInChars(Ty); 2133 2134 llvm::Value *SizeVal; 2135 const VariableArrayType *vla; 2136 2137 // Don't bother emitting a zero-byte memset. 2138 if (size.isZero()) { 2139 // But note that getTypeInfo returns 0 for a VLA. 2140 if (const VariableArrayType *vlaType = 2141 dyn_cast_or_null<VariableArrayType>( 2142 getContext().getAsArrayType(Ty))) { 2143 auto VlaSize = getVLASize(vlaType); 2144 SizeVal = VlaSize.NumElts; 2145 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 2146 if (!eltSize.isOne()) 2147 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 2148 vla = vlaType; 2149 } else { 2150 return; 2151 } 2152 } else { 2153 SizeVal = CGM.getSize(size); 2154 vla = nullptr; 2155 } 2156 2157 // If the type contains a pointer to data member we can't memset it to zero. 2158 // Instead, create a null constant and copy it to the destination. 2159 // TODO: there are other patterns besides zero that we can usefully memset, 2160 // like -1, which happens to be the pattern used by member-pointers. 2161 if (!CGM.getTypes().isZeroInitializable(Ty)) { 2162 // For a VLA, emit a single element, then splat that over the VLA. 2163 if (vla) Ty = getContext().getBaseElementType(vla); 2164 2165 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 2166 2167 llvm::GlobalVariable *NullVariable = 2168 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 2169 /*isConstant=*/true, 2170 llvm::GlobalVariable::PrivateLinkage, 2171 NullConstant, Twine()); 2172 CharUnits NullAlign = DestPtr.getAlignment(); 2173 NullVariable->setAlignment(NullAlign.getAsAlign()); 2174 Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign); 2175 2176 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 2177 2178 // Get and call the appropriate llvm.memcpy overload. 2179 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 2180 return; 2181 } 2182 2183 // Otherwise, just memset the whole thing to zero. This is legal 2184 // because in LLVM, all default initializers (other than the ones we just 2185 // handled above) are guaranteed to have a bit pattern of all zeros. 2186 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 2187 } 2188 2189 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 2190 // Make sure that there is a block for the indirect goto. 2191 if (!IndirectBranch) 2192 GetIndirectGotoBlock(); 2193 2194 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 2195 2196 // Make sure the indirect branch includes all of the address-taken blocks. 2197 IndirectBranch->addDestination(BB); 2198 return llvm::BlockAddress::get(CurFn, BB); 2199 } 2200 2201 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 2202 // If we already made the indirect branch for indirect goto, return its block. 2203 if (IndirectBranch) return IndirectBranch->getParent(); 2204 2205 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 2206 2207 // Create the PHI node that indirect gotos will add entries to. 2208 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 2209 "indirect.goto.dest"); 2210 2211 // Create the indirect branch instruction. 2212 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 2213 return IndirectBranch->getParent(); 2214 } 2215 2216 /// Computes the length of an array in elements, as well as the base 2217 /// element type and a properly-typed first element pointer. 2218 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 2219 QualType &baseType, 2220 Address &addr) { 2221 const ArrayType *arrayType = origArrayType; 2222 2223 // If it's a VLA, we have to load the stored size. Note that 2224 // this is the size of the VLA in bytes, not its size in elements. 2225 llvm::Value *numVLAElements = nullptr; 2226 if (isa<VariableArrayType>(arrayType)) { 2227 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 2228 2229 // Walk into all VLAs. This doesn't require changes to addr, 2230 // which has type T* where T is the first non-VLA element type. 2231 do { 2232 QualType elementType = arrayType->getElementType(); 2233 arrayType = getContext().getAsArrayType(elementType); 2234 2235 // If we only have VLA components, 'addr' requires no adjustment. 2236 if (!arrayType) { 2237 baseType = elementType; 2238 return numVLAElements; 2239 } 2240 } while (isa<VariableArrayType>(arrayType)); 2241 2242 // We get out here only if we find a constant array type 2243 // inside the VLA. 2244 } 2245 2246 // We have some number of constant-length arrays, so addr should 2247 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2248 // down to the first element of addr. 2249 SmallVector<llvm::Value*, 8> gepIndices; 2250 2251 // GEP down to the array type. 2252 llvm::ConstantInt *zero = Builder.getInt32(0); 2253 gepIndices.push_back(zero); 2254 2255 uint64_t countFromCLAs = 1; 2256 QualType eltType; 2257 2258 llvm::ArrayType *llvmArrayType = 2259 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2260 while (llvmArrayType) { 2261 assert(isa<ConstantArrayType>(arrayType)); 2262 assert(cast<ConstantArrayType>(arrayType)->getZExtSize() == 2263 llvmArrayType->getNumElements()); 2264 2265 gepIndices.push_back(zero); 2266 countFromCLAs *= llvmArrayType->getNumElements(); 2267 eltType = arrayType->getElementType(); 2268 2269 llvmArrayType = 2270 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2271 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2272 assert((!llvmArrayType || arrayType) && 2273 "LLVM and Clang types are out-of-synch"); 2274 } 2275 2276 if (arrayType) { 2277 // From this point onwards, the Clang array type has been emitted 2278 // as some other type (probably a packed struct). Compute the array 2279 // size, and just emit the 'begin' expression as a bitcast. 2280 while (arrayType) { 2281 countFromCLAs *= cast<ConstantArrayType>(arrayType)->getZExtSize(); 2282 eltType = arrayType->getElementType(); 2283 arrayType = getContext().getAsArrayType(eltType); 2284 } 2285 2286 llvm::Type *baseType = ConvertType(eltType); 2287 addr = addr.withElementType(baseType); 2288 } else { 2289 // Create the actual GEP. 2290 addr = Address(Builder.CreateInBoundsGEP(addr.getElementType(), 2291 addr.emitRawPointer(*this), 2292 gepIndices, "array.begin"), 2293 ConvertTypeForMem(eltType), addr.getAlignment()); 2294 } 2295 2296 baseType = eltType; 2297 2298 llvm::Value *numElements 2299 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2300 2301 // If we had any VLA dimensions, factor them in. 2302 if (numVLAElements) 2303 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2304 2305 return numElements; 2306 } 2307 2308 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2309 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2310 assert(vla && "type was not a variable array type!"); 2311 return getVLASize(vla); 2312 } 2313 2314 CodeGenFunction::VlaSizePair 2315 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2316 // The number of elements so far; always size_t. 2317 llvm::Value *numElements = nullptr; 2318 2319 QualType elementType; 2320 do { 2321 elementType = type->getElementType(); 2322 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2323 assert(vlaSize && "no size for VLA!"); 2324 assert(vlaSize->getType() == SizeTy); 2325 2326 if (!numElements) { 2327 numElements = vlaSize; 2328 } else { 2329 // It's undefined behavior if this wraps around, so mark it that way. 2330 // FIXME: Teach -fsanitize=undefined to trap this. 2331 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2332 } 2333 } while ((type = getContext().getAsVariableArrayType(elementType))); 2334 2335 return { numElements, elementType }; 2336 } 2337 2338 CodeGenFunction::VlaSizePair 2339 CodeGenFunction::getVLAElements1D(QualType type) { 2340 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2341 assert(vla && "type was not a variable array type!"); 2342 return getVLAElements1D(vla); 2343 } 2344 2345 CodeGenFunction::VlaSizePair 2346 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2347 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2348 assert(VlaSize && "no size for VLA!"); 2349 assert(VlaSize->getType() == SizeTy); 2350 return { VlaSize, Vla->getElementType() }; 2351 } 2352 2353 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2354 assert(type->isVariablyModifiedType() && 2355 "Must pass variably modified type to EmitVLASizes!"); 2356 2357 EnsureInsertPoint(); 2358 2359 // We're going to walk down into the type and look for VLA 2360 // expressions. 2361 do { 2362 assert(type->isVariablyModifiedType()); 2363 2364 const Type *ty = type.getTypePtr(); 2365 switch (ty->getTypeClass()) { 2366 2367 #define TYPE(Class, Base) 2368 #define ABSTRACT_TYPE(Class, Base) 2369 #define NON_CANONICAL_TYPE(Class, Base) 2370 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2371 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2372 #include "clang/AST/TypeNodes.inc" 2373 llvm_unreachable("unexpected dependent type!"); 2374 2375 // These types are never variably-modified. 2376 case Type::Builtin: 2377 case Type::Complex: 2378 case Type::Vector: 2379 case Type::ExtVector: 2380 case Type::ConstantMatrix: 2381 case Type::Record: 2382 case Type::Enum: 2383 case Type::Using: 2384 case Type::TemplateSpecialization: 2385 case Type::ObjCTypeParam: 2386 case Type::ObjCObject: 2387 case Type::ObjCInterface: 2388 case Type::ObjCObjectPointer: 2389 case Type::BitInt: 2390 llvm_unreachable("type class is never variably-modified!"); 2391 2392 case Type::Elaborated: 2393 type = cast<ElaboratedType>(ty)->getNamedType(); 2394 break; 2395 2396 case Type::Adjusted: 2397 type = cast<AdjustedType>(ty)->getAdjustedType(); 2398 break; 2399 2400 case Type::Decayed: 2401 type = cast<DecayedType>(ty)->getPointeeType(); 2402 break; 2403 2404 case Type::Pointer: 2405 type = cast<PointerType>(ty)->getPointeeType(); 2406 break; 2407 2408 case Type::BlockPointer: 2409 type = cast<BlockPointerType>(ty)->getPointeeType(); 2410 break; 2411 2412 case Type::LValueReference: 2413 case Type::RValueReference: 2414 type = cast<ReferenceType>(ty)->getPointeeType(); 2415 break; 2416 2417 case Type::MemberPointer: 2418 type = cast<MemberPointerType>(ty)->getPointeeType(); 2419 break; 2420 2421 case Type::ArrayParameter: 2422 case Type::ConstantArray: 2423 case Type::IncompleteArray: 2424 // Losing element qualification here is fine. 2425 type = cast<ArrayType>(ty)->getElementType(); 2426 break; 2427 2428 case Type::VariableArray: { 2429 // Losing element qualification here is fine. 2430 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2431 2432 // Unknown size indication requires no size computation. 2433 // Otherwise, evaluate and record it. 2434 if (const Expr *sizeExpr = vat->getSizeExpr()) { 2435 // It's possible that we might have emitted this already, 2436 // e.g. with a typedef and a pointer to it. 2437 llvm::Value *&entry = VLASizeMap[sizeExpr]; 2438 if (!entry) { 2439 llvm::Value *size = EmitScalarExpr(sizeExpr); 2440 2441 // C11 6.7.6.2p5: 2442 // If the size is an expression that is not an integer constant 2443 // expression [...] each time it is evaluated it shall have a value 2444 // greater than zero. 2445 if (SanOpts.has(SanitizerKind::VLABound)) { 2446 SanitizerScope SanScope(this); 2447 llvm::Value *Zero = llvm::Constant::getNullValue(size->getType()); 2448 clang::QualType SEType = sizeExpr->getType(); 2449 llvm::Value *CheckCondition = 2450 SEType->isSignedIntegerType() 2451 ? Builder.CreateICmpSGT(size, Zero) 2452 : Builder.CreateICmpUGT(size, Zero); 2453 llvm::Constant *StaticArgs[] = { 2454 EmitCheckSourceLocation(sizeExpr->getBeginLoc()), 2455 EmitCheckTypeDescriptor(SEType)}; 2456 EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound), 2457 SanitizerHandler::VLABoundNotPositive, StaticArgs, size); 2458 } 2459 2460 // Always zexting here would be wrong if it weren't 2461 // undefined behavior to have a negative bound. 2462 // FIXME: What about when size's type is larger than size_t? 2463 entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false); 2464 } 2465 } 2466 type = vat->getElementType(); 2467 break; 2468 } 2469 2470 case Type::FunctionProto: 2471 case Type::FunctionNoProto: 2472 type = cast<FunctionType>(ty)->getReturnType(); 2473 break; 2474 2475 case Type::Paren: 2476 case Type::TypeOf: 2477 case Type::UnaryTransform: 2478 case Type::Attributed: 2479 case Type::BTFTagAttributed: 2480 case Type::SubstTemplateTypeParm: 2481 case Type::MacroQualified: 2482 case Type::CountAttributed: 2483 // Keep walking after single level desugaring. 2484 type = type.getSingleStepDesugaredType(getContext()); 2485 break; 2486 2487 case Type::Typedef: 2488 case Type::Decltype: 2489 case Type::Auto: 2490 case Type::DeducedTemplateSpecialization: 2491 case Type::PackIndexing: 2492 // Stop walking: nothing to do. 2493 return; 2494 2495 case Type::TypeOfExpr: 2496 // Stop walking: emit typeof expression. 2497 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2498 return; 2499 2500 case Type::Atomic: 2501 type = cast<AtomicType>(ty)->getValueType(); 2502 break; 2503 2504 case Type::Pipe: 2505 type = cast<PipeType>(ty)->getElementType(); 2506 break; 2507 } 2508 } while (type->isVariablyModifiedType()); 2509 } 2510 2511 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2512 if (getContext().getBuiltinVaListType()->isArrayType()) 2513 return EmitPointerWithAlignment(E); 2514 return EmitLValue(E).getAddress(); 2515 } 2516 2517 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2518 return EmitLValue(E).getAddress(); 2519 } 2520 2521 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2522 const APValue &Init) { 2523 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2524 if (CGDebugInfo *Dbg = getDebugInfo()) 2525 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2526 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2527 } 2528 2529 CodeGenFunction::PeepholeProtection 2530 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2531 // At the moment, the only aggressive peephole we do in IR gen 2532 // is trunc(zext) folding, but if we add more, we can easily 2533 // extend this protection. 2534 2535 if (!rvalue.isScalar()) return PeepholeProtection(); 2536 llvm::Value *value = rvalue.getScalarVal(); 2537 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2538 2539 // Just make an extra bitcast. 2540 assert(HaveInsertPoint()); 2541 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2542 Builder.GetInsertBlock()); 2543 2544 PeepholeProtection protection; 2545 protection.Inst = inst; 2546 return protection; 2547 } 2548 2549 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2550 if (!protection.Inst) return; 2551 2552 // In theory, we could try to duplicate the peepholes now, but whatever. 2553 protection.Inst->eraseFromParent(); 2554 } 2555 2556 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2557 QualType Ty, SourceLocation Loc, 2558 SourceLocation AssumptionLoc, 2559 llvm::Value *Alignment, 2560 llvm::Value *OffsetValue) { 2561 if (Alignment->getType() != IntPtrTy) 2562 Alignment = 2563 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2564 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2565 OffsetValue = 2566 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2567 llvm::Value *TheCheck = nullptr; 2568 if (SanOpts.has(SanitizerKind::Alignment)) { 2569 llvm::Value *PtrIntValue = 2570 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2571 2572 if (OffsetValue) { 2573 bool IsOffsetZero = false; 2574 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2575 IsOffsetZero = CI->isZero(); 2576 2577 if (!IsOffsetZero) 2578 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2579 } 2580 2581 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2582 llvm::Value *Mask = 2583 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2584 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2585 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2586 } 2587 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2588 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2589 2590 if (!SanOpts.has(SanitizerKind::Alignment)) 2591 return; 2592 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2593 OffsetValue, TheCheck, Assumption); 2594 } 2595 2596 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2597 const Expr *E, 2598 SourceLocation AssumptionLoc, 2599 llvm::Value *Alignment, 2600 llvm::Value *OffsetValue) { 2601 QualType Ty = E->getType(); 2602 SourceLocation Loc = E->getExprLoc(); 2603 2604 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2605 OffsetValue); 2606 } 2607 2608 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2609 llvm::Value *AnnotatedVal, 2610 StringRef AnnotationStr, 2611 SourceLocation Location, 2612 const AnnotateAttr *Attr) { 2613 SmallVector<llvm::Value *, 5> Args = { 2614 AnnotatedVal, 2615 CGM.EmitAnnotationString(AnnotationStr), 2616 CGM.EmitAnnotationUnit(Location), 2617 CGM.EmitAnnotationLineNo(Location), 2618 }; 2619 if (Attr) 2620 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2621 return Builder.CreateCall(AnnotationFn, Args); 2622 } 2623 2624 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2625 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2626 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2627 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation, 2628 {V->getType(), CGM.ConstGlobalsPtrTy}), 2629 V, I->getAnnotation(), D->getLocation(), I); 2630 } 2631 2632 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2633 Address Addr) { 2634 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2635 llvm::Value *V = Addr.emitRawPointer(*this); 2636 llvm::Type *VTy = V->getType(); 2637 auto *PTy = dyn_cast<llvm::PointerType>(VTy); 2638 unsigned AS = PTy ? PTy->getAddressSpace() : 0; 2639 llvm::PointerType *IntrinTy = 2640 llvm::PointerType::get(CGM.getLLVMContext(), AS); 2641 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2642 {IntrinTy, CGM.ConstGlobalsPtrTy}); 2643 2644 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2645 // FIXME Always emit the cast inst so we can differentiate between 2646 // annotation on the first field of a struct and annotation on the struct 2647 // itself. 2648 if (VTy != IntrinTy) 2649 V = Builder.CreateBitCast(V, IntrinTy); 2650 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2651 V = Builder.CreateBitCast(V, VTy); 2652 } 2653 2654 return Address(V, Addr.getElementType(), Addr.getAlignment()); 2655 } 2656 2657 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2658 2659 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2660 : CGF(CGF) { 2661 assert(!CGF->IsSanitizerScope); 2662 CGF->IsSanitizerScope = true; 2663 } 2664 2665 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2666 CGF->IsSanitizerScope = false; 2667 } 2668 2669 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2670 const llvm::Twine &Name, 2671 llvm::BasicBlock::iterator InsertPt) const { 2672 LoopStack.InsertHelper(I); 2673 if (IsSanitizerScope) 2674 I->setNoSanitizeMetadata(); 2675 } 2676 2677 void CGBuilderInserter::InsertHelper( 2678 llvm::Instruction *I, const llvm::Twine &Name, 2679 llvm::BasicBlock::iterator InsertPt) const { 2680 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, InsertPt); 2681 if (CGF) 2682 CGF->InsertHelper(I, Name, InsertPt); 2683 } 2684 2685 // Emits an error if we don't have a valid set of target features for the 2686 // called function. 2687 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2688 const FunctionDecl *TargetDecl) { 2689 // SemaChecking cannot handle below x86 builtins because they have different 2690 // parameter ranges with different TargetAttribute of caller. 2691 if (CGM.getContext().getTargetInfo().getTriple().isX86()) { 2692 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2693 if (BuiltinID == X86::BI__builtin_ia32_cmpps || 2694 BuiltinID == X86::BI__builtin_ia32_cmpss || 2695 BuiltinID == X86::BI__builtin_ia32_cmppd || 2696 BuiltinID == X86::BI__builtin_ia32_cmpsd) { 2697 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2698 llvm::StringMap<bool> TargetFetureMap; 2699 CGM.getContext().getFunctionFeatureMap(TargetFetureMap, FD); 2700 llvm::APSInt Result = 2701 *(E->getArg(2)->getIntegerConstantExpr(CGM.getContext())); 2702 if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup("avx")) 2703 CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature) 2704 << TargetDecl->getDeclName() << "avx"; 2705 } 2706 } 2707 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2708 } 2709 2710 // Emits an error if we don't have a valid set of target features for the 2711 // called function. 2712 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2713 const FunctionDecl *TargetDecl) { 2714 // Early exit if this is an indirect call. 2715 if (!TargetDecl) 2716 return; 2717 2718 // Get the current enclosing function if it exists. If it doesn't 2719 // we can't check the target features anyhow. 2720 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2721 if (!FD) 2722 return; 2723 2724 // Grab the required features for the call. For a builtin this is listed in 2725 // the td file with the default cpu, for an always_inline function this is any 2726 // listed cpu and any listed features. 2727 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2728 std::string MissingFeature; 2729 llvm::StringMap<bool> CallerFeatureMap; 2730 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2731 // When compiling in HipStdPar mode we have to be conservative in rejecting 2732 // target specific features in the FE, and defer the possible error to the 2733 // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is 2734 // referenced by an accelerator executable function, we emit an error. 2735 bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice; 2736 if (BuiltinID) { 2737 StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2738 if (!Builtin::evaluateRequiredTargetFeatures( 2739 FeatureList, CallerFeatureMap) && !IsHipStdPar) { 2740 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2741 << TargetDecl->getDeclName() 2742 << FeatureList; 2743 } 2744 } else if (!TargetDecl->isMultiVersion() && 2745 TargetDecl->hasAttr<TargetAttr>()) { 2746 // Get the required features for the callee. 2747 2748 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2749 ParsedTargetAttr ParsedAttr = 2750 CGM.getContext().filterFunctionTargetAttrs(TD); 2751 2752 SmallVector<StringRef, 1> ReqFeatures; 2753 llvm::StringMap<bool> CalleeFeatureMap; 2754 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2755 2756 for (const auto &F : ParsedAttr.Features) { 2757 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2758 ReqFeatures.push_back(StringRef(F).substr(1)); 2759 } 2760 2761 for (const auto &F : CalleeFeatureMap) { 2762 // Only positive features are "required". 2763 if (F.getValue()) 2764 ReqFeatures.push_back(F.getKey()); 2765 } 2766 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2767 if (!CallerFeatureMap.lookup(Feature)) { 2768 MissingFeature = Feature.str(); 2769 return false; 2770 } 2771 return true; 2772 }) && !IsHipStdPar) 2773 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2774 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2775 } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) { 2776 llvm::StringMap<bool> CalleeFeatureMap; 2777 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2778 2779 for (const auto &F : CalleeFeatureMap) { 2780 if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) || 2781 !CallerFeatureMap.find(F.getKey())->getValue()) && 2782 !IsHipStdPar) 2783 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2784 << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey(); 2785 } 2786 } 2787 } 2788 2789 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2790 if (!CGM.getCodeGenOpts().SanitizeStats) 2791 return; 2792 2793 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2794 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2795 CGM.getSanStats().create(IRB, SSK); 2796 } 2797 2798 void CodeGenFunction::EmitKCFIOperandBundle( 2799 const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) { 2800 const FunctionProtoType *FP = 2801 Callee.getAbstractInfo().getCalleeFunctionProtoType(); 2802 if (FP) 2803 Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar())); 2804 } 2805 2806 llvm::Value *CodeGenFunction::FormAArch64ResolverCondition( 2807 const MultiVersionResolverOption &RO) { 2808 llvm::SmallVector<StringRef, 8> CondFeatures; 2809 for (const StringRef &Feature : RO.Conditions.Features) 2810 CondFeatures.push_back(Feature); 2811 if (!CondFeatures.empty()) { 2812 return EmitAArch64CpuSupports(CondFeatures); 2813 } 2814 return nullptr; 2815 } 2816 2817 llvm::Value *CodeGenFunction::FormX86ResolverCondition( 2818 const MultiVersionResolverOption &RO) { 2819 llvm::Value *Condition = nullptr; 2820 2821 if (!RO.Conditions.Architecture.empty()) { 2822 StringRef Arch = RO.Conditions.Architecture; 2823 // If arch= specifies an x86-64 micro-architecture level, test the feature 2824 // with __builtin_cpu_supports, otherwise use __builtin_cpu_is. 2825 if (Arch.starts_with("x86-64")) 2826 Condition = EmitX86CpuSupports({Arch}); 2827 else 2828 Condition = EmitX86CpuIs(Arch); 2829 } 2830 2831 if (!RO.Conditions.Features.empty()) { 2832 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2833 Condition = 2834 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2835 } 2836 return Condition; 2837 } 2838 2839 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2840 llvm::Function *Resolver, 2841 CGBuilderTy &Builder, 2842 llvm::Function *FuncToReturn, 2843 bool SupportsIFunc) { 2844 if (SupportsIFunc) { 2845 Builder.CreateRet(FuncToReturn); 2846 return; 2847 } 2848 2849 llvm::SmallVector<llvm::Value *, 10> Args( 2850 llvm::make_pointer_range(Resolver->args())); 2851 2852 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2853 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2854 2855 if (Resolver->getReturnType()->isVoidTy()) 2856 Builder.CreateRetVoid(); 2857 else 2858 Builder.CreateRet(Result); 2859 } 2860 2861 void CodeGenFunction::EmitMultiVersionResolver( 2862 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2863 2864 llvm::Triple::ArchType ArchType = 2865 getContext().getTargetInfo().getTriple().getArch(); 2866 2867 switch (ArchType) { 2868 case llvm::Triple::x86: 2869 case llvm::Triple::x86_64: 2870 EmitX86MultiVersionResolver(Resolver, Options); 2871 return; 2872 case llvm::Triple::aarch64: 2873 EmitAArch64MultiVersionResolver(Resolver, Options); 2874 return; 2875 2876 default: 2877 assert(false && "Only implemented for x86 and AArch64 targets"); 2878 } 2879 } 2880 2881 void CodeGenFunction::EmitAArch64MultiVersionResolver( 2882 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2883 assert(!Options.empty() && "No multiversion resolver options found"); 2884 assert(Options.back().Conditions.Features.size() == 0 && 2885 "Default case must be last"); 2886 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2887 assert(SupportsIFunc && 2888 "Multiversion resolver requires target IFUNC support"); 2889 bool AArch64CpuInitialized = false; 2890 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2891 2892 for (const MultiVersionResolverOption &RO : Options) { 2893 Builder.SetInsertPoint(CurBlock); 2894 llvm::Value *Condition = FormAArch64ResolverCondition(RO); 2895 2896 // The 'default' or 'all features enabled' case. 2897 if (!Condition) { 2898 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2899 SupportsIFunc); 2900 return; 2901 } 2902 2903 if (!AArch64CpuInitialized) { 2904 Builder.SetInsertPoint(CurBlock, CurBlock->begin()); 2905 EmitAArch64CpuInit(); 2906 AArch64CpuInitialized = true; 2907 Builder.SetInsertPoint(CurBlock); 2908 } 2909 2910 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2911 CGBuilderTy RetBuilder(*this, RetBlock); 2912 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2913 SupportsIFunc); 2914 CurBlock = createBasicBlock("resolver_else", Resolver); 2915 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2916 } 2917 2918 // If no default, emit an unreachable. 2919 Builder.SetInsertPoint(CurBlock); 2920 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2921 TrapCall->setDoesNotReturn(); 2922 TrapCall->setDoesNotThrow(); 2923 Builder.CreateUnreachable(); 2924 Builder.ClearInsertionPoint(); 2925 } 2926 2927 void CodeGenFunction::EmitX86MultiVersionResolver( 2928 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2929 2930 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2931 2932 // Main function's basic block. 2933 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2934 Builder.SetInsertPoint(CurBlock); 2935 EmitX86CpuInit(); 2936 2937 for (const MultiVersionResolverOption &RO : Options) { 2938 Builder.SetInsertPoint(CurBlock); 2939 llvm::Value *Condition = FormX86ResolverCondition(RO); 2940 2941 // The 'default' or 'generic' case. 2942 if (!Condition) { 2943 assert(&RO == Options.end() - 1 && 2944 "Default or Generic case must be last"); 2945 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2946 SupportsIFunc); 2947 return; 2948 } 2949 2950 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2951 CGBuilderTy RetBuilder(*this, RetBlock); 2952 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2953 SupportsIFunc); 2954 CurBlock = createBasicBlock("resolver_else", Resolver); 2955 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2956 } 2957 2958 // If no generic/default, emit an unreachable. 2959 Builder.SetInsertPoint(CurBlock); 2960 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2961 TrapCall->setDoesNotReturn(); 2962 TrapCall->setDoesNotThrow(); 2963 Builder.CreateUnreachable(); 2964 Builder.ClearInsertionPoint(); 2965 } 2966 2967 // Loc - where the diagnostic will point, where in the source code this 2968 // alignment has failed. 2969 // SecondaryLoc - if present (will be present if sufficiently different from 2970 // Loc), the diagnostic will additionally point a "Note:" to this location. 2971 // It should be the location where the __attribute__((assume_aligned)) 2972 // was written e.g. 2973 void CodeGenFunction::emitAlignmentAssumptionCheck( 2974 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2975 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2976 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2977 llvm::Instruction *Assumption) { 2978 assert(isa_and_nonnull<llvm::CallInst>(Assumption) && 2979 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2980 llvm::Intrinsic::getDeclaration( 2981 Builder.GetInsertBlock()->getParent()->getParent(), 2982 llvm::Intrinsic::assume) && 2983 "Assumption should be a call to llvm.assume()."); 2984 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2985 "Assumption should be the last instruction of the basic block, " 2986 "since the basic block is still being generated."); 2987 2988 if (!SanOpts.has(SanitizerKind::Alignment)) 2989 return; 2990 2991 // Don't check pointers to volatile data. The behavior here is implementation- 2992 // defined. 2993 if (Ty->getPointeeType().isVolatileQualified()) 2994 return; 2995 2996 // We need to temorairly remove the assumption so we can insert the 2997 // sanitizer check before it, else the check will be dropped by optimizations. 2998 Assumption->removeFromParent(); 2999 3000 { 3001 SanitizerScope SanScope(this); 3002 3003 if (!OffsetValue) 3004 OffsetValue = Builder.getInt1(false); // no offset. 3005 3006 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 3007 EmitCheckSourceLocation(SecondaryLoc), 3008 EmitCheckTypeDescriptor(Ty)}; 3009 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 3010 EmitCheckValue(Alignment), 3011 EmitCheckValue(OffsetValue)}; 3012 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 3013 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 3014 } 3015 3016 // We are now in the (new, empty) "cont" basic block. 3017 // Reintroduce the assumption. 3018 Builder.Insert(Assumption); 3019 // FIXME: Assumption still has it's original basic block as it's Parent. 3020 } 3021 3022 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 3023 if (CGDebugInfo *DI = getDebugInfo()) 3024 return DI->SourceLocToDebugLoc(Location); 3025 3026 return llvm::DebugLoc(); 3027 } 3028 3029 llvm::Value * 3030 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 3031 Stmt::Likelihood LH) { 3032 switch (LH) { 3033 case Stmt::LH_None: 3034 return Cond; 3035 case Stmt::LH_Likely: 3036 case Stmt::LH_Unlikely: 3037 // Don't generate llvm.expect on -O0 as the backend won't use it for 3038 // anything. 3039 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 3040 return Cond; 3041 llvm::Type *CondTy = Cond->getType(); 3042 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 3043 llvm::Function *FnExpect = 3044 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 3045 llvm::Value *ExpectedValueOfCond = 3046 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 3047 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 3048 Cond->getName() + ".expval"); 3049 } 3050 llvm_unreachable("Unknown Likelihood"); 3051 } 3052 3053 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec, 3054 unsigned NumElementsDst, 3055 const llvm::Twine &Name) { 3056 auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType()); 3057 unsigned NumElementsSrc = SrcTy->getNumElements(); 3058 if (NumElementsSrc == NumElementsDst) 3059 return SrcVec; 3060 3061 std::vector<int> ShuffleMask(NumElementsDst, -1); 3062 for (unsigned MaskIdx = 0; 3063 MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx) 3064 ShuffleMask[MaskIdx] = MaskIdx; 3065 3066 return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name); 3067 } 3068 3069 void CodeGenFunction::EmitPointerAuthOperandBundle( 3070 const CGPointerAuthInfo &PointerAuth, 3071 SmallVectorImpl<llvm::OperandBundleDef> &Bundles) { 3072 if (!PointerAuth.isSigned()) 3073 return; 3074 3075 auto *Key = Builder.getInt32(PointerAuth.getKey()); 3076 3077 llvm::Value *Discriminator = PointerAuth.getDiscriminator(); 3078 if (!Discriminator) 3079 Discriminator = Builder.getSize(0); 3080 3081 llvm::Value *Args[] = {Key, Discriminator}; 3082 Bundles.emplace_back("ptrauth", Args); 3083 } 3084 3085 static llvm::Value *EmitPointerAuthCommon(CodeGenFunction &CGF, 3086 const CGPointerAuthInfo &PointerAuth, 3087 llvm::Value *Pointer, 3088 unsigned IntrinsicID) { 3089 if (!PointerAuth) 3090 return Pointer; 3091 3092 auto Key = CGF.Builder.getInt32(PointerAuth.getKey()); 3093 3094 llvm::Value *Discriminator = PointerAuth.getDiscriminator(); 3095 if (!Discriminator) { 3096 Discriminator = CGF.Builder.getSize(0); 3097 } 3098 3099 // Convert the pointer to intptr_t before signing it. 3100 auto OrigType = Pointer->getType(); 3101 Pointer = CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy); 3102 3103 // call i64 @llvm.ptrauth.sign.i64(i64 %pointer, i32 %key, i64 %discriminator) 3104 auto Intrinsic = CGF.CGM.getIntrinsic(IntrinsicID); 3105 Pointer = CGF.EmitRuntimeCall(Intrinsic, {Pointer, Key, Discriminator}); 3106 3107 // Convert back to the original type. 3108 Pointer = CGF.Builder.CreateIntToPtr(Pointer, OrigType); 3109 return Pointer; 3110 } 3111 3112 llvm::Value * 3113 CodeGenFunction::EmitPointerAuthSign(const CGPointerAuthInfo &PointerAuth, 3114 llvm::Value *Pointer) { 3115 if (!PointerAuth.shouldSign()) 3116 return Pointer; 3117 return EmitPointerAuthCommon(*this, PointerAuth, Pointer, 3118 llvm::Intrinsic::ptrauth_sign); 3119 } 3120 3121 static llvm::Value *EmitStrip(CodeGenFunction &CGF, 3122 const CGPointerAuthInfo &PointerAuth, 3123 llvm::Value *Pointer) { 3124 auto StripIntrinsic = CGF.CGM.getIntrinsic(llvm::Intrinsic::ptrauth_strip); 3125 3126 auto Key = CGF.Builder.getInt32(PointerAuth.getKey()); 3127 // Convert the pointer to intptr_t before signing it. 3128 auto OrigType = Pointer->getType(); 3129 Pointer = CGF.EmitRuntimeCall( 3130 StripIntrinsic, {CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy), Key}); 3131 return CGF.Builder.CreateIntToPtr(Pointer, OrigType); 3132 } 3133 3134 llvm::Value * 3135 CodeGenFunction::EmitPointerAuthAuth(const CGPointerAuthInfo &PointerAuth, 3136 llvm::Value *Pointer) { 3137 if (PointerAuth.shouldStrip()) { 3138 return EmitStrip(*this, PointerAuth, Pointer); 3139 } 3140 if (!PointerAuth.shouldAuth()) { 3141 return Pointer; 3142 } 3143 3144 return EmitPointerAuthCommon(*this, PointerAuth, Pointer, 3145 llvm::Intrinsic::ptrauth_auth); 3146 } 3147