xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision ab71bbb75a92412f6327ff152ebe638568e9021c)
1  //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This coordinates the per-function state used while generating code.
10  //
11  //===----------------------------------------------------------------------===//
12  
13  #include "CodeGenFunction.h"
14  #include "CGBlocks.h"
15  #include "CGCUDARuntime.h"
16  #include "CGCXXABI.h"
17  #include "CGCleanup.h"
18  #include "CGDebugInfo.h"
19  #include "CGOpenMPRuntime.h"
20  #include "CodeGenModule.h"
21  #include "CodeGenPGO.h"
22  #include "TargetInfo.h"
23  #include "clang/AST/ASTContext.h"
24  #include "clang/AST/ASTLambda.h"
25  #include "clang/AST/Attr.h"
26  #include "clang/AST/Decl.h"
27  #include "clang/AST/DeclCXX.h"
28  #include "clang/AST/Expr.h"
29  #include "clang/AST/StmtCXX.h"
30  #include "clang/AST/StmtObjC.h"
31  #include "clang/Basic/Builtins.h"
32  #include "clang/Basic/CodeGenOptions.h"
33  #include "clang/Basic/TargetInfo.h"
34  #include "clang/CodeGen/CGFunctionInfo.h"
35  #include "clang/Frontend/FrontendDiagnostic.h"
36  #include "llvm/ADT/ArrayRef.h"
37  #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
38  #include "llvm/IR/DataLayout.h"
39  #include "llvm/IR/Dominators.h"
40  #include "llvm/IR/FPEnv.h"
41  #include "llvm/IR/IntrinsicInst.h"
42  #include "llvm/IR/Intrinsics.h"
43  #include "llvm/IR/MDBuilder.h"
44  #include "llvm/IR/Operator.h"
45  #include "llvm/Support/CRC.h"
46  #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
47  #include "llvm/Transforms/Utils/PromoteMemToReg.h"
48  using namespace clang;
49  using namespace CodeGen;
50  
51  /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
52  /// markers.
53  static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
54                                        const LangOptions &LangOpts) {
55    if (CGOpts.DisableLifetimeMarkers)
56      return false;
57  
58    // Sanitizers may use markers.
59    if (CGOpts.SanitizeAddressUseAfterScope ||
60        LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
61        LangOpts.Sanitize.has(SanitizerKind::Memory))
62      return true;
63  
64    // For now, only in optimized builds.
65    return CGOpts.OptimizationLevel != 0;
66  }
67  
68  CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
69      : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
70        Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
71                CGBuilderInserterTy(this)),
72        SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
73        DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
74        ShouldEmitLifetimeMarkers(
75            shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
76    if (!suppressNewContext)
77      CGM.getCXXABI().getMangleContext().startNewFunction();
78    EHStack.setCGF(this);
79  
80    SetFastMathFlags(CurFPFeatures);
81    SetFPModel();
82  }
83  
84  CodeGenFunction::~CodeGenFunction() {
85    assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
86  
87    if (getLangOpts().OpenMP && CurFn)
88      CGM.getOpenMPRuntime().functionFinished(*this);
89  
90    // If we have an OpenMPIRBuilder we want to finalize functions (incl.
91    // outlining etc) at some point. Doing it once the function codegen is done
92    // seems to be a reasonable spot. We do it here, as opposed to the deletion
93    // time of the CodeGenModule, because we have to ensure the IR has not yet
94    // been "emitted" to the outside, thus, modifications are still sensible.
95    if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
96      CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
97  }
98  
99  // Map the LangOption for exception behavior into
100  // the corresponding enum in the IR.
101  llvm::fp::ExceptionBehavior
102  clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
103  
104    switch (Kind) {
105    case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
106    case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
107    case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
108    }
109    llvm_unreachable("Unsupported FP Exception Behavior");
110  }
111  
112  void CodeGenFunction::SetFPModel() {
113    llvm::RoundingMode RM = getLangOpts().getFPRoundingMode();
114    auto fpExceptionBehavior = ToConstrainedExceptMD(
115                                 getLangOpts().getFPExceptionMode());
116  
117    Builder.setDefaultConstrainedRounding(RM);
118    Builder.setDefaultConstrainedExcept(fpExceptionBehavior);
119    Builder.setIsFPConstrained(fpExceptionBehavior != llvm::fp::ebIgnore ||
120                               RM != llvm::RoundingMode::NearestTiesToEven);
121  }
122  
123  void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
124    llvm::FastMathFlags FMF;
125    FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
126    FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
127    FMF.setNoInfs(FPFeatures.getNoHonorInfs());
128    FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
129    FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
130    FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
131    FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
132    Builder.setFastMathFlags(FMF);
133  }
134  
135  CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
136                                                    const Expr *E)
137      : CGF(CGF) {
138    ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
139  }
140  
141  CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
142                                                    FPOptions FPFeatures)
143      : CGF(CGF) {
144    ConstructorHelper(FPFeatures);
145  }
146  
147  void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
148    OldFPFeatures = CGF.CurFPFeatures;
149    CGF.CurFPFeatures = FPFeatures;
150  
151    OldExcept = CGF.Builder.getDefaultConstrainedExcept();
152    OldRounding = CGF.Builder.getDefaultConstrainedRounding();
153  
154    if (OldFPFeatures == FPFeatures)
155      return;
156  
157    FMFGuard.emplace(CGF.Builder);
158  
159    llvm::RoundingMode NewRoundingBehavior =
160        static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode());
161    CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
162    auto NewExceptionBehavior =
163        ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
164            FPFeatures.getFPExceptionMode()));
165    CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
166  
167    CGF.SetFastMathFlags(FPFeatures);
168  
169    assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
170            isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
171            isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
172            (NewExceptionBehavior == llvm::fp::ebIgnore &&
173             NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
174           "FPConstrained should be enabled on entire function");
175  
176    auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
177      auto OldValue =
178          CGF.CurFn->getFnAttribute(Name).getValueAsBool();
179      auto NewValue = OldValue & Value;
180      if (OldValue != NewValue)
181        CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
182    };
183    mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
184    mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
185    mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
186    mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() &&
187                                           FPFeatures.getAllowReciprocal() &&
188                                           FPFeatures.getAllowApproxFunc() &&
189                                           FPFeatures.getNoSignedZero());
190  }
191  
192  CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
193    CGF.CurFPFeatures = OldFPFeatures;
194    CGF.Builder.setDefaultConstrainedExcept(OldExcept);
195    CGF.Builder.setDefaultConstrainedRounding(OldRounding);
196  }
197  
198  LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
199    LValueBaseInfo BaseInfo;
200    TBAAAccessInfo TBAAInfo;
201    CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
202    return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
203                            TBAAInfo);
204  }
205  
206  /// Given a value of type T* that may not be to a complete object,
207  /// construct an l-value with the natural pointee alignment of T.
208  LValue
209  CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
210    LValueBaseInfo BaseInfo;
211    TBAAAccessInfo TBAAInfo;
212    CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
213                                                  /* forPointeeType= */ true);
214    return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
215  }
216  
217  
218  llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
219    return CGM.getTypes().ConvertTypeForMem(T);
220  }
221  
222  llvm::Type *CodeGenFunction::ConvertType(QualType T) {
223    return CGM.getTypes().ConvertType(T);
224  }
225  
226  TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
227    type = type.getCanonicalType();
228    while (true) {
229      switch (type->getTypeClass()) {
230  #define TYPE(name, parent)
231  #define ABSTRACT_TYPE(name, parent)
232  #define NON_CANONICAL_TYPE(name, parent) case Type::name:
233  #define DEPENDENT_TYPE(name, parent) case Type::name:
234  #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
235  #include "clang/AST/TypeNodes.inc"
236        llvm_unreachable("non-canonical or dependent type in IR-generation");
237  
238      case Type::Auto:
239      case Type::DeducedTemplateSpecialization:
240        llvm_unreachable("undeduced type in IR-generation");
241  
242      // Various scalar types.
243      case Type::Builtin:
244      case Type::Pointer:
245      case Type::BlockPointer:
246      case Type::LValueReference:
247      case Type::RValueReference:
248      case Type::MemberPointer:
249      case Type::Vector:
250      case Type::ExtVector:
251      case Type::ConstantMatrix:
252      case Type::FunctionProto:
253      case Type::FunctionNoProto:
254      case Type::Enum:
255      case Type::ObjCObjectPointer:
256      case Type::Pipe:
257      case Type::ExtInt:
258        return TEK_Scalar;
259  
260      // Complexes.
261      case Type::Complex:
262        return TEK_Complex;
263  
264      // Arrays, records, and Objective-C objects.
265      case Type::ConstantArray:
266      case Type::IncompleteArray:
267      case Type::VariableArray:
268      case Type::Record:
269      case Type::ObjCObject:
270      case Type::ObjCInterface:
271        return TEK_Aggregate;
272  
273      // We operate on atomic values according to their underlying type.
274      case Type::Atomic:
275        type = cast<AtomicType>(type)->getValueType();
276        continue;
277      }
278      llvm_unreachable("unknown type kind!");
279    }
280  }
281  
282  llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
283    // For cleanliness, we try to avoid emitting the return block for
284    // simple cases.
285    llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
286  
287    if (CurBB) {
288      assert(!CurBB->getTerminator() && "Unexpected terminated block.");
289  
290      // We have a valid insert point, reuse it if it is empty or there are no
291      // explicit jumps to the return block.
292      if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
293        ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
294        delete ReturnBlock.getBlock();
295        ReturnBlock = JumpDest();
296      } else
297        EmitBlock(ReturnBlock.getBlock());
298      return llvm::DebugLoc();
299    }
300  
301    // Otherwise, if the return block is the target of a single direct
302    // branch then we can just put the code in that block instead. This
303    // cleans up functions which started with a unified return block.
304    if (ReturnBlock.getBlock()->hasOneUse()) {
305      llvm::BranchInst *BI =
306        dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
307      if (BI && BI->isUnconditional() &&
308          BI->getSuccessor(0) == ReturnBlock.getBlock()) {
309        // Record/return the DebugLoc of the simple 'return' expression to be used
310        // later by the actual 'ret' instruction.
311        llvm::DebugLoc Loc = BI->getDebugLoc();
312        Builder.SetInsertPoint(BI->getParent());
313        BI->eraseFromParent();
314        delete ReturnBlock.getBlock();
315        ReturnBlock = JumpDest();
316        return Loc;
317      }
318    }
319  
320    // FIXME: We are at an unreachable point, there is no reason to emit the block
321    // unless it has uses. However, we still need a place to put the debug
322    // region.end for now.
323  
324    EmitBlock(ReturnBlock.getBlock());
325    return llvm::DebugLoc();
326  }
327  
328  static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
329    if (!BB) return;
330    if (!BB->use_empty())
331      return CGF.CurFn->getBasicBlockList().push_back(BB);
332    delete BB;
333  }
334  
335  void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
336    assert(BreakContinueStack.empty() &&
337           "mismatched push/pop in break/continue stack!");
338  
339    bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
340      && NumSimpleReturnExprs == NumReturnExprs
341      && ReturnBlock.getBlock()->use_empty();
342    // Usually the return expression is evaluated before the cleanup
343    // code.  If the function contains only a simple return statement,
344    // such as a constant, the location before the cleanup code becomes
345    // the last useful breakpoint in the function, because the simple
346    // return expression will be evaluated after the cleanup code. To be
347    // safe, set the debug location for cleanup code to the location of
348    // the return statement.  Otherwise the cleanup code should be at the
349    // end of the function's lexical scope.
350    //
351    // If there are multiple branches to the return block, the branch
352    // instructions will get the location of the return statements and
353    // all will be fine.
354    if (CGDebugInfo *DI = getDebugInfo()) {
355      if (OnlySimpleReturnStmts)
356        DI->EmitLocation(Builder, LastStopPoint);
357      else
358        DI->EmitLocation(Builder, EndLoc);
359    }
360  
361    // Pop any cleanups that might have been associated with the
362    // parameters.  Do this in whatever block we're currently in; it's
363    // important to do this before we enter the return block or return
364    // edges will be *really* confused.
365    bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
366    bool HasOnlyLifetimeMarkers =
367        HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
368    bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
369    if (HasCleanups) {
370      // Make sure the line table doesn't jump back into the body for
371      // the ret after it's been at EndLoc.
372      Optional<ApplyDebugLocation> AL;
373      if (CGDebugInfo *DI = getDebugInfo()) {
374        if (OnlySimpleReturnStmts)
375          DI->EmitLocation(Builder, EndLoc);
376        else
377          // We may not have a valid end location. Try to apply it anyway, and
378          // fall back to an artificial location if needed.
379          AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
380      }
381  
382      PopCleanupBlocks(PrologueCleanupDepth);
383    }
384  
385    // Emit function epilog (to return).
386    llvm::DebugLoc Loc = EmitReturnBlock();
387  
388    if (ShouldInstrumentFunction()) {
389      if (CGM.getCodeGenOpts().InstrumentFunctions)
390        CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
391      if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
392        CurFn->addFnAttr("instrument-function-exit-inlined",
393                         "__cyg_profile_func_exit");
394    }
395  
396    // Emit debug descriptor for function end.
397    if (CGDebugInfo *DI = getDebugInfo())
398      DI->EmitFunctionEnd(Builder, CurFn);
399  
400    // Reset the debug location to that of the simple 'return' expression, if any
401    // rather than that of the end of the function's scope '}'.
402    ApplyDebugLocation AL(*this, Loc);
403    EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
404    EmitEndEHSpec(CurCodeDecl);
405  
406    assert(EHStack.empty() &&
407           "did not remove all scopes from cleanup stack!");
408  
409    // If someone did an indirect goto, emit the indirect goto block at the end of
410    // the function.
411    if (IndirectBranch) {
412      EmitBlock(IndirectBranch->getParent());
413      Builder.ClearInsertionPoint();
414    }
415  
416    // If some of our locals escaped, insert a call to llvm.localescape in the
417    // entry block.
418    if (!EscapedLocals.empty()) {
419      // Invert the map from local to index into a simple vector. There should be
420      // no holes.
421      SmallVector<llvm::Value *, 4> EscapeArgs;
422      EscapeArgs.resize(EscapedLocals.size());
423      for (auto &Pair : EscapedLocals)
424        EscapeArgs[Pair.second] = Pair.first;
425      llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
426          &CGM.getModule(), llvm::Intrinsic::localescape);
427      CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
428    }
429  
430    // Remove the AllocaInsertPt instruction, which is just a convenience for us.
431    llvm::Instruction *Ptr = AllocaInsertPt;
432    AllocaInsertPt = nullptr;
433    Ptr->eraseFromParent();
434  
435    // If someone took the address of a label but never did an indirect goto, we
436    // made a zero entry PHI node, which is illegal, zap it now.
437    if (IndirectBranch) {
438      llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
439      if (PN->getNumIncomingValues() == 0) {
440        PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
441        PN->eraseFromParent();
442      }
443    }
444  
445    EmitIfUsed(*this, EHResumeBlock);
446    EmitIfUsed(*this, TerminateLandingPad);
447    EmitIfUsed(*this, TerminateHandler);
448    EmitIfUsed(*this, UnreachableBlock);
449  
450    for (const auto &FuncletAndParent : TerminateFunclets)
451      EmitIfUsed(*this, FuncletAndParent.second);
452  
453    if (CGM.getCodeGenOpts().EmitDeclMetadata)
454      EmitDeclMetadata();
455  
456    for (const auto &R : DeferredReplacements) {
457      if (llvm::Value *Old = R.first) {
458        Old->replaceAllUsesWith(R.second);
459        cast<llvm::Instruction>(Old)->eraseFromParent();
460      }
461    }
462    DeferredReplacements.clear();
463  
464    // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
465    // PHIs if the current function is a coroutine. We don't do it for all
466    // functions as it may result in slight increase in numbers of instructions
467    // if compiled with no optimizations. We do it for coroutine as the lifetime
468    // of CleanupDestSlot alloca make correct coroutine frame building very
469    // difficult.
470    if (NormalCleanupDest.isValid() && isCoroutine()) {
471      llvm::DominatorTree DT(*CurFn);
472      llvm::PromoteMemToReg(
473          cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
474      NormalCleanupDest = Address::invalid();
475    }
476  
477    // Scan function arguments for vector width.
478    for (llvm::Argument &A : CurFn->args())
479      if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
480        LargestVectorWidth =
481            std::max((uint64_t)LargestVectorWidth,
482                     VT->getPrimitiveSizeInBits().getKnownMinSize());
483  
484    // Update vector width based on return type.
485    if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
486      LargestVectorWidth =
487          std::max((uint64_t)LargestVectorWidth,
488                   VT->getPrimitiveSizeInBits().getKnownMinSize());
489  
490    // Add the required-vector-width attribute. This contains the max width from:
491    // 1. min-vector-width attribute used in the source program.
492    // 2. Any builtins used that have a vector width specified.
493    // 3. Values passed in and out of inline assembly.
494    // 4. Width of vector arguments and return types for this function.
495    // 5. Width of vector aguments and return types for functions called by this
496    //    function.
497    CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
498  
499    // Add vscale attribute if appropriate.
500    if (getLangOpts().ArmSveVectorBits) {
501      unsigned VScale = getLangOpts().ArmSveVectorBits / 128;
502      CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(getLLVMContext(),
503                                                               VScale, VScale));
504    }
505  
506    // If we generated an unreachable return block, delete it now.
507    if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
508      Builder.ClearInsertionPoint();
509      ReturnBlock.getBlock()->eraseFromParent();
510    }
511    if (ReturnValue.isValid()) {
512      auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
513      if (RetAlloca && RetAlloca->use_empty()) {
514        RetAlloca->eraseFromParent();
515        ReturnValue = Address::invalid();
516      }
517    }
518  }
519  
520  /// ShouldInstrumentFunction - Return true if the current function should be
521  /// instrumented with __cyg_profile_func_* calls
522  bool CodeGenFunction::ShouldInstrumentFunction() {
523    if (!CGM.getCodeGenOpts().InstrumentFunctions &&
524        !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
525        !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
526      return false;
527    if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
528      return false;
529    return true;
530  }
531  
532  /// ShouldXRayInstrument - Return true if the current function should be
533  /// instrumented with XRay nop sleds.
534  bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
535    return CGM.getCodeGenOpts().XRayInstrumentFunctions;
536  }
537  
538  /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
539  /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
540  bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
541    return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
542           (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
543            CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
544                XRayInstrKind::Custom);
545  }
546  
547  bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
548    return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
549           (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
550            CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
551                XRayInstrKind::Typed);
552  }
553  
554  llvm::Constant *
555  CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
556                                              llvm::Constant *Addr) {
557    // Addresses stored in prologue data can't require run-time fixups and must
558    // be PC-relative. Run-time fixups are undesirable because they necessitate
559    // writable text segments, which are unsafe. And absolute addresses are
560    // undesirable because they break PIE mode.
561  
562    // Add a layer of indirection through a private global. Taking its address
563    // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
564    auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
565                                        /*isConstant=*/true,
566                                        llvm::GlobalValue::PrivateLinkage, Addr);
567  
568    // Create a PC-relative address.
569    auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
570    auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
571    auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
572    return (IntPtrTy == Int32Ty)
573               ? PCRelAsInt
574               : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
575  }
576  
577  llvm::Value *
578  CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
579                                            llvm::Value *EncodedAddr) {
580    // Reconstruct the address of the global.
581    auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
582    auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
583    auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
584    auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
585  
586    // Load the original pointer through the global.
587    return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
588                              "decoded_addr");
589  }
590  
591  void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
592                                                 llvm::Function *Fn)
593  {
594    if (!FD->hasAttr<OpenCLKernelAttr>())
595      return;
596  
597    llvm::LLVMContext &Context = getLLVMContext();
598  
599    CGM.GenOpenCLArgMetadata(Fn, FD, this);
600  
601    if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
602      QualType HintQTy = A->getTypeHint();
603      const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
604      bool IsSignedInteger =
605          HintQTy->isSignedIntegerType() ||
606          (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
607      llvm::Metadata *AttrMDArgs[] = {
608          llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
609              CGM.getTypes().ConvertType(A->getTypeHint()))),
610          llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
611              llvm::IntegerType::get(Context, 32),
612              llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
613      Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
614    }
615  
616    if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
617      llvm::Metadata *AttrMDArgs[] = {
618          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
619          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
620          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
621      Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
622    }
623  
624    if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
625      llvm::Metadata *AttrMDArgs[] = {
626          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
627          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
628          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
629      Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
630    }
631  
632    if (const OpenCLIntelReqdSubGroupSizeAttr *A =
633            FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
634      llvm::Metadata *AttrMDArgs[] = {
635          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
636      Fn->setMetadata("intel_reqd_sub_group_size",
637                      llvm::MDNode::get(Context, AttrMDArgs));
638    }
639  }
640  
641  /// Determine whether the function F ends with a return stmt.
642  static bool endsWithReturn(const Decl* F) {
643    const Stmt *Body = nullptr;
644    if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
645      Body = FD->getBody();
646    else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
647      Body = OMD->getBody();
648  
649    if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
650      auto LastStmt = CS->body_rbegin();
651      if (LastStmt != CS->body_rend())
652        return isa<ReturnStmt>(*LastStmt);
653    }
654    return false;
655  }
656  
657  void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
658    if (SanOpts.has(SanitizerKind::Thread)) {
659      Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
660      Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
661    }
662  }
663  
664  /// Check if the return value of this function requires sanitization.
665  bool CodeGenFunction::requiresReturnValueCheck() const {
666    return requiresReturnValueNullabilityCheck() ||
667           (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
668            CurCodeDecl->getAttr<ReturnsNonNullAttr>());
669  }
670  
671  static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
672    auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
673    if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
674        !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
675        (MD->getNumParams() != 1 && MD->getNumParams() != 2))
676      return false;
677  
678    if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
679      return false;
680  
681    if (MD->getNumParams() == 2) {
682      auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
683      if (!PT || !PT->isVoidPointerType() ||
684          !PT->getPointeeType().isConstQualified())
685        return false;
686    }
687  
688    return true;
689  }
690  
691  /// Return the UBSan prologue signature for \p FD if one is available.
692  static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
693                                              const FunctionDecl *FD) {
694    if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
695      if (!MD->isStatic())
696        return nullptr;
697    return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
698  }
699  
700  void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
701                                      llvm::Function *Fn,
702                                      const CGFunctionInfo &FnInfo,
703                                      const FunctionArgList &Args,
704                                      SourceLocation Loc,
705                                      SourceLocation StartLoc) {
706    assert(!CurFn &&
707           "Do not use a CodeGenFunction object for more than one function");
708  
709    const Decl *D = GD.getDecl();
710  
711    DidCallStackSave = false;
712    CurCodeDecl = D;
713    const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
714    if (FD && FD->usesSEHTry())
715      CurSEHParent = FD;
716    CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
717    FnRetTy = RetTy;
718    CurFn = Fn;
719    CurFnInfo = &FnInfo;
720    assert(CurFn->isDeclaration() && "Function already has body?");
721  
722    // If this function is ignored for any of the enabled sanitizers,
723    // disable the sanitizer for the function.
724    do {
725  #define SANITIZER(NAME, ID)                                                    \
726    if (SanOpts.empty())                                                         \
727      break;                                                                     \
728    if (SanOpts.has(SanitizerKind::ID))                                          \
729      if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
730        SanOpts.set(SanitizerKind::ID, false);
731  
732  #include "clang/Basic/Sanitizers.def"
733  #undef SANITIZER
734    } while (0);
735  
736    if (D) {
737      bool NoSanitizeCoverage = false;
738  
739      for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
740        // Apply the no_sanitize* attributes to SanOpts.
741        SanitizerMask mask = Attr->getMask();
742        SanOpts.Mask &= ~mask;
743        if (mask & SanitizerKind::Address)
744          SanOpts.set(SanitizerKind::KernelAddress, false);
745        if (mask & SanitizerKind::KernelAddress)
746          SanOpts.set(SanitizerKind::Address, false);
747        if (mask & SanitizerKind::HWAddress)
748          SanOpts.set(SanitizerKind::KernelHWAddress, false);
749        if (mask & SanitizerKind::KernelHWAddress)
750          SanOpts.set(SanitizerKind::HWAddress, false);
751  
752        // SanitizeCoverage is not handled by SanOpts.
753        if (Attr->hasCoverage())
754          NoSanitizeCoverage = true;
755      }
756  
757      if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
758        Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
759    }
760  
761    // Apply sanitizer attributes to the function.
762    if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
763      Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
764    if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
765      Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
766    if (SanOpts.has(SanitizerKind::MemTag))
767      Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
768    if (SanOpts.has(SanitizerKind::Thread))
769      Fn->addFnAttr(llvm::Attribute::SanitizeThread);
770    if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
771      Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
772    if (SanOpts.has(SanitizerKind::SafeStack))
773      Fn->addFnAttr(llvm::Attribute::SafeStack);
774    if (SanOpts.has(SanitizerKind::ShadowCallStack))
775      Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
776  
777    // Apply fuzzing attribute to the function.
778    if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
779      Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
780  
781    // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
782    // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
783    if (SanOpts.has(SanitizerKind::Thread)) {
784      if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
785        IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
786        if (OMD->getMethodFamily() == OMF_dealloc ||
787            OMD->getMethodFamily() == OMF_initialize ||
788            (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
789          markAsIgnoreThreadCheckingAtRuntime(Fn);
790        }
791      }
792    }
793  
794    // Ignore unrelated casts in STL allocate() since the allocator must cast
795    // from void* to T* before object initialization completes. Don't match on the
796    // namespace because not all allocators are in std::
797    if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
798      if (matchesStlAllocatorFn(D, getContext()))
799        SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
800    }
801  
802    // Ignore null checks in coroutine functions since the coroutines passes
803    // are not aware of how to move the extra UBSan instructions across the split
804    // coroutine boundaries.
805    if (D && SanOpts.has(SanitizerKind::Null))
806      if (FD && FD->getBody() &&
807          FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
808        SanOpts.Mask &= ~SanitizerKind::Null;
809  
810    // Apply xray attributes to the function (as a string, for now)
811    bool AlwaysXRayAttr = false;
812    if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
813      if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
814              XRayInstrKind::FunctionEntry) ||
815          CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
816              XRayInstrKind::FunctionExit)) {
817        if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
818          Fn->addFnAttr("function-instrument", "xray-always");
819          AlwaysXRayAttr = true;
820        }
821        if (XRayAttr->neverXRayInstrument())
822          Fn->addFnAttr("function-instrument", "xray-never");
823        if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
824          if (ShouldXRayInstrumentFunction())
825            Fn->addFnAttr("xray-log-args",
826                          llvm::utostr(LogArgs->getArgumentCount()));
827      }
828    } else {
829      if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
830        Fn->addFnAttr(
831            "xray-instruction-threshold",
832            llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
833    }
834  
835    if (ShouldXRayInstrumentFunction()) {
836      if (CGM.getCodeGenOpts().XRayIgnoreLoops)
837        Fn->addFnAttr("xray-ignore-loops");
838  
839      if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
840              XRayInstrKind::FunctionExit))
841        Fn->addFnAttr("xray-skip-exit");
842  
843      if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
844              XRayInstrKind::FunctionEntry))
845        Fn->addFnAttr("xray-skip-entry");
846  
847      auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
848      if (FuncGroups > 1) {
849        auto FuncName = llvm::makeArrayRef<uint8_t>(
850            CurFn->getName().bytes_begin(), CurFn->getName().bytes_end());
851        auto Group = crc32(FuncName) % FuncGroups;
852        if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
853            !AlwaysXRayAttr)
854          Fn->addFnAttr("function-instrument", "xray-never");
855      }
856    }
857  
858    if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone)
859      if (CGM.isProfileInstrExcluded(Fn, Loc))
860        Fn->addFnAttr(llvm::Attribute::NoProfile);
861  
862    unsigned Count, Offset;
863    if (const auto *Attr =
864            D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
865      Count = Attr->getCount();
866      Offset = Attr->getOffset();
867    } else {
868      Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
869      Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
870    }
871    if (Count && Offset <= Count) {
872      Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
873      if (Offset)
874        Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
875    }
876  
877    // Add no-jump-tables value.
878    if (CGM.getCodeGenOpts().NoUseJumpTables)
879      Fn->addFnAttr("no-jump-tables", "true");
880  
881    // Add no-inline-line-tables value.
882    if (CGM.getCodeGenOpts().NoInlineLineTables)
883      Fn->addFnAttr("no-inline-line-tables");
884  
885    // Add profile-sample-accurate value.
886    if (CGM.getCodeGenOpts().ProfileSampleAccurate)
887      Fn->addFnAttr("profile-sample-accurate");
888  
889    if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
890      Fn->addFnAttr("use-sample-profile");
891  
892    if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
893      Fn->addFnAttr("cfi-canonical-jump-table");
894  
895    if (D && D->hasAttr<NoProfileFunctionAttr>())
896      Fn->addFnAttr(llvm::Attribute::NoProfile);
897  
898    if (FD && getLangOpts().OpenCL) {
899      // Add metadata for a kernel function.
900      EmitOpenCLKernelMetadata(FD, Fn);
901    }
902  
903    // If we are checking function types, emit a function type signature as
904    // prologue data.
905    if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
906      if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
907        // Remove any (C++17) exception specifications, to allow calling e.g. a
908        // noexcept function through a non-noexcept pointer.
909        auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec(
910            FD->getType(), EST_None);
911        llvm::Constant *FTRTTIConst =
912            CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
913        llvm::Constant *FTRTTIConstEncoded =
914            EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
915        llvm::Constant *PrologueStructElems[] = {PrologueSig, FTRTTIConstEncoded};
916        llvm::Constant *PrologueStructConst =
917            llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
918        Fn->setPrologueData(PrologueStructConst);
919      }
920    }
921  
922    // If we're checking nullability, we need to know whether we can check the
923    // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
924    if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
925      auto Nullability = FnRetTy->getNullability(getContext());
926      if (Nullability && *Nullability == NullabilityKind::NonNull) {
927        if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
928              CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
929          RetValNullabilityPrecondition =
930              llvm::ConstantInt::getTrue(getLLVMContext());
931      }
932    }
933  
934    // If we're in C++ mode and the function name is "main", it is guaranteed
935    // to be norecurse by the standard (3.6.1.3 "The function main shall not be
936    // used within a program").
937    //
938    // OpenCL C 2.0 v2.2-11 s6.9.i:
939    //     Recursion is not supported.
940    //
941    // SYCL v1.2.1 s3.10:
942    //     kernels cannot include RTTI information, exception classes,
943    //     recursive code, virtual functions or make use of C++ libraries that
944    //     are not compiled for the device.
945    if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
946               getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
947               (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
948      Fn->addFnAttr(llvm::Attribute::NoRecurse);
949  
950    if (FD) {
951      Builder.setIsFPConstrained(FD->hasAttr<StrictFPAttr>());
952      if (FD->hasAttr<StrictFPAttr>())
953        Fn->addFnAttr(llvm::Attribute::StrictFP);
954    }
955  
956    // If a custom alignment is used, force realigning to this alignment on
957    // any main function which certainly will need it.
958    if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
959               CGM.getCodeGenOpts().StackAlignment))
960      Fn->addFnAttr("stackrealign");
961  
962    llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
963  
964    // Create a marker to make it easy to insert allocas into the entryblock
965    // later.  Don't create this with the builder, because we don't want it
966    // folded.
967    llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
968    AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
969  
970    ReturnBlock = getJumpDestInCurrentScope("return");
971  
972    Builder.SetInsertPoint(EntryBB);
973  
974    // If we're checking the return value, allocate space for a pointer to a
975    // precise source location of the checked return statement.
976    if (requiresReturnValueCheck()) {
977      ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
978      InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
979    }
980  
981    // Emit subprogram debug descriptor.
982    if (CGDebugInfo *DI = getDebugInfo()) {
983      // Reconstruct the type from the argument list so that implicit parameters,
984      // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
985      // convention.
986      CallingConv CC = CallingConv::CC_C;
987      if (FD)
988        if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
989          CC = SrcFnTy->getCallConv();
990      SmallVector<QualType, 16> ArgTypes;
991      for (const VarDecl *VD : Args)
992        ArgTypes.push_back(VD->getType());
993      QualType FnType = getContext().getFunctionType(
994          RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
995      DI->emitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk);
996    }
997  
998    if (ShouldInstrumentFunction()) {
999      if (CGM.getCodeGenOpts().InstrumentFunctions)
1000        CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1001      if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1002        CurFn->addFnAttr("instrument-function-entry-inlined",
1003                         "__cyg_profile_func_enter");
1004      if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1005        CurFn->addFnAttr("instrument-function-entry-inlined",
1006                         "__cyg_profile_func_enter_bare");
1007    }
1008  
1009    // Since emitting the mcount call here impacts optimizations such as function
1010    // inlining, we just add an attribute to insert a mcount call in backend.
1011    // The attribute "counting-function" is set to mcount function name which is
1012    // architecture dependent.
1013    if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1014      // Calls to fentry/mcount should not be generated if function has
1015      // the no_instrument_function attribute.
1016      if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1017        if (CGM.getCodeGenOpts().CallFEntry)
1018          Fn->addFnAttr("fentry-call", "true");
1019        else {
1020          Fn->addFnAttr("instrument-function-entry-inlined",
1021                        getTarget().getMCountName());
1022        }
1023        if (CGM.getCodeGenOpts().MNopMCount) {
1024          if (!CGM.getCodeGenOpts().CallFEntry)
1025            CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1026              << "-mnop-mcount" << "-mfentry";
1027          Fn->addFnAttr("mnop-mcount");
1028        }
1029  
1030        if (CGM.getCodeGenOpts().RecordMCount) {
1031          if (!CGM.getCodeGenOpts().CallFEntry)
1032            CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1033              << "-mrecord-mcount" << "-mfentry";
1034          Fn->addFnAttr("mrecord-mcount");
1035        }
1036      }
1037    }
1038  
1039    if (CGM.getCodeGenOpts().PackedStack) {
1040      if (getContext().getTargetInfo().getTriple().getArch() !=
1041          llvm::Triple::systemz)
1042        CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1043          << "-mpacked-stack";
1044      Fn->addFnAttr("packed-stack");
1045    }
1046  
1047    if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX)
1048      Fn->addFnAttr("warn-stack-size",
1049                    std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1050  
1051    if (RetTy->isVoidType()) {
1052      // Void type; nothing to return.
1053      ReturnValue = Address::invalid();
1054  
1055      // Count the implicit return.
1056      if (!endsWithReturn(D))
1057        ++NumReturnExprs;
1058    } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1059      // Indirect return; emit returned value directly into sret slot.
1060      // This reduces code size, and affects correctness in C++.
1061      auto AI = CurFn->arg_begin();
1062      if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1063        ++AI;
1064      ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1065      if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1066        ReturnValuePointer =
1067            CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1068        Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1069                                ReturnValue.getPointer(), Int8PtrTy),
1070                            ReturnValuePointer);
1071      }
1072    } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1073               !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1074      // Load the sret pointer from the argument struct and return into that.
1075      unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1076      llvm::Function::arg_iterator EI = CurFn->arg_end();
1077      --EI;
1078      llvm::Value *Addr = Builder.CreateStructGEP(
1079          EI->getType()->getPointerElementType(), &*EI, Idx);
1080      llvm::Type *Ty =
1081          cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1082      ReturnValuePointer = Address(Addr, getPointerAlign());
1083      Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1084      ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy));
1085    } else {
1086      ReturnValue = CreateIRTemp(RetTy, "retval");
1087  
1088      // Tell the epilog emitter to autorelease the result.  We do this
1089      // now so that various specialized functions can suppress it
1090      // during their IR-generation.
1091      if (getLangOpts().ObjCAutoRefCount &&
1092          !CurFnInfo->isReturnsRetained() &&
1093          RetTy->isObjCRetainableType())
1094        AutoreleaseResult = true;
1095    }
1096  
1097    EmitStartEHSpec(CurCodeDecl);
1098  
1099    PrologueCleanupDepth = EHStack.stable_begin();
1100  
1101    // Emit OpenMP specific initialization of the device functions.
1102    if (getLangOpts().OpenMP && CurCodeDecl)
1103      CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1104  
1105    EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1106  
1107    if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1108      CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1109      const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1110      if (MD->getParent()->isLambda() &&
1111          MD->getOverloadedOperator() == OO_Call) {
1112        // We're in a lambda; figure out the captures.
1113        MD->getParent()->getCaptureFields(LambdaCaptureFields,
1114                                          LambdaThisCaptureField);
1115        if (LambdaThisCaptureField) {
1116          // If the lambda captures the object referred to by '*this' - either by
1117          // value or by reference, make sure CXXThisValue points to the correct
1118          // object.
1119  
1120          // Get the lvalue for the field (which is a copy of the enclosing object
1121          // or contains the address of the enclosing object).
1122          LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1123          if (!LambdaThisCaptureField->getType()->isPointerType()) {
1124            // If the enclosing object was captured by value, just use its address.
1125            CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1126          } else {
1127            // Load the lvalue pointed to by the field, since '*this' was captured
1128            // by reference.
1129            CXXThisValue =
1130                EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1131          }
1132        }
1133        for (auto *FD : MD->getParent()->fields()) {
1134          if (FD->hasCapturedVLAType()) {
1135            auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1136                                             SourceLocation()).getScalarVal();
1137            auto VAT = FD->getCapturedVLAType();
1138            VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1139          }
1140        }
1141      } else {
1142        // Not in a lambda; just use 'this' from the method.
1143        // FIXME: Should we generate a new load for each use of 'this'?  The
1144        // fast register allocator would be happier...
1145        CXXThisValue = CXXABIThisValue;
1146      }
1147  
1148      // Check the 'this' pointer once per function, if it's available.
1149      if (CXXABIThisValue) {
1150        SanitizerSet SkippedChecks;
1151        SkippedChecks.set(SanitizerKind::ObjectSize, true);
1152        QualType ThisTy = MD->getThisType();
1153  
1154        // If this is the call operator of a lambda with no capture-default, it
1155        // may have a static invoker function, which may call this operator with
1156        // a null 'this' pointer.
1157        if (isLambdaCallOperator(MD) &&
1158            MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1159          SkippedChecks.set(SanitizerKind::Null, true);
1160  
1161        EmitTypeCheck(
1162            isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1163            Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1164      }
1165    }
1166  
1167    // If any of the arguments have a variably modified type, make sure to
1168    // emit the type size.
1169    for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1170         i != e; ++i) {
1171      const VarDecl *VD = *i;
1172  
1173      // Dig out the type as written from ParmVarDecls; it's unclear whether
1174      // the standard (C99 6.9.1p10) requires this, but we're following the
1175      // precedent set by gcc.
1176      QualType Ty;
1177      if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1178        Ty = PVD->getOriginalType();
1179      else
1180        Ty = VD->getType();
1181  
1182      if (Ty->isVariablyModifiedType())
1183        EmitVariablyModifiedType(Ty);
1184    }
1185    // Emit a location at the end of the prologue.
1186    if (CGDebugInfo *DI = getDebugInfo())
1187      DI->EmitLocation(Builder, StartLoc);
1188  
1189    // TODO: Do we need to handle this in two places like we do with
1190    // target-features/target-cpu?
1191    if (CurFuncDecl)
1192      if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1193        LargestVectorWidth = VecWidth->getVectorWidth();
1194  }
1195  
1196  void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1197    incrementProfileCounter(Body);
1198    if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1199      EmitCompoundStmtWithoutScope(*S);
1200    else
1201      EmitStmt(Body);
1202  
1203    // This is checked after emitting the function body so we know if there
1204    // are any permitted infinite loops.
1205    if (checkIfFunctionMustProgress())
1206      CurFn->addFnAttr(llvm::Attribute::MustProgress);
1207  }
1208  
1209  /// When instrumenting to collect profile data, the counts for some blocks
1210  /// such as switch cases need to not include the fall-through counts, so
1211  /// emit a branch around the instrumentation code. When not instrumenting,
1212  /// this just calls EmitBlock().
1213  void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1214                                                 const Stmt *S) {
1215    llvm::BasicBlock *SkipCountBB = nullptr;
1216    if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1217      // When instrumenting for profiling, the fallthrough to certain
1218      // statements needs to skip over the instrumentation code so that we
1219      // get an accurate count.
1220      SkipCountBB = createBasicBlock("skipcount");
1221      EmitBranch(SkipCountBB);
1222    }
1223    EmitBlock(BB);
1224    uint64_t CurrentCount = getCurrentProfileCount();
1225    incrementProfileCounter(S);
1226    setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1227    if (SkipCountBB)
1228      EmitBlock(SkipCountBB);
1229  }
1230  
1231  /// Tries to mark the given function nounwind based on the
1232  /// non-existence of any throwing calls within it.  We believe this is
1233  /// lightweight enough to do at -O0.
1234  static void TryMarkNoThrow(llvm::Function *F) {
1235    // LLVM treats 'nounwind' on a function as part of the type, so we
1236    // can't do this on functions that can be overwritten.
1237    if (F->isInterposable()) return;
1238  
1239    for (llvm::BasicBlock &BB : *F)
1240      for (llvm::Instruction &I : BB)
1241        if (I.mayThrow())
1242          return;
1243  
1244    F->setDoesNotThrow();
1245  }
1246  
1247  QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1248                                                 FunctionArgList &Args) {
1249    const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1250    QualType ResTy = FD->getReturnType();
1251  
1252    const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1253    if (MD && MD->isInstance()) {
1254      if (CGM.getCXXABI().HasThisReturn(GD))
1255        ResTy = MD->getThisType();
1256      else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1257        ResTy = CGM.getContext().VoidPtrTy;
1258      CGM.getCXXABI().buildThisParam(*this, Args);
1259    }
1260  
1261    // The base version of an inheriting constructor whose constructed base is a
1262    // virtual base is not passed any arguments (because it doesn't actually call
1263    // the inherited constructor).
1264    bool PassedParams = true;
1265    if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1266      if (auto Inherited = CD->getInheritedConstructor())
1267        PassedParams =
1268            getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1269  
1270    if (PassedParams) {
1271      for (auto *Param : FD->parameters()) {
1272        Args.push_back(Param);
1273        if (!Param->hasAttr<PassObjectSizeAttr>())
1274          continue;
1275  
1276        auto *Implicit = ImplicitParamDecl::Create(
1277            getContext(), Param->getDeclContext(), Param->getLocation(),
1278            /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1279        SizeArguments[Param] = Implicit;
1280        Args.push_back(Implicit);
1281      }
1282    }
1283  
1284    if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1285      CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1286  
1287    return ResTy;
1288  }
1289  
1290  void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1291                                     const CGFunctionInfo &FnInfo) {
1292    const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1293    CurGD = GD;
1294  
1295    FunctionArgList Args;
1296    QualType ResTy = BuildFunctionArgList(GD, Args);
1297  
1298    // Check if we should generate debug info for this function.
1299    if (FD->hasAttr<NoDebugAttr>()) {
1300      // Clear non-distinct debug info that was possibly attached to the function
1301      // due to an earlier declaration without the nodebug attribute
1302      if (Fn)
1303        Fn->setSubprogram(nullptr);
1304      // Disable debug info indefinitely for this function
1305      DebugInfo = nullptr;
1306    }
1307  
1308    // The function might not have a body if we're generating thunks for a
1309    // function declaration.
1310    SourceRange BodyRange;
1311    if (Stmt *Body = FD->getBody())
1312      BodyRange = Body->getSourceRange();
1313    else
1314      BodyRange = FD->getLocation();
1315    CurEHLocation = BodyRange.getEnd();
1316  
1317    // Use the location of the start of the function to determine where
1318    // the function definition is located. By default use the location
1319    // of the declaration as the location for the subprogram. A function
1320    // may lack a declaration in the source code if it is created by code
1321    // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1322    SourceLocation Loc = FD->getLocation();
1323  
1324    // If this is a function specialization then use the pattern body
1325    // as the location for the function.
1326    if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1327      if (SpecDecl->hasBody(SpecDecl))
1328        Loc = SpecDecl->getLocation();
1329  
1330    Stmt *Body = FD->getBody();
1331  
1332    if (Body) {
1333      // Coroutines always emit lifetime markers.
1334      if (isa<CoroutineBodyStmt>(Body))
1335        ShouldEmitLifetimeMarkers = true;
1336  
1337      // Initialize helper which will detect jumps which can cause invalid
1338      // lifetime markers.
1339      if (ShouldEmitLifetimeMarkers)
1340        Bypasses.Init(Body);
1341    }
1342  
1343    // Emit the standard function prologue.
1344    StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1345  
1346    // Save parameters for coroutine function.
1347    if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1348      for (const auto *ParamDecl : FD->parameters())
1349        FnArgs.push_back(ParamDecl);
1350  
1351    // Generate the body of the function.
1352    PGO.assignRegionCounters(GD, CurFn);
1353    if (isa<CXXDestructorDecl>(FD))
1354      EmitDestructorBody(Args);
1355    else if (isa<CXXConstructorDecl>(FD))
1356      EmitConstructorBody(Args);
1357    else if (getLangOpts().CUDA &&
1358             !getLangOpts().CUDAIsDevice &&
1359             FD->hasAttr<CUDAGlobalAttr>())
1360      CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1361    else if (isa<CXXMethodDecl>(FD) &&
1362             cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1363      // The lambda static invoker function is special, because it forwards or
1364      // clones the body of the function call operator (but is actually static).
1365      EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1366    } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1367               (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1368                cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1369      // Implicit copy-assignment gets the same special treatment as implicit
1370      // copy-constructors.
1371      emitImplicitAssignmentOperatorBody(Args);
1372    } else if (Body) {
1373      EmitFunctionBody(Body);
1374    } else
1375      llvm_unreachable("no definition for emitted function");
1376  
1377    // C++11 [stmt.return]p2:
1378    //   Flowing off the end of a function [...] results in undefined behavior in
1379    //   a value-returning function.
1380    // C11 6.9.1p12:
1381    //   If the '}' that terminates a function is reached, and the value of the
1382    //   function call is used by the caller, the behavior is undefined.
1383    if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1384        !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1385      bool ShouldEmitUnreachable =
1386          CGM.getCodeGenOpts().StrictReturn ||
1387          !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1388      if (SanOpts.has(SanitizerKind::Return)) {
1389        SanitizerScope SanScope(this);
1390        llvm::Value *IsFalse = Builder.getFalse();
1391        EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1392                  SanitizerHandler::MissingReturn,
1393                  EmitCheckSourceLocation(FD->getLocation()), None);
1394      } else if (ShouldEmitUnreachable) {
1395        if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1396          EmitTrapCall(llvm::Intrinsic::trap);
1397      }
1398      if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1399        Builder.CreateUnreachable();
1400        Builder.ClearInsertionPoint();
1401      }
1402    }
1403  
1404    // Emit the standard function epilogue.
1405    FinishFunction(BodyRange.getEnd());
1406  
1407    // If we haven't marked the function nothrow through other means, do
1408    // a quick pass now to see if we can.
1409    if (!CurFn->doesNotThrow())
1410      TryMarkNoThrow(CurFn);
1411  }
1412  
1413  /// ContainsLabel - Return true if the statement contains a label in it.  If
1414  /// this statement is not executed normally, it not containing a label means
1415  /// that we can just remove the code.
1416  bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1417    // Null statement, not a label!
1418    if (!S) return false;
1419  
1420    // If this is a label, we have to emit the code, consider something like:
1421    // if (0) {  ...  foo:  bar(); }  goto foo;
1422    //
1423    // TODO: If anyone cared, we could track __label__'s, since we know that you
1424    // can't jump to one from outside their declared region.
1425    if (isa<LabelStmt>(S))
1426      return true;
1427  
1428    // If this is a case/default statement, and we haven't seen a switch, we have
1429    // to emit the code.
1430    if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1431      return true;
1432  
1433    // If this is a switch statement, we want to ignore cases below it.
1434    if (isa<SwitchStmt>(S))
1435      IgnoreCaseStmts = true;
1436  
1437    // Scan subexpressions for verboten labels.
1438    for (const Stmt *SubStmt : S->children())
1439      if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1440        return true;
1441  
1442    return false;
1443  }
1444  
1445  /// containsBreak - Return true if the statement contains a break out of it.
1446  /// If the statement (recursively) contains a switch or loop with a break
1447  /// inside of it, this is fine.
1448  bool CodeGenFunction::containsBreak(const Stmt *S) {
1449    // Null statement, not a label!
1450    if (!S) return false;
1451  
1452    // If this is a switch or loop that defines its own break scope, then we can
1453    // include it and anything inside of it.
1454    if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1455        isa<ForStmt>(S))
1456      return false;
1457  
1458    if (isa<BreakStmt>(S))
1459      return true;
1460  
1461    // Scan subexpressions for verboten breaks.
1462    for (const Stmt *SubStmt : S->children())
1463      if (containsBreak(SubStmt))
1464        return true;
1465  
1466    return false;
1467  }
1468  
1469  bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1470    if (!S) return false;
1471  
1472    // Some statement kinds add a scope and thus never add a decl to the current
1473    // scope. Note, this list is longer than the list of statements that might
1474    // have an unscoped decl nested within them, but this way is conservatively
1475    // correct even if more statement kinds are added.
1476    if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1477        isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1478        isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1479        isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1480      return false;
1481  
1482    if (isa<DeclStmt>(S))
1483      return true;
1484  
1485    for (const Stmt *SubStmt : S->children())
1486      if (mightAddDeclToScope(SubStmt))
1487        return true;
1488  
1489    return false;
1490  }
1491  
1492  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1493  /// to a constant, or if it does but contains a label, return false.  If it
1494  /// constant folds return true and set the boolean result in Result.
1495  bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1496                                                     bool &ResultBool,
1497                                                     bool AllowLabels) {
1498    llvm::APSInt ResultInt;
1499    if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1500      return false;
1501  
1502    ResultBool = ResultInt.getBoolValue();
1503    return true;
1504  }
1505  
1506  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1507  /// to a constant, or if it does but contains a label, return false.  If it
1508  /// constant folds return true and set the folded value.
1509  bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1510                                                     llvm::APSInt &ResultInt,
1511                                                     bool AllowLabels) {
1512    // FIXME: Rename and handle conversion of other evaluatable things
1513    // to bool.
1514    Expr::EvalResult Result;
1515    if (!Cond->EvaluateAsInt(Result, getContext()))
1516      return false;  // Not foldable, not integer or not fully evaluatable.
1517  
1518    llvm::APSInt Int = Result.Val.getInt();
1519    if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1520      return false;  // Contains a label.
1521  
1522    ResultInt = Int;
1523    return true;
1524  }
1525  
1526  /// Determine whether the given condition is an instrumentable condition
1527  /// (i.e. no "&&" or "||").
1528  bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1529    // Bypass simplistic logical-NOT operator before determining whether the
1530    // condition contains any other logical operator.
1531    if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens()))
1532      if (UnOp->getOpcode() == UO_LNot)
1533        C = UnOp->getSubExpr();
1534  
1535    const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens());
1536    return (!BOp || !BOp->isLogicalOp());
1537  }
1538  
1539  /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1540  /// increments a profile counter based on the semantics of the given logical
1541  /// operator opcode.  This is used to instrument branch condition coverage for
1542  /// logical operators.
1543  void CodeGenFunction::EmitBranchToCounterBlock(
1544      const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1545      llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1546      Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1547    // If not instrumenting, just emit a branch.
1548    bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1549    if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1550      return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1551  
1552    llvm::BasicBlock *ThenBlock = NULL;
1553    llvm::BasicBlock *ElseBlock = NULL;
1554    llvm::BasicBlock *NextBlock = NULL;
1555  
1556    // Create the block we'll use to increment the appropriate counter.
1557    llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1558  
1559    // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1560    // means we need to evaluate the condition and increment the counter on TRUE:
1561    //
1562    // if (Cond)
1563    //   goto CounterIncrBlock;
1564    // else
1565    //   goto FalseBlock;
1566    //
1567    // CounterIncrBlock:
1568    //   Counter++;
1569    //   goto TrueBlock;
1570  
1571    if (LOp == BO_LAnd) {
1572      ThenBlock = CounterIncrBlock;
1573      ElseBlock = FalseBlock;
1574      NextBlock = TrueBlock;
1575    }
1576  
1577    // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1578    // we need to evaluate the condition and increment the counter on FALSE:
1579    //
1580    // if (Cond)
1581    //   goto TrueBlock;
1582    // else
1583    //   goto CounterIncrBlock;
1584    //
1585    // CounterIncrBlock:
1586    //   Counter++;
1587    //   goto FalseBlock;
1588  
1589    else if (LOp == BO_LOr) {
1590      ThenBlock = TrueBlock;
1591      ElseBlock = CounterIncrBlock;
1592      NextBlock = FalseBlock;
1593    } else {
1594      llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1595    }
1596  
1597    // Emit Branch based on condition.
1598    EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1599  
1600    // Emit the block containing the counter increment(s).
1601    EmitBlock(CounterIncrBlock);
1602  
1603    // Increment corresponding counter; if index not provided, use Cond as index.
1604    incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1605  
1606    // Go to the next block.
1607    EmitBranch(NextBlock);
1608  }
1609  
1610  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1611  /// statement) to the specified blocks.  Based on the condition, this might try
1612  /// to simplify the codegen of the conditional based on the branch.
1613  /// \param LH The value of the likelihood attribute on the True branch.
1614  void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1615                                             llvm::BasicBlock *TrueBlock,
1616                                             llvm::BasicBlock *FalseBlock,
1617                                             uint64_t TrueCount,
1618                                             Stmt::Likelihood LH) {
1619    Cond = Cond->IgnoreParens();
1620  
1621    if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1622  
1623      // Handle X && Y in a condition.
1624      if (CondBOp->getOpcode() == BO_LAnd) {
1625        // If we have "1 && X", simplify the code.  "0 && X" would have constant
1626        // folded if the case was simple enough.
1627        bool ConstantBool = false;
1628        if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1629            ConstantBool) {
1630          // br(1 && X) -> br(X).
1631          incrementProfileCounter(CondBOp);
1632          return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1633                                          FalseBlock, TrueCount, LH);
1634        }
1635  
1636        // If we have "X && 1", simplify the code to use an uncond branch.
1637        // "X && 0" would have been constant folded to 0.
1638        if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1639            ConstantBool) {
1640          // br(X && 1) -> br(X).
1641          return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1642                                          FalseBlock, TrueCount, LH, CondBOp);
1643        }
1644  
1645        // Emit the LHS as a conditional.  If the LHS conditional is false, we
1646        // want to jump to the FalseBlock.
1647        llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1648        // The counter tells us how often we evaluate RHS, and all of TrueCount
1649        // can be propagated to that branch.
1650        uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1651  
1652        ConditionalEvaluation eval(*this);
1653        {
1654          ApplyDebugLocation DL(*this, Cond);
1655          // Propagate the likelihood attribute like __builtin_expect
1656          // __builtin_expect(X && Y, 1) -> X and Y are likely
1657          // __builtin_expect(X && Y, 0) -> only Y is unlikely
1658          EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1659                               LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1660          EmitBlock(LHSTrue);
1661        }
1662  
1663        incrementProfileCounter(CondBOp);
1664        setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1665  
1666        // Any temporaries created here are conditional.
1667        eval.begin(*this);
1668        EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1669                                 FalseBlock, TrueCount, LH);
1670        eval.end(*this);
1671  
1672        return;
1673      }
1674  
1675      if (CondBOp->getOpcode() == BO_LOr) {
1676        // If we have "0 || X", simplify the code.  "1 || X" would have constant
1677        // folded if the case was simple enough.
1678        bool ConstantBool = false;
1679        if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1680            !ConstantBool) {
1681          // br(0 || X) -> br(X).
1682          incrementProfileCounter(CondBOp);
1683          return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1684                                          FalseBlock, TrueCount, LH);
1685        }
1686  
1687        // If we have "X || 0", simplify the code to use an uncond branch.
1688        // "X || 1" would have been constant folded to 1.
1689        if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1690            !ConstantBool) {
1691          // br(X || 0) -> br(X).
1692          return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1693                                          FalseBlock, TrueCount, LH, CondBOp);
1694        }
1695  
1696        // Emit the LHS as a conditional.  If the LHS conditional is true, we
1697        // want to jump to the TrueBlock.
1698        llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1699        // We have the count for entry to the RHS and for the whole expression
1700        // being true, so we can divy up True count between the short circuit and
1701        // the RHS.
1702        uint64_t LHSCount =
1703            getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1704        uint64_t RHSCount = TrueCount - LHSCount;
1705  
1706        ConditionalEvaluation eval(*this);
1707        {
1708          // Propagate the likelihood attribute like __builtin_expect
1709          // __builtin_expect(X || Y, 1) -> only Y is likely
1710          // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1711          ApplyDebugLocation DL(*this, Cond);
1712          EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1713                               LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1714          EmitBlock(LHSFalse);
1715        }
1716  
1717        incrementProfileCounter(CondBOp);
1718        setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1719  
1720        // Any temporaries created here are conditional.
1721        eval.begin(*this);
1722        EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1723                                 RHSCount, LH);
1724  
1725        eval.end(*this);
1726  
1727        return;
1728      }
1729    }
1730  
1731    if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1732      // br(!x, t, f) -> br(x, f, t)
1733      if (CondUOp->getOpcode() == UO_LNot) {
1734        // Negate the count.
1735        uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1736        // The values of the enum are chosen to make this negation possible.
1737        LH = static_cast<Stmt::Likelihood>(-LH);
1738        // Negate the condition and swap the destination blocks.
1739        return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1740                                    FalseCount, LH);
1741      }
1742    }
1743  
1744    if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1745      // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1746      llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1747      llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1748  
1749      // The ConditionalOperator itself has no likelihood information for its
1750      // true and false branches. This matches the behavior of __builtin_expect.
1751      ConditionalEvaluation cond(*this);
1752      EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1753                           getProfileCount(CondOp), Stmt::LH_None);
1754  
1755      // When computing PGO branch weights, we only know the overall count for
1756      // the true block. This code is essentially doing tail duplication of the
1757      // naive code-gen, introducing new edges for which counts are not
1758      // available. Divide the counts proportionally between the LHS and RHS of
1759      // the conditional operator.
1760      uint64_t LHSScaledTrueCount = 0;
1761      if (TrueCount) {
1762        double LHSRatio =
1763            getProfileCount(CondOp) / (double)getCurrentProfileCount();
1764        LHSScaledTrueCount = TrueCount * LHSRatio;
1765      }
1766  
1767      cond.begin(*this);
1768      EmitBlock(LHSBlock);
1769      incrementProfileCounter(CondOp);
1770      {
1771        ApplyDebugLocation DL(*this, Cond);
1772        EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1773                             LHSScaledTrueCount, LH);
1774      }
1775      cond.end(*this);
1776  
1777      cond.begin(*this);
1778      EmitBlock(RHSBlock);
1779      EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1780                           TrueCount - LHSScaledTrueCount, LH);
1781      cond.end(*this);
1782  
1783      return;
1784    }
1785  
1786    if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1787      // Conditional operator handling can give us a throw expression as a
1788      // condition for a case like:
1789      //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1790      // Fold this to:
1791      //   br(c, throw x, br(y, t, f))
1792      EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1793      return;
1794    }
1795  
1796    // Emit the code with the fully general case.
1797    llvm::Value *CondV;
1798    {
1799      ApplyDebugLocation DL(*this, Cond);
1800      CondV = EvaluateExprAsBool(Cond);
1801    }
1802  
1803    llvm::MDNode *Weights = nullptr;
1804    llvm::MDNode *Unpredictable = nullptr;
1805  
1806    // If the branch has a condition wrapped by __builtin_unpredictable,
1807    // create metadata that specifies that the branch is unpredictable.
1808    // Don't bother if not optimizing because that metadata would not be used.
1809    auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1810    if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1811      auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1812      if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1813        llvm::MDBuilder MDHelper(getLLVMContext());
1814        Unpredictable = MDHelper.createUnpredictable();
1815      }
1816    }
1817  
1818    // If there is a Likelihood knowledge for the cond, lower it.
1819    // Note that if not optimizing this won't emit anything.
1820    llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
1821    if (CondV != NewCondV)
1822      CondV = NewCondV;
1823    else {
1824      // Otherwise, lower profile counts. Note that we do this even at -O0.
1825      uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1826      Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
1827    }
1828  
1829    Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1830  }
1831  
1832  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1833  /// specified stmt yet.
1834  void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1835    CGM.ErrorUnsupported(S, Type);
1836  }
1837  
1838  /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1839  /// variable-length array whose elements have a non-zero bit-pattern.
1840  ///
1841  /// \param baseType the inner-most element type of the array
1842  /// \param src - a char* pointing to the bit-pattern for a single
1843  /// base element of the array
1844  /// \param sizeInChars - the total size of the VLA, in chars
1845  static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1846                                 Address dest, Address src,
1847                                 llvm::Value *sizeInChars) {
1848    CGBuilderTy &Builder = CGF.Builder;
1849  
1850    CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1851    llvm::Value *baseSizeInChars
1852      = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1853  
1854    Address begin =
1855      Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1856    llvm::Value *end = Builder.CreateInBoundsGEP(
1857        begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end");
1858  
1859    llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1860    llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1861    llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1862  
1863    // Make a loop over the VLA.  C99 guarantees that the VLA element
1864    // count must be nonzero.
1865    CGF.EmitBlock(loopBB);
1866  
1867    llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1868    cur->addIncoming(begin.getPointer(), originBB);
1869  
1870    CharUnits curAlign =
1871      dest.getAlignment().alignmentOfArrayElement(baseSize);
1872  
1873    // memcpy the individual element bit-pattern.
1874    Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1875                         /*volatile*/ false);
1876  
1877    // Go to the next element.
1878    llvm::Value *next =
1879      Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1880  
1881    // Leave if that's the end of the VLA.
1882    llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1883    Builder.CreateCondBr(done, contBB, loopBB);
1884    cur->addIncoming(next, loopBB);
1885  
1886    CGF.EmitBlock(contBB);
1887  }
1888  
1889  void
1890  CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1891    // Ignore empty classes in C++.
1892    if (getLangOpts().CPlusPlus) {
1893      if (const RecordType *RT = Ty->getAs<RecordType>()) {
1894        if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1895          return;
1896      }
1897    }
1898  
1899    // Cast the dest ptr to the appropriate i8 pointer type.
1900    if (DestPtr.getElementType() != Int8Ty)
1901      DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1902  
1903    // Get size and alignment info for this aggregate.
1904    CharUnits size = getContext().getTypeSizeInChars(Ty);
1905  
1906    llvm::Value *SizeVal;
1907    const VariableArrayType *vla;
1908  
1909    // Don't bother emitting a zero-byte memset.
1910    if (size.isZero()) {
1911      // But note that getTypeInfo returns 0 for a VLA.
1912      if (const VariableArrayType *vlaType =
1913            dyn_cast_or_null<VariableArrayType>(
1914                                            getContext().getAsArrayType(Ty))) {
1915        auto VlaSize = getVLASize(vlaType);
1916        SizeVal = VlaSize.NumElts;
1917        CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1918        if (!eltSize.isOne())
1919          SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1920        vla = vlaType;
1921      } else {
1922        return;
1923      }
1924    } else {
1925      SizeVal = CGM.getSize(size);
1926      vla = nullptr;
1927    }
1928  
1929    // If the type contains a pointer to data member we can't memset it to zero.
1930    // Instead, create a null constant and copy it to the destination.
1931    // TODO: there are other patterns besides zero that we can usefully memset,
1932    // like -1, which happens to be the pattern used by member-pointers.
1933    if (!CGM.getTypes().isZeroInitializable(Ty)) {
1934      // For a VLA, emit a single element, then splat that over the VLA.
1935      if (vla) Ty = getContext().getBaseElementType(vla);
1936  
1937      llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1938  
1939      llvm::GlobalVariable *NullVariable =
1940        new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1941                                 /*isConstant=*/true,
1942                                 llvm::GlobalVariable::PrivateLinkage,
1943                                 NullConstant, Twine());
1944      CharUnits NullAlign = DestPtr.getAlignment();
1945      NullVariable->setAlignment(NullAlign.getAsAlign());
1946      Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1947                     NullAlign);
1948  
1949      if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1950  
1951      // Get and call the appropriate llvm.memcpy overload.
1952      Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1953      return;
1954    }
1955  
1956    // Otherwise, just memset the whole thing to zero.  This is legal
1957    // because in LLVM, all default initializers (other than the ones we just
1958    // handled above) are guaranteed to have a bit pattern of all zeros.
1959    Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1960  }
1961  
1962  llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1963    // Make sure that there is a block for the indirect goto.
1964    if (!IndirectBranch)
1965      GetIndirectGotoBlock();
1966  
1967    llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1968  
1969    // Make sure the indirect branch includes all of the address-taken blocks.
1970    IndirectBranch->addDestination(BB);
1971    return llvm::BlockAddress::get(CurFn, BB);
1972  }
1973  
1974  llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1975    // If we already made the indirect branch for indirect goto, return its block.
1976    if (IndirectBranch) return IndirectBranch->getParent();
1977  
1978    CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1979  
1980    // Create the PHI node that indirect gotos will add entries to.
1981    llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1982                                                "indirect.goto.dest");
1983  
1984    // Create the indirect branch instruction.
1985    IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1986    return IndirectBranch->getParent();
1987  }
1988  
1989  /// Computes the length of an array in elements, as well as the base
1990  /// element type and a properly-typed first element pointer.
1991  llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1992                                                QualType &baseType,
1993                                                Address &addr) {
1994    const ArrayType *arrayType = origArrayType;
1995  
1996    // If it's a VLA, we have to load the stored size.  Note that
1997    // this is the size of the VLA in bytes, not its size in elements.
1998    llvm::Value *numVLAElements = nullptr;
1999    if (isa<VariableArrayType>(arrayType)) {
2000      numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2001  
2002      // Walk into all VLAs.  This doesn't require changes to addr,
2003      // which has type T* where T is the first non-VLA element type.
2004      do {
2005        QualType elementType = arrayType->getElementType();
2006        arrayType = getContext().getAsArrayType(elementType);
2007  
2008        // If we only have VLA components, 'addr' requires no adjustment.
2009        if (!arrayType) {
2010          baseType = elementType;
2011          return numVLAElements;
2012        }
2013      } while (isa<VariableArrayType>(arrayType));
2014  
2015      // We get out here only if we find a constant array type
2016      // inside the VLA.
2017    }
2018  
2019    // We have some number of constant-length arrays, so addr should
2020    // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2021    // down to the first element of addr.
2022    SmallVector<llvm::Value*, 8> gepIndices;
2023  
2024    // GEP down to the array type.
2025    llvm::ConstantInt *zero = Builder.getInt32(0);
2026    gepIndices.push_back(zero);
2027  
2028    uint64_t countFromCLAs = 1;
2029    QualType eltType;
2030  
2031    llvm::ArrayType *llvmArrayType =
2032      dyn_cast<llvm::ArrayType>(addr.getElementType());
2033    while (llvmArrayType) {
2034      assert(isa<ConstantArrayType>(arrayType));
2035      assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
2036               == llvmArrayType->getNumElements());
2037  
2038      gepIndices.push_back(zero);
2039      countFromCLAs *= llvmArrayType->getNumElements();
2040      eltType = arrayType->getElementType();
2041  
2042      llvmArrayType =
2043        dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2044      arrayType = getContext().getAsArrayType(arrayType->getElementType());
2045      assert((!llvmArrayType || arrayType) &&
2046             "LLVM and Clang types are out-of-synch");
2047    }
2048  
2049    if (arrayType) {
2050      // From this point onwards, the Clang array type has been emitted
2051      // as some other type (probably a packed struct). Compute the array
2052      // size, and just emit the 'begin' expression as a bitcast.
2053      while (arrayType) {
2054        countFromCLAs *=
2055            cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
2056        eltType = arrayType->getElementType();
2057        arrayType = getContext().getAsArrayType(eltType);
2058      }
2059  
2060      llvm::Type *baseType = ConvertType(eltType);
2061      addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
2062    } else {
2063      // Create the actual GEP.
2064      addr = Address(Builder.CreateInBoundsGEP(
2065          addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"),
2066          addr.getAlignment());
2067    }
2068  
2069    baseType = eltType;
2070  
2071    llvm::Value *numElements
2072      = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2073  
2074    // If we had any VLA dimensions, factor them in.
2075    if (numVLAElements)
2076      numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2077  
2078    return numElements;
2079  }
2080  
2081  CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2082    const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2083    assert(vla && "type was not a variable array type!");
2084    return getVLASize(vla);
2085  }
2086  
2087  CodeGenFunction::VlaSizePair
2088  CodeGenFunction::getVLASize(const VariableArrayType *type) {
2089    // The number of elements so far; always size_t.
2090    llvm::Value *numElements = nullptr;
2091  
2092    QualType elementType;
2093    do {
2094      elementType = type->getElementType();
2095      llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2096      assert(vlaSize && "no size for VLA!");
2097      assert(vlaSize->getType() == SizeTy);
2098  
2099      if (!numElements) {
2100        numElements = vlaSize;
2101      } else {
2102        // It's undefined behavior if this wraps around, so mark it that way.
2103        // FIXME: Teach -fsanitize=undefined to trap this.
2104        numElements = Builder.CreateNUWMul(numElements, vlaSize);
2105      }
2106    } while ((type = getContext().getAsVariableArrayType(elementType)));
2107  
2108    return { numElements, elementType };
2109  }
2110  
2111  CodeGenFunction::VlaSizePair
2112  CodeGenFunction::getVLAElements1D(QualType type) {
2113    const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2114    assert(vla && "type was not a variable array type!");
2115    return getVLAElements1D(vla);
2116  }
2117  
2118  CodeGenFunction::VlaSizePair
2119  CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2120    llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2121    assert(VlaSize && "no size for VLA!");
2122    assert(VlaSize->getType() == SizeTy);
2123    return { VlaSize, Vla->getElementType() };
2124  }
2125  
2126  void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2127    assert(type->isVariablyModifiedType() &&
2128           "Must pass variably modified type to EmitVLASizes!");
2129  
2130    EnsureInsertPoint();
2131  
2132    // We're going to walk down into the type and look for VLA
2133    // expressions.
2134    do {
2135      assert(type->isVariablyModifiedType());
2136  
2137      const Type *ty = type.getTypePtr();
2138      switch (ty->getTypeClass()) {
2139  
2140  #define TYPE(Class, Base)
2141  #define ABSTRACT_TYPE(Class, Base)
2142  #define NON_CANONICAL_TYPE(Class, Base)
2143  #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2144  #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2145  #include "clang/AST/TypeNodes.inc"
2146        llvm_unreachable("unexpected dependent type!");
2147  
2148      // These types are never variably-modified.
2149      case Type::Builtin:
2150      case Type::Complex:
2151      case Type::Vector:
2152      case Type::ExtVector:
2153      case Type::ConstantMatrix:
2154      case Type::Record:
2155      case Type::Enum:
2156      case Type::Elaborated:
2157      case Type::TemplateSpecialization:
2158      case Type::ObjCTypeParam:
2159      case Type::ObjCObject:
2160      case Type::ObjCInterface:
2161      case Type::ObjCObjectPointer:
2162      case Type::ExtInt:
2163        llvm_unreachable("type class is never variably-modified!");
2164  
2165      case Type::Adjusted:
2166        type = cast<AdjustedType>(ty)->getAdjustedType();
2167        break;
2168  
2169      case Type::Decayed:
2170        type = cast<DecayedType>(ty)->getPointeeType();
2171        break;
2172  
2173      case Type::Pointer:
2174        type = cast<PointerType>(ty)->getPointeeType();
2175        break;
2176  
2177      case Type::BlockPointer:
2178        type = cast<BlockPointerType>(ty)->getPointeeType();
2179        break;
2180  
2181      case Type::LValueReference:
2182      case Type::RValueReference:
2183        type = cast<ReferenceType>(ty)->getPointeeType();
2184        break;
2185  
2186      case Type::MemberPointer:
2187        type = cast<MemberPointerType>(ty)->getPointeeType();
2188        break;
2189  
2190      case Type::ConstantArray:
2191      case Type::IncompleteArray:
2192        // Losing element qualification here is fine.
2193        type = cast<ArrayType>(ty)->getElementType();
2194        break;
2195  
2196      case Type::VariableArray: {
2197        // Losing element qualification here is fine.
2198        const VariableArrayType *vat = cast<VariableArrayType>(ty);
2199  
2200        // Unknown size indication requires no size computation.
2201        // Otherwise, evaluate and record it.
2202        if (const Expr *size = vat->getSizeExpr()) {
2203          // It's possible that we might have emitted this already,
2204          // e.g. with a typedef and a pointer to it.
2205          llvm::Value *&entry = VLASizeMap[size];
2206          if (!entry) {
2207            llvm::Value *Size = EmitScalarExpr(size);
2208  
2209            // C11 6.7.6.2p5:
2210            //   If the size is an expression that is not an integer constant
2211            //   expression [...] each time it is evaluated it shall have a value
2212            //   greater than zero.
2213            if (SanOpts.has(SanitizerKind::VLABound) &&
2214                size->getType()->isSignedIntegerType()) {
2215              SanitizerScope SanScope(this);
2216              llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2217              llvm::Constant *StaticArgs[] = {
2218                  EmitCheckSourceLocation(size->getBeginLoc()),
2219                  EmitCheckTypeDescriptor(size->getType())};
2220              EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2221                                       SanitizerKind::VLABound),
2222                        SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2223            }
2224  
2225            // Always zexting here would be wrong if it weren't
2226            // undefined behavior to have a negative bound.
2227            entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2228          }
2229        }
2230        type = vat->getElementType();
2231        break;
2232      }
2233  
2234      case Type::FunctionProto:
2235      case Type::FunctionNoProto:
2236        type = cast<FunctionType>(ty)->getReturnType();
2237        break;
2238  
2239      case Type::Paren:
2240      case Type::TypeOf:
2241      case Type::UnaryTransform:
2242      case Type::Attributed:
2243      case Type::SubstTemplateTypeParm:
2244      case Type::MacroQualified:
2245        // Keep walking after single level desugaring.
2246        type = type.getSingleStepDesugaredType(getContext());
2247        break;
2248  
2249      case Type::Typedef:
2250      case Type::Decltype:
2251      case Type::Auto:
2252      case Type::DeducedTemplateSpecialization:
2253        // Stop walking: nothing to do.
2254        return;
2255  
2256      case Type::TypeOfExpr:
2257        // Stop walking: emit typeof expression.
2258        EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2259        return;
2260  
2261      case Type::Atomic:
2262        type = cast<AtomicType>(ty)->getValueType();
2263        break;
2264  
2265      case Type::Pipe:
2266        type = cast<PipeType>(ty)->getElementType();
2267        break;
2268      }
2269    } while (type->isVariablyModifiedType());
2270  }
2271  
2272  Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2273    if (getContext().getBuiltinVaListType()->isArrayType())
2274      return EmitPointerWithAlignment(E);
2275    return EmitLValue(E).getAddress(*this);
2276  }
2277  
2278  Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2279    return EmitLValue(E).getAddress(*this);
2280  }
2281  
2282  void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2283                                                const APValue &Init) {
2284    assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2285    if (CGDebugInfo *Dbg = getDebugInfo())
2286      if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2287        Dbg->EmitGlobalVariable(E->getDecl(), Init);
2288  }
2289  
2290  CodeGenFunction::PeepholeProtection
2291  CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2292    // At the moment, the only aggressive peephole we do in IR gen
2293    // is trunc(zext) folding, but if we add more, we can easily
2294    // extend this protection.
2295  
2296    if (!rvalue.isScalar()) return PeepholeProtection();
2297    llvm::Value *value = rvalue.getScalarVal();
2298    if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2299  
2300    // Just make an extra bitcast.
2301    assert(HaveInsertPoint());
2302    llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2303                                                    Builder.GetInsertBlock());
2304  
2305    PeepholeProtection protection;
2306    protection.Inst = inst;
2307    return protection;
2308  }
2309  
2310  void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2311    if (!protection.Inst) return;
2312  
2313    // In theory, we could try to duplicate the peepholes now, but whatever.
2314    protection.Inst->eraseFromParent();
2315  }
2316  
2317  void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2318                                                QualType Ty, SourceLocation Loc,
2319                                                SourceLocation AssumptionLoc,
2320                                                llvm::Value *Alignment,
2321                                                llvm::Value *OffsetValue) {
2322    if (Alignment->getType() != IntPtrTy)
2323      Alignment =
2324          Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2325    if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2326      OffsetValue =
2327          Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2328    llvm::Value *TheCheck = nullptr;
2329    if (SanOpts.has(SanitizerKind::Alignment)) {
2330      llvm::Value *PtrIntValue =
2331          Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2332  
2333      if (OffsetValue) {
2334        bool IsOffsetZero = false;
2335        if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2336          IsOffsetZero = CI->isZero();
2337  
2338        if (!IsOffsetZero)
2339          PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2340      }
2341  
2342      llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2343      llvm::Value *Mask =
2344          Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2345      llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2346      TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2347    }
2348    llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2349        CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2350  
2351    if (!SanOpts.has(SanitizerKind::Alignment))
2352      return;
2353    emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2354                                 OffsetValue, TheCheck, Assumption);
2355  }
2356  
2357  void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2358                                                const Expr *E,
2359                                                SourceLocation AssumptionLoc,
2360                                                llvm::Value *Alignment,
2361                                                llvm::Value *OffsetValue) {
2362    if (auto *CE = dyn_cast<CastExpr>(E))
2363      E = CE->getSubExprAsWritten();
2364    QualType Ty = E->getType();
2365    SourceLocation Loc = E->getExprLoc();
2366  
2367    emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2368                            OffsetValue);
2369  }
2370  
2371  llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2372                                                   llvm::Value *AnnotatedVal,
2373                                                   StringRef AnnotationStr,
2374                                                   SourceLocation Location,
2375                                                   const AnnotateAttr *Attr) {
2376    SmallVector<llvm::Value *, 5> Args = {
2377        AnnotatedVal,
2378        Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2379        Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2380        CGM.EmitAnnotationLineNo(Location),
2381    };
2382    if (Attr)
2383      Args.push_back(CGM.EmitAnnotationArgs(Attr));
2384    return Builder.CreateCall(AnnotationFn, Args);
2385  }
2386  
2387  void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2388    assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2389    // FIXME We create a new bitcast for every annotation because that's what
2390    // llvm-gcc was doing.
2391    for (const auto *I : D->specific_attrs<AnnotateAttr>())
2392      EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2393                         Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2394                         I->getAnnotation(), D->getLocation(), I);
2395  }
2396  
2397  Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2398                                                Address Addr) {
2399    assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2400    llvm::Value *V = Addr.getPointer();
2401    llvm::Type *VTy = V->getType();
2402    llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2403                                      CGM.Int8PtrTy);
2404  
2405    for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2406      // FIXME Always emit the cast inst so we can differentiate between
2407      // annotation on the first field of a struct and annotation on the struct
2408      // itself.
2409      if (VTy != CGM.Int8PtrTy)
2410        V = Builder.CreateBitCast(V, CGM.Int8PtrTy);
2411      V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2412      V = Builder.CreateBitCast(V, VTy);
2413    }
2414  
2415    return Address(V, Addr.getAlignment());
2416  }
2417  
2418  CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2419  
2420  CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2421      : CGF(CGF) {
2422    assert(!CGF->IsSanitizerScope);
2423    CGF->IsSanitizerScope = true;
2424  }
2425  
2426  CodeGenFunction::SanitizerScope::~SanitizerScope() {
2427    CGF->IsSanitizerScope = false;
2428  }
2429  
2430  void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2431                                     const llvm::Twine &Name,
2432                                     llvm::BasicBlock *BB,
2433                                     llvm::BasicBlock::iterator InsertPt) const {
2434    LoopStack.InsertHelper(I);
2435    if (IsSanitizerScope)
2436      CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2437  }
2438  
2439  void CGBuilderInserter::InsertHelper(
2440      llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2441      llvm::BasicBlock::iterator InsertPt) const {
2442    llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2443    if (CGF)
2444      CGF->InsertHelper(I, Name, BB, InsertPt);
2445  }
2446  
2447  // Emits an error if we don't have a valid set of target features for the
2448  // called function.
2449  void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2450                                            const FunctionDecl *TargetDecl) {
2451    return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2452  }
2453  
2454  // Emits an error if we don't have a valid set of target features for the
2455  // called function.
2456  void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2457                                            const FunctionDecl *TargetDecl) {
2458    // Early exit if this is an indirect call.
2459    if (!TargetDecl)
2460      return;
2461  
2462    // Get the current enclosing function if it exists. If it doesn't
2463    // we can't check the target features anyhow.
2464    const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2465    if (!FD)
2466      return;
2467  
2468    // Grab the required features for the call. For a builtin this is listed in
2469    // the td file with the default cpu, for an always_inline function this is any
2470    // listed cpu and any listed features.
2471    unsigned BuiltinID = TargetDecl->getBuiltinID();
2472    std::string MissingFeature;
2473    llvm::StringMap<bool> CallerFeatureMap;
2474    CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2475    if (BuiltinID) {
2476      StringRef FeatureList(
2477          CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2478      // Return if the builtin doesn't have any required features.
2479      if (FeatureList.empty())
2480        return;
2481      assert(FeatureList.find(' ') == StringRef::npos &&
2482             "Space in feature list");
2483      TargetFeatures TF(CallerFeatureMap);
2484      if (!TF.hasRequiredFeatures(FeatureList))
2485        CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2486            << TargetDecl->getDeclName() << FeatureList;
2487    } else if (!TargetDecl->isMultiVersion() &&
2488               TargetDecl->hasAttr<TargetAttr>()) {
2489      // Get the required features for the callee.
2490  
2491      const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2492      ParsedTargetAttr ParsedAttr =
2493          CGM.getContext().filterFunctionTargetAttrs(TD);
2494  
2495      SmallVector<StringRef, 1> ReqFeatures;
2496      llvm::StringMap<bool> CalleeFeatureMap;
2497      CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2498  
2499      for (const auto &F : ParsedAttr.Features) {
2500        if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2501          ReqFeatures.push_back(StringRef(F).substr(1));
2502      }
2503  
2504      for (const auto &F : CalleeFeatureMap) {
2505        // Only positive features are "required".
2506        if (F.getValue())
2507          ReqFeatures.push_back(F.getKey());
2508      }
2509      if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2510        if (!CallerFeatureMap.lookup(Feature)) {
2511          MissingFeature = Feature.str();
2512          return false;
2513        }
2514        return true;
2515      }))
2516        CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2517            << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2518    }
2519  }
2520  
2521  void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2522    if (!CGM.getCodeGenOpts().SanitizeStats)
2523      return;
2524  
2525    llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2526    IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2527    CGM.getSanStats().create(IRB, SSK);
2528  }
2529  
2530  llvm::Value *
2531  CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2532    llvm::Value *Condition = nullptr;
2533  
2534    if (!RO.Conditions.Architecture.empty())
2535      Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2536  
2537    if (!RO.Conditions.Features.empty()) {
2538      llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2539      Condition =
2540          Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2541    }
2542    return Condition;
2543  }
2544  
2545  static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2546                                               llvm::Function *Resolver,
2547                                               CGBuilderTy &Builder,
2548                                               llvm::Function *FuncToReturn,
2549                                               bool SupportsIFunc) {
2550    if (SupportsIFunc) {
2551      Builder.CreateRet(FuncToReturn);
2552      return;
2553    }
2554  
2555    llvm::SmallVector<llvm::Value *, 10> Args;
2556    llvm::for_each(Resolver->args(),
2557                   [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2558  
2559    llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2560    Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2561  
2562    if (Resolver->getReturnType()->isVoidTy())
2563      Builder.CreateRetVoid();
2564    else
2565      Builder.CreateRet(Result);
2566  }
2567  
2568  void CodeGenFunction::EmitMultiVersionResolver(
2569      llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2570    assert(getContext().getTargetInfo().getTriple().isX86() &&
2571           "Only implemented for x86 targets");
2572  
2573    bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2574  
2575    // Main function's basic block.
2576    llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2577    Builder.SetInsertPoint(CurBlock);
2578    EmitX86CpuInit();
2579  
2580    for (const MultiVersionResolverOption &RO : Options) {
2581      Builder.SetInsertPoint(CurBlock);
2582      llvm::Value *Condition = FormResolverCondition(RO);
2583  
2584      // The 'default' or 'generic' case.
2585      if (!Condition) {
2586        assert(&RO == Options.end() - 1 &&
2587               "Default or Generic case must be last");
2588        CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2589                                         SupportsIFunc);
2590        return;
2591      }
2592  
2593      llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2594      CGBuilderTy RetBuilder(*this, RetBlock);
2595      CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2596                                       SupportsIFunc);
2597      CurBlock = createBasicBlock("resolver_else", Resolver);
2598      Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2599    }
2600  
2601    // If no generic/default, emit an unreachable.
2602    Builder.SetInsertPoint(CurBlock);
2603    llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2604    TrapCall->setDoesNotReturn();
2605    TrapCall->setDoesNotThrow();
2606    Builder.CreateUnreachable();
2607    Builder.ClearInsertionPoint();
2608  }
2609  
2610  // Loc - where the diagnostic will point, where in the source code this
2611  //  alignment has failed.
2612  // SecondaryLoc - if present (will be present if sufficiently different from
2613  //  Loc), the diagnostic will additionally point a "Note:" to this location.
2614  //  It should be the location where the __attribute__((assume_aligned))
2615  //  was written e.g.
2616  void CodeGenFunction::emitAlignmentAssumptionCheck(
2617      llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2618      SourceLocation SecondaryLoc, llvm::Value *Alignment,
2619      llvm::Value *OffsetValue, llvm::Value *TheCheck,
2620      llvm::Instruction *Assumption) {
2621    assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2622           cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2623               llvm::Intrinsic::getDeclaration(
2624                   Builder.GetInsertBlock()->getParent()->getParent(),
2625                   llvm::Intrinsic::assume) &&
2626           "Assumption should be a call to llvm.assume().");
2627    assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2628           "Assumption should be the last instruction of the basic block, "
2629           "since the basic block is still being generated.");
2630  
2631    if (!SanOpts.has(SanitizerKind::Alignment))
2632      return;
2633  
2634    // Don't check pointers to volatile data. The behavior here is implementation-
2635    // defined.
2636    if (Ty->getPointeeType().isVolatileQualified())
2637      return;
2638  
2639    // We need to temorairly remove the assumption so we can insert the
2640    // sanitizer check before it, else the check will be dropped by optimizations.
2641    Assumption->removeFromParent();
2642  
2643    {
2644      SanitizerScope SanScope(this);
2645  
2646      if (!OffsetValue)
2647        OffsetValue = Builder.getInt1(0); // no offset.
2648  
2649      llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2650                                      EmitCheckSourceLocation(SecondaryLoc),
2651                                      EmitCheckTypeDescriptor(Ty)};
2652      llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2653                                    EmitCheckValue(Alignment),
2654                                    EmitCheckValue(OffsetValue)};
2655      EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2656                SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2657    }
2658  
2659    // We are now in the (new, empty) "cont" basic block.
2660    // Reintroduce the assumption.
2661    Builder.Insert(Assumption);
2662    // FIXME: Assumption still has it's original basic block as it's Parent.
2663  }
2664  
2665  llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2666    if (CGDebugInfo *DI = getDebugInfo())
2667      return DI->SourceLocToDebugLoc(Location);
2668  
2669    return llvm::DebugLoc();
2670  }
2671  
2672  llvm::Value *
2673  CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
2674                                                        Stmt::Likelihood LH) {
2675    switch (LH) {
2676    case Stmt::LH_None:
2677      return Cond;
2678    case Stmt::LH_Likely:
2679    case Stmt::LH_Unlikely:
2680      // Don't generate llvm.expect on -O0 as the backend won't use it for
2681      // anything.
2682      if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2683        return Cond;
2684      llvm::Type *CondTy = Cond->getType();
2685      assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
2686      llvm::Function *FnExpect =
2687          CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
2688      llvm::Value *ExpectedValueOfCond =
2689          llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
2690      return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
2691                                Cond->getName() + ".expval");
2692    }
2693    llvm_unreachable("Unknown Likelihood");
2694  }
2695