xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision a9d65c5fae5f70f544eee860b5db0c099c2e3a96)
1  //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This coordinates the per-function state used while generating code.
10  //
11  //===----------------------------------------------------------------------===//
12  
13  #include "CodeGenFunction.h"
14  #include "CGBlocks.h"
15  #include "CGCUDARuntime.h"
16  #include "CGCXXABI.h"
17  #include "CGCleanup.h"
18  #include "CGDebugInfo.h"
19  #include "CGOpenMPRuntime.h"
20  #include "CodeGenModule.h"
21  #include "CodeGenPGO.h"
22  #include "TargetInfo.h"
23  #include "clang/AST/ASTContext.h"
24  #include "clang/AST/ASTLambda.h"
25  #include "clang/AST/Attr.h"
26  #include "clang/AST/Decl.h"
27  #include "clang/AST/DeclCXX.h"
28  #include "clang/AST/StmtCXX.h"
29  #include "clang/AST/StmtObjC.h"
30  #include "clang/Basic/Builtins.h"
31  #include "clang/Basic/CodeGenOptions.h"
32  #include "clang/Basic/TargetInfo.h"
33  #include "clang/CodeGen/CGFunctionInfo.h"
34  #include "clang/Frontend/FrontendDiagnostic.h"
35  #include "llvm/IR/DataLayout.h"
36  #include "llvm/IR/Dominators.h"
37  #include "llvm/IR/FPEnv.h"
38  #include "llvm/IR/IntrinsicInst.h"
39  #include "llvm/IR/Intrinsics.h"
40  #include "llvm/IR/MDBuilder.h"
41  #include "llvm/IR/Operator.h"
42  #include "llvm/Transforms/Utils/PromoteMemToReg.h"
43  using namespace clang;
44  using namespace CodeGen;
45  
46  /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
47  /// markers.
48  static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
49                                        const LangOptions &LangOpts) {
50    if (CGOpts.DisableLifetimeMarkers)
51      return false;
52  
53    // Sanitizers may use markers.
54    if (CGOpts.SanitizeAddressUseAfterScope ||
55        LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
56        LangOpts.Sanitize.has(SanitizerKind::Memory))
57      return true;
58  
59    // For now, only in optimized builds.
60    return CGOpts.OptimizationLevel != 0;
61  }
62  
63  CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
64      : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
65        Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
66                CGBuilderInserterTy(this)),
67        SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()),
68        PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers(
69                      CGM.getCodeGenOpts(), CGM.getLangOpts())) {
70    if (!suppressNewContext)
71      CGM.getCXXABI().getMangleContext().startNewFunction();
72  
73    llvm::FastMathFlags FMF;
74    if (CGM.getLangOpts().FastMath)
75      FMF.setFast();
76    if (CGM.getLangOpts().FiniteMathOnly) {
77      FMF.setNoNaNs();
78      FMF.setNoInfs();
79    }
80    if (CGM.getCodeGenOpts().NoNaNsFPMath) {
81      FMF.setNoNaNs();
82    }
83    if (CGM.getCodeGenOpts().NoSignedZeros) {
84      FMF.setNoSignedZeros();
85    }
86    if (CGM.getCodeGenOpts().ReciprocalMath) {
87      FMF.setAllowReciprocal();
88    }
89    if (CGM.getCodeGenOpts().Reassociate) {
90      FMF.setAllowReassoc();
91    }
92    Builder.setFastMathFlags(FMF);
93    SetFPModel();
94  }
95  
96  CodeGenFunction::~CodeGenFunction() {
97    assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
98  
99    // If there are any unclaimed block infos, go ahead and destroy them
100    // now.  This can happen if IR-gen gets clever and skips evaluating
101    // something.
102    if (FirstBlockInfo)
103      destroyBlockInfos(FirstBlockInfo);
104  
105    if (getLangOpts().OpenMP && CurFn)
106      CGM.getOpenMPRuntime().functionFinished(*this);
107  }
108  
109  // Map the LangOption for rounding mode into
110  // the corresponding enum in the IR.
111  static llvm::fp::RoundingMode ToConstrainedRoundingMD(
112    LangOptions::FPRoundingModeKind Kind) {
113  
114    switch (Kind) {
115    case LangOptions::FPR_ToNearest:  return llvm::fp::rmToNearest;
116    case LangOptions::FPR_Downward:   return llvm::fp::rmDownward;
117    case LangOptions::FPR_Upward:     return llvm::fp::rmUpward;
118    case LangOptions::FPR_TowardZero: return llvm::fp::rmTowardZero;
119    case LangOptions::FPR_Dynamic:    return llvm::fp::rmDynamic;
120    }
121    llvm_unreachable("Unsupported FP RoundingMode");
122  }
123  
124  // Map the LangOption for exception behavior into
125  // the corresponding enum in the IR.
126  static llvm::fp::ExceptionBehavior ToConstrainedExceptMD(
127    LangOptions::FPExceptionModeKind Kind) {
128  
129    switch (Kind) {
130    case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
131    case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
132    case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
133    }
134    llvm_unreachable("Unsupported FP Exception Behavior");
135  }
136  
137  void CodeGenFunction::SetFPModel() {
138    auto fpRoundingMode = ToConstrainedRoundingMD(
139                            getLangOpts().getFPRoundingMode());
140    auto fpExceptionBehavior = ToConstrainedExceptMD(
141                                 getLangOpts().getFPExceptionMode());
142  
143    if (fpExceptionBehavior == llvm::fp::ebIgnore &&
144        fpRoundingMode == llvm::fp::rmToNearest)
145      // Constrained intrinsics are not used.
146      ;
147    else {
148      Builder.setIsFPConstrained(true);
149      Builder.setDefaultConstrainedRounding(fpRoundingMode);
150      Builder.setDefaultConstrainedExcept(fpExceptionBehavior);
151    }
152  }
153  
154  CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
155                                                      LValueBaseInfo *BaseInfo,
156                                                      TBAAAccessInfo *TBAAInfo) {
157    return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
158                                   /* forPointeeType= */ true);
159  }
160  
161  CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
162                                                     LValueBaseInfo *BaseInfo,
163                                                     TBAAAccessInfo *TBAAInfo,
164                                                     bool forPointeeType) {
165    if (TBAAInfo)
166      *TBAAInfo = CGM.getTBAAAccessInfo(T);
167  
168    // Honor alignment typedef attributes even on incomplete types.
169    // We also honor them straight for C++ class types, even as pointees;
170    // there's an expressivity gap here.
171    if (auto TT = T->getAs<TypedefType>()) {
172      if (auto Align = TT->getDecl()->getMaxAlignment()) {
173        if (BaseInfo)
174          *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
175        return getContext().toCharUnitsFromBits(Align);
176      }
177    }
178  
179    if (BaseInfo)
180      *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
181  
182    CharUnits Alignment;
183    if (T->isIncompleteType()) {
184      Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
185    } else {
186      // For C++ class pointees, we don't know whether we're pointing at a
187      // base or a complete object, so we generally need to use the
188      // non-virtual alignment.
189      const CXXRecordDecl *RD;
190      if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
191        Alignment = CGM.getClassPointerAlignment(RD);
192      } else {
193        Alignment = getContext().getTypeAlignInChars(T);
194        if (T.getQualifiers().hasUnaligned())
195          Alignment = CharUnits::One();
196      }
197  
198      // Cap to the global maximum type alignment unless the alignment
199      // was somehow explicit on the type.
200      if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
201        if (Alignment.getQuantity() > MaxAlign &&
202            !getContext().isAlignmentRequired(T))
203          Alignment = CharUnits::fromQuantity(MaxAlign);
204      }
205    }
206    return Alignment;
207  }
208  
209  LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
210    LValueBaseInfo BaseInfo;
211    TBAAAccessInfo TBAAInfo;
212    CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
213    return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
214                            TBAAInfo);
215  }
216  
217  /// Given a value of type T* that may not be to a complete object,
218  /// construct an l-value with the natural pointee alignment of T.
219  LValue
220  CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
221    LValueBaseInfo BaseInfo;
222    TBAAAccessInfo TBAAInfo;
223    CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
224                                              /* forPointeeType= */ true);
225    return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
226  }
227  
228  
229  llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
230    return CGM.getTypes().ConvertTypeForMem(T);
231  }
232  
233  llvm::Type *CodeGenFunction::ConvertType(QualType T) {
234    return CGM.getTypes().ConvertType(T);
235  }
236  
237  TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
238    type = type.getCanonicalType();
239    while (true) {
240      switch (type->getTypeClass()) {
241  #define TYPE(name, parent)
242  #define ABSTRACT_TYPE(name, parent)
243  #define NON_CANONICAL_TYPE(name, parent) case Type::name:
244  #define DEPENDENT_TYPE(name, parent) case Type::name:
245  #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
246  #include "clang/AST/TypeNodes.inc"
247        llvm_unreachable("non-canonical or dependent type in IR-generation");
248  
249      case Type::Auto:
250      case Type::DeducedTemplateSpecialization:
251        llvm_unreachable("undeduced type in IR-generation");
252  
253      // Various scalar types.
254      case Type::Builtin:
255      case Type::Pointer:
256      case Type::BlockPointer:
257      case Type::LValueReference:
258      case Type::RValueReference:
259      case Type::MemberPointer:
260      case Type::Vector:
261      case Type::ExtVector:
262      case Type::FunctionProto:
263      case Type::FunctionNoProto:
264      case Type::Enum:
265      case Type::ObjCObjectPointer:
266      case Type::Pipe:
267        return TEK_Scalar;
268  
269      // Complexes.
270      case Type::Complex:
271        return TEK_Complex;
272  
273      // Arrays, records, and Objective-C objects.
274      case Type::ConstantArray:
275      case Type::IncompleteArray:
276      case Type::VariableArray:
277      case Type::Record:
278      case Type::ObjCObject:
279      case Type::ObjCInterface:
280        return TEK_Aggregate;
281  
282      // We operate on atomic values according to their underlying type.
283      case Type::Atomic:
284        type = cast<AtomicType>(type)->getValueType();
285        continue;
286      }
287      llvm_unreachable("unknown type kind!");
288    }
289  }
290  
291  llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
292    // For cleanliness, we try to avoid emitting the return block for
293    // simple cases.
294    llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
295  
296    if (CurBB) {
297      assert(!CurBB->getTerminator() && "Unexpected terminated block.");
298  
299      // We have a valid insert point, reuse it if it is empty or there are no
300      // explicit jumps to the return block.
301      if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
302        ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
303        delete ReturnBlock.getBlock();
304        ReturnBlock = JumpDest();
305      } else
306        EmitBlock(ReturnBlock.getBlock());
307      return llvm::DebugLoc();
308    }
309  
310    // Otherwise, if the return block is the target of a single direct
311    // branch then we can just put the code in that block instead. This
312    // cleans up functions which started with a unified return block.
313    if (ReturnBlock.getBlock()->hasOneUse()) {
314      llvm::BranchInst *BI =
315        dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
316      if (BI && BI->isUnconditional() &&
317          BI->getSuccessor(0) == ReturnBlock.getBlock()) {
318        // Record/return the DebugLoc of the simple 'return' expression to be used
319        // later by the actual 'ret' instruction.
320        llvm::DebugLoc Loc = BI->getDebugLoc();
321        Builder.SetInsertPoint(BI->getParent());
322        BI->eraseFromParent();
323        delete ReturnBlock.getBlock();
324        ReturnBlock = JumpDest();
325        return Loc;
326      }
327    }
328  
329    // FIXME: We are at an unreachable point, there is no reason to emit the block
330    // unless it has uses. However, we still need a place to put the debug
331    // region.end for now.
332  
333    EmitBlock(ReturnBlock.getBlock());
334    return llvm::DebugLoc();
335  }
336  
337  static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
338    if (!BB) return;
339    if (!BB->use_empty())
340      return CGF.CurFn->getBasicBlockList().push_back(BB);
341    delete BB;
342  }
343  
344  void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
345    assert(BreakContinueStack.empty() &&
346           "mismatched push/pop in break/continue stack!");
347  
348    bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
349      && NumSimpleReturnExprs == NumReturnExprs
350      && ReturnBlock.getBlock()->use_empty();
351    // Usually the return expression is evaluated before the cleanup
352    // code.  If the function contains only a simple return statement,
353    // such as a constant, the location before the cleanup code becomes
354    // the last useful breakpoint in the function, because the simple
355    // return expression will be evaluated after the cleanup code. To be
356    // safe, set the debug location for cleanup code to the location of
357    // the return statement.  Otherwise the cleanup code should be at the
358    // end of the function's lexical scope.
359    //
360    // If there are multiple branches to the return block, the branch
361    // instructions will get the location of the return statements and
362    // all will be fine.
363    if (CGDebugInfo *DI = getDebugInfo()) {
364      if (OnlySimpleReturnStmts)
365        DI->EmitLocation(Builder, LastStopPoint);
366      else
367        DI->EmitLocation(Builder, EndLoc);
368    }
369  
370    // Pop any cleanups that might have been associated with the
371    // parameters.  Do this in whatever block we're currently in; it's
372    // important to do this before we enter the return block or return
373    // edges will be *really* confused.
374    bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
375    bool HasOnlyLifetimeMarkers =
376        HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
377    bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
378    if (HasCleanups) {
379      // Make sure the line table doesn't jump back into the body for
380      // the ret after it's been at EndLoc.
381      Optional<ApplyDebugLocation> AL;
382      if (CGDebugInfo *DI = getDebugInfo()) {
383        if (OnlySimpleReturnStmts)
384          DI->EmitLocation(Builder, EndLoc);
385        else
386          // We may not have a valid end location. Try to apply it anyway, and
387          // fall back to an artificial location if needed.
388          AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
389      }
390  
391      PopCleanupBlocks(PrologueCleanupDepth);
392    }
393  
394    // Emit function epilog (to return).
395    llvm::DebugLoc Loc = EmitReturnBlock();
396  
397    if (ShouldInstrumentFunction()) {
398      if (CGM.getCodeGenOpts().InstrumentFunctions)
399        CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
400      if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
401        CurFn->addFnAttr("instrument-function-exit-inlined",
402                         "__cyg_profile_func_exit");
403    }
404  
405    // Emit debug descriptor for function end.
406    if (CGDebugInfo *DI = getDebugInfo())
407      DI->EmitFunctionEnd(Builder, CurFn);
408  
409    // Reset the debug location to that of the simple 'return' expression, if any
410    // rather than that of the end of the function's scope '}'.
411    ApplyDebugLocation AL(*this, Loc);
412    EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
413    EmitEndEHSpec(CurCodeDecl);
414  
415    assert(EHStack.empty() &&
416           "did not remove all scopes from cleanup stack!");
417  
418    // If someone did an indirect goto, emit the indirect goto block at the end of
419    // the function.
420    if (IndirectBranch) {
421      EmitBlock(IndirectBranch->getParent());
422      Builder.ClearInsertionPoint();
423    }
424  
425    // If some of our locals escaped, insert a call to llvm.localescape in the
426    // entry block.
427    if (!EscapedLocals.empty()) {
428      // Invert the map from local to index into a simple vector. There should be
429      // no holes.
430      SmallVector<llvm::Value *, 4> EscapeArgs;
431      EscapeArgs.resize(EscapedLocals.size());
432      for (auto &Pair : EscapedLocals)
433        EscapeArgs[Pair.second] = Pair.first;
434      llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
435          &CGM.getModule(), llvm::Intrinsic::localescape);
436      CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
437    }
438  
439    // Remove the AllocaInsertPt instruction, which is just a convenience for us.
440    llvm::Instruction *Ptr = AllocaInsertPt;
441    AllocaInsertPt = nullptr;
442    Ptr->eraseFromParent();
443  
444    // If someone took the address of a label but never did an indirect goto, we
445    // made a zero entry PHI node, which is illegal, zap it now.
446    if (IndirectBranch) {
447      llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
448      if (PN->getNumIncomingValues() == 0) {
449        PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
450        PN->eraseFromParent();
451      }
452    }
453  
454    EmitIfUsed(*this, EHResumeBlock);
455    EmitIfUsed(*this, TerminateLandingPad);
456    EmitIfUsed(*this, TerminateHandler);
457    EmitIfUsed(*this, UnreachableBlock);
458  
459    for (const auto &FuncletAndParent : TerminateFunclets)
460      EmitIfUsed(*this, FuncletAndParent.second);
461  
462    if (CGM.getCodeGenOpts().EmitDeclMetadata)
463      EmitDeclMetadata();
464  
465    for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
466             I = DeferredReplacements.begin(),
467             E = DeferredReplacements.end();
468         I != E; ++I) {
469      I->first->replaceAllUsesWith(I->second);
470      I->first->eraseFromParent();
471    }
472  
473    // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
474    // PHIs if the current function is a coroutine. We don't do it for all
475    // functions as it may result in slight increase in numbers of instructions
476    // if compiled with no optimizations. We do it for coroutine as the lifetime
477    // of CleanupDestSlot alloca make correct coroutine frame building very
478    // difficult.
479    if (NormalCleanupDest.isValid() && isCoroutine()) {
480      llvm::DominatorTree DT(*CurFn);
481      llvm::PromoteMemToReg(
482          cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
483      NormalCleanupDest = Address::invalid();
484    }
485  
486    // Scan function arguments for vector width.
487    for (llvm::Argument &A : CurFn->args())
488      if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
489        LargestVectorWidth = std::max((uint64_t)LargestVectorWidth,
490                                     VT->getPrimitiveSizeInBits().getFixedSize());
491  
492    // Update vector width based on return type.
493    if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
494      LargestVectorWidth = std::max((uint64_t)LargestVectorWidth,
495                                    VT->getPrimitiveSizeInBits().getFixedSize());
496  
497    // Add the required-vector-width attribute. This contains the max width from:
498    // 1. min-vector-width attribute used in the source program.
499    // 2. Any builtins used that have a vector width specified.
500    // 3. Values passed in and out of inline assembly.
501    // 4. Width of vector arguments and return types for this function.
502    // 5. Width of vector aguments and return types for functions called by this
503    //    function.
504    CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
505  
506    // If we generated an unreachable return block, delete it now.
507    if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
508      Builder.ClearInsertionPoint();
509      ReturnBlock.getBlock()->eraseFromParent();
510    }
511    if (ReturnValue.isValid()) {
512      auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
513      if (RetAlloca && RetAlloca->use_empty()) {
514        RetAlloca->eraseFromParent();
515        ReturnValue = Address::invalid();
516      }
517    }
518  }
519  
520  /// ShouldInstrumentFunction - Return true if the current function should be
521  /// instrumented with __cyg_profile_func_* calls
522  bool CodeGenFunction::ShouldInstrumentFunction() {
523    if (!CGM.getCodeGenOpts().InstrumentFunctions &&
524        !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
525        !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
526      return false;
527    if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
528      return false;
529    return true;
530  }
531  
532  /// ShouldXRayInstrument - Return true if the current function should be
533  /// instrumented with XRay nop sleds.
534  bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
535    return CGM.getCodeGenOpts().XRayInstrumentFunctions;
536  }
537  
538  /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
539  /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
540  bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
541    return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
542           (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
543            CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
544                XRayInstrKind::Custom);
545  }
546  
547  bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
548    return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
549           (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
550            CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
551                XRayInstrKind::Typed);
552  }
553  
554  llvm::Constant *
555  CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
556                                              llvm::Constant *Addr) {
557    // Addresses stored in prologue data can't require run-time fixups and must
558    // be PC-relative. Run-time fixups are undesirable because they necessitate
559    // writable text segments, which are unsafe. And absolute addresses are
560    // undesirable because they break PIE mode.
561  
562    // Add a layer of indirection through a private global. Taking its address
563    // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
564    auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
565                                        /*isConstant=*/true,
566                                        llvm::GlobalValue::PrivateLinkage, Addr);
567  
568    // Create a PC-relative address.
569    auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
570    auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
571    auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
572    return (IntPtrTy == Int32Ty)
573               ? PCRelAsInt
574               : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
575  }
576  
577  llvm::Value *
578  CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
579                                            llvm::Value *EncodedAddr) {
580    // Reconstruct the address of the global.
581    auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
582    auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
583    auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
584    auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
585  
586    // Load the original pointer through the global.
587    return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
588                              "decoded_addr");
589  }
590  
591  void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
592                                                 llvm::Function *Fn)
593  {
594    if (!FD->hasAttr<OpenCLKernelAttr>())
595      return;
596  
597    llvm::LLVMContext &Context = getLLVMContext();
598  
599    CGM.GenOpenCLArgMetadata(Fn, FD, this);
600  
601    if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
602      QualType HintQTy = A->getTypeHint();
603      const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
604      bool IsSignedInteger =
605          HintQTy->isSignedIntegerType() ||
606          (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
607      llvm::Metadata *AttrMDArgs[] = {
608          llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
609              CGM.getTypes().ConvertType(A->getTypeHint()))),
610          llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
611              llvm::IntegerType::get(Context, 32),
612              llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
613      Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
614    }
615  
616    if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
617      llvm::Metadata *AttrMDArgs[] = {
618          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
619          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
620          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
621      Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
622    }
623  
624    if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
625      llvm::Metadata *AttrMDArgs[] = {
626          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
627          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
628          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
629      Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
630    }
631  
632    if (const OpenCLIntelReqdSubGroupSizeAttr *A =
633            FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
634      llvm::Metadata *AttrMDArgs[] = {
635          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
636      Fn->setMetadata("intel_reqd_sub_group_size",
637                      llvm::MDNode::get(Context, AttrMDArgs));
638    }
639  }
640  
641  /// Determine whether the function F ends with a return stmt.
642  static bool endsWithReturn(const Decl* F) {
643    const Stmt *Body = nullptr;
644    if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
645      Body = FD->getBody();
646    else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
647      Body = OMD->getBody();
648  
649    if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
650      auto LastStmt = CS->body_rbegin();
651      if (LastStmt != CS->body_rend())
652        return isa<ReturnStmt>(*LastStmt);
653    }
654    return false;
655  }
656  
657  void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
658    if (SanOpts.has(SanitizerKind::Thread)) {
659      Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
660      Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
661    }
662  }
663  
664  /// Check if the return value of this function requires sanitization.
665  bool CodeGenFunction::requiresReturnValueCheck() const {
666    return requiresReturnValueNullabilityCheck() ||
667           (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
668            CurCodeDecl->getAttr<ReturnsNonNullAttr>());
669  }
670  
671  static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
672    auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
673    if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
674        !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
675        (MD->getNumParams() != 1 && MD->getNumParams() != 2))
676      return false;
677  
678    if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
679      return false;
680  
681    if (MD->getNumParams() == 2) {
682      auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
683      if (!PT || !PT->isVoidPointerType() ||
684          !PT->getPointeeType().isConstQualified())
685        return false;
686    }
687  
688    return true;
689  }
690  
691  /// Return the UBSan prologue signature for \p FD if one is available.
692  static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
693                                              const FunctionDecl *FD) {
694    if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
695      if (!MD->isStatic())
696        return nullptr;
697    return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
698  }
699  
700  void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
701                                      llvm::Function *Fn,
702                                      const CGFunctionInfo &FnInfo,
703                                      const FunctionArgList &Args,
704                                      SourceLocation Loc,
705                                      SourceLocation StartLoc) {
706    assert(!CurFn &&
707           "Do not use a CodeGenFunction object for more than one function");
708  
709    const Decl *D = GD.getDecl();
710  
711    DidCallStackSave = false;
712    CurCodeDecl = D;
713    if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
714      if (FD->usesSEHTry())
715        CurSEHParent = FD;
716    CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
717    FnRetTy = RetTy;
718    CurFn = Fn;
719    CurFnInfo = &FnInfo;
720    assert(CurFn->isDeclaration() && "Function already has body?");
721  
722    // If this function has been blacklisted for any of the enabled sanitizers,
723    // disable the sanitizer for the function.
724    do {
725  #define SANITIZER(NAME, ID)                                                    \
726    if (SanOpts.empty())                                                         \
727      break;                                                                     \
728    if (SanOpts.has(SanitizerKind::ID))                                          \
729      if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc))                \
730        SanOpts.set(SanitizerKind::ID, false);
731  
732  #include "clang/Basic/Sanitizers.def"
733  #undef SANITIZER
734    } while (0);
735  
736    if (D) {
737      // Apply the no_sanitize* attributes to SanOpts.
738      for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
739        SanitizerMask mask = Attr->getMask();
740        SanOpts.Mask &= ~mask;
741        if (mask & SanitizerKind::Address)
742          SanOpts.set(SanitizerKind::KernelAddress, false);
743        if (mask & SanitizerKind::KernelAddress)
744          SanOpts.set(SanitizerKind::Address, false);
745        if (mask & SanitizerKind::HWAddress)
746          SanOpts.set(SanitizerKind::KernelHWAddress, false);
747        if (mask & SanitizerKind::KernelHWAddress)
748          SanOpts.set(SanitizerKind::HWAddress, false);
749      }
750    }
751  
752    // Apply sanitizer attributes to the function.
753    if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
754      Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
755    if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
756      Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
757    if (SanOpts.has(SanitizerKind::MemTag))
758      Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
759    if (SanOpts.has(SanitizerKind::Thread))
760      Fn->addFnAttr(llvm::Attribute::SanitizeThread);
761    if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
762      Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
763    if (SanOpts.has(SanitizerKind::SafeStack))
764      Fn->addFnAttr(llvm::Attribute::SafeStack);
765    if (SanOpts.has(SanitizerKind::ShadowCallStack))
766      Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
767  
768    // Apply fuzzing attribute to the function.
769    if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
770      Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
771  
772    // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
773    // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
774    if (SanOpts.has(SanitizerKind::Thread)) {
775      if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
776        IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
777        if (OMD->getMethodFamily() == OMF_dealloc ||
778            OMD->getMethodFamily() == OMF_initialize ||
779            (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
780          markAsIgnoreThreadCheckingAtRuntime(Fn);
781        }
782      }
783    }
784  
785    // Ignore unrelated casts in STL allocate() since the allocator must cast
786    // from void* to T* before object initialization completes. Don't match on the
787    // namespace because not all allocators are in std::
788    if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
789      if (matchesStlAllocatorFn(D, getContext()))
790        SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
791    }
792  
793    // Ignore null checks in coroutine functions since the coroutines passes
794    // are not aware of how to move the extra UBSan instructions across the split
795    // coroutine boundaries.
796    if (D && SanOpts.has(SanitizerKind::Null))
797      if (const auto *FD = dyn_cast<FunctionDecl>(D))
798        if (FD->getBody() &&
799            FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
800          SanOpts.Mask &= ~SanitizerKind::Null;
801  
802    if (D) {
803      // Apply xray attributes to the function (as a string, for now)
804      if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
805        if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
806                XRayInstrKind::Function)) {
807          if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction())
808            Fn->addFnAttr("function-instrument", "xray-always");
809          if (XRayAttr->neverXRayInstrument())
810            Fn->addFnAttr("function-instrument", "xray-never");
811          if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
812            if (ShouldXRayInstrumentFunction())
813              Fn->addFnAttr("xray-log-args",
814                            llvm::utostr(LogArgs->getArgumentCount()));
815        }
816      } else {
817        if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
818          Fn->addFnAttr(
819              "xray-instruction-threshold",
820              llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
821      }
822  
823      unsigned Count, Offset;
824      if (const auto *Attr = D->getAttr<PatchableFunctionEntryAttr>()) {
825        Count = Attr->getCount();
826        Offset = Attr->getOffset();
827      } else {
828        Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
829        Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
830      }
831      if (Count && Offset <= Count) {
832        Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
833        if (Offset)
834          Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
835      }
836    }
837  
838    // Add no-jump-tables value.
839    Fn->addFnAttr("no-jump-tables",
840                  llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
841  
842    // Add no-inline-line-tables value.
843    if (CGM.getCodeGenOpts().NoInlineLineTables)
844      Fn->addFnAttr("no-inline-line-tables");
845  
846    // Add profile-sample-accurate value.
847    if (CGM.getCodeGenOpts().ProfileSampleAccurate)
848      Fn->addFnAttr("profile-sample-accurate");
849  
850    if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
851      Fn->addFnAttr("cfi-canonical-jump-table");
852  
853    if (getLangOpts().OpenCL) {
854      // Add metadata for a kernel function.
855      if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
856        EmitOpenCLKernelMetadata(FD, Fn);
857    }
858  
859    // If we are checking function types, emit a function type signature as
860    // prologue data.
861    if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
862      if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
863        if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
864          // Remove any (C++17) exception specifications, to allow calling e.g. a
865          // noexcept function through a non-noexcept pointer.
866          auto ProtoTy =
867            getContext().getFunctionTypeWithExceptionSpec(FD->getType(),
868                                                          EST_None);
869          llvm::Constant *FTRTTIConst =
870              CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
871          llvm::Constant *FTRTTIConstEncoded =
872              EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
873          llvm::Constant *PrologueStructElems[] = {PrologueSig,
874                                                   FTRTTIConstEncoded};
875          llvm::Constant *PrologueStructConst =
876              llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
877          Fn->setPrologueData(PrologueStructConst);
878        }
879      }
880    }
881  
882    // If we're checking nullability, we need to know whether we can check the
883    // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
884    if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
885      auto Nullability = FnRetTy->getNullability(getContext());
886      if (Nullability && *Nullability == NullabilityKind::NonNull) {
887        if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
888              CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
889          RetValNullabilityPrecondition =
890              llvm::ConstantInt::getTrue(getLLVMContext());
891      }
892    }
893  
894    // If we're in C++ mode and the function name is "main", it is guaranteed
895    // to be norecurse by the standard (3.6.1.3 "The function main shall not be
896    // used within a program").
897    if (getLangOpts().CPlusPlus)
898      if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
899        if (FD->isMain())
900          Fn->addFnAttr(llvm::Attribute::NoRecurse);
901  
902    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
903      if (FD->usesFPIntrin())
904        Fn->addFnAttr(llvm::Attribute::StrictFP);
905  
906    // If a custom alignment is used, force realigning to this alignment on
907    // any main function which certainly will need it.
908    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
909      if ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
910          CGM.getCodeGenOpts().StackAlignment)
911        Fn->addFnAttr("stackrealign");
912  
913    llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
914  
915    // Create a marker to make it easy to insert allocas into the entryblock
916    // later.  Don't create this with the builder, because we don't want it
917    // folded.
918    llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
919    AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
920  
921    ReturnBlock = getJumpDestInCurrentScope("return");
922  
923    Builder.SetInsertPoint(EntryBB);
924  
925    // If we're checking the return value, allocate space for a pointer to a
926    // precise source location of the checked return statement.
927    if (requiresReturnValueCheck()) {
928      ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
929      InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
930    }
931  
932    // Emit subprogram debug descriptor.
933    if (CGDebugInfo *DI = getDebugInfo()) {
934      // Reconstruct the type from the argument list so that implicit parameters,
935      // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
936      // convention.
937      CallingConv CC = CallingConv::CC_C;
938      if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
939        if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
940          CC = SrcFnTy->getCallConv();
941      SmallVector<QualType, 16> ArgTypes;
942      for (const VarDecl *VD : Args)
943        ArgTypes.push_back(VD->getType());
944      QualType FnType = getContext().getFunctionType(
945          RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
946      DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk,
947                            Builder);
948    }
949  
950    if (ShouldInstrumentFunction()) {
951      if (CGM.getCodeGenOpts().InstrumentFunctions)
952        CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
953      if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
954        CurFn->addFnAttr("instrument-function-entry-inlined",
955                         "__cyg_profile_func_enter");
956      if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
957        CurFn->addFnAttr("instrument-function-entry-inlined",
958                         "__cyg_profile_func_enter_bare");
959    }
960  
961    // Since emitting the mcount call here impacts optimizations such as function
962    // inlining, we just add an attribute to insert a mcount call in backend.
963    // The attribute "counting-function" is set to mcount function name which is
964    // architecture dependent.
965    if (CGM.getCodeGenOpts().InstrumentForProfiling) {
966      // Calls to fentry/mcount should not be generated if function has
967      // the no_instrument_function attribute.
968      if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
969        if (CGM.getCodeGenOpts().CallFEntry)
970          Fn->addFnAttr("fentry-call", "true");
971        else {
972          Fn->addFnAttr("instrument-function-entry-inlined",
973                        getTarget().getMCountName());
974        }
975        if (CGM.getCodeGenOpts().MNopMCount) {
976          if (!CGM.getCodeGenOpts().CallFEntry)
977            CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
978              << "-mnop-mcount" << "-mfentry";
979          Fn->addFnAttr("mnop-mcount");
980        }
981  
982        if (CGM.getCodeGenOpts().RecordMCount) {
983          if (!CGM.getCodeGenOpts().CallFEntry)
984            CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
985              << "-mrecord-mcount" << "-mfentry";
986          Fn->addFnAttr("mrecord-mcount");
987        }
988      }
989    }
990  
991    if (CGM.getCodeGenOpts().PackedStack) {
992      if (getContext().getTargetInfo().getTriple().getArch() !=
993          llvm::Triple::systemz)
994        CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
995          << "-mpacked-stack";
996      Fn->addFnAttr("packed-stack");
997    }
998  
999    if (RetTy->isVoidType()) {
1000      // Void type; nothing to return.
1001      ReturnValue = Address::invalid();
1002  
1003      // Count the implicit return.
1004      if (!endsWithReturn(D))
1005        ++NumReturnExprs;
1006    } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1007      // Indirect return; emit returned value directly into sret slot.
1008      // This reduces code size, and affects correctness in C++.
1009      auto AI = CurFn->arg_begin();
1010      if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1011        ++AI;
1012      ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1013      if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1014        ReturnValuePointer =
1015            CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1016        Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1017                                ReturnValue.getPointer(), Int8PtrTy),
1018                            ReturnValuePointer);
1019      }
1020    } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1021               !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1022      // Load the sret pointer from the argument struct and return into that.
1023      unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1024      llvm::Function::arg_iterator EI = CurFn->arg_end();
1025      --EI;
1026      llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
1027      ReturnValuePointer = Address(Addr, getPointerAlign());
1028      Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
1029      ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
1030    } else {
1031      ReturnValue = CreateIRTemp(RetTy, "retval");
1032  
1033      // Tell the epilog emitter to autorelease the result.  We do this
1034      // now so that various specialized functions can suppress it
1035      // during their IR-generation.
1036      if (getLangOpts().ObjCAutoRefCount &&
1037          !CurFnInfo->isReturnsRetained() &&
1038          RetTy->isObjCRetainableType())
1039        AutoreleaseResult = true;
1040    }
1041  
1042    EmitStartEHSpec(CurCodeDecl);
1043  
1044    PrologueCleanupDepth = EHStack.stable_begin();
1045  
1046    // Emit OpenMP specific initialization of the device functions.
1047    if (getLangOpts().OpenMP && CurCodeDecl)
1048      CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1049  
1050    EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1051  
1052    if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1053      CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1054      const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1055      if (MD->getParent()->isLambda() &&
1056          MD->getOverloadedOperator() == OO_Call) {
1057        // We're in a lambda; figure out the captures.
1058        MD->getParent()->getCaptureFields(LambdaCaptureFields,
1059                                          LambdaThisCaptureField);
1060        if (LambdaThisCaptureField) {
1061          // If the lambda captures the object referred to by '*this' - either by
1062          // value or by reference, make sure CXXThisValue points to the correct
1063          // object.
1064  
1065          // Get the lvalue for the field (which is a copy of the enclosing object
1066          // or contains the address of the enclosing object).
1067          LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1068          if (!LambdaThisCaptureField->getType()->isPointerType()) {
1069            // If the enclosing object was captured by value, just use its address.
1070            CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1071          } else {
1072            // Load the lvalue pointed to by the field, since '*this' was captured
1073            // by reference.
1074            CXXThisValue =
1075                EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1076          }
1077        }
1078        for (auto *FD : MD->getParent()->fields()) {
1079          if (FD->hasCapturedVLAType()) {
1080            auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1081                                             SourceLocation()).getScalarVal();
1082            auto VAT = FD->getCapturedVLAType();
1083            VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1084          }
1085        }
1086      } else {
1087        // Not in a lambda; just use 'this' from the method.
1088        // FIXME: Should we generate a new load for each use of 'this'?  The
1089        // fast register allocator would be happier...
1090        CXXThisValue = CXXABIThisValue;
1091      }
1092  
1093      // Check the 'this' pointer once per function, if it's available.
1094      if (CXXABIThisValue) {
1095        SanitizerSet SkippedChecks;
1096        SkippedChecks.set(SanitizerKind::ObjectSize, true);
1097        QualType ThisTy = MD->getThisType();
1098  
1099        // If this is the call operator of a lambda with no capture-default, it
1100        // may have a static invoker function, which may call this operator with
1101        // a null 'this' pointer.
1102        if (isLambdaCallOperator(MD) &&
1103            MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1104          SkippedChecks.set(SanitizerKind::Null, true);
1105  
1106        EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
1107                                                  : TCK_MemberCall,
1108                      Loc, CXXABIThisValue, ThisTy,
1109                      getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
1110                      SkippedChecks);
1111      }
1112    }
1113  
1114    // If any of the arguments have a variably modified type, make sure to
1115    // emit the type size.
1116    for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1117         i != e; ++i) {
1118      const VarDecl *VD = *i;
1119  
1120      // Dig out the type as written from ParmVarDecls; it's unclear whether
1121      // the standard (C99 6.9.1p10) requires this, but we're following the
1122      // precedent set by gcc.
1123      QualType Ty;
1124      if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1125        Ty = PVD->getOriginalType();
1126      else
1127        Ty = VD->getType();
1128  
1129      if (Ty->isVariablyModifiedType())
1130        EmitVariablyModifiedType(Ty);
1131    }
1132    // Emit a location at the end of the prologue.
1133    if (CGDebugInfo *DI = getDebugInfo())
1134      DI->EmitLocation(Builder, StartLoc);
1135  
1136    // TODO: Do we need to handle this in two places like we do with
1137    // target-features/target-cpu?
1138    if (CurFuncDecl)
1139      if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1140        LargestVectorWidth = VecWidth->getVectorWidth();
1141  }
1142  
1143  void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1144    incrementProfileCounter(Body);
1145    if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1146      EmitCompoundStmtWithoutScope(*S);
1147    else
1148      EmitStmt(Body);
1149  }
1150  
1151  /// When instrumenting to collect profile data, the counts for some blocks
1152  /// such as switch cases need to not include the fall-through counts, so
1153  /// emit a branch around the instrumentation code. When not instrumenting,
1154  /// this just calls EmitBlock().
1155  void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1156                                                 const Stmt *S) {
1157    llvm::BasicBlock *SkipCountBB = nullptr;
1158    if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1159      // When instrumenting for profiling, the fallthrough to certain
1160      // statements needs to skip over the instrumentation code so that we
1161      // get an accurate count.
1162      SkipCountBB = createBasicBlock("skipcount");
1163      EmitBranch(SkipCountBB);
1164    }
1165    EmitBlock(BB);
1166    uint64_t CurrentCount = getCurrentProfileCount();
1167    incrementProfileCounter(S);
1168    setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1169    if (SkipCountBB)
1170      EmitBlock(SkipCountBB);
1171  }
1172  
1173  /// Tries to mark the given function nounwind based on the
1174  /// non-existence of any throwing calls within it.  We believe this is
1175  /// lightweight enough to do at -O0.
1176  static void TryMarkNoThrow(llvm::Function *F) {
1177    // LLVM treats 'nounwind' on a function as part of the type, so we
1178    // can't do this on functions that can be overwritten.
1179    if (F->isInterposable()) return;
1180  
1181    for (llvm::BasicBlock &BB : *F)
1182      for (llvm::Instruction &I : BB)
1183        if (I.mayThrow())
1184          return;
1185  
1186    F->setDoesNotThrow();
1187  }
1188  
1189  QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1190                                                 FunctionArgList &Args) {
1191    const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1192    QualType ResTy = FD->getReturnType();
1193  
1194    const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1195    if (MD && MD->isInstance()) {
1196      if (CGM.getCXXABI().HasThisReturn(GD))
1197        ResTy = MD->getThisType();
1198      else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1199        ResTy = CGM.getContext().VoidPtrTy;
1200      CGM.getCXXABI().buildThisParam(*this, Args);
1201    }
1202  
1203    // The base version of an inheriting constructor whose constructed base is a
1204    // virtual base is not passed any arguments (because it doesn't actually call
1205    // the inherited constructor).
1206    bool PassedParams = true;
1207    if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1208      if (auto Inherited = CD->getInheritedConstructor())
1209        PassedParams =
1210            getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1211  
1212    if (PassedParams) {
1213      for (auto *Param : FD->parameters()) {
1214        Args.push_back(Param);
1215        if (!Param->hasAttr<PassObjectSizeAttr>())
1216          continue;
1217  
1218        auto *Implicit = ImplicitParamDecl::Create(
1219            getContext(), Param->getDeclContext(), Param->getLocation(),
1220            /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1221        SizeArguments[Param] = Implicit;
1222        Args.push_back(Implicit);
1223      }
1224    }
1225  
1226    if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1227      CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1228  
1229    return ResTy;
1230  }
1231  
1232  static bool
1233  shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1234                                               const ASTContext &Context) {
1235    QualType T = FD->getReturnType();
1236    // Avoid the optimization for functions that return a record type with a
1237    // trivial destructor or another trivially copyable type.
1238    if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1239      if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1240        return !ClassDecl->hasTrivialDestructor();
1241    }
1242    return !T.isTriviallyCopyableType(Context);
1243  }
1244  
1245  void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1246                                     const CGFunctionInfo &FnInfo) {
1247    const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1248    CurGD = GD;
1249  
1250    FunctionArgList Args;
1251    QualType ResTy = BuildFunctionArgList(GD, Args);
1252  
1253    // Check if we should generate debug info for this function.
1254    if (FD->hasAttr<NoDebugAttr>())
1255      DebugInfo = nullptr; // disable debug info indefinitely for this function
1256  
1257    // The function might not have a body if we're generating thunks for a
1258    // function declaration.
1259    SourceRange BodyRange;
1260    if (Stmt *Body = FD->getBody())
1261      BodyRange = Body->getSourceRange();
1262    else
1263      BodyRange = FD->getLocation();
1264    CurEHLocation = BodyRange.getEnd();
1265  
1266    // Use the location of the start of the function to determine where
1267    // the function definition is located. By default use the location
1268    // of the declaration as the location for the subprogram. A function
1269    // may lack a declaration in the source code if it is created by code
1270    // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1271    SourceLocation Loc = FD->getLocation();
1272  
1273    // If this is a function specialization then use the pattern body
1274    // as the location for the function.
1275    if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1276      if (SpecDecl->hasBody(SpecDecl))
1277        Loc = SpecDecl->getLocation();
1278  
1279    Stmt *Body = FD->getBody();
1280  
1281    // Initialize helper which will detect jumps which can cause invalid lifetime
1282    // markers.
1283    if (Body && ShouldEmitLifetimeMarkers)
1284      Bypasses.Init(Body);
1285  
1286    // Emit the standard function prologue.
1287    StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1288  
1289    // Generate the body of the function.
1290    PGO.assignRegionCounters(GD, CurFn);
1291    if (isa<CXXDestructorDecl>(FD))
1292      EmitDestructorBody(Args);
1293    else if (isa<CXXConstructorDecl>(FD))
1294      EmitConstructorBody(Args);
1295    else if (getLangOpts().CUDA &&
1296             !getLangOpts().CUDAIsDevice &&
1297             FD->hasAttr<CUDAGlobalAttr>())
1298      CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1299    else if (isa<CXXMethodDecl>(FD) &&
1300             cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1301      // The lambda static invoker function is special, because it forwards or
1302      // clones the body of the function call operator (but is actually static).
1303      EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1304    } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1305               (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1306                cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1307      // Implicit copy-assignment gets the same special treatment as implicit
1308      // copy-constructors.
1309      emitImplicitAssignmentOperatorBody(Args);
1310    } else if (Body) {
1311      EmitFunctionBody(Body);
1312    } else
1313      llvm_unreachable("no definition for emitted function");
1314  
1315    // C++11 [stmt.return]p2:
1316    //   Flowing off the end of a function [...] results in undefined behavior in
1317    //   a value-returning function.
1318    // C11 6.9.1p12:
1319    //   If the '}' that terminates a function is reached, and the value of the
1320    //   function call is used by the caller, the behavior is undefined.
1321    if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1322        !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1323      bool ShouldEmitUnreachable =
1324          CGM.getCodeGenOpts().StrictReturn ||
1325          shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1326      if (SanOpts.has(SanitizerKind::Return)) {
1327        SanitizerScope SanScope(this);
1328        llvm::Value *IsFalse = Builder.getFalse();
1329        EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1330                  SanitizerHandler::MissingReturn,
1331                  EmitCheckSourceLocation(FD->getLocation()), None);
1332      } else if (ShouldEmitUnreachable) {
1333        if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1334          EmitTrapCall(llvm::Intrinsic::trap);
1335      }
1336      if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1337        Builder.CreateUnreachable();
1338        Builder.ClearInsertionPoint();
1339      }
1340    }
1341  
1342    // Emit the standard function epilogue.
1343    FinishFunction(BodyRange.getEnd());
1344  
1345    // If we haven't marked the function nothrow through other means, do
1346    // a quick pass now to see if we can.
1347    if (!CurFn->doesNotThrow())
1348      TryMarkNoThrow(CurFn);
1349  }
1350  
1351  /// ContainsLabel - Return true if the statement contains a label in it.  If
1352  /// this statement is not executed normally, it not containing a label means
1353  /// that we can just remove the code.
1354  bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1355    // Null statement, not a label!
1356    if (!S) return false;
1357  
1358    // If this is a label, we have to emit the code, consider something like:
1359    // if (0) {  ...  foo:  bar(); }  goto foo;
1360    //
1361    // TODO: If anyone cared, we could track __label__'s, since we know that you
1362    // can't jump to one from outside their declared region.
1363    if (isa<LabelStmt>(S))
1364      return true;
1365  
1366    // If this is a case/default statement, and we haven't seen a switch, we have
1367    // to emit the code.
1368    if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1369      return true;
1370  
1371    // If this is a switch statement, we want to ignore cases below it.
1372    if (isa<SwitchStmt>(S))
1373      IgnoreCaseStmts = true;
1374  
1375    // Scan subexpressions for verboten labels.
1376    for (const Stmt *SubStmt : S->children())
1377      if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1378        return true;
1379  
1380    return false;
1381  }
1382  
1383  /// containsBreak - Return true if the statement contains a break out of it.
1384  /// If the statement (recursively) contains a switch or loop with a break
1385  /// inside of it, this is fine.
1386  bool CodeGenFunction::containsBreak(const Stmt *S) {
1387    // Null statement, not a label!
1388    if (!S) return false;
1389  
1390    // If this is a switch or loop that defines its own break scope, then we can
1391    // include it and anything inside of it.
1392    if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1393        isa<ForStmt>(S))
1394      return false;
1395  
1396    if (isa<BreakStmt>(S))
1397      return true;
1398  
1399    // Scan subexpressions for verboten breaks.
1400    for (const Stmt *SubStmt : S->children())
1401      if (containsBreak(SubStmt))
1402        return true;
1403  
1404    return false;
1405  }
1406  
1407  bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1408    if (!S) return false;
1409  
1410    // Some statement kinds add a scope and thus never add a decl to the current
1411    // scope. Note, this list is longer than the list of statements that might
1412    // have an unscoped decl nested within them, but this way is conservatively
1413    // correct even if more statement kinds are added.
1414    if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1415        isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1416        isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1417        isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1418      return false;
1419  
1420    if (isa<DeclStmt>(S))
1421      return true;
1422  
1423    for (const Stmt *SubStmt : S->children())
1424      if (mightAddDeclToScope(SubStmt))
1425        return true;
1426  
1427    return false;
1428  }
1429  
1430  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1431  /// to a constant, or if it does but contains a label, return false.  If it
1432  /// constant folds return true and set the boolean result in Result.
1433  bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1434                                                     bool &ResultBool,
1435                                                     bool AllowLabels) {
1436    llvm::APSInt ResultInt;
1437    if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1438      return false;
1439  
1440    ResultBool = ResultInt.getBoolValue();
1441    return true;
1442  }
1443  
1444  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1445  /// to a constant, or if it does but contains a label, return false.  If it
1446  /// constant folds return true and set the folded value.
1447  bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1448                                                     llvm::APSInt &ResultInt,
1449                                                     bool AllowLabels) {
1450    // FIXME: Rename and handle conversion of other evaluatable things
1451    // to bool.
1452    Expr::EvalResult Result;
1453    if (!Cond->EvaluateAsInt(Result, getContext()))
1454      return false;  // Not foldable, not integer or not fully evaluatable.
1455  
1456    llvm::APSInt Int = Result.Val.getInt();
1457    if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1458      return false;  // Contains a label.
1459  
1460    ResultInt = Int;
1461    return true;
1462  }
1463  
1464  
1465  
1466  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1467  /// statement) to the specified blocks.  Based on the condition, this might try
1468  /// to simplify the codegen of the conditional based on the branch.
1469  ///
1470  void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1471                                             llvm::BasicBlock *TrueBlock,
1472                                             llvm::BasicBlock *FalseBlock,
1473                                             uint64_t TrueCount) {
1474    Cond = Cond->IgnoreParens();
1475  
1476    if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1477  
1478      // Handle X && Y in a condition.
1479      if (CondBOp->getOpcode() == BO_LAnd) {
1480        // If we have "1 && X", simplify the code.  "0 && X" would have constant
1481        // folded if the case was simple enough.
1482        bool ConstantBool = false;
1483        if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1484            ConstantBool) {
1485          // br(1 && X) -> br(X).
1486          incrementProfileCounter(CondBOp);
1487          return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1488                                      TrueCount);
1489        }
1490  
1491        // If we have "X && 1", simplify the code to use an uncond branch.
1492        // "X && 0" would have been constant folded to 0.
1493        if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1494            ConstantBool) {
1495          // br(X && 1) -> br(X).
1496          return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1497                                      TrueCount);
1498        }
1499  
1500        // Emit the LHS as a conditional.  If the LHS conditional is false, we
1501        // want to jump to the FalseBlock.
1502        llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1503        // The counter tells us how often we evaluate RHS, and all of TrueCount
1504        // can be propagated to that branch.
1505        uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1506  
1507        ConditionalEvaluation eval(*this);
1508        {
1509          ApplyDebugLocation DL(*this, Cond);
1510          EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1511          EmitBlock(LHSTrue);
1512        }
1513  
1514        incrementProfileCounter(CondBOp);
1515        setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1516  
1517        // Any temporaries created here are conditional.
1518        eval.begin(*this);
1519        EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1520        eval.end(*this);
1521  
1522        return;
1523      }
1524  
1525      if (CondBOp->getOpcode() == BO_LOr) {
1526        // If we have "0 || X", simplify the code.  "1 || X" would have constant
1527        // folded if the case was simple enough.
1528        bool ConstantBool = false;
1529        if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1530            !ConstantBool) {
1531          // br(0 || X) -> br(X).
1532          incrementProfileCounter(CondBOp);
1533          return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1534                                      TrueCount);
1535        }
1536  
1537        // If we have "X || 0", simplify the code to use an uncond branch.
1538        // "X || 1" would have been constant folded to 1.
1539        if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1540            !ConstantBool) {
1541          // br(X || 0) -> br(X).
1542          return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1543                                      TrueCount);
1544        }
1545  
1546        // Emit the LHS as a conditional.  If the LHS conditional is true, we
1547        // want to jump to the TrueBlock.
1548        llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1549        // We have the count for entry to the RHS and for the whole expression
1550        // being true, so we can divy up True count between the short circuit and
1551        // the RHS.
1552        uint64_t LHSCount =
1553            getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1554        uint64_t RHSCount = TrueCount - LHSCount;
1555  
1556        ConditionalEvaluation eval(*this);
1557        {
1558          ApplyDebugLocation DL(*this, Cond);
1559          EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1560          EmitBlock(LHSFalse);
1561        }
1562  
1563        incrementProfileCounter(CondBOp);
1564        setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1565  
1566        // Any temporaries created here are conditional.
1567        eval.begin(*this);
1568        EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1569  
1570        eval.end(*this);
1571  
1572        return;
1573      }
1574    }
1575  
1576    if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1577      // br(!x, t, f) -> br(x, f, t)
1578      if (CondUOp->getOpcode() == UO_LNot) {
1579        // Negate the count.
1580        uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1581        // Negate the condition and swap the destination blocks.
1582        return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1583                                    FalseCount);
1584      }
1585    }
1586  
1587    if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1588      // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1589      llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1590      llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1591  
1592      ConditionalEvaluation cond(*this);
1593      EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1594                           getProfileCount(CondOp));
1595  
1596      // When computing PGO branch weights, we only know the overall count for
1597      // the true block. This code is essentially doing tail duplication of the
1598      // naive code-gen, introducing new edges for which counts are not
1599      // available. Divide the counts proportionally between the LHS and RHS of
1600      // the conditional operator.
1601      uint64_t LHSScaledTrueCount = 0;
1602      if (TrueCount) {
1603        double LHSRatio =
1604            getProfileCount(CondOp) / (double)getCurrentProfileCount();
1605        LHSScaledTrueCount = TrueCount * LHSRatio;
1606      }
1607  
1608      cond.begin(*this);
1609      EmitBlock(LHSBlock);
1610      incrementProfileCounter(CondOp);
1611      {
1612        ApplyDebugLocation DL(*this, Cond);
1613        EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1614                             LHSScaledTrueCount);
1615      }
1616      cond.end(*this);
1617  
1618      cond.begin(*this);
1619      EmitBlock(RHSBlock);
1620      EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1621                           TrueCount - LHSScaledTrueCount);
1622      cond.end(*this);
1623  
1624      return;
1625    }
1626  
1627    if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1628      // Conditional operator handling can give us a throw expression as a
1629      // condition for a case like:
1630      //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1631      // Fold this to:
1632      //   br(c, throw x, br(y, t, f))
1633      EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1634      return;
1635    }
1636  
1637    // If the branch has a condition wrapped by __builtin_unpredictable,
1638    // create metadata that specifies that the branch is unpredictable.
1639    // Don't bother if not optimizing because that metadata would not be used.
1640    llvm::MDNode *Unpredictable = nullptr;
1641    auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1642    if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1643      auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1644      if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1645        llvm::MDBuilder MDHelper(getLLVMContext());
1646        Unpredictable = MDHelper.createUnpredictable();
1647      }
1648    }
1649  
1650    // Create branch weights based on the number of times we get here and the
1651    // number of times the condition should be true.
1652    uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1653    llvm::MDNode *Weights =
1654        createProfileWeights(TrueCount, CurrentCount - TrueCount);
1655  
1656    // Emit the code with the fully general case.
1657    llvm::Value *CondV;
1658    {
1659      ApplyDebugLocation DL(*this, Cond);
1660      CondV = EvaluateExprAsBool(Cond);
1661    }
1662    Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1663  }
1664  
1665  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1666  /// specified stmt yet.
1667  void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1668    CGM.ErrorUnsupported(S, Type);
1669  }
1670  
1671  /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1672  /// variable-length array whose elements have a non-zero bit-pattern.
1673  ///
1674  /// \param baseType the inner-most element type of the array
1675  /// \param src - a char* pointing to the bit-pattern for a single
1676  /// base element of the array
1677  /// \param sizeInChars - the total size of the VLA, in chars
1678  static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1679                                 Address dest, Address src,
1680                                 llvm::Value *sizeInChars) {
1681    CGBuilderTy &Builder = CGF.Builder;
1682  
1683    CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1684    llvm::Value *baseSizeInChars
1685      = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1686  
1687    Address begin =
1688      Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1689    llvm::Value *end =
1690      Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1691  
1692    llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1693    llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1694    llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1695  
1696    // Make a loop over the VLA.  C99 guarantees that the VLA element
1697    // count must be nonzero.
1698    CGF.EmitBlock(loopBB);
1699  
1700    llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1701    cur->addIncoming(begin.getPointer(), originBB);
1702  
1703    CharUnits curAlign =
1704      dest.getAlignment().alignmentOfArrayElement(baseSize);
1705  
1706    // memcpy the individual element bit-pattern.
1707    Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1708                         /*volatile*/ false);
1709  
1710    // Go to the next element.
1711    llvm::Value *next =
1712      Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1713  
1714    // Leave if that's the end of the VLA.
1715    llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1716    Builder.CreateCondBr(done, contBB, loopBB);
1717    cur->addIncoming(next, loopBB);
1718  
1719    CGF.EmitBlock(contBB);
1720  }
1721  
1722  void
1723  CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1724    // Ignore empty classes in C++.
1725    if (getLangOpts().CPlusPlus) {
1726      if (const RecordType *RT = Ty->getAs<RecordType>()) {
1727        if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1728          return;
1729      }
1730    }
1731  
1732    // Cast the dest ptr to the appropriate i8 pointer type.
1733    if (DestPtr.getElementType() != Int8Ty)
1734      DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1735  
1736    // Get size and alignment info for this aggregate.
1737    CharUnits size = getContext().getTypeSizeInChars(Ty);
1738  
1739    llvm::Value *SizeVal;
1740    const VariableArrayType *vla;
1741  
1742    // Don't bother emitting a zero-byte memset.
1743    if (size.isZero()) {
1744      // But note that getTypeInfo returns 0 for a VLA.
1745      if (const VariableArrayType *vlaType =
1746            dyn_cast_or_null<VariableArrayType>(
1747                                            getContext().getAsArrayType(Ty))) {
1748        auto VlaSize = getVLASize(vlaType);
1749        SizeVal = VlaSize.NumElts;
1750        CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1751        if (!eltSize.isOne())
1752          SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1753        vla = vlaType;
1754      } else {
1755        return;
1756      }
1757    } else {
1758      SizeVal = CGM.getSize(size);
1759      vla = nullptr;
1760    }
1761  
1762    // If the type contains a pointer to data member we can't memset it to zero.
1763    // Instead, create a null constant and copy it to the destination.
1764    // TODO: there are other patterns besides zero that we can usefully memset,
1765    // like -1, which happens to be the pattern used by member-pointers.
1766    if (!CGM.getTypes().isZeroInitializable(Ty)) {
1767      // For a VLA, emit a single element, then splat that over the VLA.
1768      if (vla) Ty = getContext().getBaseElementType(vla);
1769  
1770      llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1771  
1772      llvm::GlobalVariable *NullVariable =
1773        new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1774                                 /*isConstant=*/true,
1775                                 llvm::GlobalVariable::PrivateLinkage,
1776                                 NullConstant, Twine());
1777      CharUnits NullAlign = DestPtr.getAlignment();
1778      NullVariable->setAlignment(NullAlign.getAsAlign());
1779      Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1780                     NullAlign);
1781  
1782      if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1783  
1784      // Get and call the appropriate llvm.memcpy overload.
1785      Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1786      return;
1787    }
1788  
1789    // Otherwise, just memset the whole thing to zero.  This is legal
1790    // because in LLVM, all default initializers (other than the ones we just
1791    // handled above) are guaranteed to have a bit pattern of all zeros.
1792    Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1793  }
1794  
1795  llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1796    // Make sure that there is a block for the indirect goto.
1797    if (!IndirectBranch)
1798      GetIndirectGotoBlock();
1799  
1800    llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1801  
1802    // Make sure the indirect branch includes all of the address-taken blocks.
1803    IndirectBranch->addDestination(BB);
1804    return llvm::BlockAddress::get(CurFn, BB);
1805  }
1806  
1807  llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1808    // If we already made the indirect branch for indirect goto, return its block.
1809    if (IndirectBranch) return IndirectBranch->getParent();
1810  
1811    CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1812  
1813    // Create the PHI node that indirect gotos will add entries to.
1814    llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1815                                                "indirect.goto.dest");
1816  
1817    // Create the indirect branch instruction.
1818    IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1819    return IndirectBranch->getParent();
1820  }
1821  
1822  /// Computes the length of an array in elements, as well as the base
1823  /// element type and a properly-typed first element pointer.
1824  llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1825                                                QualType &baseType,
1826                                                Address &addr) {
1827    const ArrayType *arrayType = origArrayType;
1828  
1829    // If it's a VLA, we have to load the stored size.  Note that
1830    // this is the size of the VLA in bytes, not its size in elements.
1831    llvm::Value *numVLAElements = nullptr;
1832    if (isa<VariableArrayType>(arrayType)) {
1833      numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
1834  
1835      // Walk into all VLAs.  This doesn't require changes to addr,
1836      // which has type T* where T is the first non-VLA element type.
1837      do {
1838        QualType elementType = arrayType->getElementType();
1839        arrayType = getContext().getAsArrayType(elementType);
1840  
1841        // If we only have VLA components, 'addr' requires no adjustment.
1842        if (!arrayType) {
1843          baseType = elementType;
1844          return numVLAElements;
1845        }
1846      } while (isa<VariableArrayType>(arrayType));
1847  
1848      // We get out here only if we find a constant array type
1849      // inside the VLA.
1850    }
1851  
1852    // We have some number of constant-length arrays, so addr should
1853    // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1854    // down to the first element of addr.
1855    SmallVector<llvm::Value*, 8> gepIndices;
1856  
1857    // GEP down to the array type.
1858    llvm::ConstantInt *zero = Builder.getInt32(0);
1859    gepIndices.push_back(zero);
1860  
1861    uint64_t countFromCLAs = 1;
1862    QualType eltType;
1863  
1864    llvm::ArrayType *llvmArrayType =
1865      dyn_cast<llvm::ArrayType>(addr.getElementType());
1866    while (llvmArrayType) {
1867      assert(isa<ConstantArrayType>(arrayType));
1868      assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1869               == llvmArrayType->getNumElements());
1870  
1871      gepIndices.push_back(zero);
1872      countFromCLAs *= llvmArrayType->getNumElements();
1873      eltType = arrayType->getElementType();
1874  
1875      llvmArrayType =
1876        dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1877      arrayType = getContext().getAsArrayType(arrayType->getElementType());
1878      assert((!llvmArrayType || arrayType) &&
1879             "LLVM and Clang types are out-of-synch");
1880    }
1881  
1882    if (arrayType) {
1883      // From this point onwards, the Clang array type has been emitted
1884      // as some other type (probably a packed struct). Compute the array
1885      // size, and just emit the 'begin' expression as a bitcast.
1886      while (arrayType) {
1887        countFromCLAs *=
1888            cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1889        eltType = arrayType->getElementType();
1890        arrayType = getContext().getAsArrayType(eltType);
1891      }
1892  
1893      llvm::Type *baseType = ConvertType(eltType);
1894      addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1895    } else {
1896      // Create the actual GEP.
1897      addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1898                                               gepIndices, "array.begin"),
1899                     addr.getAlignment());
1900    }
1901  
1902    baseType = eltType;
1903  
1904    llvm::Value *numElements
1905      = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1906  
1907    // If we had any VLA dimensions, factor them in.
1908    if (numVLAElements)
1909      numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1910  
1911    return numElements;
1912  }
1913  
1914  CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
1915    const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1916    assert(vla && "type was not a variable array type!");
1917    return getVLASize(vla);
1918  }
1919  
1920  CodeGenFunction::VlaSizePair
1921  CodeGenFunction::getVLASize(const VariableArrayType *type) {
1922    // The number of elements so far; always size_t.
1923    llvm::Value *numElements = nullptr;
1924  
1925    QualType elementType;
1926    do {
1927      elementType = type->getElementType();
1928      llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1929      assert(vlaSize && "no size for VLA!");
1930      assert(vlaSize->getType() == SizeTy);
1931  
1932      if (!numElements) {
1933        numElements = vlaSize;
1934      } else {
1935        // It's undefined behavior if this wraps around, so mark it that way.
1936        // FIXME: Teach -fsanitize=undefined to trap this.
1937        numElements = Builder.CreateNUWMul(numElements, vlaSize);
1938      }
1939    } while ((type = getContext().getAsVariableArrayType(elementType)));
1940  
1941    return { numElements, elementType };
1942  }
1943  
1944  CodeGenFunction::VlaSizePair
1945  CodeGenFunction::getVLAElements1D(QualType type) {
1946    const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1947    assert(vla && "type was not a variable array type!");
1948    return getVLAElements1D(vla);
1949  }
1950  
1951  CodeGenFunction::VlaSizePair
1952  CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
1953    llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
1954    assert(VlaSize && "no size for VLA!");
1955    assert(VlaSize->getType() == SizeTy);
1956    return { VlaSize, Vla->getElementType() };
1957  }
1958  
1959  void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1960    assert(type->isVariablyModifiedType() &&
1961           "Must pass variably modified type to EmitVLASizes!");
1962  
1963    EnsureInsertPoint();
1964  
1965    // We're going to walk down into the type and look for VLA
1966    // expressions.
1967    do {
1968      assert(type->isVariablyModifiedType());
1969  
1970      const Type *ty = type.getTypePtr();
1971      switch (ty->getTypeClass()) {
1972  
1973  #define TYPE(Class, Base)
1974  #define ABSTRACT_TYPE(Class, Base)
1975  #define NON_CANONICAL_TYPE(Class, Base)
1976  #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1977  #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1978  #include "clang/AST/TypeNodes.inc"
1979        llvm_unreachable("unexpected dependent type!");
1980  
1981      // These types are never variably-modified.
1982      case Type::Builtin:
1983      case Type::Complex:
1984      case Type::Vector:
1985      case Type::ExtVector:
1986      case Type::Record:
1987      case Type::Enum:
1988      case Type::Elaborated:
1989      case Type::TemplateSpecialization:
1990      case Type::ObjCTypeParam:
1991      case Type::ObjCObject:
1992      case Type::ObjCInterface:
1993      case Type::ObjCObjectPointer:
1994        llvm_unreachable("type class is never variably-modified!");
1995  
1996      case Type::Adjusted:
1997        type = cast<AdjustedType>(ty)->getAdjustedType();
1998        break;
1999  
2000      case Type::Decayed:
2001        type = cast<DecayedType>(ty)->getPointeeType();
2002        break;
2003  
2004      case Type::Pointer:
2005        type = cast<PointerType>(ty)->getPointeeType();
2006        break;
2007  
2008      case Type::BlockPointer:
2009        type = cast<BlockPointerType>(ty)->getPointeeType();
2010        break;
2011  
2012      case Type::LValueReference:
2013      case Type::RValueReference:
2014        type = cast<ReferenceType>(ty)->getPointeeType();
2015        break;
2016  
2017      case Type::MemberPointer:
2018        type = cast<MemberPointerType>(ty)->getPointeeType();
2019        break;
2020  
2021      case Type::ConstantArray:
2022      case Type::IncompleteArray:
2023        // Losing element qualification here is fine.
2024        type = cast<ArrayType>(ty)->getElementType();
2025        break;
2026  
2027      case Type::VariableArray: {
2028        // Losing element qualification here is fine.
2029        const VariableArrayType *vat = cast<VariableArrayType>(ty);
2030  
2031        // Unknown size indication requires no size computation.
2032        // Otherwise, evaluate and record it.
2033        if (const Expr *size = vat->getSizeExpr()) {
2034          // It's possible that we might have emitted this already,
2035          // e.g. with a typedef and a pointer to it.
2036          llvm::Value *&entry = VLASizeMap[size];
2037          if (!entry) {
2038            llvm::Value *Size = EmitScalarExpr(size);
2039  
2040            // C11 6.7.6.2p5:
2041            //   If the size is an expression that is not an integer constant
2042            //   expression [...] each time it is evaluated it shall have a value
2043            //   greater than zero.
2044            if (SanOpts.has(SanitizerKind::VLABound) &&
2045                size->getType()->isSignedIntegerType()) {
2046              SanitizerScope SanScope(this);
2047              llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2048              llvm::Constant *StaticArgs[] = {
2049                  EmitCheckSourceLocation(size->getBeginLoc()),
2050                  EmitCheckTypeDescriptor(size->getType())};
2051              EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2052                                       SanitizerKind::VLABound),
2053                        SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2054            }
2055  
2056            // Always zexting here would be wrong if it weren't
2057            // undefined behavior to have a negative bound.
2058            entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2059          }
2060        }
2061        type = vat->getElementType();
2062        break;
2063      }
2064  
2065      case Type::FunctionProto:
2066      case Type::FunctionNoProto:
2067        type = cast<FunctionType>(ty)->getReturnType();
2068        break;
2069  
2070      case Type::Paren:
2071      case Type::TypeOf:
2072      case Type::UnaryTransform:
2073      case Type::Attributed:
2074      case Type::SubstTemplateTypeParm:
2075      case Type::PackExpansion:
2076      case Type::MacroQualified:
2077        // Keep walking after single level desugaring.
2078        type = type.getSingleStepDesugaredType(getContext());
2079        break;
2080  
2081      case Type::Typedef:
2082      case Type::Decltype:
2083      case Type::Auto:
2084      case Type::DeducedTemplateSpecialization:
2085        // Stop walking: nothing to do.
2086        return;
2087  
2088      case Type::TypeOfExpr:
2089        // Stop walking: emit typeof expression.
2090        EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2091        return;
2092  
2093      case Type::Atomic:
2094        type = cast<AtomicType>(ty)->getValueType();
2095        break;
2096  
2097      case Type::Pipe:
2098        type = cast<PipeType>(ty)->getElementType();
2099        break;
2100      }
2101    } while (type->isVariablyModifiedType());
2102  }
2103  
2104  Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2105    if (getContext().getBuiltinVaListType()->isArrayType())
2106      return EmitPointerWithAlignment(E);
2107    return EmitLValue(E).getAddress(*this);
2108  }
2109  
2110  Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2111    return EmitLValue(E).getAddress(*this);
2112  }
2113  
2114  void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2115                                                const APValue &Init) {
2116    assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2117    if (CGDebugInfo *Dbg = getDebugInfo())
2118      if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2119        Dbg->EmitGlobalVariable(E->getDecl(), Init);
2120  }
2121  
2122  CodeGenFunction::PeepholeProtection
2123  CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2124    // At the moment, the only aggressive peephole we do in IR gen
2125    // is trunc(zext) folding, but if we add more, we can easily
2126    // extend this protection.
2127  
2128    if (!rvalue.isScalar()) return PeepholeProtection();
2129    llvm::Value *value = rvalue.getScalarVal();
2130    if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2131  
2132    // Just make an extra bitcast.
2133    assert(HaveInsertPoint());
2134    llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2135                                                    Builder.GetInsertBlock());
2136  
2137    PeepholeProtection protection;
2138    protection.Inst = inst;
2139    return protection;
2140  }
2141  
2142  void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2143    if (!protection.Inst) return;
2144  
2145    // In theory, we could try to duplicate the peepholes now, but whatever.
2146    protection.Inst->eraseFromParent();
2147  }
2148  
2149  void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue,
2150                                                QualType Ty, SourceLocation Loc,
2151                                                SourceLocation AssumptionLoc,
2152                                                llvm::Value *Alignment,
2153                                                llvm::Value *OffsetValue) {
2154    llvm::Value *TheCheck;
2155    llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2156        CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck);
2157    if (SanOpts.has(SanitizerKind::Alignment)) {
2158      EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2159                                   OffsetValue, TheCheck, Assumption);
2160    }
2161  }
2162  
2163  void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue,
2164                                                const Expr *E,
2165                                                SourceLocation AssumptionLoc,
2166                                                llvm::Value *Alignment,
2167                                                llvm::Value *OffsetValue) {
2168    if (auto *CE = dyn_cast<CastExpr>(E))
2169      E = CE->getSubExprAsWritten();
2170    QualType Ty = E->getType();
2171    SourceLocation Loc = E->getExprLoc();
2172  
2173    EmitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2174                            OffsetValue);
2175  }
2176  
2177  llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2178                                                   llvm::Value *AnnotatedVal,
2179                                                   StringRef AnnotationStr,
2180                                                   SourceLocation Location) {
2181    llvm::Value *Args[4] = {
2182      AnnotatedVal,
2183      Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2184      Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2185      CGM.EmitAnnotationLineNo(Location)
2186    };
2187    return Builder.CreateCall(AnnotationFn, Args);
2188  }
2189  
2190  void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2191    assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2192    // FIXME We create a new bitcast for every annotation because that's what
2193    // llvm-gcc was doing.
2194    for (const auto *I : D->specific_attrs<AnnotateAttr>())
2195      EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2196                         Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2197                         I->getAnnotation(), D->getLocation());
2198  }
2199  
2200  Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2201                                                Address Addr) {
2202    assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2203    llvm::Value *V = Addr.getPointer();
2204    llvm::Type *VTy = V->getType();
2205    llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2206                                      CGM.Int8PtrTy);
2207  
2208    for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2209      // FIXME Always emit the cast inst so we can differentiate between
2210      // annotation on the first field of a struct and annotation on the struct
2211      // itself.
2212      if (VTy != CGM.Int8PtrTy)
2213        V = Builder.CreateBitCast(V, CGM.Int8PtrTy);
2214      V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2215      V = Builder.CreateBitCast(V, VTy);
2216    }
2217  
2218    return Address(V, Addr.getAlignment());
2219  }
2220  
2221  CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2222  
2223  CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2224      : CGF(CGF) {
2225    assert(!CGF->IsSanitizerScope);
2226    CGF->IsSanitizerScope = true;
2227  }
2228  
2229  CodeGenFunction::SanitizerScope::~SanitizerScope() {
2230    CGF->IsSanitizerScope = false;
2231  }
2232  
2233  void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2234                                     const llvm::Twine &Name,
2235                                     llvm::BasicBlock *BB,
2236                                     llvm::BasicBlock::iterator InsertPt) const {
2237    LoopStack.InsertHelper(I);
2238    if (IsSanitizerScope)
2239      CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2240  }
2241  
2242  void CGBuilderInserter::InsertHelper(
2243      llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2244      llvm::BasicBlock::iterator InsertPt) const {
2245    llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2246    if (CGF)
2247      CGF->InsertHelper(I, Name, BB, InsertPt);
2248  }
2249  
2250  static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2251                                  CodeGenModule &CGM, const FunctionDecl *FD,
2252                                  std::string &FirstMissing) {
2253    // If there aren't any required features listed then go ahead and return.
2254    if (ReqFeatures.empty())
2255      return false;
2256  
2257    // Now build up the set of caller features and verify that all the required
2258    // features are there.
2259    llvm::StringMap<bool> CallerFeatureMap;
2260    CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2261  
2262    // If we have at least one of the features in the feature list return
2263    // true, otherwise return false.
2264    return std::all_of(
2265        ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2266          SmallVector<StringRef, 1> OrFeatures;
2267          Feature.split(OrFeatures, '|');
2268          return llvm::any_of(OrFeatures, [&](StringRef Feature) {
2269            if (!CallerFeatureMap.lookup(Feature)) {
2270              FirstMissing = Feature.str();
2271              return false;
2272            }
2273            return true;
2274          });
2275        });
2276  }
2277  
2278  // Emits an error if we don't have a valid set of target features for the
2279  // called function.
2280  void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2281                                            const FunctionDecl *TargetDecl) {
2282    return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2283  }
2284  
2285  // Emits an error if we don't have a valid set of target features for the
2286  // called function.
2287  void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2288                                            const FunctionDecl *TargetDecl) {
2289    // Early exit if this is an indirect call.
2290    if (!TargetDecl)
2291      return;
2292  
2293    // Get the current enclosing function if it exists. If it doesn't
2294    // we can't check the target features anyhow.
2295    const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2296    if (!FD)
2297      return;
2298  
2299    // Grab the required features for the call. For a builtin this is listed in
2300    // the td file with the default cpu, for an always_inline function this is any
2301    // listed cpu and any listed features.
2302    unsigned BuiltinID = TargetDecl->getBuiltinID();
2303    std::string MissingFeature;
2304    if (BuiltinID) {
2305      SmallVector<StringRef, 1> ReqFeatures;
2306      const char *FeatureList =
2307          CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2308      // Return if the builtin doesn't have any required features.
2309      if (!FeatureList || StringRef(FeatureList) == "")
2310        return;
2311      StringRef(FeatureList).split(ReqFeatures, ',');
2312      if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2313        CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2314            << TargetDecl->getDeclName()
2315            << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2316  
2317    } else if (!TargetDecl->isMultiVersion() &&
2318               TargetDecl->hasAttr<TargetAttr>()) {
2319      // Get the required features for the callee.
2320  
2321      const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2322      ParsedTargetAttr ParsedAttr =
2323          CGM.getContext().filterFunctionTargetAttrs(TD);
2324  
2325      SmallVector<StringRef, 1> ReqFeatures;
2326      llvm::StringMap<bool> CalleeFeatureMap;
2327      CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap,
2328                                             GlobalDecl(TargetDecl));
2329  
2330      for (const auto &F : ParsedAttr.Features) {
2331        if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2332          ReqFeatures.push_back(StringRef(F).substr(1));
2333      }
2334  
2335      for (const auto &F : CalleeFeatureMap) {
2336        // Only positive features are "required".
2337        if (F.getValue())
2338          ReqFeatures.push_back(F.getKey());
2339      }
2340      if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2341        CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2342            << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2343    }
2344  }
2345  
2346  void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2347    if (!CGM.getCodeGenOpts().SanitizeStats)
2348      return;
2349  
2350    llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2351    IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2352    CGM.getSanStats().create(IRB, SSK);
2353  }
2354  
2355  llvm::Value *
2356  CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2357    llvm::Value *Condition = nullptr;
2358  
2359    if (!RO.Conditions.Architecture.empty())
2360      Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2361  
2362    if (!RO.Conditions.Features.empty()) {
2363      llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2364      Condition =
2365          Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2366    }
2367    return Condition;
2368  }
2369  
2370  static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2371                                               llvm::Function *Resolver,
2372                                               CGBuilderTy &Builder,
2373                                               llvm::Function *FuncToReturn,
2374                                               bool SupportsIFunc) {
2375    if (SupportsIFunc) {
2376      Builder.CreateRet(FuncToReturn);
2377      return;
2378    }
2379  
2380    llvm::SmallVector<llvm::Value *, 10> Args;
2381    llvm::for_each(Resolver->args(),
2382                   [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2383  
2384    llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2385    Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2386  
2387    if (Resolver->getReturnType()->isVoidTy())
2388      Builder.CreateRetVoid();
2389    else
2390      Builder.CreateRet(Result);
2391  }
2392  
2393  void CodeGenFunction::EmitMultiVersionResolver(
2394      llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2395    assert(getContext().getTargetInfo().getTriple().isX86() &&
2396           "Only implemented for x86 targets");
2397  
2398    bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2399  
2400    // Main function's basic block.
2401    llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2402    Builder.SetInsertPoint(CurBlock);
2403    EmitX86CpuInit();
2404  
2405    for (const MultiVersionResolverOption &RO : Options) {
2406      Builder.SetInsertPoint(CurBlock);
2407      llvm::Value *Condition = FormResolverCondition(RO);
2408  
2409      // The 'default' or 'generic' case.
2410      if (!Condition) {
2411        assert(&RO == Options.end() - 1 &&
2412               "Default or Generic case must be last");
2413        CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2414                                         SupportsIFunc);
2415        return;
2416      }
2417  
2418      llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2419      CGBuilderTy RetBuilder(*this, RetBlock);
2420      CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2421                                       SupportsIFunc);
2422      CurBlock = createBasicBlock("resolver_else", Resolver);
2423      Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2424    }
2425  
2426    // If no generic/default, emit an unreachable.
2427    Builder.SetInsertPoint(CurBlock);
2428    llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2429    TrapCall->setDoesNotReturn();
2430    TrapCall->setDoesNotThrow();
2431    Builder.CreateUnreachable();
2432    Builder.ClearInsertionPoint();
2433  }
2434  
2435  // Loc - where the diagnostic will point, where in the source code this
2436  //  alignment has failed.
2437  // SecondaryLoc - if present (will be present if sufficiently different from
2438  //  Loc), the diagnostic will additionally point a "Note:" to this location.
2439  //  It should be the location where the __attribute__((assume_aligned))
2440  //  was written e.g.
2441  void CodeGenFunction::EmitAlignmentAssumptionCheck(
2442      llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2443      SourceLocation SecondaryLoc, llvm::Value *Alignment,
2444      llvm::Value *OffsetValue, llvm::Value *TheCheck,
2445      llvm::Instruction *Assumption) {
2446    assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2447           cast<llvm::CallInst>(Assumption)->getCalledValue() ==
2448               llvm::Intrinsic::getDeclaration(
2449                   Builder.GetInsertBlock()->getParent()->getParent(),
2450                   llvm::Intrinsic::assume) &&
2451           "Assumption should be a call to llvm.assume().");
2452    assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2453           "Assumption should be the last instruction of the basic block, "
2454           "since the basic block is still being generated.");
2455  
2456    if (!SanOpts.has(SanitizerKind::Alignment))
2457      return;
2458  
2459    // Don't check pointers to volatile data. The behavior here is implementation-
2460    // defined.
2461    if (Ty->getPointeeType().isVolatileQualified())
2462      return;
2463  
2464    // We need to temorairly remove the assumption so we can insert the
2465    // sanitizer check before it, else the check will be dropped by optimizations.
2466    Assumption->removeFromParent();
2467  
2468    {
2469      SanitizerScope SanScope(this);
2470  
2471      if (!OffsetValue)
2472        OffsetValue = Builder.getInt1(0); // no offset.
2473  
2474      llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2475                                      EmitCheckSourceLocation(SecondaryLoc),
2476                                      EmitCheckTypeDescriptor(Ty)};
2477      llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2478                                    EmitCheckValue(Alignment),
2479                                    EmitCheckValue(OffsetValue)};
2480      EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2481                SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2482    }
2483  
2484    // We are now in the (new, empty) "cont" basic block.
2485    // Reintroduce the assumption.
2486    Builder.Insert(Assumption);
2487    // FIXME: Assumption still has it's original basic block as it's Parent.
2488  }
2489  
2490  llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2491    if (CGDebugInfo *DI = getDebugInfo())
2492      return DI->SourceLocToDebugLoc(Location);
2493  
2494    return llvm::DebugLoc();
2495  }
2496