1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGHLSLRuntime.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ASTLambda.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/Decl.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/Expr.h" 30 #include "clang/AST/StmtCXX.h" 31 #include "clang/AST/StmtObjC.h" 32 #include "clang/Basic/Builtins.h" 33 #include "clang/Basic/CodeGenOptions.h" 34 #include "clang/Basic/TargetInfo.h" 35 #include "clang/CodeGen/CGFunctionInfo.h" 36 #include "clang/Frontend/FrontendDiagnostic.h" 37 #include "llvm/ADT/ArrayRef.h" 38 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/Dominators.h" 41 #include "llvm/IR/FPEnv.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/MDBuilder.h" 45 #include "llvm/IR/Operator.h" 46 #include "llvm/Support/CRC.h" 47 #include "llvm/Support/xxhash.h" 48 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 49 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 50 #include <optional> 51 52 using namespace clang; 53 using namespace CodeGen; 54 55 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 56 /// markers. 57 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 58 const LangOptions &LangOpts) { 59 if (CGOpts.DisableLifetimeMarkers) 60 return false; 61 62 // Sanitizers may use markers. 63 if (CGOpts.SanitizeAddressUseAfterScope || 64 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 65 LangOpts.Sanitize.has(SanitizerKind::Memory)) 66 return true; 67 68 // For now, only in optimized builds. 69 return CGOpts.OptimizationLevel != 0; 70 } 71 72 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 73 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 74 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 75 CGBuilderInserterTy(this)), 76 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 77 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 78 ShouldEmitLifetimeMarkers( 79 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 80 if (!suppressNewContext) 81 CGM.getCXXABI().getMangleContext().startNewFunction(); 82 EHStack.setCGF(this); 83 84 SetFastMathFlags(CurFPFeatures); 85 } 86 87 CodeGenFunction::~CodeGenFunction() { 88 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 89 90 if (getLangOpts().OpenMP && CurFn) 91 CGM.getOpenMPRuntime().functionFinished(*this); 92 93 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 94 // outlining etc) at some point. Doing it once the function codegen is done 95 // seems to be a reasonable spot. We do it here, as opposed to the deletion 96 // time of the CodeGenModule, because we have to ensure the IR has not yet 97 // been "emitted" to the outside, thus, modifications are still sensible. 98 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 99 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 100 } 101 102 // Map the LangOption for exception behavior into 103 // the corresponding enum in the IR. 104 llvm::fp::ExceptionBehavior 105 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 106 107 switch (Kind) { 108 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 109 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 110 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 111 default: 112 llvm_unreachable("Unsupported FP Exception Behavior"); 113 } 114 } 115 116 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 117 llvm::FastMathFlags FMF; 118 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 119 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 120 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 121 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 122 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 123 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 124 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 125 Builder.setFastMathFlags(FMF); 126 } 127 128 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 129 const Expr *E) 130 : CGF(CGF) { 131 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 132 } 133 134 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 135 FPOptions FPFeatures) 136 : CGF(CGF) { 137 ConstructorHelper(FPFeatures); 138 } 139 140 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 141 OldFPFeatures = CGF.CurFPFeatures; 142 CGF.CurFPFeatures = FPFeatures; 143 144 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 145 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 146 147 if (OldFPFeatures == FPFeatures) 148 return; 149 150 FMFGuard.emplace(CGF.Builder); 151 152 llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode(); 153 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 154 auto NewExceptionBehavior = 155 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 156 FPFeatures.getExceptionMode())); 157 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 158 159 CGF.SetFastMathFlags(FPFeatures); 160 161 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 162 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 163 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 164 (NewExceptionBehavior == llvm::fp::ebIgnore && 165 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 166 "FPConstrained should be enabled on entire function"); 167 168 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 169 auto OldValue = 170 CGF.CurFn->getFnAttribute(Name).getValueAsBool(); 171 auto NewValue = OldValue & Value; 172 if (OldValue != NewValue) 173 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 174 }; 175 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 176 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 177 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 178 mergeFnAttrValue( 179 "unsafe-fp-math", 180 FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() && 181 FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() && 182 FPFeatures.allowFPContractAcrossStatement()); 183 } 184 185 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 186 CGF.CurFPFeatures = OldFPFeatures; 187 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 188 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 189 } 190 191 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 192 LValueBaseInfo BaseInfo; 193 TBAAAccessInfo TBAAInfo; 194 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 195 Address Addr(V, ConvertTypeForMem(T), Alignment); 196 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 197 } 198 199 /// Given a value of type T* that may not be to a complete object, 200 /// construct an l-value with the natural pointee alignment of T. 201 LValue 202 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 203 LValueBaseInfo BaseInfo; 204 TBAAAccessInfo TBAAInfo; 205 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 206 /* forPointeeType= */ true); 207 Address Addr(V, ConvertTypeForMem(T), Align); 208 return MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 209 } 210 211 212 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 213 return CGM.getTypes().ConvertTypeForMem(T); 214 } 215 216 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 217 return CGM.getTypes().ConvertType(T); 218 } 219 220 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 221 type = type.getCanonicalType(); 222 while (true) { 223 switch (type->getTypeClass()) { 224 #define TYPE(name, parent) 225 #define ABSTRACT_TYPE(name, parent) 226 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 227 #define DEPENDENT_TYPE(name, parent) case Type::name: 228 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 229 #include "clang/AST/TypeNodes.inc" 230 llvm_unreachable("non-canonical or dependent type in IR-generation"); 231 232 case Type::Auto: 233 case Type::DeducedTemplateSpecialization: 234 llvm_unreachable("undeduced type in IR-generation"); 235 236 // Various scalar types. 237 case Type::Builtin: 238 case Type::Pointer: 239 case Type::BlockPointer: 240 case Type::LValueReference: 241 case Type::RValueReference: 242 case Type::MemberPointer: 243 case Type::Vector: 244 case Type::ExtVector: 245 case Type::ConstantMatrix: 246 case Type::FunctionProto: 247 case Type::FunctionNoProto: 248 case Type::Enum: 249 case Type::ObjCObjectPointer: 250 case Type::Pipe: 251 case Type::BitInt: 252 return TEK_Scalar; 253 254 // Complexes. 255 case Type::Complex: 256 return TEK_Complex; 257 258 // Arrays, records, and Objective-C objects. 259 case Type::ConstantArray: 260 case Type::IncompleteArray: 261 case Type::VariableArray: 262 case Type::Record: 263 case Type::ObjCObject: 264 case Type::ObjCInterface: 265 return TEK_Aggregate; 266 267 // We operate on atomic values according to their underlying type. 268 case Type::Atomic: 269 type = cast<AtomicType>(type)->getValueType(); 270 continue; 271 } 272 llvm_unreachable("unknown type kind!"); 273 } 274 } 275 276 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 277 // For cleanliness, we try to avoid emitting the return block for 278 // simple cases. 279 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 280 281 if (CurBB) { 282 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 283 284 // We have a valid insert point, reuse it if it is empty or there are no 285 // explicit jumps to the return block. 286 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 287 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 288 delete ReturnBlock.getBlock(); 289 ReturnBlock = JumpDest(); 290 } else 291 EmitBlock(ReturnBlock.getBlock()); 292 return llvm::DebugLoc(); 293 } 294 295 // Otherwise, if the return block is the target of a single direct 296 // branch then we can just put the code in that block instead. This 297 // cleans up functions which started with a unified return block. 298 if (ReturnBlock.getBlock()->hasOneUse()) { 299 llvm::BranchInst *BI = 300 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 301 if (BI && BI->isUnconditional() && 302 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 303 // Record/return the DebugLoc of the simple 'return' expression to be used 304 // later by the actual 'ret' instruction. 305 llvm::DebugLoc Loc = BI->getDebugLoc(); 306 Builder.SetInsertPoint(BI->getParent()); 307 BI->eraseFromParent(); 308 delete ReturnBlock.getBlock(); 309 ReturnBlock = JumpDest(); 310 return Loc; 311 } 312 } 313 314 // FIXME: We are at an unreachable point, there is no reason to emit the block 315 // unless it has uses. However, we still need a place to put the debug 316 // region.end for now. 317 318 EmitBlock(ReturnBlock.getBlock()); 319 return llvm::DebugLoc(); 320 } 321 322 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 323 if (!BB) return; 324 if (!BB->use_empty()) { 325 CGF.CurFn->insert(CGF.CurFn->end(), BB); 326 return; 327 } 328 delete BB; 329 } 330 331 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 332 assert(BreakContinueStack.empty() && 333 "mismatched push/pop in break/continue stack!"); 334 335 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 336 && NumSimpleReturnExprs == NumReturnExprs 337 && ReturnBlock.getBlock()->use_empty(); 338 // Usually the return expression is evaluated before the cleanup 339 // code. If the function contains only a simple return statement, 340 // such as a constant, the location before the cleanup code becomes 341 // the last useful breakpoint in the function, because the simple 342 // return expression will be evaluated after the cleanup code. To be 343 // safe, set the debug location for cleanup code to the location of 344 // the return statement. Otherwise the cleanup code should be at the 345 // end of the function's lexical scope. 346 // 347 // If there are multiple branches to the return block, the branch 348 // instructions will get the location of the return statements and 349 // all will be fine. 350 if (CGDebugInfo *DI = getDebugInfo()) { 351 if (OnlySimpleReturnStmts) 352 DI->EmitLocation(Builder, LastStopPoint); 353 else 354 DI->EmitLocation(Builder, EndLoc); 355 } 356 357 // Pop any cleanups that might have been associated with the 358 // parameters. Do this in whatever block we're currently in; it's 359 // important to do this before we enter the return block or return 360 // edges will be *really* confused. 361 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 362 bool HasOnlyLifetimeMarkers = 363 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 364 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 365 366 std::optional<ApplyDebugLocation> OAL; 367 if (HasCleanups) { 368 // Make sure the line table doesn't jump back into the body for 369 // the ret after it's been at EndLoc. 370 if (CGDebugInfo *DI = getDebugInfo()) { 371 if (OnlySimpleReturnStmts) 372 DI->EmitLocation(Builder, EndLoc); 373 else 374 // We may not have a valid end location. Try to apply it anyway, and 375 // fall back to an artificial location if needed. 376 OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 377 } 378 379 PopCleanupBlocks(PrologueCleanupDepth); 380 } 381 382 // Emit function epilog (to return). 383 llvm::DebugLoc Loc = EmitReturnBlock(); 384 385 if (ShouldInstrumentFunction()) { 386 if (CGM.getCodeGenOpts().InstrumentFunctions) 387 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 388 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 389 CurFn->addFnAttr("instrument-function-exit-inlined", 390 "__cyg_profile_func_exit"); 391 } 392 393 // Emit debug descriptor for function end. 394 if (CGDebugInfo *DI = getDebugInfo()) 395 DI->EmitFunctionEnd(Builder, CurFn); 396 397 // Reset the debug location to that of the simple 'return' expression, if any 398 // rather than that of the end of the function's scope '}'. 399 ApplyDebugLocation AL(*this, Loc); 400 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 401 EmitEndEHSpec(CurCodeDecl); 402 403 assert(EHStack.empty() && 404 "did not remove all scopes from cleanup stack!"); 405 406 // If someone did an indirect goto, emit the indirect goto block at the end of 407 // the function. 408 if (IndirectBranch) { 409 EmitBlock(IndirectBranch->getParent()); 410 Builder.ClearInsertionPoint(); 411 } 412 413 // If some of our locals escaped, insert a call to llvm.localescape in the 414 // entry block. 415 if (!EscapedLocals.empty()) { 416 // Invert the map from local to index into a simple vector. There should be 417 // no holes. 418 SmallVector<llvm::Value *, 4> EscapeArgs; 419 EscapeArgs.resize(EscapedLocals.size()); 420 for (auto &Pair : EscapedLocals) 421 EscapeArgs[Pair.second] = Pair.first; 422 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 423 &CGM.getModule(), llvm::Intrinsic::localescape); 424 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 425 } 426 427 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 428 llvm::Instruction *Ptr = AllocaInsertPt; 429 AllocaInsertPt = nullptr; 430 Ptr->eraseFromParent(); 431 432 // PostAllocaInsertPt, if created, was lazily created when it was required, 433 // remove it now since it was just created for our own convenience. 434 if (PostAllocaInsertPt) { 435 llvm::Instruction *PostPtr = PostAllocaInsertPt; 436 PostAllocaInsertPt = nullptr; 437 PostPtr->eraseFromParent(); 438 } 439 440 // If someone took the address of a label but never did an indirect goto, we 441 // made a zero entry PHI node, which is illegal, zap it now. 442 if (IndirectBranch) { 443 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 444 if (PN->getNumIncomingValues() == 0) { 445 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 446 PN->eraseFromParent(); 447 } 448 } 449 450 EmitIfUsed(*this, EHResumeBlock); 451 EmitIfUsed(*this, TerminateLandingPad); 452 EmitIfUsed(*this, TerminateHandler); 453 EmitIfUsed(*this, UnreachableBlock); 454 455 for (const auto &FuncletAndParent : TerminateFunclets) 456 EmitIfUsed(*this, FuncletAndParent.second); 457 458 if (CGM.getCodeGenOpts().EmitDeclMetadata) 459 EmitDeclMetadata(); 460 461 for (const auto &R : DeferredReplacements) { 462 if (llvm::Value *Old = R.first) { 463 Old->replaceAllUsesWith(R.second); 464 cast<llvm::Instruction>(Old)->eraseFromParent(); 465 } 466 } 467 DeferredReplacements.clear(); 468 469 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 470 // PHIs if the current function is a coroutine. We don't do it for all 471 // functions as it may result in slight increase in numbers of instructions 472 // if compiled with no optimizations. We do it for coroutine as the lifetime 473 // of CleanupDestSlot alloca make correct coroutine frame building very 474 // difficult. 475 if (NormalCleanupDest.isValid() && isCoroutine()) { 476 llvm::DominatorTree DT(*CurFn); 477 llvm::PromoteMemToReg( 478 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 479 NormalCleanupDest = Address::invalid(); 480 } 481 482 // Scan function arguments for vector width. 483 for (llvm::Argument &A : CurFn->args()) 484 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 485 LargestVectorWidth = 486 std::max((uint64_t)LargestVectorWidth, 487 VT->getPrimitiveSizeInBits().getKnownMinValue()); 488 489 // Update vector width based on return type. 490 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 491 LargestVectorWidth = 492 std::max((uint64_t)LargestVectorWidth, 493 VT->getPrimitiveSizeInBits().getKnownMinValue()); 494 495 if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth) 496 LargestVectorWidth = CurFnInfo->getMaxVectorWidth(); 497 498 // Add the min-legal-vector-width attribute. This contains the max width from: 499 // 1. min-vector-width attribute used in the source program. 500 // 2. Any builtins used that have a vector width specified. 501 // 3. Values passed in and out of inline assembly. 502 // 4. Width of vector arguments and return types for this function. 503 // 5. Width of vector arguments and return types for functions called by this 504 // function. 505 if (getContext().getTargetInfo().getTriple().isX86()) 506 CurFn->addFnAttr("min-legal-vector-width", 507 llvm::utostr(LargestVectorWidth)); 508 509 // Add vscale_range attribute if appropriate. 510 std::optional<std::pair<unsigned, unsigned>> VScaleRange = 511 getContext().getTargetInfo().getVScaleRange(getLangOpts()); 512 if (VScaleRange) { 513 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( 514 getLLVMContext(), VScaleRange->first, VScaleRange->second)); 515 } 516 517 // If we generated an unreachable return block, delete it now. 518 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 519 Builder.ClearInsertionPoint(); 520 ReturnBlock.getBlock()->eraseFromParent(); 521 } 522 if (ReturnValue.isValid()) { 523 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 524 if (RetAlloca && RetAlloca->use_empty()) { 525 RetAlloca->eraseFromParent(); 526 ReturnValue = Address::invalid(); 527 } 528 } 529 } 530 531 /// ShouldInstrumentFunction - Return true if the current function should be 532 /// instrumented with __cyg_profile_func_* calls 533 bool CodeGenFunction::ShouldInstrumentFunction() { 534 if (!CGM.getCodeGenOpts().InstrumentFunctions && 535 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 536 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 537 return false; 538 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 539 return false; 540 return true; 541 } 542 543 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() { 544 if (!CurFuncDecl) 545 return false; 546 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>(); 547 } 548 549 /// ShouldXRayInstrument - Return true if the current function should be 550 /// instrumented with XRay nop sleds. 551 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 552 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 553 } 554 555 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 556 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 557 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 558 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 559 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 560 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 561 XRayInstrKind::Custom); 562 } 563 564 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 565 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 566 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 567 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 568 XRayInstrKind::Typed); 569 } 570 571 llvm::ConstantInt * 572 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const { 573 // Remove any (C++17) exception specifications, to allow calling e.g. a 574 // noexcept function through a non-noexcept pointer. 575 if (!Ty->isFunctionNoProtoType()) 576 Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None); 577 std::string Mangled; 578 llvm::raw_string_ostream Out(Mangled); 579 CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false); 580 return llvm::ConstantInt::get( 581 CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled))); 582 } 583 584 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD, 585 llvm::Function *Fn) { 586 if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>()) 587 return; 588 589 llvm::LLVMContext &Context = getLLVMContext(); 590 591 CGM.GenKernelArgMetadata(Fn, FD, this); 592 593 if (!getLangOpts().OpenCL) 594 return; 595 596 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 597 QualType HintQTy = A->getTypeHint(); 598 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 599 bool IsSignedInteger = 600 HintQTy->isSignedIntegerType() || 601 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 602 llvm::Metadata *AttrMDArgs[] = { 603 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 604 CGM.getTypes().ConvertType(A->getTypeHint()))), 605 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 606 llvm::IntegerType::get(Context, 32), 607 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 608 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 609 } 610 611 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 612 llvm::Metadata *AttrMDArgs[] = { 613 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 614 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 615 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 616 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 617 } 618 619 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 620 llvm::Metadata *AttrMDArgs[] = { 621 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 622 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 623 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 624 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 625 } 626 627 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 628 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 629 llvm::Metadata *AttrMDArgs[] = { 630 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 631 Fn->setMetadata("intel_reqd_sub_group_size", 632 llvm::MDNode::get(Context, AttrMDArgs)); 633 } 634 } 635 636 /// Determine whether the function F ends with a return stmt. 637 static bool endsWithReturn(const Decl* F) { 638 const Stmt *Body = nullptr; 639 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 640 Body = FD->getBody(); 641 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 642 Body = OMD->getBody(); 643 644 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 645 auto LastStmt = CS->body_rbegin(); 646 if (LastStmt != CS->body_rend()) 647 return isa<ReturnStmt>(*LastStmt); 648 } 649 return false; 650 } 651 652 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 653 if (SanOpts.has(SanitizerKind::Thread)) { 654 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 655 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 656 } 657 } 658 659 /// Check if the return value of this function requires sanitization. 660 bool CodeGenFunction::requiresReturnValueCheck() const { 661 return requiresReturnValueNullabilityCheck() || 662 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 663 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 664 } 665 666 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 667 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 668 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 669 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 670 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 671 return false; 672 673 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 674 return false; 675 676 if (MD->getNumParams() == 2) { 677 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 678 if (!PT || !PT->isVoidPointerType() || 679 !PT->getPointeeType().isConstQualified()) 680 return false; 681 } 682 683 return true; 684 } 685 686 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) { 687 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 688 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 689 } 690 691 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) { 692 return getTarget().getTriple().getArch() == llvm::Triple::x86 && 693 getTarget().getCXXABI().isMicrosoft() && 694 llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) { 695 return isInAllocaArgument(CGM.getCXXABI(), P->getType()); 696 }); 697 } 698 699 /// Return the UBSan prologue signature for \p FD if one is available. 700 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 701 const FunctionDecl *FD) { 702 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 703 if (!MD->isStatic()) 704 return nullptr; 705 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 706 } 707 708 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 709 llvm::Function *Fn, 710 const CGFunctionInfo &FnInfo, 711 const FunctionArgList &Args, 712 SourceLocation Loc, 713 SourceLocation StartLoc) { 714 assert(!CurFn && 715 "Do not use a CodeGenFunction object for more than one function"); 716 717 const Decl *D = GD.getDecl(); 718 719 DidCallStackSave = false; 720 CurCodeDecl = D; 721 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 722 if (FD && FD->usesSEHTry()) 723 CurSEHParent = GD; 724 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 725 FnRetTy = RetTy; 726 CurFn = Fn; 727 CurFnInfo = &FnInfo; 728 assert(CurFn->isDeclaration() && "Function already has body?"); 729 730 // If this function is ignored for any of the enabled sanitizers, 731 // disable the sanitizer for the function. 732 do { 733 #define SANITIZER(NAME, ID) \ 734 if (SanOpts.empty()) \ 735 break; \ 736 if (SanOpts.has(SanitizerKind::ID)) \ 737 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 738 SanOpts.set(SanitizerKind::ID, false); 739 740 #include "clang/Basic/Sanitizers.def" 741 #undef SANITIZER 742 } while (false); 743 744 if (D) { 745 const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds); 746 SanitizerMask no_sanitize_mask; 747 bool NoSanitizeCoverage = false; 748 749 for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) { 750 no_sanitize_mask |= Attr->getMask(); 751 // SanitizeCoverage is not handled by SanOpts. 752 if (Attr->hasCoverage()) 753 NoSanitizeCoverage = true; 754 } 755 756 // Apply the no_sanitize* attributes to SanOpts. 757 SanOpts.Mask &= ~no_sanitize_mask; 758 if (no_sanitize_mask & SanitizerKind::Address) 759 SanOpts.set(SanitizerKind::KernelAddress, false); 760 if (no_sanitize_mask & SanitizerKind::KernelAddress) 761 SanOpts.set(SanitizerKind::Address, false); 762 if (no_sanitize_mask & SanitizerKind::HWAddress) 763 SanOpts.set(SanitizerKind::KernelHWAddress, false); 764 if (no_sanitize_mask & SanitizerKind::KernelHWAddress) 765 SanOpts.set(SanitizerKind::HWAddress, false); 766 767 if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds)) 768 Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds); 769 770 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) 771 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); 772 773 // Some passes need the non-negated no_sanitize attribute. Pass them on. 774 if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) { 775 if (no_sanitize_mask & SanitizerKind::Thread) 776 Fn->addFnAttr("no_sanitize_thread"); 777 } 778 } 779 780 if (ShouldSkipSanitizerInstrumentation()) { 781 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 782 } else { 783 // Apply sanitizer attributes to the function. 784 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 785 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 786 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | 787 SanitizerKind::KernelHWAddress)) 788 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 789 if (SanOpts.has(SanitizerKind::MemtagStack)) 790 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 791 if (SanOpts.has(SanitizerKind::Thread)) 792 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 793 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 794 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 795 } 796 if (SanOpts.has(SanitizerKind::SafeStack)) 797 Fn->addFnAttr(llvm::Attribute::SafeStack); 798 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 799 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 800 801 // Apply fuzzing attribute to the function. 802 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 803 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 804 805 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 806 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 807 if (SanOpts.has(SanitizerKind::Thread)) { 808 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 809 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 810 if (OMD->getMethodFamily() == OMF_dealloc || 811 OMD->getMethodFamily() == OMF_initialize || 812 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 813 markAsIgnoreThreadCheckingAtRuntime(Fn); 814 } 815 } 816 } 817 818 // Ignore unrelated casts in STL allocate() since the allocator must cast 819 // from void* to T* before object initialization completes. Don't match on the 820 // namespace because not all allocators are in std:: 821 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 822 if (matchesStlAllocatorFn(D, getContext())) 823 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 824 } 825 826 // Ignore null checks in coroutine functions since the coroutines passes 827 // are not aware of how to move the extra UBSan instructions across the split 828 // coroutine boundaries. 829 if (D && SanOpts.has(SanitizerKind::Null)) 830 if (FD && FD->getBody() && 831 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 832 SanOpts.Mask &= ~SanitizerKind::Null; 833 834 // Apply xray attributes to the function (as a string, for now) 835 bool AlwaysXRayAttr = false; 836 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 837 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 838 XRayInstrKind::FunctionEntry) || 839 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 840 XRayInstrKind::FunctionExit)) { 841 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 842 Fn->addFnAttr("function-instrument", "xray-always"); 843 AlwaysXRayAttr = true; 844 } 845 if (XRayAttr->neverXRayInstrument()) 846 Fn->addFnAttr("function-instrument", "xray-never"); 847 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 848 if (ShouldXRayInstrumentFunction()) 849 Fn->addFnAttr("xray-log-args", 850 llvm::utostr(LogArgs->getArgumentCount())); 851 } 852 } else { 853 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 854 Fn->addFnAttr( 855 "xray-instruction-threshold", 856 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 857 } 858 859 if (ShouldXRayInstrumentFunction()) { 860 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 861 Fn->addFnAttr("xray-ignore-loops"); 862 863 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 864 XRayInstrKind::FunctionExit)) 865 Fn->addFnAttr("xray-skip-exit"); 866 867 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 868 XRayInstrKind::FunctionEntry)) 869 Fn->addFnAttr("xray-skip-entry"); 870 871 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 872 if (FuncGroups > 1) { 873 auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(), 874 CurFn->getName().bytes_end()); 875 auto Group = crc32(FuncName) % FuncGroups; 876 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 877 !AlwaysXRayAttr) 878 Fn->addFnAttr("function-instrument", "xray-never"); 879 } 880 } 881 882 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) { 883 switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) { 884 case ProfileList::Skip: 885 Fn->addFnAttr(llvm::Attribute::SkipProfile); 886 break; 887 case ProfileList::Forbid: 888 Fn->addFnAttr(llvm::Attribute::NoProfile); 889 break; 890 case ProfileList::Allow: 891 break; 892 } 893 } 894 895 unsigned Count, Offset; 896 if (const auto *Attr = 897 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 898 Count = Attr->getCount(); 899 Offset = Attr->getOffset(); 900 } else { 901 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 902 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 903 } 904 if (Count && Offset <= Count) { 905 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 906 if (Offset) 907 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 908 } 909 // Instruct that functions for COFF/CodeView targets should start with a 910 // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64 911 // backends as they don't need it -- instructions on these architectures are 912 // always atomically patchable at runtime. 913 if (CGM.getCodeGenOpts().HotPatch && 914 getContext().getTargetInfo().getTriple().isX86() && 915 getContext().getTargetInfo().getTriple().getEnvironment() != 916 llvm::Triple::CODE16) 917 Fn->addFnAttr("patchable-function", "prologue-short-redirect"); 918 919 // Add no-jump-tables value. 920 if (CGM.getCodeGenOpts().NoUseJumpTables) 921 Fn->addFnAttr("no-jump-tables", "true"); 922 923 // Add no-inline-line-tables value. 924 if (CGM.getCodeGenOpts().NoInlineLineTables) 925 Fn->addFnAttr("no-inline-line-tables"); 926 927 // Add profile-sample-accurate value. 928 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 929 Fn->addFnAttr("profile-sample-accurate"); 930 931 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 932 Fn->addFnAttr("use-sample-profile"); 933 934 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 935 Fn->addFnAttr("cfi-canonical-jump-table"); 936 937 if (D && D->hasAttr<NoProfileFunctionAttr>()) 938 Fn->addFnAttr(llvm::Attribute::NoProfile); 939 940 if (D) { 941 // Function attributes take precedence over command line flags. 942 if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) { 943 switch (A->getThunkType()) { 944 case FunctionReturnThunksAttr::Kind::Keep: 945 break; 946 case FunctionReturnThunksAttr::Kind::Extern: 947 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); 948 break; 949 } 950 } else if (CGM.getCodeGenOpts().FunctionReturnThunks) 951 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); 952 } 953 954 if (FD && (getLangOpts().OpenCL || 955 (getLangOpts().HIP && getLangOpts().CUDAIsDevice))) { 956 // Add metadata for a kernel function. 957 EmitKernelMetadata(FD, Fn); 958 } 959 960 // If we are checking function types, emit a function type signature as 961 // prologue data. 962 if (FD && SanOpts.has(SanitizerKind::Function)) { 963 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 964 llvm::LLVMContext &Ctx = Fn->getContext(); 965 llvm::MDBuilder MDB(Ctx); 966 Fn->setMetadata( 967 llvm::LLVMContext::MD_func_sanitize, 968 MDB.createRTTIPointerPrologue( 969 PrologueSig, getUBSanFunctionTypeHash(FD->getType()))); 970 } 971 } 972 973 // If we're checking nullability, we need to know whether we can check the 974 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 975 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 976 auto Nullability = FnRetTy->getNullability(); 977 if (Nullability && *Nullability == NullabilityKind::NonNull) { 978 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 979 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 980 RetValNullabilityPrecondition = 981 llvm::ConstantInt::getTrue(getLLVMContext()); 982 } 983 } 984 985 // If we're in C++ mode and the function name is "main", it is guaranteed 986 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 987 // used within a program"). 988 // 989 // OpenCL C 2.0 v2.2-11 s6.9.i: 990 // Recursion is not supported. 991 // 992 // SYCL v1.2.1 s3.10: 993 // kernels cannot include RTTI information, exception classes, 994 // recursive code, virtual functions or make use of C++ libraries that 995 // are not compiled for the device. 996 if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) || 997 getLangOpts().OpenCL || getLangOpts().SYCLIsDevice || 998 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))) 999 Fn->addFnAttr(llvm::Attribute::NoRecurse); 1000 1001 llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode(); 1002 llvm::fp::ExceptionBehavior FPExceptionBehavior = 1003 ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode()); 1004 Builder.setDefaultConstrainedRounding(RM); 1005 Builder.setDefaultConstrainedExcept(FPExceptionBehavior); 1006 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) || 1007 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore || 1008 RM != llvm::RoundingMode::NearestTiesToEven))) { 1009 Builder.setIsFPConstrained(true); 1010 Fn->addFnAttr(llvm::Attribute::StrictFP); 1011 } 1012 1013 // If a custom alignment is used, force realigning to this alignment on 1014 // any main function which certainly will need it. 1015 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 1016 CGM.getCodeGenOpts().StackAlignment)) 1017 Fn->addFnAttr("stackrealign"); 1018 1019 // "main" doesn't need to zero out call-used registers. 1020 if (FD && FD->isMain()) 1021 Fn->removeFnAttr("zero-call-used-regs"); 1022 1023 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 1024 1025 // Create a marker to make it easy to insert allocas into the entryblock 1026 // later. Don't create this with the builder, because we don't want it 1027 // folded. 1028 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 1029 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 1030 1031 ReturnBlock = getJumpDestInCurrentScope("return"); 1032 1033 Builder.SetInsertPoint(EntryBB); 1034 1035 // If we're checking the return value, allocate space for a pointer to a 1036 // precise source location of the checked return statement. 1037 if (requiresReturnValueCheck()) { 1038 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 1039 Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy), 1040 ReturnLocation); 1041 } 1042 1043 // Emit subprogram debug descriptor. 1044 if (CGDebugInfo *DI = getDebugInfo()) { 1045 // Reconstruct the type from the argument list so that implicit parameters, 1046 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 1047 // convention. 1048 DI->emitFunctionStart(GD, Loc, StartLoc, 1049 DI->getFunctionType(FD, RetTy, Args), CurFn, 1050 CurFuncIsThunk); 1051 } 1052 1053 if (ShouldInstrumentFunction()) { 1054 if (CGM.getCodeGenOpts().InstrumentFunctions) 1055 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1056 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1057 CurFn->addFnAttr("instrument-function-entry-inlined", 1058 "__cyg_profile_func_enter"); 1059 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1060 CurFn->addFnAttr("instrument-function-entry-inlined", 1061 "__cyg_profile_func_enter_bare"); 1062 } 1063 1064 // Since emitting the mcount call here impacts optimizations such as function 1065 // inlining, we just add an attribute to insert a mcount call in backend. 1066 // The attribute "counting-function" is set to mcount function name which is 1067 // architecture dependent. 1068 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1069 // Calls to fentry/mcount should not be generated if function has 1070 // the no_instrument_function attribute. 1071 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1072 if (CGM.getCodeGenOpts().CallFEntry) 1073 Fn->addFnAttr("fentry-call", "true"); 1074 else { 1075 Fn->addFnAttr("instrument-function-entry-inlined", 1076 getTarget().getMCountName()); 1077 } 1078 if (CGM.getCodeGenOpts().MNopMCount) { 1079 if (!CGM.getCodeGenOpts().CallFEntry) 1080 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1081 << "-mnop-mcount" << "-mfentry"; 1082 Fn->addFnAttr("mnop-mcount"); 1083 } 1084 1085 if (CGM.getCodeGenOpts().RecordMCount) { 1086 if (!CGM.getCodeGenOpts().CallFEntry) 1087 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1088 << "-mrecord-mcount" << "-mfentry"; 1089 Fn->addFnAttr("mrecord-mcount"); 1090 } 1091 } 1092 } 1093 1094 if (CGM.getCodeGenOpts().PackedStack) { 1095 if (getContext().getTargetInfo().getTriple().getArch() != 1096 llvm::Triple::systemz) 1097 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1098 << "-mpacked-stack"; 1099 Fn->addFnAttr("packed-stack"); 1100 } 1101 1102 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX && 1103 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc)) 1104 Fn->addFnAttr("warn-stack-size", 1105 std::to_string(CGM.getCodeGenOpts().WarnStackSize)); 1106 1107 if (RetTy->isVoidType()) { 1108 // Void type; nothing to return. 1109 ReturnValue = Address::invalid(); 1110 1111 // Count the implicit return. 1112 if (!endsWithReturn(D)) 1113 ++NumReturnExprs; 1114 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1115 // Indirect return; emit returned value directly into sret slot. 1116 // This reduces code size, and affects correctness in C++. 1117 auto AI = CurFn->arg_begin(); 1118 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1119 ++AI; 1120 ReturnValue = 1121 Address(&*AI, ConvertType(RetTy), 1122 CurFnInfo->getReturnInfo().getIndirectAlign(), KnownNonNull); 1123 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1124 ReturnValuePointer = CreateDefaultAlignTempAlloca( 1125 ReturnValue.getPointer()->getType(), "result.ptr"); 1126 Builder.CreateStore(ReturnValue.getPointer(), ReturnValuePointer); 1127 } 1128 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1129 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1130 // Load the sret pointer from the argument struct and return into that. 1131 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1132 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1133 --EI; 1134 llvm::Value *Addr = Builder.CreateStructGEP( 1135 CurFnInfo->getArgStruct(), &*EI, Idx); 1136 llvm::Type *Ty = 1137 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1138 ReturnValuePointer = Address(Addr, Ty, getPointerAlign()); 1139 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1140 ReturnValue = Address(Addr, ConvertType(RetTy), 1141 CGM.getNaturalTypeAlignment(RetTy), KnownNonNull); 1142 } else { 1143 ReturnValue = CreateIRTemp(RetTy, "retval"); 1144 1145 // Tell the epilog emitter to autorelease the result. We do this 1146 // now so that various specialized functions can suppress it 1147 // during their IR-generation. 1148 if (getLangOpts().ObjCAutoRefCount && 1149 !CurFnInfo->isReturnsRetained() && 1150 RetTy->isObjCRetainableType()) 1151 AutoreleaseResult = true; 1152 } 1153 1154 EmitStartEHSpec(CurCodeDecl); 1155 1156 PrologueCleanupDepth = EHStack.stable_begin(); 1157 1158 // Emit OpenMP specific initialization of the device functions. 1159 if (getLangOpts().OpenMP && CurCodeDecl) 1160 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1161 1162 // Handle emitting HLSL entry functions. 1163 if (D && D->hasAttr<HLSLShaderAttr>()) 1164 CGM.getHLSLRuntime().emitEntryFunction(FD, Fn); 1165 1166 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1167 1168 if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D); 1169 MD && !MD->isStatic()) { 1170 bool IsInLambda = 1171 MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call; 1172 if (MD->isImplicitObjectMemberFunction()) 1173 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1174 if (IsInLambda) { 1175 // We're in a lambda; figure out the captures. 1176 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1177 LambdaThisCaptureField); 1178 if (LambdaThisCaptureField) { 1179 // If the lambda captures the object referred to by '*this' - either by 1180 // value or by reference, make sure CXXThisValue points to the correct 1181 // object. 1182 1183 // Get the lvalue for the field (which is a copy of the enclosing object 1184 // or contains the address of the enclosing object). 1185 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1186 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1187 // If the enclosing object was captured by value, just use its address. 1188 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1189 } else { 1190 // Load the lvalue pointed to by the field, since '*this' was captured 1191 // by reference. 1192 CXXThisValue = 1193 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1194 } 1195 } 1196 for (auto *FD : MD->getParent()->fields()) { 1197 if (FD->hasCapturedVLAType()) { 1198 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1199 SourceLocation()).getScalarVal(); 1200 auto VAT = FD->getCapturedVLAType(); 1201 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1202 } 1203 } 1204 } else if (MD->isImplicitObjectMemberFunction()) { 1205 // Not in a lambda; just use 'this' from the method. 1206 // FIXME: Should we generate a new load for each use of 'this'? The 1207 // fast register allocator would be happier... 1208 CXXThisValue = CXXABIThisValue; 1209 } 1210 1211 // Check the 'this' pointer once per function, if it's available. 1212 if (CXXABIThisValue) { 1213 SanitizerSet SkippedChecks; 1214 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1215 QualType ThisTy = MD->getThisType(); 1216 1217 // If this is the call operator of a lambda with no captures, it 1218 // may have a static invoker function, which may call this operator with 1219 // a null 'this' pointer. 1220 if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda()) 1221 SkippedChecks.set(SanitizerKind::Null, true); 1222 1223 EmitTypeCheck( 1224 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1225 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1226 } 1227 } 1228 1229 // If any of the arguments have a variably modified type, make sure to 1230 // emit the type size, but only if the function is not naked. Naked functions 1231 // have no prolog to run this evaluation. 1232 if (!FD || !FD->hasAttr<NakedAttr>()) { 1233 for (const VarDecl *VD : Args) { 1234 // Dig out the type as written from ParmVarDecls; it's unclear whether 1235 // the standard (C99 6.9.1p10) requires this, but we're following the 1236 // precedent set by gcc. 1237 QualType Ty; 1238 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1239 Ty = PVD->getOriginalType(); 1240 else 1241 Ty = VD->getType(); 1242 1243 if (Ty->isVariablyModifiedType()) 1244 EmitVariablyModifiedType(Ty); 1245 } 1246 } 1247 // Emit a location at the end of the prologue. 1248 if (CGDebugInfo *DI = getDebugInfo()) 1249 DI->EmitLocation(Builder, StartLoc); 1250 // TODO: Do we need to handle this in two places like we do with 1251 // target-features/target-cpu? 1252 if (CurFuncDecl) 1253 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1254 LargestVectorWidth = VecWidth->getVectorWidth(); 1255 } 1256 1257 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1258 incrementProfileCounter(Body); 1259 maybeCreateMCDCCondBitmap(); 1260 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1261 EmitCompoundStmtWithoutScope(*S); 1262 else 1263 EmitStmt(Body); 1264 } 1265 1266 /// When instrumenting to collect profile data, the counts for some blocks 1267 /// such as switch cases need to not include the fall-through counts, so 1268 /// emit a branch around the instrumentation code. When not instrumenting, 1269 /// this just calls EmitBlock(). 1270 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1271 const Stmt *S) { 1272 llvm::BasicBlock *SkipCountBB = nullptr; 1273 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1274 // When instrumenting for profiling, the fallthrough to certain 1275 // statements needs to skip over the instrumentation code so that we 1276 // get an accurate count. 1277 SkipCountBB = createBasicBlock("skipcount"); 1278 EmitBranch(SkipCountBB); 1279 } 1280 EmitBlock(BB); 1281 uint64_t CurrentCount = getCurrentProfileCount(); 1282 incrementProfileCounter(S); 1283 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1284 if (SkipCountBB) 1285 EmitBlock(SkipCountBB); 1286 } 1287 1288 /// Tries to mark the given function nounwind based on the 1289 /// non-existence of any throwing calls within it. We believe this is 1290 /// lightweight enough to do at -O0. 1291 static void TryMarkNoThrow(llvm::Function *F) { 1292 // LLVM treats 'nounwind' on a function as part of the type, so we 1293 // can't do this on functions that can be overwritten. 1294 if (F->isInterposable()) return; 1295 1296 for (llvm::BasicBlock &BB : *F) 1297 for (llvm::Instruction &I : BB) 1298 if (I.mayThrow()) 1299 return; 1300 1301 F->setDoesNotThrow(); 1302 } 1303 1304 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1305 FunctionArgList &Args) { 1306 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1307 QualType ResTy = FD->getReturnType(); 1308 1309 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1310 if (MD && MD->isImplicitObjectMemberFunction()) { 1311 if (CGM.getCXXABI().HasThisReturn(GD)) 1312 ResTy = MD->getThisType(); 1313 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1314 ResTy = CGM.getContext().VoidPtrTy; 1315 CGM.getCXXABI().buildThisParam(*this, Args); 1316 } 1317 1318 // The base version of an inheriting constructor whose constructed base is a 1319 // virtual base is not passed any arguments (because it doesn't actually call 1320 // the inherited constructor). 1321 bool PassedParams = true; 1322 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1323 if (auto Inherited = CD->getInheritedConstructor()) 1324 PassedParams = 1325 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1326 1327 if (PassedParams) { 1328 for (auto *Param : FD->parameters()) { 1329 Args.push_back(Param); 1330 if (!Param->hasAttr<PassObjectSizeAttr>()) 1331 continue; 1332 1333 auto *Implicit = ImplicitParamDecl::Create( 1334 getContext(), Param->getDeclContext(), Param->getLocation(), 1335 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other); 1336 SizeArguments[Param] = Implicit; 1337 Args.push_back(Implicit); 1338 } 1339 } 1340 1341 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1342 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1343 1344 return ResTy; 1345 } 1346 1347 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1348 const CGFunctionInfo &FnInfo) { 1349 assert(Fn && "generating code for null Function"); 1350 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1351 CurGD = GD; 1352 1353 FunctionArgList Args; 1354 QualType ResTy = BuildFunctionArgList(GD, Args); 1355 1356 if (FD->isInlineBuiltinDeclaration()) { 1357 // When generating code for a builtin with an inline declaration, use a 1358 // mangled name to hold the actual body, while keeping an external 1359 // definition in case the function pointer is referenced somewhere. 1360 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1361 llvm::Module *M = Fn->getParent(); 1362 llvm::Function *Clone = M->getFunction(FDInlineName); 1363 if (!Clone) { 1364 Clone = llvm::Function::Create(Fn->getFunctionType(), 1365 llvm::GlobalValue::InternalLinkage, 1366 Fn->getAddressSpace(), FDInlineName, M); 1367 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 1368 } 1369 Fn->setLinkage(llvm::GlobalValue::ExternalLinkage); 1370 Fn = Clone; 1371 } else { 1372 // Detect the unusual situation where an inline version is shadowed by a 1373 // non-inline version. In that case we should pick the external one 1374 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way 1375 // to detect that situation before we reach codegen, so do some late 1376 // replacement. 1377 for (const FunctionDecl *PD = FD->getPreviousDecl(); PD; 1378 PD = PD->getPreviousDecl()) { 1379 if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) { 1380 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1381 llvm::Module *M = Fn->getParent(); 1382 if (llvm::Function *Clone = M->getFunction(FDInlineName)) { 1383 Clone->replaceAllUsesWith(Fn); 1384 Clone->eraseFromParent(); 1385 } 1386 break; 1387 } 1388 } 1389 } 1390 1391 // Check if we should generate debug info for this function. 1392 if (FD->hasAttr<NoDebugAttr>()) { 1393 // Clear non-distinct debug info that was possibly attached to the function 1394 // due to an earlier declaration without the nodebug attribute 1395 Fn->setSubprogram(nullptr); 1396 // Disable debug info indefinitely for this function 1397 DebugInfo = nullptr; 1398 } 1399 1400 // The function might not have a body if we're generating thunks for a 1401 // function declaration. 1402 SourceRange BodyRange; 1403 if (Stmt *Body = FD->getBody()) 1404 BodyRange = Body->getSourceRange(); 1405 else 1406 BodyRange = FD->getLocation(); 1407 CurEHLocation = BodyRange.getEnd(); 1408 1409 // Use the location of the start of the function to determine where 1410 // the function definition is located. By default use the location 1411 // of the declaration as the location for the subprogram. A function 1412 // may lack a declaration in the source code if it is created by code 1413 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1414 SourceLocation Loc = FD->getLocation(); 1415 1416 // If this is a function specialization then use the pattern body 1417 // as the location for the function. 1418 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1419 if (SpecDecl->hasBody(SpecDecl)) 1420 Loc = SpecDecl->getLocation(); 1421 1422 Stmt *Body = FD->getBody(); 1423 1424 if (Body) { 1425 // Coroutines always emit lifetime markers. 1426 if (isa<CoroutineBodyStmt>(Body)) 1427 ShouldEmitLifetimeMarkers = true; 1428 1429 // Initialize helper which will detect jumps which can cause invalid 1430 // lifetime markers. 1431 if (ShouldEmitLifetimeMarkers) 1432 Bypasses.Init(Body); 1433 } 1434 1435 // Emit the standard function prologue. 1436 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1437 1438 // Save parameters for coroutine function. 1439 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1440 llvm::append_range(FnArgs, FD->parameters()); 1441 1442 // Ensure that the function adheres to the forward progress guarantee, which 1443 // is required by certain optimizations. 1444 if (checkIfFunctionMustProgress()) 1445 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1446 1447 // Generate the body of the function. 1448 PGO.assignRegionCounters(GD, CurFn); 1449 if (isa<CXXDestructorDecl>(FD)) 1450 EmitDestructorBody(Args); 1451 else if (isa<CXXConstructorDecl>(FD)) 1452 EmitConstructorBody(Args); 1453 else if (getLangOpts().CUDA && 1454 !getLangOpts().CUDAIsDevice && 1455 FD->hasAttr<CUDAGlobalAttr>()) 1456 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1457 else if (isa<CXXMethodDecl>(FD) && 1458 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1459 // The lambda static invoker function is special, because it forwards or 1460 // clones the body of the function call operator (but is actually static). 1461 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1462 } else if (isa<CXXMethodDecl>(FD) && 1463 isLambdaCallOperator(cast<CXXMethodDecl>(FD)) && 1464 !FnInfo.isDelegateCall() && 1465 cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() && 1466 hasInAllocaArg(cast<CXXMethodDecl>(FD))) { 1467 // If emitting a lambda with static invoker on X86 Windows, change 1468 // the call operator body. 1469 // Make sure that this is a call operator with an inalloca arg and check 1470 // for delegate call to make sure this is the original call op and not the 1471 // new forwarding function for the static invoker. 1472 EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD)); 1473 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1474 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1475 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1476 // Implicit copy-assignment gets the same special treatment as implicit 1477 // copy-constructors. 1478 emitImplicitAssignmentOperatorBody(Args); 1479 } else if (Body) { 1480 EmitFunctionBody(Body); 1481 } else 1482 llvm_unreachable("no definition for emitted function"); 1483 1484 // C++11 [stmt.return]p2: 1485 // Flowing off the end of a function [...] results in undefined behavior in 1486 // a value-returning function. 1487 // C11 6.9.1p12: 1488 // If the '}' that terminates a function is reached, and the value of the 1489 // function call is used by the caller, the behavior is undefined. 1490 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1491 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1492 bool ShouldEmitUnreachable = 1493 CGM.getCodeGenOpts().StrictReturn || 1494 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1495 if (SanOpts.has(SanitizerKind::Return)) { 1496 SanitizerScope SanScope(this); 1497 llvm::Value *IsFalse = Builder.getFalse(); 1498 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1499 SanitizerHandler::MissingReturn, 1500 EmitCheckSourceLocation(FD->getLocation()), std::nullopt); 1501 } else if (ShouldEmitUnreachable) { 1502 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1503 EmitTrapCall(llvm::Intrinsic::trap); 1504 } 1505 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1506 Builder.CreateUnreachable(); 1507 Builder.ClearInsertionPoint(); 1508 } 1509 } 1510 1511 // Emit the standard function epilogue. 1512 FinishFunction(BodyRange.getEnd()); 1513 1514 // If we haven't marked the function nothrow through other means, do 1515 // a quick pass now to see if we can. 1516 if (!CurFn->doesNotThrow()) 1517 TryMarkNoThrow(CurFn); 1518 } 1519 1520 /// ContainsLabel - Return true if the statement contains a label in it. If 1521 /// this statement is not executed normally, it not containing a label means 1522 /// that we can just remove the code. 1523 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1524 // Null statement, not a label! 1525 if (!S) return false; 1526 1527 // If this is a label, we have to emit the code, consider something like: 1528 // if (0) { ... foo: bar(); } goto foo; 1529 // 1530 // TODO: If anyone cared, we could track __label__'s, since we know that you 1531 // can't jump to one from outside their declared region. 1532 if (isa<LabelStmt>(S)) 1533 return true; 1534 1535 // If this is a case/default statement, and we haven't seen a switch, we have 1536 // to emit the code. 1537 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1538 return true; 1539 1540 // If this is a switch statement, we want to ignore cases below it. 1541 if (isa<SwitchStmt>(S)) 1542 IgnoreCaseStmts = true; 1543 1544 // Scan subexpressions for verboten labels. 1545 for (const Stmt *SubStmt : S->children()) 1546 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1547 return true; 1548 1549 return false; 1550 } 1551 1552 /// containsBreak - Return true if the statement contains a break out of it. 1553 /// If the statement (recursively) contains a switch or loop with a break 1554 /// inside of it, this is fine. 1555 bool CodeGenFunction::containsBreak(const Stmt *S) { 1556 // Null statement, not a label! 1557 if (!S) return false; 1558 1559 // If this is a switch or loop that defines its own break scope, then we can 1560 // include it and anything inside of it. 1561 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1562 isa<ForStmt>(S)) 1563 return false; 1564 1565 if (isa<BreakStmt>(S)) 1566 return true; 1567 1568 // Scan subexpressions for verboten breaks. 1569 for (const Stmt *SubStmt : S->children()) 1570 if (containsBreak(SubStmt)) 1571 return true; 1572 1573 return false; 1574 } 1575 1576 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1577 if (!S) return false; 1578 1579 // Some statement kinds add a scope and thus never add a decl to the current 1580 // scope. Note, this list is longer than the list of statements that might 1581 // have an unscoped decl nested within them, but this way is conservatively 1582 // correct even if more statement kinds are added. 1583 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1584 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1585 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1586 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1587 return false; 1588 1589 if (isa<DeclStmt>(S)) 1590 return true; 1591 1592 for (const Stmt *SubStmt : S->children()) 1593 if (mightAddDeclToScope(SubStmt)) 1594 return true; 1595 1596 return false; 1597 } 1598 1599 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1600 /// to a constant, or if it does but contains a label, return false. If it 1601 /// constant folds return true and set the boolean result in Result. 1602 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1603 bool &ResultBool, 1604 bool AllowLabels) { 1605 // If MC/DC is enabled, disable folding so that we can instrument all 1606 // conditions to yield complete test vectors. We still keep track of 1607 // folded conditions during region mapping and visualization. 1608 if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() && 1609 CGM.getCodeGenOpts().MCDCCoverage) 1610 return false; 1611 1612 llvm::APSInt ResultInt; 1613 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1614 return false; 1615 1616 ResultBool = ResultInt.getBoolValue(); 1617 return true; 1618 } 1619 1620 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1621 /// to a constant, or if it does but contains a label, return false. If it 1622 /// constant folds return true and set the folded value. 1623 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1624 llvm::APSInt &ResultInt, 1625 bool AllowLabels) { 1626 // FIXME: Rename and handle conversion of other evaluatable things 1627 // to bool. 1628 Expr::EvalResult Result; 1629 if (!Cond->EvaluateAsInt(Result, getContext())) 1630 return false; // Not foldable, not integer or not fully evaluatable. 1631 1632 llvm::APSInt Int = Result.Val.getInt(); 1633 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1634 return false; // Contains a label. 1635 1636 ResultInt = Int; 1637 return true; 1638 } 1639 1640 /// Strip parentheses and simplistic logical-NOT operators. 1641 const Expr *CodeGenFunction::stripCond(const Expr *C) { 1642 while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) { 1643 if (Op->getOpcode() != UO_LNot) 1644 break; 1645 C = Op->getSubExpr(); 1646 } 1647 return C->IgnoreParens(); 1648 } 1649 1650 /// Determine whether the given condition is an instrumentable condition 1651 /// (i.e. no "&&" or "||"). 1652 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1653 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C)); 1654 return (!BOp || !BOp->isLogicalOp()); 1655 } 1656 1657 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1658 /// increments a profile counter based on the semantics of the given logical 1659 /// operator opcode. This is used to instrument branch condition coverage for 1660 /// logical operators. 1661 void CodeGenFunction::EmitBranchToCounterBlock( 1662 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1663 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1664 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1665 // If not instrumenting, just emit a branch. 1666 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1667 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1668 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1669 1670 llvm::BasicBlock *ThenBlock = nullptr; 1671 llvm::BasicBlock *ElseBlock = nullptr; 1672 llvm::BasicBlock *NextBlock = nullptr; 1673 1674 // Create the block we'll use to increment the appropriate counter. 1675 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1676 1677 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1678 // means we need to evaluate the condition and increment the counter on TRUE: 1679 // 1680 // if (Cond) 1681 // goto CounterIncrBlock; 1682 // else 1683 // goto FalseBlock; 1684 // 1685 // CounterIncrBlock: 1686 // Counter++; 1687 // goto TrueBlock; 1688 1689 if (LOp == BO_LAnd) { 1690 ThenBlock = CounterIncrBlock; 1691 ElseBlock = FalseBlock; 1692 NextBlock = TrueBlock; 1693 } 1694 1695 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1696 // we need to evaluate the condition and increment the counter on FALSE: 1697 // 1698 // if (Cond) 1699 // goto TrueBlock; 1700 // else 1701 // goto CounterIncrBlock; 1702 // 1703 // CounterIncrBlock: 1704 // Counter++; 1705 // goto FalseBlock; 1706 1707 else if (LOp == BO_LOr) { 1708 ThenBlock = TrueBlock; 1709 ElseBlock = CounterIncrBlock; 1710 NextBlock = FalseBlock; 1711 } else { 1712 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1713 } 1714 1715 // Emit Branch based on condition. 1716 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1717 1718 // Emit the block containing the counter increment(s). 1719 EmitBlock(CounterIncrBlock); 1720 1721 // Increment corresponding counter; if index not provided, use Cond as index. 1722 incrementProfileCounter(CntrIdx ? CntrIdx : Cond); 1723 1724 // Go to the next block. 1725 EmitBranch(NextBlock); 1726 } 1727 1728 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1729 /// statement) to the specified blocks. Based on the condition, this might try 1730 /// to simplify the codegen of the conditional based on the branch. 1731 /// \param LH The value of the likelihood attribute on the True branch. 1732 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the 1733 /// ConditionalOperator (ternary) through a recursive call for the operator's 1734 /// LHS and RHS nodes. 1735 void CodeGenFunction::EmitBranchOnBoolExpr( 1736 const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock, 1737 uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) { 1738 Cond = Cond->IgnoreParens(); 1739 1740 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1741 // Handle X && Y in a condition. 1742 if (CondBOp->getOpcode() == BO_LAnd) { 1743 MCDCLogOpStack.push_back(CondBOp); 1744 1745 // If we have "1 && X", simplify the code. "0 && X" would have constant 1746 // folded if the case was simple enough. 1747 bool ConstantBool = false; 1748 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1749 ConstantBool) { 1750 // br(1 && X) -> br(X). 1751 incrementProfileCounter(CondBOp); 1752 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1753 FalseBlock, TrueCount, LH); 1754 MCDCLogOpStack.pop_back(); 1755 return; 1756 } 1757 1758 // If we have "X && 1", simplify the code to use an uncond branch. 1759 // "X && 0" would have been constant folded to 0. 1760 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1761 ConstantBool) { 1762 // br(X && 1) -> br(X). 1763 EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1764 FalseBlock, TrueCount, LH, CondBOp); 1765 MCDCLogOpStack.pop_back(); 1766 return; 1767 } 1768 1769 // Emit the LHS as a conditional. If the LHS conditional is false, we 1770 // want to jump to the FalseBlock. 1771 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1772 // The counter tells us how often we evaluate RHS, and all of TrueCount 1773 // can be propagated to that branch. 1774 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1775 1776 ConditionalEvaluation eval(*this); 1777 { 1778 ApplyDebugLocation DL(*this, Cond); 1779 // Propagate the likelihood attribute like __builtin_expect 1780 // __builtin_expect(X && Y, 1) -> X and Y are likely 1781 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1782 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1783 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1784 EmitBlock(LHSTrue); 1785 } 1786 1787 incrementProfileCounter(CondBOp); 1788 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1789 1790 // Any temporaries created here are conditional. 1791 eval.begin(*this); 1792 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1793 FalseBlock, TrueCount, LH); 1794 eval.end(*this); 1795 MCDCLogOpStack.pop_back(); 1796 return; 1797 } 1798 1799 if (CondBOp->getOpcode() == BO_LOr) { 1800 MCDCLogOpStack.push_back(CondBOp); 1801 1802 // If we have "0 || X", simplify the code. "1 || X" would have constant 1803 // folded if the case was simple enough. 1804 bool ConstantBool = false; 1805 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1806 !ConstantBool) { 1807 // br(0 || X) -> br(X). 1808 incrementProfileCounter(CondBOp); 1809 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1810 FalseBlock, TrueCount, LH); 1811 MCDCLogOpStack.pop_back(); 1812 return; 1813 } 1814 1815 // If we have "X || 0", simplify the code to use an uncond branch. 1816 // "X || 1" would have been constant folded to 1. 1817 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1818 !ConstantBool) { 1819 // br(X || 0) -> br(X). 1820 EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1821 FalseBlock, TrueCount, LH, CondBOp); 1822 MCDCLogOpStack.pop_back(); 1823 return; 1824 } 1825 // Emit the LHS as a conditional. If the LHS conditional is true, we 1826 // want to jump to the TrueBlock. 1827 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1828 // We have the count for entry to the RHS and for the whole expression 1829 // being true, so we can divy up True count between the short circuit and 1830 // the RHS. 1831 uint64_t LHSCount = 1832 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1833 uint64_t RHSCount = TrueCount - LHSCount; 1834 1835 ConditionalEvaluation eval(*this); 1836 { 1837 // Propagate the likelihood attribute like __builtin_expect 1838 // __builtin_expect(X || Y, 1) -> only Y is likely 1839 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1840 ApplyDebugLocation DL(*this, Cond); 1841 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1842 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1843 EmitBlock(LHSFalse); 1844 } 1845 1846 incrementProfileCounter(CondBOp); 1847 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1848 1849 // Any temporaries created here are conditional. 1850 eval.begin(*this); 1851 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1852 RHSCount, LH); 1853 1854 eval.end(*this); 1855 MCDCLogOpStack.pop_back(); 1856 return; 1857 } 1858 } 1859 1860 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1861 // br(!x, t, f) -> br(x, f, t) 1862 // Avoid doing this optimization when instrumenting a condition for MC/DC. 1863 // LNot is taken as part of the condition for simplicity, and changing its 1864 // sense negatively impacts test vector tracking. 1865 bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() && 1866 CGM.getCodeGenOpts().MCDCCoverage && 1867 isInstrumentedCondition(Cond); 1868 if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) { 1869 // Negate the count. 1870 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1871 // The values of the enum are chosen to make this negation possible. 1872 LH = static_cast<Stmt::Likelihood>(-LH); 1873 // Negate the condition and swap the destination blocks. 1874 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1875 FalseCount, LH); 1876 } 1877 } 1878 1879 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1880 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1881 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1882 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1883 1884 // The ConditionalOperator itself has no likelihood information for its 1885 // true and false branches. This matches the behavior of __builtin_expect. 1886 ConditionalEvaluation cond(*this); 1887 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1888 getProfileCount(CondOp), Stmt::LH_None); 1889 1890 // When computing PGO branch weights, we only know the overall count for 1891 // the true block. This code is essentially doing tail duplication of the 1892 // naive code-gen, introducing new edges for which counts are not 1893 // available. Divide the counts proportionally between the LHS and RHS of 1894 // the conditional operator. 1895 uint64_t LHSScaledTrueCount = 0; 1896 if (TrueCount) { 1897 double LHSRatio = 1898 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1899 LHSScaledTrueCount = TrueCount * LHSRatio; 1900 } 1901 1902 cond.begin(*this); 1903 EmitBlock(LHSBlock); 1904 incrementProfileCounter(CondOp); 1905 { 1906 ApplyDebugLocation DL(*this, Cond); 1907 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1908 LHSScaledTrueCount, LH, CondOp); 1909 } 1910 cond.end(*this); 1911 1912 cond.begin(*this); 1913 EmitBlock(RHSBlock); 1914 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1915 TrueCount - LHSScaledTrueCount, LH, CondOp); 1916 cond.end(*this); 1917 1918 return; 1919 } 1920 1921 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1922 // Conditional operator handling can give us a throw expression as a 1923 // condition for a case like: 1924 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1925 // Fold this to: 1926 // br(c, throw x, br(y, t, f)) 1927 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1928 return; 1929 } 1930 1931 // Emit the code with the fully general case. 1932 llvm::Value *CondV; 1933 { 1934 ApplyDebugLocation DL(*this, Cond); 1935 CondV = EvaluateExprAsBool(Cond); 1936 } 1937 1938 // If not at the top of the logical operator nest, update MCDC temp with the 1939 // boolean result of the evaluated condition. 1940 if (!MCDCLogOpStack.empty()) { 1941 const Expr *MCDCBaseExpr = Cond; 1942 // When a nested ConditionalOperator (ternary) is encountered in a boolean 1943 // expression, MC/DC tracks the result of the ternary, and this is tied to 1944 // the ConditionalOperator expression and not the ternary's LHS or RHS. If 1945 // this is the case, the ConditionalOperator expression is passed through 1946 // the ConditionalOp parameter and then used as the MCDC base expression. 1947 if (ConditionalOp) 1948 MCDCBaseExpr = ConditionalOp; 1949 1950 maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV); 1951 } 1952 1953 llvm::MDNode *Weights = nullptr; 1954 llvm::MDNode *Unpredictable = nullptr; 1955 1956 // If the branch has a condition wrapped by __builtin_unpredictable, 1957 // create metadata that specifies that the branch is unpredictable. 1958 // Don't bother if not optimizing because that metadata would not be used. 1959 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1960 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1961 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1962 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1963 llvm::MDBuilder MDHelper(getLLVMContext()); 1964 Unpredictable = MDHelper.createUnpredictable(); 1965 } 1966 } 1967 1968 // If there is a Likelihood knowledge for the cond, lower it. 1969 // Note that if not optimizing this won't emit anything. 1970 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 1971 if (CondV != NewCondV) 1972 CondV = NewCondV; 1973 else { 1974 // Otherwise, lower profile counts. Note that we do this even at -O0. 1975 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1976 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 1977 } 1978 1979 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1980 } 1981 1982 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1983 /// specified stmt yet. 1984 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1985 CGM.ErrorUnsupported(S, Type); 1986 } 1987 1988 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1989 /// variable-length array whose elements have a non-zero bit-pattern. 1990 /// 1991 /// \param baseType the inner-most element type of the array 1992 /// \param src - a char* pointing to the bit-pattern for a single 1993 /// base element of the array 1994 /// \param sizeInChars - the total size of the VLA, in chars 1995 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1996 Address dest, Address src, 1997 llvm::Value *sizeInChars) { 1998 CGBuilderTy &Builder = CGF.Builder; 1999 2000 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 2001 llvm::Value *baseSizeInChars 2002 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 2003 2004 Address begin = dest.withElementType(CGF.Int8Ty); 2005 llvm::Value *end = Builder.CreateInBoundsGEP( 2006 begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end"); 2007 2008 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 2009 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 2010 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 2011 2012 // Make a loop over the VLA. C99 guarantees that the VLA element 2013 // count must be nonzero. 2014 CGF.EmitBlock(loopBB); 2015 2016 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 2017 cur->addIncoming(begin.getPointer(), originBB); 2018 2019 CharUnits curAlign = 2020 dest.getAlignment().alignmentOfArrayElement(baseSize); 2021 2022 // memcpy the individual element bit-pattern. 2023 Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars, 2024 /*volatile*/ false); 2025 2026 // Go to the next element. 2027 llvm::Value *next = 2028 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 2029 2030 // Leave if that's the end of the VLA. 2031 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 2032 Builder.CreateCondBr(done, contBB, loopBB); 2033 cur->addIncoming(next, loopBB); 2034 2035 CGF.EmitBlock(contBB); 2036 } 2037 2038 void 2039 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 2040 // Ignore empty classes in C++. 2041 if (getLangOpts().CPlusPlus) { 2042 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2043 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 2044 return; 2045 } 2046 } 2047 2048 if (DestPtr.getElementType() != Int8Ty) 2049 DestPtr = DestPtr.withElementType(Int8Ty); 2050 2051 // Get size and alignment info for this aggregate. 2052 CharUnits size = getContext().getTypeSizeInChars(Ty); 2053 2054 llvm::Value *SizeVal; 2055 const VariableArrayType *vla; 2056 2057 // Don't bother emitting a zero-byte memset. 2058 if (size.isZero()) { 2059 // But note that getTypeInfo returns 0 for a VLA. 2060 if (const VariableArrayType *vlaType = 2061 dyn_cast_or_null<VariableArrayType>( 2062 getContext().getAsArrayType(Ty))) { 2063 auto VlaSize = getVLASize(vlaType); 2064 SizeVal = VlaSize.NumElts; 2065 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 2066 if (!eltSize.isOne()) 2067 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 2068 vla = vlaType; 2069 } else { 2070 return; 2071 } 2072 } else { 2073 SizeVal = CGM.getSize(size); 2074 vla = nullptr; 2075 } 2076 2077 // If the type contains a pointer to data member we can't memset it to zero. 2078 // Instead, create a null constant and copy it to the destination. 2079 // TODO: there are other patterns besides zero that we can usefully memset, 2080 // like -1, which happens to be the pattern used by member-pointers. 2081 if (!CGM.getTypes().isZeroInitializable(Ty)) { 2082 // For a VLA, emit a single element, then splat that over the VLA. 2083 if (vla) Ty = getContext().getBaseElementType(vla); 2084 2085 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 2086 2087 llvm::GlobalVariable *NullVariable = 2088 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 2089 /*isConstant=*/true, 2090 llvm::GlobalVariable::PrivateLinkage, 2091 NullConstant, Twine()); 2092 CharUnits NullAlign = DestPtr.getAlignment(); 2093 NullVariable->setAlignment(NullAlign.getAsAlign()); 2094 Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign); 2095 2096 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 2097 2098 // Get and call the appropriate llvm.memcpy overload. 2099 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 2100 return; 2101 } 2102 2103 // Otherwise, just memset the whole thing to zero. This is legal 2104 // because in LLVM, all default initializers (other than the ones we just 2105 // handled above) are guaranteed to have a bit pattern of all zeros. 2106 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 2107 } 2108 2109 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 2110 // Make sure that there is a block for the indirect goto. 2111 if (!IndirectBranch) 2112 GetIndirectGotoBlock(); 2113 2114 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 2115 2116 // Make sure the indirect branch includes all of the address-taken blocks. 2117 IndirectBranch->addDestination(BB); 2118 return llvm::BlockAddress::get(CurFn, BB); 2119 } 2120 2121 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 2122 // If we already made the indirect branch for indirect goto, return its block. 2123 if (IndirectBranch) return IndirectBranch->getParent(); 2124 2125 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 2126 2127 // Create the PHI node that indirect gotos will add entries to. 2128 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 2129 "indirect.goto.dest"); 2130 2131 // Create the indirect branch instruction. 2132 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 2133 return IndirectBranch->getParent(); 2134 } 2135 2136 /// Computes the length of an array in elements, as well as the base 2137 /// element type and a properly-typed first element pointer. 2138 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 2139 QualType &baseType, 2140 Address &addr) { 2141 const ArrayType *arrayType = origArrayType; 2142 2143 // If it's a VLA, we have to load the stored size. Note that 2144 // this is the size of the VLA in bytes, not its size in elements. 2145 llvm::Value *numVLAElements = nullptr; 2146 if (isa<VariableArrayType>(arrayType)) { 2147 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 2148 2149 // Walk into all VLAs. This doesn't require changes to addr, 2150 // which has type T* where T is the first non-VLA element type. 2151 do { 2152 QualType elementType = arrayType->getElementType(); 2153 arrayType = getContext().getAsArrayType(elementType); 2154 2155 // If we only have VLA components, 'addr' requires no adjustment. 2156 if (!arrayType) { 2157 baseType = elementType; 2158 return numVLAElements; 2159 } 2160 } while (isa<VariableArrayType>(arrayType)); 2161 2162 // We get out here only if we find a constant array type 2163 // inside the VLA. 2164 } 2165 2166 // We have some number of constant-length arrays, so addr should 2167 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2168 // down to the first element of addr. 2169 SmallVector<llvm::Value*, 8> gepIndices; 2170 2171 // GEP down to the array type. 2172 llvm::ConstantInt *zero = Builder.getInt32(0); 2173 gepIndices.push_back(zero); 2174 2175 uint64_t countFromCLAs = 1; 2176 QualType eltType; 2177 2178 llvm::ArrayType *llvmArrayType = 2179 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2180 while (llvmArrayType) { 2181 assert(isa<ConstantArrayType>(arrayType)); 2182 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 2183 == llvmArrayType->getNumElements()); 2184 2185 gepIndices.push_back(zero); 2186 countFromCLAs *= llvmArrayType->getNumElements(); 2187 eltType = arrayType->getElementType(); 2188 2189 llvmArrayType = 2190 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2191 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2192 assert((!llvmArrayType || arrayType) && 2193 "LLVM and Clang types are out-of-synch"); 2194 } 2195 2196 if (arrayType) { 2197 // From this point onwards, the Clang array type has been emitted 2198 // as some other type (probably a packed struct). Compute the array 2199 // size, and just emit the 'begin' expression as a bitcast. 2200 while (arrayType) { 2201 countFromCLAs *= 2202 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 2203 eltType = arrayType->getElementType(); 2204 arrayType = getContext().getAsArrayType(eltType); 2205 } 2206 2207 llvm::Type *baseType = ConvertType(eltType); 2208 addr = addr.withElementType(baseType); 2209 } else { 2210 // Create the actual GEP. 2211 addr = Address(Builder.CreateInBoundsGEP( 2212 addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"), 2213 ConvertTypeForMem(eltType), 2214 addr.getAlignment()); 2215 } 2216 2217 baseType = eltType; 2218 2219 llvm::Value *numElements 2220 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2221 2222 // If we had any VLA dimensions, factor them in. 2223 if (numVLAElements) 2224 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2225 2226 return numElements; 2227 } 2228 2229 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2230 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2231 assert(vla && "type was not a variable array type!"); 2232 return getVLASize(vla); 2233 } 2234 2235 CodeGenFunction::VlaSizePair 2236 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2237 // The number of elements so far; always size_t. 2238 llvm::Value *numElements = nullptr; 2239 2240 QualType elementType; 2241 do { 2242 elementType = type->getElementType(); 2243 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2244 assert(vlaSize && "no size for VLA!"); 2245 assert(vlaSize->getType() == SizeTy); 2246 2247 if (!numElements) { 2248 numElements = vlaSize; 2249 } else { 2250 // It's undefined behavior if this wraps around, so mark it that way. 2251 // FIXME: Teach -fsanitize=undefined to trap this. 2252 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2253 } 2254 } while ((type = getContext().getAsVariableArrayType(elementType))); 2255 2256 return { numElements, elementType }; 2257 } 2258 2259 CodeGenFunction::VlaSizePair 2260 CodeGenFunction::getVLAElements1D(QualType type) { 2261 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2262 assert(vla && "type was not a variable array type!"); 2263 return getVLAElements1D(vla); 2264 } 2265 2266 CodeGenFunction::VlaSizePair 2267 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2268 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2269 assert(VlaSize && "no size for VLA!"); 2270 assert(VlaSize->getType() == SizeTy); 2271 return { VlaSize, Vla->getElementType() }; 2272 } 2273 2274 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2275 assert(type->isVariablyModifiedType() && 2276 "Must pass variably modified type to EmitVLASizes!"); 2277 2278 EnsureInsertPoint(); 2279 2280 // We're going to walk down into the type and look for VLA 2281 // expressions. 2282 do { 2283 assert(type->isVariablyModifiedType()); 2284 2285 const Type *ty = type.getTypePtr(); 2286 switch (ty->getTypeClass()) { 2287 2288 #define TYPE(Class, Base) 2289 #define ABSTRACT_TYPE(Class, Base) 2290 #define NON_CANONICAL_TYPE(Class, Base) 2291 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2292 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2293 #include "clang/AST/TypeNodes.inc" 2294 llvm_unreachable("unexpected dependent type!"); 2295 2296 // These types are never variably-modified. 2297 case Type::Builtin: 2298 case Type::Complex: 2299 case Type::Vector: 2300 case Type::ExtVector: 2301 case Type::ConstantMatrix: 2302 case Type::Record: 2303 case Type::Enum: 2304 case Type::Using: 2305 case Type::TemplateSpecialization: 2306 case Type::ObjCTypeParam: 2307 case Type::ObjCObject: 2308 case Type::ObjCInterface: 2309 case Type::ObjCObjectPointer: 2310 case Type::BitInt: 2311 llvm_unreachable("type class is never variably-modified!"); 2312 2313 case Type::Elaborated: 2314 type = cast<ElaboratedType>(ty)->getNamedType(); 2315 break; 2316 2317 case Type::Adjusted: 2318 type = cast<AdjustedType>(ty)->getAdjustedType(); 2319 break; 2320 2321 case Type::Decayed: 2322 type = cast<DecayedType>(ty)->getPointeeType(); 2323 break; 2324 2325 case Type::Pointer: 2326 type = cast<PointerType>(ty)->getPointeeType(); 2327 break; 2328 2329 case Type::BlockPointer: 2330 type = cast<BlockPointerType>(ty)->getPointeeType(); 2331 break; 2332 2333 case Type::LValueReference: 2334 case Type::RValueReference: 2335 type = cast<ReferenceType>(ty)->getPointeeType(); 2336 break; 2337 2338 case Type::MemberPointer: 2339 type = cast<MemberPointerType>(ty)->getPointeeType(); 2340 break; 2341 2342 case Type::ConstantArray: 2343 case Type::IncompleteArray: 2344 // Losing element qualification here is fine. 2345 type = cast<ArrayType>(ty)->getElementType(); 2346 break; 2347 2348 case Type::VariableArray: { 2349 // Losing element qualification here is fine. 2350 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2351 2352 // Unknown size indication requires no size computation. 2353 // Otherwise, evaluate and record it. 2354 if (const Expr *sizeExpr = vat->getSizeExpr()) { 2355 // It's possible that we might have emitted this already, 2356 // e.g. with a typedef and a pointer to it. 2357 llvm::Value *&entry = VLASizeMap[sizeExpr]; 2358 if (!entry) { 2359 llvm::Value *size = EmitScalarExpr(sizeExpr); 2360 2361 // C11 6.7.6.2p5: 2362 // If the size is an expression that is not an integer constant 2363 // expression [...] each time it is evaluated it shall have a value 2364 // greater than zero. 2365 if (SanOpts.has(SanitizerKind::VLABound)) { 2366 SanitizerScope SanScope(this); 2367 llvm::Value *Zero = llvm::Constant::getNullValue(size->getType()); 2368 clang::QualType SEType = sizeExpr->getType(); 2369 llvm::Value *CheckCondition = 2370 SEType->isSignedIntegerType() 2371 ? Builder.CreateICmpSGT(size, Zero) 2372 : Builder.CreateICmpUGT(size, Zero); 2373 llvm::Constant *StaticArgs[] = { 2374 EmitCheckSourceLocation(sizeExpr->getBeginLoc()), 2375 EmitCheckTypeDescriptor(SEType)}; 2376 EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound), 2377 SanitizerHandler::VLABoundNotPositive, StaticArgs, size); 2378 } 2379 2380 // Always zexting here would be wrong if it weren't 2381 // undefined behavior to have a negative bound. 2382 // FIXME: What about when size's type is larger than size_t? 2383 entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false); 2384 } 2385 } 2386 type = vat->getElementType(); 2387 break; 2388 } 2389 2390 case Type::FunctionProto: 2391 case Type::FunctionNoProto: 2392 type = cast<FunctionType>(ty)->getReturnType(); 2393 break; 2394 2395 case Type::Paren: 2396 case Type::TypeOf: 2397 case Type::UnaryTransform: 2398 case Type::Attributed: 2399 case Type::BTFTagAttributed: 2400 case Type::SubstTemplateTypeParm: 2401 case Type::MacroQualified: 2402 // Keep walking after single level desugaring. 2403 type = type.getSingleStepDesugaredType(getContext()); 2404 break; 2405 2406 case Type::Typedef: 2407 case Type::Decltype: 2408 case Type::Auto: 2409 case Type::DeducedTemplateSpecialization: 2410 // Stop walking: nothing to do. 2411 return; 2412 2413 case Type::TypeOfExpr: 2414 // Stop walking: emit typeof expression. 2415 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2416 return; 2417 2418 case Type::Atomic: 2419 type = cast<AtomicType>(ty)->getValueType(); 2420 break; 2421 2422 case Type::Pipe: 2423 type = cast<PipeType>(ty)->getElementType(); 2424 break; 2425 } 2426 } while (type->isVariablyModifiedType()); 2427 } 2428 2429 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2430 if (getContext().getBuiltinVaListType()->isArrayType()) 2431 return EmitPointerWithAlignment(E); 2432 return EmitLValue(E).getAddress(*this); 2433 } 2434 2435 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2436 return EmitLValue(E).getAddress(*this); 2437 } 2438 2439 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2440 const APValue &Init) { 2441 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2442 if (CGDebugInfo *Dbg = getDebugInfo()) 2443 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2444 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2445 } 2446 2447 CodeGenFunction::PeepholeProtection 2448 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2449 // At the moment, the only aggressive peephole we do in IR gen 2450 // is trunc(zext) folding, but if we add more, we can easily 2451 // extend this protection. 2452 2453 if (!rvalue.isScalar()) return PeepholeProtection(); 2454 llvm::Value *value = rvalue.getScalarVal(); 2455 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2456 2457 // Just make an extra bitcast. 2458 assert(HaveInsertPoint()); 2459 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2460 Builder.GetInsertBlock()); 2461 2462 PeepholeProtection protection; 2463 protection.Inst = inst; 2464 return protection; 2465 } 2466 2467 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2468 if (!protection.Inst) return; 2469 2470 // In theory, we could try to duplicate the peepholes now, but whatever. 2471 protection.Inst->eraseFromParent(); 2472 } 2473 2474 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2475 QualType Ty, SourceLocation Loc, 2476 SourceLocation AssumptionLoc, 2477 llvm::Value *Alignment, 2478 llvm::Value *OffsetValue) { 2479 if (Alignment->getType() != IntPtrTy) 2480 Alignment = 2481 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2482 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2483 OffsetValue = 2484 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2485 llvm::Value *TheCheck = nullptr; 2486 if (SanOpts.has(SanitizerKind::Alignment)) { 2487 llvm::Value *PtrIntValue = 2488 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2489 2490 if (OffsetValue) { 2491 bool IsOffsetZero = false; 2492 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2493 IsOffsetZero = CI->isZero(); 2494 2495 if (!IsOffsetZero) 2496 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2497 } 2498 2499 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2500 llvm::Value *Mask = 2501 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2502 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2503 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2504 } 2505 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2506 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2507 2508 if (!SanOpts.has(SanitizerKind::Alignment)) 2509 return; 2510 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2511 OffsetValue, TheCheck, Assumption); 2512 } 2513 2514 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2515 const Expr *E, 2516 SourceLocation AssumptionLoc, 2517 llvm::Value *Alignment, 2518 llvm::Value *OffsetValue) { 2519 QualType Ty = E->getType(); 2520 SourceLocation Loc = E->getExprLoc(); 2521 2522 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2523 OffsetValue); 2524 } 2525 2526 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2527 llvm::Value *AnnotatedVal, 2528 StringRef AnnotationStr, 2529 SourceLocation Location, 2530 const AnnotateAttr *Attr) { 2531 SmallVector<llvm::Value *, 5> Args = { 2532 AnnotatedVal, 2533 CGM.EmitAnnotationString(AnnotationStr), 2534 CGM.EmitAnnotationUnit(Location), 2535 CGM.EmitAnnotationLineNo(Location), 2536 }; 2537 if (Attr) 2538 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2539 return Builder.CreateCall(AnnotationFn, Args); 2540 } 2541 2542 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2543 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2544 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2545 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation, 2546 {V->getType(), CGM.ConstGlobalsPtrTy}), 2547 V, I->getAnnotation(), D->getLocation(), I); 2548 } 2549 2550 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2551 Address Addr) { 2552 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2553 llvm::Value *V = Addr.getPointer(); 2554 llvm::Type *VTy = V->getType(); 2555 auto *PTy = dyn_cast<llvm::PointerType>(VTy); 2556 unsigned AS = PTy ? PTy->getAddressSpace() : 0; 2557 llvm::PointerType *IntrinTy = 2558 llvm::PointerType::get(CGM.getLLVMContext(), AS); 2559 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2560 {IntrinTy, CGM.ConstGlobalsPtrTy}); 2561 2562 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2563 // FIXME Always emit the cast inst so we can differentiate between 2564 // annotation on the first field of a struct and annotation on the struct 2565 // itself. 2566 if (VTy != IntrinTy) 2567 V = Builder.CreateBitCast(V, IntrinTy); 2568 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2569 V = Builder.CreateBitCast(V, VTy); 2570 } 2571 2572 return Address(V, Addr.getElementType(), Addr.getAlignment()); 2573 } 2574 2575 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2576 2577 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2578 : CGF(CGF) { 2579 assert(!CGF->IsSanitizerScope); 2580 CGF->IsSanitizerScope = true; 2581 } 2582 2583 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2584 CGF->IsSanitizerScope = false; 2585 } 2586 2587 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2588 const llvm::Twine &Name, 2589 llvm::BasicBlock *BB, 2590 llvm::BasicBlock::iterator InsertPt) const { 2591 LoopStack.InsertHelper(I); 2592 if (IsSanitizerScope) 2593 I->setNoSanitizeMetadata(); 2594 } 2595 2596 void CGBuilderInserter::InsertHelper( 2597 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2598 llvm::BasicBlock::iterator InsertPt) const { 2599 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2600 if (CGF) 2601 CGF->InsertHelper(I, Name, BB, InsertPt); 2602 } 2603 2604 // Emits an error if we don't have a valid set of target features for the 2605 // called function. 2606 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2607 const FunctionDecl *TargetDecl) { 2608 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2609 } 2610 2611 // Emits an error if we don't have a valid set of target features for the 2612 // called function. 2613 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2614 const FunctionDecl *TargetDecl) { 2615 // Early exit if this is an indirect call. 2616 if (!TargetDecl) 2617 return; 2618 2619 // Get the current enclosing function if it exists. If it doesn't 2620 // we can't check the target features anyhow. 2621 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2622 if (!FD) 2623 return; 2624 2625 // Grab the required features for the call. For a builtin this is listed in 2626 // the td file with the default cpu, for an always_inline function this is any 2627 // listed cpu and any listed features. 2628 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2629 std::string MissingFeature; 2630 llvm::StringMap<bool> CallerFeatureMap; 2631 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2632 // When compiling in HipStdPar mode we have to be conservative in rejecting 2633 // target specific features in the FE, and defer the possible error to the 2634 // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is 2635 // referenced by an accelerator executable function, we emit an error. 2636 bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice; 2637 if (BuiltinID) { 2638 StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2639 if (!Builtin::evaluateRequiredTargetFeatures( 2640 FeatureList, CallerFeatureMap) && !IsHipStdPar) { 2641 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2642 << TargetDecl->getDeclName() 2643 << FeatureList; 2644 } 2645 } else if (!TargetDecl->isMultiVersion() && 2646 TargetDecl->hasAttr<TargetAttr>()) { 2647 // Get the required features for the callee. 2648 2649 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2650 ParsedTargetAttr ParsedAttr = 2651 CGM.getContext().filterFunctionTargetAttrs(TD); 2652 2653 SmallVector<StringRef, 1> ReqFeatures; 2654 llvm::StringMap<bool> CalleeFeatureMap; 2655 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2656 2657 for (const auto &F : ParsedAttr.Features) { 2658 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2659 ReqFeatures.push_back(StringRef(F).substr(1)); 2660 } 2661 2662 for (const auto &F : CalleeFeatureMap) { 2663 // Only positive features are "required". 2664 if (F.getValue()) 2665 ReqFeatures.push_back(F.getKey()); 2666 } 2667 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2668 if (!CallerFeatureMap.lookup(Feature)) { 2669 MissingFeature = Feature.str(); 2670 return false; 2671 } 2672 return true; 2673 }) && !IsHipStdPar) 2674 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2675 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2676 } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) { 2677 llvm::StringMap<bool> CalleeFeatureMap; 2678 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2679 2680 for (const auto &F : CalleeFeatureMap) { 2681 if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) || 2682 !CallerFeatureMap.find(F.getKey())->getValue()) && 2683 !IsHipStdPar) 2684 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2685 << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey(); 2686 } 2687 } 2688 } 2689 2690 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2691 if (!CGM.getCodeGenOpts().SanitizeStats) 2692 return; 2693 2694 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2695 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2696 CGM.getSanStats().create(IRB, SSK); 2697 } 2698 2699 void CodeGenFunction::EmitKCFIOperandBundle( 2700 const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) { 2701 const FunctionProtoType *FP = 2702 Callee.getAbstractInfo().getCalleeFunctionProtoType(); 2703 if (FP) 2704 Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar())); 2705 } 2706 2707 llvm::Value *CodeGenFunction::FormAArch64ResolverCondition( 2708 const MultiVersionResolverOption &RO) { 2709 llvm::SmallVector<StringRef, 8> CondFeatures; 2710 for (const StringRef &Feature : RO.Conditions.Features) { 2711 // Form condition for features which are not yet enabled in target 2712 if (!getContext().getTargetInfo().hasFeature(Feature)) 2713 CondFeatures.push_back(Feature); 2714 } 2715 if (!CondFeatures.empty()) { 2716 return EmitAArch64CpuSupports(CondFeatures); 2717 } 2718 return nullptr; 2719 } 2720 2721 llvm::Value *CodeGenFunction::FormX86ResolverCondition( 2722 const MultiVersionResolverOption &RO) { 2723 llvm::Value *Condition = nullptr; 2724 2725 if (!RO.Conditions.Architecture.empty()) { 2726 StringRef Arch = RO.Conditions.Architecture; 2727 // If arch= specifies an x86-64 micro-architecture level, test the feature 2728 // with __builtin_cpu_supports, otherwise use __builtin_cpu_is. 2729 if (Arch.starts_with("x86-64")) 2730 Condition = EmitX86CpuSupports({Arch}); 2731 else 2732 Condition = EmitX86CpuIs(Arch); 2733 } 2734 2735 if (!RO.Conditions.Features.empty()) { 2736 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2737 Condition = 2738 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2739 } 2740 return Condition; 2741 } 2742 2743 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2744 llvm::Function *Resolver, 2745 CGBuilderTy &Builder, 2746 llvm::Function *FuncToReturn, 2747 bool SupportsIFunc) { 2748 if (SupportsIFunc) { 2749 Builder.CreateRet(FuncToReturn); 2750 return; 2751 } 2752 2753 llvm::SmallVector<llvm::Value *, 10> Args( 2754 llvm::make_pointer_range(Resolver->args())); 2755 2756 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2757 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2758 2759 if (Resolver->getReturnType()->isVoidTy()) 2760 Builder.CreateRetVoid(); 2761 else 2762 Builder.CreateRet(Result); 2763 } 2764 2765 void CodeGenFunction::EmitMultiVersionResolver( 2766 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2767 2768 llvm::Triple::ArchType ArchType = 2769 getContext().getTargetInfo().getTriple().getArch(); 2770 2771 switch (ArchType) { 2772 case llvm::Triple::x86: 2773 case llvm::Triple::x86_64: 2774 EmitX86MultiVersionResolver(Resolver, Options); 2775 return; 2776 case llvm::Triple::aarch64: 2777 EmitAArch64MultiVersionResolver(Resolver, Options); 2778 return; 2779 2780 default: 2781 assert(false && "Only implemented for x86 and AArch64 targets"); 2782 } 2783 } 2784 2785 void CodeGenFunction::EmitAArch64MultiVersionResolver( 2786 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2787 assert(!Options.empty() && "No multiversion resolver options found"); 2788 assert(Options.back().Conditions.Features.size() == 0 && 2789 "Default case must be last"); 2790 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2791 assert(SupportsIFunc && 2792 "Multiversion resolver requires target IFUNC support"); 2793 bool AArch64CpuInitialized = false; 2794 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2795 2796 for (const MultiVersionResolverOption &RO : Options) { 2797 Builder.SetInsertPoint(CurBlock); 2798 llvm::Value *Condition = FormAArch64ResolverCondition(RO); 2799 2800 // The 'default' or 'all features enabled' case. 2801 if (!Condition) { 2802 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2803 SupportsIFunc); 2804 return; 2805 } 2806 2807 if (!AArch64CpuInitialized) { 2808 Builder.SetInsertPoint(CurBlock, CurBlock->begin()); 2809 EmitAArch64CpuInit(); 2810 AArch64CpuInitialized = true; 2811 Builder.SetInsertPoint(CurBlock); 2812 } 2813 2814 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2815 CGBuilderTy RetBuilder(*this, RetBlock); 2816 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2817 SupportsIFunc); 2818 CurBlock = createBasicBlock("resolver_else", Resolver); 2819 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2820 } 2821 2822 // If no default, emit an unreachable. 2823 Builder.SetInsertPoint(CurBlock); 2824 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2825 TrapCall->setDoesNotReturn(); 2826 TrapCall->setDoesNotThrow(); 2827 Builder.CreateUnreachable(); 2828 Builder.ClearInsertionPoint(); 2829 } 2830 2831 void CodeGenFunction::EmitX86MultiVersionResolver( 2832 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2833 2834 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2835 2836 // Main function's basic block. 2837 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2838 Builder.SetInsertPoint(CurBlock); 2839 EmitX86CpuInit(); 2840 2841 for (const MultiVersionResolverOption &RO : Options) { 2842 Builder.SetInsertPoint(CurBlock); 2843 llvm::Value *Condition = FormX86ResolverCondition(RO); 2844 2845 // The 'default' or 'generic' case. 2846 if (!Condition) { 2847 assert(&RO == Options.end() - 1 && 2848 "Default or Generic case must be last"); 2849 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2850 SupportsIFunc); 2851 return; 2852 } 2853 2854 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2855 CGBuilderTy RetBuilder(*this, RetBlock); 2856 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2857 SupportsIFunc); 2858 CurBlock = createBasicBlock("resolver_else", Resolver); 2859 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2860 } 2861 2862 // If no generic/default, emit an unreachable. 2863 Builder.SetInsertPoint(CurBlock); 2864 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2865 TrapCall->setDoesNotReturn(); 2866 TrapCall->setDoesNotThrow(); 2867 Builder.CreateUnreachable(); 2868 Builder.ClearInsertionPoint(); 2869 } 2870 2871 // Loc - where the diagnostic will point, where in the source code this 2872 // alignment has failed. 2873 // SecondaryLoc - if present (will be present if sufficiently different from 2874 // Loc), the diagnostic will additionally point a "Note:" to this location. 2875 // It should be the location where the __attribute__((assume_aligned)) 2876 // was written e.g. 2877 void CodeGenFunction::emitAlignmentAssumptionCheck( 2878 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2879 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2880 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2881 llvm::Instruction *Assumption) { 2882 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2883 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2884 llvm::Intrinsic::getDeclaration( 2885 Builder.GetInsertBlock()->getParent()->getParent(), 2886 llvm::Intrinsic::assume) && 2887 "Assumption should be a call to llvm.assume()."); 2888 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2889 "Assumption should be the last instruction of the basic block, " 2890 "since the basic block is still being generated."); 2891 2892 if (!SanOpts.has(SanitizerKind::Alignment)) 2893 return; 2894 2895 // Don't check pointers to volatile data. The behavior here is implementation- 2896 // defined. 2897 if (Ty->getPointeeType().isVolatileQualified()) 2898 return; 2899 2900 // We need to temorairly remove the assumption so we can insert the 2901 // sanitizer check before it, else the check will be dropped by optimizations. 2902 Assumption->removeFromParent(); 2903 2904 { 2905 SanitizerScope SanScope(this); 2906 2907 if (!OffsetValue) 2908 OffsetValue = Builder.getInt1(false); // no offset. 2909 2910 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2911 EmitCheckSourceLocation(SecondaryLoc), 2912 EmitCheckTypeDescriptor(Ty)}; 2913 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2914 EmitCheckValue(Alignment), 2915 EmitCheckValue(OffsetValue)}; 2916 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2917 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2918 } 2919 2920 // We are now in the (new, empty) "cont" basic block. 2921 // Reintroduce the assumption. 2922 Builder.Insert(Assumption); 2923 // FIXME: Assumption still has it's original basic block as it's Parent. 2924 } 2925 2926 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2927 if (CGDebugInfo *DI = getDebugInfo()) 2928 return DI->SourceLocToDebugLoc(Location); 2929 2930 return llvm::DebugLoc(); 2931 } 2932 2933 llvm::Value * 2934 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 2935 Stmt::Likelihood LH) { 2936 switch (LH) { 2937 case Stmt::LH_None: 2938 return Cond; 2939 case Stmt::LH_Likely: 2940 case Stmt::LH_Unlikely: 2941 // Don't generate llvm.expect on -O0 as the backend won't use it for 2942 // anything. 2943 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 2944 return Cond; 2945 llvm::Type *CondTy = Cond->getType(); 2946 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 2947 llvm::Function *FnExpect = 2948 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 2949 llvm::Value *ExpectedValueOfCond = 2950 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 2951 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 2952 Cond->getName() + ".expval"); 2953 } 2954 llvm_unreachable("Unknown Likelihood"); 2955 } 2956 2957 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec, 2958 unsigned NumElementsDst, 2959 const llvm::Twine &Name) { 2960 auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType()); 2961 unsigned NumElementsSrc = SrcTy->getNumElements(); 2962 if (NumElementsSrc == NumElementsDst) 2963 return SrcVec; 2964 2965 std::vector<int> ShuffleMask(NumElementsDst, -1); 2966 for (unsigned MaskIdx = 0; 2967 MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx) 2968 ShuffleMask[MaskIdx] = MaskIdx; 2969 2970 return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name); 2971 } 2972