1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/Expr.h" 29 #include "clang/AST/StmtCXX.h" 30 #include "clang/AST/StmtObjC.h" 31 #include "clang/Basic/Builtins.h" 32 #include "clang/Basic/CodeGenOptions.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/CodeGen/CGFunctionInfo.h" 35 #include "clang/Frontend/FrontendDiagnostic.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/FPEnv.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/MDBuilder.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/Support/CRC.h" 46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 47 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 48 using namespace clang; 49 using namespace CodeGen; 50 51 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 52 /// markers. 53 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 54 const LangOptions &LangOpts) { 55 if (CGOpts.DisableLifetimeMarkers) 56 return false; 57 58 // Sanitizers may use markers. 59 if (CGOpts.SanitizeAddressUseAfterScope || 60 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 61 LangOpts.Sanitize.has(SanitizerKind::Memory)) 62 return true; 63 64 // For now, only in optimized builds. 65 return CGOpts.OptimizationLevel != 0; 66 } 67 68 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 69 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 70 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 71 CGBuilderInserterTy(this)), 72 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 73 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 74 ShouldEmitLifetimeMarkers( 75 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 76 if (!suppressNewContext) 77 CGM.getCXXABI().getMangleContext().startNewFunction(); 78 EHStack.setCGF(this); 79 80 SetFastMathFlags(CurFPFeatures); 81 SetFPModel(); 82 } 83 84 CodeGenFunction::~CodeGenFunction() { 85 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 86 87 if (getLangOpts().OpenMP && CurFn) 88 CGM.getOpenMPRuntime().functionFinished(*this); 89 90 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 91 // outlining etc) at some point. Doing it once the function codegen is done 92 // seems to be a reasonable spot. We do it here, as opposed to the deletion 93 // time of the CodeGenModule, because we have to ensure the IR has not yet 94 // been "emitted" to the outside, thus, modifications are still sensible. 95 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 96 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 97 } 98 99 // Map the LangOption for exception behavior into 100 // the corresponding enum in the IR. 101 llvm::fp::ExceptionBehavior 102 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 103 104 switch (Kind) { 105 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 106 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 107 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 108 } 109 llvm_unreachable("Unsupported FP Exception Behavior"); 110 } 111 112 void CodeGenFunction::SetFPModel() { 113 llvm::RoundingMode RM = getLangOpts().getFPRoundingMode(); 114 auto fpExceptionBehavior = ToConstrainedExceptMD( 115 getLangOpts().getFPExceptionMode()); 116 117 Builder.setDefaultConstrainedRounding(RM); 118 Builder.setDefaultConstrainedExcept(fpExceptionBehavior); 119 Builder.setIsFPConstrained(fpExceptionBehavior != llvm::fp::ebIgnore || 120 RM != llvm::RoundingMode::NearestTiesToEven); 121 } 122 123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 124 llvm::FastMathFlags FMF; 125 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 126 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 127 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 128 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 129 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 130 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 131 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 132 Builder.setFastMathFlags(FMF); 133 } 134 135 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 136 const Expr *E) 137 : CGF(CGF) { 138 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 139 } 140 141 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 142 FPOptions FPFeatures) 143 : CGF(CGF) { 144 ConstructorHelper(FPFeatures); 145 } 146 147 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 148 OldFPFeatures = CGF.CurFPFeatures; 149 CGF.CurFPFeatures = FPFeatures; 150 151 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 152 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 153 154 if (OldFPFeatures == FPFeatures) 155 return; 156 157 FMFGuard.emplace(CGF.Builder); 158 159 llvm::RoundingMode NewRoundingBehavior = 160 static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode()); 161 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 162 auto NewExceptionBehavior = 163 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 164 FPFeatures.getFPExceptionMode())); 165 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 166 167 CGF.SetFastMathFlags(FPFeatures); 168 169 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 170 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 171 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 172 (NewExceptionBehavior == llvm::fp::ebIgnore && 173 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 174 "FPConstrained should be enabled on entire function"); 175 176 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 177 auto OldValue = 178 CGF.CurFn->getFnAttribute(Name).getValueAsBool(); 179 auto NewValue = OldValue & Value; 180 if (OldValue != NewValue) 181 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 182 }; 183 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 184 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 185 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 186 mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() && 187 FPFeatures.getAllowReciprocal() && 188 FPFeatures.getAllowApproxFunc() && 189 FPFeatures.getNoSignedZero()); 190 } 191 192 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 193 CGF.CurFPFeatures = OldFPFeatures; 194 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 195 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 196 } 197 198 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 199 LValueBaseInfo BaseInfo; 200 TBAAAccessInfo TBAAInfo; 201 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 202 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 203 TBAAInfo); 204 } 205 206 /// Given a value of type T* that may not be to a complete object, 207 /// construct an l-value with the natural pointee alignment of T. 208 LValue 209 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 210 LValueBaseInfo BaseInfo; 211 TBAAAccessInfo TBAAInfo; 212 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 213 /* forPointeeType= */ true); 214 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 215 } 216 217 218 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 219 return CGM.getTypes().ConvertTypeForMem(T); 220 } 221 222 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 223 return CGM.getTypes().ConvertType(T); 224 } 225 226 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 227 type = type.getCanonicalType(); 228 while (true) { 229 switch (type->getTypeClass()) { 230 #define TYPE(name, parent) 231 #define ABSTRACT_TYPE(name, parent) 232 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 233 #define DEPENDENT_TYPE(name, parent) case Type::name: 234 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 235 #include "clang/AST/TypeNodes.inc" 236 llvm_unreachable("non-canonical or dependent type in IR-generation"); 237 238 case Type::Auto: 239 case Type::DeducedTemplateSpecialization: 240 llvm_unreachable("undeduced type in IR-generation"); 241 242 // Various scalar types. 243 case Type::Builtin: 244 case Type::Pointer: 245 case Type::BlockPointer: 246 case Type::LValueReference: 247 case Type::RValueReference: 248 case Type::MemberPointer: 249 case Type::Vector: 250 case Type::ExtVector: 251 case Type::ConstantMatrix: 252 case Type::FunctionProto: 253 case Type::FunctionNoProto: 254 case Type::Enum: 255 case Type::ObjCObjectPointer: 256 case Type::Pipe: 257 case Type::ExtInt: 258 return TEK_Scalar; 259 260 // Complexes. 261 case Type::Complex: 262 return TEK_Complex; 263 264 // Arrays, records, and Objective-C objects. 265 case Type::ConstantArray: 266 case Type::IncompleteArray: 267 case Type::VariableArray: 268 case Type::Record: 269 case Type::ObjCObject: 270 case Type::ObjCInterface: 271 return TEK_Aggregate; 272 273 // We operate on atomic values according to their underlying type. 274 case Type::Atomic: 275 type = cast<AtomicType>(type)->getValueType(); 276 continue; 277 } 278 llvm_unreachable("unknown type kind!"); 279 } 280 } 281 282 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 283 // For cleanliness, we try to avoid emitting the return block for 284 // simple cases. 285 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 286 287 if (CurBB) { 288 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 289 290 // We have a valid insert point, reuse it if it is empty or there are no 291 // explicit jumps to the return block. 292 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 293 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 294 delete ReturnBlock.getBlock(); 295 ReturnBlock = JumpDest(); 296 } else 297 EmitBlock(ReturnBlock.getBlock()); 298 return llvm::DebugLoc(); 299 } 300 301 // Otherwise, if the return block is the target of a single direct 302 // branch then we can just put the code in that block instead. This 303 // cleans up functions which started with a unified return block. 304 if (ReturnBlock.getBlock()->hasOneUse()) { 305 llvm::BranchInst *BI = 306 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 307 if (BI && BI->isUnconditional() && 308 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 309 // Record/return the DebugLoc of the simple 'return' expression to be used 310 // later by the actual 'ret' instruction. 311 llvm::DebugLoc Loc = BI->getDebugLoc(); 312 Builder.SetInsertPoint(BI->getParent()); 313 BI->eraseFromParent(); 314 delete ReturnBlock.getBlock(); 315 ReturnBlock = JumpDest(); 316 return Loc; 317 } 318 } 319 320 // FIXME: We are at an unreachable point, there is no reason to emit the block 321 // unless it has uses. However, we still need a place to put the debug 322 // region.end for now. 323 324 EmitBlock(ReturnBlock.getBlock()); 325 return llvm::DebugLoc(); 326 } 327 328 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 329 if (!BB) return; 330 if (!BB->use_empty()) 331 return CGF.CurFn->getBasicBlockList().push_back(BB); 332 delete BB; 333 } 334 335 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 336 assert(BreakContinueStack.empty() && 337 "mismatched push/pop in break/continue stack!"); 338 339 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 340 && NumSimpleReturnExprs == NumReturnExprs 341 && ReturnBlock.getBlock()->use_empty(); 342 // Usually the return expression is evaluated before the cleanup 343 // code. If the function contains only a simple return statement, 344 // such as a constant, the location before the cleanup code becomes 345 // the last useful breakpoint in the function, because the simple 346 // return expression will be evaluated after the cleanup code. To be 347 // safe, set the debug location for cleanup code to the location of 348 // the return statement. Otherwise the cleanup code should be at the 349 // end of the function's lexical scope. 350 // 351 // If there are multiple branches to the return block, the branch 352 // instructions will get the location of the return statements and 353 // all will be fine. 354 if (CGDebugInfo *DI = getDebugInfo()) { 355 if (OnlySimpleReturnStmts) 356 DI->EmitLocation(Builder, LastStopPoint); 357 else 358 DI->EmitLocation(Builder, EndLoc); 359 } 360 361 // Pop any cleanups that might have been associated with the 362 // parameters. Do this in whatever block we're currently in; it's 363 // important to do this before we enter the return block or return 364 // edges will be *really* confused. 365 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 366 bool HasOnlyLifetimeMarkers = 367 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 368 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 369 if (HasCleanups) { 370 // Make sure the line table doesn't jump back into the body for 371 // the ret after it's been at EndLoc. 372 Optional<ApplyDebugLocation> AL; 373 if (CGDebugInfo *DI = getDebugInfo()) { 374 if (OnlySimpleReturnStmts) 375 DI->EmitLocation(Builder, EndLoc); 376 else 377 // We may not have a valid end location. Try to apply it anyway, and 378 // fall back to an artificial location if needed. 379 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 380 } 381 382 PopCleanupBlocks(PrologueCleanupDepth); 383 } 384 385 // Emit function epilog (to return). 386 llvm::DebugLoc Loc = EmitReturnBlock(); 387 388 if (ShouldInstrumentFunction()) { 389 if (CGM.getCodeGenOpts().InstrumentFunctions) 390 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 391 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 392 CurFn->addFnAttr("instrument-function-exit-inlined", 393 "__cyg_profile_func_exit"); 394 } 395 396 // Emit debug descriptor for function end. 397 if (CGDebugInfo *DI = getDebugInfo()) 398 DI->EmitFunctionEnd(Builder, CurFn); 399 400 // Reset the debug location to that of the simple 'return' expression, if any 401 // rather than that of the end of the function's scope '}'. 402 ApplyDebugLocation AL(*this, Loc); 403 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 404 EmitEndEHSpec(CurCodeDecl); 405 406 assert(EHStack.empty() && 407 "did not remove all scopes from cleanup stack!"); 408 409 // If someone did an indirect goto, emit the indirect goto block at the end of 410 // the function. 411 if (IndirectBranch) { 412 EmitBlock(IndirectBranch->getParent()); 413 Builder.ClearInsertionPoint(); 414 } 415 416 // If some of our locals escaped, insert a call to llvm.localescape in the 417 // entry block. 418 if (!EscapedLocals.empty()) { 419 // Invert the map from local to index into a simple vector. There should be 420 // no holes. 421 SmallVector<llvm::Value *, 4> EscapeArgs; 422 EscapeArgs.resize(EscapedLocals.size()); 423 for (auto &Pair : EscapedLocals) 424 EscapeArgs[Pair.second] = Pair.first; 425 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 426 &CGM.getModule(), llvm::Intrinsic::localescape); 427 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 428 } 429 430 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 431 llvm::Instruction *Ptr = AllocaInsertPt; 432 AllocaInsertPt = nullptr; 433 Ptr->eraseFromParent(); 434 435 // If someone took the address of a label but never did an indirect goto, we 436 // made a zero entry PHI node, which is illegal, zap it now. 437 if (IndirectBranch) { 438 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 439 if (PN->getNumIncomingValues() == 0) { 440 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 441 PN->eraseFromParent(); 442 } 443 } 444 445 EmitIfUsed(*this, EHResumeBlock); 446 EmitIfUsed(*this, TerminateLandingPad); 447 EmitIfUsed(*this, TerminateHandler); 448 EmitIfUsed(*this, UnreachableBlock); 449 450 for (const auto &FuncletAndParent : TerminateFunclets) 451 EmitIfUsed(*this, FuncletAndParent.second); 452 453 if (CGM.getCodeGenOpts().EmitDeclMetadata) 454 EmitDeclMetadata(); 455 456 for (const auto &R : DeferredReplacements) { 457 if (llvm::Value *Old = R.first) { 458 Old->replaceAllUsesWith(R.second); 459 cast<llvm::Instruction>(Old)->eraseFromParent(); 460 } 461 } 462 DeferredReplacements.clear(); 463 464 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 465 // PHIs if the current function is a coroutine. We don't do it for all 466 // functions as it may result in slight increase in numbers of instructions 467 // if compiled with no optimizations. We do it for coroutine as the lifetime 468 // of CleanupDestSlot alloca make correct coroutine frame building very 469 // difficult. 470 if (NormalCleanupDest.isValid() && isCoroutine()) { 471 llvm::DominatorTree DT(*CurFn); 472 llvm::PromoteMemToReg( 473 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 474 NormalCleanupDest = Address::invalid(); 475 } 476 477 // Scan function arguments for vector width. 478 for (llvm::Argument &A : CurFn->args()) 479 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 480 LargestVectorWidth = 481 std::max((uint64_t)LargestVectorWidth, 482 VT->getPrimitiveSizeInBits().getKnownMinSize()); 483 484 // Update vector width based on return type. 485 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 486 LargestVectorWidth = 487 std::max((uint64_t)LargestVectorWidth, 488 VT->getPrimitiveSizeInBits().getKnownMinSize()); 489 490 // Add the required-vector-width attribute. This contains the max width from: 491 // 1. min-vector-width attribute used in the source program. 492 // 2. Any builtins used that have a vector width specified. 493 // 3. Values passed in and out of inline assembly. 494 // 4. Width of vector arguments and return types for this function. 495 // 5. Width of vector aguments and return types for functions called by this 496 // function. 497 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 498 499 // Add vscale attribute if appropriate. 500 if (getLangOpts().ArmSveVectorBits) { 501 unsigned VScale = getLangOpts().ArmSveVectorBits / 128; 502 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(getLLVMContext(), 503 VScale, VScale)); 504 } 505 506 // If we generated an unreachable return block, delete it now. 507 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 508 Builder.ClearInsertionPoint(); 509 ReturnBlock.getBlock()->eraseFromParent(); 510 } 511 if (ReturnValue.isValid()) { 512 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 513 if (RetAlloca && RetAlloca->use_empty()) { 514 RetAlloca->eraseFromParent(); 515 ReturnValue = Address::invalid(); 516 } 517 } 518 } 519 520 /// ShouldInstrumentFunction - Return true if the current function should be 521 /// instrumented with __cyg_profile_func_* calls 522 bool CodeGenFunction::ShouldInstrumentFunction() { 523 if (!CGM.getCodeGenOpts().InstrumentFunctions && 524 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 525 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 526 return false; 527 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 528 return false; 529 return true; 530 } 531 532 /// ShouldXRayInstrument - Return true if the current function should be 533 /// instrumented with XRay nop sleds. 534 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 535 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 536 } 537 538 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 539 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 540 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 541 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 542 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 543 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 544 XRayInstrKind::Custom); 545 } 546 547 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 548 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 549 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 550 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 551 XRayInstrKind::Typed); 552 } 553 554 llvm::Constant * 555 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 556 llvm::Constant *Addr) { 557 // Addresses stored in prologue data can't require run-time fixups and must 558 // be PC-relative. Run-time fixups are undesirable because they necessitate 559 // writable text segments, which are unsafe. And absolute addresses are 560 // undesirable because they break PIE mode. 561 562 // Add a layer of indirection through a private global. Taking its address 563 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 564 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 565 /*isConstant=*/true, 566 llvm::GlobalValue::PrivateLinkage, Addr); 567 568 // Create a PC-relative address. 569 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 570 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 571 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 572 return (IntPtrTy == Int32Ty) 573 ? PCRelAsInt 574 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 575 } 576 577 llvm::Value * 578 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 579 llvm::Value *EncodedAddr) { 580 // Reconstruct the address of the global. 581 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 582 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 583 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 584 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 585 586 // Load the original pointer through the global. 587 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 588 "decoded_addr"); 589 } 590 591 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 592 llvm::Function *Fn) 593 { 594 if (!FD->hasAttr<OpenCLKernelAttr>()) 595 return; 596 597 llvm::LLVMContext &Context = getLLVMContext(); 598 599 CGM.GenOpenCLArgMetadata(Fn, FD, this); 600 601 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 602 QualType HintQTy = A->getTypeHint(); 603 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 604 bool IsSignedInteger = 605 HintQTy->isSignedIntegerType() || 606 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 607 llvm::Metadata *AttrMDArgs[] = { 608 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 609 CGM.getTypes().ConvertType(A->getTypeHint()))), 610 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 611 llvm::IntegerType::get(Context, 32), 612 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 613 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 614 } 615 616 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 617 llvm::Metadata *AttrMDArgs[] = { 618 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 619 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 620 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 621 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 622 } 623 624 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 625 llvm::Metadata *AttrMDArgs[] = { 626 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 627 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 628 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 629 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 630 } 631 632 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 633 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 634 llvm::Metadata *AttrMDArgs[] = { 635 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 636 Fn->setMetadata("intel_reqd_sub_group_size", 637 llvm::MDNode::get(Context, AttrMDArgs)); 638 } 639 } 640 641 /// Determine whether the function F ends with a return stmt. 642 static bool endsWithReturn(const Decl* F) { 643 const Stmt *Body = nullptr; 644 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 645 Body = FD->getBody(); 646 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 647 Body = OMD->getBody(); 648 649 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 650 auto LastStmt = CS->body_rbegin(); 651 if (LastStmt != CS->body_rend()) 652 return isa<ReturnStmt>(*LastStmt); 653 } 654 return false; 655 } 656 657 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 658 if (SanOpts.has(SanitizerKind::Thread)) { 659 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 660 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 661 } 662 } 663 664 /// Check if the return value of this function requires sanitization. 665 bool CodeGenFunction::requiresReturnValueCheck() const { 666 return requiresReturnValueNullabilityCheck() || 667 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 668 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 669 } 670 671 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 672 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 673 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 674 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 675 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 676 return false; 677 678 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 679 return false; 680 681 if (MD->getNumParams() == 2) { 682 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 683 if (!PT || !PT->isVoidPointerType() || 684 !PT->getPointeeType().isConstQualified()) 685 return false; 686 } 687 688 return true; 689 } 690 691 /// Return the UBSan prologue signature for \p FD if one is available. 692 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 693 const FunctionDecl *FD) { 694 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 695 if (!MD->isStatic()) 696 return nullptr; 697 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 698 } 699 700 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 701 llvm::Function *Fn, 702 const CGFunctionInfo &FnInfo, 703 const FunctionArgList &Args, 704 SourceLocation Loc, 705 SourceLocation StartLoc) { 706 assert(!CurFn && 707 "Do not use a CodeGenFunction object for more than one function"); 708 709 const Decl *D = GD.getDecl(); 710 711 DidCallStackSave = false; 712 CurCodeDecl = D; 713 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 714 if (FD && FD->usesSEHTry()) 715 CurSEHParent = FD; 716 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 717 FnRetTy = RetTy; 718 CurFn = Fn; 719 CurFnInfo = &FnInfo; 720 assert(CurFn->isDeclaration() && "Function already has body?"); 721 722 // If this function is ignored for any of the enabled sanitizers, 723 // disable the sanitizer for the function. 724 do { 725 #define SANITIZER(NAME, ID) \ 726 if (SanOpts.empty()) \ 727 break; \ 728 if (SanOpts.has(SanitizerKind::ID)) \ 729 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 730 SanOpts.set(SanitizerKind::ID, false); 731 732 #include "clang/Basic/Sanitizers.def" 733 #undef SANITIZER 734 } while (0); 735 736 if (D) { 737 bool NoSanitizeCoverage = false; 738 739 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 740 // Apply the no_sanitize* attributes to SanOpts. 741 SanitizerMask mask = Attr->getMask(); 742 SanOpts.Mask &= ~mask; 743 if (mask & SanitizerKind::Address) 744 SanOpts.set(SanitizerKind::KernelAddress, false); 745 if (mask & SanitizerKind::KernelAddress) 746 SanOpts.set(SanitizerKind::Address, false); 747 if (mask & SanitizerKind::HWAddress) 748 SanOpts.set(SanitizerKind::KernelHWAddress, false); 749 if (mask & SanitizerKind::KernelHWAddress) 750 SanOpts.set(SanitizerKind::HWAddress, false); 751 752 // SanitizeCoverage is not handled by SanOpts. 753 if (Attr->hasCoverage()) 754 NoSanitizeCoverage = true; 755 } 756 757 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) 758 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); 759 } 760 761 // Apply sanitizer attributes to the function. 762 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 763 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 764 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 765 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 766 if (SanOpts.has(SanitizerKind::MemTag)) 767 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 768 if (SanOpts.has(SanitizerKind::Thread)) 769 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 770 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 771 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 772 if (SanOpts.has(SanitizerKind::SafeStack)) 773 Fn->addFnAttr(llvm::Attribute::SafeStack); 774 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 775 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 776 777 // Apply fuzzing attribute to the function. 778 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 779 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 780 781 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 782 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 783 if (SanOpts.has(SanitizerKind::Thread)) { 784 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 785 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 786 if (OMD->getMethodFamily() == OMF_dealloc || 787 OMD->getMethodFamily() == OMF_initialize || 788 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 789 markAsIgnoreThreadCheckingAtRuntime(Fn); 790 } 791 } 792 } 793 794 // Ignore unrelated casts in STL allocate() since the allocator must cast 795 // from void* to T* before object initialization completes. Don't match on the 796 // namespace because not all allocators are in std:: 797 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 798 if (matchesStlAllocatorFn(D, getContext())) 799 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 800 } 801 802 // Ignore null checks in coroutine functions since the coroutines passes 803 // are not aware of how to move the extra UBSan instructions across the split 804 // coroutine boundaries. 805 if (D && SanOpts.has(SanitizerKind::Null)) 806 if (FD && FD->getBody() && 807 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 808 SanOpts.Mask &= ~SanitizerKind::Null; 809 810 // Apply xray attributes to the function (as a string, for now) 811 bool AlwaysXRayAttr = false; 812 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 813 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 814 XRayInstrKind::FunctionEntry) || 815 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 816 XRayInstrKind::FunctionExit)) { 817 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 818 Fn->addFnAttr("function-instrument", "xray-always"); 819 AlwaysXRayAttr = true; 820 } 821 if (XRayAttr->neverXRayInstrument()) 822 Fn->addFnAttr("function-instrument", "xray-never"); 823 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 824 if (ShouldXRayInstrumentFunction()) 825 Fn->addFnAttr("xray-log-args", 826 llvm::utostr(LogArgs->getArgumentCount())); 827 } 828 } else { 829 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 830 Fn->addFnAttr( 831 "xray-instruction-threshold", 832 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 833 } 834 835 if (ShouldXRayInstrumentFunction()) { 836 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 837 Fn->addFnAttr("xray-ignore-loops"); 838 839 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 840 XRayInstrKind::FunctionExit)) 841 Fn->addFnAttr("xray-skip-exit"); 842 843 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 844 XRayInstrKind::FunctionEntry)) 845 Fn->addFnAttr("xray-skip-entry"); 846 847 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 848 if (FuncGroups > 1) { 849 auto FuncName = llvm::makeArrayRef<uint8_t>( 850 CurFn->getName().bytes_begin(), CurFn->getName().bytes_end()); 851 auto Group = crc32(FuncName) % FuncGroups; 852 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 853 !AlwaysXRayAttr) 854 Fn->addFnAttr("function-instrument", "xray-never"); 855 } 856 } 857 858 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) 859 if (CGM.isProfileInstrExcluded(Fn, Loc)) 860 Fn->addFnAttr(llvm::Attribute::NoProfile); 861 862 unsigned Count, Offset; 863 if (const auto *Attr = 864 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 865 Count = Attr->getCount(); 866 Offset = Attr->getOffset(); 867 } else { 868 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 869 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 870 } 871 if (Count && Offset <= Count) { 872 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 873 if (Offset) 874 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 875 } 876 877 // Add no-jump-tables value. 878 if (CGM.getCodeGenOpts().NoUseJumpTables) 879 Fn->addFnAttr("no-jump-tables", "true"); 880 881 // Add no-inline-line-tables value. 882 if (CGM.getCodeGenOpts().NoInlineLineTables) 883 Fn->addFnAttr("no-inline-line-tables"); 884 885 // Add profile-sample-accurate value. 886 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 887 Fn->addFnAttr("profile-sample-accurate"); 888 889 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 890 Fn->addFnAttr("use-sample-profile"); 891 892 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 893 Fn->addFnAttr("cfi-canonical-jump-table"); 894 895 if (D && D->hasAttr<NoProfileFunctionAttr>()) 896 Fn->addFnAttr(llvm::Attribute::NoProfile); 897 898 if (FD && getLangOpts().OpenCL) { 899 // Add metadata for a kernel function. 900 EmitOpenCLKernelMetadata(FD, Fn); 901 } 902 903 // If we are checking function types, emit a function type signature as 904 // prologue data. 905 if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 906 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 907 // Remove any (C++17) exception specifications, to allow calling e.g. a 908 // noexcept function through a non-noexcept pointer. 909 auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec( 910 FD->getType(), EST_None); 911 llvm::Constant *FTRTTIConst = 912 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 913 llvm::Constant *FTRTTIConstEncoded = 914 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 915 llvm::Constant *PrologueStructElems[] = {PrologueSig, FTRTTIConstEncoded}; 916 llvm::Constant *PrologueStructConst = 917 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 918 Fn->setPrologueData(PrologueStructConst); 919 } 920 } 921 922 // If we're checking nullability, we need to know whether we can check the 923 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 924 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 925 auto Nullability = FnRetTy->getNullability(getContext()); 926 if (Nullability && *Nullability == NullabilityKind::NonNull) { 927 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 928 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 929 RetValNullabilityPrecondition = 930 llvm::ConstantInt::getTrue(getLLVMContext()); 931 } 932 } 933 934 // If we're in C++ mode and the function name is "main", it is guaranteed 935 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 936 // used within a program"). 937 // 938 // OpenCL C 2.0 v2.2-11 s6.9.i: 939 // Recursion is not supported. 940 // 941 // SYCL v1.2.1 s3.10: 942 // kernels cannot include RTTI information, exception classes, 943 // recursive code, virtual functions or make use of C++ libraries that 944 // are not compiled for the device. 945 if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) || 946 getLangOpts().OpenCL || getLangOpts().SYCLIsDevice || 947 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))) 948 Fn->addFnAttr(llvm::Attribute::NoRecurse); 949 950 if (FD) { 951 Builder.setIsFPConstrained(FD->hasAttr<StrictFPAttr>()); 952 if (FD->hasAttr<StrictFPAttr>()) 953 Fn->addFnAttr(llvm::Attribute::StrictFP); 954 } 955 956 // If a custom alignment is used, force realigning to this alignment on 957 // any main function which certainly will need it. 958 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 959 CGM.getCodeGenOpts().StackAlignment)) 960 Fn->addFnAttr("stackrealign"); 961 962 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 963 964 // Create a marker to make it easy to insert allocas into the entryblock 965 // later. Don't create this with the builder, because we don't want it 966 // folded. 967 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 968 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 969 970 ReturnBlock = getJumpDestInCurrentScope("return"); 971 972 Builder.SetInsertPoint(EntryBB); 973 974 // If we're checking the return value, allocate space for a pointer to a 975 // precise source location of the checked return statement. 976 if (requiresReturnValueCheck()) { 977 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 978 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 979 } 980 981 // Emit subprogram debug descriptor. 982 if (CGDebugInfo *DI = getDebugInfo()) { 983 // Reconstruct the type from the argument list so that implicit parameters, 984 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 985 // convention. 986 CallingConv CC = CallingConv::CC_C; 987 if (FD) 988 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 989 CC = SrcFnTy->getCallConv(); 990 SmallVector<QualType, 16> ArgTypes; 991 for (const VarDecl *VD : Args) 992 ArgTypes.push_back(VD->getType()); 993 QualType FnType = getContext().getFunctionType( 994 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 995 DI->emitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk); 996 } 997 998 if (ShouldInstrumentFunction()) { 999 if (CGM.getCodeGenOpts().InstrumentFunctions) 1000 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1001 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1002 CurFn->addFnAttr("instrument-function-entry-inlined", 1003 "__cyg_profile_func_enter"); 1004 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1005 CurFn->addFnAttr("instrument-function-entry-inlined", 1006 "__cyg_profile_func_enter_bare"); 1007 } 1008 1009 // Since emitting the mcount call here impacts optimizations such as function 1010 // inlining, we just add an attribute to insert a mcount call in backend. 1011 // The attribute "counting-function" is set to mcount function name which is 1012 // architecture dependent. 1013 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1014 // Calls to fentry/mcount should not be generated if function has 1015 // the no_instrument_function attribute. 1016 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1017 if (CGM.getCodeGenOpts().CallFEntry) 1018 Fn->addFnAttr("fentry-call", "true"); 1019 else { 1020 Fn->addFnAttr("instrument-function-entry-inlined", 1021 getTarget().getMCountName()); 1022 } 1023 if (CGM.getCodeGenOpts().MNopMCount) { 1024 if (!CGM.getCodeGenOpts().CallFEntry) 1025 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1026 << "-mnop-mcount" << "-mfentry"; 1027 Fn->addFnAttr("mnop-mcount"); 1028 } 1029 1030 if (CGM.getCodeGenOpts().RecordMCount) { 1031 if (!CGM.getCodeGenOpts().CallFEntry) 1032 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1033 << "-mrecord-mcount" << "-mfentry"; 1034 Fn->addFnAttr("mrecord-mcount"); 1035 } 1036 } 1037 } 1038 1039 if (CGM.getCodeGenOpts().PackedStack) { 1040 if (getContext().getTargetInfo().getTriple().getArch() != 1041 llvm::Triple::systemz) 1042 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1043 << "-mpacked-stack"; 1044 Fn->addFnAttr("packed-stack"); 1045 } 1046 1047 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX) 1048 Fn->addFnAttr("warn-stack-size", 1049 std::to_string(CGM.getCodeGenOpts().WarnStackSize)); 1050 1051 if (RetTy->isVoidType()) { 1052 // Void type; nothing to return. 1053 ReturnValue = Address::invalid(); 1054 1055 // Count the implicit return. 1056 if (!endsWithReturn(D)) 1057 ++NumReturnExprs; 1058 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1059 // Indirect return; emit returned value directly into sret slot. 1060 // This reduces code size, and affects correctness in C++. 1061 auto AI = CurFn->arg_begin(); 1062 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1063 ++AI; 1064 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1065 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1066 ReturnValuePointer = 1067 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 1068 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 1069 ReturnValue.getPointer(), Int8PtrTy), 1070 ReturnValuePointer); 1071 } 1072 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1073 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1074 // Load the sret pointer from the argument struct and return into that. 1075 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1076 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1077 --EI; 1078 llvm::Value *Addr = Builder.CreateStructGEP( 1079 EI->getType()->getPointerElementType(), &*EI, Idx); 1080 llvm::Type *Ty = 1081 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1082 ReturnValuePointer = Address(Addr, getPointerAlign()); 1083 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1084 ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy)); 1085 } else { 1086 ReturnValue = CreateIRTemp(RetTy, "retval"); 1087 1088 // Tell the epilog emitter to autorelease the result. We do this 1089 // now so that various specialized functions can suppress it 1090 // during their IR-generation. 1091 if (getLangOpts().ObjCAutoRefCount && 1092 !CurFnInfo->isReturnsRetained() && 1093 RetTy->isObjCRetainableType()) 1094 AutoreleaseResult = true; 1095 } 1096 1097 EmitStartEHSpec(CurCodeDecl); 1098 1099 PrologueCleanupDepth = EHStack.stable_begin(); 1100 1101 // Emit OpenMP specific initialization of the device functions. 1102 if (getLangOpts().OpenMP && CurCodeDecl) 1103 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1104 1105 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1106 1107 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1108 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1109 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1110 if (MD->getParent()->isLambda() && 1111 MD->getOverloadedOperator() == OO_Call) { 1112 // We're in a lambda; figure out the captures. 1113 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1114 LambdaThisCaptureField); 1115 if (LambdaThisCaptureField) { 1116 // If the lambda captures the object referred to by '*this' - either by 1117 // value or by reference, make sure CXXThisValue points to the correct 1118 // object. 1119 1120 // Get the lvalue for the field (which is a copy of the enclosing object 1121 // or contains the address of the enclosing object). 1122 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1123 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1124 // If the enclosing object was captured by value, just use its address. 1125 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1126 } else { 1127 // Load the lvalue pointed to by the field, since '*this' was captured 1128 // by reference. 1129 CXXThisValue = 1130 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1131 } 1132 } 1133 for (auto *FD : MD->getParent()->fields()) { 1134 if (FD->hasCapturedVLAType()) { 1135 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1136 SourceLocation()).getScalarVal(); 1137 auto VAT = FD->getCapturedVLAType(); 1138 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1139 } 1140 } 1141 } else { 1142 // Not in a lambda; just use 'this' from the method. 1143 // FIXME: Should we generate a new load for each use of 'this'? The 1144 // fast register allocator would be happier... 1145 CXXThisValue = CXXABIThisValue; 1146 } 1147 1148 // Check the 'this' pointer once per function, if it's available. 1149 if (CXXABIThisValue) { 1150 SanitizerSet SkippedChecks; 1151 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1152 QualType ThisTy = MD->getThisType(); 1153 1154 // If this is the call operator of a lambda with no capture-default, it 1155 // may have a static invoker function, which may call this operator with 1156 // a null 'this' pointer. 1157 if (isLambdaCallOperator(MD) && 1158 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1159 SkippedChecks.set(SanitizerKind::Null, true); 1160 1161 EmitTypeCheck( 1162 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1163 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1164 } 1165 } 1166 1167 // If any of the arguments have a variably modified type, make sure to 1168 // emit the type size. 1169 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1170 i != e; ++i) { 1171 const VarDecl *VD = *i; 1172 1173 // Dig out the type as written from ParmVarDecls; it's unclear whether 1174 // the standard (C99 6.9.1p10) requires this, but we're following the 1175 // precedent set by gcc. 1176 QualType Ty; 1177 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1178 Ty = PVD->getOriginalType(); 1179 else 1180 Ty = VD->getType(); 1181 1182 if (Ty->isVariablyModifiedType()) 1183 EmitVariablyModifiedType(Ty); 1184 } 1185 // Emit a location at the end of the prologue. 1186 if (CGDebugInfo *DI = getDebugInfo()) 1187 DI->EmitLocation(Builder, StartLoc); 1188 1189 // TODO: Do we need to handle this in two places like we do with 1190 // target-features/target-cpu? 1191 if (CurFuncDecl) 1192 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1193 LargestVectorWidth = VecWidth->getVectorWidth(); 1194 } 1195 1196 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1197 incrementProfileCounter(Body); 1198 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1199 EmitCompoundStmtWithoutScope(*S); 1200 else 1201 EmitStmt(Body); 1202 1203 // This is checked after emitting the function body so we know if there 1204 // are any permitted infinite loops. 1205 if (checkIfFunctionMustProgress()) 1206 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1207 } 1208 1209 /// When instrumenting to collect profile data, the counts for some blocks 1210 /// such as switch cases need to not include the fall-through counts, so 1211 /// emit a branch around the instrumentation code. When not instrumenting, 1212 /// this just calls EmitBlock(). 1213 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1214 const Stmt *S) { 1215 llvm::BasicBlock *SkipCountBB = nullptr; 1216 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1217 // When instrumenting for profiling, the fallthrough to certain 1218 // statements needs to skip over the instrumentation code so that we 1219 // get an accurate count. 1220 SkipCountBB = createBasicBlock("skipcount"); 1221 EmitBranch(SkipCountBB); 1222 } 1223 EmitBlock(BB); 1224 uint64_t CurrentCount = getCurrentProfileCount(); 1225 incrementProfileCounter(S); 1226 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1227 if (SkipCountBB) 1228 EmitBlock(SkipCountBB); 1229 } 1230 1231 /// Tries to mark the given function nounwind based on the 1232 /// non-existence of any throwing calls within it. We believe this is 1233 /// lightweight enough to do at -O0. 1234 static void TryMarkNoThrow(llvm::Function *F) { 1235 // LLVM treats 'nounwind' on a function as part of the type, so we 1236 // can't do this on functions that can be overwritten. 1237 if (F->isInterposable()) return; 1238 1239 for (llvm::BasicBlock &BB : *F) 1240 for (llvm::Instruction &I : BB) 1241 if (I.mayThrow()) 1242 return; 1243 1244 F->setDoesNotThrow(); 1245 } 1246 1247 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1248 FunctionArgList &Args) { 1249 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1250 QualType ResTy = FD->getReturnType(); 1251 1252 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1253 if (MD && MD->isInstance()) { 1254 if (CGM.getCXXABI().HasThisReturn(GD)) 1255 ResTy = MD->getThisType(); 1256 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1257 ResTy = CGM.getContext().VoidPtrTy; 1258 CGM.getCXXABI().buildThisParam(*this, Args); 1259 } 1260 1261 // The base version of an inheriting constructor whose constructed base is a 1262 // virtual base is not passed any arguments (because it doesn't actually call 1263 // the inherited constructor). 1264 bool PassedParams = true; 1265 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1266 if (auto Inherited = CD->getInheritedConstructor()) 1267 PassedParams = 1268 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1269 1270 if (PassedParams) { 1271 for (auto *Param : FD->parameters()) { 1272 Args.push_back(Param); 1273 if (!Param->hasAttr<PassObjectSizeAttr>()) 1274 continue; 1275 1276 auto *Implicit = ImplicitParamDecl::Create( 1277 getContext(), Param->getDeclContext(), Param->getLocation(), 1278 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1279 SizeArguments[Param] = Implicit; 1280 Args.push_back(Implicit); 1281 } 1282 } 1283 1284 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1285 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1286 1287 return ResTy; 1288 } 1289 1290 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1291 const CGFunctionInfo &FnInfo) { 1292 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1293 CurGD = GD; 1294 1295 FunctionArgList Args; 1296 QualType ResTy = BuildFunctionArgList(GD, Args); 1297 1298 // Check if we should generate debug info for this function. 1299 if (FD->hasAttr<NoDebugAttr>()) { 1300 // Clear non-distinct debug info that was possibly attached to the function 1301 // due to an earlier declaration without the nodebug attribute 1302 if (Fn) 1303 Fn->setSubprogram(nullptr); 1304 // Disable debug info indefinitely for this function 1305 DebugInfo = nullptr; 1306 } 1307 1308 // The function might not have a body if we're generating thunks for a 1309 // function declaration. 1310 SourceRange BodyRange; 1311 if (Stmt *Body = FD->getBody()) 1312 BodyRange = Body->getSourceRange(); 1313 else 1314 BodyRange = FD->getLocation(); 1315 CurEHLocation = BodyRange.getEnd(); 1316 1317 // Use the location of the start of the function to determine where 1318 // the function definition is located. By default use the location 1319 // of the declaration as the location for the subprogram. A function 1320 // may lack a declaration in the source code if it is created by code 1321 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1322 SourceLocation Loc = FD->getLocation(); 1323 1324 // If this is a function specialization then use the pattern body 1325 // as the location for the function. 1326 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1327 if (SpecDecl->hasBody(SpecDecl)) 1328 Loc = SpecDecl->getLocation(); 1329 1330 Stmt *Body = FD->getBody(); 1331 1332 if (Body) { 1333 // Coroutines always emit lifetime markers. 1334 if (isa<CoroutineBodyStmt>(Body)) 1335 ShouldEmitLifetimeMarkers = true; 1336 1337 // Initialize helper which will detect jumps which can cause invalid 1338 // lifetime markers. 1339 if (ShouldEmitLifetimeMarkers) 1340 Bypasses.Init(Body); 1341 } 1342 1343 // Emit the standard function prologue. 1344 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1345 1346 // Save parameters for coroutine function. 1347 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1348 for (const auto *ParamDecl : FD->parameters()) 1349 FnArgs.push_back(ParamDecl); 1350 1351 // Generate the body of the function. 1352 PGO.assignRegionCounters(GD, CurFn); 1353 if (isa<CXXDestructorDecl>(FD)) 1354 EmitDestructorBody(Args); 1355 else if (isa<CXXConstructorDecl>(FD)) 1356 EmitConstructorBody(Args); 1357 else if (getLangOpts().CUDA && 1358 !getLangOpts().CUDAIsDevice && 1359 FD->hasAttr<CUDAGlobalAttr>()) 1360 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1361 else if (isa<CXXMethodDecl>(FD) && 1362 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1363 // The lambda static invoker function is special, because it forwards or 1364 // clones the body of the function call operator (but is actually static). 1365 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1366 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1367 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1368 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1369 // Implicit copy-assignment gets the same special treatment as implicit 1370 // copy-constructors. 1371 emitImplicitAssignmentOperatorBody(Args); 1372 } else if (Body) { 1373 EmitFunctionBody(Body); 1374 } else 1375 llvm_unreachable("no definition for emitted function"); 1376 1377 // C++11 [stmt.return]p2: 1378 // Flowing off the end of a function [...] results in undefined behavior in 1379 // a value-returning function. 1380 // C11 6.9.1p12: 1381 // If the '}' that terminates a function is reached, and the value of the 1382 // function call is used by the caller, the behavior is undefined. 1383 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1384 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1385 bool ShouldEmitUnreachable = 1386 CGM.getCodeGenOpts().StrictReturn || 1387 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1388 if (SanOpts.has(SanitizerKind::Return)) { 1389 SanitizerScope SanScope(this); 1390 llvm::Value *IsFalse = Builder.getFalse(); 1391 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1392 SanitizerHandler::MissingReturn, 1393 EmitCheckSourceLocation(FD->getLocation()), None); 1394 } else if (ShouldEmitUnreachable) { 1395 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1396 EmitTrapCall(llvm::Intrinsic::trap); 1397 } 1398 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1399 Builder.CreateUnreachable(); 1400 Builder.ClearInsertionPoint(); 1401 } 1402 } 1403 1404 // Emit the standard function epilogue. 1405 FinishFunction(BodyRange.getEnd()); 1406 1407 // If we haven't marked the function nothrow through other means, do 1408 // a quick pass now to see if we can. 1409 if (!CurFn->doesNotThrow()) 1410 TryMarkNoThrow(CurFn); 1411 } 1412 1413 /// ContainsLabel - Return true if the statement contains a label in it. If 1414 /// this statement is not executed normally, it not containing a label means 1415 /// that we can just remove the code. 1416 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1417 // Null statement, not a label! 1418 if (!S) return false; 1419 1420 // If this is a label, we have to emit the code, consider something like: 1421 // if (0) { ... foo: bar(); } goto foo; 1422 // 1423 // TODO: If anyone cared, we could track __label__'s, since we know that you 1424 // can't jump to one from outside their declared region. 1425 if (isa<LabelStmt>(S)) 1426 return true; 1427 1428 // If this is a case/default statement, and we haven't seen a switch, we have 1429 // to emit the code. 1430 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1431 return true; 1432 1433 // If this is a switch statement, we want to ignore cases below it. 1434 if (isa<SwitchStmt>(S)) 1435 IgnoreCaseStmts = true; 1436 1437 // Scan subexpressions for verboten labels. 1438 for (const Stmt *SubStmt : S->children()) 1439 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1440 return true; 1441 1442 return false; 1443 } 1444 1445 /// containsBreak - Return true if the statement contains a break out of it. 1446 /// If the statement (recursively) contains a switch or loop with a break 1447 /// inside of it, this is fine. 1448 bool CodeGenFunction::containsBreak(const Stmt *S) { 1449 // Null statement, not a label! 1450 if (!S) return false; 1451 1452 // If this is a switch or loop that defines its own break scope, then we can 1453 // include it and anything inside of it. 1454 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1455 isa<ForStmt>(S)) 1456 return false; 1457 1458 if (isa<BreakStmt>(S)) 1459 return true; 1460 1461 // Scan subexpressions for verboten breaks. 1462 for (const Stmt *SubStmt : S->children()) 1463 if (containsBreak(SubStmt)) 1464 return true; 1465 1466 return false; 1467 } 1468 1469 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1470 if (!S) return false; 1471 1472 // Some statement kinds add a scope and thus never add a decl to the current 1473 // scope. Note, this list is longer than the list of statements that might 1474 // have an unscoped decl nested within them, but this way is conservatively 1475 // correct even if more statement kinds are added. 1476 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1477 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1478 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1479 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1480 return false; 1481 1482 if (isa<DeclStmt>(S)) 1483 return true; 1484 1485 for (const Stmt *SubStmt : S->children()) 1486 if (mightAddDeclToScope(SubStmt)) 1487 return true; 1488 1489 return false; 1490 } 1491 1492 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1493 /// to a constant, or if it does but contains a label, return false. If it 1494 /// constant folds return true and set the boolean result in Result. 1495 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1496 bool &ResultBool, 1497 bool AllowLabels) { 1498 llvm::APSInt ResultInt; 1499 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1500 return false; 1501 1502 ResultBool = ResultInt.getBoolValue(); 1503 return true; 1504 } 1505 1506 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1507 /// to a constant, or if it does but contains a label, return false. If it 1508 /// constant folds return true and set the folded value. 1509 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1510 llvm::APSInt &ResultInt, 1511 bool AllowLabels) { 1512 // FIXME: Rename and handle conversion of other evaluatable things 1513 // to bool. 1514 Expr::EvalResult Result; 1515 if (!Cond->EvaluateAsInt(Result, getContext())) 1516 return false; // Not foldable, not integer or not fully evaluatable. 1517 1518 llvm::APSInt Int = Result.Val.getInt(); 1519 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1520 return false; // Contains a label. 1521 1522 ResultInt = Int; 1523 return true; 1524 } 1525 1526 /// Determine whether the given condition is an instrumentable condition 1527 /// (i.e. no "&&" or "||"). 1528 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1529 // Bypass simplistic logical-NOT operator before determining whether the 1530 // condition contains any other logical operator. 1531 if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens())) 1532 if (UnOp->getOpcode() == UO_LNot) 1533 C = UnOp->getSubExpr(); 1534 1535 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens()); 1536 return (!BOp || !BOp->isLogicalOp()); 1537 } 1538 1539 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1540 /// increments a profile counter based on the semantics of the given logical 1541 /// operator opcode. This is used to instrument branch condition coverage for 1542 /// logical operators. 1543 void CodeGenFunction::EmitBranchToCounterBlock( 1544 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1545 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1546 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1547 // If not instrumenting, just emit a branch. 1548 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1549 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1550 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1551 1552 llvm::BasicBlock *ThenBlock = NULL; 1553 llvm::BasicBlock *ElseBlock = NULL; 1554 llvm::BasicBlock *NextBlock = NULL; 1555 1556 // Create the block we'll use to increment the appropriate counter. 1557 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1558 1559 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1560 // means we need to evaluate the condition and increment the counter on TRUE: 1561 // 1562 // if (Cond) 1563 // goto CounterIncrBlock; 1564 // else 1565 // goto FalseBlock; 1566 // 1567 // CounterIncrBlock: 1568 // Counter++; 1569 // goto TrueBlock; 1570 1571 if (LOp == BO_LAnd) { 1572 ThenBlock = CounterIncrBlock; 1573 ElseBlock = FalseBlock; 1574 NextBlock = TrueBlock; 1575 } 1576 1577 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1578 // we need to evaluate the condition and increment the counter on FALSE: 1579 // 1580 // if (Cond) 1581 // goto TrueBlock; 1582 // else 1583 // goto CounterIncrBlock; 1584 // 1585 // CounterIncrBlock: 1586 // Counter++; 1587 // goto FalseBlock; 1588 1589 else if (LOp == BO_LOr) { 1590 ThenBlock = TrueBlock; 1591 ElseBlock = CounterIncrBlock; 1592 NextBlock = FalseBlock; 1593 } else { 1594 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1595 } 1596 1597 // Emit Branch based on condition. 1598 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1599 1600 // Emit the block containing the counter increment(s). 1601 EmitBlock(CounterIncrBlock); 1602 1603 // Increment corresponding counter; if index not provided, use Cond as index. 1604 incrementProfileCounter(CntrIdx ? CntrIdx : Cond); 1605 1606 // Go to the next block. 1607 EmitBranch(NextBlock); 1608 } 1609 1610 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1611 /// statement) to the specified blocks. Based on the condition, this might try 1612 /// to simplify the codegen of the conditional based on the branch. 1613 /// \param LH The value of the likelihood attribute on the True branch. 1614 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1615 llvm::BasicBlock *TrueBlock, 1616 llvm::BasicBlock *FalseBlock, 1617 uint64_t TrueCount, 1618 Stmt::Likelihood LH) { 1619 Cond = Cond->IgnoreParens(); 1620 1621 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1622 1623 // Handle X && Y in a condition. 1624 if (CondBOp->getOpcode() == BO_LAnd) { 1625 // If we have "1 && X", simplify the code. "0 && X" would have constant 1626 // folded if the case was simple enough. 1627 bool ConstantBool = false; 1628 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1629 ConstantBool) { 1630 // br(1 && X) -> br(X). 1631 incrementProfileCounter(CondBOp); 1632 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1633 FalseBlock, TrueCount, LH); 1634 } 1635 1636 // If we have "X && 1", simplify the code to use an uncond branch. 1637 // "X && 0" would have been constant folded to 0. 1638 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1639 ConstantBool) { 1640 // br(X && 1) -> br(X). 1641 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1642 FalseBlock, TrueCount, LH, CondBOp); 1643 } 1644 1645 // Emit the LHS as a conditional. If the LHS conditional is false, we 1646 // want to jump to the FalseBlock. 1647 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1648 // The counter tells us how often we evaluate RHS, and all of TrueCount 1649 // can be propagated to that branch. 1650 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1651 1652 ConditionalEvaluation eval(*this); 1653 { 1654 ApplyDebugLocation DL(*this, Cond); 1655 // Propagate the likelihood attribute like __builtin_expect 1656 // __builtin_expect(X && Y, 1) -> X and Y are likely 1657 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1658 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1659 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1660 EmitBlock(LHSTrue); 1661 } 1662 1663 incrementProfileCounter(CondBOp); 1664 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1665 1666 // Any temporaries created here are conditional. 1667 eval.begin(*this); 1668 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1669 FalseBlock, TrueCount, LH); 1670 eval.end(*this); 1671 1672 return; 1673 } 1674 1675 if (CondBOp->getOpcode() == BO_LOr) { 1676 // If we have "0 || X", simplify the code. "1 || X" would have constant 1677 // folded if the case was simple enough. 1678 bool ConstantBool = false; 1679 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1680 !ConstantBool) { 1681 // br(0 || X) -> br(X). 1682 incrementProfileCounter(CondBOp); 1683 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1684 FalseBlock, TrueCount, LH); 1685 } 1686 1687 // If we have "X || 0", simplify the code to use an uncond branch. 1688 // "X || 1" would have been constant folded to 1. 1689 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1690 !ConstantBool) { 1691 // br(X || 0) -> br(X). 1692 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1693 FalseBlock, TrueCount, LH, CondBOp); 1694 } 1695 1696 // Emit the LHS as a conditional. If the LHS conditional is true, we 1697 // want to jump to the TrueBlock. 1698 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1699 // We have the count for entry to the RHS and for the whole expression 1700 // being true, so we can divy up True count between the short circuit and 1701 // the RHS. 1702 uint64_t LHSCount = 1703 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1704 uint64_t RHSCount = TrueCount - LHSCount; 1705 1706 ConditionalEvaluation eval(*this); 1707 { 1708 // Propagate the likelihood attribute like __builtin_expect 1709 // __builtin_expect(X || Y, 1) -> only Y is likely 1710 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1711 ApplyDebugLocation DL(*this, Cond); 1712 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1713 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1714 EmitBlock(LHSFalse); 1715 } 1716 1717 incrementProfileCounter(CondBOp); 1718 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1719 1720 // Any temporaries created here are conditional. 1721 eval.begin(*this); 1722 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1723 RHSCount, LH); 1724 1725 eval.end(*this); 1726 1727 return; 1728 } 1729 } 1730 1731 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1732 // br(!x, t, f) -> br(x, f, t) 1733 if (CondUOp->getOpcode() == UO_LNot) { 1734 // Negate the count. 1735 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1736 // The values of the enum are chosen to make this negation possible. 1737 LH = static_cast<Stmt::Likelihood>(-LH); 1738 // Negate the condition and swap the destination blocks. 1739 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1740 FalseCount, LH); 1741 } 1742 } 1743 1744 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1745 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1746 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1747 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1748 1749 // The ConditionalOperator itself has no likelihood information for its 1750 // true and false branches. This matches the behavior of __builtin_expect. 1751 ConditionalEvaluation cond(*this); 1752 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1753 getProfileCount(CondOp), Stmt::LH_None); 1754 1755 // When computing PGO branch weights, we only know the overall count for 1756 // the true block. This code is essentially doing tail duplication of the 1757 // naive code-gen, introducing new edges for which counts are not 1758 // available. Divide the counts proportionally between the LHS and RHS of 1759 // the conditional operator. 1760 uint64_t LHSScaledTrueCount = 0; 1761 if (TrueCount) { 1762 double LHSRatio = 1763 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1764 LHSScaledTrueCount = TrueCount * LHSRatio; 1765 } 1766 1767 cond.begin(*this); 1768 EmitBlock(LHSBlock); 1769 incrementProfileCounter(CondOp); 1770 { 1771 ApplyDebugLocation DL(*this, Cond); 1772 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1773 LHSScaledTrueCount, LH); 1774 } 1775 cond.end(*this); 1776 1777 cond.begin(*this); 1778 EmitBlock(RHSBlock); 1779 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1780 TrueCount - LHSScaledTrueCount, LH); 1781 cond.end(*this); 1782 1783 return; 1784 } 1785 1786 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1787 // Conditional operator handling can give us a throw expression as a 1788 // condition for a case like: 1789 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1790 // Fold this to: 1791 // br(c, throw x, br(y, t, f)) 1792 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1793 return; 1794 } 1795 1796 // Emit the code with the fully general case. 1797 llvm::Value *CondV; 1798 { 1799 ApplyDebugLocation DL(*this, Cond); 1800 CondV = EvaluateExprAsBool(Cond); 1801 } 1802 1803 llvm::MDNode *Weights = nullptr; 1804 llvm::MDNode *Unpredictable = nullptr; 1805 1806 // If the branch has a condition wrapped by __builtin_unpredictable, 1807 // create metadata that specifies that the branch is unpredictable. 1808 // Don't bother if not optimizing because that metadata would not be used. 1809 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1810 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1811 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1812 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1813 llvm::MDBuilder MDHelper(getLLVMContext()); 1814 Unpredictable = MDHelper.createUnpredictable(); 1815 } 1816 } 1817 1818 // If there is a Likelihood knowledge for the cond, lower it. 1819 // Note that if not optimizing this won't emit anything. 1820 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 1821 if (CondV != NewCondV) 1822 CondV = NewCondV; 1823 else { 1824 // Otherwise, lower profile counts. Note that we do this even at -O0. 1825 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1826 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 1827 } 1828 1829 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1830 } 1831 1832 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1833 /// specified stmt yet. 1834 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1835 CGM.ErrorUnsupported(S, Type); 1836 } 1837 1838 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1839 /// variable-length array whose elements have a non-zero bit-pattern. 1840 /// 1841 /// \param baseType the inner-most element type of the array 1842 /// \param src - a char* pointing to the bit-pattern for a single 1843 /// base element of the array 1844 /// \param sizeInChars - the total size of the VLA, in chars 1845 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1846 Address dest, Address src, 1847 llvm::Value *sizeInChars) { 1848 CGBuilderTy &Builder = CGF.Builder; 1849 1850 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1851 llvm::Value *baseSizeInChars 1852 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1853 1854 Address begin = 1855 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1856 llvm::Value *end = Builder.CreateInBoundsGEP( 1857 begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end"); 1858 1859 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1860 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1861 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1862 1863 // Make a loop over the VLA. C99 guarantees that the VLA element 1864 // count must be nonzero. 1865 CGF.EmitBlock(loopBB); 1866 1867 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1868 cur->addIncoming(begin.getPointer(), originBB); 1869 1870 CharUnits curAlign = 1871 dest.getAlignment().alignmentOfArrayElement(baseSize); 1872 1873 // memcpy the individual element bit-pattern. 1874 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1875 /*volatile*/ false); 1876 1877 // Go to the next element. 1878 llvm::Value *next = 1879 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1880 1881 // Leave if that's the end of the VLA. 1882 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1883 Builder.CreateCondBr(done, contBB, loopBB); 1884 cur->addIncoming(next, loopBB); 1885 1886 CGF.EmitBlock(contBB); 1887 } 1888 1889 void 1890 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1891 // Ignore empty classes in C++. 1892 if (getLangOpts().CPlusPlus) { 1893 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1894 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1895 return; 1896 } 1897 } 1898 1899 // Cast the dest ptr to the appropriate i8 pointer type. 1900 if (DestPtr.getElementType() != Int8Ty) 1901 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1902 1903 // Get size and alignment info for this aggregate. 1904 CharUnits size = getContext().getTypeSizeInChars(Ty); 1905 1906 llvm::Value *SizeVal; 1907 const VariableArrayType *vla; 1908 1909 // Don't bother emitting a zero-byte memset. 1910 if (size.isZero()) { 1911 // But note that getTypeInfo returns 0 for a VLA. 1912 if (const VariableArrayType *vlaType = 1913 dyn_cast_or_null<VariableArrayType>( 1914 getContext().getAsArrayType(Ty))) { 1915 auto VlaSize = getVLASize(vlaType); 1916 SizeVal = VlaSize.NumElts; 1917 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1918 if (!eltSize.isOne()) 1919 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1920 vla = vlaType; 1921 } else { 1922 return; 1923 } 1924 } else { 1925 SizeVal = CGM.getSize(size); 1926 vla = nullptr; 1927 } 1928 1929 // If the type contains a pointer to data member we can't memset it to zero. 1930 // Instead, create a null constant and copy it to the destination. 1931 // TODO: there are other patterns besides zero that we can usefully memset, 1932 // like -1, which happens to be the pattern used by member-pointers. 1933 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1934 // For a VLA, emit a single element, then splat that over the VLA. 1935 if (vla) Ty = getContext().getBaseElementType(vla); 1936 1937 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1938 1939 llvm::GlobalVariable *NullVariable = 1940 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1941 /*isConstant=*/true, 1942 llvm::GlobalVariable::PrivateLinkage, 1943 NullConstant, Twine()); 1944 CharUnits NullAlign = DestPtr.getAlignment(); 1945 NullVariable->setAlignment(NullAlign.getAsAlign()); 1946 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1947 NullAlign); 1948 1949 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1950 1951 // Get and call the appropriate llvm.memcpy overload. 1952 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1953 return; 1954 } 1955 1956 // Otherwise, just memset the whole thing to zero. This is legal 1957 // because in LLVM, all default initializers (other than the ones we just 1958 // handled above) are guaranteed to have a bit pattern of all zeros. 1959 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1960 } 1961 1962 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1963 // Make sure that there is a block for the indirect goto. 1964 if (!IndirectBranch) 1965 GetIndirectGotoBlock(); 1966 1967 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1968 1969 // Make sure the indirect branch includes all of the address-taken blocks. 1970 IndirectBranch->addDestination(BB); 1971 return llvm::BlockAddress::get(CurFn, BB); 1972 } 1973 1974 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1975 // If we already made the indirect branch for indirect goto, return its block. 1976 if (IndirectBranch) return IndirectBranch->getParent(); 1977 1978 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1979 1980 // Create the PHI node that indirect gotos will add entries to. 1981 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1982 "indirect.goto.dest"); 1983 1984 // Create the indirect branch instruction. 1985 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1986 return IndirectBranch->getParent(); 1987 } 1988 1989 /// Computes the length of an array in elements, as well as the base 1990 /// element type and a properly-typed first element pointer. 1991 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1992 QualType &baseType, 1993 Address &addr) { 1994 const ArrayType *arrayType = origArrayType; 1995 1996 // If it's a VLA, we have to load the stored size. Note that 1997 // this is the size of the VLA in bytes, not its size in elements. 1998 llvm::Value *numVLAElements = nullptr; 1999 if (isa<VariableArrayType>(arrayType)) { 2000 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 2001 2002 // Walk into all VLAs. This doesn't require changes to addr, 2003 // which has type T* where T is the first non-VLA element type. 2004 do { 2005 QualType elementType = arrayType->getElementType(); 2006 arrayType = getContext().getAsArrayType(elementType); 2007 2008 // If we only have VLA components, 'addr' requires no adjustment. 2009 if (!arrayType) { 2010 baseType = elementType; 2011 return numVLAElements; 2012 } 2013 } while (isa<VariableArrayType>(arrayType)); 2014 2015 // We get out here only if we find a constant array type 2016 // inside the VLA. 2017 } 2018 2019 // We have some number of constant-length arrays, so addr should 2020 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2021 // down to the first element of addr. 2022 SmallVector<llvm::Value*, 8> gepIndices; 2023 2024 // GEP down to the array type. 2025 llvm::ConstantInt *zero = Builder.getInt32(0); 2026 gepIndices.push_back(zero); 2027 2028 uint64_t countFromCLAs = 1; 2029 QualType eltType; 2030 2031 llvm::ArrayType *llvmArrayType = 2032 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2033 while (llvmArrayType) { 2034 assert(isa<ConstantArrayType>(arrayType)); 2035 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 2036 == llvmArrayType->getNumElements()); 2037 2038 gepIndices.push_back(zero); 2039 countFromCLAs *= llvmArrayType->getNumElements(); 2040 eltType = arrayType->getElementType(); 2041 2042 llvmArrayType = 2043 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2044 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2045 assert((!llvmArrayType || arrayType) && 2046 "LLVM and Clang types are out-of-synch"); 2047 } 2048 2049 if (arrayType) { 2050 // From this point onwards, the Clang array type has been emitted 2051 // as some other type (probably a packed struct). Compute the array 2052 // size, and just emit the 'begin' expression as a bitcast. 2053 while (arrayType) { 2054 countFromCLAs *= 2055 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 2056 eltType = arrayType->getElementType(); 2057 arrayType = getContext().getAsArrayType(eltType); 2058 } 2059 2060 llvm::Type *baseType = ConvertType(eltType); 2061 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 2062 } else { 2063 // Create the actual GEP. 2064 addr = Address(Builder.CreateInBoundsGEP( 2065 addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"), 2066 addr.getAlignment()); 2067 } 2068 2069 baseType = eltType; 2070 2071 llvm::Value *numElements 2072 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2073 2074 // If we had any VLA dimensions, factor them in. 2075 if (numVLAElements) 2076 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2077 2078 return numElements; 2079 } 2080 2081 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2082 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2083 assert(vla && "type was not a variable array type!"); 2084 return getVLASize(vla); 2085 } 2086 2087 CodeGenFunction::VlaSizePair 2088 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2089 // The number of elements so far; always size_t. 2090 llvm::Value *numElements = nullptr; 2091 2092 QualType elementType; 2093 do { 2094 elementType = type->getElementType(); 2095 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2096 assert(vlaSize && "no size for VLA!"); 2097 assert(vlaSize->getType() == SizeTy); 2098 2099 if (!numElements) { 2100 numElements = vlaSize; 2101 } else { 2102 // It's undefined behavior if this wraps around, so mark it that way. 2103 // FIXME: Teach -fsanitize=undefined to trap this. 2104 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2105 } 2106 } while ((type = getContext().getAsVariableArrayType(elementType))); 2107 2108 return { numElements, elementType }; 2109 } 2110 2111 CodeGenFunction::VlaSizePair 2112 CodeGenFunction::getVLAElements1D(QualType type) { 2113 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2114 assert(vla && "type was not a variable array type!"); 2115 return getVLAElements1D(vla); 2116 } 2117 2118 CodeGenFunction::VlaSizePair 2119 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2120 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2121 assert(VlaSize && "no size for VLA!"); 2122 assert(VlaSize->getType() == SizeTy); 2123 return { VlaSize, Vla->getElementType() }; 2124 } 2125 2126 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2127 assert(type->isVariablyModifiedType() && 2128 "Must pass variably modified type to EmitVLASizes!"); 2129 2130 EnsureInsertPoint(); 2131 2132 // We're going to walk down into the type and look for VLA 2133 // expressions. 2134 do { 2135 assert(type->isVariablyModifiedType()); 2136 2137 const Type *ty = type.getTypePtr(); 2138 switch (ty->getTypeClass()) { 2139 2140 #define TYPE(Class, Base) 2141 #define ABSTRACT_TYPE(Class, Base) 2142 #define NON_CANONICAL_TYPE(Class, Base) 2143 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2144 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2145 #include "clang/AST/TypeNodes.inc" 2146 llvm_unreachable("unexpected dependent type!"); 2147 2148 // These types are never variably-modified. 2149 case Type::Builtin: 2150 case Type::Complex: 2151 case Type::Vector: 2152 case Type::ExtVector: 2153 case Type::ConstantMatrix: 2154 case Type::Record: 2155 case Type::Enum: 2156 case Type::Elaborated: 2157 case Type::TemplateSpecialization: 2158 case Type::ObjCTypeParam: 2159 case Type::ObjCObject: 2160 case Type::ObjCInterface: 2161 case Type::ObjCObjectPointer: 2162 case Type::ExtInt: 2163 llvm_unreachable("type class is never variably-modified!"); 2164 2165 case Type::Adjusted: 2166 type = cast<AdjustedType>(ty)->getAdjustedType(); 2167 break; 2168 2169 case Type::Decayed: 2170 type = cast<DecayedType>(ty)->getPointeeType(); 2171 break; 2172 2173 case Type::Pointer: 2174 type = cast<PointerType>(ty)->getPointeeType(); 2175 break; 2176 2177 case Type::BlockPointer: 2178 type = cast<BlockPointerType>(ty)->getPointeeType(); 2179 break; 2180 2181 case Type::LValueReference: 2182 case Type::RValueReference: 2183 type = cast<ReferenceType>(ty)->getPointeeType(); 2184 break; 2185 2186 case Type::MemberPointer: 2187 type = cast<MemberPointerType>(ty)->getPointeeType(); 2188 break; 2189 2190 case Type::ConstantArray: 2191 case Type::IncompleteArray: 2192 // Losing element qualification here is fine. 2193 type = cast<ArrayType>(ty)->getElementType(); 2194 break; 2195 2196 case Type::VariableArray: { 2197 // Losing element qualification here is fine. 2198 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2199 2200 // Unknown size indication requires no size computation. 2201 // Otherwise, evaluate and record it. 2202 if (const Expr *size = vat->getSizeExpr()) { 2203 // It's possible that we might have emitted this already, 2204 // e.g. with a typedef and a pointer to it. 2205 llvm::Value *&entry = VLASizeMap[size]; 2206 if (!entry) { 2207 llvm::Value *Size = EmitScalarExpr(size); 2208 2209 // C11 6.7.6.2p5: 2210 // If the size is an expression that is not an integer constant 2211 // expression [...] each time it is evaluated it shall have a value 2212 // greater than zero. 2213 if (SanOpts.has(SanitizerKind::VLABound) && 2214 size->getType()->isSignedIntegerType()) { 2215 SanitizerScope SanScope(this); 2216 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2217 llvm::Constant *StaticArgs[] = { 2218 EmitCheckSourceLocation(size->getBeginLoc()), 2219 EmitCheckTypeDescriptor(size->getType())}; 2220 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2221 SanitizerKind::VLABound), 2222 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2223 } 2224 2225 // Always zexting here would be wrong if it weren't 2226 // undefined behavior to have a negative bound. 2227 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2228 } 2229 } 2230 type = vat->getElementType(); 2231 break; 2232 } 2233 2234 case Type::FunctionProto: 2235 case Type::FunctionNoProto: 2236 type = cast<FunctionType>(ty)->getReturnType(); 2237 break; 2238 2239 case Type::Paren: 2240 case Type::TypeOf: 2241 case Type::UnaryTransform: 2242 case Type::Attributed: 2243 case Type::SubstTemplateTypeParm: 2244 case Type::MacroQualified: 2245 // Keep walking after single level desugaring. 2246 type = type.getSingleStepDesugaredType(getContext()); 2247 break; 2248 2249 case Type::Typedef: 2250 case Type::Decltype: 2251 case Type::Auto: 2252 case Type::DeducedTemplateSpecialization: 2253 // Stop walking: nothing to do. 2254 return; 2255 2256 case Type::TypeOfExpr: 2257 // Stop walking: emit typeof expression. 2258 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2259 return; 2260 2261 case Type::Atomic: 2262 type = cast<AtomicType>(ty)->getValueType(); 2263 break; 2264 2265 case Type::Pipe: 2266 type = cast<PipeType>(ty)->getElementType(); 2267 break; 2268 } 2269 } while (type->isVariablyModifiedType()); 2270 } 2271 2272 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2273 if (getContext().getBuiltinVaListType()->isArrayType()) 2274 return EmitPointerWithAlignment(E); 2275 return EmitLValue(E).getAddress(*this); 2276 } 2277 2278 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2279 return EmitLValue(E).getAddress(*this); 2280 } 2281 2282 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2283 const APValue &Init) { 2284 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2285 if (CGDebugInfo *Dbg = getDebugInfo()) 2286 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2287 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2288 } 2289 2290 CodeGenFunction::PeepholeProtection 2291 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2292 // At the moment, the only aggressive peephole we do in IR gen 2293 // is trunc(zext) folding, but if we add more, we can easily 2294 // extend this protection. 2295 2296 if (!rvalue.isScalar()) return PeepholeProtection(); 2297 llvm::Value *value = rvalue.getScalarVal(); 2298 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2299 2300 // Just make an extra bitcast. 2301 assert(HaveInsertPoint()); 2302 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2303 Builder.GetInsertBlock()); 2304 2305 PeepholeProtection protection; 2306 protection.Inst = inst; 2307 return protection; 2308 } 2309 2310 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2311 if (!protection.Inst) return; 2312 2313 // In theory, we could try to duplicate the peepholes now, but whatever. 2314 protection.Inst->eraseFromParent(); 2315 } 2316 2317 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2318 QualType Ty, SourceLocation Loc, 2319 SourceLocation AssumptionLoc, 2320 llvm::Value *Alignment, 2321 llvm::Value *OffsetValue) { 2322 if (Alignment->getType() != IntPtrTy) 2323 Alignment = 2324 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2325 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2326 OffsetValue = 2327 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2328 llvm::Value *TheCheck = nullptr; 2329 if (SanOpts.has(SanitizerKind::Alignment)) { 2330 llvm::Value *PtrIntValue = 2331 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2332 2333 if (OffsetValue) { 2334 bool IsOffsetZero = false; 2335 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2336 IsOffsetZero = CI->isZero(); 2337 2338 if (!IsOffsetZero) 2339 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2340 } 2341 2342 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2343 llvm::Value *Mask = 2344 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2345 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2346 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2347 } 2348 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2349 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2350 2351 if (!SanOpts.has(SanitizerKind::Alignment)) 2352 return; 2353 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2354 OffsetValue, TheCheck, Assumption); 2355 } 2356 2357 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2358 const Expr *E, 2359 SourceLocation AssumptionLoc, 2360 llvm::Value *Alignment, 2361 llvm::Value *OffsetValue) { 2362 if (auto *CE = dyn_cast<CastExpr>(E)) 2363 E = CE->getSubExprAsWritten(); 2364 QualType Ty = E->getType(); 2365 SourceLocation Loc = E->getExprLoc(); 2366 2367 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2368 OffsetValue); 2369 } 2370 2371 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2372 llvm::Value *AnnotatedVal, 2373 StringRef AnnotationStr, 2374 SourceLocation Location, 2375 const AnnotateAttr *Attr) { 2376 SmallVector<llvm::Value *, 5> Args = { 2377 AnnotatedVal, 2378 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2379 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2380 CGM.EmitAnnotationLineNo(Location), 2381 }; 2382 if (Attr) 2383 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2384 return Builder.CreateCall(AnnotationFn, Args); 2385 } 2386 2387 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2388 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2389 // FIXME We create a new bitcast for every annotation because that's what 2390 // llvm-gcc was doing. 2391 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2392 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2393 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2394 I->getAnnotation(), D->getLocation(), I); 2395 } 2396 2397 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2398 Address Addr) { 2399 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2400 llvm::Value *V = Addr.getPointer(); 2401 llvm::Type *VTy = V->getType(); 2402 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2403 CGM.Int8PtrTy); 2404 2405 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2406 // FIXME Always emit the cast inst so we can differentiate between 2407 // annotation on the first field of a struct and annotation on the struct 2408 // itself. 2409 if (VTy != CGM.Int8PtrTy) 2410 V = Builder.CreateBitCast(V, CGM.Int8PtrTy); 2411 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2412 V = Builder.CreateBitCast(V, VTy); 2413 } 2414 2415 return Address(V, Addr.getAlignment()); 2416 } 2417 2418 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2419 2420 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2421 : CGF(CGF) { 2422 assert(!CGF->IsSanitizerScope); 2423 CGF->IsSanitizerScope = true; 2424 } 2425 2426 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2427 CGF->IsSanitizerScope = false; 2428 } 2429 2430 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2431 const llvm::Twine &Name, 2432 llvm::BasicBlock *BB, 2433 llvm::BasicBlock::iterator InsertPt) const { 2434 LoopStack.InsertHelper(I); 2435 if (IsSanitizerScope) 2436 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2437 } 2438 2439 void CGBuilderInserter::InsertHelper( 2440 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2441 llvm::BasicBlock::iterator InsertPt) const { 2442 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2443 if (CGF) 2444 CGF->InsertHelper(I, Name, BB, InsertPt); 2445 } 2446 2447 // Emits an error if we don't have a valid set of target features for the 2448 // called function. 2449 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2450 const FunctionDecl *TargetDecl) { 2451 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2452 } 2453 2454 // Emits an error if we don't have a valid set of target features for the 2455 // called function. 2456 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2457 const FunctionDecl *TargetDecl) { 2458 // Early exit if this is an indirect call. 2459 if (!TargetDecl) 2460 return; 2461 2462 // Get the current enclosing function if it exists. If it doesn't 2463 // we can't check the target features anyhow. 2464 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2465 if (!FD) 2466 return; 2467 2468 // Grab the required features for the call. For a builtin this is listed in 2469 // the td file with the default cpu, for an always_inline function this is any 2470 // listed cpu and any listed features. 2471 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2472 std::string MissingFeature; 2473 llvm::StringMap<bool> CallerFeatureMap; 2474 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2475 if (BuiltinID) { 2476 StringRef FeatureList( 2477 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2478 // Return if the builtin doesn't have any required features. 2479 if (FeatureList.empty()) 2480 return; 2481 assert(FeatureList.find(' ') == StringRef::npos && 2482 "Space in feature list"); 2483 TargetFeatures TF(CallerFeatureMap); 2484 if (!TF.hasRequiredFeatures(FeatureList)) 2485 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2486 << TargetDecl->getDeclName() << FeatureList; 2487 } else if (!TargetDecl->isMultiVersion() && 2488 TargetDecl->hasAttr<TargetAttr>()) { 2489 // Get the required features for the callee. 2490 2491 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2492 ParsedTargetAttr ParsedAttr = 2493 CGM.getContext().filterFunctionTargetAttrs(TD); 2494 2495 SmallVector<StringRef, 1> ReqFeatures; 2496 llvm::StringMap<bool> CalleeFeatureMap; 2497 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2498 2499 for (const auto &F : ParsedAttr.Features) { 2500 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2501 ReqFeatures.push_back(StringRef(F).substr(1)); 2502 } 2503 2504 for (const auto &F : CalleeFeatureMap) { 2505 // Only positive features are "required". 2506 if (F.getValue()) 2507 ReqFeatures.push_back(F.getKey()); 2508 } 2509 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2510 if (!CallerFeatureMap.lookup(Feature)) { 2511 MissingFeature = Feature.str(); 2512 return false; 2513 } 2514 return true; 2515 })) 2516 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2517 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2518 } 2519 } 2520 2521 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2522 if (!CGM.getCodeGenOpts().SanitizeStats) 2523 return; 2524 2525 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2526 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2527 CGM.getSanStats().create(IRB, SSK); 2528 } 2529 2530 llvm::Value * 2531 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2532 llvm::Value *Condition = nullptr; 2533 2534 if (!RO.Conditions.Architecture.empty()) 2535 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2536 2537 if (!RO.Conditions.Features.empty()) { 2538 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2539 Condition = 2540 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2541 } 2542 return Condition; 2543 } 2544 2545 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2546 llvm::Function *Resolver, 2547 CGBuilderTy &Builder, 2548 llvm::Function *FuncToReturn, 2549 bool SupportsIFunc) { 2550 if (SupportsIFunc) { 2551 Builder.CreateRet(FuncToReturn); 2552 return; 2553 } 2554 2555 llvm::SmallVector<llvm::Value *, 10> Args; 2556 llvm::for_each(Resolver->args(), 2557 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2558 2559 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2560 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2561 2562 if (Resolver->getReturnType()->isVoidTy()) 2563 Builder.CreateRetVoid(); 2564 else 2565 Builder.CreateRet(Result); 2566 } 2567 2568 void CodeGenFunction::EmitMultiVersionResolver( 2569 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2570 assert(getContext().getTargetInfo().getTriple().isX86() && 2571 "Only implemented for x86 targets"); 2572 2573 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2574 2575 // Main function's basic block. 2576 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2577 Builder.SetInsertPoint(CurBlock); 2578 EmitX86CpuInit(); 2579 2580 for (const MultiVersionResolverOption &RO : Options) { 2581 Builder.SetInsertPoint(CurBlock); 2582 llvm::Value *Condition = FormResolverCondition(RO); 2583 2584 // The 'default' or 'generic' case. 2585 if (!Condition) { 2586 assert(&RO == Options.end() - 1 && 2587 "Default or Generic case must be last"); 2588 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2589 SupportsIFunc); 2590 return; 2591 } 2592 2593 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2594 CGBuilderTy RetBuilder(*this, RetBlock); 2595 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2596 SupportsIFunc); 2597 CurBlock = createBasicBlock("resolver_else", Resolver); 2598 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2599 } 2600 2601 // If no generic/default, emit an unreachable. 2602 Builder.SetInsertPoint(CurBlock); 2603 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2604 TrapCall->setDoesNotReturn(); 2605 TrapCall->setDoesNotThrow(); 2606 Builder.CreateUnreachable(); 2607 Builder.ClearInsertionPoint(); 2608 } 2609 2610 // Loc - where the diagnostic will point, where in the source code this 2611 // alignment has failed. 2612 // SecondaryLoc - if present (will be present if sufficiently different from 2613 // Loc), the diagnostic will additionally point a "Note:" to this location. 2614 // It should be the location where the __attribute__((assume_aligned)) 2615 // was written e.g. 2616 void CodeGenFunction::emitAlignmentAssumptionCheck( 2617 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2618 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2619 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2620 llvm::Instruction *Assumption) { 2621 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2622 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2623 llvm::Intrinsic::getDeclaration( 2624 Builder.GetInsertBlock()->getParent()->getParent(), 2625 llvm::Intrinsic::assume) && 2626 "Assumption should be a call to llvm.assume()."); 2627 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2628 "Assumption should be the last instruction of the basic block, " 2629 "since the basic block is still being generated."); 2630 2631 if (!SanOpts.has(SanitizerKind::Alignment)) 2632 return; 2633 2634 // Don't check pointers to volatile data. The behavior here is implementation- 2635 // defined. 2636 if (Ty->getPointeeType().isVolatileQualified()) 2637 return; 2638 2639 // We need to temorairly remove the assumption so we can insert the 2640 // sanitizer check before it, else the check will be dropped by optimizations. 2641 Assumption->removeFromParent(); 2642 2643 { 2644 SanitizerScope SanScope(this); 2645 2646 if (!OffsetValue) 2647 OffsetValue = Builder.getInt1(0); // no offset. 2648 2649 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2650 EmitCheckSourceLocation(SecondaryLoc), 2651 EmitCheckTypeDescriptor(Ty)}; 2652 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2653 EmitCheckValue(Alignment), 2654 EmitCheckValue(OffsetValue)}; 2655 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2656 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2657 } 2658 2659 // We are now in the (new, empty) "cont" basic block. 2660 // Reintroduce the assumption. 2661 Builder.Insert(Assumption); 2662 // FIXME: Assumption still has it's original basic block as it's Parent. 2663 } 2664 2665 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2666 if (CGDebugInfo *DI = getDebugInfo()) 2667 return DI->SourceLocToDebugLoc(Location); 2668 2669 return llvm::DebugLoc(); 2670 } 2671 2672 llvm::Value * 2673 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 2674 Stmt::Likelihood LH) { 2675 switch (LH) { 2676 case Stmt::LH_None: 2677 return Cond; 2678 case Stmt::LH_Likely: 2679 case Stmt::LH_Unlikely: 2680 // Don't generate llvm.expect on -O0 as the backend won't use it for 2681 // anything. 2682 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 2683 return Cond; 2684 llvm::Type *CondTy = Cond->getType(); 2685 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 2686 llvm::Function *FnExpect = 2687 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 2688 llvm::Value *ExpectedValueOfCond = 2689 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 2690 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 2691 Cond->getName() + ".expval"); 2692 } 2693 llvm_unreachable("Unknown Likelihood"); 2694 } 2695