xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision 7d0873ebb83b19ba1e8a89e679470d885efe12e3)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGHLSLRuntime.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/Expr.h"
30 #include "clang/AST/StmtCXX.h"
31 #include "clang/AST/StmtObjC.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/TargetBuiltins.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "clang/CodeGen/CGFunctionInfo.h"
37 #include "clang/Frontend/FrontendDiagnostic.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/FPEnv.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/MDBuilder.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/Support/CRC.h"
48 #include "llvm/Support/xxhash.h"
49 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
50 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
51 #include <optional>
52 
53 using namespace clang;
54 using namespace CodeGen;
55 
56 namespace llvm {
57 extern cl::opt<bool> EnableSingleByteCoverage;
58 } // namespace llvm
59 
60 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
61 /// markers.
62 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
63                                       const LangOptions &LangOpts) {
64   if (CGOpts.DisableLifetimeMarkers)
65     return false;
66 
67   // Sanitizers may use markers.
68   if (CGOpts.SanitizeAddressUseAfterScope ||
69       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
70       LangOpts.Sanitize.has(SanitizerKind::Memory))
71     return true;
72 
73   // For now, only in optimized builds.
74   return CGOpts.OptimizationLevel != 0;
75 }
76 
77 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
78     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
79       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
80               CGBuilderInserterTy(this)),
81       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
82       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
83       ShouldEmitLifetimeMarkers(
84           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
85   if (!suppressNewContext)
86     CGM.getCXXABI().getMangleContext().startNewFunction();
87   EHStack.setCGF(this);
88 
89   SetFastMathFlags(CurFPFeatures);
90 }
91 
92 CodeGenFunction::~CodeGenFunction() {
93   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
94   assert(DeferredDeactivationCleanupStack.empty() &&
95          "missed to deactivate a cleanup");
96 
97   if (getLangOpts().OpenMP && CurFn)
98     CGM.getOpenMPRuntime().functionFinished(*this);
99 
100   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
101   // outlining etc) at some point. Doing it once the function codegen is done
102   // seems to be a reasonable spot. We do it here, as opposed to the deletion
103   // time of the CodeGenModule, because we have to ensure the IR has not yet
104   // been "emitted" to the outside, thus, modifications are still sensible.
105   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
106     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
107 }
108 
109 // Map the LangOption for exception behavior into
110 // the corresponding enum in the IR.
111 llvm::fp::ExceptionBehavior
112 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
113 
114   switch (Kind) {
115   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
116   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
117   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
118   default:
119     llvm_unreachable("Unsupported FP Exception Behavior");
120   }
121 }
122 
123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
124   llvm::FastMathFlags FMF;
125   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
126   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
127   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
128   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
129   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
130   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
131   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
132   Builder.setFastMathFlags(FMF);
133 }
134 
135 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
136                                                   const Expr *E)
137     : CGF(CGF) {
138   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
139 }
140 
141 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
142                                                   FPOptions FPFeatures)
143     : CGF(CGF) {
144   ConstructorHelper(FPFeatures);
145 }
146 
147 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
148   OldFPFeatures = CGF.CurFPFeatures;
149   CGF.CurFPFeatures = FPFeatures;
150 
151   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
152   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
153 
154   if (OldFPFeatures == FPFeatures)
155     return;
156 
157   FMFGuard.emplace(CGF.Builder);
158 
159   llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode();
160   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
161   auto NewExceptionBehavior =
162       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
163           FPFeatures.getExceptionMode()));
164   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
165 
166   CGF.SetFastMathFlags(FPFeatures);
167 
168   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
169           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
170           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
171           (NewExceptionBehavior == llvm::fp::ebIgnore &&
172            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
173          "FPConstrained should be enabled on entire function");
174 
175   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
176     auto OldValue =
177         CGF.CurFn->getFnAttribute(Name).getValueAsBool();
178     auto NewValue = OldValue & Value;
179     if (OldValue != NewValue)
180       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
181   };
182   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
183   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
184   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
185   mergeFnAttrValue(
186       "unsafe-fp-math",
187       FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() &&
188           FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() &&
189           FPFeatures.allowFPContractAcrossStatement());
190 }
191 
192 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
193   CGF.CurFPFeatures = OldFPFeatures;
194   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
195   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
196 }
197 
198 static LValue
199 makeNaturalAlignAddrLValue(llvm::Value *V, QualType T, bool ForPointeeType,
200                            bool MightBeSigned, CodeGenFunction &CGF,
201                            KnownNonNull_t IsKnownNonNull = NotKnownNonNull) {
202   LValueBaseInfo BaseInfo;
203   TBAAAccessInfo TBAAInfo;
204   CharUnits Alignment =
205       CGF.CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, ForPointeeType);
206   Address Addr =
207       MightBeSigned
208           ? CGF.makeNaturalAddressForPointer(V, T, Alignment, false, nullptr,
209                                              nullptr, IsKnownNonNull)
210           : Address(V, CGF.ConvertTypeForMem(T), Alignment, IsKnownNonNull);
211   return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
212 }
213 
214 LValue
215 CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T,
216                                             KnownNonNull_t IsKnownNonNull) {
217   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
218                                       /*MightBeSigned*/ true, *this,
219                                       IsKnownNonNull);
220 }
221 
222 LValue
223 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
224   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
225                                       /*MightBeSigned*/ true, *this);
226 }
227 
228 LValue CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value *V,
229                                                       QualType T) {
230   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
231                                       /*MightBeSigned*/ false, *this);
232 }
233 
234 LValue CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V,
235                                                              QualType T) {
236   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
237                                       /*MightBeSigned*/ false, *this);
238 }
239 
240 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
241   return CGM.getTypes().ConvertTypeForMem(T);
242 }
243 
244 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
245   return CGM.getTypes().ConvertType(T);
246 }
247 
248 llvm::Type *CodeGenFunction::convertTypeForLoadStore(QualType ASTTy,
249                                                      llvm::Type *LLVMTy) {
250   return CGM.getTypes().convertTypeForLoadStore(ASTTy, LLVMTy);
251 }
252 
253 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
254   type = type.getCanonicalType();
255   while (true) {
256     switch (type->getTypeClass()) {
257 #define TYPE(name, parent)
258 #define ABSTRACT_TYPE(name, parent)
259 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
260 #define DEPENDENT_TYPE(name, parent) case Type::name:
261 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
262 #include "clang/AST/TypeNodes.inc"
263       llvm_unreachable("non-canonical or dependent type in IR-generation");
264 
265     case Type::Auto:
266     case Type::DeducedTemplateSpecialization:
267       llvm_unreachable("undeduced type in IR-generation");
268 
269     // Various scalar types.
270     case Type::Builtin:
271     case Type::Pointer:
272     case Type::BlockPointer:
273     case Type::LValueReference:
274     case Type::RValueReference:
275     case Type::MemberPointer:
276     case Type::Vector:
277     case Type::ExtVector:
278     case Type::ConstantMatrix:
279     case Type::FunctionProto:
280     case Type::FunctionNoProto:
281     case Type::Enum:
282     case Type::ObjCObjectPointer:
283     case Type::Pipe:
284     case Type::BitInt:
285       return TEK_Scalar;
286 
287     // Complexes.
288     case Type::Complex:
289       return TEK_Complex;
290 
291     // Arrays, records, and Objective-C objects.
292     case Type::ConstantArray:
293     case Type::IncompleteArray:
294     case Type::VariableArray:
295     case Type::Record:
296     case Type::ObjCObject:
297     case Type::ObjCInterface:
298     case Type::ArrayParameter:
299       return TEK_Aggregate;
300 
301     // We operate on atomic values according to their underlying type.
302     case Type::Atomic:
303       type = cast<AtomicType>(type)->getValueType();
304       continue;
305     }
306     llvm_unreachable("unknown type kind!");
307   }
308 }
309 
310 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
311   // For cleanliness, we try to avoid emitting the return block for
312   // simple cases.
313   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
314 
315   if (CurBB) {
316     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
317 
318     // We have a valid insert point, reuse it if it is empty or there are no
319     // explicit jumps to the return block.
320     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
321       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
322       delete ReturnBlock.getBlock();
323       ReturnBlock = JumpDest();
324     } else
325       EmitBlock(ReturnBlock.getBlock());
326     return llvm::DebugLoc();
327   }
328 
329   // Otherwise, if the return block is the target of a single direct
330   // branch then we can just put the code in that block instead. This
331   // cleans up functions which started with a unified return block.
332   if (ReturnBlock.getBlock()->hasOneUse()) {
333     llvm::BranchInst *BI =
334       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
335     if (BI && BI->isUnconditional() &&
336         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
337       // Record/return the DebugLoc of the simple 'return' expression to be used
338       // later by the actual 'ret' instruction.
339       llvm::DebugLoc Loc = BI->getDebugLoc();
340       Builder.SetInsertPoint(BI->getParent());
341       BI->eraseFromParent();
342       delete ReturnBlock.getBlock();
343       ReturnBlock = JumpDest();
344       return Loc;
345     }
346   }
347 
348   // FIXME: We are at an unreachable point, there is no reason to emit the block
349   // unless it has uses. However, we still need a place to put the debug
350   // region.end for now.
351 
352   EmitBlock(ReturnBlock.getBlock());
353   return llvm::DebugLoc();
354 }
355 
356 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
357   if (!BB) return;
358   if (!BB->use_empty()) {
359     CGF.CurFn->insert(CGF.CurFn->end(), BB);
360     return;
361   }
362   delete BB;
363 }
364 
365 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
366   assert(BreakContinueStack.empty() &&
367          "mismatched push/pop in break/continue stack!");
368   assert(LifetimeExtendedCleanupStack.empty() &&
369          "mismatched push/pop of cleanups in EHStack!");
370   assert(DeferredDeactivationCleanupStack.empty() &&
371          "mismatched activate/deactivate of cleanups!");
372 
373   if (CGM.shouldEmitConvergenceTokens()) {
374     ConvergenceTokenStack.pop_back();
375     assert(ConvergenceTokenStack.empty() &&
376            "mismatched push/pop in convergence stack!");
377   }
378 
379   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
380     && NumSimpleReturnExprs == NumReturnExprs
381     && ReturnBlock.getBlock()->use_empty();
382   // Usually the return expression is evaluated before the cleanup
383   // code.  If the function contains only a simple return statement,
384   // such as a constant, the location before the cleanup code becomes
385   // the last useful breakpoint in the function, because the simple
386   // return expression will be evaluated after the cleanup code. To be
387   // safe, set the debug location for cleanup code to the location of
388   // the return statement.  Otherwise the cleanup code should be at the
389   // end of the function's lexical scope.
390   //
391   // If there are multiple branches to the return block, the branch
392   // instructions will get the location of the return statements and
393   // all will be fine.
394   if (CGDebugInfo *DI = getDebugInfo()) {
395     if (OnlySimpleReturnStmts)
396       DI->EmitLocation(Builder, LastStopPoint);
397     else
398       DI->EmitLocation(Builder, EndLoc);
399   }
400 
401   // Pop any cleanups that might have been associated with the
402   // parameters.  Do this in whatever block we're currently in; it's
403   // important to do this before we enter the return block or return
404   // edges will be *really* confused.
405   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
406   bool HasOnlyLifetimeMarkers =
407       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
408   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
409 
410   std::optional<ApplyDebugLocation> OAL;
411   if (HasCleanups) {
412     // Make sure the line table doesn't jump back into the body for
413     // the ret after it's been at EndLoc.
414     if (CGDebugInfo *DI = getDebugInfo()) {
415       if (OnlySimpleReturnStmts)
416         DI->EmitLocation(Builder, EndLoc);
417       else
418         // We may not have a valid end location. Try to apply it anyway, and
419         // fall back to an artificial location if needed.
420         OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
421     }
422 
423     PopCleanupBlocks(PrologueCleanupDepth);
424   }
425 
426   // Emit function epilog (to return).
427   llvm::DebugLoc Loc = EmitReturnBlock();
428 
429   if (ShouldInstrumentFunction()) {
430     if (CGM.getCodeGenOpts().InstrumentFunctions)
431       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
432     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
433       CurFn->addFnAttr("instrument-function-exit-inlined",
434                        "__cyg_profile_func_exit");
435   }
436 
437   // Emit debug descriptor for function end.
438   if (CGDebugInfo *DI = getDebugInfo())
439     DI->EmitFunctionEnd(Builder, CurFn);
440 
441   // Reset the debug location to that of the simple 'return' expression, if any
442   // rather than that of the end of the function's scope '}'.
443   ApplyDebugLocation AL(*this, Loc);
444   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
445   EmitEndEHSpec(CurCodeDecl);
446 
447   assert(EHStack.empty() &&
448          "did not remove all scopes from cleanup stack!");
449 
450   // If someone did an indirect goto, emit the indirect goto block at the end of
451   // the function.
452   if (IndirectBranch) {
453     EmitBlock(IndirectBranch->getParent());
454     Builder.ClearInsertionPoint();
455   }
456 
457   // If some of our locals escaped, insert a call to llvm.localescape in the
458   // entry block.
459   if (!EscapedLocals.empty()) {
460     // Invert the map from local to index into a simple vector. There should be
461     // no holes.
462     SmallVector<llvm::Value *, 4> EscapeArgs;
463     EscapeArgs.resize(EscapedLocals.size());
464     for (auto &Pair : EscapedLocals)
465       EscapeArgs[Pair.second] = Pair.first;
466     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
467         &CGM.getModule(), llvm::Intrinsic::localescape);
468     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
469   }
470 
471   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
472   llvm::Instruction *Ptr = AllocaInsertPt;
473   AllocaInsertPt = nullptr;
474   Ptr->eraseFromParent();
475 
476   // PostAllocaInsertPt, if created, was lazily created when it was required,
477   // remove it now since it was just created for our own convenience.
478   if (PostAllocaInsertPt) {
479     llvm::Instruction *PostPtr = PostAllocaInsertPt;
480     PostAllocaInsertPt = nullptr;
481     PostPtr->eraseFromParent();
482   }
483 
484   // If someone took the address of a label but never did an indirect goto, we
485   // made a zero entry PHI node, which is illegal, zap it now.
486   if (IndirectBranch) {
487     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
488     if (PN->getNumIncomingValues() == 0) {
489       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
490       PN->eraseFromParent();
491     }
492   }
493 
494   EmitIfUsed(*this, EHResumeBlock);
495   EmitIfUsed(*this, TerminateLandingPad);
496   EmitIfUsed(*this, TerminateHandler);
497   EmitIfUsed(*this, UnreachableBlock);
498 
499   for (const auto &FuncletAndParent : TerminateFunclets)
500     EmitIfUsed(*this, FuncletAndParent.second);
501 
502   if (CGM.getCodeGenOpts().EmitDeclMetadata)
503     EmitDeclMetadata();
504 
505   for (const auto &R : DeferredReplacements) {
506     if (llvm::Value *Old = R.first) {
507       Old->replaceAllUsesWith(R.second);
508       cast<llvm::Instruction>(Old)->eraseFromParent();
509     }
510   }
511   DeferredReplacements.clear();
512 
513   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
514   // PHIs if the current function is a coroutine. We don't do it for all
515   // functions as it may result in slight increase in numbers of instructions
516   // if compiled with no optimizations. We do it for coroutine as the lifetime
517   // of CleanupDestSlot alloca make correct coroutine frame building very
518   // difficult.
519   if (NormalCleanupDest.isValid() && isCoroutine()) {
520     llvm::DominatorTree DT(*CurFn);
521     llvm::PromoteMemToReg(
522         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
523     NormalCleanupDest = Address::invalid();
524   }
525 
526   // Scan function arguments for vector width.
527   for (llvm::Argument &A : CurFn->args())
528     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
529       LargestVectorWidth =
530           std::max((uint64_t)LargestVectorWidth,
531                    VT->getPrimitiveSizeInBits().getKnownMinValue());
532 
533   // Update vector width based on return type.
534   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
535     LargestVectorWidth =
536         std::max((uint64_t)LargestVectorWidth,
537                  VT->getPrimitiveSizeInBits().getKnownMinValue());
538 
539   if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth)
540     LargestVectorWidth = CurFnInfo->getMaxVectorWidth();
541 
542   // Add the min-legal-vector-width attribute. This contains the max width from:
543   // 1. min-vector-width attribute used in the source program.
544   // 2. Any builtins used that have a vector width specified.
545   // 3. Values passed in and out of inline assembly.
546   // 4. Width of vector arguments and return types for this function.
547   // 5. Width of vector arguments and return types for functions called by this
548   //    function.
549   if (getContext().getTargetInfo().getTriple().isX86())
550     CurFn->addFnAttr("min-legal-vector-width",
551                      llvm::utostr(LargestVectorWidth));
552 
553   // Add vscale_range attribute if appropriate.
554   std::optional<std::pair<unsigned, unsigned>> VScaleRange =
555       getContext().getTargetInfo().getVScaleRange(getLangOpts());
556   if (VScaleRange) {
557     CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
558         getLLVMContext(), VScaleRange->first, VScaleRange->second));
559   }
560 
561   // If we generated an unreachable return block, delete it now.
562   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
563     Builder.ClearInsertionPoint();
564     ReturnBlock.getBlock()->eraseFromParent();
565   }
566   if (ReturnValue.isValid()) {
567     auto *RetAlloca =
568         dyn_cast<llvm::AllocaInst>(ReturnValue.emitRawPointer(*this));
569     if (RetAlloca && RetAlloca->use_empty()) {
570       RetAlloca->eraseFromParent();
571       ReturnValue = Address::invalid();
572     }
573   }
574 }
575 
576 /// ShouldInstrumentFunction - Return true if the current function should be
577 /// instrumented with __cyg_profile_func_* calls
578 bool CodeGenFunction::ShouldInstrumentFunction() {
579   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
580       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
581       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
582     return false;
583   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
584     return false;
585   return true;
586 }
587 
588 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
589   if (!CurFuncDecl)
590     return false;
591   return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
592 }
593 
594 /// ShouldXRayInstrument - Return true if the current function should be
595 /// instrumented with XRay nop sleds.
596 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
597   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
598 }
599 
600 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
601 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
602 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
603   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
604          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
605           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
606               XRayInstrKind::Custom);
607 }
608 
609 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
610   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
611          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
612           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
613               XRayInstrKind::Typed);
614 }
615 
616 llvm::ConstantInt *
617 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const {
618   // Remove any (C++17) exception specifications, to allow calling e.g. a
619   // noexcept function through a non-noexcept pointer.
620   if (!Ty->isFunctionNoProtoType())
621     Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None);
622   std::string Mangled;
623   llvm::raw_string_ostream Out(Mangled);
624   CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false);
625   return llvm::ConstantInt::get(
626       CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled)));
627 }
628 
629 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD,
630                                          llvm::Function *Fn) {
631   if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>())
632     return;
633 
634   llvm::LLVMContext &Context = getLLVMContext();
635 
636   CGM.GenKernelArgMetadata(Fn, FD, this);
637 
638   if (!getLangOpts().OpenCL)
639     return;
640 
641   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
642     QualType HintQTy = A->getTypeHint();
643     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
644     bool IsSignedInteger =
645         HintQTy->isSignedIntegerType() ||
646         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
647     llvm::Metadata *AttrMDArgs[] = {
648         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
649             CGM.getTypes().ConvertType(A->getTypeHint()))),
650         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
651             llvm::IntegerType::get(Context, 32),
652             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
653     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
654   }
655 
656   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
657     llvm::Metadata *AttrMDArgs[] = {
658         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
659         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
660         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
661     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
662   }
663 
664   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
665     llvm::Metadata *AttrMDArgs[] = {
666         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
667         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
668         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
669     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
670   }
671 
672   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
673           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
674     llvm::Metadata *AttrMDArgs[] = {
675         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
676     Fn->setMetadata("intel_reqd_sub_group_size",
677                     llvm::MDNode::get(Context, AttrMDArgs));
678   }
679 }
680 
681 /// Determine whether the function F ends with a return stmt.
682 static bool endsWithReturn(const Decl* F) {
683   const Stmt *Body = nullptr;
684   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
685     Body = FD->getBody();
686   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
687     Body = OMD->getBody();
688 
689   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
690     auto LastStmt = CS->body_rbegin();
691     if (LastStmt != CS->body_rend())
692       return isa<ReturnStmt>(*LastStmt);
693   }
694   return false;
695 }
696 
697 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
698   if (SanOpts.has(SanitizerKind::Thread)) {
699     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
700     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
701   }
702 }
703 
704 /// Check if the return value of this function requires sanitization.
705 bool CodeGenFunction::requiresReturnValueCheck() const {
706   return requiresReturnValueNullabilityCheck() ||
707          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
708           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
709 }
710 
711 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
712   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
713   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
714       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
715       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
716     return false;
717 
718   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
719     return false;
720 
721   if (MD->getNumParams() == 2) {
722     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
723     if (!PT || !PT->isVoidPointerType() ||
724         !PT->getPointeeType().isConstQualified())
725       return false;
726   }
727 
728   return true;
729 }
730 
731 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) {
732   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
733   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
734 }
735 
736 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) {
737   return getTarget().getTriple().getArch() == llvm::Triple::x86 &&
738          getTarget().getCXXABI().isMicrosoft() &&
739          llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) {
740            return isInAllocaArgument(CGM.getCXXABI(), P->getType());
741          });
742 }
743 
744 /// Return the UBSan prologue signature for \p FD if one is available.
745 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
746                                             const FunctionDecl *FD) {
747   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
748     if (!MD->isStatic())
749       return nullptr;
750   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
751 }
752 
753 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
754                                     llvm::Function *Fn,
755                                     const CGFunctionInfo &FnInfo,
756                                     const FunctionArgList &Args,
757                                     SourceLocation Loc,
758                                     SourceLocation StartLoc) {
759   assert(!CurFn &&
760          "Do not use a CodeGenFunction object for more than one function");
761 
762   const Decl *D = GD.getDecl();
763 
764   DidCallStackSave = false;
765   CurCodeDecl = D;
766   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
767   if (FD && FD->usesSEHTry())
768     CurSEHParent = GD;
769   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
770   FnRetTy = RetTy;
771   CurFn = Fn;
772   CurFnInfo = &FnInfo;
773   assert(CurFn->isDeclaration() && "Function already has body?");
774 
775   // If this function is ignored for any of the enabled sanitizers,
776   // disable the sanitizer for the function.
777   do {
778 #define SANITIZER(NAME, ID)                                                    \
779   if (SanOpts.empty())                                                         \
780     break;                                                                     \
781   if (SanOpts.has(SanitizerKind::ID))                                          \
782     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
783       SanOpts.set(SanitizerKind::ID, false);
784 
785 #include "clang/Basic/Sanitizers.def"
786 #undef SANITIZER
787   } while (false);
788 
789   if (D) {
790     const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds);
791     SanitizerMask no_sanitize_mask;
792     bool NoSanitizeCoverage = false;
793 
794     for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) {
795       no_sanitize_mask |= Attr->getMask();
796       // SanitizeCoverage is not handled by SanOpts.
797       if (Attr->hasCoverage())
798         NoSanitizeCoverage = true;
799     }
800 
801     // Apply the no_sanitize* attributes to SanOpts.
802     SanOpts.Mask &= ~no_sanitize_mask;
803     if (no_sanitize_mask & SanitizerKind::Address)
804       SanOpts.set(SanitizerKind::KernelAddress, false);
805     if (no_sanitize_mask & SanitizerKind::KernelAddress)
806       SanOpts.set(SanitizerKind::Address, false);
807     if (no_sanitize_mask & SanitizerKind::HWAddress)
808       SanOpts.set(SanitizerKind::KernelHWAddress, false);
809     if (no_sanitize_mask & SanitizerKind::KernelHWAddress)
810       SanOpts.set(SanitizerKind::HWAddress, false);
811 
812     if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds))
813       Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds);
814 
815     if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
816       Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
817 
818     // Some passes need the non-negated no_sanitize attribute. Pass them on.
819     if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) {
820       if (no_sanitize_mask & SanitizerKind::Thread)
821         Fn->addFnAttr("no_sanitize_thread");
822     }
823   }
824 
825   if (ShouldSkipSanitizerInstrumentation()) {
826     CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
827   } else {
828     // Apply sanitizer attributes to the function.
829     if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
830       Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
831     if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
832                          SanitizerKind::KernelHWAddress))
833       Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
834     if (SanOpts.has(SanitizerKind::MemtagStack))
835       Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
836     if (SanOpts.has(SanitizerKind::Thread))
837       Fn->addFnAttr(llvm::Attribute::SanitizeThread);
838     if (SanOpts.has(SanitizerKind::NumericalStability))
839       Fn->addFnAttr(llvm::Attribute::SanitizeNumericalStability);
840     if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
841       Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
842   }
843   if (SanOpts.has(SanitizerKind::SafeStack))
844     Fn->addFnAttr(llvm::Attribute::SafeStack);
845   if (SanOpts.has(SanitizerKind::ShadowCallStack))
846     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
847 
848   // Apply fuzzing attribute to the function.
849   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
850     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
851 
852   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
853   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
854   if (SanOpts.has(SanitizerKind::Thread)) {
855     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
856       const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
857       if (OMD->getMethodFamily() == OMF_dealloc ||
858           OMD->getMethodFamily() == OMF_initialize ||
859           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
860         markAsIgnoreThreadCheckingAtRuntime(Fn);
861       }
862     }
863   }
864 
865   // Ignore unrelated casts in STL allocate() since the allocator must cast
866   // from void* to T* before object initialization completes. Don't match on the
867   // namespace because not all allocators are in std::
868   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
869     if (matchesStlAllocatorFn(D, getContext()))
870       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
871   }
872 
873   // Ignore null checks in coroutine functions since the coroutines passes
874   // are not aware of how to move the extra UBSan instructions across the split
875   // coroutine boundaries.
876   if (D && SanOpts.has(SanitizerKind::Null))
877     if (FD && FD->getBody() &&
878         FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
879       SanOpts.Mask &= ~SanitizerKind::Null;
880 
881   // Add pointer authentication attributes.
882   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
883   if (CodeGenOpts.PointerAuth.ReturnAddresses)
884     Fn->addFnAttr("ptrauth-returns");
885   if (CodeGenOpts.PointerAuth.FunctionPointers)
886     Fn->addFnAttr("ptrauth-calls");
887   if (CodeGenOpts.PointerAuth.AuthTraps)
888     Fn->addFnAttr("ptrauth-auth-traps");
889   if (CodeGenOpts.PointerAuth.IndirectGotos)
890     Fn->addFnAttr("ptrauth-indirect-gotos");
891 
892   // Apply xray attributes to the function (as a string, for now)
893   bool AlwaysXRayAttr = false;
894   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
895     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
896             XRayInstrKind::FunctionEntry) ||
897         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
898             XRayInstrKind::FunctionExit)) {
899       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
900         Fn->addFnAttr("function-instrument", "xray-always");
901         AlwaysXRayAttr = true;
902       }
903       if (XRayAttr->neverXRayInstrument())
904         Fn->addFnAttr("function-instrument", "xray-never");
905       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
906         if (ShouldXRayInstrumentFunction())
907           Fn->addFnAttr("xray-log-args",
908                         llvm::utostr(LogArgs->getArgumentCount()));
909     }
910   } else {
911     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
912       Fn->addFnAttr(
913           "xray-instruction-threshold",
914           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
915   }
916 
917   if (ShouldXRayInstrumentFunction()) {
918     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
919       Fn->addFnAttr("xray-ignore-loops");
920 
921     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
922             XRayInstrKind::FunctionExit))
923       Fn->addFnAttr("xray-skip-exit");
924 
925     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
926             XRayInstrKind::FunctionEntry))
927       Fn->addFnAttr("xray-skip-entry");
928 
929     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
930     if (FuncGroups > 1) {
931       auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(),
932                                               CurFn->getName().bytes_end());
933       auto Group = crc32(FuncName) % FuncGroups;
934       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
935           !AlwaysXRayAttr)
936         Fn->addFnAttr("function-instrument", "xray-never");
937     }
938   }
939 
940   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) {
941     switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) {
942     case ProfileList::Skip:
943       Fn->addFnAttr(llvm::Attribute::SkipProfile);
944       break;
945     case ProfileList::Forbid:
946       Fn->addFnAttr(llvm::Attribute::NoProfile);
947       break;
948     case ProfileList::Allow:
949       break;
950     }
951   }
952 
953   unsigned Count, Offset;
954   if (const auto *Attr =
955           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
956     Count = Attr->getCount();
957     Offset = Attr->getOffset();
958   } else {
959     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
960     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
961   }
962   if (Count && Offset <= Count) {
963     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
964     if (Offset)
965       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
966   }
967   // Instruct that functions for COFF/CodeView targets should start with a
968   // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
969   // backends as they don't need it -- instructions on these architectures are
970   // always atomically patchable at runtime.
971   if (CGM.getCodeGenOpts().HotPatch &&
972       getContext().getTargetInfo().getTriple().isX86() &&
973       getContext().getTargetInfo().getTriple().getEnvironment() !=
974           llvm::Triple::CODE16)
975     Fn->addFnAttr("patchable-function", "prologue-short-redirect");
976 
977   // Add no-jump-tables value.
978   if (CGM.getCodeGenOpts().NoUseJumpTables)
979     Fn->addFnAttr("no-jump-tables", "true");
980 
981   // Add no-inline-line-tables value.
982   if (CGM.getCodeGenOpts().NoInlineLineTables)
983     Fn->addFnAttr("no-inline-line-tables");
984 
985   // Add profile-sample-accurate value.
986   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
987     Fn->addFnAttr("profile-sample-accurate");
988 
989   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
990     Fn->addFnAttr("use-sample-profile");
991 
992   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
993     Fn->addFnAttr("cfi-canonical-jump-table");
994 
995   if (D && D->hasAttr<NoProfileFunctionAttr>())
996     Fn->addFnAttr(llvm::Attribute::NoProfile);
997 
998   if (D && D->hasAttr<HybridPatchableAttr>())
999     Fn->addFnAttr(llvm::Attribute::HybridPatchable);
1000 
1001   if (D) {
1002     // Function attributes take precedence over command line flags.
1003     if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) {
1004       switch (A->getThunkType()) {
1005       case FunctionReturnThunksAttr::Kind::Keep:
1006         break;
1007       case FunctionReturnThunksAttr::Kind::Extern:
1008         Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1009         break;
1010       }
1011     } else if (CGM.getCodeGenOpts().FunctionReturnThunks)
1012       Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1013   }
1014 
1015   if (FD && (getLangOpts().OpenCL ||
1016              (getLangOpts().HIP && getLangOpts().CUDAIsDevice))) {
1017     // Add metadata for a kernel function.
1018     EmitKernelMetadata(FD, Fn);
1019   }
1020 
1021   if (FD && FD->hasAttr<ClspvLibclcBuiltinAttr>()) {
1022     Fn->setMetadata("clspv_libclc_builtin",
1023                     llvm::MDNode::get(getLLVMContext(), {}));
1024   }
1025 
1026   // If we are checking function types, emit a function type signature as
1027   // prologue data.
1028   if (FD && SanOpts.has(SanitizerKind::Function)) {
1029     if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
1030       llvm::LLVMContext &Ctx = Fn->getContext();
1031       llvm::MDBuilder MDB(Ctx);
1032       Fn->setMetadata(
1033           llvm::LLVMContext::MD_func_sanitize,
1034           MDB.createRTTIPointerPrologue(
1035               PrologueSig, getUBSanFunctionTypeHash(FD->getType())));
1036     }
1037   }
1038 
1039   // If we're checking nullability, we need to know whether we can check the
1040   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
1041   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
1042     auto Nullability = FnRetTy->getNullability();
1043     if (Nullability && *Nullability == NullabilityKind::NonNull &&
1044         !FnRetTy->isRecordType()) {
1045       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1046             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
1047         RetValNullabilityPrecondition =
1048             llvm::ConstantInt::getTrue(getLLVMContext());
1049     }
1050   }
1051 
1052   // If we're in C++ mode and the function name is "main", it is guaranteed
1053   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
1054   // used within a program").
1055   //
1056   // OpenCL C 2.0 v2.2-11 s6.9.i:
1057   //     Recursion is not supported.
1058   //
1059   // SYCL v1.2.1 s3.10:
1060   //     kernels cannot include RTTI information, exception classes,
1061   //     recursive code, virtual functions or make use of C++ libraries that
1062   //     are not compiled for the device.
1063   if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
1064              getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
1065              (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
1066     Fn->addFnAttr(llvm::Attribute::NoRecurse);
1067 
1068   llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode();
1069   llvm::fp::ExceptionBehavior FPExceptionBehavior =
1070       ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
1071   Builder.setDefaultConstrainedRounding(RM);
1072   Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
1073   if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
1074       (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
1075                RM != llvm::RoundingMode::NearestTiesToEven))) {
1076     Builder.setIsFPConstrained(true);
1077     Fn->addFnAttr(llvm::Attribute::StrictFP);
1078   }
1079 
1080   // If a custom alignment is used, force realigning to this alignment on
1081   // any main function which certainly will need it.
1082   if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
1083              CGM.getCodeGenOpts().StackAlignment))
1084     Fn->addFnAttr("stackrealign");
1085 
1086   // "main" doesn't need to zero out call-used registers.
1087   if (FD && FD->isMain())
1088     Fn->removeFnAttr("zero-call-used-regs");
1089 
1090   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
1091 
1092   // Create a marker to make it easy to insert allocas into the entryblock
1093   // later.  Don't create this with the builder, because we don't want it
1094   // folded.
1095   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
1096   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
1097 
1098   ReturnBlock = getJumpDestInCurrentScope("return");
1099 
1100   Builder.SetInsertPoint(EntryBB);
1101 
1102   // If we're checking the return value, allocate space for a pointer to a
1103   // precise source location of the checked return statement.
1104   if (requiresReturnValueCheck()) {
1105     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1106     Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1107                         ReturnLocation);
1108   }
1109 
1110   // Emit subprogram debug descriptor.
1111   if (CGDebugInfo *DI = getDebugInfo()) {
1112     // Reconstruct the type from the argument list so that implicit parameters,
1113     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1114     // convention.
1115     DI->emitFunctionStart(GD, Loc, StartLoc,
1116                           DI->getFunctionType(FD, RetTy, Args), CurFn,
1117                           CurFuncIsThunk);
1118   }
1119 
1120   if (ShouldInstrumentFunction()) {
1121     if (CGM.getCodeGenOpts().InstrumentFunctions)
1122       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1123     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1124       CurFn->addFnAttr("instrument-function-entry-inlined",
1125                        "__cyg_profile_func_enter");
1126     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1127       CurFn->addFnAttr("instrument-function-entry-inlined",
1128                        "__cyg_profile_func_enter_bare");
1129   }
1130 
1131   // Since emitting the mcount call here impacts optimizations such as function
1132   // inlining, we just add an attribute to insert a mcount call in backend.
1133   // The attribute "counting-function" is set to mcount function name which is
1134   // architecture dependent.
1135   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1136     // Calls to fentry/mcount should not be generated if function has
1137     // the no_instrument_function attribute.
1138     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1139       if (CGM.getCodeGenOpts().CallFEntry)
1140         Fn->addFnAttr("fentry-call", "true");
1141       else {
1142         Fn->addFnAttr("instrument-function-entry-inlined",
1143                       getTarget().getMCountName());
1144       }
1145       if (CGM.getCodeGenOpts().MNopMCount) {
1146         if (!CGM.getCodeGenOpts().CallFEntry)
1147           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1148             << "-mnop-mcount" << "-mfentry";
1149         Fn->addFnAttr("mnop-mcount");
1150       }
1151 
1152       if (CGM.getCodeGenOpts().RecordMCount) {
1153         if (!CGM.getCodeGenOpts().CallFEntry)
1154           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1155             << "-mrecord-mcount" << "-mfentry";
1156         Fn->addFnAttr("mrecord-mcount");
1157       }
1158     }
1159   }
1160 
1161   if (CGM.getCodeGenOpts().PackedStack) {
1162     if (getContext().getTargetInfo().getTriple().getArch() !=
1163         llvm::Triple::systemz)
1164       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1165         << "-mpacked-stack";
1166     Fn->addFnAttr("packed-stack");
1167   }
1168 
1169   if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1170       !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1171     Fn->addFnAttr("warn-stack-size",
1172                   std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1173 
1174   if (RetTy->isVoidType()) {
1175     // Void type; nothing to return.
1176     ReturnValue = Address::invalid();
1177 
1178     // Count the implicit return.
1179     if (!endsWithReturn(D))
1180       ++NumReturnExprs;
1181   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1182     // Indirect return; emit returned value directly into sret slot.
1183     // This reduces code size, and affects correctness in C++.
1184     auto AI = CurFn->arg_begin();
1185     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1186       ++AI;
1187     ReturnValue = makeNaturalAddressForPointer(
1188         &*AI, RetTy, CurFnInfo->getReturnInfo().getIndirectAlign(), false,
1189         nullptr, nullptr, KnownNonNull);
1190     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1191       ReturnValuePointer =
1192           CreateDefaultAlignTempAlloca(ReturnValue.getType(), "result.ptr");
1193       Builder.CreateStore(ReturnValue.emitRawPointer(*this),
1194                           ReturnValuePointer);
1195     }
1196   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1197              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1198     // Load the sret pointer from the argument struct and return into that.
1199     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1200     llvm::Function::arg_iterator EI = CurFn->arg_end();
1201     --EI;
1202     llvm::Value *Addr = Builder.CreateStructGEP(
1203         CurFnInfo->getArgStruct(), &*EI, Idx);
1204     llvm::Type *Ty =
1205         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1206     ReturnValuePointer = Address(Addr, Ty, getPointerAlign());
1207     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1208     ReturnValue = Address(Addr, ConvertType(RetTy),
1209                           CGM.getNaturalTypeAlignment(RetTy), KnownNonNull);
1210   } else {
1211     ReturnValue = CreateIRTemp(RetTy, "retval");
1212 
1213     // Tell the epilog emitter to autorelease the result.  We do this
1214     // now so that various specialized functions can suppress it
1215     // during their IR-generation.
1216     if (getLangOpts().ObjCAutoRefCount &&
1217         !CurFnInfo->isReturnsRetained() &&
1218         RetTy->isObjCRetainableType())
1219       AutoreleaseResult = true;
1220   }
1221 
1222   EmitStartEHSpec(CurCodeDecl);
1223 
1224   PrologueCleanupDepth = EHStack.stable_begin();
1225 
1226   // Emit OpenMP specific initialization of the device functions.
1227   if (getLangOpts().OpenMP && CurCodeDecl)
1228     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1229 
1230   // Handle emitting HLSL entry functions.
1231   if (D && D->hasAttr<HLSLShaderAttr>())
1232     CGM.getHLSLRuntime().emitEntryFunction(FD, Fn);
1233 
1234   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1235 
1236   if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D);
1237       MD && !MD->isStatic()) {
1238     bool IsInLambda =
1239         MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call;
1240     if (MD->isImplicitObjectMemberFunction())
1241       CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1242     if (IsInLambda) {
1243       // We're in a lambda; figure out the captures.
1244       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1245                                         LambdaThisCaptureField);
1246       if (LambdaThisCaptureField) {
1247         // If the lambda captures the object referred to by '*this' - either by
1248         // value or by reference, make sure CXXThisValue points to the correct
1249         // object.
1250 
1251         // Get the lvalue for the field (which is a copy of the enclosing object
1252         // or contains the address of the enclosing object).
1253         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1254         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1255           // If the enclosing object was captured by value, just use its
1256           // address. Sign this pointer.
1257           CXXThisValue = ThisFieldLValue.getPointer(*this);
1258         } else {
1259           // Load the lvalue pointed to by the field, since '*this' was captured
1260           // by reference.
1261           CXXThisValue =
1262               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1263         }
1264       }
1265       for (auto *FD : MD->getParent()->fields()) {
1266         if (FD->hasCapturedVLAType()) {
1267           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1268                                            SourceLocation()).getScalarVal();
1269           auto VAT = FD->getCapturedVLAType();
1270           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1271         }
1272       }
1273     } else if (MD->isImplicitObjectMemberFunction()) {
1274       // Not in a lambda; just use 'this' from the method.
1275       // FIXME: Should we generate a new load for each use of 'this'?  The
1276       // fast register allocator would be happier...
1277       CXXThisValue = CXXABIThisValue;
1278     }
1279 
1280     // Check the 'this' pointer once per function, if it's available.
1281     if (CXXABIThisValue) {
1282       SanitizerSet SkippedChecks;
1283       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1284       QualType ThisTy = MD->getThisType();
1285 
1286       // If this is the call operator of a lambda with no captures, it
1287       // may have a static invoker function, which may call this operator with
1288       // a null 'this' pointer.
1289       if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda())
1290         SkippedChecks.set(SanitizerKind::Null, true);
1291 
1292       EmitTypeCheck(
1293           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1294           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1295     }
1296   }
1297 
1298   // If any of the arguments have a variably modified type, make sure to
1299   // emit the type size, but only if the function is not naked. Naked functions
1300   // have no prolog to run this evaluation.
1301   if (!FD || !FD->hasAttr<NakedAttr>()) {
1302     for (const VarDecl *VD : Args) {
1303       // Dig out the type as written from ParmVarDecls; it's unclear whether
1304       // the standard (C99 6.9.1p10) requires this, but we're following the
1305       // precedent set by gcc.
1306       QualType Ty;
1307       if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1308         Ty = PVD->getOriginalType();
1309       else
1310         Ty = VD->getType();
1311 
1312       if (Ty->isVariablyModifiedType())
1313         EmitVariablyModifiedType(Ty);
1314     }
1315   }
1316   // Emit a location at the end of the prologue.
1317   if (CGDebugInfo *DI = getDebugInfo())
1318     DI->EmitLocation(Builder, StartLoc);
1319   // TODO: Do we need to handle this in two places like we do with
1320   // target-features/target-cpu?
1321   if (CurFuncDecl)
1322     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1323       LargestVectorWidth = VecWidth->getVectorWidth();
1324 
1325   if (CGM.shouldEmitConvergenceTokens())
1326     ConvergenceTokenStack.push_back(getOrEmitConvergenceEntryToken(CurFn));
1327 }
1328 
1329 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1330   incrementProfileCounter(Body);
1331   maybeCreateMCDCCondBitmap();
1332   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1333     EmitCompoundStmtWithoutScope(*S);
1334   else
1335     EmitStmt(Body);
1336 }
1337 
1338 /// When instrumenting to collect profile data, the counts for some blocks
1339 /// such as switch cases need to not include the fall-through counts, so
1340 /// emit a branch around the instrumentation code. When not instrumenting,
1341 /// this just calls EmitBlock().
1342 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1343                                                const Stmt *S) {
1344   llvm::BasicBlock *SkipCountBB = nullptr;
1345   // Do not skip over the instrumentation when single byte coverage mode is
1346   // enabled.
1347   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1348       !llvm::EnableSingleByteCoverage) {
1349     // When instrumenting for profiling, the fallthrough to certain
1350     // statements needs to skip over the instrumentation code so that we
1351     // get an accurate count.
1352     SkipCountBB = createBasicBlock("skipcount");
1353     EmitBranch(SkipCountBB);
1354   }
1355   EmitBlock(BB);
1356   uint64_t CurrentCount = getCurrentProfileCount();
1357   incrementProfileCounter(S);
1358   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1359   if (SkipCountBB)
1360     EmitBlock(SkipCountBB);
1361 }
1362 
1363 /// Tries to mark the given function nounwind based on the
1364 /// non-existence of any throwing calls within it.  We believe this is
1365 /// lightweight enough to do at -O0.
1366 static void TryMarkNoThrow(llvm::Function *F) {
1367   // LLVM treats 'nounwind' on a function as part of the type, so we
1368   // can't do this on functions that can be overwritten.
1369   if (F->isInterposable()) return;
1370 
1371   for (llvm::BasicBlock &BB : *F)
1372     for (llvm::Instruction &I : BB)
1373       if (I.mayThrow())
1374         return;
1375 
1376   F->setDoesNotThrow();
1377 }
1378 
1379 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1380                                                FunctionArgList &Args) {
1381   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1382   QualType ResTy = FD->getReturnType();
1383 
1384   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1385   if (MD && MD->isImplicitObjectMemberFunction()) {
1386     if (CGM.getCXXABI().HasThisReturn(GD))
1387       ResTy = MD->getThisType();
1388     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1389       ResTy = CGM.getContext().VoidPtrTy;
1390     CGM.getCXXABI().buildThisParam(*this, Args);
1391   }
1392 
1393   // The base version of an inheriting constructor whose constructed base is a
1394   // virtual base is not passed any arguments (because it doesn't actually call
1395   // the inherited constructor).
1396   bool PassedParams = true;
1397   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1398     if (auto Inherited = CD->getInheritedConstructor())
1399       PassedParams =
1400           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1401 
1402   if (PassedParams) {
1403     for (auto *Param : FD->parameters()) {
1404       Args.push_back(Param);
1405       if (!Param->hasAttr<PassObjectSizeAttr>())
1406         continue;
1407 
1408       auto *Implicit = ImplicitParamDecl::Create(
1409           getContext(), Param->getDeclContext(), Param->getLocation(),
1410           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other);
1411       SizeArguments[Param] = Implicit;
1412       Args.push_back(Implicit);
1413     }
1414   }
1415 
1416   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1417     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1418 
1419   return ResTy;
1420 }
1421 
1422 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1423                                    const CGFunctionInfo &FnInfo) {
1424   assert(Fn && "generating code for null Function");
1425   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1426   CurGD = GD;
1427 
1428   FunctionArgList Args;
1429   QualType ResTy = BuildFunctionArgList(GD, Args);
1430 
1431   CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, FD);
1432 
1433   if (FD->isInlineBuiltinDeclaration()) {
1434     // When generating code for a builtin with an inline declaration, use a
1435     // mangled name to hold the actual body, while keeping an external
1436     // definition in case the function pointer is referenced somewhere.
1437     std::string FDInlineName = (Fn->getName() + ".inline").str();
1438     llvm::Module *M = Fn->getParent();
1439     llvm::Function *Clone = M->getFunction(FDInlineName);
1440     if (!Clone) {
1441       Clone = llvm::Function::Create(Fn->getFunctionType(),
1442                                      llvm::GlobalValue::InternalLinkage,
1443                                      Fn->getAddressSpace(), FDInlineName, M);
1444       Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1445     }
1446     Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1447     Fn = Clone;
1448   } else {
1449     // Detect the unusual situation where an inline version is shadowed by a
1450     // non-inline version. In that case we should pick the external one
1451     // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1452     // to detect that situation before we reach codegen, so do some late
1453     // replacement.
1454     for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1455          PD = PD->getPreviousDecl()) {
1456       if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1457         std::string FDInlineName = (Fn->getName() + ".inline").str();
1458         llvm::Module *M = Fn->getParent();
1459         if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1460           Clone->replaceAllUsesWith(Fn);
1461           Clone->eraseFromParent();
1462         }
1463         break;
1464       }
1465     }
1466   }
1467 
1468   // Check if we should generate debug info for this function.
1469   if (FD->hasAttr<NoDebugAttr>()) {
1470     // Clear non-distinct debug info that was possibly attached to the function
1471     // due to an earlier declaration without the nodebug attribute
1472     Fn->setSubprogram(nullptr);
1473     // Disable debug info indefinitely for this function
1474     DebugInfo = nullptr;
1475   }
1476 
1477   // The function might not have a body if we're generating thunks for a
1478   // function declaration.
1479   SourceRange BodyRange;
1480   if (Stmt *Body = FD->getBody())
1481     BodyRange = Body->getSourceRange();
1482   else
1483     BodyRange = FD->getLocation();
1484   CurEHLocation = BodyRange.getEnd();
1485 
1486   // Use the location of the start of the function to determine where
1487   // the function definition is located. By default use the location
1488   // of the declaration as the location for the subprogram. A function
1489   // may lack a declaration in the source code if it is created by code
1490   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1491   SourceLocation Loc = FD->getLocation();
1492 
1493   // If this is a function specialization then use the pattern body
1494   // as the location for the function.
1495   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1496     if (SpecDecl->hasBody(SpecDecl))
1497       Loc = SpecDecl->getLocation();
1498 
1499   Stmt *Body = FD->getBody();
1500 
1501   if (Body) {
1502     // Coroutines always emit lifetime markers.
1503     if (isa<CoroutineBodyStmt>(Body))
1504       ShouldEmitLifetimeMarkers = true;
1505 
1506     // Initialize helper which will detect jumps which can cause invalid
1507     // lifetime markers.
1508     if (ShouldEmitLifetimeMarkers)
1509       Bypasses.Init(Body);
1510   }
1511 
1512   // Emit the standard function prologue.
1513   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1514 
1515   // Save parameters for coroutine function.
1516   if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1517     llvm::append_range(FnArgs, FD->parameters());
1518 
1519   // Ensure that the function adheres to the forward progress guarantee, which
1520   // is required by certain optimizations.
1521   // In C++11 and up, the attribute will be removed if the body contains a
1522   // trivial empty loop.
1523   if (checkIfFunctionMustProgress())
1524     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1525 
1526   // Generate the body of the function.
1527   PGO.assignRegionCounters(GD, CurFn);
1528   if (isa<CXXDestructorDecl>(FD))
1529     EmitDestructorBody(Args);
1530   else if (isa<CXXConstructorDecl>(FD))
1531     EmitConstructorBody(Args);
1532   else if (getLangOpts().CUDA &&
1533            !getLangOpts().CUDAIsDevice &&
1534            FD->hasAttr<CUDAGlobalAttr>())
1535     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1536   else if (isa<CXXMethodDecl>(FD) &&
1537            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1538     // The lambda static invoker function is special, because it forwards or
1539     // clones the body of the function call operator (but is actually static).
1540     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1541   } else if (isa<CXXMethodDecl>(FD) &&
1542              isLambdaCallOperator(cast<CXXMethodDecl>(FD)) &&
1543              !FnInfo.isDelegateCall() &&
1544              cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() &&
1545              hasInAllocaArg(cast<CXXMethodDecl>(FD))) {
1546     // If emitting a lambda with static invoker on X86 Windows, change
1547     // the call operator body.
1548     // Make sure that this is a call operator with an inalloca arg and check
1549     // for delegate call to make sure this is the original call op and not the
1550     // new forwarding function for the static invoker.
1551     EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD));
1552   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1553              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1554               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1555     // Implicit copy-assignment gets the same special treatment as implicit
1556     // copy-constructors.
1557     emitImplicitAssignmentOperatorBody(Args);
1558   } else if (Body) {
1559     EmitFunctionBody(Body);
1560   } else
1561     llvm_unreachable("no definition for emitted function");
1562 
1563   // C++11 [stmt.return]p2:
1564   //   Flowing off the end of a function [...] results in undefined behavior in
1565   //   a value-returning function.
1566   // C11 6.9.1p12:
1567   //   If the '}' that terminates a function is reached, and the value of the
1568   //   function call is used by the caller, the behavior is undefined.
1569   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1570       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1571     bool ShouldEmitUnreachable =
1572         CGM.getCodeGenOpts().StrictReturn ||
1573         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1574     if (SanOpts.has(SanitizerKind::Return)) {
1575       SanitizerScope SanScope(this);
1576       llvm::Value *IsFalse = Builder.getFalse();
1577       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1578                 SanitizerHandler::MissingReturn,
1579                 EmitCheckSourceLocation(FD->getLocation()), std::nullopt);
1580     } else if (ShouldEmitUnreachable) {
1581       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1582         EmitTrapCall(llvm::Intrinsic::trap);
1583     }
1584     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1585       Builder.CreateUnreachable();
1586       Builder.ClearInsertionPoint();
1587     }
1588   }
1589 
1590   // Emit the standard function epilogue.
1591   FinishFunction(BodyRange.getEnd());
1592 
1593   // If we haven't marked the function nothrow through other means, do
1594   // a quick pass now to see if we can.
1595   if (!CurFn->doesNotThrow())
1596     TryMarkNoThrow(CurFn);
1597 }
1598 
1599 /// ContainsLabel - Return true if the statement contains a label in it.  If
1600 /// this statement is not executed normally, it not containing a label means
1601 /// that we can just remove the code.
1602 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1603   // Null statement, not a label!
1604   if (!S) return false;
1605 
1606   // If this is a label, we have to emit the code, consider something like:
1607   // if (0) {  ...  foo:  bar(); }  goto foo;
1608   //
1609   // TODO: If anyone cared, we could track __label__'s, since we know that you
1610   // can't jump to one from outside their declared region.
1611   if (isa<LabelStmt>(S))
1612     return true;
1613 
1614   // If this is a case/default statement, and we haven't seen a switch, we have
1615   // to emit the code.
1616   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1617     return true;
1618 
1619   // If this is a switch statement, we want to ignore cases below it.
1620   if (isa<SwitchStmt>(S))
1621     IgnoreCaseStmts = true;
1622 
1623   // Scan subexpressions for verboten labels.
1624   for (const Stmt *SubStmt : S->children())
1625     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1626       return true;
1627 
1628   return false;
1629 }
1630 
1631 /// containsBreak - Return true if the statement contains a break out of it.
1632 /// If the statement (recursively) contains a switch or loop with a break
1633 /// inside of it, this is fine.
1634 bool CodeGenFunction::containsBreak(const Stmt *S) {
1635   // Null statement, not a label!
1636   if (!S) return false;
1637 
1638   // If this is a switch or loop that defines its own break scope, then we can
1639   // include it and anything inside of it.
1640   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1641       isa<ForStmt>(S))
1642     return false;
1643 
1644   if (isa<BreakStmt>(S))
1645     return true;
1646 
1647   // Scan subexpressions for verboten breaks.
1648   for (const Stmt *SubStmt : S->children())
1649     if (containsBreak(SubStmt))
1650       return true;
1651 
1652   return false;
1653 }
1654 
1655 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1656   if (!S) return false;
1657 
1658   // Some statement kinds add a scope and thus never add a decl to the current
1659   // scope. Note, this list is longer than the list of statements that might
1660   // have an unscoped decl nested within them, but this way is conservatively
1661   // correct even if more statement kinds are added.
1662   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1663       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1664       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1665       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1666     return false;
1667 
1668   if (isa<DeclStmt>(S))
1669     return true;
1670 
1671   for (const Stmt *SubStmt : S->children())
1672     if (mightAddDeclToScope(SubStmt))
1673       return true;
1674 
1675   return false;
1676 }
1677 
1678 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1679 /// to a constant, or if it does but contains a label, return false.  If it
1680 /// constant folds return true and set the boolean result in Result.
1681 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1682                                                    bool &ResultBool,
1683                                                    bool AllowLabels) {
1684   // If MC/DC is enabled, disable folding so that we can instrument all
1685   // conditions to yield complete test vectors. We still keep track of
1686   // folded conditions during region mapping and visualization.
1687   if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1688       CGM.getCodeGenOpts().MCDCCoverage)
1689     return false;
1690 
1691   llvm::APSInt ResultInt;
1692   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1693     return false;
1694 
1695   ResultBool = ResultInt.getBoolValue();
1696   return true;
1697 }
1698 
1699 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1700 /// to a constant, or if it does but contains a label, return false.  If it
1701 /// constant folds return true and set the folded value.
1702 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1703                                                    llvm::APSInt &ResultInt,
1704                                                    bool AllowLabels) {
1705   // FIXME: Rename and handle conversion of other evaluatable things
1706   // to bool.
1707   Expr::EvalResult Result;
1708   if (!Cond->EvaluateAsInt(Result, getContext()))
1709     return false;  // Not foldable, not integer or not fully evaluatable.
1710 
1711   llvm::APSInt Int = Result.Val.getInt();
1712   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1713     return false;  // Contains a label.
1714 
1715   ResultInt = Int;
1716   return true;
1717 }
1718 
1719 /// Strip parentheses and simplistic logical-NOT operators.
1720 const Expr *CodeGenFunction::stripCond(const Expr *C) {
1721   while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) {
1722     if (Op->getOpcode() != UO_LNot)
1723       break;
1724     C = Op->getSubExpr();
1725   }
1726   return C->IgnoreParens();
1727 }
1728 
1729 /// Determine whether the given condition is an instrumentable condition
1730 /// (i.e. no "&&" or "||").
1731 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1732   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C));
1733   return (!BOp || !BOp->isLogicalOp());
1734 }
1735 
1736 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1737 /// increments a profile counter based on the semantics of the given logical
1738 /// operator opcode.  This is used to instrument branch condition coverage for
1739 /// logical operators.
1740 void CodeGenFunction::EmitBranchToCounterBlock(
1741     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1742     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1743     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1744   // If not instrumenting, just emit a branch.
1745   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1746   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1747     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1748 
1749   llvm::BasicBlock *ThenBlock = nullptr;
1750   llvm::BasicBlock *ElseBlock = nullptr;
1751   llvm::BasicBlock *NextBlock = nullptr;
1752 
1753   // Create the block we'll use to increment the appropriate counter.
1754   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1755 
1756   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1757   // means we need to evaluate the condition and increment the counter on TRUE:
1758   //
1759   // if (Cond)
1760   //   goto CounterIncrBlock;
1761   // else
1762   //   goto FalseBlock;
1763   //
1764   // CounterIncrBlock:
1765   //   Counter++;
1766   //   goto TrueBlock;
1767 
1768   if (LOp == BO_LAnd) {
1769     ThenBlock = CounterIncrBlock;
1770     ElseBlock = FalseBlock;
1771     NextBlock = TrueBlock;
1772   }
1773 
1774   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1775   // we need to evaluate the condition and increment the counter on FALSE:
1776   //
1777   // if (Cond)
1778   //   goto TrueBlock;
1779   // else
1780   //   goto CounterIncrBlock;
1781   //
1782   // CounterIncrBlock:
1783   //   Counter++;
1784   //   goto FalseBlock;
1785 
1786   else if (LOp == BO_LOr) {
1787     ThenBlock = TrueBlock;
1788     ElseBlock = CounterIncrBlock;
1789     NextBlock = FalseBlock;
1790   } else {
1791     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1792   }
1793 
1794   // Emit Branch based on condition.
1795   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1796 
1797   // Emit the block containing the counter increment(s).
1798   EmitBlock(CounterIncrBlock);
1799 
1800   // Increment corresponding counter; if index not provided, use Cond as index.
1801   incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1802 
1803   // Go to the next block.
1804   EmitBranch(NextBlock);
1805 }
1806 
1807 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1808 /// statement) to the specified blocks.  Based on the condition, this might try
1809 /// to simplify the codegen of the conditional based on the branch.
1810 /// \param LH The value of the likelihood attribute on the True branch.
1811 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the
1812 /// ConditionalOperator (ternary) through a recursive call for the operator's
1813 /// LHS and RHS nodes.
1814 void CodeGenFunction::EmitBranchOnBoolExpr(
1815     const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock,
1816     uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) {
1817   Cond = Cond->IgnoreParens();
1818 
1819   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1820     // Handle X && Y in a condition.
1821     if (CondBOp->getOpcode() == BO_LAnd) {
1822       MCDCLogOpStack.push_back(CondBOp);
1823 
1824       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1825       // folded if the case was simple enough.
1826       bool ConstantBool = false;
1827       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1828           ConstantBool) {
1829         // br(1 && X) -> br(X).
1830         incrementProfileCounter(CondBOp);
1831         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1832                                  FalseBlock, TrueCount, LH);
1833         MCDCLogOpStack.pop_back();
1834         return;
1835       }
1836 
1837       // If we have "X && 1", simplify the code to use an uncond branch.
1838       // "X && 0" would have been constant folded to 0.
1839       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1840           ConstantBool) {
1841         // br(X && 1) -> br(X).
1842         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1843                                  FalseBlock, TrueCount, LH, CondBOp);
1844         MCDCLogOpStack.pop_back();
1845         return;
1846       }
1847 
1848       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1849       // want to jump to the FalseBlock.
1850       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1851       // The counter tells us how often we evaluate RHS, and all of TrueCount
1852       // can be propagated to that branch.
1853       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1854 
1855       ConditionalEvaluation eval(*this);
1856       {
1857         ApplyDebugLocation DL(*this, Cond);
1858         // Propagate the likelihood attribute like __builtin_expect
1859         // __builtin_expect(X && Y, 1) -> X and Y are likely
1860         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1861         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1862                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1863         EmitBlock(LHSTrue);
1864       }
1865 
1866       incrementProfileCounter(CondBOp);
1867       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1868 
1869       // Any temporaries created here are conditional.
1870       eval.begin(*this);
1871       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1872                                FalseBlock, TrueCount, LH);
1873       eval.end(*this);
1874       MCDCLogOpStack.pop_back();
1875       return;
1876     }
1877 
1878     if (CondBOp->getOpcode() == BO_LOr) {
1879       MCDCLogOpStack.push_back(CondBOp);
1880 
1881       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1882       // folded if the case was simple enough.
1883       bool ConstantBool = false;
1884       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1885           !ConstantBool) {
1886         // br(0 || X) -> br(X).
1887         incrementProfileCounter(CondBOp);
1888         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1889                                  FalseBlock, TrueCount, LH);
1890         MCDCLogOpStack.pop_back();
1891         return;
1892       }
1893 
1894       // If we have "X || 0", simplify the code to use an uncond branch.
1895       // "X || 1" would have been constant folded to 1.
1896       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1897           !ConstantBool) {
1898         // br(X || 0) -> br(X).
1899         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1900                                  FalseBlock, TrueCount, LH, CondBOp);
1901         MCDCLogOpStack.pop_back();
1902         return;
1903       }
1904       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1905       // want to jump to the TrueBlock.
1906       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1907       // We have the count for entry to the RHS and for the whole expression
1908       // being true, so we can divy up True count between the short circuit and
1909       // the RHS.
1910       uint64_t LHSCount =
1911           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1912       uint64_t RHSCount = TrueCount - LHSCount;
1913 
1914       ConditionalEvaluation eval(*this);
1915       {
1916         // Propagate the likelihood attribute like __builtin_expect
1917         // __builtin_expect(X || Y, 1) -> only Y is likely
1918         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1919         ApplyDebugLocation DL(*this, Cond);
1920         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1921                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1922         EmitBlock(LHSFalse);
1923       }
1924 
1925       incrementProfileCounter(CondBOp);
1926       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1927 
1928       // Any temporaries created here are conditional.
1929       eval.begin(*this);
1930       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1931                                RHSCount, LH);
1932 
1933       eval.end(*this);
1934       MCDCLogOpStack.pop_back();
1935       return;
1936     }
1937   }
1938 
1939   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1940     // br(!x, t, f) -> br(x, f, t)
1941     // Avoid doing this optimization when instrumenting a condition for MC/DC.
1942     // LNot is taken as part of the condition for simplicity, and changing its
1943     // sense negatively impacts test vector tracking.
1944     bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() &&
1945                          CGM.getCodeGenOpts().MCDCCoverage &&
1946                          isInstrumentedCondition(Cond);
1947     if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) {
1948       // Negate the count.
1949       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1950       // The values of the enum are chosen to make this negation possible.
1951       LH = static_cast<Stmt::Likelihood>(-LH);
1952       // Negate the condition and swap the destination blocks.
1953       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1954                                   FalseCount, LH);
1955     }
1956   }
1957 
1958   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1959     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1960     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1961     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1962 
1963     // The ConditionalOperator itself has no likelihood information for its
1964     // true and false branches. This matches the behavior of __builtin_expect.
1965     ConditionalEvaluation cond(*this);
1966     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1967                          getProfileCount(CondOp), Stmt::LH_None);
1968 
1969     // When computing PGO branch weights, we only know the overall count for
1970     // the true block. This code is essentially doing tail duplication of the
1971     // naive code-gen, introducing new edges for which counts are not
1972     // available. Divide the counts proportionally between the LHS and RHS of
1973     // the conditional operator.
1974     uint64_t LHSScaledTrueCount = 0;
1975     if (TrueCount) {
1976       double LHSRatio =
1977           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1978       LHSScaledTrueCount = TrueCount * LHSRatio;
1979     }
1980 
1981     cond.begin(*this);
1982     EmitBlock(LHSBlock);
1983     incrementProfileCounter(CondOp);
1984     {
1985       ApplyDebugLocation DL(*this, Cond);
1986       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1987                            LHSScaledTrueCount, LH, CondOp);
1988     }
1989     cond.end(*this);
1990 
1991     cond.begin(*this);
1992     EmitBlock(RHSBlock);
1993     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1994                          TrueCount - LHSScaledTrueCount, LH, CondOp);
1995     cond.end(*this);
1996 
1997     return;
1998   }
1999 
2000   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
2001     // Conditional operator handling can give us a throw expression as a
2002     // condition for a case like:
2003     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
2004     // Fold this to:
2005     //   br(c, throw x, br(y, t, f))
2006     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
2007     return;
2008   }
2009 
2010   // Emit the code with the fully general case.
2011   llvm::Value *CondV;
2012   {
2013     ApplyDebugLocation DL(*this, Cond);
2014     CondV = EvaluateExprAsBool(Cond);
2015   }
2016 
2017   // If not at the top of the logical operator nest, update MCDC temp with the
2018   // boolean result of the evaluated condition.
2019   if (!MCDCLogOpStack.empty()) {
2020     const Expr *MCDCBaseExpr = Cond;
2021     // When a nested ConditionalOperator (ternary) is encountered in a boolean
2022     // expression, MC/DC tracks the result of the ternary, and this is tied to
2023     // the ConditionalOperator expression and not the ternary's LHS or RHS. If
2024     // this is the case, the ConditionalOperator expression is passed through
2025     // the ConditionalOp parameter and then used as the MCDC base expression.
2026     if (ConditionalOp)
2027       MCDCBaseExpr = ConditionalOp;
2028 
2029     maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV);
2030   }
2031 
2032   llvm::MDNode *Weights = nullptr;
2033   llvm::MDNode *Unpredictable = nullptr;
2034 
2035   // If the branch has a condition wrapped by __builtin_unpredictable,
2036   // create metadata that specifies that the branch is unpredictable.
2037   // Don't bother if not optimizing because that metadata would not be used.
2038   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
2039   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
2040     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
2041     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
2042       llvm::MDBuilder MDHelper(getLLVMContext());
2043       Unpredictable = MDHelper.createUnpredictable();
2044     }
2045   }
2046 
2047   // If there is a Likelihood knowledge for the cond, lower it.
2048   // Note that if not optimizing this won't emit anything.
2049   llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
2050   if (CondV != NewCondV)
2051     CondV = NewCondV;
2052   else {
2053     // Otherwise, lower profile counts. Note that we do this even at -O0.
2054     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
2055     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
2056   }
2057 
2058   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
2059 }
2060 
2061 /// ErrorUnsupported - Print out an error that codegen doesn't support the
2062 /// specified stmt yet.
2063 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
2064   CGM.ErrorUnsupported(S, Type);
2065 }
2066 
2067 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
2068 /// variable-length array whose elements have a non-zero bit-pattern.
2069 ///
2070 /// \param baseType the inner-most element type of the array
2071 /// \param src - a char* pointing to the bit-pattern for a single
2072 /// base element of the array
2073 /// \param sizeInChars - the total size of the VLA, in chars
2074 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
2075                                Address dest, Address src,
2076                                llvm::Value *sizeInChars) {
2077   CGBuilderTy &Builder = CGF.Builder;
2078 
2079   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
2080   llvm::Value *baseSizeInChars
2081     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
2082 
2083   Address begin = dest.withElementType(CGF.Int8Ty);
2084   llvm::Value *end = Builder.CreateInBoundsGEP(begin.getElementType(),
2085                                                begin.emitRawPointer(CGF),
2086                                                sizeInChars, "vla.end");
2087 
2088   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
2089   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
2090   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
2091 
2092   // Make a loop over the VLA.  C99 guarantees that the VLA element
2093   // count must be nonzero.
2094   CGF.EmitBlock(loopBB);
2095 
2096   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
2097   cur->addIncoming(begin.emitRawPointer(CGF), originBB);
2098 
2099   CharUnits curAlign =
2100     dest.getAlignment().alignmentOfArrayElement(baseSize);
2101 
2102   // memcpy the individual element bit-pattern.
2103   Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars,
2104                        /*volatile*/ false);
2105 
2106   // Go to the next element.
2107   llvm::Value *next =
2108     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
2109 
2110   // Leave if that's the end of the VLA.
2111   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
2112   Builder.CreateCondBr(done, contBB, loopBB);
2113   cur->addIncoming(next, loopBB);
2114 
2115   CGF.EmitBlock(contBB);
2116 }
2117 
2118 void
2119 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
2120   // Ignore empty classes in C++.
2121   if (getLangOpts().CPlusPlus) {
2122     if (const RecordType *RT = Ty->getAs<RecordType>()) {
2123       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
2124         return;
2125     }
2126   }
2127 
2128   if (DestPtr.getElementType() != Int8Ty)
2129     DestPtr = DestPtr.withElementType(Int8Ty);
2130 
2131   // Get size and alignment info for this aggregate.
2132   CharUnits size = getContext().getTypeSizeInChars(Ty);
2133 
2134   llvm::Value *SizeVal;
2135   const VariableArrayType *vla;
2136 
2137   // Don't bother emitting a zero-byte memset.
2138   if (size.isZero()) {
2139     // But note that getTypeInfo returns 0 for a VLA.
2140     if (const VariableArrayType *vlaType =
2141           dyn_cast_or_null<VariableArrayType>(
2142                                           getContext().getAsArrayType(Ty))) {
2143       auto VlaSize = getVLASize(vlaType);
2144       SizeVal = VlaSize.NumElts;
2145       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
2146       if (!eltSize.isOne())
2147         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
2148       vla = vlaType;
2149     } else {
2150       return;
2151     }
2152   } else {
2153     SizeVal = CGM.getSize(size);
2154     vla = nullptr;
2155   }
2156 
2157   // If the type contains a pointer to data member we can't memset it to zero.
2158   // Instead, create a null constant and copy it to the destination.
2159   // TODO: there are other patterns besides zero that we can usefully memset,
2160   // like -1, which happens to be the pattern used by member-pointers.
2161   if (!CGM.getTypes().isZeroInitializable(Ty)) {
2162     // For a VLA, emit a single element, then splat that over the VLA.
2163     if (vla) Ty = getContext().getBaseElementType(vla);
2164 
2165     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
2166 
2167     llvm::GlobalVariable *NullVariable =
2168       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
2169                                /*isConstant=*/true,
2170                                llvm::GlobalVariable::PrivateLinkage,
2171                                NullConstant, Twine());
2172     CharUnits NullAlign = DestPtr.getAlignment();
2173     NullVariable->setAlignment(NullAlign.getAsAlign());
2174     Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign);
2175 
2176     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2177 
2178     // Get and call the appropriate llvm.memcpy overload.
2179     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2180     return;
2181   }
2182 
2183   // Otherwise, just memset the whole thing to zero.  This is legal
2184   // because in LLVM, all default initializers (other than the ones we just
2185   // handled above) are guaranteed to have a bit pattern of all zeros.
2186   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2187 }
2188 
2189 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2190   // Make sure that there is a block for the indirect goto.
2191   if (!IndirectBranch)
2192     GetIndirectGotoBlock();
2193 
2194   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2195 
2196   // Make sure the indirect branch includes all of the address-taken blocks.
2197   IndirectBranch->addDestination(BB);
2198   return llvm::BlockAddress::get(CurFn, BB);
2199 }
2200 
2201 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2202   // If we already made the indirect branch for indirect goto, return its block.
2203   if (IndirectBranch) return IndirectBranch->getParent();
2204 
2205   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2206 
2207   // Create the PHI node that indirect gotos will add entries to.
2208   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2209                                               "indirect.goto.dest");
2210 
2211   // Create the indirect branch instruction.
2212   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2213   return IndirectBranch->getParent();
2214 }
2215 
2216 /// Computes the length of an array in elements, as well as the base
2217 /// element type and a properly-typed first element pointer.
2218 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2219                                               QualType &baseType,
2220                                               Address &addr) {
2221   const ArrayType *arrayType = origArrayType;
2222 
2223   // If it's a VLA, we have to load the stored size.  Note that
2224   // this is the size of the VLA in bytes, not its size in elements.
2225   llvm::Value *numVLAElements = nullptr;
2226   if (isa<VariableArrayType>(arrayType)) {
2227     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2228 
2229     // Walk into all VLAs.  This doesn't require changes to addr,
2230     // which has type T* where T is the first non-VLA element type.
2231     do {
2232       QualType elementType = arrayType->getElementType();
2233       arrayType = getContext().getAsArrayType(elementType);
2234 
2235       // If we only have VLA components, 'addr' requires no adjustment.
2236       if (!arrayType) {
2237         baseType = elementType;
2238         return numVLAElements;
2239       }
2240     } while (isa<VariableArrayType>(arrayType));
2241 
2242     // We get out here only if we find a constant array type
2243     // inside the VLA.
2244   }
2245 
2246   // We have some number of constant-length arrays, so addr should
2247   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2248   // down to the first element of addr.
2249   SmallVector<llvm::Value*, 8> gepIndices;
2250 
2251   // GEP down to the array type.
2252   llvm::ConstantInt *zero = Builder.getInt32(0);
2253   gepIndices.push_back(zero);
2254 
2255   uint64_t countFromCLAs = 1;
2256   QualType eltType;
2257 
2258   llvm::ArrayType *llvmArrayType =
2259     dyn_cast<llvm::ArrayType>(addr.getElementType());
2260   while (llvmArrayType) {
2261     assert(isa<ConstantArrayType>(arrayType));
2262     assert(cast<ConstantArrayType>(arrayType)->getZExtSize() ==
2263            llvmArrayType->getNumElements());
2264 
2265     gepIndices.push_back(zero);
2266     countFromCLAs *= llvmArrayType->getNumElements();
2267     eltType = arrayType->getElementType();
2268 
2269     llvmArrayType =
2270       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2271     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2272     assert((!llvmArrayType || arrayType) &&
2273            "LLVM and Clang types are out-of-synch");
2274   }
2275 
2276   if (arrayType) {
2277     // From this point onwards, the Clang array type has been emitted
2278     // as some other type (probably a packed struct). Compute the array
2279     // size, and just emit the 'begin' expression as a bitcast.
2280     while (arrayType) {
2281       countFromCLAs *= cast<ConstantArrayType>(arrayType)->getZExtSize();
2282       eltType = arrayType->getElementType();
2283       arrayType = getContext().getAsArrayType(eltType);
2284     }
2285 
2286     llvm::Type *baseType = ConvertType(eltType);
2287     addr = addr.withElementType(baseType);
2288   } else {
2289     // Create the actual GEP.
2290     addr = Address(Builder.CreateInBoundsGEP(addr.getElementType(),
2291                                              addr.emitRawPointer(*this),
2292                                              gepIndices, "array.begin"),
2293                    ConvertTypeForMem(eltType), addr.getAlignment());
2294   }
2295 
2296   baseType = eltType;
2297 
2298   llvm::Value *numElements
2299     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2300 
2301   // If we had any VLA dimensions, factor them in.
2302   if (numVLAElements)
2303     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2304 
2305   return numElements;
2306 }
2307 
2308 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2309   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2310   assert(vla && "type was not a variable array type!");
2311   return getVLASize(vla);
2312 }
2313 
2314 CodeGenFunction::VlaSizePair
2315 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2316   // The number of elements so far; always size_t.
2317   llvm::Value *numElements = nullptr;
2318 
2319   QualType elementType;
2320   do {
2321     elementType = type->getElementType();
2322     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2323     assert(vlaSize && "no size for VLA!");
2324     assert(vlaSize->getType() == SizeTy);
2325 
2326     if (!numElements) {
2327       numElements = vlaSize;
2328     } else {
2329       // It's undefined behavior if this wraps around, so mark it that way.
2330       // FIXME: Teach -fsanitize=undefined to trap this.
2331       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2332     }
2333   } while ((type = getContext().getAsVariableArrayType(elementType)));
2334 
2335   return { numElements, elementType };
2336 }
2337 
2338 CodeGenFunction::VlaSizePair
2339 CodeGenFunction::getVLAElements1D(QualType type) {
2340   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2341   assert(vla && "type was not a variable array type!");
2342   return getVLAElements1D(vla);
2343 }
2344 
2345 CodeGenFunction::VlaSizePair
2346 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2347   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2348   assert(VlaSize && "no size for VLA!");
2349   assert(VlaSize->getType() == SizeTy);
2350   return { VlaSize, Vla->getElementType() };
2351 }
2352 
2353 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2354   assert(type->isVariablyModifiedType() &&
2355          "Must pass variably modified type to EmitVLASizes!");
2356 
2357   EnsureInsertPoint();
2358 
2359   // We're going to walk down into the type and look for VLA
2360   // expressions.
2361   do {
2362     assert(type->isVariablyModifiedType());
2363 
2364     const Type *ty = type.getTypePtr();
2365     switch (ty->getTypeClass()) {
2366 
2367 #define TYPE(Class, Base)
2368 #define ABSTRACT_TYPE(Class, Base)
2369 #define NON_CANONICAL_TYPE(Class, Base)
2370 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2371 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2372 #include "clang/AST/TypeNodes.inc"
2373       llvm_unreachable("unexpected dependent type!");
2374 
2375     // These types are never variably-modified.
2376     case Type::Builtin:
2377     case Type::Complex:
2378     case Type::Vector:
2379     case Type::ExtVector:
2380     case Type::ConstantMatrix:
2381     case Type::Record:
2382     case Type::Enum:
2383     case Type::Using:
2384     case Type::TemplateSpecialization:
2385     case Type::ObjCTypeParam:
2386     case Type::ObjCObject:
2387     case Type::ObjCInterface:
2388     case Type::ObjCObjectPointer:
2389     case Type::BitInt:
2390       llvm_unreachable("type class is never variably-modified!");
2391 
2392     case Type::Elaborated:
2393       type = cast<ElaboratedType>(ty)->getNamedType();
2394       break;
2395 
2396     case Type::Adjusted:
2397       type = cast<AdjustedType>(ty)->getAdjustedType();
2398       break;
2399 
2400     case Type::Decayed:
2401       type = cast<DecayedType>(ty)->getPointeeType();
2402       break;
2403 
2404     case Type::Pointer:
2405       type = cast<PointerType>(ty)->getPointeeType();
2406       break;
2407 
2408     case Type::BlockPointer:
2409       type = cast<BlockPointerType>(ty)->getPointeeType();
2410       break;
2411 
2412     case Type::LValueReference:
2413     case Type::RValueReference:
2414       type = cast<ReferenceType>(ty)->getPointeeType();
2415       break;
2416 
2417     case Type::MemberPointer:
2418       type = cast<MemberPointerType>(ty)->getPointeeType();
2419       break;
2420 
2421     case Type::ArrayParameter:
2422     case Type::ConstantArray:
2423     case Type::IncompleteArray:
2424       // Losing element qualification here is fine.
2425       type = cast<ArrayType>(ty)->getElementType();
2426       break;
2427 
2428     case Type::VariableArray: {
2429       // Losing element qualification here is fine.
2430       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2431 
2432       // Unknown size indication requires no size computation.
2433       // Otherwise, evaluate and record it.
2434       if (const Expr *sizeExpr = vat->getSizeExpr()) {
2435         // It's possible that we might have emitted this already,
2436         // e.g. with a typedef and a pointer to it.
2437         llvm::Value *&entry = VLASizeMap[sizeExpr];
2438         if (!entry) {
2439           llvm::Value *size = EmitScalarExpr(sizeExpr);
2440 
2441           // C11 6.7.6.2p5:
2442           //   If the size is an expression that is not an integer constant
2443           //   expression [...] each time it is evaluated it shall have a value
2444           //   greater than zero.
2445           if (SanOpts.has(SanitizerKind::VLABound)) {
2446             SanitizerScope SanScope(this);
2447             llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2448             clang::QualType SEType = sizeExpr->getType();
2449             llvm::Value *CheckCondition =
2450                 SEType->isSignedIntegerType()
2451                     ? Builder.CreateICmpSGT(size, Zero)
2452                     : Builder.CreateICmpUGT(size, Zero);
2453             llvm::Constant *StaticArgs[] = {
2454                 EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2455                 EmitCheckTypeDescriptor(SEType)};
2456             EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2457                       SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2458           }
2459 
2460           // Always zexting here would be wrong if it weren't
2461           // undefined behavior to have a negative bound.
2462           // FIXME: What about when size's type is larger than size_t?
2463           entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2464         }
2465       }
2466       type = vat->getElementType();
2467       break;
2468     }
2469 
2470     case Type::FunctionProto:
2471     case Type::FunctionNoProto:
2472       type = cast<FunctionType>(ty)->getReturnType();
2473       break;
2474 
2475     case Type::Paren:
2476     case Type::TypeOf:
2477     case Type::UnaryTransform:
2478     case Type::Attributed:
2479     case Type::BTFTagAttributed:
2480     case Type::SubstTemplateTypeParm:
2481     case Type::MacroQualified:
2482     case Type::CountAttributed:
2483       // Keep walking after single level desugaring.
2484       type = type.getSingleStepDesugaredType(getContext());
2485       break;
2486 
2487     case Type::Typedef:
2488     case Type::Decltype:
2489     case Type::Auto:
2490     case Type::DeducedTemplateSpecialization:
2491     case Type::PackIndexing:
2492       // Stop walking: nothing to do.
2493       return;
2494 
2495     case Type::TypeOfExpr:
2496       // Stop walking: emit typeof expression.
2497       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2498       return;
2499 
2500     case Type::Atomic:
2501       type = cast<AtomicType>(ty)->getValueType();
2502       break;
2503 
2504     case Type::Pipe:
2505       type = cast<PipeType>(ty)->getElementType();
2506       break;
2507     }
2508   } while (type->isVariablyModifiedType());
2509 }
2510 
2511 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2512   if (getContext().getBuiltinVaListType()->isArrayType())
2513     return EmitPointerWithAlignment(E);
2514   return EmitLValue(E).getAddress();
2515 }
2516 
2517 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2518   return EmitLValue(E).getAddress();
2519 }
2520 
2521 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2522                                               const APValue &Init) {
2523   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2524   if (CGDebugInfo *Dbg = getDebugInfo())
2525     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2526       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2527 }
2528 
2529 CodeGenFunction::PeepholeProtection
2530 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2531   // At the moment, the only aggressive peephole we do in IR gen
2532   // is trunc(zext) folding, but if we add more, we can easily
2533   // extend this protection.
2534 
2535   if (!rvalue.isScalar()) return PeepholeProtection();
2536   llvm::Value *value = rvalue.getScalarVal();
2537   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2538 
2539   // Just make an extra bitcast.
2540   assert(HaveInsertPoint());
2541   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2542                                                   Builder.GetInsertBlock());
2543 
2544   PeepholeProtection protection;
2545   protection.Inst = inst;
2546   return protection;
2547 }
2548 
2549 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2550   if (!protection.Inst) return;
2551 
2552   // In theory, we could try to duplicate the peepholes now, but whatever.
2553   protection.Inst->eraseFromParent();
2554 }
2555 
2556 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2557                                               QualType Ty, SourceLocation Loc,
2558                                               SourceLocation AssumptionLoc,
2559                                               llvm::Value *Alignment,
2560                                               llvm::Value *OffsetValue) {
2561   if (Alignment->getType() != IntPtrTy)
2562     Alignment =
2563         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2564   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2565     OffsetValue =
2566         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2567   llvm::Value *TheCheck = nullptr;
2568   if (SanOpts.has(SanitizerKind::Alignment)) {
2569     llvm::Value *PtrIntValue =
2570         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2571 
2572     if (OffsetValue) {
2573       bool IsOffsetZero = false;
2574       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2575         IsOffsetZero = CI->isZero();
2576 
2577       if (!IsOffsetZero)
2578         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2579     }
2580 
2581     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2582     llvm::Value *Mask =
2583         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2584     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2585     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2586   }
2587   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2588       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2589 
2590   if (!SanOpts.has(SanitizerKind::Alignment))
2591     return;
2592   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2593                                OffsetValue, TheCheck, Assumption);
2594 }
2595 
2596 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2597                                               const Expr *E,
2598                                               SourceLocation AssumptionLoc,
2599                                               llvm::Value *Alignment,
2600                                               llvm::Value *OffsetValue) {
2601   QualType Ty = E->getType();
2602   SourceLocation Loc = E->getExprLoc();
2603 
2604   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2605                           OffsetValue);
2606 }
2607 
2608 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2609                                                  llvm::Value *AnnotatedVal,
2610                                                  StringRef AnnotationStr,
2611                                                  SourceLocation Location,
2612                                                  const AnnotateAttr *Attr) {
2613   SmallVector<llvm::Value *, 5> Args = {
2614       AnnotatedVal,
2615       CGM.EmitAnnotationString(AnnotationStr),
2616       CGM.EmitAnnotationUnit(Location),
2617       CGM.EmitAnnotationLineNo(Location),
2618   };
2619   if (Attr)
2620     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2621   return Builder.CreateCall(AnnotationFn, Args);
2622 }
2623 
2624 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2625   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2626   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2627     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation,
2628                                         {V->getType(), CGM.ConstGlobalsPtrTy}),
2629                        V, I->getAnnotation(), D->getLocation(), I);
2630 }
2631 
2632 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2633                                               Address Addr) {
2634   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2635   llvm::Value *V = Addr.emitRawPointer(*this);
2636   llvm::Type *VTy = V->getType();
2637   auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2638   unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2639   llvm::PointerType *IntrinTy =
2640       llvm::PointerType::get(CGM.getLLVMContext(), AS);
2641   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2642                                        {IntrinTy, CGM.ConstGlobalsPtrTy});
2643 
2644   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2645     // FIXME Always emit the cast inst so we can differentiate between
2646     // annotation on the first field of a struct and annotation on the struct
2647     // itself.
2648     if (VTy != IntrinTy)
2649       V = Builder.CreateBitCast(V, IntrinTy);
2650     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2651     V = Builder.CreateBitCast(V, VTy);
2652   }
2653 
2654   return Address(V, Addr.getElementType(), Addr.getAlignment());
2655 }
2656 
2657 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2658 
2659 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2660     : CGF(CGF) {
2661   assert(!CGF->IsSanitizerScope);
2662   CGF->IsSanitizerScope = true;
2663 }
2664 
2665 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2666   CGF->IsSanitizerScope = false;
2667 }
2668 
2669 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2670                                    const llvm::Twine &Name,
2671                                    llvm::BasicBlock::iterator InsertPt) const {
2672   LoopStack.InsertHelper(I);
2673   if (IsSanitizerScope)
2674     I->setNoSanitizeMetadata();
2675 }
2676 
2677 void CGBuilderInserter::InsertHelper(
2678     llvm::Instruction *I, const llvm::Twine &Name,
2679     llvm::BasicBlock::iterator InsertPt) const {
2680   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, InsertPt);
2681   if (CGF)
2682     CGF->InsertHelper(I, Name, InsertPt);
2683 }
2684 
2685 // Emits an error if we don't have a valid set of target features for the
2686 // called function.
2687 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2688                                           const FunctionDecl *TargetDecl) {
2689   // SemaChecking cannot handle below x86 builtins because they have different
2690   // parameter ranges with different TargetAttribute of caller.
2691   if (CGM.getContext().getTargetInfo().getTriple().isX86()) {
2692     unsigned BuiltinID = TargetDecl->getBuiltinID();
2693     if (BuiltinID == X86::BI__builtin_ia32_cmpps ||
2694         BuiltinID == X86::BI__builtin_ia32_cmpss ||
2695         BuiltinID == X86::BI__builtin_ia32_cmppd ||
2696         BuiltinID == X86::BI__builtin_ia32_cmpsd) {
2697       const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2698       llvm::StringMap<bool> TargetFetureMap;
2699       CGM.getContext().getFunctionFeatureMap(TargetFetureMap, FD);
2700       llvm::APSInt Result =
2701           *(E->getArg(2)->getIntegerConstantExpr(CGM.getContext()));
2702       if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup("avx"))
2703         CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature)
2704             << TargetDecl->getDeclName() << "avx";
2705     }
2706   }
2707   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2708 }
2709 
2710 // Emits an error if we don't have a valid set of target features for the
2711 // called function.
2712 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2713                                           const FunctionDecl *TargetDecl) {
2714   // Early exit if this is an indirect call.
2715   if (!TargetDecl)
2716     return;
2717 
2718   // Get the current enclosing function if it exists. If it doesn't
2719   // we can't check the target features anyhow.
2720   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2721   if (!FD)
2722     return;
2723 
2724   // Grab the required features for the call. For a builtin this is listed in
2725   // the td file with the default cpu, for an always_inline function this is any
2726   // listed cpu and any listed features.
2727   unsigned BuiltinID = TargetDecl->getBuiltinID();
2728   std::string MissingFeature;
2729   llvm::StringMap<bool> CallerFeatureMap;
2730   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2731   // When compiling in HipStdPar mode we have to be conservative in rejecting
2732   // target specific features in the FE, and defer the possible error to the
2733   // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is
2734   // referenced by an accelerator executable function, we emit an error.
2735   bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice;
2736   if (BuiltinID) {
2737     StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2738     if (!Builtin::evaluateRequiredTargetFeatures(
2739         FeatureList, CallerFeatureMap) && !IsHipStdPar) {
2740       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2741           << TargetDecl->getDeclName()
2742           << FeatureList;
2743     }
2744   } else if (!TargetDecl->isMultiVersion() &&
2745              TargetDecl->hasAttr<TargetAttr>()) {
2746     // Get the required features for the callee.
2747 
2748     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2749     ParsedTargetAttr ParsedAttr =
2750         CGM.getContext().filterFunctionTargetAttrs(TD);
2751 
2752     SmallVector<StringRef, 1> ReqFeatures;
2753     llvm::StringMap<bool> CalleeFeatureMap;
2754     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2755 
2756     for (const auto &F : ParsedAttr.Features) {
2757       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2758         ReqFeatures.push_back(StringRef(F).substr(1));
2759     }
2760 
2761     for (const auto &F : CalleeFeatureMap) {
2762       // Only positive features are "required".
2763       if (F.getValue())
2764         ReqFeatures.push_back(F.getKey());
2765     }
2766     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2767       if (!CallerFeatureMap.lookup(Feature)) {
2768         MissingFeature = Feature.str();
2769         return false;
2770       }
2771       return true;
2772     }) && !IsHipStdPar)
2773       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2774           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2775   } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) {
2776     llvm::StringMap<bool> CalleeFeatureMap;
2777     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2778 
2779     for (const auto &F : CalleeFeatureMap) {
2780       if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) ||
2781                            !CallerFeatureMap.find(F.getKey())->getValue()) &&
2782           !IsHipStdPar)
2783         CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2784             << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey();
2785     }
2786   }
2787 }
2788 
2789 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2790   if (!CGM.getCodeGenOpts().SanitizeStats)
2791     return;
2792 
2793   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2794   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2795   CGM.getSanStats().create(IRB, SSK);
2796 }
2797 
2798 void CodeGenFunction::EmitKCFIOperandBundle(
2799     const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
2800   const FunctionProtoType *FP =
2801       Callee.getAbstractInfo().getCalleeFunctionProtoType();
2802   if (FP)
2803     Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar()));
2804 }
2805 
2806 llvm::Value *CodeGenFunction::FormAArch64ResolverCondition(
2807     const MultiVersionResolverOption &RO) {
2808   llvm::SmallVector<StringRef, 8> CondFeatures;
2809   for (const StringRef &Feature : RO.Conditions.Features)
2810     CondFeatures.push_back(Feature);
2811   if (!CondFeatures.empty()) {
2812     return EmitAArch64CpuSupports(CondFeatures);
2813   }
2814   return nullptr;
2815 }
2816 
2817 llvm::Value *CodeGenFunction::FormX86ResolverCondition(
2818     const MultiVersionResolverOption &RO) {
2819   llvm::Value *Condition = nullptr;
2820 
2821   if (!RO.Conditions.Architecture.empty()) {
2822     StringRef Arch = RO.Conditions.Architecture;
2823     // If arch= specifies an x86-64 micro-architecture level, test the feature
2824     // with __builtin_cpu_supports, otherwise use __builtin_cpu_is.
2825     if (Arch.starts_with("x86-64"))
2826       Condition = EmitX86CpuSupports({Arch});
2827     else
2828       Condition = EmitX86CpuIs(Arch);
2829   }
2830 
2831   if (!RO.Conditions.Features.empty()) {
2832     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2833     Condition =
2834         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2835   }
2836   return Condition;
2837 }
2838 
2839 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2840                                              llvm::Function *Resolver,
2841                                              CGBuilderTy &Builder,
2842                                              llvm::Function *FuncToReturn,
2843                                              bool SupportsIFunc) {
2844   if (SupportsIFunc) {
2845     Builder.CreateRet(FuncToReturn);
2846     return;
2847   }
2848 
2849   llvm::SmallVector<llvm::Value *, 10> Args(
2850       llvm::make_pointer_range(Resolver->args()));
2851 
2852   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2853   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2854 
2855   if (Resolver->getReturnType()->isVoidTy())
2856     Builder.CreateRetVoid();
2857   else
2858     Builder.CreateRet(Result);
2859 }
2860 
2861 void CodeGenFunction::EmitMultiVersionResolver(
2862     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2863 
2864   llvm::Triple::ArchType ArchType =
2865       getContext().getTargetInfo().getTriple().getArch();
2866 
2867   switch (ArchType) {
2868   case llvm::Triple::x86:
2869   case llvm::Triple::x86_64:
2870     EmitX86MultiVersionResolver(Resolver, Options);
2871     return;
2872   case llvm::Triple::aarch64:
2873     EmitAArch64MultiVersionResolver(Resolver, Options);
2874     return;
2875 
2876   default:
2877     assert(false && "Only implemented for x86 and AArch64 targets");
2878   }
2879 }
2880 
2881 void CodeGenFunction::EmitAArch64MultiVersionResolver(
2882     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2883   assert(!Options.empty() && "No multiversion resolver options found");
2884   assert(Options.back().Conditions.Features.size() == 0 &&
2885          "Default case must be last");
2886   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2887   assert(SupportsIFunc &&
2888          "Multiversion resolver requires target IFUNC support");
2889   bool AArch64CpuInitialized = false;
2890   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2891 
2892   for (const MultiVersionResolverOption &RO : Options) {
2893     Builder.SetInsertPoint(CurBlock);
2894     llvm::Value *Condition = FormAArch64ResolverCondition(RO);
2895 
2896     // The 'default' or 'all features enabled' case.
2897     if (!Condition) {
2898       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2899                                        SupportsIFunc);
2900       return;
2901     }
2902 
2903     if (!AArch64CpuInitialized) {
2904       Builder.SetInsertPoint(CurBlock, CurBlock->begin());
2905       EmitAArch64CpuInit();
2906       AArch64CpuInitialized = true;
2907       Builder.SetInsertPoint(CurBlock);
2908     }
2909 
2910     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2911     CGBuilderTy RetBuilder(*this, RetBlock);
2912     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2913                                      SupportsIFunc);
2914     CurBlock = createBasicBlock("resolver_else", Resolver);
2915     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2916   }
2917 
2918   // If no default, emit an unreachable.
2919   Builder.SetInsertPoint(CurBlock);
2920   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2921   TrapCall->setDoesNotReturn();
2922   TrapCall->setDoesNotThrow();
2923   Builder.CreateUnreachable();
2924   Builder.ClearInsertionPoint();
2925 }
2926 
2927 void CodeGenFunction::EmitX86MultiVersionResolver(
2928     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2929 
2930   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2931 
2932   // Main function's basic block.
2933   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2934   Builder.SetInsertPoint(CurBlock);
2935   EmitX86CpuInit();
2936 
2937   for (const MultiVersionResolverOption &RO : Options) {
2938     Builder.SetInsertPoint(CurBlock);
2939     llvm::Value *Condition = FormX86ResolverCondition(RO);
2940 
2941     // The 'default' or 'generic' case.
2942     if (!Condition) {
2943       assert(&RO == Options.end() - 1 &&
2944              "Default or Generic case must be last");
2945       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2946                                        SupportsIFunc);
2947       return;
2948     }
2949 
2950     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2951     CGBuilderTy RetBuilder(*this, RetBlock);
2952     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2953                                      SupportsIFunc);
2954     CurBlock = createBasicBlock("resolver_else", Resolver);
2955     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2956   }
2957 
2958   // If no generic/default, emit an unreachable.
2959   Builder.SetInsertPoint(CurBlock);
2960   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2961   TrapCall->setDoesNotReturn();
2962   TrapCall->setDoesNotThrow();
2963   Builder.CreateUnreachable();
2964   Builder.ClearInsertionPoint();
2965 }
2966 
2967 // Loc - where the diagnostic will point, where in the source code this
2968 //  alignment has failed.
2969 // SecondaryLoc - if present (will be present if sufficiently different from
2970 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2971 //  It should be the location where the __attribute__((assume_aligned))
2972 //  was written e.g.
2973 void CodeGenFunction::emitAlignmentAssumptionCheck(
2974     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2975     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2976     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2977     llvm::Instruction *Assumption) {
2978   assert(isa_and_nonnull<llvm::CallInst>(Assumption) &&
2979          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2980              llvm::Intrinsic::getDeclaration(
2981                  Builder.GetInsertBlock()->getParent()->getParent(),
2982                  llvm::Intrinsic::assume) &&
2983          "Assumption should be a call to llvm.assume().");
2984   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2985          "Assumption should be the last instruction of the basic block, "
2986          "since the basic block is still being generated.");
2987 
2988   if (!SanOpts.has(SanitizerKind::Alignment))
2989     return;
2990 
2991   // Don't check pointers to volatile data. The behavior here is implementation-
2992   // defined.
2993   if (Ty->getPointeeType().isVolatileQualified())
2994     return;
2995 
2996   // We need to temorairly remove the assumption so we can insert the
2997   // sanitizer check before it, else the check will be dropped by optimizations.
2998   Assumption->removeFromParent();
2999 
3000   {
3001     SanitizerScope SanScope(this);
3002 
3003     if (!OffsetValue)
3004       OffsetValue = Builder.getInt1(false); // no offset.
3005 
3006     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
3007                                     EmitCheckSourceLocation(SecondaryLoc),
3008                                     EmitCheckTypeDescriptor(Ty)};
3009     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
3010                                   EmitCheckValue(Alignment),
3011                                   EmitCheckValue(OffsetValue)};
3012     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
3013               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
3014   }
3015 
3016   // We are now in the (new, empty) "cont" basic block.
3017   // Reintroduce the assumption.
3018   Builder.Insert(Assumption);
3019   // FIXME: Assumption still has it's original basic block as it's Parent.
3020 }
3021 
3022 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
3023   if (CGDebugInfo *DI = getDebugInfo())
3024     return DI->SourceLocToDebugLoc(Location);
3025 
3026   return llvm::DebugLoc();
3027 }
3028 
3029 llvm::Value *
3030 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
3031                                                       Stmt::Likelihood LH) {
3032   switch (LH) {
3033   case Stmt::LH_None:
3034     return Cond;
3035   case Stmt::LH_Likely:
3036   case Stmt::LH_Unlikely:
3037     // Don't generate llvm.expect on -O0 as the backend won't use it for
3038     // anything.
3039     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
3040       return Cond;
3041     llvm::Type *CondTy = Cond->getType();
3042     assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
3043     llvm::Function *FnExpect =
3044         CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
3045     llvm::Value *ExpectedValueOfCond =
3046         llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
3047     return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
3048                               Cond->getName() + ".expval");
3049   }
3050   llvm_unreachable("Unknown Likelihood");
3051 }
3052 
3053 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec,
3054                                                     unsigned NumElementsDst,
3055                                                     const llvm::Twine &Name) {
3056   auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType());
3057   unsigned NumElementsSrc = SrcTy->getNumElements();
3058   if (NumElementsSrc == NumElementsDst)
3059     return SrcVec;
3060 
3061   std::vector<int> ShuffleMask(NumElementsDst, -1);
3062   for (unsigned MaskIdx = 0;
3063        MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx)
3064     ShuffleMask[MaskIdx] = MaskIdx;
3065 
3066   return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name);
3067 }
3068 
3069 void CodeGenFunction::EmitPointerAuthOperandBundle(
3070     const CGPointerAuthInfo &PointerAuth,
3071     SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
3072   if (!PointerAuth.isSigned())
3073     return;
3074 
3075   auto *Key = Builder.getInt32(PointerAuth.getKey());
3076 
3077   llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3078   if (!Discriminator)
3079     Discriminator = Builder.getSize(0);
3080 
3081   llvm::Value *Args[] = {Key, Discriminator};
3082   Bundles.emplace_back("ptrauth", Args);
3083 }
3084 
3085 static llvm::Value *EmitPointerAuthCommon(CodeGenFunction &CGF,
3086                                           const CGPointerAuthInfo &PointerAuth,
3087                                           llvm::Value *Pointer,
3088                                           unsigned IntrinsicID) {
3089   if (!PointerAuth)
3090     return Pointer;
3091 
3092   auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3093 
3094   llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3095   if (!Discriminator) {
3096     Discriminator = CGF.Builder.getSize(0);
3097   }
3098 
3099   // Convert the pointer to intptr_t before signing it.
3100   auto OrigType = Pointer->getType();
3101   Pointer = CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy);
3102 
3103   // call i64 @llvm.ptrauth.sign.i64(i64 %pointer, i32 %key, i64 %discriminator)
3104   auto Intrinsic = CGF.CGM.getIntrinsic(IntrinsicID);
3105   Pointer = CGF.EmitRuntimeCall(Intrinsic, {Pointer, Key, Discriminator});
3106 
3107   // Convert back to the original type.
3108   Pointer = CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3109   return Pointer;
3110 }
3111 
3112 llvm::Value *
3113 CodeGenFunction::EmitPointerAuthSign(const CGPointerAuthInfo &PointerAuth,
3114                                      llvm::Value *Pointer) {
3115   if (!PointerAuth.shouldSign())
3116     return Pointer;
3117   return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3118                                llvm::Intrinsic::ptrauth_sign);
3119 }
3120 
3121 static llvm::Value *EmitStrip(CodeGenFunction &CGF,
3122                               const CGPointerAuthInfo &PointerAuth,
3123                               llvm::Value *Pointer) {
3124   auto StripIntrinsic = CGF.CGM.getIntrinsic(llvm::Intrinsic::ptrauth_strip);
3125 
3126   auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3127   // Convert the pointer to intptr_t before signing it.
3128   auto OrigType = Pointer->getType();
3129   Pointer = CGF.EmitRuntimeCall(
3130       StripIntrinsic, {CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy), Key});
3131   return CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3132 }
3133 
3134 llvm::Value *
3135 CodeGenFunction::EmitPointerAuthAuth(const CGPointerAuthInfo &PointerAuth,
3136                                      llvm::Value *Pointer) {
3137   if (PointerAuth.shouldStrip()) {
3138     return EmitStrip(*this, PointerAuth, Pointer);
3139   }
3140   if (!PointerAuth.shouldAuth()) {
3141     return Pointer;
3142   }
3143 
3144   return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3145                                llvm::Intrinsic::ptrauth_auth);
3146 }
3147