xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision 7bb441c866781ec14b3e79a4f3e95fd319ab7ff9)
1  //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This coordinates the per-function state used while generating code.
10  //
11  //===----------------------------------------------------------------------===//
12  
13  #include "CodeGenFunction.h"
14  #include "CGBlocks.h"
15  #include "CGCUDARuntime.h"
16  #include "CGCXXABI.h"
17  #include "CGCleanup.h"
18  #include "CGDebugInfo.h"
19  #include "CGOpenMPRuntime.h"
20  #include "CodeGenModule.h"
21  #include "CodeGenPGO.h"
22  #include "TargetInfo.h"
23  #include "clang/AST/ASTContext.h"
24  #include "clang/AST/ASTLambda.h"
25  #include "clang/AST/Attr.h"
26  #include "clang/AST/Decl.h"
27  #include "clang/AST/DeclCXX.h"
28  #include "clang/AST/Expr.h"
29  #include "clang/AST/StmtCXX.h"
30  #include "clang/AST/StmtObjC.h"
31  #include "clang/Basic/Builtins.h"
32  #include "clang/Basic/CodeGenOptions.h"
33  #include "clang/Basic/TargetInfo.h"
34  #include "clang/CodeGen/CGFunctionInfo.h"
35  #include "clang/Frontend/FrontendDiagnostic.h"
36  #include "llvm/ADT/ArrayRef.h"
37  #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
38  #include "llvm/IR/DataLayout.h"
39  #include "llvm/IR/Dominators.h"
40  #include "llvm/IR/FPEnv.h"
41  #include "llvm/IR/IntrinsicInst.h"
42  #include "llvm/IR/Intrinsics.h"
43  #include "llvm/IR/MDBuilder.h"
44  #include "llvm/IR/Operator.h"
45  #include "llvm/Support/CRC.h"
46  #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
47  #include "llvm/Transforms/Utils/PromoteMemToReg.h"
48  
49  using namespace clang;
50  using namespace CodeGen;
51  
52  /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
53  /// markers.
54  static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
55                                        const LangOptions &LangOpts) {
56    if (CGOpts.DisableLifetimeMarkers)
57      return false;
58  
59    // Sanitizers may use markers.
60    if (CGOpts.SanitizeAddressUseAfterScope ||
61        LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
62        LangOpts.Sanitize.has(SanitizerKind::Memory))
63      return true;
64  
65    // For now, only in optimized builds.
66    return CGOpts.OptimizationLevel != 0;
67  }
68  
69  CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
70      : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
71        Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
72                CGBuilderInserterTy(this)),
73        SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
74        DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
75        ShouldEmitLifetimeMarkers(
76            shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
77    if (!suppressNewContext)
78      CGM.getCXXABI().getMangleContext().startNewFunction();
79    EHStack.setCGF(this);
80  
81    SetFastMathFlags(CurFPFeatures);
82  }
83  
84  CodeGenFunction::~CodeGenFunction() {
85    assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
86  
87    if (getLangOpts().OpenMP && CurFn)
88      CGM.getOpenMPRuntime().functionFinished(*this);
89  
90    // If we have an OpenMPIRBuilder we want to finalize functions (incl.
91    // outlining etc) at some point. Doing it once the function codegen is done
92    // seems to be a reasonable spot. We do it here, as opposed to the deletion
93    // time of the CodeGenModule, because we have to ensure the IR has not yet
94    // been "emitted" to the outside, thus, modifications are still sensible.
95    if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
96      CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
97  }
98  
99  // Map the LangOption for exception behavior into
100  // the corresponding enum in the IR.
101  llvm::fp::ExceptionBehavior
102  clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
103  
104    switch (Kind) {
105    case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
106    case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
107    case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
108    }
109    llvm_unreachable("Unsupported FP Exception Behavior");
110  }
111  
112  void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
113    llvm::FastMathFlags FMF;
114    FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
115    FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
116    FMF.setNoInfs(FPFeatures.getNoHonorInfs());
117    FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
118    FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
119    FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
120    FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
121    Builder.setFastMathFlags(FMF);
122  }
123  
124  CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
125                                                    const Expr *E)
126      : CGF(CGF) {
127    ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
128  }
129  
130  CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
131                                                    FPOptions FPFeatures)
132      : CGF(CGF) {
133    ConstructorHelper(FPFeatures);
134  }
135  
136  void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
137    OldFPFeatures = CGF.CurFPFeatures;
138    CGF.CurFPFeatures = FPFeatures;
139  
140    OldExcept = CGF.Builder.getDefaultConstrainedExcept();
141    OldRounding = CGF.Builder.getDefaultConstrainedRounding();
142  
143    if (OldFPFeatures == FPFeatures)
144      return;
145  
146    FMFGuard.emplace(CGF.Builder);
147  
148    llvm::RoundingMode NewRoundingBehavior =
149        static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode());
150    CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
151    auto NewExceptionBehavior =
152        ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
153            FPFeatures.getFPExceptionMode()));
154    CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
155  
156    CGF.SetFastMathFlags(FPFeatures);
157  
158    assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
159            isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
160            isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
161            (NewExceptionBehavior == llvm::fp::ebIgnore &&
162             NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
163           "FPConstrained should be enabled on entire function");
164  
165    auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
166      auto OldValue =
167          CGF.CurFn->getFnAttribute(Name).getValueAsBool();
168      auto NewValue = OldValue & Value;
169      if (OldValue != NewValue)
170        CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
171    };
172    mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
173    mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
174    mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
175    mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() &&
176                                           FPFeatures.getAllowReciprocal() &&
177                                           FPFeatures.getAllowApproxFunc() &&
178                                           FPFeatures.getNoSignedZero());
179  }
180  
181  CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
182    CGF.CurFPFeatures = OldFPFeatures;
183    CGF.Builder.setDefaultConstrainedExcept(OldExcept);
184    CGF.Builder.setDefaultConstrainedRounding(OldRounding);
185  }
186  
187  LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
188    LValueBaseInfo BaseInfo;
189    TBAAAccessInfo TBAAInfo;
190    CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
191    Address Addr(V, ConvertTypeForMem(T), Alignment);
192    return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
193  }
194  
195  /// Given a value of type T* that may not be to a complete object,
196  /// construct an l-value with the natural pointee alignment of T.
197  LValue
198  CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
199    LValueBaseInfo BaseInfo;
200    TBAAAccessInfo TBAAInfo;
201    CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
202                                                  /* forPointeeType= */ true);
203    Address Addr(V, ConvertTypeForMem(T), Align);
204    return MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
205  }
206  
207  
208  llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
209    return CGM.getTypes().ConvertTypeForMem(T);
210  }
211  
212  llvm::Type *CodeGenFunction::ConvertType(QualType T) {
213    return CGM.getTypes().ConvertType(T);
214  }
215  
216  TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
217    type = type.getCanonicalType();
218    while (true) {
219      switch (type->getTypeClass()) {
220  #define TYPE(name, parent)
221  #define ABSTRACT_TYPE(name, parent)
222  #define NON_CANONICAL_TYPE(name, parent) case Type::name:
223  #define DEPENDENT_TYPE(name, parent) case Type::name:
224  #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
225  #include "clang/AST/TypeNodes.inc"
226        llvm_unreachable("non-canonical or dependent type in IR-generation");
227  
228      case Type::Auto:
229      case Type::DeducedTemplateSpecialization:
230        llvm_unreachable("undeduced type in IR-generation");
231  
232      // Various scalar types.
233      case Type::Builtin:
234      case Type::Pointer:
235      case Type::BlockPointer:
236      case Type::LValueReference:
237      case Type::RValueReference:
238      case Type::MemberPointer:
239      case Type::Vector:
240      case Type::ExtVector:
241      case Type::ConstantMatrix:
242      case Type::FunctionProto:
243      case Type::FunctionNoProto:
244      case Type::Enum:
245      case Type::ObjCObjectPointer:
246      case Type::Pipe:
247      case Type::BitInt:
248        return TEK_Scalar;
249  
250      // Complexes.
251      case Type::Complex:
252        return TEK_Complex;
253  
254      // Arrays, records, and Objective-C objects.
255      case Type::ConstantArray:
256      case Type::IncompleteArray:
257      case Type::VariableArray:
258      case Type::Record:
259      case Type::ObjCObject:
260      case Type::ObjCInterface:
261        return TEK_Aggregate;
262  
263      // We operate on atomic values according to their underlying type.
264      case Type::Atomic:
265        type = cast<AtomicType>(type)->getValueType();
266        continue;
267      }
268      llvm_unreachable("unknown type kind!");
269    }
270  }
271  
272  llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
273    // For cleanliness, we try to avoid emitting the return block for
274    // simple cases.
275    llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
276  
277    if (CurBB) {
278      assert(!CurBB->getTerminator() && "Unexpected terminated block.");
279  
280      // We have a valid insert point, reuse it if it is empty or there are no
281      // explicit jumps to the return block.
282      if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
283        ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
284        delete ReturnBlock.getBlock();
285        ReturnBlock = JumpDest();
286      } else
287        EmitBlock(ReturnBlock.getBlock());
288      return llvm::DebugLoc();
289    }
290  
291    // Otherwise, if the return block is the target of a single direct
292    // branch then we can just put the code in that block instead. This
293    // cleans up functions which started with a unified return block.
294    if (ReturnBlock.getBlock()->hasOneUse()) {
295      llvm::BranchInst *BI =
296        dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
297      if (BI && BI->isUnconditional() &&
298          BI->getSuccessor(0) == ReturnBlock.getBlock()) {
299        // Record/return the DebugLoc of the simple 'return' expression to be used
300        // later by the actual 'ret' instruction.
301        llvm::DebugLoc Loc = BI->getDebugLoc();
302        Builder.SetInsertPoint(BI->getParent());
303        BI->eraseFromParent();
304        delete ReturnBlock.getBlock();
305        ReturnBlock = JumpDest();
306        return Loc;
307      }
308    }
309  
310    // FIXME: We are at an unreachable point, there is no reason to emit the block
311    // unless it has uses. However, we still need a place to put the debug
312    // region.end for now.
313  
314    EmitBlock(ReturnBlock.getBlock());
315    return llvm::DebugLoc();
316  }
317  
318  static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
319    if (!BB) return;
320    if (!BB->use_empty())
321      return CGF.CurFn->getBasicBlockList().push_back(BB);
322    delete BB;
323  }
324  
325  void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
326    assert(BreakContinueStack.empty() &&
327           "mismatched push/pop in break/continue stack!");
328  
329    bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
330      && NumSimpleReturnExprs == NumReturnExprs
331      && ReturnBlock.getBlock()->use_empty();
332    // Usually the return expression is evaluated before the cleanup
333    // code.  If the function contains only a simple return statement,
334    // such as a constant, the location before the cleanup code becomes
335    // the last useful breakpoint in the function, because the simple
336    // return expression will be evaluated after the cleanup code. To be
337    // safe, set the debug location for cleanup code to the location of
338    // the return statement.  Otherwise the cleanup code should be at the
339    // end of the function's lexical scope.
340    //
341    // If there are multiple branches to the return block, the branch
342    // instructions will get the location of the return statements and
343    // all will be fine.
344    if (CGDebugInfo *DI = getDebugInfo()) {
345      if (OnlySimpleReturnStmts)
346        DI->EmitLocation(Builder, LastStopPoint);
347      else
348        DI->EmitLocation(Builder, EndLoc);
349    }
350  
351    // Pop any cleanups that might have been associated with the
352    // parameters.  Do this in whatever block we're currently in; it's
353    // important to do this before we enter the return block or return
354    // edges will be *really* confused.
355    bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
356    bool HasOnlyLifetimeMarkers =
357        HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
358    bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
359    if (HasCleanups) {
360      // Make sure the line table doesn't jump back into the body for
361      // the ret after it's been at EndLoc.
362      Optional<ApplyDebugLocation> AL;
363      if (CGDebugInfo *DI = getDebugInfo()) {
364        if (OnlySimpleReturnStmts)
365          DI->EmitLocation(Builder, EndLoc);
366        else
367          // We may not have a valid end location. Try to apply it anyway, and
368          // fall back to an artificial location if needed.
369          AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
370      }
371  
372      PopCleanupBlocks(PrologueCleanupDepth);
373    }
374  
375    // Emit function epilog (to return).
376    llvm::DebugLoc Loc = EmitReturnBlock();
377  
378    if (ShouldInstrumentFunction()) {
379      if (CGM.getCodeGenOpts().InstrumentFunctions)
380        CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
381      if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
382        CurFn->addFnAttr("instrument-function-exit-inlined",
383                         "__cyg_profile_func_exit");
384    }
385  
386    if (ShouldSkipSanitizerInstrumentation())
387      CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
388  
389    // Emit debug descriptor for function end.
390    if (CGDebugInfo *DI = getDebugInfo())
391      DI->EmitFunctionEnd(Builder, CurFn);
392  
393    // Reset the debug location to that of the simple 'return' expression, if any
394    // rather than that of the end of the function's scope '}'.
395    ApplyDebugLocation AL(*this, Loc);
396    EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
397    EmitEndEHSpec(CurCodeDecl);
398  
399    assert(EHStack.empty() &&
400           "did not remove all scopes from cleanup stack!");
401  
402    // If someone did an indirect goto, emit the indirect goto block at the end of
403    // the function.
404    if (IndirectBranch) {
405      EmitBlock(IndirectBranch->getParent());
406      Builder.ClearInsertionPoint();
407    }
408  
409    // If some of our locals escaped, insert a call to llvm.localescape in the
410    // entry block.
411    if (!EscapedLocals.empty()) {
412      // Invert the map from local to index into a simple vector. There should be
413      // no holes.
414      SmallVector<llvm::Value *, 4> EscapeArgs;
415      EscapeArgs.resize(EscapedLocals.size());
416      for (auto &Pair : EscapedLocals)
417        EscapeArgs[Pair.second] = Pair.first;
418      llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
419          &CGM.getModule(), llvm::Intrinsic::localescape);
420      CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
421    }
422  
423    // Remove the AllocaInsertPt instruction, which is just a convenience for us.
424    llvm::Instruction *Ptr = AllocaInsertPt;
425    AllocaInsertPt = nullptr;
426    Ptr->eraseFromParent();
427  
428    // PostAllocaInsertPt, if created, was lazily created when it was required,
429    // remove it now since it was just created for our own convenience.
430    if (PostAllocaInsertPt) {
431      llvm::Instruction *PostPtr = PostAllocaInsertPt;
432      PostAllocaInsertPt = nullptr;
433      PostPtr->eraseFromParent();
434    }
435  
436    // If someone took the address of a label but never did an indirect goto, we
437    // made a zero entry PHI node, which is illegal, zap it now.
438    if (IndirectBranch) {
439      llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
440      if (PN->getNumIncomingValues() == 0) {
441        PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
442        PN->eraseFromParent();
443      }
444    }
445  
446    EmitIfUsed(*this, EHResumeBlock);
447    EmitIfUsed(*this, TerminateLandingPad);
448    EmitIfUsed(*this, TerminateHandler);
449    EmitIfUsed(*this, UnreachableBlock);
450  
451    for (const auto &FuncletAndParent : TerminateFunclets)
452      EmitIfUsed(*this, FuncletAndParent.second);
453  
454    if (CGM.getCodeGenOpts().EmitDeclMetadata)
455      EmitDeclMetadata();
456  
457    for (const auto &R : DeferredReplacements) {
458      if (llvm::Value *Old = R.first) {
459        Old->replaceAllUsesWith(R.second);
460        cast<llvm::Instruction>(Old)->eraseFromParent();
461      }
462    }
463    DeferredReplacements.clear();
464  
465    // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
466    // PHIs if the current function is a coroutine. We don't do it for all
467    // functions as it may result in slight increase in numbers of instructions
468    // if compiled with no optimizations. We do it for coroutine as the lifetime
469    // of CleanupDestSlot alloca make correct coroutine frame building very
470    // difficult.
471    if (NormalCleanupDest.isValid() && isCoroutine()) {
472      llvm::DominatorTree DT(*CurFn);
473      llvm::PromoteMemToReg(
474          cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
475      NormalCleanupDest = Address::invalid();
476    }
477  
478    // Scan function arguments for vector width.
479    for (llvm::Argument &A : CurFn->args())
480      if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
481        LargestVectorWidth =
482            std::max((uint64_t)LargestVectorWidth,
483                     VT->getPrimitiveSizeInBits().getKnownMinSize());
484  
485    // Update vector width based on return type.
486    if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
487      LargestVectorWidth =
488          std::max((uint64_t)LargestVectorWidth,
489                   VT->getPrimitiveSizeInBits().getKnownMinSize());
490  
491    // Add the required-vector-width attribute. This contains the max width from:
492    // 1. min-vector-width attribute used in the source program.
493    // 2. Any builtins used that have a vector width specified.
494    // 3. Values passed in and out of inline assembly.
495    // 4. Width of vector arguments and return types for this function.
496    // 5. Width of vector aguments and return types for functions called by this
497    //    function.
498    CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
499  
500    // Add vscale_range attribute if appropriate.
501    Optional<std::pair<unsigned, unsigned>> VScaleRange =
502        getContext().getTargetInfo().getVScaleRange(getLangOpts());
503    if (VScaleRange) {
504      CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
505          getLLVMContext(), VScaleRange.getValue().first,
506          VScaleRange.getValue().second));
507    }
508  
509    // If we generated an unreachable return block, delete it now.
510    if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
511      Builder.ClearInsertionPoint();
512      ReturnBlock.getBlock()->eraseFromParent();
513    }
514    if (ReturnValue.isValid()) {
515      auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
516      if (RetAlloca && RetAlloca->use_empty()) {
517        RetAlloca->eraseFromParent();
518        ReturnValue = Address::invalid();
519      }
520    }
521  }
522  
523  /// ShouldInstrumentFunction - Return true if the current function should be
524  /// instrumented with __cyg_profile_func_* calls
525  bool CodeGenFunction::ShouldInstrumentFunction() {
526    if (!CGM.getCodeGenOpts().InstrumentFunctions &&
527        !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
528        !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
529      return false;
530    if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
531      return false;
532    return true;
533  }
534  
535  bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
536    if (!CurFuncDecl)
537      return false;
538    return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
539  }
540  
541  /// ShouldXRayInstrument - Return true if the current function should be
542  /// instrumented with XRay nop sleds.
543  bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
544    return CGM.getCodeGenOpts().XRayInstrumentFunctions;
545  }
546  
547  /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
548  /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
549  bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
550    return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
551           (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
552            CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
553                XRayInstrKind::Custom);
554  }
555  
556  bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
557    return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
558           (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
559            CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
560                XRayInstrKind::Typed);
561  }
562  
563  llvm::Constant *
564  CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
565                                              llvm::Constant *Addr) {
566    // Addresses stored in prologue data can't require run-time fixups and must
567    // be PC-relative. Run-time fixups are undesirable because they necessitate
568    // writable text segments, which are unsafe. And absolute addresses are
569    // undesirable because they break PIE mode.
570  
571    // Add a layer of indirection through a private global. Taking its address
572    // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
573    auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
574                                        /*isConstant=*/true,
575                                        llvm::GlobalValue::PrivateLinkage, Addr);
576  
577    // Create a PC-relative address.
578    auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
579    auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
580    auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
581    return (IntPtrTy == Int32Ty)
582               ? PCRelAsInt
583               : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
584  }
585  
586  llvm::Value *
587  CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
588                                            llvm::Value *EncodedAddr) {
589    // Reconstruct the address of the global.
590    auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
591    auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
592    auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
593    auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
594  
595    // Load the original pointer through the global.
596    return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
597                              "decoded_addr");
598  }
599  
600  void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
601                                                 llvm::Function *Fn)
602  {
603    if (!FD->hasAttr<OpenCLKernelAttr>())
604      return;
605  
606    llvm::LLVMContext &Context = getLLVMContext();
607  
608    CGM.GenOpenCLArgMetadata(Fn, FD, this);
609  
610    if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
611      QualType HintQTy = A->getTypeHint();
612      const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
613      bool IsSignedInteger =
614          HintQTy->isSignedIntegerType() ||
615          (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
616      llvm::Metadata *AttrMDArgs[] = {
617          llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
618              CGM.getTypes().ConvertType(A->getTypeHint()))),
619          llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
620              llvm::IntegerType::get(Context, 32),
621              llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
622      Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
623    }
624  
625    if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
626      llvm::Metadata *AttrMDArgs[] = {
627          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
628          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
629          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
630      Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
631    }
632  
633    if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
634      llvm::Metadata *AttrMDArgs[] = {
635          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
636          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
637          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
638      Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
639    }
640  
641    if (const OpenCLIntelReqdSubGroupSizeAttr *A =
642            FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
643      llvm::Metadata *AttrMDArgs[] = {
644          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
645      Fn->setMetadata("intel_reqd_sub_group_size",
646                      llvm::MDNode::get(Context, AttrMDArgs));
647    }
648  }
649  
650  /// Determine whether the function F ends with a return stmt.
651  static bool endsWithReturn(const Decl* F) {
652    const Stmt *Body = nullptr;
653    if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
654      Body = FD->getBody();
655    else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
656      Body = OMD->getBody();
657  
658    if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
659      auto LastStmt = CS->body_rbegin();
660      if (LastStmt != CS->body_rend())
661        return isa<ReturnStmt>(*LastStmt);
662    }
663    return false;
664  }
665  
666  void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
667    if (SanOpts.has(SanitizerKind::Thread)) {
668      Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
669      Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
670    }
671  }
672  
673  /// Check if the return value of this function requires sanitization.
674  bool CodeGenFunction::requiresReturnValueCheck() const {
675    return requiresReturnValueNullabilityCheck() ||
676           (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
677            CurCodeDecl->getAttr<ReturnsNonNullAttr>());
678  }
679  
680  static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
681    auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
682    if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
683        !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
684        (MD->getNumParams() != 1 && MD->getNumParams() != 2))
685      return false;
686  
687    if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
688      return false;
689  
690    if (MD->getNumParams() == 2) {
691      auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
692      if (!PT || !PT->isVoidPointerType() ||
693          !PT->getPointeeType().isConstQualified())
694        return false;
695    }
696  
697    return true;
698  }
699  
700  /// Return the UBSan prologue signature for \p FD if one is available.
701  static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
702                                              const FunctionDecl *FD) {
703    if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
704      if (!MD->isStatic())
705        return nullptr;
706    return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
707  }
708  
709  void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
710                                      llvm::Function *Fn,
711                                      const CGFunctionInfo &FnInfo,
712                                      const FunctionArgList &Args,
713                                      SourceLocation Loc,
714                                      SourceLocation StartLoc) {
715    assert(!CurFn &&
716           "Do not use a CodeGenFunction object for more than one function");
717  
718    const Decl *D = GD.getDecl();
719  
720    DidCallStackSave = false;
721    CurCodeDecl = D;
722    const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
723    if (FD && FD->usesSEHTry())
724      CurSEHParent = FD;
725    CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
726    FnRetTy = RetTy;
727    CurFn = Fn;
728    CurFnInfo = &FnInfo;
729    assert(CurFn->isDeclaration() && "Function already has body?");
730  
731    // If this function is ignored for any of the enabled sanitizers,
732    // disable the sanitizer for the function.
733    do {
734  #define SANITIZER(NAME, ID)                                                    \
735    if (SanOpts.empty())                                                         \
736      break;                                                                     \
737    if (SanOpts.has(SanitizerKind::ID))                                          \
738      if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
739        SanOpts.set(SanitizerKind::ID, false);
740  
741  #include "clang/Basic/Sanitizers.def"
742  #undef SANITIZER
743    } while (false);
744  
745    if (D) {
746      bool NoSanitizeCoverage = false;
747  
748      for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
749        // Apply the no_sanitize* attributes to SanOpts.
750        SanitizerMask mask = Attr->getMask();
751        SanOpts.Mask &= ~mask;
752        if (mask & SanitizerKind::Address)
753          SanOpts.set(SanitizerKind::KernelAddress, false);
754        if (mask & SanitizerKind::KernelAddress)
755          SanOpts.set(SanitizerKind::Address, false);
756        if (mask & SanitizerKind::HWAddress)
757          SanOpts.set(SanitizerKind::KernelHWAddress, false);
758        if (mask & SanitizerKind::KernelHWAddress)
759          SanOpts.set(SanitizerKind::HWAddress, false);
760  
761        // SanitizeCoverage is not handled by SanOpts.
762        if (Attr->hasCoverage())
763          NoSanitizeCoverage = true;
764      }
765  
766      if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
767        Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
768    }
769  
770    // Apply sanitizer attributes to the function.
771    if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
772      Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
773    if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
774      Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
775    if (SanOpts.has(SanitizerKind::MemTag))
776      Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
777    if (SanOpts.has(SanitizerKind::Thread))
778      Fn->addFnAttr(llvm::Attribute::SanitizeThread);
779    if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
780      Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
781    if (SanOpts.has(SanitizerKind::SafeStack))
782      Fn->addFnAttr(llvm::Attribute::SafeStack);
783    if (SanOpts.has(SanitizerKind::ShadowCallStack))
784      Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
785  
786    // Apply fuzzing attribute to the function.
787    if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
788      Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
789  
790    // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
791    // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
792    if (SanOpts.has(SanitizerKind::Thread)) {
793      if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
794        IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
795        if (OMD->getMethodFamily() == OMF_dealloc ||
796            OMD->getMethodFamily() == OMF_initialize ||
797            (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
798          markAsIgnoreThreadCheckingAtRuntime(Fn);
799        }
800      }
801    }
802  
803    // Ignore unrelated casts in STL allocate() since the allocator must cast
804    // from void* to T* before object initialization completes. Don't match on the
805    // namespace because not all allocators are in std::
806    if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
807      if (matchesStlAllocatorFn(D, getContext()))
808        SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
809    }
810  
811    // Ignore null checks in coroutine functions since the coroutines passes
812    // are not aware of how to move the extra UBSan instructions across the split
813    // coroutine boundaries.
814    if (D && SanOpts.has(SanitizerKind::Null))
815      if (FD && FD->getBody() &&
816          FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
817        SanOpts.Mask &= ~SanitizerKind::Null;
818  
819    // Apply xray attributes to the function (as a string, for now)
820    bool AlwaysXRayAttr = false;
821    if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
822      if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
823              XRayInstrKind::FunctionEntry) ||
824          CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
825              XRayInstrKind::FunctionExit)) {
826        if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
827          Fn->addFnAttr("function-instrument", "xray-always");
828          AlwaysXRayAttr = true;
829        }
830        if (XRayAttr->neverXRayInstrument())
831          Fn->addFnAttr("function-instrument", "xray-never");
832        if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
833          if (ShouldXRayInstrumentFunction())
834            Fn->addFnAttr("xray-log-args",
835                          llvm::utostr(LogArgs->getArgumentCount()));
836      }
837    } else {
838      if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
839        Fn->addFnAttr(
840            "xray-instruction-threshold",
841            llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
842    }
843  
844    if (ShouldXRayInstrumentFunction()) {
845      if (CGM.getCodeGenOpts().XRayIgnoreLoops)
846        Fn->addFnAttr("xray-ignore-loops");
847  
848      if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
849              XRayInstrKind::FunctionExit))
850        Fn->addFnAttr("xray-skip-exit");
851  
852      if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
853              XRayInstrKind::FunctionEntry))
854        Fn->addFnAttr("xray-skip-entry");
855  
856      auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
857      if (FuncGroups > 1) {
858        auto FuncName = llvm::makeArrayRef<uint8_t>(
859            CurFn->getName().bytes_begin(), CurFn->getName().bytes_end());
860        auto Group = crc32(FuncName) % FuncGroups;
861        if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
862            !AlwaysXRayAttr)
863          Fn->addFnAttr("function-instrument", "xray-never");
864      }
865    }
866  
867    if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone)
868      if (CGM.isProfileInstrExcluded(Fn, Loc))
869        Fn->addFnAttr(llvm::Attribute::NoProfile);
870  
871    unsigned Count, Offset;
872    if (const auto *Attr =
873            D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
874      Count = Attr->getCount();
875      Offset = Attr->getOffset();
876    } else {
877      Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
878      Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
879    }
880    if (Count && Offset <= Count) {
881      Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
882      if (Offset)
883        Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
884    }
885    // Instruct that functions for COFF/CodeView targets should start with a
886    // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
887    // backends as they don't need it -- instructions on these architectures are
888    // always atomically patchable at runtime.
889    if (CGM.getCodeGenOpts().HotPatch &&
890        getContext().getTargetInfo().getTriple().isX86())
891      Fn->addFnAttr("patchable-function", "prologue-short-redirect");
892  
893    // Add no-jump-tables value.
894    if (CGM.getCodeGenOpts().NoUseJumpTables)
895      Fn->addFnAttr("no-jump-tables", "true");
896  
897    // Add no-inline-line-tables value.
898    if (CGM.getCodeGenOpts().NoInlineLineTables)
899      Fn->addFnAttr("no-inline-line-tables");
900  
901    // Add profile-sample-accurate value.
902    if (CGM.getCodeGenOpts().ProfileSampleAccurate)
903      Fn->addFnAttr("profile-sample-accurate");
904  
905    if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
906      Fn->addFnAttr("use-sample-profile");
907  
908    if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
909      Fn->addFnAttr("cfi-canonical-jump-table");
910  
911    if (D && D->hasAttr<NoProfileFunctionAttr>())
912      Fn->addFnAttr(llvm::Attribute::NoProfile);
913  
914    if (FD && getLangOpts().OpenCL) {
915      // Add metadata for a kernel function.
916      EmitOpenCLKernelMetadata(FD, Fn);
917    }
918  
919    // If we are checking function types, emit a function type signature as
920    // prologue data.
921    if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
922      if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
923        // Remove any (C++17) exception specifications, to allow calling e.g. a
924        // noexcept function through a non-noexcept pointer.
925        auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec(
926            FD->getType(), EST_None);
927        llvm::Constant *FTRTTIConst =
928            CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
929        llvm::Constant *FTRTTIConstEncoded =
930            EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
931        llvm::Constant *PrologueStructElems[] = {PrologueSig, FTRTTIConstEncoded};
932        llvm::Constant *PrologueStructConst =
933            llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
934        Fn->setPrologueData(PrologueStructConst);
935      }
936    }
937  
938    // If we're checking nullability, we need to know whether we can check the
939    // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
940    if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
941      auto Nullability = FnRetTy->getNullability(getContext());
942      if (Nullability && *Nullability == NullabilityKind::NonNull) {
943        if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
944              CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
945          RetValNullabilityPrecondition =
946              llvm::ConstantInt::getTrue(getLLVMContext());
947      }
948    }
949  
950    // If we're in C++ mode and the function name is "main", it is guaranteed
951    // to be norecurse by the standard (3.6.1.3 "The function main shall not be
952    // used within a program").
953    //
954    // OpenCL C 2.0 v2.2-11 s6.9.i:
955    //     Recursion is not supported.
956    //
957    // SYCL v1.2.1 s3.10:
958    //     kernels cannot include RTTI information, exception classes,
959    //     recursive code, virtual functions or make use of C++ libraries that
960    //     are not compiled for the device.
961    if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
962               getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
963               (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
964      Fn->addFnAttr(llvm::Attribute::NoRecurse);
965  
966    llvm::RoundingMode RM = getLangOpts().getFPRoundingMode();
967    llvm::fp::ExceptionBehavior FPExceptionBehavior =
968        ToConstrainedExceptMD(getLangOpts().getFPExceptionMode());
969    Builder.setDefaultConstrainedRounding(RM);
970    Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
971    if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
972        (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
973                 RM != llvm::RoundingMode::NearestTiesToEven))) {
974      Builder.setIsFPConstrained(true);
975      Fn->addFnAttr(llvm::Attribute::StrictFP);
976    }
977  
978    // If a custom alignment is used, force realigning to this alignment on
979    // any main function which certainly will need it.
980    if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
981               CGM.getCodeGenOpts().StackAlignment))
982      Fn->addFnAttr("stackrealign");
983  
984    llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
985  
986    // Create a marker to make it easy to insert allocas into the entryblock
987    // later.  Don't create this with the builder, because we don't want it
988    // folded.
989    llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
990    AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
991  
992    ReturnBlock = getJumpDestInCurrentScope("return");
993  
994    Builder.SetInsertPoint(EntryBB);
995  
996    // If we're checking the return value, allocate space for a pointer to a
997    // precise source location of the checked return statement.
998    if (requiresReturnValueCheck()) {
999      ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1000      Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1001                          ReturnLocation);
1002    }
1003  
1004    // Emit subprogram debug descriptor.
1005    if (CGDebugInfo *DI = getDebugInfo()) {
1006      // Reconstruct the type from the argument list so that implicit parameters,
1007      // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1008      // convention.
1009      DI->emitFunctionStart(GD, Loc, StartLoc,
1010                            DI->getFunctionType(FD, RetTy, Args), CurFn,
1011                            CurFuncIsThunk);
1012    }
1013  
1014    if (ShouldInstrumentFunction()) {
1015      if (CGM.getCodeGenOpts().InstrumentFunctions)
1016        CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1017      if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1018        CurFn->addFnAttr("instrument-function-entry-inlined",
1019                         "__cyg_profile_func_enter");
1020      if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1021        CurFn->addFnAttr("instrument-function-entry-inlined",
1022                         "__cyg_profile_func_enter_bare");
1023    }
1024  
1025    // Since emitting the mcount call here impacts optimizations such as function
1026    // inlining, we just add an attribute to insert a mcount call in backend.
1027    // The attribute "counting-function" is set to mcount function name which is
1028    // architecture dependent.
1029    if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1030      // Calls to fentry/mcount should not be generated if function has
1031      // the no_instrument_function attribute.
1032      if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1033        if (CGM.getCodeGenOpts().CallFEntry)
1034          Fn->addFnAttr("fentry-call", "true");
1035        else {
1036          Fn->addFnAttr("instrument-function-entry-inlined",
1037                        getTarget().getMCountName());
1038        }
1039        if (CGM.getCodeGenOpts().MNopMCount) {
1040          if (!CGM.getCodeGenOpts().CallFEntry)
1041            CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1042              << "-mnop-mcount" << "-mfentry";
1043          Fn->addFnAttr("mnop-mcount");
1044        }
1045  
1046        if (CGM.getCodeGenOpts().RecordMCount) {
1047          if (!CGM.getCodeGenOpts().CallFEntry)
1048            CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1049              << "-mrecord-mcount" << "-mfentry";
1050          Fn->addFnAttr("mrecord-mcount");
1051        }
1052      }
1053    }
1054  
1055    if (CGM.getCodeGenOpts().PackedStack) {
1056      if (getContext().getTargetInfo().getTriple().getArch() !=
1057          llvm::Triple::systemz)
1058        CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1059          << "-mpacked-stack";
1060      Fn->addFnAttr("packed-stack");
1061    }
1062  
1063    if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1064        !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1065      Fn->addFnAttr("warn-stack-size",
1066                    std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1067  
1068    if (RetTy->isVoidType()) {
1069      // Void type; nothing to return.
1070      ReturnValue = Address::invalid();
1071  
1072      // Count the implicit return.
1073      if (!endsWithReturn(D))
1074        ++NumReturnExprs;
1075    } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1076      // Indirect return; emit returned value directly into sret slot.
1077      // This reduces code size, and affects correctness in C++.
1078      auto AI = CurFn->arg_begin();
1079      if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1080        ++AI;
1081      ReturnValue = Address(&*AI, ConvertType(RetTy),
1082                            CurFnInfo->getReturnInfo().getIndirectAlign());
1083      if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1084        ReturnValuePointer =
1085            CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1086        Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1087                                ReturnValue.getPointer(), Int8PtrTy),
1088                            ReturnValuePointer);
1089      }
1090    } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1091               !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1092      // Load the sret pointer from the argument struct and return into that.
1093      unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1094      llvm::Function::arg_iterator EI = CurFn->arg_end();
1095      --EI;
1096      llvm::Value *Addr = Builder.CreateStructGEP(
1097          EI->getType()->getPointerElementType(), &*EI, Idx);
1098      llvm::Type *Ty =
1099          cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1100      ReturnValuePointer = Address(Addr, getPointerAlign());
1101      Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1102      ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy));
1103    } else {
1104      ReturnValue = CreateIRTemp(RetTy, "retval");
1105  
1106      // Tell the epilog emitter to autorelease the result.  We do this
1107      // now so that various specialized functions can suppress it
1108      // during their IR-generation.
1109      if (getLangOpts().ObjCAutoRefCount &&
1110          !CurFnInfo->isReturnsRetained() &&
1111          RetTy->isObjCRetainableType())
1112        AutoreleaseResult = true;
1113    }
1114  
1115    EmitStartEHSpec(CurCodeDecl);
1116  
1117    PrologueCleanupDepth = EHStack.stable_begin();
1118  
1119    // Emit OpenMP specific initialization of the device functions.
1120    if (getLangOpts().OpenMP && CurCodeDecl)
1121      CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1122  
1123    EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1124  
1125    if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1126      CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1127      const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1128      if (MD->getParent()->isLambda() &&
1129          MD->getOverloadedOperator() == OO_Call) {
1130        // We're in a lambda; figure out the captures.
1131        MD->getParent()->getCaptureFields(LambdaCaptureFields,
1132                                          LambdaThisCaptureField);
1133        if (LambdaThisCaptureField) {
1134          // If the lambda captures the object referred to by '*this' - either by
1135          // value or by reference, make sure CXXThisValue points to the correct
1136          // object.
1137  
1138          // Get the lvalue for the field (which is a copy of the enclosing object
1139          // or contains the address of the enclosing object).
1140          LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1141          if (!LambdaThisCaptureField->getType()->isPointerType()) {
1142            // If the enclosing object was captured by value, just use its address.
1143            CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1144          } else {
1145            // Load the lvalue pointed to by the field, since '*this' was captured
1146            // by reference.
1147            CXXThisValue =
1148                EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1149          }
1150        }
1151        for (auto *FD : MD->getParent()->fields()) {
1152          if (FD->hasCapturedVLAType()) {
1153            auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1154                                             SourceLocation()).getScalarVal();
1155            auto VAT = FD->getCapturedVLAType();
1156            VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1157          }
1158        }
1159      } else {
1160        // Not in a lambda; just use 'this' from the method.
1161        // FIXME: Should we generate a new load for each use of 'this'?  The
1162        // fast register allocator would be happier...
1163        CXXThisValue = CXXABIThisValue;
1164      }
1165  
1166      // Check the 'this' pointer once per function, if it's available.
1167      if (CXXABIThisValue) {
1168        SanitizerSet SkippedChecks;
1169        SkippedChecks.set(SanitizerKind::ObjectSize, true);
1170        QualType ThisTy = MD->getThisType();
1171  
1172        // If this is the call operator of a lambda with no capture-default, it
1173        // may have a static invoker function, which may call this operator with
1174        // a null 'this' pointer.
1175        if (isLambdaCallOperator(MD) &&
1176            MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1177          SkippedChecks.set(SanitizerKind::Null, true);
1178  
1179        EmitTypeCheck(
1180            isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1181            Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1182      }
1183    }
1184  
1185    // If any of the arguments have a variably modified type, make sure to
1186    // emit the type size.
1187    for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1188         i != e; ++i) {
1189      const VarDecl *VD = *i;
1190  
1191      // Dig out the type as written from ParmVarDecls; it's unclear whether
1192      // the standard (C99 6.9.1p10) requires this, but we're following the
1193      // precedent set by gcc.
1194      QualType Ty;
1195      if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1196        Ty = PVD->getOriginalType();
1197      else
1198        Ty = VD->getType();
1199  
1200      if (Ty->isVariablyModifiedType())
1201        EmitVariablyModifiedType(Ty);
1202    }
1203    // Emit a location at the end of the prologue.
1204    if (CGDebugInfo *DI = getDebugInfo())
1205      DI->EmitLocation(Builder, StartLoc);
1206  
1207    // TODO: Do we need to handle this in two places like we do with
1208    // target-features/target-cpu?
1209    if (CurFuncDecl)
1210      if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1211        LargestVectorWidth = VecWidth->getVectorWidth();
1212  }
1213  
1214  void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1215    incrementProfileCounter(Body);
1216    if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1217      EmitCompoundStmtWithoutScope(*S);
1218    else
1219      EmitStmt(Body);
1220  
1221    // This is checked after emitting the function body so we know if there
1222    // are any permitted infinite loops.
1223    if (checkIfFunctionMustProgress())
1224      CurFn->addFnAttr(llvm::Attribute::MustProgress);
1225  }
1226  
1227  /// When instrumenting to collect profile data, the counts for some blocks
1228  /// such as switch cases need to not include the fall-through counts, so
1229  /// emit a branch around the instrumentation code. When not instrumenting,
1230  /// this just calls EmitBlock().
1231  void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1232                                                 const Stmt *S) {
1233    llvm::BasicBlock *SkipCountBB = nullptr;
1234    if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1235      // When instrumenting for profiling, the fallthrough to certain
1236      // statements needs to skip over the instrumentation code so that we
1237      // get an accurate count.
1238      SkipCountBB = createBasicBlock("skipcount");
1239      EmitBranch(SkipCountBB);
1240    }
1241    EmitBlock(BB);
1242    uint64_t CurrentCount = getCurrentProfileCount();
1243    incrementProfileCounter(S);
1244    setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1245    if (SkipCountBB)
1246      EmitBlock(SkipCountBB);
1247  }
1248  
1249  /// Tries to mark the given function nounwind based on the
1250  /// non-existence of any throwing calls within it.  We believe this is
1251  /// lightweight enough to do at -O0.
1252  static void TryMarkNoThrow(llvm::Function *F) {
1253    // LLVM treats 'nounwind' on a function as part of the type, so we
1254    // can't do this on functions that can be overwritten.
1255    if (F->isInterposable()) return;
1256  
1257    for (llvm::BasicBlock &BB : *F)
1258      for (llvm::Instruction &I : BB)
1259        if (I.mayThrow())
1260          return;
1261  
1262    F->setDoesNotThrow();
1263  }
1264  
1265  QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1266                                                 FunctionArgList &Args) {
1267    const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1268    QualType ResTy = FD->getReturnType();
1269  
1270    const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1271    if (MD && MD->isInstance()) {
1272      if (CGM.getCXXABI().HasThisReturn(GD))
1273        ResTy = MD->getThisType();
1274      else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1275        ResTy = CGM.getContext().VoidPtrTy;
1276      CGM.getCXXABI().buildThisParam(*this, Args);
1277    }
1278  
1279    // The base version of an inheriting constructor whose constructed base is a
1280    // virtual base is not passed any arguments (because it doesn't actually call
1281    // the inherited constructor).
1282    bool PassedParams = true;
1283    if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1284      if (auto Inherited = CD->getInheritedConstructor())
1285        PassedParams =
1286            getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1287  
1288    if (PassedParams) {
1289      for (auto *Param : FD->parameters()) {
1290        Args.push_back(Param);
1291        if (!Param->hasAttr<PassObjectSizeAttr>())
1292          continue;
1293  
1294        auto *Implicit = ImplicitParamDecl::Create(
1295            getContext(), Param->getDeclContext(), Param->getLocation(),
1296            /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1297        SizeArguments[Param] = Implicit;
1298        Args.push_back(Implicit);
1299      }
1300    }
1301  
1302    if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1303      CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1304  
1305    return ResTy;
1306  }
1307  
1308  void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1309                                     const CGFunctionInfo &FnInfo) {
1310    assert(Fn && "generating code for null Function");
1311    const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1312    CurGD = GD;
1313  
1314    FunctionArgList Args;
1315    QualType ResTy = BuildFunctionArgList(GD, Args);
1316  
1317    if (FD->isInlineBuiltinDeclaration()) {
1318      // When generating code for a builtin with an inline declaration, use a
1319      // mangled name to hold the actual body, while keeping an external
1320      // definition in case the function pointer is referenced somewhere.
1321      std::string FDInlineName = (Fn->getName() + ".inline").str();
1322      llvm::Module *M = Fn->getParent();
1323      llvm::Function *Clone = M->getFunction(FDInlineName);
1324      if (!Clone) {
1325        Clone = llvm::Function::Create(Fn->getFunctionType(),
1326                                       llvm::GlobalValue::InternalLinkage,
1327                                       Fn->getAddressSpace(), FDInlineName, M);
1328        Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1329      }
1330      Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1331      Fn = Clone;
1332    } else {
1333      // Detect the unusual situation where an inline version is shadowed by a
1334      // non-inline version. In that case we should pick the external one
1335      // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1336      // to detect that situation before we reach codegen, so do some late
1337      // replacement.
1338      for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1339           PD = PD->getPreviousDecl()) {
1340        if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1341          std::string FDInlineName = (Fn->getName() + ".inline").str();
1342          llvm::Module *M = Fn->getParent();
1343          if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1344            Clone->replaceAllUsesWith(Fn);
1345            Clone->eraseFromParent();
1346          }
1347          break;
1348        }
1349      }
1350    }
1351  
1352    // Check if we should generate debug info for this function.
1353    if (FD->hasAttr<NoDebugAttr>()) {
1354      // Clear non-distinct debug info that was possibly attached to the function
1355      // due to an earlier declaration without the nodebug attribute
1356      Fn->setSubprogram(nullptr);
1357      // Disable debug info indefinitely for this function
1358      DebugInfo = nullptr;
1359    }
1360  
1361    // The function might not have a body if we're generating thunks for a
1362    // function declaration.
1363    SourceRange BodyRange;
1364    if (Stmt *Body = FD->getBody())
1365      BodyRange = Body->getSourceRange();
1366    else
1367      BodyRange = FD->getLocation();
1368    CurEHLocation = BodyRange.getEnd();
1369  
1370    // Use the location of the start of the function to determine where
1371    // the function definition is located. By default use the location
1372    // of the declaration as the location for the subprogram. A function
1373    // may lack a declaration in the source code if it is created by code
1374    // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1375    SourceLocation Loc = FD->getLocation();
1376  
1377    // If this is a function specialization then use the pattern body
1378    // as the location for the function.
1379    if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1380      if (SpecDecl->hasBody(SpecDecl))
1381        Loc = SpecDecl->getLocation();
1382  
1383    Stmt *Body = FD->getBody();
1384  
1385    if (Body) {
1386      // Coroutines always emit lifetime markers.
1387      if (isa<CoroutineBodyStmt>(Body))
1388        ShouldEmitLifetimeMarkers = true;
1389  
1390      // Initialize helper which will detect jumps which can cause invalid
1391      // lifetime markers.
1392      if (ShouldEmitLifetimeMarkers)
1393        Bypasses.Init(Body);
1394    }
1395  
1396    // Emit the standard function prologue.
1397    StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1398  
1399    // Save parameters for coroutine function.
1400    if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1401      for (const auto *ParamDecl : FD->parameters())
1402        FnArgs.push_back(ParamDecl);
1403  
1404    // Generate the body of the function.
1405    PGO.assignRegionCounters(GD, CurFn);
1406    if (isa<CXXDestructorDecl>(FD))
1407      EmitDestructorBody(Args);
1408    else if (isa<CXXConstructorDecl>(FD))
1409      EmitConstructorBody(Args);
1410    else if (getLangOpts().CUDA &&
1411             !getLangOpts().CUDAIsDevice &&
1412             FD->hasAttr<CUDAGlobalAttr>())
1413      CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1414    else if (isa<CXXMethodDecl>(FD) &&
1415             cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1416      // The lambda static invoker function is special, because it forwards or
1417      // clones the body of the function call operator (but is actually static).
1418      EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1419    } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1420               (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1421                cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1422      // Implicit copy-assignment gets the same special treatment as implicit
1423      // copy-constructors.
1424      emitImplicitAssignmentOperatorBody(Args);
1425    } else if (Body) {
1426      EmitFunctionBody(Body);
1427    } else
1428      llvm_unreachable("no definition for emitted function");
1429  
1430    // C++11 [stmt.return]p2:
1431    //   Flowing off the end of a function [...] results in undefined behavior in
1432    //   a value-returning function.
1433    // C11 6.9.1p12:
1434    //   If the '}' that terminates a function is reached, and the value of the
1435    //   function call is used by the caller, the behavior is undefined.
1436    if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1437        !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1438      bool ShouldEmitUnreachable =
1439          CGM.getCodeGenOpts().StrictReturn ||
1440          !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1441      if (SanOpts.has(SanitizerKind::Return)) {
1442        SanitizerScope SanScope(this);
1443        llvm::Value *IsFalse = Builder.getFalse();
1444        EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1445                  SanitizerHandler::MissingReturn,
1446                  EmitCheckSourceLocation(FD->getLocation()), None);
1447      } else if (ShouldEmitUnreachable) {
1448        if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1449          EmitTrapCall(llvm::Intrinsic::trap);
1450      }
1451      if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1452        Builder.CreateUnreachable();
1453        Builder.ClearInsertionPoint();
1454      }
1455    }
1456  
1457    // Emit the standard function epilogue.
1458    FinishFunction(BodyRange.getEnd());
1459  
1460    // If we haven't marked the function nothrow through other means, do
1461    // a quick pass now to see if we can.
1462    if (!CurFn->doesNotThrow())
1463      TryMarkNoThrow(CurFn);
1464  }
1465  
1466  /// ContainsLabel - Return true if the statement contains a label in it.  If
1467  /// this statement is not executed normally, it not containing a label means
1468  /// that we can just remove the code.
1469  bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1470    // Null statement, not a label!
1471    if (!S) return false;
1472  
1473    // If this is a label, we have to emit the code, consider something like:
1474    // if (0) {  ...  foo:  bar(); }  goto foo;
1475    //
1476    // TODO: If anyone cared, we could track __label__'s, since we know that you
1477    // can't jump to one from outside their declared region.
1478    if (isa<LabelStmt>(S))
1479      return true;
1480  
1481    // If this is a case/default statement, and we haven't seen a switch, we have
1482    // to emit the code.
1483    if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1484      return true;
1485  
1486    // If this is a switch statement, we want to ignore cases below it.
1487    if (isa<SwitchStmt>(S))
1488      IgnoreCaseStmts = true;
1489  
1490    // Scan subexpressions for verboten labels.
1491    for (const Stmt *SubStmt : S->children())
1492      if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1493        return true;
1494  
1495    return false;
1496  }
1497  
1498  /// containsBreak - Return true if the statement contains a break out of it.
1499  /// If the statement (recursively) contains a switch or loop with a break
1500  /// inside of it, this is fine.
1501  bool CodeGenFunction::containsBreak(const Stmt *S) {
1502    // Null statement, not a label!
1503    if (!S) return false;
1504  
1505    // If this is a switch or loop that defines its own break scope, then we can
1506    // include it and anything inside of it.
1507    if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1508        isa<ForStmt>(S))
1509      return false;
1510  
1511    if (isa<BreakStmt>(S))
1512      return true;
1513  
1514    // Scan subexpressions for verboten breaks.
1515    for (const Stmt *SubStmt : S->children())
1516      if (containsBreak(SubStmt))
1517        return true;
1518  
1519    return false;
1520  }
1521  
1522  bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1523    if (!S) return false;
1524  
1525    // Some statement kinds add a scope and thus never add a decl to the current
1526    // scope. Note, this list is longer than the list of statements that might
1527    // have an unscoped decl nested within them, but this way is conservatively
1528    // correct even if more statement kinds are added.
1529    if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1530        isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1531        isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1532        isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1533      return false;
1534  
1535    if (isa<DeclStmt>(S))
1536      return true;
1537  
1538    for (const Stmt *SubStmt : S->children())
1539      if (mightAddDeclToScope(SubStmt))
1540        return true;
1541  
1542    return false;
1543  }
1544  
1545  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1546  /// to a constant, or if it does but contains a label, return false.  If it
1547  /// constant folds return true and set the boolean result in Result.
1548  bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1549                                                     bool &ResultBool,
1550                                                     bool AllowLabels) {
1551    llvm::APSInt ResultInt;
1552    if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1553      return false;
1554  
1555    ResultBool = ResultInt.getBoolValue();
1556    return true;
1557  }
1558  
1559  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1560  /// to a constant, or if it does but contains a label, return false.  If it
1561  /// constant folds return true and set the folded value.
1562  bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1563                                                     llvm::APSInt &ResultInt,
1564                                                     bool AllowLabels) {
1565    // FIXME: Rename and handle conversion of other evaluatable things
1566    // to bool.
1567    Expr::EvalResult Result;
1568    if (!Cond->EvaluateAsInt(Result, getContext()))
1569      return false;  // Not foldable, not integer or not fully evaluatable.
1570  
1571    llvm::APSInt Int = Result.Val.getInt();
1572    if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1573      return false;  // Contains a label.
1574  
1575    ResultInt = Int;
1576    return true;
1577  }
1578  
1579  /// Determine whether the given condition is an instrumentable condition
1580  /// (i.e. no "&&" or "||").
1581  bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1582    // Bypass simplistic logical-NOT operator before determining whether the
1583    // condition contains any other logical operator.
1584    if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens()))
1585      if (UnOp->getOpcode() == UO_LNot)
1586        C = UnOp->getSubExpr();
1587  
1588    const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens());
1589    return (!BOp || !BOp->isLogicalOp());
1590  }
1591  
1592  /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1593  /// increments a profile counter based on the semantics of the given logical
1594  /// operator opcode.  This is used to instrument branch condition coverage for
1595  /// logical operators.
1596  void CodeGenFunction::EmitBranchToCounterBlock(
1597      const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1598      llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1599      Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1600    // If not instrumenting, just emit a branch.
1601    bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1602    if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1603      return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1604  
1605    llvm::BasicBlock *ThenBlock = nullptr;
1606    llvm::BasicBlock *ElseBlock = nullptr;
1607    llvm::BasicBlock *NextBlock = nullptr;
1608  
1609    // Create the block we'll use to increment the appropriate counter.
1610    llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1611  
1612    // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1613    // means we need to evaluate the condition and increment the counter on TRUE:
1614    //
1615    // if (Cond)
1616    //   goto CounterIncrBlock;
1617    // else
1618    //   goto FalseBlock;
1619    //
1620    // CounterIncrBlock:
1621    //   Counter++;
1622    //   goto TrueBlock;
1623  
1624    if (LOp == BO_LAnd) {
1625      ThenBlock = CounterIncrBlock;
1626      ElseBlock = FalseBlock;
1627      NextBlock = TrueBlock;
1628    }
1629  
1630    // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1631    // we need to evaluate the condition and increment the counter on FALSE:
1632    //
1633    // if (Cond)
1634    //   goto TrueBlock;
1635    // else
1636    //   goto CounterIncrBlock;
1637    //
1638    // CounterIncrBlock:
1639    //   Counter++;
1640    //   goto FalseBlock;
1641  
1642    else if (LOp == BO_LOr) {
1643      ThenBlock = TrueBlock;
1644      ElseBlock = CounterIncrBlock;
1645      NextBlock = FalseBlock;
1646    } else {
1647      llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1648    }
1649  
1650    // Emit Branch based on condition.
1651    EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1652  
1653    // Emit the block containing the counter increment(s).
1654    EmitBlock(CounterIncrBlock);
1655  
1656    // Increment corresponding counter; if index not provided, use Cond as index.
1657    incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1658  
1659    // Go to the next block.
1660    EmitBranch(NextBlock);
1661  }
1662  
1663  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1664  /// statement) to the specified blocks.  Based on the condition, this might try
1665  /// to simplify the codegen of the conditional based on the branch.
1666  /// \param LH The value of the likelihood attribute on the True branch.
1667  void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1668                                             llvm::BasicBlock *TrueBlock,
1669                                             llvm::BasicBlock *FalseBlock,
1670                                             uint64_t TrueCount,
1671                                             Stmt::Likelihood LH) {
1672    Cond = Cond->IgnoreParens();
1673  
1674    if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1675  
1676      // Handle X && Y in a condition.
1677      if (CondBOp->getOpcode() == BO_LAnd) {
1678        // If we have "1 && X", simplify the code.  "0 && X" would have constant
1679        // folded if the case was simple enough.
1680        bool ConstantBool = false;
1681        if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1682            ConstantBool) {
1683          // br(1 && X) -> br(X).
1684          incrementProfileCounter(CondBOp);
1685          return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1686                                          FalseBlock, TrueCount, LH);
1687        }
1688  
1689        // If we have "X && 1", simplify the code to use an uncond branch.
1690        // "X && 0" would have been constant folded to 0.
1691        if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1692            ConstantBool) {
1693          // br(X && 1) -> br(X).
1694          return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1695                                          FalseBlock, TrueCount, LH, CondBOp);
1696        }
1697  
1698        // Emit the LHS as a conditional.  If the LHS conditional is false, we
1699        // want to jump to the FalseBlock.
1700        llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1701        // The counter tells us how often we evaluate RHS, and all of TrueCount
1702        // can be propagated to that branch.
1703        uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1704  
1705        ConditionalEvaluation eval(*this);
1706        {
1707          ApplyDebugLocation DL(*this, Cond);
1708          // Propagate the likelihood attribute like __builtin_expect
1709          // __builtin_expect(X && Y, 1) -> X and Y are likely
1710          // __builtin_expect(X && Y, 0) -> only Y is unlikely
1711          EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1712                               LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1713          EmitBlock(LHSTrue);
1714        }
1715  
1716        incrementProfileCounter(CondBOp);
1717        setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1718  
1719        // Any temporaries created here are conditional.
1720        eval.begin(*this);
1721        EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1722                                 FalseBlock, TrueCount, LH);
1723        eval.end(*this);
1724  
1725        return;
1726      }
1727  
1728      if (CondBOp->getOpcode() == BO_LOr) {
1729        // If we have "0 || X", simplify the code.  "1 || X" would have constant
1730        // folded if the case was simple enough.
1731        bool ConstantBool = false;
1732        if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1733            !ConstantBool) {
1734          // br(0 || X) -> br(X).
1735          incrementProfileCounter(CondBOp);
1736          return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1737                                          FalseBlock, TrueCount, LH);
1738        }
1739  
1740        // If we have "X || 0", simplify the code to use an uncond branch.
1741        // "X || 1" would have been constant folded to 1.
1742        if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1743            !ConstantBool) {
1744          // br(X || 0) -> br(X).
1745          return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1746                                          FalseBlock, TrueCount, LH, CondBOp);
1747        }
1748  
1749        // Emit the LHS as a conditional.  If the LHS conditional is true, we
1750        // want to jump to the TrueBlock.
1751        llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1752        // We have the count for entry to the RHS and for the whole expression
1753        // being true, so we can divy up True count between the short circuit and
1754        // the RHS.
1755        uint64_t LHSCount =
1756            getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1757        uint64_t RHSCount = TrueCount - LHSCount;
1758  
1759        ConditionalEvaluation eval(*this);
1760        {
1761          // Propagate the likelihood attribute like __builtin_expect
1762          // __builtin_expect(X || Y, 1) -> only Y is likely
1763          // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1764          ApplyDebugLocation DL(*this, Cond);
1765          EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1766                               LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1767          EmitBlock(LHSFalse);
1768        }
1769  
1770        incrementProfileCounter(CondBOp);
1771        setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1772  
1773        // Any temporaries created here are conditional.
1774        eval.begin(*this);
1775        EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1776                                 RHSCount, LH);
1777  
1778        eval.end(*this);
1779  
1780        return;
1781      }
1782    }
1783  
1784    if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1785      // br(!x, t, f) -> br(x, f, t)
1786      if (CondUOp->getOpcode() == UO_LNot) {
1787        // Negate the count.
1788        uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1789        // The values of the enum are chosen to make this negation possible.
1790        LH = static_cast<Stmt::Likelihood>(-LH);
1791        // Negate the condition and swap the destination blocks.
1792        return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1793                                    FalseCount, LH);
1794      }
1795    }
1796  
1797    if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1798      // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1799      llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1800      llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1801  
1802      // The ConditionalOperator itself has no likelihood information for its
1803      // true and false branches. This matches the behavior of __builtin_expect.
1804      ConditionalEvaluation cond(*this);
1805      EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1806                           getProfileCount(CondOp), Stmt::LH_None);
1807  
1808      // When computing PGO branch weights, we only know the overall count for
1809      // the true block. This code is essentially doing tail duplication of the
1810      // naive code-gen, introducing new edges for which counts are not
1811      // available. Divide the counts proportionally between the LHS and RHS of
1812      // the conditional operator.
1813      uint64_t LHSScaledTrueCount = 0;
1814      if (TrueCount) {
1815        double LHSRatio =
1816            getProfileCount(CondOp) / (double)getCurrentProfileCount();
1817        LHSScaledTrueCount = TrueCount * LHSRatio;
1818      }
1819  
1820      cond.begin(*this);
1821      EmitBlock(LHSBlock);
1822      incrementProfileCounter(CondOp);
1823      {
1824        ApplyDebugLocation DL(*this, Cond);
1825        EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1826                             LHSScaledTrueCount, LH);
1827      }
1828      cond.end(*this);
1829  
1830      cond.begin(*this);
1831      EmitBlock(RHSBlock);
1832      EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1833                           TrueCount - LHSScaledTrueCount, LH);
1834      cond.end(*this);
1835  
1836      return;
1837    }
1838  
1839    if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1840      // Conditional operator handling can give us a throw expression as a
1841      // condition for a case like:
1842      //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1843      // Fold this to:
1844      //   br(c, throw x, br(y, t, f))
1845      EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1846      return;
1847    }
1848  
1849    // Emit the code with the fully general case.
1850    llvm::Value *CondV;
1851    {
1852      ApplyDebugLocation DL(*this, Cond);
1853      CondV = EvaluateExprAsBool(Cond);
1854    }
1855  
1856    llvm::MDNode *Weights = nullptr;
1857    llvm::MDNode *Unpredictable = nullptr;
1858  
1859    // If the branch has a condition wrapped by __builtin_unpredictable,
1860    // create metadata that specifies that the branch is unpredictable.
1861    // Don't bother if not optimizing because that metadata would not be used.
1862    auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1863    if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1864      auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1865      if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1866        llvm::MDBuilder MDHelper(getLLVMContext());
1867        Unpredictable = MDHelper.createUnpredictable();
1868      }
1869    }
1870  
1871    // If there is a Likelihood knowledge for the cond, lower it.
1872    // Note that if not optimizing this won't emit anything.
1873    llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
1874    if (CondV != NewCondV)
1875      CondV = NewCondV;
1876    else {
1877      // Otherwise, lower profile counts. Note that we do this even at -O0.
1878      uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1879      Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
1880    }
1881  
1882    Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1883  }
1884  
1885  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1886  /// specified stmt yet.
1887  void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1888    CGM.ErrorUnsupported(S, Type);
1889  }
1890  
1891  /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1892  /// variable-length array whose elements have a non-zero bit-pattern.
1893  ///
1894  /// \param baseType the inner-most element type of the array
1895  /// \param src - a char* pointing to the bit-pattern for a single
1896  /// base element of the array
1897  /// \param sizeInChars - the total size of the VLA, in chars
1898  static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1899                                 Address dest, Address src,
1900                                 llvm::Value *sizeInChars) {
1901    CGBuilderTy &Builder = CGF.Builder;
1902  
1903    CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1904    llvm::Value *baseSizeInChars
1905      = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1906  
1907    Address begin =
1908      Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1909    llvm::Value *end = Builder.CreateInBoundsGEP(
1910        begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end");
1911  
1912    llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1913    llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1914    llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1915  
1916    // Make a loop over the VLA.  C99 guarantees that the VLA element
1917    // count must be nonzero.
1918    CGF.EmitBlock(loopBB);
1919  
1920    llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1921    cur->addIncoming(begin.getPointer(), originBB);
1922  
1923    CharUnits curAlign =
1924      dest.getAlignment().alignmentOfArrayElement(baseSize);
1925  
1926    // memcpy the individual element bit-pattern.
1927    Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1928                         /*volatile*/ false);
1929  
1930    // Go to the next element.
1931    llvm::Value *next =
1932      Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1933  
1934    // Leave if that's the end of the VLA.
1935    llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1936    Builder.CreateCondBr(done, contBB, loopBB);
1937    cur->addIncoming(next, loopBB);
1938  
1939    CGF.EmitBlock(contBB);
1940  }
1941  
1942  void
1943  CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1944    // Ignore empty classes in C++.
1945    if (getLangOpts().CPlusPlus) {
1946      if (const RecordType *RT = Ty->getAs<RecordType>()) {
1947        if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1948          return;
1949      }
1950    }
1951  
1952    // Cast the dest ptr to the appropriate i8 pointer type.
1953    if (DestPtr.getElementType() != Int8Ty)
1954      DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1955  
1956    // Get size and alignment info for this aggregate.
1957    CharUnits size = getContext().getTypeSizeInChars(Ty);
1958  
1959    llvm::Value *SizeVal;
1960    const VariableArrayType *vla;
1961  
1962    // Don't bother emitting a zero-byte memset.
1963    if (size.isZero()) {
1964      // But note that getTypeInfo returns 0 for a VLA.
1965      if (const VariableArrayType *vlaType =
1966            dyn_cast_or_null<VariableArrayType>(
1967                                            getContext().getAsArrayType(Ty))) {
1968        auto VlaSize = getVLASize(vlaType);
1969        SizeVal = VlaSize.NumElts;
1970        CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1971        if (!eltSize.isOne())
1972          SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1973        vla = vlaType;
1974      } else {
1975        return;
1976      }
1977    } else {
1978      SizeVal = CGM.getSize(size);
1979      vla = nullptr;
1980    }
1981  
1982    // If the type contains a pointer to data member we can't memset it to zero.
1983    // Instead, create a null constant and copy it to the destination.
1984    // TODO: there are other patterns besides zero that we can usefully memset,
1985    // like -1, which happens to be the pattern used by member-pointers.
1986    if (!CGM.getTypes().isZeroInitializable(Ty)) {
1987      // For a VLA, emit a single element, then splat that over the VLA.
1988      if (vla) Ty = getContext().getBaseElementType(vla);
1989  
1990      llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1991  
1992      llvm::GlobalVariable *NullVariable =
1993        new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1994                                 /*isConstant=*/true,
1995                                 llvm::GlobalVariable::PrivateLinkage,
1996                                 NullConstant, Twine());
1997      CharUnits NullAlign = DestPtr.getAlignment();
1998      NullVariable->setAlignment(NullAlign.getAsAlign());
1999      Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
2000                     NullAlign);
2001  
2002      if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2003  
2004      // Get and call the appropriate llvm.memcpy overload.
2005      Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2006      return;
2007    }
2008  
2009    // Otherwise, just memset the whole thing to zero.  This is legal
2010    // because in LLVM, all default initializers (other than the ones we just
2011    // handled above) are guaranteed to have a bit pattern of all zeros.
2012    Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2013  }
2014  
2015  llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2016    // Make sure that there is a block for the indirect goto.
2017    if (!IndirectBranch)
2018      GetIndirectGotoBlock();
2019  
2020    llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2021  
2022    // Make sure the indirect branch includes all of the address-taken blocks.
2023    IndirectBranch->addDestination(BB);
2024    return llvm::BlockAddress::get(CurFn, BB);
2025  }
2026  
2027  llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2028    // If we already made the indirect branch for indirect goto, return its block.
2029    if (IndirectBranch) return IndirectBranch->getParent();
2030  
2031    CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2032  
2033    // Create the PHI node that indirect gotos will add entries to.
2034    llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2035                                                "indirect.goto.dest");
2036  
2037    // Create the indirect branch instruction.
2038    IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2039    return IndirectBranch->getParent();
2040  }
2041  
2042  /// Computes the length of an array in elements, as well as the base
2043  /// element type and a properly-typed first element pointer.
2044  llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2045                                                QualType &baseType,
2046                                                Address &addr) {
2047    const ArrayType *arrayType = origArrayType;
2048  
2049    // If it's a VLA, we have to load the stored size.  Note that
2050    // this is the size of the VLA in bytes, not its size in elements.
2051    llvm::Value *numVLAElements = nullptr;
2052    if (isa<VariableArrayType>(arrayType)) {
2053      numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2054  
2055      // Walk into all VLAs.  This doesn't require changes to addr,
2056      // which has type T* where T is the first non-VLA element type.
2057      do {
2058        QualType elementType = arrayType->getElementType();
2059        arrayType = getContext().getAsArrayType(elementType);
2060  
2061        // If we only have VLA components, 'addr' requires no adjustment.
2062        if (!arrayType) {
2063          baseType = elementType;
2064          return numVLAElements;
2065        }
2066      } while (isa<VariableArrayType>(arrayType));
2067  
2068      // We get out here only if we find a constant array type
2069      // inside the VLA.
2070    }
2071  
2072    // We have some number of constant-length arrays, so addr should
2073    // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2074    // down to the first element of addr.
2075    SmallVector<llvm::Value*, 8> gepIndices;
2076  
2077    // GEP down to the array type.
2078    llvm::ConstantInt *zero = Builder.getInt32(0);
2079    gepIndices.push_back(zero);
2080  
2081    uint64_t countFromCLAs = 1;
2082    QualType eltType;
2083  
2084    llvm::ArrayType *llvmArrayType =
2085      dyn_cast<llvm::ArrayType>(addr.getElementType());
2086    while (llvmArrayType) {
2087      assert(isa<ConstantArrayType>(arrayType));
2088      assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
2089               == llvmArrayType->getNumElements());
2090  
2091      gepIndices.push_back(zero);
2092      countFromCLAs *= llvmArrayType->getNumElements();
2093      eltType = arrayType->getElementType();
2094  
2095      llvmArrayType =
2096        dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2097      arrayType = getContext().getAsArrayType(arrayType->getElementType());
2098      assert((!llvmArrayType || arrayType) &&
2099             "LLVM and Clang types are out-of-synch");
2100    }
2101  
2102    if (arrayType) {
2103      // From this point onwards, the Clang array type has been emitted
2104      // as some other type (probably a packed struct). Compute the array
2105      // size, and just emit the 'begin' expression as a bitcast.
2106      while (arrayType) {
2107        countFromCLAs *=
2108            cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
2109        eltType = arrayType->getElementType();
2110        arrayType = getContext().getAsArrayType(eltType);
2111      }
2112  
2113      llvm::Type *baseType = ConvertType(eltType);
2114      addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
2115    } else {
2116      // Create the actual GEP.
2117      addr = Address(Builder.CreateInBoundsGEP(
2118          addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"),
2119          ConvertTypeForMem(eltType),
2120          addr.getAlignment());
2121    }
2122  
2123    baseType = eltType;
2124  
2125    llvm::Value *numElements
2126      = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2127  
2128    // If we had any VLA dimensions, factor them in.
2129    if (numVLAElements)
2130      numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2131  
2132    return numElements;
2133  }
2134  
2135  CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2136    const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2137    assert(vla && "type was not a variable array type!");
2138    return getVLASize(vla);
2139  }
2140  
2141  CodeGenFunction::VlaSizePair
2142  CodeGenFunction::getVLASize(const VariableArrayType *type) {
2143    // The number of elements so far; always size_t.
2144    llvm::Value *numElements = nullptr;
2145  
2146    QualType elementType;
2147    do {
2148      elementType = type->getElementType();
2149      llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2150      assert(vlaSize && "no size for VLA!");
2151      assert(vlaSize->getType() == SizeTy);
2152  
2153      if (!numElements) {
2154        numElements = vlaSize;
2155      } else {
2156        // It's undefined behavior if this wraps around, so mark it that way.
2157        // FIXME: Teach -fsanitize=undefined to trap this.
2158        numElements = Builder.CreateNUWMul(numElements, vlaSize);
2159      }
2160    } while ((type = getContext().getAsVariableArrayType(elementType)));
2161  
2162    return { numElements, elementType };
2163  }
2164  
2165  CodeGenFunction::VlaSizePair
2166  CodeGenFunction::getVLAElements1D(QualType type) {
2167    const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2168    assert(vla && "type was not a variable array type!");
2169    return getVLAElements1D(vla);
2170  }
2171  
2172  CodeGenFunction::VlaSizePair
2173  CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2174    llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2175    assert(VlaSize && "no size for VLA!");
2176    assert(VlaSize->getType() == SizeTy);
2177    return { VlaSize, Vla->getElementType() };
2178  }
2179  
2180  void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2181    assert(type->isVariablyModifiedType() &&
2182           "Must pass variably modified type to EmitVLASizes!");
2183  
2184    EnsureInsertPoint();
2185  
2186    // We're going to walk down into the type and look for VLA
2187    // expressions.
2188    do {
2189      assert(type->isVariablyModifiedType());
2190  
2191      const Type *ty = type.getTypePtr();
2192      switch (ty->getTypeClass()) {
2193  
2194  #define TYPE(Class, Base)
2195  #define ABSTRACT_TYPE(Class, Base)
2196  #define NON_CANONICAL_TYPE(Class, Base)
2197  #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2198  #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2199  #include "clang/AST/TypeNodes.inc"
2200        llvm_unreachable("unexpected dependent type!");
2201  
2202      // These types are never variably-modified.
2203      case Type::Builtin:
2204      case Type::Complex:
2205      case Type::Vector:
2206      case Type::ExtVector:
2207      case Type::ConstantMatrix:
2208      case Type::Record:
2209      case Type::Enum:
2210      case Type::Elaborated:
2211      case Type::Using:
2212      case Type::TemplateSpecialization:
2213      case Type::ObjCTypeParam:
2214      case Type::ObjCObject:
2215      case Type::ObjCInterface:
2216      case Type::ObjCObjectPointer:
2217      case Type::BitInt:
2218        llvm_unreachable("type class is never variably-modified!");
2219  
2220      case Type::Adjusted:
2221        type = cast<AdjustedType>(ty)->getAdjustedType();
2222        break;
2223  
2224      case Type::Decayed:
2225        type = cast<DecayedType>(ty)->getPointeeType();
2226        break;
2227  
2228      case Type::Pointer:
2229        type = cast<PointerType>(ty)->getPointeeType();
2230        break;
2231  
2232      case Type::BlockPointer:
2233        type = cast<BlockPointerType>(ty)->getPointeeType();
2234        break;
2235  
2236      case Type::LValueReference:
2237      case Type::RValueReference:
2238        type = cast<ReferenceType>(ty)->getPointeeType();
2239        break;
2240  
2241      case Type::MemberPointer:
2242        type = cast<MemberPointerType>(ty)->getPointeeType();
2243        break;
2244  
2245      case Type::ConstantArray:
2246      case Type::IncompleteArray:
2247        // Losing element qualification here is fine.
2248        type = cast<ArrayType>(ty)->getElementType();
2249        break;
2250  
2251      case Type::VariableArray: {
2252        // Losing element qualification here is fine.
2253        const VariableArrayType *vat = cast<VariableArrayType>(ty);
2254  
2255        // Unknown size indication requires no size computation.
2256        // Otherwise, evaluate and record it.
2257        if (const Expr *sizeExpr = vat->getSizeExpr()) {
2258          // It's possible that we might have emitted this already,
2259          // e.g. with a typedef and a pointer to it.
2260          llvm::Value *&entry = VLASizeMap[sizeExpr];
2261          if (!entry) {
2262            llvm::Value *size = EmitScalarExpr(sizeExpr);
2263  
2264            // C11 6.7.6.2p5:
2265            //   If the size is an expression that is not an integer constant
2266            //   expression [...] each time it is evaluated it shall have a value
2267            //   greater than zero.
2268            if (SanOpts.has(SanitizerKind::VLABound)) {
2269              SanitizerScope SanScope(this);
2270              llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2271              clang::QualType SEType = sizeExpr->getType();
2272              llvm::Value *CheckCondition =
2273                  SEType->isSignedIntegerType()
2274                      ? Builder.CreateICmpSGT(size, Zero)
2275                      : Builder.CreateICmpUGT(size, Zero);
2276              llvm::Constant *StaticArgs[] = {
2277                  EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2278                  EmitCheckTypeDescriptor(SEType)};
2279              EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2280                        SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2281            }
2282  
2283            // Always zexting here would be wrong if it weren't
2284            // undefined behavior to have a negative bound.
2285            // FIXME: What about when size's type is larger than size_t?
2286            entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2287          }
2288        }
2289        type = vat->getElementType();
2290        break;
2291      }
2292  
2293      case Type::FunctionProto:
2294      case Type::FunctionNoProto:
2295        type = cast<FunctionType>(ty)->getReturnType();
2296        break;
2297  
2298      case Type::Paren:
2299      case Type::TypeOf:
2300      case Type::UnaryTransform:
2301      case Type::Attributed:
2302      case Type::SubstTemplateTypeParm:
2303      case Type::MacroQualified:
2304        // Keep walking after single level desugaring.
2305        type = type.getSingleStepDesugaredType(getContext());
2306        break;
2307  
2308      case Type::Typedef:
2309      case Type::Decltype:
2310      case Type::Auto:
2311      case Type::DeducedTemplateSpecialization:
2312        // Stop walking: nothing to do.
2313        return;
2314  
2315      case Type::TypeOfExpr:
2316        // Stop walking: emit typeof expression.
2317        EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2318        return;
2319  
2320      case Type::Atomic:
2321        type = cast<AtomicType>(ty)->getValueType();
2322        break;
2323  
2324      case Type::Pipe:
2325        type = cast<PipeType>(ty)->getElementType();
2326        break;
2327      }
2328    } while (type->isVariablyModifiedType());
2329  }
2330  
2331  Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2332    if (getContext().getBuiltinVaListType()->isArrayType())
2333      return EmitPointerWithAlignment(E);
2334    return EmitLValue(E).getAddress(*this);
2335  }
2336  
2337  Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2338    return EmitLValue(E).getAddress(*this);
2339  }
2340  
2341  void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2342                                                const APValue &Init) {
2343    assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2344    if (CGDebugInfo *Dbg = getDebugInfo())
2345      if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2346        Dbg->EmitGlobalVariable(E->getDecl(), Init);
2347  }
2348  
2349  CodeGenFunction::PeepholeProtection
2350  CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2351    // At the moment, the only aggressive peephole we do in IR gen
2352    // is trunc(zext) folding, but if we add more, we can easily
2353    // extend this protection.
2354  
2355    if (!rvalue.isScalar()) return PeepholeProtection();
2356    llvm::Value *value = rvalue.getScalarVal();
2357    if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2358  
2359    // Just make an extra bitcast.
2360    assert(HaveInsertPoint());
2361    llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2362                                                    Builder.GetInsertBlock());
2363  
2364    PeepholeProtection protection;
2365    protection.Inst = inst;
2366    return protection;
2367  }
2368  
2369  void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2370    if (!protection.Inst) return;
2371  
2372    // In theory, we could try to duplicate the peepholes now, but whatever.
2373    protection.Inst->eraseFromParent();
2374  }
2375  
2376  void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2377                                                QualType Ty, SourceLocation Loc,
2378                                                SourceLocation AssumptionLoc,
2379                                                llvm::Value *Alignment,
2380                                                llvm::Value *OffsetValue) {
2381    if (Alignment->getType() != IntPtrTy)
2382      Alignment =
2383          Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2384    if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2385      OffsetValue =
2386          Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2387    llvm::Value *TheCheck = nullptr;
2388    if (SanOpts.has(SanitizerKind::Alignment)) {
2389      llvm::Value *PtrIntValue =
2390          Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2391  
2392      if (OffsetValue) {
2393        bool IsOffsetZero = false;
2394        if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2395          IsOffsetZero = CI->isZero();
2396  
2397        if (!IsOffsetZero)
2398          PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2399      }
2400  
2401      llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2402      llvm::Value *Mask =
2403          Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2404      llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2405      TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2406    }
2407    llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2408        CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2409  
2410    if (!SanOpts.has(SanitizerKind::Alignment))
2411      return;
2412    emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2413                                 OffsetValue, TheCheck, Assumption);
2414  }
2415  
2416  void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2417                                                const Expr *E,
2418                                                SourceLocation AssumptionLoc,
2419                                                llvm::Value *Alignment,
2420                                                llvm::Value *OffsetValue) {
2421    if (auto *CE = dyn_cast<CastExpr>(E))
2422      E = CE->getSubExprAsWritten();
2423    QualType Ty = E->getType();
2424    SourceLocation Loc = E->getExprLoc();
2425  
2426    emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2427                            OffsetValue);
2428  }
2429  
2430  llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2431                                                   llvm::Value *AnnotatedVal,
2432                                                   StringRef AnnotationStr,
2433                                                   SourceLocation Location,
2434                                                   const AnnotateAttr *Attr) {
2435    SmallVector<llvm::Value *, 5> Args = {
2436        AnnotatedVal,
2437        Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2438        Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2439        CGM.EmitAnnotationLineNo(Location),
2440    };
2441    if (Attr)
2442      Args.push_back(CGM.EmitAnnotationArgs(Attr));
2443    return Builder.CreateCall(AnnotationFn, Args);
2444  }
2445  
2446  void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2447    assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2448    // FIXME We create a new bitcast for every annotation because that's what
2449    // llvm-gcc was doing.
2450    for (const auto *I : D->specific_attrs<AnnotateAttr>())
2451      EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2452                         Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2453                         I->getAnnotation(), D->getLocation(), I);
2454  }
2455  
2456  Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2457                                                Address Addr) {
2458    assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2459    llvm::Value *V = Addr.getPointer();
2460    llvm::Type *VTy = V->getType();
2461    auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2462    unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2463    llvm::PointerType *IntrinTy =
2464        llvm::PointerType::getWithSamePointeeType(CGM.Int8PtrTy, AS);
2465    llvm::Function *F =
2466        CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, IntrinTy);
2467  
2468    for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2469      // FIXME Always emit the cast inst so we can differentiate between
2470      // annotation on the first field of a struct and annotation on the struct
2471      // itself.
2472      if (VTy != IntrinTy)
2473        V = Builder.CreateBitCast(V, IntrinTy);
2474      V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2475      V = Builder.CreateBitCast(V, VTy);
2476    }
2477  
2478    return Address(V, Addr.getAlignment());
2479  }
2480  
2481  CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2482  
2483  CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2484      : CGF(CGF) {
2485    assert(!CGF->IsSanitizerScope);
2486    CGF->IsSanitizerScope = true;
2487  }
2488  
2489  CodeGenFunction::SanitizerScope::~SanitizerScope() {
2490    CGF->IsSanitizerScope = false;
2491  }
2492  
2493  void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2494                                     const llvm::Twine &Name,
2495                                     llvm::BasicBlock *BB,
2496                                     llvm::BasicBlock::iterator InsertPt) const {
2497    LoopStack.InsertHelper(I);
2498    if (IsSanitizerScope)
2499      CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2500  }
2501  
2502  void CGBuilderInserter::InsertHelper(
2503      llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2504      llvm::BasicBlock::iterator InsertPt) const {
2505    llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2506    if (CGF)
2507      CGF->InsertHelper(I, Name, BB, InsertPt);
2508  }
2509  
2510  // Emits an error if we don't have a valid set of target features for the
2511  // called function.
2512  void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2513                                            const FunctionDecl *TargetDecl) {
2514    return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2515  }
2516  
2517  // Emits an error if we don't have a valid set of target features for the
2518  // called function.
2519  void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2520                                            const FunctionDecl *TargetDecl) {
2521    // Early exit if this is an indirect call.
2522    if (!TargetDecl)
2523      return;
2524  
2525    // Get the current enclosing function if it exists. If it doesn't
2526    // we can't check the target features anyhow.
2527    const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2528    if (!FD)
2529      return;
2530  
2531    // Grab the required features for the call. For a builtin this is listed in
2532    // the td file with the default cpu, for an always_inline function this is any
2533    // listed cpu and any listed features.
2534    unsigned BuiltinID = TargetDecl->getBuiltinID();
2535    std::string MissingFeature;
2536    llvm::StringMap<bool> CallerFeatureMap;
2537    CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2538    if (BuiltinID) {
2539      StringRef FeatureList(
2540          CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2541      // Return if the builtin doesn't have any required features.
2542      if (FeatureList.empty())
2543        return;
2544      assert(!FeatureList.contains(' ') && "Space in feature list");
2545      TargetFeatures TF(CallerFeatureMap);
2546      if (!TF.hasRequiredFeatures(FeatureList))
2547        CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2548            << TargetDecl->getDeclName() << FeatureList;
2549    } else if (!TargetDecl->isMultiVersion() &&
2550               TargetDecl->hasAttr<TargetAttr>()) {
2551      // Get the required features for the callee.
2552  
2553      const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2554      ParsedTargetAttr ParsedAttr =
2555          CGM.getContext().filterFunctionTargetAttrs(TD);
2556  
2557      SmallVector<StringRef, 1> ReqFeatures;
2558      llvm::StringMap<bool> CalleeFeatureMap;
2559      CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2560  
2561      for (const auto &F : ParsedAttr.Features) {
2562        if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2563          ReqFeatures.push_back(StringRef(F).substr(1));
2564      }
2565  
2566      for (const auto &F : CalleeFeatureMap) {
2567        // Only positive features are "required".
2568        if (F.getValue())
2569          ReqFeatures.push_back(F.getKey());
2570      }
2571      if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2572        if (!CallerFeatureMap.lookup(Feature)) {
2573          MissingFeature = Feature.str();
2574          return false;
2575        }
2576        return true;
2577      }))
2578        CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2579            << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2580    }
2581  }
2582  
2583  void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2584    if (!CGM.getCodeGenOpts().SanitizeStats)
2585      return;
2586  
2587    llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2588    IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2589    CGM.getSanStats().create(IRB, SSK);
2590  }
2591  
2592  llvm::Value *
2593  CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2594    llvm::Value *Condition = nullptr;
2595  
2596    if (!RO.Conditions.Architecture.empty())
2597      Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2598  
2599    if (!RO.Conditions.Features.empty()) {
2600      llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2601      Condition =
2602          Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2603    }
2604    return Condition;
2605  }
2606  
2607  static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2608                                               llvm::Function *Resolver,
2609                                               CGBuilderTy &Builder,
2610                                               llvm::Function *FuncToReturn,
2611                                               bool SupportsIFunc) {
2612    if (SupportsIFunc) {
2613      Builder.CreateRet(FuncToReturn);
2614      return;
2615    }
2616  
2617    llvm::SmallVector<llvm::Value *, 10> Args;
2618    llvm::for_each(Resolver->args(),
2619                   [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2620  
2621    llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2622    Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2623  
2624    if (Resolver->getReturnType()->isVoidTy())
2625      Builder.CreateRetVoid();
2626    else
2627      Builder.CreateRet(Result);
2628  }
2629  
2630  void CodeGenFunction::EmitMultiVersionResolver(
2631      llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2632    assert(getContext().getTargetInfo().getTriple().isX86() &&
2633           "Only implemented for x86 targets");
2634  
2635    bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2636  
2637    // Main function's basic block.
2638    llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2639    Builder.SetInsertPoint(CurBlock);
2640    EmitX86CpuInit();
2641  
2642    for (const MultiVersionResolverOption &RO : Options) {
2643      Builder.SetInsertPoint(CurBlock);
2644      llvm::Value *Condition = FormResolverCondition(RO);
2645  
2646      // The 'default' or 'generic' case.
2647      if (!Condition) {
2648        assert(&RO == Options.end() - 1 &&
2649               "Default or Generic case must be last");
2650        CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2651                                         SupportsIFunc);
2652        return;
2653      }
2654  
2655      llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2656      CGBuilderTy RetBuilder(*this, RetBlock);
2657      CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2658                                       SupportsIFunc);
2659      CurBlock = createBasicBlock("resolver_else", Resolver);
2660      Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2661    }
2662  
2663    // If no generic/default, emit an unreachable.
2664    Builder.SetInsertPoint(CurBlock);
2665    llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2666    TrapCall->setDoesNotReturn();
2667    TrapCall->setDoesNotThrow();
2668    Builder.CreateUnreachable();
2669    Builder.ClearInsertionPoint();
2670  }
2671  
2672  // Loc - where the diagnostic will point, where in the source code this
2673  //  alignment has failed.
2674  // SecondaryLoc - if present (will be present if sufficiently different from
2675  //  Loc), the diagnostic will additionally point a "Note:" to this location.
2676  //  It should be the location where the __attribute__((assume_aligned))
2677  //  was written e.g.
2678  void CodeGenFunction::emitAlignmentAssumptionCheck(
2679      llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2680      SourceLocation SecondaryLoc, llvm::Value *Alignment,
2681      llvm::Value *OffsetValue, llvm::Value *TheCheck,
2682      llvm::Instruction *Assumption) {
2683    assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2684           cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2685               llvm::Intrinsic::getDeclaration(
2686                   Builder.GetInsertBlock()->getParent()->getParent(),
2687                   llvm::Intrinsic::assume) &&
2688           "Assumption should be a call to llvm.assume().");
2689    assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2690           "Assumption should be the last instruction of the basic block, "
2691           "since the basic block is still being generated.");
2692  
2693    if (!SanOpts.has(SanitizerKind::Alignment))
2694      return;
2695  
2696    // Don't check pointers to volatile data. The behavior here is implementation-
2697    // defined.
2698    if (Ty->getPointeeType().isVolatileQualified())
2699      return;
2700  
2701    // We need to temorairly remove the assumption so we can insert the
2702    // sanitizer check before it, else the check will be dropped by optimizations.
2703    Assumption->removeFromParent();
2704  
2705    {
2706      SanitizerScope SanScope(this);
2707  
2708      if (!OffsetValue)
2709        OffsetValue = Builder.getInt1(false); // no offset.
2710  
2711      llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2712                                      EmitCheckSourceLocation(SecondaryLoc),
2713                                      EmitCheckTypeDescriptor(Ty)};
2714      llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2715                                    EmitCheckValue(Alignment),
2716                                    EmitCheckValue(OffsetValue)};
2717      EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2718                SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2719    }
2720  
2721    // We are now in the (new, empty) "cont" basic block.
2722    // Reintroduce the assumption.
2723    Builder.Insert(Assumption);
2724    // FIXME: Assumption still has it's original basic block as it's Parent.
2725  }
2726  
2727  llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2728    if (CGDebugInfo *DI = getDebugInfo())
2729      return DI->SourceLocToDebugLoc(Location);
2730  
2731    return llvm::DebugLoc();
2732  }
2733  
2734  llvm::Value *
2735  CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
2736                                                        Stmt::Likelihood LH) {
2737    switch (LH) {
2738    case Stmt::LH_None:
2739      return Cond;
2740    case Stmt::LH_Likely:
2741    case Stmt::LH_Unlikely:
2742      // Don't generate llvm.expect on -O0 as the backend won't use it for
2743      // anything.
2744      if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2745        return Cond;
2746      llvm::Type *CondTy = Cond->getType();
2747      assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
2748      llvm::Function *FnExpect =
2749          CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
2750      llvm::Value *ExpectedValueOfCond =
2751          llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
2752      return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
2753                                Cond->getName() + ".expval");
2754    }
2755    llvm_unreachable("Unknown Likelihood");
2756  }
2757