1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/Expr.h" 29 #include "clang/AST/StmtCXX.h" 30 #include "clang/AST/StmtObjC.h" 31 #include "clang/Basic/Builtins.h" 32 #include "clang/Basic/CodeGenOptions.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/CodeGen/CGFunctionInfo.h" 35 #include "clang/Frontend/FrontendDiagnostic.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/FPEnv.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/MDBuilder.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/Support/CRC.h" 46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 47 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 48 using namespace clang; 49 using namespace CodeGen; 50 51 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 52 /// markers. 53 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 54 const LangOptions &LangOpts) { 55 if (CGOpts.DisableLifetimeMarkers) 56 return false; 57 58 // Sanitizers may use markers. 59 if (CGOpts.SanitizeAddressUseAfterScope || 60 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 61 LangOpts.Sanitize.has(SanitizerKind::Memory)) 62 return true; 63 64 // For now, only in optimized builds. 65 return CGOpts.OptimizationLevel != 0; 66 } 67 68 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 69 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 70 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 71 CGBuilderInserterTy(this)), 72 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 73 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 74 ShouldEmitLifetimeMarkers( 75 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 76 if (!suppressNewContext) 77 CGM.getCXXABI().getMangleContext().startNewFunction(); 78 79 SetFastMathFlags(CurFPFeatures); 80 SetFPModel(); 81 } 82 83 CodeGenFunction::~CodeGenFunction() { 84 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 85 86 if (getLangOpts().OpenMP && CurFn) 87 CGM.getOpenMPRuntime().functionFinished(*this); 88 89 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 90 // outlining etc) at some point. Doing it once the function codegen is done 91 // seems to be a reasonable spot. We do it here, as opposed to the deletion 92 // time of the CodeGenModule, because we have to ensure the IR has not yet 93 // been "emitted" to the outside, thus, modifications are still sensible. 94 if (CGM.getLangOpts().OpenMPIRBuilder) 95 CGM.getOpenMPRuntime().getOMPBuilder().finalize(); 96 } 97 98 // Map the LangOption for exception behavior into 99 // the corresponding enum in the IR. 100 llvm::fp::ExceptionBehavior 101 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 102 103 switch (Kind) { 104 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 105 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 106 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 107 } 108 llvm_unreachable("Unsupported FP Exception Behavior"); 109 } 110 111 void CodeGenFunction::SetFPModel() { 112 llvm::RoundingMode RM = getLangOpts().getFPRoundingMode(); 113 auto fpExceptionBehavior = ToConstrainedExceptMD( 114 getLangOpts().getFPExceptionMode()); 115 116 Builder.setDefaultConstrainedRounding(RM); 117 Builder.setDefaultConstrainedExcept(fpExceptionBehavior); 118 Builder.setIsFPConstrained(fpExceptionBehavior != llvm::fp::ebIgnore || 119 RM != llvm::RoundingMode::NearestTiesToEven); 120 } 121 122 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 123 llvm::FastMathFlags FMF; 124 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 125 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 126 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 127 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 128 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 129 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 130 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 131 Builder.setFastMathFlags(FMF); 132 } 133 134 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 135 const Expr *E) 136 : CGF(CGF) { 137 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 138 } 139 140 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 141 FPOptions FPFeatures) 142 : CGF(CGF) { 143 ConstructorHelper(FPFeatures); 144 } 145 146 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 147 OldFPFeatures = CGF.CurFPFeatures; 148 CGF.CurFPFeatures = FPFeatures; 149 150 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 151 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 152 153 if (OldFPFeatures == FPFeatures) 154 return; 155 156 FMFGuard.emplace(CGF.Builder); 157 158 llvm::RoundingMode NewRoundingBehavior = 159 static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode()); 160 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 161 auto NewExceptionBehavior = 162 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 163 FPFeatures.getFPExceptionMode())); 164 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 165 166 CGF.SetFastMathFlags(FPFeatures); 167 168 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 169 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 170 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 171 (NewExceptionBehavior == llvm::fp::ebIgnore && 172 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 173 "FPConstrained should be enabled on entire function"); 174 175 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 176 auto OldValue = 177 CGF.CurFn->getFnAttribute(Name).getValueAsString() == "true"; 178 auto NewValue = OldValue & Value; 179 if (OldValue != NewValue) 180 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 181 }; 182 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 183 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 184 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 185 mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() && 186 FPFeatures.getAllowReciprocal() && 187 FPFeatures.getAllowApproxFunc() && 188 FPFeatures.getNoSignedZero()); 189 } 190 191 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 192 CGF.CurFPFeatures = OldFPFeatures; 193 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 194 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 195 } 196 197 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 198 LValueBaseInfo BaseInfo; 199 TBAAAccessInfo TBAAInfo; 200 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 201 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 202 TBAAInfo); 203 } 204 205 /// Given a value of type T* that may not be to a complete object, 206 /// construct an l-value with the natural pointee alignment of T. 207 LValue 208 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 209 LValueBaseInfo BaseInfo; 210 TBAAAccessInfo TBAAInfo; 211 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 212 /* forPointeeType= */ true); 213 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 214 } 215 216 217 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 218 return CGM.getTypes().ConvertTypeForMem(T); 219 } 220 221 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 222 return CGM.getTypes().ConvertType(T); 223 } 224 225 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 226 type = type.getCanonicalType(); 227 while (true) { 228 switch (type->getTypeClass()) { 229 #define TYPE(name, parent) 230 #define ABSTRACT_TYPE(name, parent) 231 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 232 #define DEPENDENT_TYPE(name, parent) case Type::name: 233 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 234 #include "clang/AST/TypeNodes.inc" 235 llvm_unreachable("non-canonical or dependent type in IR-generation"); 236 237 case Type::Auto: 238 case Type::DeducedTemplateSpecialization: 239 llvm_unreachable("undeduced type in IR-generation"); 240 241 // Various scalar types. 242 case Type::Builtin: 243 case Type::Pointer: 244 case Type::BlockPointer: 245 case Type::LValueReference: 246 case Type::RValueReference: 247 case Type::MemberPointer: 248 case Type::Vector: 249 case Type::ExtVector: 250 case Type::ConstantMatrix: 251 case Type::FunctionProto: 252 case Type::FunctionNoProto: 253 case Type::Enum: 254 case Type::ObjCObjectPointer: 255 case Type::Pipe: 256 case Type::ExtInt: 257 return TEK_Scalar; 258 259 // Complexes. 260 case Type::Complex: 261 return TEK_Complex; 262 263 // Arrays, records, and Objective-C objects. 264 case Type::ConstantArray: 265 case Type::IncompleteArray: 266 case Type::VariableArray: 267 case Type::Record: 268 case Type::ObjCObject: 269 case Type::ObjCInterface: 270 return TEK_Aggregate; 271 272 // We operate on atomic values according to their underlying type. 273 case Type::Atomic: 274 type = cast<AtomicType>(type)->getValueType(); 275 continue; 276 } 277 llvm_unreachable("unknown type kind!"); 278 } 279 } 280 281 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 282 // For cleanliness, we try to avoid emitting the return block for 283 // simple cases. 284 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 285 286 if (CurBB) { 287 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 288 289 // We have a valid insert point, reuse it if it is empty or there are no 290 // explicit jumps to the return block. 291 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 292 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 293 delete ReturnBlock.getBlock(); 294 ReturnBlock = JumpDest(); 295 } else 296 EmitBlock(ReturnBlock.getBlock()); 297 return llvm::DebugLoc(); 298 } 299 300 // Otherwise, if the return block is the target of a single direct 301 // branch then we can just put the code in that block instead. This 302 // cleans up functions which started with a unified return block. 303 if (ReturnBlock.getBlock()->hasOneUse()) { 304 llvm::BranchInst *BI = 305 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 306 if (BI && BI->isUnconditional() && 307 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 308 // Record/return the DebugLoc of the simple 'return' expression to be used 309 // later by the actual 'ret' instruction. 310 llvm::DebugLoc Loc = BI->getDebugLoc(); 311 Builder.SetInsertPoint(BI->getParent()); 312 BI->eraseFromParent(); 313 delete ReturnBlock.getBlock(); 314 ReturnBlock = JumpDest(); 315 return Loc; 316 } 317 } 318 319 // FIXME: We are at an unreachable point, there is no reason to emit the block 320 // unless it has uses. However, we still need a place to put the debug 321 // region.end for now. 322 323 EmitBlock(ReturnBlock.getBlock()); 324 return llvm::DebugLoc(); 325 } 326 327 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 328 if (!BB) return; 329 if (!BB->use_empty()) 330 return CGF.CurFn->getBasicBlockList().push_back(BB); 331 delete BB; 332 } 333 334 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 335 assert(BreakContinueStack.empty() && 336 "mismatched push/pop in break/continue stack!"); 337 338 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 339 && NumSimpleReturnExprs == NumReturnExprs 340 && ReturnBlock.getBlock()->use_empty(); 341 // Usually the return expression is evaluated before the cleanup 342 // code. If the function contains only a simple return statement, 343 // such as a constant, the location before the cleanup code becomes 344 // the last useful breakpoint in the function, because the simple 345 // return expression will be evaluated after the cleanup code. To be 346 // safe, set the debug location for cleanup code to the location of 347 // the return statement. Otherwise the cleanup code should be at the 348 // end of the function's lexical scope. 349 // 350 // If there are multiple branches to the return block, the branch 351 // instructions will get the location of the return statements and 352 // all will be fine. 353 if (CGDebugInfo *DI = getDebugInfo()) { 354 if (OnlySimpleReturnStmts) 355 DI->EmitLocation(Builder, LastStopPoint); 356 else 357 DI->EmitLocation(Builder, EndLoc); 358 } 359 360 // Pop any cleanups that might have been associated with the 361 // parameters. Do this in whatever block we're currently in; it's 362 // important to do this before we enter the return block or return 363 // edges will be *really* confused. 364 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 365 bool HasOnlyLifetimeMarkers = 366 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 367 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 368 if (HasCleanups) { 369 // Make sure the line table doesn't jump back into the body for 370 // the ret after it's been at EndLoc. 371 Optional<ApplyDebugLocation> AL; 372 if (CGDebugInfo *DI = getDebugInfo()) { 373 if (OnlySimpleReturnStmts) 374 DI->EmitLocation(Builder, EndLoc); 375 else 376 // We may not have a valid end location. Try to apply it anyway, and 377 // fall back to an artificial location if needed. 378 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 379 } 380 381 PopCleanupBlocks(PrologueCleanupDepth); 382 } 383 384 // Emit function epilog (to return). 385 llvm::DebugLoc Loc = EmitReturnBlock(); 386 387 if (ShouldInstrumentFunction()) { 388 if (CGM.getCodeGenOpts().InstrumentFunctions) 389 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 390 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 391 CurFn->addFnAttr("instrument-function-exit-inlined", 392 "__cyg_profile_func_exit"); 393 } 394 395 // Emit debug descriptor for function end. 396 if (CGDebugInfo *DI = getDebugInfo()) 397 DI->EmitFunctionEnd(Builder, CurFn); 398 399 // Reset the debug location to that of the simple 'return' expression, if any 400 // rather than that of the end of the function's scope '}'. 401 ApplyDebugLocation AL(*this, Loc); 402 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 403 EmitEndEHSpec(CurCodeDecl); 404 405 assert(EHStack.empty() && 406 "did not remove all scopes from cleanup stack!"); 407 408 // If someone did an indirect goto, emit the indirect goto block at the end of 409 // the function. 410 if (IndirectBranch) { 411 EmitBlock(IndirectBranch->getParent()); 412 Builder.ClearInsertionPoint(); 413 } 414 415 // If some of our locals escaped, insert a call to llvm.localescape in the 416 // entry block. 417 if (!EscapedLocals.empty()) { 418 // Invert the map from local to index into a simple vector. There should be 419 // no holes. 420 SmallVector<llvm::Value *, 4> EscapeArgs; 421 EscapeArgs.resize(EscapedLocals.size()); 422 for (auto &Pair : EscapedLocals) 423 EscapeArgs[Pair.second] = Pair.first; 424 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 425 &CGM.getModule(), llvm::Intrinsic::localescape); 426 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 427 } 428 429 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 430 llvm::Instruction *Ptr = AllocaInsertPt; 431 AllocaInsertPt = nullptr; 432 Ptr->eraseFromParent(); 433 434 // If someone took the address of a label but never did an indirect goto, we 435 // made a zero entry PHI node, which is illegal, zap it now. 436 if (IndirectBranch) { 437 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 438 if (PN->getNumIncomingValues() == 0) { 439 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 440 PN->eraseFromParent(); 441 } 442 } 443 444 EmitIfUsed(*this, EHResumeBlock); 445 EmitIfUsed(*this, TerminateLandingPad); 446 EmitIfUsed(*this, TerminateHandler); 447 EmitIfUsed(*this, UnreachableBlock); 448 449 for (const auto &FuncletAndParent : TerminateFunclets) 450 EmitIfUsed(*this, FuncletAndParent.second); 451 452 if (CGM.getCodeGenOpts().EmitDeclMetadata) 453 EmitDeclMetadata(); 454 455 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 456 I = DeferredReplacements.begin(), 457 E = DeferredReplacements.end(); 458 I != E; ++I) { 459 I->first->replaceAllUsesWith(I->second); 460 I->first->eraseFromParent(); 461 } 462 463 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 464 // PHIs if the current function is a coroutine. We don't do it for all 465 // functions as it may result in slight increase in numbers of instructions 466 // if compiled with no optimizations. We do it for coroutine as the lifetime 467 // of CleanupDestSlot alloca make correct coroutine frame building very 468 // difficult. 469 if (NormalCleanupDest.isValid() && isCoroutine()) { 470 llvm::DominatorTree DT(*CurFn); 471 llvm::PromoteMemToReg( 472 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 473 NormalCleanupDest = Address::invalid(); 474 } 475 476 // Scan function arguments for vector width. 477 for (llvm::Argument &A : CurFn->args()) 478 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 479 LargestVectorWidth = 480 std::max((uint64_t)LargestVectorWidth, 481 VT->getPrimitiveSizeInBits().getKnownMinSize()); 482 483 // Update vector width based on return type. 484 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 485 LargestVectorWidth = 486 std::max((uint64_t)LargestVectorWidth, 487 VT->getPrimitiveSizeInBits().getKnownMinSize()); 488 489 // Add the required-vector-width attribute. This contains the max width from: 490 // 1. min-vector-width attribute used in the source program. 491 // 2. Any builtins used that have a vector width specified. 492 // 3. Values passed in and out of inline assembly. 493 // 4. Width of vector arguments and return types for this function. 494 // 5. Width of vector aguments and return types for functions called by this 495 // function. 496 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 497 498 // If we generated an unreachable return block, delete it now. 499 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 500 Builder.ClearInsertionPoint(); 501 ReturnBlock.getBlock()->eraseFromParent(); 502 } 503 if (ReturnValue.isValid()) { 504 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 505 if (RetAlloca && RetAlloca->use_empty()) { 506 RetAlloca->eraseFromParent(); 507 ReturnValue = Address::invalid(); 508 } 509 } 510 } 511 512 /// ShouldInstrumentFunction - Return true if the current function should be 513 /// instrumented with __cyg_profile_func_* calls 514 bool CodeGenFunction::ShouldInstrumentFunction() { 515 if (!CGM.getCodeGenOpts().InstrumentFunctions && 516 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 517 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 518 return false; 519 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 520 return false; 521 return true; 522 } 523 524 /// ShouldXRayInstrument - Return true if the current function should be 525 /// instrumented with XRay nop sleds. 526 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 527 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 528 } 529 530 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 531 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 532 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 533 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 534 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 535 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 536 XRayInstrKind::Custom); 537 } 538 539 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 540 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 541 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 542 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 543 XRayInstrKind::Typed); 544 } 545 546 llvm::Constant * 547 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 548 llvm::Constant *Addr) { 549 // Addresses stored in prologue data can't require run-time fixups and must 550 // be PC-relative. Run-time fixups are undesirable because they necessitate 551 // writable text segments, which are unsafe. And absolute addresses are 552 // undesirable because they break PIE mode. 553 554 // Add a layer of indirection through a private global. Taking its address 555 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 556 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 557 /*isConstant=*/true, 558 llvm::GlobalValue::PrivateLinkage, Addr); 559 560 // Create a PC-relative address. 561 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 562 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 563 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 564 return (IntPtrTy == Int32Ty) 565 ? PCRelAsInt 566 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 567 } 568 569 llvm::Value * 570 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 571 llvm::Value *EncodedAddr) { 572 // Reconstruct the address of the global. 573 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 574 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 575 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 576 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 577 578 // Load the original pointer through the global. 579 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 580 "decoded_addr"); 581 } 582 583 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 584 llvm::Function *Fn) 585 { 586 if (!FD->hasAttr<OpenCLKernelAttr>()) 587 return; 588 589 llvm::LLVMContext &Context = getLLVMContext(); 590 591 CGM.GenOpenCLArgMetadata(Fn, FD, this); 592 593 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 594 QualType HintQTy = A->getTypeHint(); 595 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 596 bool IsSignedInteger = 597 HintQTy->isSignedIntegerType() || 598 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 599 llvm::Metadata *AttrMDArgs[] = { 600 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 601 CGM.getTypes().ConvertType(A->getTypeHint()))), 602 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 603 llvm::IntegerType::get(Context, 32), 604 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 605 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 606 } 607 608 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 609 llvm::Metadata *AttrMDArgs[] = { 610 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 611 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 612 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 613 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 614 } 615 616 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 617 llvm::Metadata *AttrMDArgs[] = { 618 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 619 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 620 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 621 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 622 } 623 624 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 625 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 626 llvm::Metadata *AttrMDArgs[] = { 627 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 628 Fn->setMetadata("intel_reqd_sub_group_size", 629 llvm::MDNode::get(Context, AttrMDArgs)); 630 } 631 } 632 633 /// Determine whether the function F ends with a return stmt. 634 static bool endsWithReturn(const Decl* F) { 635 const Stmt *Body = nullptr; 636 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 637 Body = FD->getBody(); 638 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 639 Body = OMD->getBody(); 640 641 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 642 auto LastStmt = CS->body_rbegin(); 643 if (LastStmt != CS->body_rend()) 644 return isa<ReturnStmt>(*LastStmt); 645 } 646 return false; 647 } 648 649 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 650 if (SanOpts.has(SanitizerKind::Thread)) { 651 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 652 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 653 } 654 } 655 656 /// Check if the return value of this function requires sanitization. 657 bool CodeGenFunction::requiresReturnValueCheck() const { 658 return requiresReturnValueNullabilityCheck() || 659 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 660 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 661 } 662 663 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 664 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 665 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 666 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 667 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 668 return false; 669 670 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 671 return false; 672 673 if (MD->getNumParams() == 2) { 674 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 675 if (!PT || !PT->isVoidPointerType() || 676 !PT->getPointeeType().isConstQualified()) 677 return false; 678 } 679 680 return true; 681 } 682 683 /// Return the UBSan prologue signature for \p FD if one is available. 684 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 685 const FunctionDecl *FD) { 686 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 687 if (!MD->isStatic()) 688 return nullptr; 689 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 690 } 691 692 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 693 llvm::Function *Fn, 694 const CGFunctionInfo &FnInfo, 695 const FunctionArgList &Args, 696 SourceLocation Loc, 697 SourceLocation StartLoc) { 698 assert(!CurFn && 699 "Do not use a CodeGenFunction object for more than one function"); 700 701 const Decl *D = GD.getDecl(); 702 703 DidCallStackSave = false; 704 CurCodeDecl = D; 705 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 706 if (FD->usesSEHTry()) 707 CurSEHParent = FD; 708 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 709 FnRetTy = RetTy; 710 CurFn = Fn; 711 CurFnInfo = &FnInfo; 712 assert(CurFn->isDeclaration() && "Function already has body?"); 713 714 // If this function has been blacklisted for any of the enabled sanitizers, 715 // disable the sanitizer for the function. 716 do { 717 #define SANITIZER(NAME, ID) \ 718 if (SanOpts.empty()) \ 719 break; \ 720 if (SanOpts.has(SanitizerKind::ID)) \ 721 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 722 SanOpts.set(SanitizerKind::ID, false); 723 724 #include "clang/Basic/Sanitizers.def" 725 #undef SANITIZER 726 } while (0); 727 728 if (D) { 729 // Apply the no_sanitize* attributes to SanOpts. 730 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 731 SanitizerMask mask = Attr->getMask(); 732 SanOpts.Mask &= ~mask; 733 if (mask & SanitizerKind::Address) 734 SanOpts.set(SanitizerKind::KernelAddress, false); 735 if (mask & SanitizerKind::KernelAddress) 736 SanOpts.set(SanitizerKind::Address, false); 737 if (mask & SanitizerKind::HWAddress) 738 SanOpts.set(SanitizerKind::KernelHWAddress, false); 739 if (mask & SanitizerKind::KernelHWAddress) 740 SanOpts.set(SanitizerKind::HWAddress, false); 741 } 742 } 743 744 // Apply sanitizer attributes to the function. 745 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 746 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 747 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 748 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 749 if (SanOpts.has(SanitizerKind::MemTag)) 750 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 751 if (SanOpts.has(SanitizerKind::Thread)) 752 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 753 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 754 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 755 if (SanOpts.has(SanitizerKind::SafeStack)) 756 Fn->addFnAttr(llvm::Attribute::SafeStack); 757 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 758 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 759 760 // Apply fuzzing attribute to the function. 761 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 762 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 763 764 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 765 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 766 if (SanOpts.has(SanitizerKind::Thread)) { 767 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 768 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 769 if (OMD->getMethodFamily() == OMF_dealloc || 770 OMD->getMethodFamily() == OMF_initialize || 771 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 772 markAsIgnoreThreadCheckingAtRuntime(Fn); 773 } 774 } 775 } 776 777 // Ignore unrelated casts in STL allocate() since the allocator must cast 778 // from void* to T* before object initialization completes. Don't match on the 779 // namespace because not all allocators are in std:: 780 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 781 if (matchesStlAllocatorFn(D, getContext())) 782 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 783 } 784 785 // Ignore null checks in coroutine functions since the coroutines passes 786 // are not aware of how to move the extra UBSan instructions across the split 787 // coroutine boundaries. 788 if (D && SanOpts.has(SanitizerKind::Null)) 789 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 790 if (FD->getBody() && 791 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 792 SanOpts.Mask &= ~SanitizerKind::Null; 793 794 // Apply xray attributes to the function (as a string, for now) 795 bool AlwaysXRayAttr = false; 796 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 797 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 798 XRayInstrKind::FunctionEntry) || 799 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 800 XRayInstrKind::FunctionExit)) { 801 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 802 Fn->addFnAttr("function-instrument", "xray-always"); 803 AlwaysXRayAttr = true; 804 } 805 if (XRayAttr->neverXRayInstrument()) 806 Fn->addFnAttr("function-instrument", "xray-never"); 807 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 808 if (ShouldXRayInstrumentFunction()) 809 Fn->addFnAttr("xray-log-args", 810 llvm::utostr(LogArgs->getArgumentCount())); 811 } 812 } else { 813 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 814 Fn->addFnAttr( 815 "xray-instruction-threshold", 816 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 817 } 818 819 if (ShouldXRayInstrumentFunction()) { 820 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 821 Fn->addFnAttr("xray-ignore-loops"); 822 823 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 824 XRayInstrKind::FunctionExit)) 825 Fn->addFnAttr("xray-skip-exit"); 826 827 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 828 XRayInstrKind::FunctionEntry)) 829 Fn->addFnAttr("xray-skip-entry"); 830 831 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 832 if (FuncGroups > 1) { 833 auto FuncName = llvm::makeArrayRef<uint8_t>( 834 CurFn->getName().bytes_begin(), CurFn->getName().bytes_end()); 835 auto Group = crc32(FuncName) % FuncGroups; 836 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 837 !AlwaysXRayAttr) 838 Fn->addFnAttr("function-instrument", "xray-never"); 839 } 840 } 841 842 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) 843 if (CGM.isProfileInstrExcluded(Fn, Loc)) 844 Fn->addFnAttr(llvm::Attribute::NoProfile); 845 846 unsigned Count, Offset; 847 if (const auto *Attr = 848 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 849 Count = Attr->getCount(); 850 Offset = Attr->getOffset(); 851 } else { 852 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 853 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 854 } 855 if (Count && Offset <= Count) { 856 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 857 if (Offset) 858 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 859 } 860 861 // Add no-jump-tables value. 862 Fn->addFnAttr("no-jump-tables", 863 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 864 865 // Add no-inline-line-tables value. 866 if (CGM.getCodeGenOpts().NoInlineLineTables) 867 Fn->addFnAttr("no-inline-line-tables"); 868 869 // Add profile-sample-accurate value. 870 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 871 Fn->addFnAttr("profile-sample-accurate"); 872 873 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 874 Fn->addFnAttr("use-sample-profile"); 875 876 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 877 Fn->addFnAttr("cfi-canonical-jump-table"); 878 879 if (getLangOpts().OpenCL) { 880 // Add metadata for a kernel function. 881 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 882 EmitOpenCLKernelMetadata(FD, Fn); 883 } 884 885 // If we are checking function types, emit a function type signature as 886 // prologue data. 887 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 888 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 889 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 890 // Remove any (C++17) exception specifications, to allow calling e.g. a 891 // noexcept function through a non-noexcept pointer. 892 auto ProtoTy = 893 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 894 EST_None); 895 llvm::Constant *FTRTTIConst = 896 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 897 llvm::Constant *FTRTTIConstEncoded = 898 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 899 llvm::Constant *PrologueStructElems[] = {PrologueSig, 900 FTRTTIConstEncoded}; 901 llvm::Constant *PrologueStructConst = 902 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 903 Fn->setPrologueData(PrologueStructConst); 904 } 905 } 906 } 907 908 // If we're checking nullability, we need to know whether we can check the 909 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 910 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 911 auto Nullability = FnRetTy->getNullability(getContext()); 912 if (Nullability && *Nullability == NullabilityKind::NonNull) { 913 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 914 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 915 RetValNullabilityPrecondition = 916 llvm::ConstantInt::getTrue(getLLVMContext()); 917 } 918 } 919 920 // If we're in C++ mode and the function name is "main", it is guaranteed 921 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 922 // used within a program"). 923 // 924 // OpenCL C 2.0 v2.2-11 s6.9.i: 925 // Recursion is not supported. 926 // 927 // SYCL v1.2.1 s3.10: 928 // kernels cannot include RTTI information, exception classes, 929 // recursive code, virtual functions or make use of C++ libraries that 930 // are not compiled for the device. 931 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 932 if ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL || 933 getLangOpts().SYCLIsDevice || 934 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())) 935 Fn->addFnAttr(llvm::Attribute::NoRecurse); 936 } 937 938 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 939 Builder.setIsFPConstrained(FD->hasAttr<StrictFPAttr>()); 940 if (FD->hasAttr<StrictFPAttr>()) 941 Fn->addFnAttr(llvm::Attribute::StrictFP); 942 } 943 944 // If a custom alignment is used, force realigning to this alignment on 945 // any main function which certainly will need it. 946 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 947 if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 948 CGM.getCodeGenOpts().StackAlignment) 949 Fn->addFnAttr("stackrealign"); 950 951 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 952 953 // Create a marker to make it easy to insert allocas into the entryblock 954 // later. Don't create this with the builder, because we don't want it 955 // folded. 956 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 957 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 958 959 ReturnBlock = getJumpDestInCurrentScope("return"); 960 961 Builder.SetInsertPoint(EntryBB); 962 963 // If we're checking the return value, allocate space for a pointer to a 964 // precise source location of the checked return statement. 965 if (requiresReturnValueCheck()) { 966 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 967 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 968 } 969 970 // Emit subprogram debug descriptor. 971 if (CGDebugInfo *DI = getDebugInfo()) { 972 // Reconstruct the type from the argument list so that implicit parameters, 973 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 974 // convention. 975 CallingConv CC = CallingConv::CC_C; 976 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 977 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 978 CC = SrcFnTy->getCallConv(); 979 SmallVector<QualType, 16> ArgTypes; 980 for (const VarDecl *VD : Args) 981 ArgTypes.push_back(VD->getType()); 982 QualType FnType = getContext().getFunctionType( 983 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 984 DI->emitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk); 985 } 986 987 if (ShouldInstrumentFunction()) { 988 if (CGM.getCodeGenOpts().InstrumentFunctions) 989 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 990 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 991 CurFn->addFnAttr("instrument-function-entry-inlined", 992 "__cyg_profile_func_enter"); 993 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 994 CurFn->addFnAttr("instrument-function-entry-inlined", 995 "__cyg_profile_func_enter_bare"); 996 } 997 998 // Since emitting the mcount call here impacts optimizations such as function 999 // inlining, we just add an attribute to insert a mcount call in backend. 1000 // The attribute "counting-function" is set to mcount function name which is 1001 // architecture dependent. 1002 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1003 // Calls to fentry/mcount should not be generated if function has 1004 // the no_instrument_function attribute. 1005 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1006 if (CGM.getCodeGenOpts().CallFEntry) 1007 Fn->addFnAttr("fentry-call", "true"); 1008 else { 1009 Fn->addFnAttr("instrument-function-entry-inlined", 1010 getTarget().getMCountName()); 1011 } 1012 if (CGM.getCodeGenOpts().MNopMCount) { 1013 if (!CGM.getCodeGenOpts().CallFEntry) 1014 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1015 << "-mnop-mcount" << "-mfentry"; 1016 Fn->addFnAttr("mnop-mcount"); 1017 } 1018 1019 if (CGM.getCodeGenOpts().RecordMCount) { 1020 if (!CGM.getCodeGenOpts().CallFEntry) 1021 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1022 << "-mrecord-mcount" << "-mfentry"; 1023 Fn->addFnAttr("mrecord-mcount"); 1024 } 1025 } 1026 } 1027 1028 if (CGM.getCodeGenOpts().PackedStack) { 1029 if (getContext().getTargetInfo().getTriple().getArch() != 1030 llvm::Triple::systemz) 1031 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1032 << "-mpacked-stack"; 1033 Fn->addFnAttr("packed-stack"); 1034 } 1035 1036 if (RetTy->isVoidType()) { 1037 // Void type; nothing to return. 1038 ReturnValue = Address::invalid(); 1039 1040 // Count the implicit return. 1041 if (!endsWithReturn(D)) 1042 ++NumReturnExprs; 1043 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1044 // Indirect return; emit returned value directly into sret slot. 1045 // This reduces code size, and affects correctness in C++. 1046 auto AI = CurFn->arg_begin(); 1047 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1048 ++AI; 1049 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1050 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1051 ReturnValuePointer = 1052 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 1053 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 1054 ReturnValue.getPointer(), Int8PtrTy), 1055 ReturnValuePointer); 1056 } 1057 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1058 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1059 // Load the sret pointer from the argument struct and return into that. 1060 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1061 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1062 --EI; 1063 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1064 ReturnValuePointer = Address(Addr, getPointerAlign()); 1065 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 1066 ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy)); 1067 } else { 1068 ReturnValue = CreateIRTemp(RetTy, "retval"); 1069 1070 // Tell the epilog emitter to autorelease the result. We do this 1071 // now so that various specialized functions can suppress it 1072 // during their IR-generation. 1073 if (getLangOpts().ObjCAutoRefCount && 1074 !CurFnInfo->isReturnsRetained() && 1075 RetTy->isObjCRetainableType()) 1076 AutoreleaseResult = true; 1077 } 1078 1079 EmitStartEHSpec(CurCodeDecl); 1080 1081 PrologueCleanupDepth = EHStack.stable_begin(); 1082 1083 // Emit OpenMP specific initialization of the device functions. 1084 if (getLangOpts().OpenMP && CurCodeDecl) 1085 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1086 1087 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1088 1089 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1090 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1091 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1092 if (MD->getParent()->isLambda() && 1093 MD->getOverloadedOperator() == OO_Call) { 1094 // We're in a lambda; figure out the captures. 1095 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1096 LambdaThisCaptureField); 1097 if (LambdaThisCaptureField) { 1098 // If the lambda captures the object referred to by '*this' - either by 1099 // value or by reference, make sure CXXThisValue points to the correct 1100 // object. 1101 1102 // Get the lvalue for the field (which is a copy of the enclosing object 1103 // or contains the address of the enclosing object). 1104 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1105 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1106 // If the enclosing object was captured by value, just use its address. 1107 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1108 } else { 1109 // Load the lvalue pointed to by the field, since '*this' was captured 1110 // by reference. 1111 CXXThisValue = 1112 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1113 } 1114 } 1115 for (auto *FD : MD->getParent()->fields()) { 1116 if (FD->hasCapturedVLAType()) { 1117 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1118 SourceLocation()).getScalarVal(); 1119 auto VAT = FD->getCapturedVLAType(); 1120 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1121 } 1122 } 1123 } else { 1124 // Not in a lambda; just use 'this' from the method. 1125 // FIXME: Should we generate a new load for each use of 'this'? The 1126 // fast register allocator would be happier... 1127 CXXThisValue = CXXABIThisValue; 1128 } 1129 1130 // Check the 'this' pointer once per function, if it's available. 1131 if (CXXABIThisValue) { 1132 SanitizerSet SkippedChecks; 1133 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1134 QualType ThisTy = MD->getThisType(); 1135 1136 // If this is the call operator of a lambda with no capture-default, it 1137 // may have a static invoker function, which may call this operator with 1138 // a null 'this' pointer. 1139 if (isLambdaCallOperator(MD) && 1140 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1141 SkippedChecks.set(SanitizerKind::Null, true); 1142 1143 EmitTypeCheck( 1144 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1145 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1146 } 1147 } 1148 1149 // If any of the arguments have a variably modified type, make sure to 1150 // emit the type size. 1151 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1152 i != e; ++i) { 1153 const VarDecl *VD = *i; 1154 1155 // Dig out the type as written from ParmVarDecls; it's unclear whether 1156 // the standard (C99 6.9.1p10) requires this, but we're following the 1157 // precedent set by gcc. 1158 QualType Ty; 1159 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1160 Ty = PVD->getOriginalType(); 1161 else 1162 Ty = VD->getType(); 1163 1164 if (Ty->isVariablyModifiedType()) 1165 EmitVariablyModifiedType(Ty); 1166 } 1167 // Emit a location at the end of the prologue. 1168 if (CGDebugInfo *DI = getDebugInfo()) 1169 DI->EmitLocation(Builder, StartLoc); 1170 1171 // TODO: Do we need to handle this in two places like we do with 1172 // target-features/target-cpu? 1173 if (CurFuncDecl) 1174 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1175 LargestVectorWidth = VecWidth->getVectorWidth(); 1176 } 1177 1178 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1179 incrementProfileCounter(Body); 1180 if (CPlusPlusWithProgress()) 1181 FnIsMustProgress = true; 1182 1183 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1184 EmitCompoundStmtWithoutScope(*S); 1185 else 1186 EmitStmt(Body); 1187 1188 // This is checked after emitting the function body so we know if there 1189 // are any permitted infinite loops. 1190 if (FnIsMustProgress) 1191 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1192 } 1193 1194 /// When instrumenting to collect profile data, the counts for some blocks 1195 /// such as switch cases need to not include the fall-through counts, so 1196 /// emit a branch around the instrumentation code. When not instrumenting, 1197 /// this just calls EmitBlock(). 1198 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1199 const Stmt *S) { 1200 llvm::BasicBlock *SkipCountBB = nullptr; 1201 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1202 // When instrumenting for profiling, the fallthrough to certain 1203 // statements needs to skip over the instrumentation code so that we 1204 // get an accurate count. 1205 SkipCountBB = createBasicBlock("skipcount"); 1206 EmitBranch(SkipCountBB); 1207 } 1208 EmitBlock(BB); 1209 uint64_t CurrentCount = getCurrentProfileCount(); 1210 incrementProfileCounter(S); 1211 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1212 if (SkipCountBB) 1213 EmitBlock(SkipCountBB); 1214 } 1215 1216 /// Tries to mark the given function nounwind based on the 1217 /// non-existence of any throwing calls within it. We believe this is 1218 /// lightweight enough to do at -O0. 1219 static void TryMarkNoThrow(llvm::Function *F) { 1220 // LLVM treats 'nounwind' on a function as part of the type, so we 1221 // can't do this on functions that can be overwritten. 1222 if (F->isInterposable()) return; 1223 1224 for (llvm::BasicBlock &BB : *F) 1225 for (llvm::Instruction &I : BB) 1226 if (I.mayThrow()) 1227 return; 1228 1229 F->setDoesNotThrow(); 1230 } 1231 1232 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1233 FunctionArgList &Args) { 1234 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1235 QualType ResTy = FD->getReturnType(); 1236 1237 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1238 if (MD && MD->isInstance()) { 1239 if (CGM.getCXXABI().HasThisReturn(GD)) 1240 ResTy = MD->getThisType(); 1241 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1242 ResTy = CGM.getContext().VoidPtrTy; 1243 CGM.getCXXABI().buildThisParam(*this, Args); 1244 } 1245 1246 // The base version of an inheriting constructor whose constructed base is a 1247 // virtual base is not passed any arguments (because it doesn't actually call 1248 // the inherited constructor). 1249 bool PassedParams = true; 1250 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1251 if (auto Inherited = CD->getInheritedConstructor()) 1252 PassedParams = 1253 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1254 1255 if (PassedParams) { 1256 for (auto *Param : FD->parameters()) { 1257 Args.push_back(Param); 1258 if (!Param->hasAttr<PassObjectSizeAttr>()) 1259 continue; 1260 1261 auto *Implicit = ImplicitParamDecl::Create( 1262 getContext(), Param->getDeclContext(), Param->getLocation(), 1263 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1264 SizeArguments[Param] = Implicit; 1265 Args.push_back(Implicit); 1266 } 1267 } 1268 1269 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1270 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1271 1272 return ResTy; 1273 } 1274 1275 static bool 1276 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1277 const ASTContext &Context) { 1278 QualType T = FD->getReturnType(); 1279 // Avoid the optimization for functions that return a record type with a 1280 // trivial destructor or another trivially copyable type. 1281 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1282 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1283 return !ClassDecl->hasTrivialDestructor(); 1284 } 1285 return !T.isTriviallyCopyableType(Context); 1286 } 1287 1288 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1289 const CGFunctionInfo &FnInfo) { 1290 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1291 CurGD = GD; 1292 1293 FunctionArgList Args; 1294 QualType ResTy = BuildFunctionArgList(GD, Args); 1295 1296 // Check if we should generate debug info for this function. 1297 if (FD->hasAttr<NoDebugAttr>()) 1298 DebugInfo = nullptr; // disable debug info indefinitely for this function 1299 1300 // The function might not have a body if we're generating thunks for a 1301 // function declaration. 1302 SourceRange BodyRange; 1303 if (Stmt *Body = FD->getBody()) 1304 BodyRange = Body->getSourceRange(); 1305 else 1306 BodyRange = FD->getLocation(); 1307 CurEHLocation = BodyRange.getEnd(); 1308 1309 // Use the location of the start of the function to determine where 1310 // the function definition is located. By default use the location 1311 // of the declaration as the location for the subprogram. A function 1312 // may lack a declaration in the source code if it is created by code 1313 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1314 SourceLocation Loc = FD->getLocation(); 1315 1316 // If this is a function specialization then use the pattern body 1317 // as the location for the function. 1318 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1319 if (SpecDecl->hasBody(SpecDecl)) 1320 Loc = SpecDecl->getLocation(); 1321 1322 Stmt *Body = FD->getBody(); 1323 1324 // Initialize helper which will detect jumps which can cause invalid lifetime 1325 // markers. 1326 if (Body && ShouldEmitLifetimeMarkers) 1327 Bypasses.Init(Body); 1328 1329 // Emit the standard function prologue. 1330 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1331 1332 // Generate the body of the function. 1333 PGO.assignRegionCounters(GD, CurFn); 1334 if (isa<CXXDestructorDecl>(FD)) 1335 EmitDestructorBody(Args); 1336 else if (isa<CXXConstructorDecl>(FD)) 1337 EmitConstructorBody(Args); 1338 else if (getLangOpts().CUDA && 1339 !getLangOpts().CUDAIsDevice && 1340 FD->hasAttr<CUDAGlobalAttr>()) 1341 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1342 else if (isa<CXXMethodDecl>(FD) && 1343 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1344 // The lambda static invoker function is special, because it forwards or 1345 // clones the body of the function call operator (but is actually static). 1346 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1347 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1348 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1349 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1350 // Implicit copy-assignment gets the same special treatment as implicit 1351 // copy-constructors. 1352 emitImplicitAssignmentOperatorBody(Args); 1353 } else if (Body) { 1354 EmitFunctionBody(Body); 1355 } else 1356 llvm_unreachable("no definition for emitted function"); 1357 1358 // C++11 [stmt.return]p2: 1359 // Flowing off the end of a function [...] results in undefined behavior in 1360 // a value-returning function. 1361 // C11 6.9.1p12: 1362 // If the '}' that terminates a function is reached, and the value of the 1363 // function call is used by the caller, the behavior is undefined. 1364 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1365 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1366 bool ShouldEmitUnreachable = 1367 CGM.getCodeGenOpts().StrictReturn || 1368 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1369 if (SanOpts.has(SanitizerKind::Return)) { 1370 SanitizerScope SanScope(this); 1371 llvm::Value *IsFalse = Builder.getFalse(); 1372 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1373 SanitizerHandler::MissingReturn, 1374 EmitCheckSourceLocation(FD->getLocation()), None); 1375 } else if (ShouldEmitUnreachable) { 1376 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1377 EmitTrapCall(llvm::Intrinsic::trap); 1378 } 1379 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1380 Builder.CreateUnreachable(); 1381 Builder.ClearInsertionPoint(); 1382 } 1383 } 1384 1385 // Emit the standard function epilogue. 1386 FinishFunction(BodyRange.getEnd()); 1387 1388 // If we haven't marked the function nothrow through other means, do 1389 // a quick pass now to see if we can. 1390 if (!CurFn->doesNotThrow()) 1391 TryMarkNoThrow(CurFn); 1392 } 1393 1394 /// ContainsLabel - Return true if the statement contains a label in it. If 1395 /// this statement is not executed normally, it not containing a label means 1396 /// that we can just remove the code. 1397 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1398 // Null statement, not a label! 1399 if (!S) return false; 1400 1401 // If this is a label, we have to emit the code, consider something like: 1402 // if (0) { ... foo: bar(); } goto foo; 1403 // 1404 // TODO: If anyone cared, we could track __label__'s, since we know that you 1405 // can't jump to one from outside their declared region. 1406 if (isa<LabelStmt>(S)) 1407 return true; 1408 1409 // If this is a case/default statement, and we haven't seen a switch, we have 1410 // to emit the code. 1411 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1412 return true; 1413 1414 // If this is a switch statement, we want to ignore cases below it. 1415 if (isa<SwitchStmt>(S)) 1416 IgnoreCaseStmts = true; 1417 1418 // Scan subexpressions for verboten labels. 1419 for (const Stmt *SubStmt : S->children()) 1420 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1421 return true; 1422 1423 return false; 1424 } 1425 1426 /// containsBreak - Return true if the statement contains a break out of it. 1427 /// If the statement (recursively) contains a switch or loop with a break 1428 /// inside of it, this is fine. 1429 bool CodeGenFunction::containsBreak(const Stmt *S) { 1430 // Null statement, not a label! 1431 if (!S) return false; 1432 1433 // If this is a switch or loop that defines its own break scope, then we can 1434 // include it and anything inside of it. 1435 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1436 isa<ForStmt>(S)) 1437 return false; 1438 1439 if (isa<BreakStmt>(S)) 1440 return true; 1441 1442 // Scan subexpressions for verboten breaks. 1443 for (const Stmt *SubStmt : S->children()) 1444 if (containsBreak(SubStmt)) 1445 return true; 1446 1447 return false; 1448 } 1449 1450 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1451 if (!S) return false; 1452 1453 // Some statement kinds add a scope and thus never add a decl to the current 1454 // scope. Note, this list is longer than the list of statements that might 1455 // have an unscoped decl nested within them, but this way is conservatively 1456 // correct even if more statement kinds are added. 1457 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1458 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1459 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1460 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1461 return false; 1462 1463 if (isa<DeclStmt>(S)) 1464 return true; 1465 1466 for (const Stmt *SubStmt : S->children()) 1467 if (mightAddDeclToScope(SubStmt)) 1468 return true; 1469 1470 return false; 1471 } 1472 1473 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1474 /// to a constant, or if it does but contains a label, return false. If it 1475 /// constant folds return true and set the boolean result in Result. 1476 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1477 bool &ResultBool, 1478 bool AllowLabels) { 1479 llvm::APSInt ResultInt; 1480 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1481 return false; 1482 1483 ResultBool = ResultInt.getBoolValue(); 1484 return true; 1485 } 1486 1487 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1488 /// to a constant, or if it does but contains a label, return false. If it 1489 /// constant folds return true and set the folded value. 1490 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1491 llvm::APSInt &ResultInt, 1492 bool AllowLabels) { 1493 // FIXME: Rename and handle conversion of other evaluatable things 1494 // to bool. 1495 Expr::EvalResult Result; 1496 if (!Cond->EvaluateAsInt(Result, getContext())) 1497 return false; // Not foldable, not integer or not fully evaluatable. 1498 1499 llvm::APSInt Int = Result.Val.getInt(); 1500 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1501 return false; // Contains a label. 1502 1503 ResultInt = Int; 1504 return true; 1505 } 1506 1507 /// Determine whether the given condition is an instrumentable condition 1508 /// (i.e. no "&&" or "||"). 1509 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1510 // Bypass simplistic logical-NOT operator before determining whether the 1511 // condition contains any other logical operator. 1512 if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens())) 1513 if (UnOp->getOpcode() == UO_LNot) 1514 C = UnOp->getSubExpr(); 1515 1516 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens()); 1517 return (!BOp || !BOp->isLogicalOp()); 1518 } 1519 1520 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1521 /// increments a profile counter based on the semantics of the given logical 1522 /// operator opcode. This is used to instrument branch condition coverage for 1523 /// logical operators. 1524 void CodeGenFunction::EmitBranchToCounterBlock( 1525 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1526 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1527 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1528 // If not instrumenting, just emit a branch. 1529 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1530 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1531 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1532 1533 llvm::BasicBlock *ThenBlock = NULL; 1534 llvm::BasicBlock *ElseBlock = NULL; 1535 llvm::BasicBlock *NextBlock = NULL; 1536 1537 // Create the block we'll use to increment the appropriate counter. 1538 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1539 1540 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1541 // means we need to evaluate the condition and increment the counter on TRUE: 1542 // 1543 // if (Cond) 1544 // goto CounterIncrBlock; 1545 // else 1546 // goto FalseBlock; 1547 // 1548 // CounterIncrBlock: 1549 // Counter++; 1550 // goto TrueBlock; 1551 1552 if (LOp == BO_LAnd) { 1553 ThenBlock = CounterIncrBlock; 1554 ElseBlock = FalseBlock; 1555 NextBlock = TrueBlock; 1556 } 1557 1558 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1559 // we need to evaluate the condition and increment the counter on FALSE: 1560 // 1561 // if (Cond) 1562 // goto TrueBlock; 1563 // else 1564 // goto CounterIncrBlock; 1565 // 1566 // CounterIncrBlock: 1567 // Counter++; 1568 // goto FalseBlock; 1569 1570 else if (LOp == BO_LOr) { 1571 ThenBlock = TrueBlock; 1572 ElseBlock = CounterIncrBlock; 1573 NextBlock = FalseBlock; 1574 } else { 1575 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1576 } 1577 1578 // Emit Branch based on condition. 1579 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1580 1581 // Emit the block containing the counter increment(s). 1582 EmitBlock(CounterIncrBlock); 1583 1584 // Increment corresponding counter; if index not provided, use Cond as index. 1585 incrementProfileCounter(CntrIdx ? CntrIdx : Cond); 1586 1587 // Go to the next block. 1588 EmitBranch(NextBlock); 1589 } 1590 1591 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1592 /// statement) to the specified blocks. Based on the condition, this might try 1593 /// to simplify the codegen of the conditional based on the branch. 1594 /// \param LH The value of the likelihood attribute on the True branch. 1595 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1596 llvm::BasicBlock *TrueBlock, 1597 llvm::BasicBlock *FalseBlock, 1598 uint64_t TrueCount, 1599 Stmt::Likelihood LH) { 1600 Cond = Cond->IgnoreParens(); 1601 1602 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1603 1604 // Handle X && Y in a condition. 1605 if (CondBOp->getOpcode() == BO_LAnd) { 1606 // If we have "1 && X", simplify the code. "0 && X" would have constant 1607 // folded if the case was simple enough. 1608 bool ConstantBool = false; 1609 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1610 ConstantBool) { 1611 // br(1 && X) -> br(X). 1612 incrementProfileCounter(CondBOp); 1613 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1614 FalseBlock, TrueCount, LH); 1615 } 1616 1617 // If we have "X && 1", simplify the code to use an uncond branch. 1618 // "X && 0" would have been constant folded to 0. 1619 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1620 ConstantBool) { 1621 // br(X && 1) -> br(X). 1622 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1623 FalseBlock, TrueCount, LH, CondBOp); 1624 } 1625 1626 // Emit the LHS as a conditional. If the LHS conditional is false, we 1627 // want to jump to the FalseBlock. 1628 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1629 // The counter tells us how often we evaluate RHS, and all of TrueCount 1630 // can be propagated to that branch. 1631 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1632 1633 ConditionalEvaluation eval(*this); 1634 { 1635 ApplyDebugLocation DL(*this, Cond); 1636 // Propagate the likelihood attribute like __builtin_expect 1637 // __builtin_expect(X && Y, 1) -> X and Y are likely 1638 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1639 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1640 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1641 EmitBlock(LHSTrue); 1642 } 1643 1644 incrementProfileCounter(CondBOp); 1645 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1646 1647 // Any temporaries created here are conditional. 1648 eval.begin(*this); 1649 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1650 FalseBlock, TrueCount, LH); 1651 eval.end(*this); 1652 1653 return; 1654 } 1655 1656 if (CondBOp->getOpcode() == BO_LOr) { 1657 // If we have "0 || X", simplify the code. "1 || X" would have constant 1658 // folded if the case was simple enough. 1659 bool ConstantBool = false; 1660 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1661 !ConstantBool) { 1662 // br(0 || X) -> br(X). 1663 incrementProfileCounter(CondBOp); 1664 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1665 FalseBlock, TrueCount, LH); 1666 } 1667 1668 // If we have "X || 0", simplify the code to use an uncond branch. 1669 // "X || 1" would have been constant folded to 1. 1670 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1671 !ConstantBool) { 1672 // br(X || 0) -> br(X). 1673 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1674 FalseBlock, TrueCount, LH, CondBOp); 1675 } 1676 1677 // Emit the LHS as a conditional. If the LHS conditional is true, we 1678 // want to jump to the TrueBlock. 1679 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1680 // We have the count for entry to the RHS and for the whole expression 1681 // being true, so we can divy up True count between the short circuit and 1682 // the RHS. 1683 uint64_t LHSCount = 1684 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1685 uint64_t RHSCount = TrueCount - LHSCount; 1686 1687 ConditionalEvaluation eval(*this); 1688 { 1689 // Propagate the likelihood attribute like __builtin_expect 1690 // __builtin_expect(X || Y, 1) -> only Y is likely 1691 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1692 ApplyDebugLocation DL(*this, Cond); 1693 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1694 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1695 EmitBlock(LHSFalse); 1696 } 1697 1698 incrementProfileCounter(CondBOp); 1699 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1700 1701 // Any temporaries created here are conditional. 1702 eval.begin(*this); 1703 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1704 RHSCount, LH); 1705 1706 eval.end(*this); 1707 1708 return; 1709 } 1710 } 1711 1712 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1713 // br(!x, t, f) -> br(x, f, t) 1714 if (CondUOp->getOpcode() == UO_LNot) { 1715 // Negate the count. 1716 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1717 // The values of the enum are chosen to make this negation possible. 1718 LH = static_cast<Stmt::Likelihood>(-LH); 1719 // Negate the condition and swap the destination blocks. 1720 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1721 FalseCount, LH); 1722 } 1723 } 1724 1725 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1726 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1727 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1728 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1729 1730 // The ConditionalOperator itself has no likelihood information for its 1731 // true and false branches. This matches the behavior of __builtin_expect. 1732 ConditionalEvaluation cond(*this); 1733 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1734 getProfileCount(CondOp), Stmt::LH_None); 1735 1736 // When computing PGO branch weights, we only know the overall count for 1737 // the true block. This code is essentially doing tail duplication of the 1738 // naive code-gen, introducing new edges for which counts are not 1739 // available. Divide the counts proportionally between the LHS and RHS of 1740 // the conditional operator. 1741 uint64_t LHSScaledTrueCount = 0; 1742 if (TrueCount) { 1743 double LHSRatio = 1744 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1745 LHSScaledTrueCount = TrueCount * LHSRatio; 1746 } 1747 1748 cond.begin(*this); 1749 EmitBlock(LHSBlock); 1750 incrementProfileCounter(CondOp); 1751 { 1752 ApplyDebugLocation DL(*this, Cond); 1753 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1754 LHSScaledTrueCount, LH); 1755 } 1756 cond.end(*this); 1757 1758 cond.begin(*this); 1759 EmitBlock(RHSBlock); 1760 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1761 TrueCount - LHSScaledTrueCount, LH); 1762 cond.end(*this); 1763 1764 return; 1765 } 1766 1767 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1768 // Conditional operator handling can give us a throw expression as a 1769 // condition for a case like: 1770 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1771 // Fold this to: 1772 // br(c, throw x, br(y, t, f)) 1773 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1774 return; 1775 } 1776 1777 // If the branch has a condition wrapped by __builtin_unpredictable, 1778 // create metadata that specifies that the branch is unpredictable. 1779 // Don't bother if not optimizing because that metadata would not be used. 1780 llvm::MDNode *Unpredictable = nullptr; 1781 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1782 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1783 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1784 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1785 llvm::MDBuilder MDHelper(getLLVMContext()); 1786 Unpredictable = MDHelper.createUnpredictable(); 1787 } 1788 } 1789 1790 llvm::MDNode *Weights = createBranchWeights(LH); 1791 if (!Weights) { 1792 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1793 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 1794 } 1795 1796 // Emit the code with the fully general case. 1797 llvm::Value *CondV; 1798 { 1799 ApplyDebugLocation DL(*this, Cond); 1800 CondV = EvaluateExprAsBool(Cond); 1801 } 1802 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1803 } 1804 1805 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1806 /// specified stmt yet. 1807 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1808 CGM.ErrorUnsupported(S, Type); 1809 } 1810 1811 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1812 /// variable-length array whose elements have a non-zero bit-pattern. 1813 /// 1814 /// \param baseType the inner-most element type of the array 1815 /// \param src - a char* pointing to the bit-pattern for a single 1816 /// base element of the array 1817 /// \param sizeInChars - the total size of the VLA, in chars 1818 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1819 Address dest, Address src, 1820 llvm::Value *sizeInChars) { 1821 CGBuilderTy &Builder = CGF.Builder; 1822 1823 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1824 llvm::Value *baseSizeInChars 1825 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1826 1827 Address begin = 1828 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1829 llvm::Value *end = 1830 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1831 1832 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1833 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1834 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1835 1836 // Make a loop over the VLA. C99 guarantees that the VLA element 1837 // count must be nonzero. 1838 CGF.EmitBlock(loopBB); 1839 1840 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1841 cur->addIncoming(begin.getPointer(), originBB); 1842 1843 CharUnits curAlign = 1844 dest.getAlignment().alignmentOfArrayElement(baseSize); 1845 1846 // memcpy the individual element bit-pattern. 1847 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1848 /*volatile*/ false); 1849 1850 // Go to the next element. 1851 llvm::Value *next = 1852 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1853 1854 // Leave if that's the end of the VLA. 1855 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1856 Builder.CreateCondBr(done, contBB, loopBB); 1857 cur->addIncoming(next, loopBB); 1858 1859 CGF.EmitBlock(contBB); 1860 } 1861 1862 void 1863 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1864 // Ignore empty classes in C++. 1865 if (getLangOpts().CPlusPlus) { 1866 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1867 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1868 return; 1869 } 1870 } 1871 1872 // Cast the dest ptr to the appropriate i8 pointer type. 1873 if (DestPtr.getElementType() != Int8Ty) 1874 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1875 1876 // Get size and alignment info for this aggregate. 1877 CharUnits size = getContext().getTypeSizeInChars(Ty); 1878 1879 llvm::Value *SizeVal; 1880 const VariableArrayType *vla; 1881 1882 // Don't bother emitting a zero-byte memset. 1883 if (size.isZero()) { 1884 // But note that getTypeInfo returns 0 for a VLA. 1885 if (const VariableArrayType *vlaType = 1886 dyn_cast_or_null<VariableArrayType>( 1887 getContext().getAsArrayType(Ty))) { 1888 auto VlaSize = getVLASize(vlaType); 1889 SizeVal = VlaSize.NumElts; 1890 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1891 if (!eltSize.isOne()) 1892 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1893 vla = vlaType; 1894 } else { 1895 return; 1896 } 1897 } else { 1898 SizeVal = CGM.getSize(size); 1899 vla = nullptr; 1900 } 1901 1902 // If the type contains a pointer to data member we can't memset it to zero. 1903 // Instead, create a null constant and copy it to the destination. 1904 // TODO: there are other patterns besides zero that we can usefully memset, 1905 // like -1, which happens to be the pattern used by member-pointers. 1906 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1907 // For a VLA, emit a single element, then splat that over the VLA. 1908 if (vla) Ty = getContext().getBaseElementType(vla); 1909 1910 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1911 1912 llvm::GlobalVariable *NullVariable = 1913 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1914 /*isConstant=*/true, 1915 llvm::GlobalVariable::PrivateLinkage, 1916 NullConstant, Twine()); 1917 CharUnits NullAlign = DestPtr.getAlignment(); 1918 NullVariable->setAlignment(NullAlign.getAsAlign()); 1919 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1920 NullAlign); 1921 1922 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1923 1924 // Get and call the appropriate llvm.memcpy overload. 1925 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1926 return; 1927 } 1928 1929 // Otherwise, just memset the whole thing to zero. This is legal 1930 // because in LLVM, all default initializers (other than the ones we just 1931 // handled above) are guaranteed to have a bit pattern of all zeros. 1932 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1933 } 1934 1935 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1936 // Make sure that there is a block for the indirect goto. 1937 if (!IndirectBranch) 1938 GetIndirectGotoBlock(); 1939 1940 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1941 1942 // Make sure the indirect branch includes all of the address-taken blocks. 1943 IndirectBranch->addDestination(BB); 1944 return llvm::BlockAddress::get(CurFn, BB); 1945 } 1946 1947 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1948 // If we already made the indirect branch for indirect goto, return its block. 1949 if (IndirectBranch) return IndirectBranch->getParent(); 1950 1951 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1952 1953 // Create the PHI node that indirect gotos will add entries to. 1954 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1955 "indirect.goto.dest"); 1956 1957 // Create the indirect branch instruction. 1958 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1959 return IndirectBranch->getParent(); 1960 } 1961 1962 /// Computes the length of an array in elements, as well as the base 1963 /// element type and a properly-typed first element pointer. 1964 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1965 QualType &baseType, 1966 Address &addr) { 1967 const ArrayType *arrayType = origArrayType; 1968 1969 // If it's a VLA, we have to load the stored size. Note that 1970 // this is the size of the VLA in bytes, not its size in elements. 1971 llvm::Value *numVLAElements = nullptr; 1972 if (isa<VariableArrayType>(arrayType)) { 1973 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1974 1975 // Walk into all VLAs. This doesn't require changes to addr, 1976 // which has type T* where T is the first non-VLA element type. 1977 do { 1978 QualType elementType = arrayType->getElementType(); 1979 arrayType = getContext().getAsArrayType(elementType); 1980 1981 // If we only have VLA components, 'addr' requires no adjustment. 1982 if (!arrayType) { 1983 baseType = elementType; 1984 return numVLAElements; 1985 } 1986 } while (isa<VariableArrayType>(arrayType)); 1987 1988 // We get out here only if we find a constant array type 1989 // inside the VLA. 1990 } 1991 1992 // We have some number of constant-length arrays, so addr should 1993 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1994 // down to the first element of addr. 1995 SmallVector<llvm::Value*, 8> gepIndices; 1996 1997 // GEP down to the array type. 1998 llvm::ConstantInt *zero = Builder.getInt32(0); 1999 gepIndices.push_back(zero); 2000 2001 uint64_t countFromCLAs = 1; 2002 QualType eltType; 2003 2004 llvm::ArrayType *llvmArrayType = 2005 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2006 while (llvmArrayType) { 2007 assert(isa<ConstantArrayType>(arrayType)); 2008 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 2009 == llvmArrayType->getNumElements()); 2010 2011 gepIndices.push_back(zero); 2012 countFromCLAs *= llvmArrayType->getNumElements(); 2013 eltType = arrayType->getElementType(); 2014 2015 llvmArrayType = 2016 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2017 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2018 assert((!llvmArrayType || arrayType) && 2019 "LLVM and Clang types are out-of-synch"); 2020 } 2021 2022 if (arrayType) { 2023 // From this point onwards, the Clang array type has been emitted 2024 // as some other type (probably a packed struct). Compute the array 2025 // size, and just emit the 'begin' expression as a bitcast. 2026 while (arrayType) { 2027 countFromCLAs *= 2028 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 2029 eltType = arrayType->getElementType(); 2030 arrayType = getContext().getAsArrayType(eltType); 2031 } 2032 2033 llvm::Type *baseType = ConvertType(eltType); 2034 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 2035 } else { 2036 // Create the actual GEP. 2037 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 2038 gepIndices, "array.begin"), 2039 addr.getAlignment()); 2040 } 2041 2042 baseType = eltType; 2043 2044 llvm::Value *numElements 2045 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2046 2047 // If we had any VLA dimensions, factor them in. 2048 if (numVLAElements) 2049 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2050 2051 return numElements; 2052 } 2053 2054 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2055 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2056 assert(vla && "type was not a variable array type!"); 2057 return getVLASize(vla); 2058 } 2059 2060 CodeGenFunction::VlaSizePair 2061 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2062 // The number of elements so far; always size_t. 2063 llvm::Value *numElements = nullptr; 2064 2065 QualType elementType; 2066 do { 2067 elementType = type->getElementType(); 2068 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2069 assert(vlaSize && "no size for VLA!"); 2070 assert(vlaSize->getType() == SizeTy); 2071 2072 if (!numElements) { 2073 numElements = vlaSize; 2074 } else { 2075 // It's undefined behavior if this wraps around, so mark it that way. 2076 // FIXME: Teach -fsanitize=undefined to trap this. 2077 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2078 } 2079 } while ((type = getContext().getAsVariableArrayType(elementType))); 2080 2081 return { numElements, elementType }; 2082 } 2083 2084 CodeGenFunction::VlaSizePair 2085 CodeGenFunction::getVLAElements1D(QualType type) { 2086 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2087 assert(vla && "type was not a variable array type!"); 2088 return getVLAElements1D(vla); 2089 } 2090 2091 CodeGenFunction::VlaSizePair 2092 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2093 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2094 assert(VlaSize && "no size for VLA!"); 2095 assert(VlaSize->getType() == SizeTy); 2096 return { VlaSize, Vla->getElementType() }; 2097 } 2098 2099 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2100 assert(type->isVariablyModifiedType() && 2101 "Must pass variably modified type to EmitVLASizes!"); 2102 2103 EnsureInsertPoint(); 2104 2105 // We're going to walk down into the type and look for VLA 2106 // expressions. 2107 do { 2108 assert(type->isVariablyModifiedType()); 2109 2110 const Type *ty = type.getTypePtr(); 2111 switch (ty->getTypeClass()) { 2112 2113 #define TYPE(Class, Base) 2114 #define ABSTRACT_TYPE(Class, Base) 2115 #define NON_CANONICAL_TYPE(Class, Base) 2116 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2117 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2118 #include "clang/AST/TypeNodes.inc" 2119 llvm_unreachable("unexpected dependent type!"); 2120 2121 // These types are never variably-modified. 2122 case Type::Builtin: 2123 case Type::Complex: 2124 case Type::Vector: 2125 case Type::ExtVector: 2126 case Type::ConstantMatrix: 2127 case Type::Record: 2128 case Type::Enum: 2129 case Type::Elaborated: 2130 case Type::TemplateSpecialization: 2131 case Type::ObjCTypeParam: 2132 case Type::ObjCObject: 2133 case Type::ObjCInterface: 2134 case Type::ObjCObjectPointer: 2135 case Type::ExtInt: 2136 llvm_unreachable("type class is never variably-modified!"); 2137 2138 case Type::Adjusted: 2139 type = cast<AdjustedType>(ty)->getAdjustedType(); 2140 break; 2141 2142 case Type::Decayed: 2143 type = cast<DecayedType>(ty)->getPointeeType(); 2144 break; 2145 2146 case Type::Pointer: 2147 type = cast<PointerType>(ty)->getPointeeType(); 2148 break; 2149 2150 case Type::BlockPointer: 2151 type = cast<BlockPointerType>(ty)->getPointeeType(); 2152 break; 2153 2154 case Type::LValueReference: 2155 case Type::RValueReference: 2156 type = cast<ReferenceType>(ty)->getPointeeType(); 2157 break; 2158 2159 case Type::MemberPointer: 2160 type = cast<MemberPointerType>(ty)->getPointeeType(); 2161 break; 2162 2163 case Type::ConstantArray: 2164 case Type::IncompleteArray: 2165 // Losing element qualification here is fine. 2166 type = cast<ArrayType>(ty)->getElementType(); 2167 break; 2168 2169 case Type::VariableArray: { 2170 // Losing element qualification here is fine. 2171 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2172 2173 // Unknown size indication requires no size computation. 2174 // Otherwise, evaluate and record it. 2175 if (const Expr *size = vat->getSizeExpr()) { 2176 // It's possible that we might have emitted this already, 2177 // e.g. with a typedef and a pointer to it. 2178 llvm::Value *&entry = VLASizeMap[size]; 2179 if (!entry) { 2180 llvm::Value *Size = EmitScalarExpr(size); 2181 2182 // C11 6.7.6.2p5: 2183 // If the size is an expression that is not an integer constant 2184 // expression [...] each time it is evaluated it shall have a value 2185 // greater than zero. 2186 if (SanOpts.has(SanitizerKind::VLABound) && 2187 size->getType()->isSignedIntegerType()) { 2188 SanitizerScope SanScope(this); 2189 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2190 llvm::Constant *StaticArgs[] = { 2191 EmitCheckSourceLocation(size->getBeginLoc()), 2192 EmitCheckTypeDescriptor(size->getType())}; 2193 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2194 SanitizerKind::VLABound), 2195 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2196 } 2197 2198 // Always zexting here would be wrong if it weren't 2199 // undefined behavior to have a negative bound. 2200 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2201 } 2202 } 2203 type = vat->getElementType(); 2204 break; 2205 } 2206 2207 case Type::FunctionProto: 2208 case Type::FunctionNoProto: 2209 type = cast<FunctionType>(ty)->getReturnType(); 2210 break; 2211 2212 case Type::Paren: 2213 case Type::TypeOf: 2214 case Type::UnaryTransform: 2215 case Type::Attributed: 2216 case Type::SubstTemplateTypeParm: 2217 case Type::MacroQualified: 2218 // Keep walking after single level desugaring. 2219 type = type.getSingleStepDesugaredType(getContext()); 2220 break; 2221 2222 case Type::Typedef: 2223 case Type::Decltype: 2224 case Type::Auto: 2225 case Type::DeducedTemplateSpecialization: 2226 // Stop walking: nothing to do. 2227 return; 2228 2229 case Type::TypeOfExpr: 2230 // Stop walking: emit typeof expression. 2231 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2232 return; 2233 2234 case Type::Atomic: 2235 type = cast<AtomicType>(ty)->getValueType(); 2236 break; 2237 2238 case Type::Pipe: 2239 type = cast<PipeType>(ty)->getElementType(); 2240 break; 2241 } 2242 } while (type->isVariablyModifiedType()); 2243 } 2244 2245 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2246 if (getContext().getBuiltinVaListType()->isArrayType()) 2247 return EmitPointerWithAlignment(E); 2248 return EmitLValue(E).getAddress(*this); 2249 } 2250 2251 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2252 return EmitLValue(E).getAddress(*this); 2253 } 2254 2255 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2256 const APValue &Init) { 2257 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2258 if (CGDebugInfo *Dbg = getDebugInfo()) 2259 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2260 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2261 } 2262 2263 CodeGenFunction::PeepholeProtection 2264 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2265 // At the moment, the only aggressive peephole we do in IR gen 2266 // is trunc(zext) folding, but if we add more, we can easily 2267 // extend this protection. 2268 2269 if (!rvalue.isScalar()) return PeepholeProtection(); 2270 llvm::Value *value = rvalue.getScalarVal(); 2271 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2272 2273 // Just make an extra bitcast. 2274 assert(HaveInsertPoint()); 2275 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2276 Builder.GetInsertBlock()); 2277 2278 PeepholeProtection protection; 2279 protection.Inst = inst; 2280 return protection; 2281 } 2282 2283 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2284 if (!protection.Inst) return; 2285 2286 // In theory, we could try to duplicate the peepholes now, but whatever. 2287 protection.Inst->eraseFromParent(); 2288 } 2289 2290 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2291 QualType Ty, SourceLocation Loc, 2292 SourceLocation AssumptionLoc, 2293 llvm::Value *Alignment, 2294 llvm::Value *OffsetValue) { 2295 if (Alignment->getType() != IntPtrTy) 2296 Alignment = 2297 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2298 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2299 OffsetValue = 2300 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2301 llvm::Value *TheCheck = nullptr; 2302 if (SanOpts.has(SanitizerKind::Alignment)) { 2303 llvm::Value *PtrIntValue = 2304 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2305 2306 if (OffsetValue) { 2307 bool IsOffsetZero = false; 2308 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2309 IsOffsetZero = CI->isZero(); 2310 2311 if (!IsOffsetZero) 2312 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2313 } 2314 2315 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2316 llvm::Value *Mask = 2317 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2318 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2319 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2320 } 2321 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2322 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2323 2324 if (!SanOpts.has(SanitizerKind::Alignment)) 2325 return; 2326 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2327 OffsetValue, TheCheck, Assumption); 2328 } 2329 2330 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2331 const Expr *E, 2332 SourceLocation AssumptionLoc, 2333 llvm::Value *Alignment, 2334 llvm::Value *OffsetValue) { 2335 if (auto *CE = dyn_cast<CastExpr>(E)) 2336 E = CE->getSubExprAsWritten(); 2337 QualType Ty = E->getType(); 2338 SourceLocation Loc = E->getExprLoc(); 2339 2340 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2341 OffsetValue); 2342 } 2343 2344 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2345 llvm::Value *AnnotatedVal, 2346 StringRef AnnotationStr, 2347 SourceLocation Location, 2348 const AnnotateAttr *Attr) { 2349 SmallVector<llvm::Value *, 5> Args = { 2350 AnnotatedVal, 2351 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2352 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2353 CGM.EmitAnnotationLineNo(Location), 2354 }; 2355 if (Attr) 2356 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2357 return Builder.CreateCall(AnnotationFn, Args); 2358 } 2359 2360 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2361 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2362 // FIXME We create a new bitcast for every annotation because that's what 2363 // llvm-gcc was doing. 2364 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2365 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2366 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2367 I->getAnnotation(), D->getLocation(), I); 2368 } 2369 2370 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2371 Address Addr) { 2372 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2373 llvm::Value *V = Addr.getPointer(); 2374 llvm::Type *VTy = V->getType(); 2375 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2376 CGM.Int8PtrTy); 2377 2378 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2379 // FIXME Always emit the cast inst so we can differentiate between 2380 // annotation on the first field of a struct and annotation on the struct 2381 // itself. 2382 if (VTy != CGM.Int8PtrTy) 2383 V = Builder.CreateBitCast(V, CGM.Int8PtrTy); 2384 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2385 V = Builder.CreateBitCast(V, VTy); 2386 } 2387 2388 return Address(V, Addr.getAlignment()); 2389 } 2390 2391 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2392 2393 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2394 : CGF(CGF) { 2395 assert(!CGF->IsSanitizerScope); 2396 CGF->IsSanitizerScope = true; 2397 } 2398 2399 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2400 CGF->IsSanitizerScope = false; 2401 } 2402 2403 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2404 const llvm::Twine &Name, 2405 llvm::BasicBlock *BB, 2406 llvm::BasicBlock::iterator InsertPt) const { 2407 LoopStack.InsertHelper(I); 2408 if (IsSanitizerScope) 2409 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2410 } 2411 2412 void CGBuilderInserter::InsertHelper( 2413 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2414 llvm::BasicBlock::iterator InsertPt) const { 2415 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2416 if (CGF) 2417 CGF->InsertHelper(I, Name, BB, InsertPt); 2418 } 2419 2420 // Emits an error if we don't have a valid set of target features for the 2421 // called function. 2422 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2423 const FunctionDecl *TargetDecl) { 2424 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2425 } 2426 2427 // Emits an error if we don't have a valid set of target features for the 2428 // called function. 2429 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2430 const FunctionDecl *TargetDecl) { 2431 // Early exit if this is an indirect call. 2432 if (!TargetDecl) 2433 return; 2434 2435 // Get the current enclosing function if it exists. If it doesn't 2436 // we can't check the target features anyhow. 2437 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2438 if (!FD) 2439 return; 2440 2441 // Grab the required features for the call. For a builtin this is listed in 2442 // the td file with the default cpu, for an always_inline function this is any 2443 // listed cpu and any listed features. 2444 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2445 std::string MissingFeature; 2446 llvm::StringMap<bool> CallerFeatureMap; 2447 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2448 if (BuiltinID) { 2449 StringRef FeatureList( 2450 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2451 // Return if the builtin doesn't have any required features. 2452 if (FeatureList.empty()) 2453 return; 2454 assert(FeatureList.find(' ') == StringRef::npos && 2455 "Space in feature list"); 2456 TargetFeatures TF(CallerFeatureMap); 2457 if (!TF.hasRequiredFeatures(FeatureList)) 2458 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2459 << TargetDecl->getDeclName() << FeatureList; 2460 } else if (!TargetDecl->isMultiVersion() && 2461 TargetDecl->hasAttr<TargetAttr>()) { 2462 // Get the required features for the callee. 2463 2464 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2465 ParsedTargetAttr ParsedAttr = 2466 CGM.getContext().filterFunctionTargetAttrs(TD); 2467 2468 SmallVector<StringRef, 1> ReqFeatures; 2469 llvm::StringMap<bool> CalleeFeatureMap; 2470 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2471 2472 for (const auto &F : ParsedAttr.Features) { 2473 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2474 ReqFeatures.push_back(StringRef(F).substr(1)); 2475 } 2476 2477 for (const auto &F : CalleeFeatureMap) { 2478 // Only positive features are "required". 2479 if (F.getValue()) 2480 ReqFeatures.push_back(F.getKey()); 2481 } 2482 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2483 if (!CallerFeatureMap.lookup(Feature)) { 2484 MissingFeature = Feature.str(); 2485 return false; 2486 } 2487 return true; 2488 })) 2489 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2490 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2491 } 2492 } 2493 2494 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2495 if (!CGM.getCodeGenOpts().SanitizeStats) 2496 return; 2497 2498 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2499 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2500 CGM.getSanStats().create(IRB, SSK); 2501 } 2502 2503 llvm::Value * 2504 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2505 llvm::Value *Condition = nullptr; 2506 2507 if (!RO.Conditions.Architecture.empty()) 2508 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2509 2510 if (!RO.Conditions.Features.empty()) { 2511 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2512 Condition = 2513 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2514 } 2515 return Condition; 2516 } 2517 2518 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2519 llvm::Function *Resolver, 2520 CGBuilderTy &Builder, 2521 llvm::Function *FuncToReturn, 2522 bool SupportsIFunc) { 2523 if (SupportsIFunc) { 2524 Builder.CreateRet(FuncToReturn); 2525 return; 2526 } 2527 2528 llvm::SmallVector<llvm::Value *, 10> Args; 2529 llvm::for_each(Resolver->args(), 2530 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2531 2532 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2533 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2534 2535 if (Resolver->getReturnType()->isVoidTy()) 2536 Builder.CreateRetVoid(); 2537 else 2538 Builder.CreateRet(Result); 2539 } 2540 2541 void CodeGenFunction::EmitMultiVersionResolver( 2542 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2543 assert(getContext().getTargetInfo().getTriple().isX86() && 2544 "Only implemented for x86 targets"); 2545 2546 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2547 2548 // Main function's basic block. 2549 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2550 Builder.SetInsertPoint(CurBlock); 2551 EmitX86CpuInit(); 2552 2553 for (const MultiVersionResolverOption &RO : Options) { 2554 Builder.SetInsertPoint(CurBlock); 2555 llvm::Value *Condition = FormResolverCondition(RO); 2556 2557 // The 'default' or 'generic' case. 2558 if (!Condition) { 2559 assert(&RO == Options.end() - 1 && 2560 "Default or Generic case must be last"); 2561 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2562 SupportsIFunc); 2563 return; 2564 } 2565 2566 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2567 CGBuilderTy RetBuilder(*this, RetBlock); 2568 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2569 SupportsIFunc); 2570 CurBlock = createBasicBlock("resolver_else", Resolver); 2571 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2572 } 2573 2574 // If no generic/default, emit an unreachable. 2575 Builder.SetInsertPoint(CurBlock); 2576 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2577 TrapCall->setDoesNotReturn(); 2578 TrapCall->setDoesNotThrow(); 2579 Builder.CreateUnreachable(); 2580 Builder.ClearInsertionPoint(); 2581 } 2582 2583 // Loc - where the diagnostic will point, where in the source code this 2584 // alignment has failed. 2585 // SecondaryLoc - if present (will be present if sufficiently different from 2586 // Loc), the diagnostic will additionally point a "Note:" to this location. 2587 // It should be the location where the __attribute__((assume_aligned)) 2588 // was written e.g. 2589 void CodeGenFunction::emitAlignmentAssumptionCheck( 2590 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2591 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2592 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2593 llvm::Instruction *Assumption) { 2594 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2595 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2596 llvm::Intrinsic::getDeclaration( 2597 Builder.GetInsertBlock()->getParent()->getParent(), 2598 llvm::Intrinsic::assume) && 2599 "Assumption should be a call to llvm.assume()."); 2600 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2601 "Assumption should be the last instruction of the basic block, " 2602 "since the basic block is still being generated."); 2603 2604 if (!SanOpts.has(SanitizerKind::Alignment)) 2605 return; 2606 2607 // Don't check pointers to volatile data. The behavior here is implementation- 2608 // defined. 2609 if (Ty->getPointeeType().isVolatileQualified()) 2610 return; 2611 2612 // We need to temorairly remove the assumption so we can insert the 2613 // sanitizer check before it, else the check will be dropped by optimizations. 2614 Assumption->removeFromParent(); 2615 2616 { 2617 SanitizerScope SanScope(this); 2618 2619 if (!OffsetValue) 2620 OffsetValue = Builder.getInt1(0); // no offset. 2621 2622 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2623 EmitCheckSourceLocation(SecondaryLoc), 2624 EmitCheckTypeDescriptor(Ty)}; 2625 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2626 EmitCheckValue(Alignment), 2627 EmitCheckValue(OffsetValue)}; 2628 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2629 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2630 } 2631 2632 // We are now in the (new, empty) "cont" basic block. 2633 // Reintroduce the assumption. 2634 Builder.Insert(Assumption); 2635 // FIXME: Assumption still has it's original basic block as it's Parent. 2636 } 2637 2638 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2639 if (CGDebugInfo *DI = getDebugInfo()) 2640 return DI->SourceLocToDebugLoc(Location); 2641 2642 return llvm::DebugLoc(); 2643 } 2644 2645 static Optional<std::pair<uint32_t, uint32_t>> 2646 getLikelihoodWeights(Stmt::Likelihood LH) { 2647 switch (LH) { 2648 case Stmt::LH_Unlikely: 2649 return std::pair<uint32_t, uint32_t>(llvm::UnlikelyBranchWeight, 2650 llvm::LikelyBranchWeight); 2651 case Stmt::LH_None: 2652 return None; 2653 case Stmt::LH_Likely: 2654 return std::pair<uint32_t, uint32_t>(llvm::LikelyBranchWeight, 2655 llvm::UnlikelyBranchWeight); 2656 } 2657 llvm_unreachable("Unknown Likelihood"); 2658 } 2659 2660 llvm::MDNode *CodeGenFunction::createBranchWeights(Stmt::Likelihood LH) const { 2661 Optional<std::pair<uint32_t, uint32_t>> LHW = getLikelihoodWeights(LH); 2662 if (!LHW) 2663 return nullptr; 2664 2665 llvm::MDBuilder MDHelper(CGM.getLLVMContext()); 2666 return MDHelper.createBranchWeights(LHW->first, LHW->second); 2667 } 2668 2669 llvm::MDNode *CodeGenFunction::createProfileOrBranchWeightsForLoop( 2670 const Stmt *Cond, uint64_t LoopCount, const Stmt *Body) const { 2671 llvm::MDNode *Weights = createProfileWeightsForLoop(Cond, LoopCount); 2672 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 2673 Weights = createBranchWeights(Stmt::getLikelihood(Body)); 2674 2675 return Weights; 2676 } 2677