1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGHLSLRuntime.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ASTLambda.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/Decl.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/Expr.h" 30 #include "clang/AST/StmtCXX.h" 31 #include "clang/AST/StmtObjC.h" 32 #include "clang/Basic/Builtins.h" 33 #include "clang/Basic/CodeGenOptions.h" 34 #include "clang/Basic/TargetInfo.h" 35 #include "clang/CodeGen/CGFunctionInfo.h" 36 #include "clang/Frontend/FrontendDiagnostic.h" 37 #include "llvm/ADT/ArrayRef.h" 38 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/Dominators.h" 41 #include "llvm/IR/FPEnv.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/MDBuilder.h" 45 #include "llvm/IR/Operator.h" 46 #include "llvm/Support/CRC.h" 47 #include "llvm/Support/xxhash.h" 48 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 49 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 50 #include <optional> 51 52 using namespace clang; 53 using namespace CodeGen; 54 55 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 56 /// markers. 57 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 58 const LangOptions &LangOpts) { 59 if (CGOpts.DisableLifetimeMarkers) 60 return false; 61 62 // Sanitizers may use markers. 63 if (CGOpts.SanitizeAddressUseAfterScope || 64 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 65 LangOpts.Sanitize.has(SanitizerKind::Memory)) 66 return true; 67 68 // For now, only in optimized builds. 69 return CGOpts.OptimizationLevel != 0; 70 } 71 72 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 73 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 74 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 75 CGBuilderInserterTy(this)), 76 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 77 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 78 ShouldEmitLifetimeMarkers( 79 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 80 if (!suppressNewContext) 81 CGM.getCXXABI().getMangleContext().startNewFunction(); 82 EHStack.setCGF(this); 83 84 SetFastMathFlags(CurFPFeatures); 85 } 86 87 CodeGenFunction::~CodeGenFunction() { 88 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 89 90 if (getLangOpts().OpenMP && CurFn) 91 CGM.getOpenMPRuntime().functionFinished(*this); 92 93 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 94 // outlining etc) at some point. Doing it once the function codegen is done 95 // seems to be a reasonable spot. We do it here, as opposed to the deletion 96 // time of the CodeGenModule, because we have to ensure the IR has not yet 97 // been "emitted" to the outside, thus, modifications are still sensible. 98 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 99 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 100 } 101 102 // Map the LangOption for exception behavior into 103 // the corresponding enum in the IR. 104 llvm::fp::ExceptionBehavior 105 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 106 107 switch (Kind) { 108 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 109 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 110 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 111 default: 112 llvm_unreachable("Unsupported FP Exception Behavior"); 113 } 114 } 115 116 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 117 llvm::FastMathFlags FMF; 118 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 119 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 120 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 121 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 122 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 123 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 124 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 125 Builder.setFastMathFlags(FMF); 126 } 127 128 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 129 const Expr *E) 130 : CGF(CGF) { 131 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 132 } 133 134 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 135 FPOptions FPFeatures) 136 : CGF(CGF) { 137 ConstructorHelper(FPFeatures); 138 } 139 140 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 141 OldFPFeatures = CGF.CurFPFeatures; 142 CGF.CurFPFeatures = FPFeatures; 143 144 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 145 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 146 147 if (OldFPFeatures == FPFeatures) 148 return; 149 150 FMFGuard.emplace(CGF.Builder); 151 152 llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode(); 153 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 154 auto NewExceptionBehavior = 155 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 156 FPFeatures.getExceptionMode())); 157 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 158 159 CGF.SetFastMathFlags(FPFeatures); 160 161 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 162 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 163 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 164 (NewExceptionBehavior == llvm::fp::ebIgnore && 165 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 166 "FPConstrained should be enabled on entire function"); 167 168 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 169 auto OldValue = 170 CGF.CurFn->getFnAttribute(Name).getValueAsBool(); 171 auto NewValue = OldValue & Value; 172 if (OldValue != NewValue) 173 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 174 }; 175 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 176 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 177 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 178 mergeFnAttrValue( 179 "unsafe-fp-math", 180 FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() && 181 FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() && 182 FPFeatures.allowFPContractAcrossStatement()); 183 } 184 185 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 186 CGF.CurFPFeatures = OldFPFeatures; 187 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 188 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 189 } 190 191 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 192 LValueBaseInfo BaseInfo; 193 TBAAAccessInfo TBAAInfo; 194 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 195 Address Addr(V, ConvertTypeForMem(T), Alignment); 196 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 197 } 198 199 /// Given a value of type T* that may not be to a complete object, 200 /// construct an l-value with the natural pointee alignment of T. 201 LValue 202 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 203 LValueBaseInfo BaseInfo; 204 TBAAAccessInfo TBAAInfo; 205 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 206 /* forPointeeType= */ true); 207 Address Addr(V, ConvertTypeForMem(T), Align); 208 return MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 209 } 210 211 212 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 213 return CGM.getTypes().ConvertTypeForMem(T); 214 } 215 216 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 217 return CGM.getTypes().ConvertType(T); 218 } 219 220 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 221 type = type.getCanonicalType(); 222 while (true) { 223 switch (type->getTypeClass()) { 224 #define TYPE(name, parent) 225 #define ABSTRACT_TYPE(name, parent) 226 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 227 #define DEPENDENT_TYPE(name, parent) case Type::name: 228 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 229 #include "clang/AST/TypeNodes.inc" 230 llvm_unreachable("non-canonical or dependent type in IR-generation"); 231 232 case Type::Auto: 233 case Type::DeducedTemplateSpecialization: 234 llvm_unreachable("undeduced type in IR-generation"); 235 236 // Various scalar types. 237 case Type::Builtin: 238 case Type::Pointer: 239 case Type::BlockPointer: 240 case Type::LValueReference: 241 case Type::RValueReference: 242 case Type::MemberPointer: 243 case Type::Vector: 244 case Type::ExtVector: 245 case Type::ConstantMatrix: 246 case Type::FunctionProto: 247 case Type::FunctionNoProto: 248 case Type::Enum: 249 case Type::ObjCObjectPointer: 250 case Type::Pipe: 251 case Type::BitInt: 252 return TEK_Scalar; 253 254 // Complexes. 255 case Type::Complex: 256 return TEK_Complex; 257 258 // Arrays, records, and Objective-C objects. 259 case Type::ConstantArray: 260 case Type::IncompleteArray: 261 case Type::VariableArray: 262 case Type::Record: 263 case Type::ObjCObject: 264 case Type::ObjCInterface: 265 return TEK_Aggregate; 266 267 // We operate on atomic values according to their underlying type. 268 case Type::Atomic: 269 type = cast<AtomicType>(type)->getValueType(); 270 continue; 271 } 272 llvm_unreachable("unknown type kind!"); 273 } 274 } 275 276 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 277 // For cleanliness, we try to avoid emitting the return block for 278 // simple cases. 279 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 280 281 if (CurBB) { 282 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 283 284 // We have a valid insert point, reuse it if it is empty or there are no 285 // explicit jumps to the return block. 286 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 287 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 288 delete ReturnBlock.getBlock(); 289 ReturnBlock = JumpDest(); 290 } else 291 EmitBlock(ReturnBlock.getBlock()); 292 return llvm::DebugLoc(); 293 } 294 295 // Otherwise, if the return block is the target of a single direct 296 // branch then we can just put the code in that block instead. This 297 // cleans up functions which started with a unified return block. 298 if (ReturnBlock.getBlock()->hasOneUse()) { 299 llvm::BranchInst *BI = 300 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 301 if (BI && BI->isUnconditional() && 302 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 303 // Record/return the DebugLoc of the simple 'return' expression to be used 304 // later by the actual 'ret' instruction. 305 llvm::DebugLoc Loc = BI->getDebugLoc(); 306 Builder.SetInsertPoint(BI->getParent()); 307 BI->eraseFromParent(); 308 delete ReturnBlock.getBlock(); 309 ReturnBlock = JumpDest(); 310 return Loc; 311 } 312 } 313 314 // FIXME: We are at an unreachable point, there is no reason to emit the block 315 // unless it has uses. However, we still need a place to put the debug 316 // region.end for now. 317 318 EmitBlock(ReturnBlock.getBlock()); 319 return llvm::DebugLoc(); 320 } 321 322 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 323 if (!BB) return; 324 if (!BB->use_empty()) { 325 CGF.CurFn->insert(CGF.CurFn->end(), BB); 326 return; 327 } 328 delete BB; 329 } 330 331 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 332 assert(BreakContinueStack.empty() && 333 "mismatched push/pop in break/continue stack!"); 334 335 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 336 && NumSimpleReturnExprs == NumReturnExprs 337 && ReturnBlock.getBlock()->use_empty(); 338 // Usually the return expression is evaluated before the cleanup 339 // code. If the function contains only a simple return statement, 340 // such as a constant, the location before the cleanup code becomes 341 // the last useful breakpoint in the function, because the simple 342 // return expression will be evaluated after the cleanup code. To be 343 // safe, set the debug location for cleanup code to the location of 344 // the return statement. Otherwise the cleanup code should be at the 345 // end of the function's lexical scope. 346 // 347 // If there are multiple branches to the return block, the branch 348 // instructions will get the location of the return statements and 349 // all will be fine. 350 if (CGDebugInfo *DI = getDebugInfo()) { 351 if (OnlySimpleReturnStmts) 352 DI->EmitLocation(Builder, LastStopPoint); 353 else 354 DI->EmitLocation(Builder, EndLoc); 355 } 356 357 // Pop any cleanups that might have been associated with the 358 // parameters. Do this in whatever block we're currently in; it's 359 // important to do this before we enter the return block or return 360 // edges will be *really* confused. 361 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 362 bool HasOnlyLifetimeMarkers = 363 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 364 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 365 366 std::optional<ApplyDebugLocation> OAL; 367 if (HasCleanups) { 368 // Make sure the line table doesn't jump back into the body for 369 // the ret after it's been at EndLoc. 370 if (CGDebugInfo *DI = getDebugInfo()) { 371 if (OnlySimpleReturnStmts) 372 DI->EmitLocation(Builder, EndLoc); 373 else 374 // We may not have a valid end location. Try to apply it anyway, and 375 // fall back to an artificial location if needed. 376 OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 377 } 378 379 PopCleanupBlocks(PrologueCleanupDepth); 380 } 381 382 // Emit function epilog (to return). 383 llvm::DebugLoc Loc = EmitReturnBlock(); 384 385 if (ShouldInstrumentFunction()) { 386 if (CGM.getCodeGenOpts().InstrumentFunctions) 387 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 388 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 389 CurFn->addFnAttr("instrument-function-exit-inlined", 390 "__cyg_profile_func_exit"); 391 } 392 393 // Emit debug descriptor for function end. 394 if (CGDebugInfo *DI = getDebugInfo()) 395 DI->EmitFunctionEnd(Builder, CurFn); 396 397 // Reset the debug location to that of the simple 'return' expression, if any 398 // rather than that of the end of the function's scope '}'. 399 ApplyDebugLocation AL(*this, Loc); 400 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 401 EmitEndEHSpec(CurCodeDecl); 402 403 assert(EHStack.empty() && 404 "did not remove all scopes from cleanup stack!"); 405 406 // If someone did an indirect goto, emit the indirect goto block at the end of 407 // the function. 408 if (IndirectBranch) { 409 EmitBlock(IndirectBranch->getParent()); 410 Builder.ClearInsertionPoint(); 411 } 412 413 // If some of our locals escaped, insert a call to llvm.localescape in the 414 // entry block. 415 if (!EscapedLocals.empty()) { 416 // Invert the map from local to index into a simple vector. There should be 417 // no holes. 418 SmallVector<llvm::Value *, 4> EscapeArgs; 419 EscapeArgs.resize(EscapedLocals.size()); 420 for (auto &Pair : EscapedLocals) 421 EscapeArgs[Pair.second] = Pair.first; 422 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 423 &CGM.getModule(), llvm::Intrinsic::localescape); 424 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 425 } 426 427 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 428 llvm::Instruction *Ptr = AllocaInsertPt; 429 AllocaInsertPt = nullptr; 430 Ptr->eraseFromParent(); 431 432 // PostAllocaInsertPt, if created, was lazily created when it was required, 433 // remove it now since it was just created for our own convenience. 434 if (PostAllocaInsertPt) { 435 llvm::Instruction *PostPtr = PostAllocaInsertPt; 436 PostAllocaInsertPt = nullptr; 437 PostPtr->eraseFromParent(); 438 } 439 440 // If someone took the address of a label but never did an indirect goto, we 441 // made a zero entry PHI node, which is illegal, zap it now. 442 if (IndirectBranch) { 443 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 444 if (PN->getNumIncomingValues() == 0) { 445 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 446 PN->eraseFromParent(); 447 } 448 } 449 450 EmitIfUsed(*this, EHResumeBlock); 451 EmitIfUsed(*this, TerminateLandingPad); 452 EmitIfUsed(*this, TerminateHandler); 453 EmitIfUsed(*this, UnreachableBlock); 454 455 for (const auto &FuncletAndParent : TerminateFunclets) 456 EmitIfUsed(*this, FuncletAndParent.second); 457 458 if (CGM.getCodeGenOpts().EmitDeclMetadata) 459 EmitDeclMetadata(); 460 461 for (const auto &R : DeferredReplacements) { 462 if (llvm::Value *Old = R.first) { 463 Old->replaceAllUsesWith(R.second); 464 cast<llvm::Instruction>(Old)->eraseFromParent(); 465 } 466 } 467 DeferredReplacements.clear(); 468 469 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 470 // PHIs if the current function is a coroutine. We don't do it for all 471 // functions as it may result in slight increase in numbers of instructions 472 // if compiled with no optimizations. We do it for coroutine as the lifetime 473 // of CleanupDestSlot alloca make correct coroutine frame building very 474 // difficult. 475 if (NormalCleanupDest.isValid() && isCoroutine()) { 476 llvm::DominatorTree DT(*CurFn); 477 llvm::PromoteMemToReg( 478 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 479 NormalCleanupDest = Address::invalid(); 480 } 481 482 // Scan function arguments for vector width. 483 for (llvm::Argument &A : CurFn->args()) 484 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 485 LargestVectorWidth = 486 std::max((uint64_t)LargestVectorWidth, 487 VT->getPrimitiveSizeInBits().getKnownMinValue()); 488 489 // Update vector width based on return type. 490 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 491 LargestVectorWidth = 492 std::max((uint64_t)LargestVectorWidth, 493 VT->getPrimitiveSizeInBits().getKnownMinValue()); 494 495 if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth) 496 LargestVectorWidth = CurFnInfo->getMaxVectorWidth(); 497 498 // Add the required-vector-width attribute. This contains the max width from: 499 // 1. min-vector-width attribute used in the source program. 500 // 2. Any builtins used that have a vector width specified. 501 // 3. Values passed in and out of inline assembly. 502 // 4. Width of vector arguments and return types for this function. 503 // 5. Width of vector aguments and return types for functions called by this 504 // function. 505 if (getContext().getTargetInfo().getTriple().isX86()) 506 CurFn->addFnAttr("min-legal-vector-width", 507 llvm::utostr(LargestVectorWidth)); 508 509 // Add vscale_range attribute if appropriate. 510 std::optional<std::pair<unsigned, unsigned>> VScaleRange = 511 getContext().getTargetInfo().getVScaleRange(getLangOpts()); 512 if (VScaleRange) { 513 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( 514 getLLVMContext(), VScaleRange->first, VScaleRange->second)); 515 } 516 517 // If we generated an unreachable return block, delete it now. 518 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 519 Builder.ClearInsertionPoint(); 520 ReturnBlock.getBlock()->eraseFromParent(); 521 } 522 if (ReturnValue.isValid()) { 523 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 524 if (RetAlloca && RetAlloca->use_empty()) { 525 RetAlloca->eraseFromParent(); 526 ReturnValue = Address::invalid(); 527 } 528 } 529 } 530 531 /// ShouldInstrumentFunction - Return true if the current function should be 532 /// instrumented with __cyg_profile_func_* calls 533 bool CodeGenFunction::ShouldInstrumentFunction() { 534 if (!CGM.getCodeGenOpts().InstrumentFunctions && 535 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 536 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 537 return false; 538 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 539 return false; 540 return true; 541 } 542 543 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() { 544 if (!CurFuncDecl) 545 return false; 546 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>(); 547 } 548 549 /// ShouldXRayInstrument - Return true if the current function should be 550 /// instrumented with XRay nop sleds. 551 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 552 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 553 } 554 555 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 556 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 557 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 558 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 559 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 560 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 561 XRayInstrKind::Custom); 562 } 563 564 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 565 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 566 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 567 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 568 XRayInstrKind::Typed); 569 } 570 571 llvm::ConstantInt * 572 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const { 573 // Remove any (C++17) exception specifications, to allow calling e.g. a 574 // noexcept function through a non-noexcept pointer. 575 if (!Ty->isFunctionNoProtoType()) 576 Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None); 577 std::string Mangled; 578 llvm::raw_string_ostream Out(Mangled); 579 CGM.getCXXABI().getMangleContext().mangleTypeName(Ty, Out, false); 580 return llvm::ConstantInt::get( 581 CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled))); 582 } 583 584 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD, 585 llvm::Function *Fn) { 586 if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>()) 587 return; 588 589 llvm::LLVMContext &Context = getLLVMContext(); 590 591 CGM.GenKernelArgMetadata(Fn, FD, this); 592 593 if (!getLangOpts().OpenCL) 594 return; 595 596 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 597 QualType HintQTy = A->getTypeHint(); 598 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 599 bool IsSignedInteger = 600 HintQTy->isSignedIntegerType() || 601 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 602 llvm::Metadata *AttrMDArgs[] = { 603 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 604 CGM.getTypes().ConvertType(A->getTypeHint()))), 605 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 606 llvm::IntegerType::get(Context, 32), 607 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 608 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 609 } 610 611 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 612 llvm::Metadata *AttrMDArgs[] = { 613 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 614 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 615 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 616 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 617 } 618 619 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 620 llvm::Metadata *AttrMDArgs[] = { 621 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 622 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 623 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 624 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 625 } 626 627 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 628 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 629 llvm::Metadata *AttrMDArgs[] = { 630 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 631 Fn->setMetadata("intel_reqd_sub_group_size", 632 llvm::MDNode::get(Context, AttrMDArgs)); 633 } 634 } 635 636 /// Determine whether the function F ends with a return stmt. 637 static bool endsWithReturn(const Decl* F) { 638 const Stmt *Body = nullptr; 639 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 640 Body = FD->getBody(); 641 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 642 Body = OMD->getBody(); 643 644 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 645 auto LastStmt = CS->body_rbegin(); 646 if (LastStmt != CS->body_rend()) 647 return isa<ReturnStmt>(*LastStmt); 648 } 649 return false; 650 } 651 652 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 653 if (SanOpts.has(SanitizerKind::Thread)) { 654 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 655 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 656 } 657 } 658 659 /// Check if the return value of this function requires sanitization. 660 bool CodeGenFunction::requiresReturnValueCheck() const { 661 return requiresReturnValueNullabilityCheck() || 662 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 663 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 664 } 665 666 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 667 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 668 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 669 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 670 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 671 return false; 672 673 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 674 return false; 675 676 if (MD->getNumParams() == 2) { 677 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 678 if (!PT || !PT->isVoidPointerType() || 679 !PT->getPointeeType().isConstQualified()) 680 return false; 681 } 682 683 return true; 684 } 685 686 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) { 687 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 688 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 689 } 690 691 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) { 692 return getTarget().getTriple().getArch() == llvm::Triple::x86 && 693 getTarget().getCXXABI().isMicrosoft() && 694 llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) { 695 return isInAllocaArgument(CGM.getCXXABI(), P->getType()); 696 }); 697 } 698 699 /// Return the UBSan prologue signature for \p FD if one is available. 700 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 701 const FunctionDecl *FD) { 702 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 703 if (!MD->isStatic()) 704 return nullptr; 705 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 706 } 707 708 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 709 llvm::Function *Fn, 710 const CGFunctionInfo &FnInfo, 711 const FunctionArgList &Args, 712 SourceLocation Loc, 713 SourceLocation StartLoc) { 714 assert(!CurFn && 715 "Do not use a CodeGenFunction object for more than one function"); 716 717 const Decl *D = GD.getDecl(); 718 719 DidCallStackSave = false; 720 CurCodeDecl = D; 721 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 722 if (FD && FD->usesSEHTry()) 723 CurSEHParent = GD; 724 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 725 FnRetTy = RetTy; 726 CurFn = Fn; 727 CurFnInfo = &FnInfo; 728 assert(CurFn->isDeclaration() && "Function already has body?"); 729 730 // If this function is ignored for any of the enabled sanitizers, 731 // disable the sanitizer for the function. 732 do { 733 #define SANITIZER(NAME, ID) \ 734 if (SanOpts.empty()) \ 735 break; \ 736 if (SanOpts.has(SanitizerKind::ID)) \ 737 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 738 SanOpts.set(SanitizerKind::ID, false); 739 740 #include "clang/Basic/Sanitizers.def" 741 #undef SANITIZER 742 } while (false); 743 744 if (D) { 745 const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds); 746 SanitizerMask no_sanitize_mask; 747 bool NoSanitizeCoverage = false; 748 749 for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) { 750 no_sanitize_mask |= Attr->getMask(); 751 // SanitizeCoverage is not handled by SanOpts. 752 if (Attr->hasCoverage()) 753 NoSanitizeCoverage = true; 754 } 755 756 // Apply the no_sanitize* attributes to SanOpts. 757 SanOpts.Mask &= ~no_sanitize_mask; 758 if (no_sanitize_mask & SanitizerKind::Address) 759 SanOpts.set(SanitizerKind::KernelAddress, false); 760 if (no_sanitize_mask & SanitizerKind::KernelAddress) 761 SanOpts.set(SanitizerKind::Address, false); 762 if (no_sanitize_mask & SanitizerKind::HWAddress) 763 SanOpts.set(SanitizerKind::KernelHWAddress, false); 764 if (no_sanitize_mask & SanitizerKind::KernelHWAddress) 765 SanOpts.set(SanitizerKind::HWAddress, false); 766 767 if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds)) 768 Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds); 769 770 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) 771 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); 772 773 // Some passes need the non-negated no_sanitize attribute. Pass them on. 774 if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) { 775 if (no_sanitize_mask & SanitizerKind::Thread) 776 Fn->addFnAttr("no_sanitize_thread"); 777 } 778 } 779 780 if (ShouldSkipSanitizerInstrumentation()) { 781 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 782 } else { 783 // Apply sanitizer attributes to the function. 784 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 785 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 786 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | 787 SanitizerKind::KernelHWAddress)) 788 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 789 if (SanOpts.has(SanitizerKind::MemtagStack)) 790 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 791 if (SanOpts.has(SanitizerKind::Thread)) 792 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 793 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 794 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 795 } 796 if (SanOpts.has(SanitizerKind::SafeStack)) 797 Fn->addFnAttr(llvm::Attribute::SafeStack); 798 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 799 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 800 801 // Apply fuzzing attribute to the function. 802 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 803 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 804 805 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 806 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 807 if (SanOpts.has(SanitizerKind::Thread)) { 808 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 809 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 810 if (OMD->getMethodFamily() == OMF_dealloc || 811 OMD->getMethodFamily() == OMF_initialize || 812 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 813 markAsIgnoreThreadCheckingAtRuntime(Fn); 814 } 815 } 816 } 817 818 // Ignore unrelated casts in STL allocate() since the allocator must cast 819 // from void* to T* before object initialization completes. Don't match on the 820 // namespace because not all allocators are in std:: 821 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 822 if (matchesStlAllocatorFn(D, getContext())) 823 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 824 } 825 826 // Ignore null checks in coroutine functions since the coroutines passes 827 // are not aware of how to move the extra UBSan instructions across the split 828 // coroutine boundaries. 829 if (D && SanOpts.has(SanitizerKind::Null)) 830 if (FD && FD->getBody() && 831 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 832 SanOpts.Mask &= ~SanitizerKind::Null; 833 834 // Apply xray attributes to the function (as a string, for now) 835 bool AlwaysXRayAttr = false; 836 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 837 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 838 XRayInstrKind::FunctionEntry) || 839 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 840 XRayInstrKind::FunctionExit)) { 841 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 842 Fn->addFnAttr("function-instrument", "xray-always"); 843 AlwaysXRayAttr = true; 844 } 845 if (XRayAttr->neverXRayInstrument()) 846 Fn->addFnAttr("function-instrument", "xray-never"); 847 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 848 if (ShouldXRayInstrumentFunction()) 849 Fn->addFnAttr("xray-log-args", 850 llvm::utostr(LogArgs->getArgumentCount())); 851 } 852 } else { 853 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 854 Fn->addFnAttr( 855 "xray-instruction-threshold", 856 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 857 } 858 859 if (ShouldXRayInstrumentFunction()) { 860 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 861 Fn->addFnAttr("xray-ignore-loops"); 862 863 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 864 XRayInstrKind::FunctionExit)) 865 Fn->addFnAttr("xray-skip-exit"); 866 867 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 868 XRayInstrKind::FunctionEntry)) 869 Fn->addFnAttr("xray-skip-entry"); 870 871 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 872 if (FuncGroups > 1) { 873 auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(), 874 CurFn->getName().bytes_end()); 875 auto Group = crc32(FuncName) % FuncGroups; 876 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 877 !AlwaysXRayAttr) 878 Fn->addFnAttr("function-instrument", "xray-never"); 879 } 880 } 881 882 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) { 883 switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) { 884 case ProfileList::Skip: 885 Fn->addFnAttr(llvm::Attribute::SkipProfile); 886 break; 887 case ProfileList::Forbid: 888 Fn->addFnAttr(llvm::Attribute::NoProfile); 889 break; 890 case ProfileList::Allow: 891 break; 892 } 893 } 894 895 unsigned Count, Offset; 896 if (const auto *Attr = 897 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 898 Count = Attr->getCount(); 899 Offset = Attr->getOffset(); 900 } else { 901 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 902 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 903 } 904 if (Count && Offset <= Count) { 905 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 906 if (Offset) 907 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 908 } 909 // Instruct that functions for COFF/CodeView targets should start with a 910 // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64 911 // backends as they don't need it -- instructions on these architectures are 912 // always atomically patchable at runtime. 913 if (CGM.getCodeGenOpts().HotPatch && 914 getContext().getTargetInfo().getTriple().isX86() && 915 getContext().getTargetInfo().getTriple().getEnvironment() != 916 llvm::Triple::CODE16) 917 Fn->addFnAttr("patchable-function", "prologue-short-redirect"); 918 919 // Add no-jump-tables value. 920 if (CGM.getCodeGenOpts().NoUseJumpTables) 921 Fn->addFnAttr("no-jump-tables", "true"); 922 923 // Add no-inline-line-tables value. 924 if (CGM.getCodeGenOpts().NoInlineLineTables) 925 Fn->addFnAttr("no-inline-line-tables"); 926 927 // Add profile-sample-accurate value. 928 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 929 Fn->addFnAttr("profile-sample-accurate"); 930 931 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 932 Fn->addFnAttr("use-sample-profile"); 933 934 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 935 Fn->addFnAttr("cfi-canonical-jump-table"); 936 937 if (D && D->hasAttr<NoProfileFunctionAttr>()) 938 Fn->addFnAttr(llvm::Attribute::NoProfile); 939 940 if (D) { 941 // Function attributes take precedence over command line flags. 942 if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) { 943 switch (A->getThunkType()) { 944 case FunctionReturnThunksAttr::Kind::Keep: 945 break; 946 case FunctionReturnThunksAttr::Kind::Extern: 947 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); 948 break; 949 } 950 } else if (CGM.getCodeGenOpts().FunctionReturnThunks) 951 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); 952 } 953 954 if (FD && (getLangOpts().OpenCL || 955 (getLangOpts().HIP && getLangOpts().CUDAIsDevice))) { 956 // Add metadata for a kernel function. 957 EmitKernelMetadata(FD, Fn); 958 } 959 960 // If we are checking function types, emit a function type signature as 961 // prologue data. 962 if (FD && SanOpts.has(SanitizerKind::Function)) { 963 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 964 llvm::LLVMContext &Ctx = Fn->getContext(); 965 llvm::MDBuilder MDB(Ctx); 966 Fn->setMetadata( 967 llvm::LLVMContext::MD_func_sanitize, 968 MDB.createRTTIPointerPrologue( 969 PrologueSig, getUBSanFunctionTypeHash(FD->getType()))); 970 } 971 } 972 973 // If we're checking nullability, we need to know whether we can check the 974 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 975 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 976 auto Nullability = FnRetTy->getNullability(); 977 if (Nullability && *Nullability == NullabilityKind::NonNull) { 978 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 979 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 980 RetValNullabilityPrecondition = 981 llvm::ConstantInt::getTrue(getLLVMContext()); 982 } 983 } 984 985 // If we're in C++ mode and the function name is "main", it is guaranteed 986 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 987 // used within a program"). 988 // 989 // OpenCL C 2.0 v2.2-11 s6.9.i: 990 // Recursion is not supported. 991 // 992 // SYCL v1.2.1 s3.10: 993 // kernels cannot include RTTI information, exception classes, 994 // recursive code, virtual functions or make use of C++ libraries that 995 // are not compiled for the device. 996 if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) || 997 getLangOpts().OpenCL || getLangOpts().SYCLIsDevice || 998 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))) 999 Fn->addFnAttr(llvm::Attribute::NoRecurse); 1000 1001 llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode(); 1002 llvm::fp::ExceptionBehavior FPExceptionBehavior = 1003 ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode()); 1004 Builder.setDefaultConstrainedRounding(RM); 1005 Builder.setDefaultConstrainedExcept(FPExceptionBehavior); 1006 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) || 1007 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore || 1008 RM != llvm::RoundingMode::NearestTiesToEven))) { 1009 Builder.setIsFPConstrained(true); 1010 Fn->addFnAttr(llvm::Attribute::StrictFP); 1011 } 1012 1013 // If a custom alignment is used, force realigning to this alignment on 1014 // any main function which certainly will need it. 1015 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 1016 CGM.getCodeGenOpts().StackAlignment)) 1017 Fn->addFnAttr("stackrealign"); 1018 1019 // "main" doesn't need to zero out call-used registers. 1020 if (FD && FD->isMain()) 1021 Fn->removeFnAttr("zero-call-used-regs"); 1022 1023 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 1024 1025 // Create a marker to make it easy to insert allocas into the entryblock 1026 // later. Don't create this with the builder, because we don't want it 1027 // folded. 1028 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 1029 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 1030 1031 ReturnBlock = getJumpDestInCurrentScope("return"); 1032 1033 Builder.SetInsertPoint(EntryBB); 1034 1035 // If we're checking the return value, allocate space for a pointer to a 1036 // precise source location of the checked return statement. 1037 if (requiresReturnValueCheck()) { 1038 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 1039 Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy), 1040 ReturnLocation); 1041 } 1042 1043 // Emit subprogram debug descriptor. 1044 if (CGDebugInfo *DI = getDebugInfo()) { 1045 // Reconstruct the type from the argument list so that implicit parameters, 1046 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 1047 // convention. 1048 DI->emitFunctionStart(GD, Loc, StartLoc, 1049 DI->getFunctionType(FD, RetTy, Args), CurFn, 1050 CurFuncIsThunk); 1051 } 1052 1053 if (ShouldInstrumentFunction()) { 1054 if (CGM.getCodeGenOpts().InstrumentFunctions) 1055 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1056 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1057 CurFn->addFnAttr("instrument-function-entry-inlined", 1058 "__cyg_profile_func_enter"); 1059 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1060 CurFn->addFnAttr("instrument-function-entry-inlined", 1061 "__cyg_profile_func_enter_bare"); 1062 } 1063 1064 // Since emitting the mcount call here impacts optimizations such as function 1065 // inlining, we just add an attribute to insert a mcount call in backend. 1066 // The attribute "counting-function" is set to mcount function name which is 1067 // architecture dependent. 1068 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1069 // Calls to fentry/mcount should not be generated if function has 1070 // the no_instrument_function attribute. 1071 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1072 if (CGM.getCodeGenOpts().CallFEntry) 1073 Fn->addFnAttr("fentry-call", "true"); 1074 else { 1075 Fn->addFnAttr("instrument-function-entry-inlined", 1076 getTarget().getMCountName()); 1077 } 1078 if (CGM.getCodeGenOpts().MNopMCount) { 1079 if (!CGM.getCodeGenOpts().CallFEntry) 1080 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1081 << "-mnop-mcount" << "-mfentry"; 1082 Fn->addFnAttr("mnop-mcount"); 1083 } 1084 1085 if (CGM.getCodeGenOpts().RecordMCount) { 1086 if (!CGM.getCodeGenOpts().CallFEntry) 1087 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1088 << "-mrecord-mcount" << "-mfentry"; 1089 Fn->addFnAttr("mrecord-mcount"); 1090 } 1091 } 1092 } 1093 1094 if (CGM.getCodeGenOpts().PackedStack) { 1095 if (getContext().getTargetInfo().getTriple().getArch() != 1096 llvm::Triple::systemz) 1097 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1098 << "-mpacked-stack"; 1099 Fn->addFnAttr("packed-stack"); 1100 } 1101 1102 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX && 1103 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc)) 1104 Fn->addFnAttr("warn-stack-size", 1105 std::to_string(CGM.getCodeGenOpts().WarnStackSize)); 1106 1107 if (RetTy->isVoidType()) { 1108 // Void type; nothing to return. 1109 ReturnValue = Address::invalid(); 1110 1111 // Count the implicit return. 1112 if (!endsWithReturn(D)) 1113 ++NumReturnExprs; 1114 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1115 // Indirect return; emit returned value directly into sret slot. 1116 // This reduces code size, and affects correctness in C++. 1117 auto AI = CurFn->arg_begin(); 1118 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1119 ++AI; 1120 ReturnValue = 1121 Address(&*AI, ConvertType(RetTy), 1122 CurFnInfo->getReturnInfo().getIndirectAlign(), KnownNonNull); 1123 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1124 ReturnValuePointer = 1125 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 1126 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 1127 ReturnValue.getPointer(), Int8PtrTy), 1128 ReturnValuePointer); 1129 } 1130 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1131 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1132 // Load the sret pointer from the argument struct and return into that. 1133 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1134 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1135 --EI; 1136 llvm::Value *Addr = Builder.CreateStructGEP( 1137 CurFnInfo->getArgStruct(), &*EI, Idx); 1138 llvm::Type *Ty = 1139 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1140 ReturnValuePointer = Address(Addr, Ty, getPointerAlign()); 1141 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1142 ReturnValue = Address(Addr, ConvertType(RetTy), 1143 CGM.getNaturalTypeAlignment(RetTy), KnownNonNull); 1144 } else { 1145 ReturnValue = CreateIRTemp(RetTy, "retval"); 1146 1147 // Tell the epilog emitter to autorelease the result. We do this 1148 // now so that various specialized functions can suppress it 1149 // during their IR-generation. 1150 if (getLangOpts().ObjCAutoRefCount && 1151 !CurFnInfo->isReturnsRetained() && 1152 RetTy->isObjCRetainableType()) 1153 AutoreleaseResult = true; 1154 } 1155 1156 EmitStartEHSpec(CurCodeDecl); 1157 1158 PrologueCleanupDepth = EHStack.stable_begin(); 1159 1160 // Emit OpenMP specific initialization of the device functions. 1161 if (getLangOpts().OpenMP && CurCodeDecl) 1162 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1163 1164 // Handle emitting HLSL entry functions. 1165 if (D && D->hasAttr<HLSLShaderAttr>()) 1166 CGM.getHLSLRuntime().emitEntryFunction(FD, Fn); 1167 1168 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1169 1170 if (isa_and_nonnull<CXXMethodDecl>(D) && 1171 cast<CXXMethodDecl>(D)->isInstance()) { 1172 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1173 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1174 if (MD->getParent()->isLambda() && 1175 MD->getOverloadedOperator() == OO_Call) { 1176 // We're in a lambda; figure out the captures. 1177 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1178 LambdaThisCaptureField); 1179 if (LambdaThisCaptureField) { 1180 // If the lambda captures the object referred to by '*this' - either by 1181 // value or by reference, make sure CXXThisValue points to the correct 1182 // object. 1183 1184 // Get the lvalue for the field (which is a copy of the enclosing object 1185 // or contains the address of the enclosing object). 1186 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1187 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1188 // If the enclosing object was captured by value, just use its address. 1189 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1190 } else { 1191 // Load the lvalue pointed to by the field, since '*this' was captured 1192 // by reference. 1193 CXXThisValue = 1194 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1195 } 1196 } 1197 for (auto *FD : MD->getParent()->fields()) { 1198 if (FD->hasCapturedVLAType()) { 1199 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1200 SourceLocation()).getScalarVal(); 1201 auto VAT = FD->getCapturedVLAType(); 1202 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1203 } 1204 } 1205 } else { 1206 // Not in a lambda; just use 'this' from the method. 1207 // FIXME: Should we generate a new load for each use of 'this'? The 1208 // fast register allocator would be happier... 1209 CXXThisValue = CXXABIThisValue; 1210 } 1211 1212 // Check the 'this' pointer once per function, if it's available. 1213 if (CXXABIThisValue) { 1214 SanitizerSet SkippedChecks; 1215 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1216 QualType ThisTy = MD->getThisType(); 1217 1218 // If this is the call operator of a lambda with no capture-default, it 1219 // may have a static invoker function, which may call this operator with 1220 // a null 'this' pointer. 1221 if (isLambdaCallOperator(MD) && 1222 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1223 SkippedChecks.set(SanitizerKind::Null, true); 1224 1225 EmitTypeCheck( 1226 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1227 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1228 } 1229 } 1230 1231 // If any of the arguments have a variably modified type, make sure to 1232 // emit the type size, but only if the function is not naked. Naked functions 1233 // have no prolog to run this evaluation. 1234 if (!FD || !FD->hasAttr<NakedAttr>()) { 1235 for (const VarDecl *VD : Args) { 1236 // Dig out the type as written from ParmVarDecls; it's unclear whether 1237 // the standard (C99 6.9.1p10) requires this, but we're following the 1238 // precedent set by gcc. 1239 QualType Ty; 1240 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1241 Ty = PVD->getOriginalType(); 1242 else 1243 Ty = VD->getType(); 1244 1245 if (Ty->isVariablyModifiedType()) 1246 EmitVariablyModifiedType(Ty); 1247 } 1248 } 1249 // Emit a location at the end of the prologue. 1250 if (CGDebugInfo *DI = getDebugInfo()) 1251 DI->EmitLocation(Builder, StartLoc); 1252 // TODO: Do we need to handle this in two places like we do with 1253 // target-features/target-cpu? 1254 if (CurFuncDecl) 1255 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1256 LargestVectorWidth = VecWidth->getVectorWidth(); 1257 } 1258 1259 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1260 incrementProfileCounter(Body); 1261 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1262 EmitCompoundStmtWithoutScope(*S); 1263 else 1264 EmitStmt(Body); 1265 1266 // This is checked after emitting the function body so we know if there 1267 // are any permitted infinite loops. 1268 if (checkIfFunctionMustProgress()) 1269 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1270 } 1271 1272 /// When instrumenting to collect profile data, the counts for some blocks 1273 /// such as switch cases need to not include the fall-through counts, so 1274 /// emit a branch around the instrumentation code. When not instrumenting, 1275 /// this just calls EmitBlock(). 1276 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1277 const Stmt *S) { 1278 llvm::BasicBlock *SkipCountBB = nullptr; 1279 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1280 // When instrumenting for profiling, the fallthrough to certain 1281 // statements needs to skip over the instrumentation code so that we 1282 // get an accurate count. 1283 SkipCountBB = createBasicBlock("skipcount"); 1284 EmitBranch(SkipCountBB); 1285 } 1286 EmitBlock(BB); 1287 uint64_t CurrentCount = getCurrentProfileCount(); 1288 incrementProfileCounter(S); 1289 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1290 if (SkipCountBB) 1291 EmitBlock(SkipCountBB); 1292 } 1293 1294 /// Tries to mark the given function nounwind based on the 1295 /// non-existence of any throwing calls within it. We believe this is 1296 /// lightweight enough to do at -O0. 1297 static void TryMarkNoThrow(llvm::Function *F) { 1298 // LLVM treats 'nounwind' on a function as part of the type, so we 1299 // can't do this on functions that can be overwritten. 1300 if (F->isInterposable()) return; 1301 1302 for (llvm::BasicBlock &BB : *F) 1303 for (llvm::Instruction &I : BB) 1304 if (I.mayThrow()) 1305 return; 1306 1307 F->setDoesNotThrow(); 1308 } 1309 1310 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1311 FunctionArgList &Args) { 1312 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1313 QualType ResTy = FD->getReturnType(); 1314 1315 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1316 if (MD && MD->isInstance()) { 1317 if (CGM.getCXXABI().HasThisReturn(GD)) 1318 ResTy = MD->getThisType(); 1319 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1320 ResTy = CGM.getContext().VoidPtrTy; 1321 CGM.getCXXABI().buildThisParam(*this, Args); 1322 } 1323 1324 // The base version of an inheriting constructor whose constructed base is a 1325 // virtual base is not passed any arguments (because it doesn't actually call 1326 // the inherited constructor). 1327 bool PassedParams = true; 1328 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1329 if (auto Inherited = CD->getInheritedConstructor()) 1330 PassedParams = 1331 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1332 1333 if (PassedParams) { 1334 for (auto *Param : FD->parameters()) { 1335 Args.push_back(Param); 1336 if (!Param->hasAttr<PassObjectSizeAttr>()) 1337 continue; 1338 1339 auto *Implicit = ImplicitParamDecl::Create( 1340 getContext(), Param->getDeclContext(), Param->getLocation(), 1341 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1342 SizeArguments[Param] = Implicit; 1343 Args.push_back(Implicit); 1344 } 1345 } 1346 1347 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1348 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1349 1350 return ResTy; 1351 } 1352 1353 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1354 const CGFunctionInfo &FnInfo) { 1355 assert(Fn && "generating code for null Function"); 1356 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1357 CurGD = GD; 1358 1359 FunctionArgList Args; 1360 QualType ResTy = BuildFunctionArgList(GD, Args); 1361 1362 if (FD->isInlineBuiltinDeclaration()) { 1363 // When generating code for a builtin with an inline declaration, use a 1364 // mangled name to hold the actual body, while keeping an external 1365 // definition in case the function pointer is referenced somewhere. 1366 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1367 llvm::Module *M = Fn->getParent(); 1368 llvm::Function *Clone = M->getFunction(FDInlineName); 1369 if (!Clone) { 1370 Clone = llvm::Function::Create(Fn->getFunctionType(), 1371 llvm::GlobalValue::InternalLinkage, 1372 Fn->getAddressSpace(), FDInlineName, M); 1373 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 1374 } 1375 Fn->setLinkage(llvm::GlobalValue::ExternalLinkage); 1376 Fn = Clone; 1377 } else { 1378 // Detect the unusual situation where an inline version is shadowed by a 1379 // non-inline version. In that case we should pick the external one 1380 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way 1381 // to detect that situation before we reach codegen, so do some late 1382 // replacement. 1383 for (const FunctionDecl *PD = FD->getPreviousDecl(); PD; 1384 PD = PD->getPreviousDecl()) { 1385 if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) { 1386 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1387 llvm::Module *M = Fn->getParent(); 1388 if (llvm::Function *Clone = M->getFunction(FDInlineName)) { 1389 Clone->replaceAllUsesWith(Fn); 1390 Clone->eraseFromParent(); 1391 } 1392 break; 1393 } 1394 } 1395 } 1396 1397 // Check if we should generate debug info for this function. 1398 if (FD->hasAttr<NoDebugAttr>()) { 1399 // Clear non-distinct debug info that was possibly attached to the function 1400 // due to an earlier declaration without the nodebug attribute 1401 Fn->setSubprogram(nullptr); 1402 // Disable debug info indefinitely for this function 1403 DebugInfo = nullptr; 1404 } 1405 1406 // The function might not have a body if we're generating thunks for a 1407 // function declaration. 1408 SourceRange BodyRange; 1409 if (Stmt *Body = FD->getBody()) 1410 BodyRange = Body->getSourceRange(); 1411 else 1412 BodyRange = FD->getLocation(); 1413 CurEHLocation = BodyRange.getEnd(); 1414 1415 // Use the location of the start of the function to determine where 1416 // the function definition is located. By default use the location 1417 // of the declaration as the location for the subprogram. A function 1418 // may lack a declaration in the source code if it is created by code 1419 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1420 SourceLocation Loc = FD->getLocation(); 1421 1422 // If this is a function specialization then use the pattern body 1423 // as the location for the function. 1424 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1425 if (SpecDecl->hasBody(SpecDecl)) 1426 Loc = SpecDecl->getLocation(); 1427 1428 Stmt *Body = FD->getBody(); 1429 1430 if (Body) { 1431 // Coroutines always emit lifetime markers. 1432 if (isa<CoroutineBodyStmt>(Body)) 1433 ShouldEmitLifetimeMarkers = true; 1434 1435 // Initialize helper which will detect jumps which can cause invalid 1436 // lifetime markers. 1437 if (ShouldEmitLifetimeMarkers) 1438 Bypasses.Init(Body); 1439 } 1440 1441 // Emit the standard function prologue. 1442 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1443 1444 // Save parameters for coroutine function. 1445 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1446 llvm::append_range(FnArgs, FD->parameters()); 1447 1448 // Generate the body of the function. 1449 PGO.assignRegionCounters(GD, CurFn); 1450 if (isa<CXXDestructorDecl>(FD)) 1451 EmitDestructorBody(Args); 1452 else if (isa<CXXConstructorDecl>(FD)) 1453 EmitConstructorBody(Args); 1454 else if (getLangOpts().CUDA && 1455 !getLangOpts().CUDAIsDevice && 1456 FD->hasAttr<CUDAGlobalAttr>()) 1457 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1458 else if (isa<CXXMethodDecl>(FD) && 1459 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1460 // The lambda static invoker function is special, because it forwards or 1461 // clones the body of the function call operator (but is actually static). 1462 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1463 } else if (isa<CXXMethodDecl>(FD) && 1464 isLambdaCallOperator(cast<CXXMethodDecl>(FD)) && 1465 !FnInfo.isDelegateCall() && 1466 cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() && 1467 hasInAllocaArg(cast<CXXMethodDecl>(FD))) { 1468 // If emitting a lambda with static invoker on X86 Windows, change 1469 // the call operator body. 1470 // Make sure that this is a call operator with an inalloca arg and check 1471 // for delegate call to make sure this is the original call op and not the 1472 // new forwarding function for the static invoker. 1473 EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD)); 1474 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1475 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1476 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1477 // Implicit copy-assignment gets the same special treatment as implicit 1478 // copy-constructors. 1479 emitImplicitAssignmentOperatorBody(Args); 1480 } else if (Body) { 1481 EmitFunctionBody(Body); 1482 } else 1483 llvm_unreachable("no definition for emitted function"); 1484 1485 // C++11 [stmt.return]p2: 1486 // Flowing off the end of a function [...] results in undefined behavior in 1487 // a value-returning function. 1488 // C11 6.9.1p12: 1489 // If the '}' that terminates a function is reached, and the value of the 1490 // function call is used by the caller, the behavior is undefined. 1491 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1492 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1493 bool ShouldEmitUnreachable = 1494 CGM.getCodeGenOpts().StrictReturn || 1495 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1496 if (SanOpts.has(SanitizerKind::Return)) { 1497 SanitizerScope SanScope(this); 1498 llvm::Value *IsFalse = Builder.getFalse(); 1499 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1500 SanitizerHandler::MissingReturn, 1501 EmitCheckSourceLocation(FD->getLocation()), std::nullopt); 1502 } else if (ShouldEmitUnreachable) { 1503 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1504 EmitTrapCall(llvm::Intrinsic::trap); 1505 } 1506 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1507 Builder.CreateUnreachable(); 1508 Builder.ClearInsertionPoint(); 1509 } 1510 } 1511 1512 // Emit the standard function epilogue. 1513 FinishFunction(BodyRange.getEnd()); 1514 1515 // If we haven't marked the function nothrow through other means, do 1516 // a quick pass now to see if we can. 1517 if (!CurFn->doesNotThrow()) 1518 TryMarkNoThrow(CurFn); 1519 } 1520 1521 /// ContainsLabel - Return true if the statement contains a label in it. If 1522 /// this statement is not executed normally, it not containing a label means 1523 /// that we can just remove the code. 1524 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1525 // Null statement, not a label! 1526 if (!S) return false; 1527 1528 // If this is a label, we have to emit the code, consider something like: 1529 // if (0) { ... foo: bar(); } goto foo; 1530 // 1531 // TODO: If anyone cared, we could track __label__'s, since we know that you 1532 // can't jump to one from outside their declared region. 1533 if (isa<LabelStmt>(S)) 1534 return true; 1535 1536 // If this is a case/default statement, and we haven't seen a switch, we have 1537 // to emit the code. 1538 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1539 return true; 1540 1541 // If this is a switch statement, we want to ignore cases below it. 1542 if (isa<SwitchStmt>(S)) 1543 IgnoreCaseStmts = true; 1544 1545 // Scan subexpressions for verboten labels. 1546 for (const Stmt *SubStmt : S->children()) 1547 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1548 return true; 1549 1550 return false; 1551 } 1552 1553 /// containsBreak - Return true if the statement contains a break out of it. 1554 /// If the statement (recursively) contains a switch or loop with a break 1555 /// inside of it, this is fine. 1556 bool CodeGenFunction::containsBreak(const Stmt *S) { 1557 // Null statement, not a label! 1558 if (!S) return false; 1559 1560 // If this is a switch or loop that defines its own break scope, then we can 1561 // include it and anything inside of it. 1562 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1563 isa<ForStmt>(S)) 1564 return false; 1565 1566 if (isa<BreakStmt>(S)) 1567 return true; 1568 1569 // Scan subexpressions for verboten breaks. 1570 for (const Stmt *SubStmt : S->children()) 1571 if (containsBreak(SubStmt)) 1572 return true; 1573 1574 return false; 1575 } 1576 1577 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1578 if (!S) return false; 1579 1580 // Some statement kinds add a scope and thus never add a decl to the current 1581 // scope. Note, this list is longer than the list of statements that might 1582 // have an unscoped decl nested within them, but this way is conservatively 1583 // correct even if more statement kinds are added. 1584 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1585 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1586 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1587 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1588 return false; 1589 1590 if (isa<DeclStmt>(S)) 1591 return true; 1592 1593 for (const Stmt *SubStmt : S->children()) 1594 if (mightAddDeclToScope(SubStmt)) 1595 return true; 1596 1597 return false; 1598 } 1599 1600 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1601 /// to a constant, or if it does but contains a label, return false. If it 1602 /// constant folds return true and set the boolean result in Result. 1603 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1604 bool &ResultBool, 1605 bool AllowLabels) { 1606 llvm::APSInt ResultInt; 1607 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1608 return false; 1609 1610 ResultBool = ResultInt.getBoolValue(); 1611 return true; 1612 } 1613 1614 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1615 /// to a constant, or if it does but contains a label, return false. If it 1616 /// constant folds return true and set the folded value. 1617 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1618 llvm::APSInt &ResultInt, 1619 bool AllowLabels) { 1620 // FIXME: Rename and handle conversion of other evaluatable things 1621 // to bool. 1622 Expr::EvalResult Result; 1623 if (!Cond->EvaluateAsInt(Result, getContext())) 1624 return false; // Not foldable, not integer or not fully evaluatable. 1625 1626 llvm::APSInt Int = Result.Val.getInt(); 1627 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1628 return false; // Contains a label. 1629 1630 ResultInt = Int; 1631 return true; 1632 } 1633 1634 /// Determine whether the given condition is an instrumentable condition 1635 /// (i.e. no "&&" or "||"). 1636 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1637 // Bypass simplistic logical-NOT operator before determining whether the 1638 // condition contains any other logical operator. 1639 if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens())) 1640 if (UnOp->getOpcode() == UO_LNot) 1641 C = UnOp->getSubExpr(); 1642 1643 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens()); 1644 return (!BOp || !BOp->isLogicalOp()); 1645 } 1646 1647 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1648 /// increments a profile counter based on the semantics of the given logical 1649 /// operator opcode. This is used to instrument branch condition coverage for 1650 /// logical operators. 1651 void CodeGenFunction::EmitBranchToCounterBlock( 1652 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1653 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1654 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1655 // If not instrumenting, just emit a branch. 1656 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1657 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1658 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1659 1660 llvm::BasicBlock *ThenBlock = nullptr; 1661 llvm::BasicBlock *ElseBlock = nullptr; 1662 llvm::BasicBlock *NextBlock = nullptr; 1663 1664 // Create the block we'll use to increment the appropriate counter. 1665 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1666 1667 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1668 // means we need to evaluate the condition and increment the counter on TRUE: 1669 // 1670 // if (Cond) 1671 // goto CounterIncrBlock; 1672 // else 1673 // goto FalseBlock; 1674 // 1675 // CounterIncrBlock: 1676 // Counter++; 1677 // goto TrueBlock; 1678 1679 if (LOp == BO_LAnd) { 1680 ThenBlock = CounterIncrBlock; 1681 ElseBlock = FalseBlock; 1682 NextBlock = TrueBlock; 1683 } 1684 1685 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1686 // we need to evaluate the condition and increment the counter on FALSE: 1687 // 1688 // if (Cond) 1689 // goto TrueBlock; 1690 // else 1691 // goto CounterIncrBlock; 1692 // 1693 // CounterIncrBlock: 1694 // Counter++; 1695 // goto FalseBlock; 1696 1697 else if (LOp == BO_LOr) { 1698 ThenBlock = TrueBlock; 1699 ElseBlock = CounterIncrBlock; 1700 NextBlock = FalseBlock; 1701 } else { 1702 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1703 } 1704 1705 // Emit Branch based on condition. 1706 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1707 1708 // Emit the block containing the counter increment(s). 1709 EmitBlock(CounterIncrBlock); 1710 1711 // Increment corresponding counter; if index not provided, use Cond as index. 1712 incrementProfileCounter(CntrIdx ? CntrIdx : Cond); 1713 1714 // Go to the next block. 1715 EmitBranch(NextBlock); 1716 } 1717 1718 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1719 /// statement) to the specified blocks. Based on the condition, this might try 1720 /// to simplify the codegen of the conditional based on the branch. 1721 /// \param LH The value of the likelihood attribute on the True branch. 1722 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1723 llvm::BasicBlock *TrueBlock, 1724 llvm::BasicBlock *FalseBlock, 1725 uint64_t TrueCount, 1726 Stmt::Likelihood LH) { 1727 Cond = Cond->IgnoreParens(); 1728 1729 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1730 1731 // Handle X && Y in a condition. 1732 if (CondBOp->getOpcode() == BO_LAnd) { 1733 // If we have "1 && X", simplify the code. "0 && X" would have constant 1734 // folded if the case was simple enough. 1735 bool ConstantBool = false; 1736 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1737 ConstantBool) { 1738 // br(1 && X) -> br(X). 1739 incrementProfileCounter(CondBOp); 1740 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1741 FalseBlock, TrueCount, LH); 1742 } 1743 1744 // If we have "X && 1", simplify the code to use an uncond branch. 1745 // "X && 0" would have been constant folded to 0. 1746 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1747 ConstantBool) { 1748 // br(X && 1) -> br(X). 1749 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1750 FalseBlock, TrueCount, LH, CondBOp); 1751 } 1752 1753 // Emit the LHS as a conditional. If the LHS conditional is false, we 1754 // want to jump to the FalseBlock. 1755 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1756 // The counter tells us how often we evaluate RHS, and all of TrueCount 1757 // can be propagated to that branch. 1758 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1759 1760 ConditionalEvaluation eval(*this); 1761 { 1762 ApplyDebugLocation DL(*this, Cond); 1763 // Propagate the likelihood attribute like __builtin_expect 1764 // __builtin_expect(X && Y, 1) -> X and Y are likely 1765 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1766 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1767 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1768 EmitBlock(LHSTrue); 1769 } 1770 1771 incrementProfileCounter(CondBOp); 1772 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1773 1774 // Any temporaries created here are conditional. 1775 eval.begin(*this); 1776 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1777 FalseBlock, TrueCount, LH); 1778 eval.end(*this); 1779 1780 return; 1781 } 1782 1783 if (CondBOp->getOpcode() == BO_LOr) { 1784 // If we have "0 || X", simplify the code. "1 || X" would have constant 1785 // folded if the case was simple enough. 1786 bool ConstantBool = false; 1787 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1788 !ConstantBool) { 1789 // br(0 || X) -> br(X). 1790 incrementProfileCounter(CondBOp); 1791 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1792 FalseBlock, TrueCount, LH); 1793 } 1794 1795 // If we have "X || 0", simplify the code to use an uncond branch. 1796 // "X || 1" would have been constant folded to 1. 1797 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1798 !ConstantBool) { 1799 // br(X || 0) -> br(X). 1800 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1801 FalseBlock, TrueCount, LH, CondBOp); 1802 } 1803 1804 // Emit the LHS as a conditional. If the LHS conditional is true, we 1805 // want to jump to the TrueBlock. 1806 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1807 // We have the count for entry to the RHS and for the whole expression 1808 // being true, so we can divy up True count between the short circuit and 1809 // the RHS. 1810 uint64_t LHSCount = 1811 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1812 uint64_t RHSCount = TrueCount - LHSCount; 1813 1814 ConditionalEvaluation eval(*this); 1815 { 1816 // Propagate the likelihood attribute like __builtin_expect 1817 // __builtin_expect(X || Y, 1) -> only Y is likely 1818 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1819 ApplyDebugLocation DL(*this, Cond); 1820 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1821 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1822 EmitBlock(LHSFalse); 1823 } 1824 1825 incrementProfileCounter(CondBOp); 1826 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1827 1828 // Any temporaries created here are conditional. 1829 eval.begin(*this); 1830 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1831 RHSCount, LH); 1832 1833 eval.end(*this); 1834 1835 return; 1836 } 1837 } 1838 1839 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1840 // br(!x, t, f) -> br(x, f, t) 1841 if (CondUOp->getOpcode() == UO_LNot) { 1842 // Negate the count. 1843 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1844 // The values of the enum are chosen to make this negation possible. 1845 LH = static_cast<Stmt::Likelihood>(-LH); 1846 // Negate the condition and swap the destination blocks. 1847 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1848 FalseCount, LH); 1849 } 1850 } 1851 1852 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1853 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1854 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1855 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1856 1857 // The ConditionalOperator itself has no likelihood information for its 1858 // true and false branches. This matches the behavior of __builtin_expect. 1859 ConditionalEvaluation cond(*this); 1860 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1861 getProfileCount(CondOp), Stmt::LH_None); 1862 1863 // When computing PGO branch weights, we only know the overall count for 1864 // the true block. This code is essentially doing tail duplication of the 1865 // naive code-gen, introducing new edges for which counts are not 1866 // available. Divide the counts proportionally between the LHS and RHS of 1867 // the conditional operator. 1868 uint64_t LHSScaledTrueCount = 0; 1869 if (TrueCount) { 1870 double LHSRatio = 1871 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1872 LHSScaledTrueCount = TrueCount * LHSRatio; 1873 } 1874 1875 cond.begin(*this); 1876 EmitBlock(LHSBlock); 1877 incrementProfileCounter(CondOp); 1878 { 1879 ApplyDebugLocation DL(*this, Cond); 1880 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1881 LHSScaledTrueCount, LH); 1882 } 1883 cond.end(*this); 1884 1885 cond.begin(*this); 1886 EmitBlock(RHSBlock); 1887 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1888 TrueCount - LHSScaledTrueCount, LH); 1889 cond.end(*this); 1890 1891 return; 1892 } 1893 1894 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1895 // Conditional operator handling can give us a throw expression as a 1896 // condition for a case like: 1897 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1898 // Fold this to: 1899 // br(c, throw x, br(y, t, f)) 1900 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1901 return; 1902 } 1903 1904 // Emit the code with the fully general case. 1905 llvm::Value *CondV; 1906 { 1907 ApplyDebugLocation DL(*this, Cond); 1908 CondV = EvaluateExprAsBool(Cond); 1909 } 1910 1911 llvm::MDNode *Weights = nullptr; 1912 llvm::MDNode *Unpredictable = nullptr; 1913 1914 // If the branch has a condition wrapped by __builtin_unpredictable, 1915 // create metadata that specifies that the branch is unpredictable. 1916 // Don't bother if not optimizing because that metadata would not be used. 1917 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1918 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1919 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1920 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1921 llvm::MDBuilder MDHelper(getLLVMContext()); 1922 Unpredictable = MDHelper.createUnpredictable(); 1923 } 1924 } 1925 1926 // If there is a Likelihood knowledge for the cond, lower it. 1927 // Note that if not optimizing this won't emit anything. 1928 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 1929 if (CondV != NewCondV) 1930 CondV = NewCondV; 1931 else { 1932 // Otherwise, lower profile counts. Note that we do this even at -O0. 1933 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1934 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 1935 } 1936 1937 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1938 } 1939 1940 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1941 /// specified stmt yet. 1942 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1943 CGM.ErrorUnsupported(S, Type); 1944 } 1945 1946 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1947 /// variable-length array whose elements have a non-zero bit-pattern. 1948 /// 1949 /// \param baseType the inner-most element type of the array 1950 /// \param src - a char* pointing to the bit-pattern for a single 1951 /// base element of the array 1952 /// \param sizeInChars - the total size of the VLA, in chars 1953 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1954 Address dest, Address src, 1955 llvm::Value *sizeInChars) { 1956 CGBuilderTy &Builder = CGF.Builder; 1957 1958 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1959 llvm::Value *baseSizeInChars 1960 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1961 1962 Address begin = dest.withElementType(CGF.Int8Ty); 1963 llvm::Value *end = Builder.CreateInBoundsGEP( 1964 begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end"); 1965 1966 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1967 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1968 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1969 1970 // Make a loop over the VLA. C99 guarantees that the VLA element 1971 // count must be nonzero. 1972 CGF.EmitBlock(loopBB); 1973 1974 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1975 cur->addIncoming(begin.getPointer(), originBB); 1976 1977 CharUnits curAlign = 1978 dest.getAlignment().alignmentOfArrayElement(baseSize); 1979 1980 // memcpy the individual element bit-pattern. 1981 Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars, 1982 /*volatile*/ false); 1983 1984 // Go to the next element. 1985 llvm::Value *next = 1986 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1987 1988 // Leave if that's the end of the VLA. 1989 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1990 Builder.CreateCondBr(done, contBB, loopBB); 1991 cur->addIncoming(next, loopBB); 1992 1993 CGF.EmitBlock(contBB); 1994 } 1995 1996 void 1997 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1998 // Ignore empty classes in C++. 1999 if (getLangOpts().CPlusPlus) { 2000 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2001 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 2002 return; 2003 } 2004 } 2005 2006 if (DestPtr.getElementType() != Int8Ty) 2007 DestPtr = DestPtr.withElementType(Int8Ty); 2008 2009 // Get size and alignment info for this aggregate. 2010 CharUnits size = getContext().getTypeSizeInChars(Ty); 2011 2012 llvm::Value *SizeVal; 2013 const VariableArrayType *vla; 2014 2015 // Don't bother emitting a zero-byte memset. 2016 if (size.isZero()) { 2017 // But note that getTypeInfo returns 0 for a VLA. 2018 if (const VariableArrayType *vlaType = 2019 dyn_cast_or_null<VariableArrayType>( 2020 getContext().getAsArrayType(Ty))) { 2021 auto VlaSize = getVLASize(vlaType); 2022 SizeVal = VlaSize.NumElts; 2023 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 2024 if (!eltSize.isOne()) 2025 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 2026 vla = vlaType; 2027 } else { 2028 return; 2029 } 2030 } else { 2031 SizeVal = CGM.getSize(size); 2032 vla = nullptr; 2033 } 2034 2035 // If the type contains a pointer to data member we can't memset it to zero. 2036 // Instead, create a null constant and copy it to the destination. 2037 // TODO: there are other patterns besides zero that we can usefully memset, 2038 // like -1, which happens to be the pattern used by member-pointers. 2039 if (!CGM.getTypes().isZeroInitializable(Ty)) { 2040 // For a VLA, emit a single element, then splat that over the VLA. 2041 if (vla) Ty = getContext().getBaseElementType(vla); 2042 2043 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 2044 2045 llvm::GlobalVariable *NullVariable = 2046 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 2047 /*isConstant=*/true, 2048 llvm::GlobalVariable::PrivateLinkage, 2049 NullConstant, Twine()); 2050 CharUnits NullAlign = DestPtr.getAlignment(); 2051 NullVariable->setAlignment(NullAlign.getAsAlign()); 2052 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 2053 Builder.getInt8Ty(), NullAlign); 2054 2055 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 2056 2057 // Get and call the appropriate llvm.memcpy overload. 2058 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 2059 return; 2060 } 2061 2062 // Otherwise, just memset the whole thing to zero. This is legal 2063 // because in LLVM, all default initializers (other than the ones we just 2064 // handled above) are guaranteed to have a bit pattern of all zeros. 2065 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 2066 } 2067 2068 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 2069 // Make sure that there is a block for the indirect goto. 2070 if (!IndirectBranch) 2071 GetIndirectGotoBlock(); 2072 2073 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 2074 2075 // Make sure the indirect branch includes all of the address-taken blocks. 2076 IndirectBranch->addDestination(BB); 2077 return llvm::BlockAddress::get(CurFn, BB); 2078 } 2079 2080 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 2081 // If we already made the indirect branch for indirect goto, return its block. 2082 if (IndirectBranch) return IndirectBranch->getParent(); 2083 2084 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 2085 2086 // Create the PHI node that indirect gotos will add entries to. 2087 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 2088 "indirect.goto.dest"); 2089 2090 // Create the indirect branch instruction. 2091 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 2092 return IndirectBranch->getParent(); 2093 } 2094 2095 /// Computes the length of an array in elements, as well as the base 2096 /// element type and a properly-typed first element pointer. 2097 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 2098 QualType &baseType, 2099 Address &addr) { 2100 const ArrayType *arrayType = origArrayType; 2101 2102 // If it's a VLA, we have to load the stored size. Note that 2103 // this is the size of the VLA in bytes, not its size in elements. 2104 llvm::Value *numVLAElements = nullptr; 2105 if (isa<VariableArrayType>(arrayType)) { 2106 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 2107 2108 // Walk into all VLAs. This doesn't require changes to addr, 2109 // which has type T* where T is the first non-VLA element type. 2110 do { 2111 QualType elementType = arrayType->getElementType(); 2112 arrayType = getContext().getAsArrayType(elementType); 2113 2114 // If we only have VLA components, 'addr' requires no adjustment. 2115 if (!arrayType) { 2116 baseType = elementType; 2117 return numVLAElements; 2118 } 2119 } while (isa<VariableArrayType>(arrayType)); 2120 2121 // We get out here only if we find a constant array type 2122 // inside the VLA. 2123 } 2124 2125 // We have some number of constant-length arrays, so addr should 2126 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2127 // down to the first element of addr. 2128 SmallVector<llvm::Value*, 8> gepIndices; 2129 2130 // GEP down to the array type. 2131 llvm::ConstantInt *zero = Builder.getInt32(0); 2132 gepIndices.push_back(zero); 2133 2134 uint64_t countFromCLAs = 1; 2135 QualType eltType; 2136 2137 llvm::ArrayType *llvmArrayType = 2138 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2139 while (llvmArrayType) { 2140 assert(isa<ConstantArrayType>(arrayType)); 2141 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 2142 == llvmArrayType->getNumElements()); 2143 2144 gepIndices.push_back(zero); 2145 countFromCLAs *= llvmArrayType->getNumElements(); 2146 eltType = arrayType->getElementType(); 2147 2148 llvmArrayType = 2149 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2150 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2151 assert((!llvmArrayType || arrayType) && 2152 "LLVM and Clang types are out-of-synch"); 2153 } 2154 2155 if (arrayType) { 2156 // From this point onwards, the Clang array type has been emitted 2157 // as some other type (probably a packed struct). Compute the array 2158 // size, and just emit the 'begin' expression as a bitcast. 2159 while (arrayType) { 2160 countFromCLAs *= 2161 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 2162 eltType = arrayType->getElementType(); 2163 arrayType = getContext().getAsArrayType(eltType); 2164 } 2165 2166 llvm::Type *baseType = ConvertType(eltType); 2167 addr = addr.withElementType(baseType); 2168 } else { 2169 // Create the actual GEP. 2170 addr = Address(Builder.CreateInBoundsGEP( 2171 addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"), 2172 ConvertTypeForMem(eltType), 2173 addr.getAlignment()); 2174 } 2175 2176 baseType = eltType; 2177 2178 llvm::Value *numElements 2179 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2180 2181 // If we had any VLA dimensions, factor them in. 2182 if (numVLAElements) 2183 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2184 2185 return numElements; 2186 } 2187 2188 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2189 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2190 assert(vla && "type was not a variable array type!"); 2191 return getVLASize(vla); 2192 } 2193 2194 CodeGenFunction::VlaSizePair 2195 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2196 // The number of elements so far; always size_t. 2197 llvm::Value *numElements = nullptr; 2198 2199 QualType elementType; 2200 do { 2201 elementType = type->getElementType(); 2202 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2203 assert(vlaSize && "no size for VLA!"); 2204 assert(vlaSize->getType() == SizeTy); 2205 2206 if (!numElements) { 2207 numElements = vlaSize; 2208 } else { 2209 // It's undefined behavior if this wraps around, so mark it that way. 2210 // FIXME: Teach -fsanitize=undefined to trap this. 2211 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2212 } 2213 } while ((type = getContext().getAsVariableArrayType(elementType))); 2214 2215 return { numElements, elementType }; 2216 } 2217 2218 CodeGenFunction::VlaSizePair 2219 CodeGenFunction::getVLAElements1D(QualType type) { 2220 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2221 assert(vla && "type was not a variable array type!"); 2222 return getVLAElements1D(vla); 2223 } 2224 2225 CodeGenFunction::VlaSizePair 2226 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2227 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2228 assert(VlaSize && "no size for VLA!"); 2229 assert(VlaSize->getType() == SizeTy); 2230 return { VlaSize, Vla->getElementType() }; 2231 } 2232 2233 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2234 assert(type->isVariablyModifiedType() && 2235 "Must pass variably modified type to EmitVLASizes!"); 2236 2237 EnsureInsertPoint(); 2238 2239 // We're going to walk down into the type and look for VLA 2240 // expressions. 2241 do { 2242 assert(type->isVariablyModifiedType()); 2243 2244 const Type *ty = type.getTypePtr(); 2245 switch (ty->getTypeClass()) { 2246 2247 #define TYPE(Class, Base) 2248 #define ABSTRACT_TYPE(Class, Base) 2249 #define NON_CANONICAL_TYPE(Class, Base) 2250 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2251 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2252 #include "clang/AST/TypeNodes.inc" 2253 llvm_unreachable("unexpected dependent type!"); 2254 2255 // These types are never variably-modified. 2256 case Type::Builtin: 2257 case Type::Complex: 2258 case Type::Vector: 2259 case Type::ExtVector: 2260 case Type::ConstantMatrix: 2261 case Type::Record: 2262 case Type::Enum: 2263 case Type::Using: 2264 case Type::TemplateSpecialization: 2265 case Type::ObjCTypeParam: 2266 case Type::ObjCObject: 2267 case Type::ObjCInterface: 2268 case Type::ObjCObjectPointer: 2269 case Type::BitInt: 2270 llvm_unreachable("type class is never variably-modified!"); 2271 2272 case Type::Elaborated: 2273 type = cast<ElaboratedType>(ty)->getNamedType(); 2274 break; 2275 2276 case Type::Adjusted: 2277 type = cast<AdjustedType>(ty)->getAdjustedType(); 2278 break; 2279 2280 case Type::Decayed: 2281 type = cast<DecayedType>(ty)->getPointeeType(); 2282 break; 2283 2284 case Type::Pointer: 2285 type = cast<PointerType>(ty)->getPointeeType(); 2286 break; 2287 2288 case Type::BlockPointer: 2289 type = cast<BlockPointerType>(ty)->getPointeeType(); 2290 break; 2291 2292 case Type::LValueReference: 2293 case Type::RValueReference: 2294 type = cast<ReferenceType>(ty)->getPointeeType(); 2295 break; 2296 2297 case Type::MemberPointer: 2298 type = cast<MemberPointerType>(ty)->getPointeeType(); 2299 break; 2300 2301 case Type::ConstantArray: 2302 case Type::IncompleteArray: 2303 // Losing element qualification here is fine. 2304 type = cast<ArrayType>(ty)->getElementType(); 2305 break; 2306 2307 case Type::VariableArray: { 2308 // Losing element qualification here is fine. 2309 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2310 2311 // Unknown size indication requires no size computation. 2312 // Otherwise, evaluate and record it. 2313 if (const Expr *sizeExpr = vat->getSizeExpr()) { 2314 // It's possible that we might have emitted this already, 2315 // e.g. with a typedef and a pointer to it. 2316 llvm::Value *&entry = VLASizeMap[sizeExpr]; 2317 if (!entry) { 2318 llvm::Value *size = EmitScalarExpr(sizeExpr); 2319 2320 // C11 6.7.6.2p5: 2321 // If the size is an expression that is not an integer constant 2322 // expression [...] each time it is evaluated it shall have a value 2323 // greater than zero. 2324 if (SanOpts.has(SanitizerKind::VLABound)) { 2325 SanitizerScope SanScope(this); 2326 llvm::Value *Zero = llvm::Constant::getNullValue(size->getType()); 2327 clang::QualType SEType = sizeExpr->getType(); 2328 llvm::Value *CheckCondition = 2329 SEType->isSignedIntegerType() 2330 ? Builder.CreateICmpSGT(size, Zero) 2331 : Builder.CreateICmpUGT(size, Zero); 2332 llvm::Constant *StaticArgs[] = { 2333 EmitCheckSourceLocation(sizeExpr->getBeginLoc()), 2334 EmitCheckTypeDescriptor(SEType)}; 2335 EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound), 2336 SanitizerHandler::VLABoundNotPositive, StaticArgs, size); 2337 } 2338 2339 // Always zexting here would be wrong if it weren't 2340 // undefined behavior to have a negative bound. 2341 // FIXME: What about when size's type is larger than size_t? 2342 entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false); 2343 } 2344 } 2345 type = vat->getElementType(); 2346 break; 2347 } 2348 2349 case Type::FunctionProto: 2350 case Type::FunctionNoProto: 2351 type = cast<FunctionType>(ty)->getReturnType(); 2352 break; 2353 2354 case Type::Paren: 2355 case Type::TypeOf: 2356 case Type::UnaryTransform: 2357 case Type::Attributed: 2358 case Type::BTFTagAttributed: 2359 case Type::SubstTemplateTypeParm: 2360 case Type::MacroQualified: 2361 // Keep walking after single level desugaring. 2362 type = type.getSingleStepDesugaredType(getContext()); 2363 break; 2364 2365 case Type::Typedef: 2366 case Type::Decltype: 2367 case Type::Auto: 2368 case Type::DeducedTemplateSpecialization: 2369 // Stop walking: nothing to do. 2370 return; 2371 2372 case Type::TypeOfExpr: 2373 // Stop walking: emit typeof expression. 2374 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2375 return; 2376 2377 case Type::Atomic: 2378 type = cast<AtomicType>(ty)->getValueType(); 2379 break; 2380 2381 case Type::Pipe: 2382 type = cast<PipeType>(ty)->getElementType(); 2383 break; 2384 } 2385 } while (type->isVariablyModifiedType()); 2386 } 2387 2388 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2389 if (getContext().getBuiltinVaListType()->isArrayType()) 2390 return EmitPointerWithAlignment(E); 2391 return EmitLValue(E).getAddress(*this); 2392 } 2393 2394 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2395 return EmitLValue(E).getAddress(*this); 2396 } 2397 2398 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2399 const APValue &Init) { 2400 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2401 if (CGDebugInfo *Dbg = getDebugInfo()) 2402 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2403 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2404 } 2405 2406 CodeGenFunction::PeepholeProtection 2407 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2408 // At the moment, the only aggressive peephole we do in IR gen 2409 // is trunc(zext) folding, but if we add more, we can easily 2410 // extend this protection. 2411 2412 if (!rvalue.isScalar()) return PeepholeProtection(); 2413 llvm::Value *value = rvalue.getScalarVal(); 2414 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2415 2416 // Just make an extra bitcast. 2417 assert(HaveInsertPoint()); 2418 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2419 Builder.GetInsertBlock()); 2420 2421 PeepholeProtection protection; 2422 protection.Inst = inst; 2423 return protection; 2424 } 2425 2426 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2427 if (!protection.Inst) return; 2428 2429 // In theory, we could try to duplicate the peepholes now, but whatever. 2430 protection.Inst->eraseFromParent(); 2431 } 2432 2433 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2434 QualType Ty, SourceLocation Loc, 2435 SourceLocation AssumptionLoc, 2436 llvm::Value *Alignment, 2437 llvm::Value *OffsetValue) { 2438 if (Alignment->getType() != IntPtrTy) 2439 Alignment = 2440 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2441 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2442 OffsetValue = 2443 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2444 llvm::Value *TheCheck = nullptr; 2445 if (SanOpts.has(SanitizerKind::Alignment)) { 2446 llvm::Value *PtrIntValue = 2447 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2448 2449 if (OffsetValue) { 2450 bool IsOffsetZero = false; 2451 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2452 IsOffsetZero = CI->isZero(); 2453 2454 if (!IsOffsetZero) 2455 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2456 } 2457 2458 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2459 llvm::Value *Mask = 2460 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2461 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2462 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2463 } 2464 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2465 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2466 2467 if (!SanOpts.has(SanitizerKind::Alignment)) 2468 return; 2469 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2470 OffsetValue, TheCheck, Assumption); 2471 } 2472 2473 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2474 const Expr *E, 2475 SourceLocation AssumptionLoc, 2476 llvm::Value *Alignment, 2477 llvm::Value *OffsetValue) { 2478 QualType Ty = E->getType(); 2479 SourceLocation Loc = E->getExprLoc(); 2480 2481 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2482 OffsetValue); 2483 } 2484 2485 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2486 llvm::Value *AnnotatedVal, 2487 StringRef AnnotationStr, 2488 SourceLocation Location, 2489 const AnnotateAttr *Attr) { 2490 SmallVector<llvm::Value *, 5> Args = { 2491 AnnotatedVal, 2492 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), 2493 ConstGlobalsPtrTy), 2494 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), 2495 ConstGlobalsPtrTy), 2496 CGM.EmitAnnotationLineNo(Location), 2497 }; 2498 if (Attr) 2499 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2500 return Builder.CreateCall(AnnotationFn, Args); 2501 } 2502 2503 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2504 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2505 // FIXME We create a new bitcast for every annotation because that's what 2506 // llvm-gcc was doing. 2507 unsigned AS = V->getType()->getPointerAddressSpace(); 2508 llvm::Type *I8PtrTy = Builder.getInt8PtrTy(AS); 2509 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2510 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation, 2511 {I8PtrTy, CGM.ConstGlobalsPtrTy}), 2512 Builder.CreateBitCast(V, I8PtrTy, V->getName()), 2513 I->getAnnotation(), D->getLocation(), I); 2514 } 2515 2516 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2517 Address Addr) { 2518 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2519 llvm::Value *V = Addr.getPointer(); 2520 llvm::Type *VTy = V->getType(); 2521 auto *PTy = dyn_cast<llvm::PointerType>(VTy); 2522 unsigned AS = PTy ? PTy->getAddressSpace() : 0; 2523 llvm::PointerType *IntrinTy = 2524 llvm::PointerType::get(CGM.getLLVMContext(), AS); 2525 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2526 {IntrinTy, CGM.ConstGlobalsPtrTy}); 2527 2528 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2529 // FIXME Always emit the cast inst so we can differentiate between 2530 // annotation on the first field of a struct and annotation on the struct 2531 // itself. 2532 if (VTy != IntrinTy) 2533 V = Builder.CreateBitCast(V, IntrinTy); 2534 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2535 V = Builder.CreateBitCast(V, VTy); 2536 } 2537 2538 return Address(V, Addr.getElementType(), Addr.getAlignment()); 2539 } 2540 2541 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2542 2543 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2544 : CGF(CGF) { 2545 assert(!CGF->IsSanitizerScope); 2546 CGF->IsSanitizerScope = true; 2547 } 2548 2549 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2550 CGF->IsSanitizerScope = false; 2551 } 2552 2553 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2554 const llvm::Twine &Name, 2555 llvm::BasicBlock *BB, 2556 llvm::BasicBlock::iterator InsertPt) const { 2557 LoopStack.InsertHelper(I); 2558 if (IsSanitizerScope) 2559 I->setNoSanitizeMetadata(); 2560 } 2561 2562 void CGBuilderInserter::InsertHelper( 2563 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2564 llvm::BasicBlock::iterator InsertPt) const { 2565 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2566 if (CGF) 2567 CGF->InsertHelper(I, Name, BB, InsertPt); 2568 } 2569 2570 // Emits an error if we don't have a valid set of target features for the 2571 // called function. 2572 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2573 const FunctionDecl *TargetDecl) { 2574 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2575 } 2576 2577 // Emits an error if we don't have a valid set of target features for the 2578 // called function. 2579 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2580 const FunctionDecl *TargetDecl) { 2581 // Early exit if this is an indirect call. 2582 if (!TargetDecl) 2583 return; 2584 2585 // Get the current enclosing function if it exists. If it doesn't 2586 // we can't check the target features anyhow. 2587 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2588 if (!FD) 2589 return; 2590 2591 // Grab the required features for the call. For a builtin this is listed in 2592 // the td file with the default cpu, for an always_inline function this is any 2593 // listed cpu and any listed features. 2594 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2595 std::string MissingFeature; 2596 llvm::StringMap<bool> CallerFeatureMap; 2597 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2598 if (BuiltinID) { 2599 StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2600 if (!Builtin::evaluateRequiredTargetFeatures( 2601 FeatureList, CallerFeatureMap)) { 2602 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2603 << TargetDecl->getDeclName() 2604 << FeatureList; 2605 } 2606 } else if (!TargetDecl->isMultiVersion() && 2607 TargetDecl->hasAttr<TargetAttr>()) { 2608 // Get the required features for the callee. 2609 2610 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2611 ParsedTargetAttr ParsedAttr = 2612 CGM.getContext().filterFunctionTargetAttrs(TD); 2613 2614 SmallVector<StringRef, 1> ReqFeatures; 2615 llvm::StringMap<bool> CalleeFeatureMap; 2616 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2617 2618 for (const auto &F : ParsedAttr.Features) { 2619 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2620 ReqFeatures.push_back(StringRef(F).substr(1)); 2621 } 2622 2623 for (const auto &F : CalleeFeatureMap) { 2624 // Only positive features are "required". 2625 if (F.getValue()) 2626 ReqFeatures.push_back(F.getKey()); 2627 } 2628 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2629 if (!CallerFeatureMap.lookup(Feature)) { 2630 MissingFeature = Feature.str(); 2631 return false; 2632 } 2633 return true; 2634 })) 2635 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2636 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2637 } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) { 2638 llvm::StringMap<bool> CalleeFeatureMap; 2639 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2640 2641 for (const auto &F : CalleeFeatureMap) { 2642 if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) || 2643 !CallerFeatureMap.find(F.getKey())->getValue())) 2644 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2645 << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey(); 2646 } 2647 } 2648 } 2649 2650 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2651 if (!CGM.getCodeGenOpts().SanitizeStats) 2652 return; 2653 2654 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2655 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2656 CGM.getSanStats().create(IRB, SSK); 2657 } 2658 2659 void CodeGenFunction::EmitKCFIOperandBundle( 2660 const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) { 2661 const FunctionProtoType *FP = 2662 Callee.getAbstractInfo().getCalleeFunctionProtoType(); 2663 if (FP) 2664 Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar())); 2665 } 2666 2667 llvm::Value *CodeGenFunction::FormAArch64ResolverCondition( 2668 const MultiVersionResolverOption &RO) { 2669 llvm::SmallVector<StringRef, 8> CondFeatures; 2670 for (const StringRef &Feature : RO.Conditions.Features) { 2671 // Form condition for features which are not yet enabled in target 2672 if (!getContext().getTargetInfo().hasFeature(Feature)) 2673 CondFeatures.push_back(Feature); 2674 } 2675 if (!CondFeatures.empty()) { 2676 return EmitAArch64CpuSupports(CondFeatures); 2677 } 2678 return nullptr; 2679 } 2680 2681 llvm::Value *CodeGenFunction::FormX86ResolverCondition( 2682 const MultiVersionResolverOption &RO) { 2683 llvm::Value *Condition = nullptr; 2684 2685 if (!RO.Conditions.Architecture.empty()) 2686 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2687 2688 if (!RO.Conditions.Features.empty()) { 2689 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2690 Condition = 2691 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2692 } 2693 return Condition; 2694 } 2695 2696 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2697 llvm::Function *Resolver, 2698 CGBuilderTy &Builder, 2699 llvm::Function *FuncToReturn, 2700 bool SupportsIFunc) { 2701 if (SupportsIFunc) { 2702 Builder.CreateRet(FuncToReturn); 2703 return; 2704 } 2705 2706 llvm::SmallVector<llvm::Value *, 10> Args( 2707 llvm::make_pointer_range(Resolver->args())); 2708 2709 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2710 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2711 2712 if (Resolver->getReturnType()->isVoidTy()) 2713 Builder.CreateRetVoid(); 2714 else 2715 Builder.CreateRet(Result); 2716 } 2717 2718 void CodeGenFunction::EmitMultiVersionResolver( 2719 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2720 2721 llvm::Triple::ArchType ArchType = 2722 getContext().getTargetInfo().getTriple().getArch(); 2723 2724 switch (ArchType) { 2725 case llvm::Triple::x86: 2726 case llvm::Triple::x86_64: 2727 EmitX86MultiVersionResolver(Resolver, Options); 2728 return; 2729 case llvm::Triple::aarch64: 2730 EmitAArch64MultiVersionResolver(Resolver, Options); 2731 return; 2732 2733 default: 2734 assert(false && "Only implemented for x86 and AArch64 targets"); 2735 } 2736 } 2737 2738 void CodeGenFunction::EmitAArch64MultiVersionResolver( 2739 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2740 assert(!Options.empty() && "No multiversion resolver options found"); 2741 assert(Options.back().Conditions.Features.size() == 0 && 2742 "Default case must be last"); 2743 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2744 assert(SupportsIFunc && 2745 "Multiversion resolver requires target IFUNC support"); 2746 bool AArch64CpuInitialized = false; 2747 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2748 2749 for (const MultiVersionResolverOption &RO : Options) { 2750 Builder.SetInsertPoint(CurBlock); 2751 llvm::Value *Condition = FormAArch64ResolverCondition(RO); 2752 2753 // The 'default' or 'all features enabled' case. 2754 if (!Condition) { 2755 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2756 SupportsIFunc); 2757 return; 2758 } 2759 2760 if (!AArch64CpuInitialized) { 2761 Builder.SetInsertPoint(CurBlock, CurBlock->begin()); 2762 EmitAArch64CpuInit(); 2763 AArch64CpuInitialized = true; 2764 Builder.SetInsertPoint(CurBlock); 2765 } 2766 2767 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2768 CGBuilderTy RetBuilder(*this, RetBlock); 2769 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2770 SupportsIFunc); 2771 CurBlock = createBasicBlock("resolver_else", Resolver); 2772 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2773 } 2774 2775 // If no default, emit an unreachable. 2776 Builder.SetInsertPoint(CurBlock); 2777 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2778 TrapCall->setDoesNotReturn(); 2779 TrapCall->setDoesNotThrow(); 2780 Builder.CreateUnreachable(); 2781 Builder.ClearInsertionPoint(); 2782 } 2783 2784 void CodeGenFunction::EmitX86MultiVersionResolver( 2785 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2786 2787 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2788 2789 // Main function's basic block. 2790 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2791 Builder.SetInsertPoint(CurBlock); 2792 EmitX86CpuInit(); 2793 2794 for (const MultiVersionResolverOption &RO : Options) { 2795 Builder.SetInsertPoint(CurBlock); 2796 llvm::Value *Condition = FormX86ResolverCondition(RO); 2797 2798 // The 'default' or 'generic' case. 2799 if (!Condition) { 2800 assert(&RO == Options.end() - 1 && 2801 "Default or Generic case must be last"); 2802 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2803 SupportsIFunc); 2804 return; 2805 } 2806 2807 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2808 CGBuilderTy RetBuilder(*this, RetBlock); 2809 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2810 SupportsIFunc); 2811 CurBlock = createBasicBlock("resolver_else", Resolver); 2812 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2813 } 2814 2815 // If no generic/default, emit an unreachable. 2816 Builder.SetInsertPoint(CurBlock); 2817 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2818 TrapCall->setDoesNotReturn(); 2819 TrapCall->setDoesNotThrow(); 2820 Builder.CreateUnreachable(); 2821 Builder.ClearInsertionPoint(); 2822 } 2823 2824 // Loc - where the diagnostic will point, where in the source code this 2825 // alignment has failed. 2826 // SecondaryLoc - if present (will be present if sufficiently different from 2827 // Loc), the diagnostic will additionally point a "Note:" to this location. 2828 // It should be the location where the __attribute__((assume_aligned)) 2829 // was written e.g. 2830 void CodeGenFunction::emitAlignmentAssumptionCheck( 2831 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2832 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2833 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2834 llvm::Instruction *Assumption) { 2835 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2836 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2837 llvm::Intrinsic::getDeclaration( 2838 Builder.GetInsertBlock()->getParent()->getParent(), 2839 llvm::Intrinsic::assume) && 2840 "Assumption should be a call to llvm.assume()."); 2841 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2842 "Assumption should be the last instruction of the basic block, " 2843 "since the basic block is still being generated."); 2844 2845 if (!SanOpts.has(SanitizerKind::Alignment)) 2846 return; 2847 2848 // Don't check pointers to volatile data. The behavior here is implementation- 2849 // defined. 2850 if (Ty->getPointeeType().isVolatileQualified()) 2851 return; 2852 2853 // We need to temorairly remove the assumption so we can insert the 2854 // sanitizer check before it, else the check will be dropped by optimizations. 2855 Assumption->removeFromParent(); 2856 2857 { 2858 SanitizerScope SanScope(this); 2859 2860 if (!OffsetValue) 2861 OffsetValue = Builder.getInt1(false); // no offset. 2862 2863 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2864 EmitCheckSourceLocation(SecondaryLoc), 2865 EmitCheckTypeDescriptor(Ty)}; 2866 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2867 EmitCheckValue(Alignment), 2868 EmitCheckValue(OffsetValue)}; 2869 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2870 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2871 } 2872 2873 // We are now in the (new, empty) "cont" basic block. 2874 // Reintroduce the assumption. 2875 Builder.Insert(Assumption); 2876 // FIXME: Assumption still has it's original basic block as it's Parent. 2877 } 2878 2879 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2880 if (CGDebugInfo *DI = getDebugInfo()) 2881 return DI->SourceLocToDebugLoc(Location); 2882 2883 return llvm::DebugLoc(); 2884 } 2885 2886 llvm::Value * 2887 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 2888 Stmt::Likelihood LH) { 2889 switch (LH) { 2890 case Stmt::LH_None: 2891 return Cond; 2892 case Stmt::LH_Likely: 2893 case Stmt::LH_Unlikely: 2894 // Don't generate llvm.expect on -O0 as the backend won't use it for 2895 // anything. 2896 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 2897 return Cond; 2898 llvm::Type *CondTy = Cond->getType(); 2899 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 2900 llvm::Function *FnExpect = 2901 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 2902 llvm::Value *ExpectedValueOfCond = 2903 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 2904 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 2905 Cond->getName() + ".expval"); 2906 } 2907 llvm_unreachable("Unknown Likelihood"); 2908 } 2909 2910 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec, 2911 unsigned NumElementsDst, 2912 const llvm::Twine &Name) { 2913 auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType()); 2914 unsigned NumElementsSrc = SrcTy->getNumElements(); 2915 if (NumElementsSrc == NumElementsDst) 2916 return SrcVec; 2917 2918 std::vector<int> ShuffleMask(NumElementsDst, -1); 2919 for (unsigned MaskIdx = 0; 2920 MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx) 2921 ShuffleMask[MaskIdx] = MaskIdx; 2922 2923 return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name); 2924 } 2925