xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision 38d94a4bc75a18f53ffd0ff8f65eefc739fef028)
1  //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This coordinates the per-function state used while generating code.
10  //
11  //===----------------------------------------------------------------------===//
12  
13  #include "CodeGenFunction.h"
14  #include "CGBlocks.h"
15  #include "CGCUDARuntime.h"
16  #include "CGCXXABI.h"
17  #include "CGCleanup.h"
18  #include "CGDebugInfo.h"
19  #include "CGOpenMPRuntime.h"
20  #include "CodeGenModule.h"
21  #include "CodeGenPGO.h"
22  #include "TargetInfo.h"
23  #include "clang/AST/ASTContext.h"
24  #include "clang/AST/ASTLambda.h"
25  #include "clang/AST/Attr.h"
26  #include "clang/AST/Decl.h"
27  #include "clang/AST/DeclCXX.h"
28  #include "clang/AST/StmtCXX.h"
29  #include "clang/AST/StmtObjC.h"
30  #include "clang/Basic/Builtins.h"
31  #include "clang/Basic/CodeGenOptions.h"
32  #include "clang/Basic/TargetInfo.h"
33  #include "clang/CodeGen/CGFunctionInfo.h"
34  #include "clang/Frontend/FrontendDiagnostic.h"
35  #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
36  #include "llvm/IR/DataLayout.h"
37  #include "llvm/IR/Dominators.h"
38  #include "llvm/IR/FPEnv.h"
39  #include "llvm/IR/IntrinsicInst.h"
40  #include "llvm/IR/Intrinsics.h"
41  #include "llvm/IR/MDBuilder.h"
42  #include "llvm/IR/Operator.h"
43  #include "llvm/Transforms/Utils/PromoteMemToReg.h"
44  using namespace clang;
45  using namespace CodeGen;
46  
47  /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
48  /// markers.
49  static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
50                                        const LangOptions &LangOpts) {
51    if (CGOpts.DisableLifetimeMarkers)
52      return false;
53  
54    // Sanitizers may use markers.
55    if (CGOpts.SanitizeAddressUseAfterScope ||
56        LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
57        LangOpts.Sanitize.has(SanitizerKind::Memory))
58      return true;
59  
60    // For now, only in optimized builds.
61    return CGOpts.OptimizationLevel != 0;
62  }
63  
64  CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
65      : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
66        Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
67                CGBuilderInserterTy(this)),
68        SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
69        DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
70        ShouldEmitLifetimeMarkers(
71            shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
72    if (!suppressNewContext)
73      CGM.getCXXABI().getMangleContext().startNewFunction();
74  
75    SetFastMathFlags(CurFPFeatures);
76    SetFPModel();
77  }
78  
79  CodeGenFunction::~CodeGenFunction() {
80    assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
81  
82    if (getLangOpts().OpenMP && CurFn)
83      CGM.getOpenMPRuntime().functionFinished(*this);
84  
85    // If we have an OpenMPIRBuilder we want to finalize functions (incl.
86    // outlining etc) at some point. Doing it once the function codegen is done
87    // seems to be a reasonable spot. We do it here, as opposed to the deletion
88    // time of the CodeGenModule, because we have to ensure the IR has not yet
89    // been "emitted" to the outside, thus, modifications are still sensible.
90    if (CGM.getLangOpts().OpenMPIRBuilder)
91      CGM.getOpenMPRuntime().getOMPBuilder().finalize();
92  }
93  
94  // Map the LangOption for exception behavior into
95  // the corresponding enum in the IR.
96  llvm::fp::ExceptionBehavior
97  clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
98  
99    switch (Kind) {
100    case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
101    case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
102    case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
103    }
104    llvm_unreachable("Unsupported FP Exception Behavior");
105  }
106  
107  void CodeGenFunction::SetFPModel() {
108    llvm::RoundingMode RM = getLangOpts().getFPRoundingMode();
109    auto fpExceptionBehavior = ToConstrainedExceptMD(
110                                 getLangOpts().getFPExceptionMode());
111  
112    Builder.setDefaultConstrainedRounding(RM);
113    Builder.setDefaultConstrainedExcept(fpExceptionBehavior);
114    Builder.setIsFPConstrained(fpExceptionBehavior != llvm::fp::ebIgnore ||
115                               RM != llvm::RoundingMode::NearestTiesToEven);
116  }
117  
118  void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
119    llvm::FastMathFlags FMF;
120    FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
121    FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
122    FMF.setNoInfs(FPFeatures.getNoHonorInfs());
123    FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
124    FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
125    FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
126    FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
127    Builder.setFastMathFlags(FMF);
128  }
129  
130  CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
131                                                    FPOptions FPFeatures)
132      : CGF(CGF), OldFPFeatures(CGF.CurFPFeatures) {
133    CGF.CurFPFeatures = FPFeatures;
134  
135    if (OldFPFeatures == FPFeatures)
136      return;
137  
138    FMFGuard.emplace(CGF.Builder);
139  
140    llvm::RoundingMode NewRoundingBehavior =
141        static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode());
142    CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
143    auto NewExceptionBehavior =
144        ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
145            FPFeatures.getFPExceptionMode()));
146    CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
147  
148    CGF.SetFastMathFlags(FPFeatures);
149  
150    assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
151            isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
152            isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
153            (NewExceptionBehavior == llvm::fp::ebIgnore &&
154             NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
155           "FPConstrained should be enabled on entire function");
156  
157    auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
158      auto OldValue =
159          CGF.CurFn->getFnAttribute(Name).getValueAsString() == "true";
160      auto NewValue = OldValue & Value;
161      if (OldValue != NewValue)
162        CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
163    };
164    mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
165    mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
166    mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
167    mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() &&
168                                           FPFeatures.getAllowReciprocal() &&
169                                           FPFeatures.getAllowApproxFunc() &&
170                                           FPFeatures.getNoSignedZero());
171  }
172  
173  CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
174    CGF.CurFPFeatures = OldFPFeatures;
175  }
176  
177  LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
178    LValueBaseInfo BaseInfo;
179    TBAAAccessInfo TBAAInfo;
180    CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
181    return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
182                            TBAAInfo);
183  }
184  
185  /// Given a value of type T* that may not be to a complete object,
186  /// construct an l-value with the natural pointee alignment of T.
187  LValue
188  CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
189    LValueBaseInfo BaseInfo;
190    TBAAAccessInfo TBAAInfo;
191    CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
192                                                  /* forPointeeType= */ true);
193    return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
194  }
195  
196  
197  llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
198    return CGM.getTypes().ConvertTypeForMem(T);
199  }
200  
201  llvm::Type *CodeGenFunction::ConvertType(QualType T) {
202    return CGM.getTypes().ConvertType(T);
203  }
204  
205  TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
206    type = type.getCanonicalType();
207    while (true) {
208      switch (type->getTypeClass()) {
209  #define TYPE(name, parent)
210  #define ABSTRACT_TYPE(name, parent)
211  #define NON_CANONICAL_TYPE(name, parent) case Type::name:
212  #define DEPENDENT_TYPE(name, parent) case Type::name:
213  #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
214  #include "clang/AST/TypeNodes.inc"
215        llvm_unreachable("non-canonical or dependent type in IR-generation");
216  
217      case Type::Auto:
218      case Type::DeducedTemplateSpecialization:
219        llvm_unreachable("undeduced type in IR-generation");
220  
221      // Various scalar types.
222      case Type::Builtin:
223      case Type::Pointer:
224      case Type::BlockPointer:
225      case Type::LValueReference:
226      case Type::RValueReference:
227      case Type::MemberPointer:
228      case Type::Vector:
229      case Type::ExtVector:
230      case Type::ConstantMatrix:
231      case Type::FunctionProto:
232      case Type::FunctionNoProto:
233      case Type::Enum:
234      case Type::ObjCObjectPointer:
235      case Type::Pipe:
236      case Type::ExtInt:
237        return TEK_Scalar;
238  
239      // Complexes.
240      case Type::Complex:
241        return TEK_Complex;
242  
243      // Arrays, records, and Objective-C objects.
244      case Type::ConstantArray:
245      case Type::IncompleteArray:
246      case Type::VariableArray:
247      case Type::Record:
248      case Type::ObjCObject:
249      case Type::ObjCInterface:
250        return TEK_Aggregate;
251  
252      // We operate on atomic values according to their underlying type.
253      case Type::Atomic:
254        type = cast<AtomicType>(type)->getValueType();
255        continue;
256      }
257      llvm_unreachable("unknown type kind!");
258    }
259  }
260  
261  llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
262    // For cleanliness, we try to avoid emitting the return block for
263    // simple cases.
264    llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
265  
266    if (CurBB) {
267      assert(!CurBB->getTerminator() && "Unexpected terminated block.");
268  
269      // We have a valid insert point, reuse it if it is empty or there are no
270      // explicit jumps to the return block.
271      if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
272        ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
273        delete ReturnBlock.getBlock();
274        ReturnBlock = JumpDest();
275      } else
276        EmitBlock(ReturnBlock.getBlock());
277      return llvm::DebugLoc();
278    }
279  
280    // Otherwise, if the return block is the target of a single direct
281    // branch then we can just put the code in that block instead. This
282    // cleans up functions which started with a unified return block.
283    if (ReturnBlock.getBlock()->hasOneUse()) {
284      llvm::BranchInst *BI =
285        dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
286      if (BI && BI->isUnconditional() &&
287          BI->getSuccessor(0) == ReturnBlock.getBlock()) {
288        // Record/return the DebugLoc of the simple 'return' expression to be used
289        // later by the actual 'ret' instruction.
290        llvm::DebugLoc Loc = BI->getDebugLoc();
291        Builder.SetInsertPoint(BI->getParent());
292        BI->eraseFromParent();
293        delete ReturnBlock.getBlock();
294        ReturnBlock = JumpDest();
295        return Loc;
296      }
297    }
298  
299    // FIXME: We are at an unreachable point, there is no reason to emit the block
300    // unless it has uses. However, we still need a place to put the debug
301    // region.end for now.
302  
303    EmitBlock(ReturnBlock.getBlock());
304    return llvm::DebugLoc();
305  }
306  
307  static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
308    if (!BB) return;
309    if (!BB->use_empty())
310      return CGF.CurFn->getBasicBlockList().push_back(BB);
311    delete BB;
312  }
313  
314  void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
315    assert(BreakContinueStack.empty() &&
316           "mismatched push/pop in break/continue stack!");
317  
318    bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
319      && NumSimpleReturnExprs == NumReturnExprs
320      && ReturnBlock.getBlock()->use_empty();
321    // Usually the return expression is evaluated before the cleanup
322    // code.  If the function contains only a simple return statement,
323    // such as a constant, the location before the cleanup code becomes
324    // the last useful breakpoint in the function, because the simple
325    // return expression will be evaluated after the cleanup code. To be
326    // safe, set the debug location for cleanup code to the location of
327    // the return statement.  Otherwise the cleanup code should be at the
328    // end of the function's lexical scope.
329    //
330    // If there are multiple branches to the return block, the branch
331    // instructions will get the location of the return statements and
332    // all will be fine.
333    if (CGDebugInfo *DI = getDebugInfo()) {
334      if (OnlySimpleReturnStmts)
335        DI->EmitLocation(Builder, LastStopPoint);
336      else
337        DI->EmitLocation(Builder, EndLoc);
338    }
339  
340    // Pop any cleanups that might have been associated with the
341    // parameters.  Do this in whatever block we're currently in; it's
342    // important to do this before we enter the return block or return
343    // edges will be *really* confused.
344    bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
345    bool HasOnlyLifetimeMarkers =
346        HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
347    bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
348    if (HasCleanups) {
349      // Make sure the line table doesn't jump back into the body for
350      // the ret after it's been at EndLoc.
351      Optional<ApplyDebugLocation> AL;
352      if (CGDebugInfo *DI = getDebugInfo()) {
353        if (OnlySimpleReturnStmts)
354          DI->EmitLocation(Builder, EndLoc);
355        else
356          // We may not have a valid end location. Try to apply it anyway, and
357          // fall back to an artificial location if needed.
358          AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
359      }
360  
361      PopCleanupBlocks(PrologueCleanupDepth);
362    }
363  
364    // Emit function epilog (to return).
365    llvm::DebugLoc Loc = EmitReturnBlock();
366  
367    if (ShouldInstrumentFunction()) {
368      if (CGM.getCodeGenOpts().InstrumentFunctions)
369        CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
370      if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
371        CurFn->addFnAttr("instrument-function-exit-inlined",
372                         "__cyg_profile_func_exit");
373    }
374  
375    // Emit debug descriptor for function end.
376    if (CGDebugInfo *DI = getDebugInfo())
377      DI->EmitFunctionEnd(Builder, CurFn);
378  
379    // Reset the debug location to that of the simple 'return' expression, if any
380    // rather than that of the end of the function's scope '}'.
381    ApplyDebugLocation AL(*this, Loc);
382    EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
383    EmitEndEHSpec(CurCodeDecl);
384  
385    assert(EHStack.empty() &&
386           "did not remove all scopes from cleanup stack!");
387  
388    // If someone did an indirect goto, emit the indirect goto block at the end of
389    // the function.
390    if (IndirectBranch) {
391      EmitBlock(IndirectBranch->getParent());
392      Builder.ClearInsertionPoint();
393    }
394  
395    // If some of our locals escaped, insert a call to llvm.localescape in the
396    // entry block.
397    if (!EscapedLocals.empty()) {
398      // Invert the map from local to index into a simple vector. There should be
399      // no holes.
400      SmallVector<llvm::Value *, 4> EscapeArgs;
401      EscapeArgs.resize(EscapedLocals.size());
402      for (auto &Pair : EscapedLocals)
403        EscapeArgs[Pair.second] = Pair.first;
404      llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
405          &CGM.getModule(), llvm::Intrinsic::localescape);
406      CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
407    }
408  
409    // Remove the AllocaInsertPt instruction, which is just a convenience for us.
410    llvm::Instruction *Ptr = AllocaInsertPt;
411    AllocaInsertPt = nullptr;
412    Ptr->eraseFromParent();
413  
414    // If someone took the address of a label but never did an indirect goto, we
415    // made a zero entry PHI node, which is illegal, zap it now.
416    if (IndirectBranch) {
417      llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
418      if (PN->getNumIncomingValues() == 0) {
419        PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
420        PN->eraseFromParent();
421      }
422    }
423  
424    EmitIfUsed(*this, EHResumeBlock);
425    EmitIfUsed(*this, TerminateLandingPad);
426    EmitIfUsed(*this, TerminateHandler);
427    EmitIfUsed(*this, UnreachableBlock);
428  
429    for (const auto &FuncletAndParent : TerminateFunclets)
430      EmitIfUsed(*this, FuncletAndParent.second);
431  
432    if (CGM.getCodeGenOpts().EmitDeclMetadata)
433      EmitDeclMetadata();
434  
435    for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
436             I = DeferredReplacements.begin(),
437             E = DeferredReplacements.end();
438         I != E; ++I) {
439      I->first->replaceAllUsesWith(I->second);
440      I->first->eraseFromParent();
441    }
442  
443    // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
444    // PHIs if the current function is a coroutine. We don't do it for all
445    // functions as it may result in slight increase in numbers of instructions
446    // if compiled with no optimizations. We do it for coroutine as the lifetime
447    // of CleanupDestSlot alloca make correct coroutine frame building very
448    // difficult.
449    if (NormalCleanupDest.isValid() && isCoroutine()) {
450      llvm::DominatorTree DT(*CurFn);
451      llvm::PromoteMemToReg(
452          cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
453      NormalCleanupDest = Address::invalid();
454    }
455  
456    // Scan function arguments for vector width.
457    for (llvm::Argument &A : CurFn->args())
458      if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
459        LargestVectorWidth =
460            std::max((uint64_t)LargestVectorWidth,
461                     VT->getPrimitiveSizeInBits().getKnownMinSize());
462  
463    // Update vector width based on return type.
464    if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
465      LargestVectorWidth =
466          std::max((uint64_t)LargestVectorWidth,
467                   VT->getPrimitiveSizeInBits().getKnownMinSize());
468  
469    // Add the required-vector-width attribute. This contains the max width from:
470    // 1. min-vector-width attribute used in the source program.
471    // 2. Any builtins used that have a vector width specified.
472    // 3. Values passed in and out of inline assembly.
473    // 4. Width of vector arguments and return types for this function.
474    // 5. Width of vector aguments and return types for functions called by this
475    //    function.
476    CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
477  
478    // If we generated an unreachable return block, delete it now.
479    if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
480      Builder.ClearInsertionPoint();
481      ReturnBlock.getBlock()->eraseFromParent();
482    }
483    if (ReturnValue.isValid()) {
484      auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
485      if (RetAlloca && RetAlloca->use_empty()) {
486        RetAlloca->eraseFromParent();
487        ReturnValue = Address::invalid();
488      }
489    }
490  }
491  
492  /// ShouldInstrumentFunction - Return true if the current function should be
493  /// instrumented with __cyg_profile_func_* calls
494  bool CodeGenFunction::ShouldInstrumentFunction() {
495    if (!CGM.getCodeGenOpts().InstrumentFunctions &&
496        !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
497        !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
498      return false;
499    if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
500      return false;
501    return true;
502  }
503  
504  /// ShouldXRayInstrument - Return true if the current function should be
505  /// instrumented with XRay nop sleds.
506  bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
507    return CGM.getCodeGenOpts().XRayInstrumentFunctions;
508  }
509  
510  /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
511  /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
512  bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
513    return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
514           (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
515            CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
516                XRayInstrKind::Custom);
517  }
518  
519  bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
520    return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
521           (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
522            CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
523                XRayInstrKind::Typed);
524  }
525  
526  llvm::Constant *
527  CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
528                                              llvm::Constant *Addr) {
529    // Addresses stored in prologue data can't require run-time fixups and must
530    // be PC-relative. Run-time fixups are undesirable because they necessitate
531    // writable text segments, which are unsafe. And absolute addresses are
532    // undesirable because they break PIE mode.
533  
534    // Add a layer of indirection through a private global. Taking its address
535    // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
536    auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
537                                        /*isConstant=*/true,
538                                        llvm::GlobalValue::PrivateLinkage, Addr);
539  
540    // Create a PC-relative address.
541    auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
542    auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
543    auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
544    return (IntPtrTy == Int32Ty)
545               ? PCRelAsInt
546               : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
547  }
548  
549  llvm::Value *
550  CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
551                                            llvm::Value *EncodedAddr) {
552    // Reconstruct the address of the global.
553    auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
554    auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
555    auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
556    auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
557  
558    // Load the original pointer through the global.
559    return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
560                              "decoded_addr");
561  }
562  
563  void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
564                                                 llvm::Function *Fn)
565  {
566    if (!FD->hasAttr<OpenCLKernelAttr>())
567      return;
568  
569    llvm::LLVMContext &Context = getLLVMContext();
570  
571    CGM.GenOpenCLArgMetadata(Fn, FD, this);
572  
573    if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
574      QualType HintQTy = A->getTypeHint();
575      const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
576      bool IsSignedInteger =
577          HintQTy->isSignedIntegerType() ||
578          (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
579      llvm::Metadata *AttrMDArgs[] = {
580          llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
581              CGM.getTypes().ConvertType(A->getTypeHint()))),
582          llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
583              llvm::IntegerType::get(Context, 32),
584              llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
585      Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
586    }
587  
588    if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
589      llvm::Metadata *AttrMDArgs[] = {
590          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
591          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
592          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
593      Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
594    }
595  
596    if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
597      llvm::Metadata *AttrMDArgs[] = {
598          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
599          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
600          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
601      Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
602    }
603  
604    if (const OpenCLIntelReqdSubGroupSizeAttr *A =
605            FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
606      llvm::Metadata *AttrMDArgs[] = {
607          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
608      Fn->setMetadata("intel_reqd_sub_group_size",
609                      llvm::MDNode::get(Context, AttrMDArgs));
610    }
611  }
612  
613  /// Determine whether the function F ends with a return stmt.
614  static bool endsWithReturn(const Decl* F) {
615    const Stmt *Body = nullptr;
616    if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
617      Body = FD->getBody();
618    else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
619      Body = OMD->getBody();
620  
621    if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
622      auto LastStmt = CS->body_rbegin();
623      if (LastStmt != CS->body_rend())
624        return isa<ReturnStmt>(*LastStmt);
625    }
626    return false;
627  }
628  
629  void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
630    if (SanOpts.has(SanitizerKind::Thread)) {
631      Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
632      Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
633    }
634  }
635  
636  /// Check if the return value of this function requires sanitization.
637  bool CodeGenFunction::requiresReturnValueCheck() const {
638    return requiresReturnValueNullabilityCheck() ||
639           (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
640            CurCodeDecl->getAttr<ReturnsNonNullAttr>());
641  }
642  
643  static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
644    auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
645    if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
646        !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
647        (MD->getNumParams() != 1 && MD->getNumParams() != 2))
648      return false;
649  
650    if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
651      return false;
652  
653    if (MD->getNumParams() == 2) {
654      auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
655      if (!PT || !PT->isVoidPointerType() ||
656          !PT->getPointeeType().isConstQualified())
657        return false;
658    }
659  
660    return true;
661  }
662  
663  /// Return the UBSan prologue signature for \p FD if one is available.
664  static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
665                                              const FunctionDecl *FD) {
666    if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
667      if (!MD->isStatic())
668        return nullptr;
669    return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
670  }
671  
672  void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
673                                      llvm::Function *Fn,
674                                      const CGFunctionInfo &FnInfo,
675                                      const FunctionArgList &Args,
676                                      SourceLocation Loc,
677                                      SourceLocation StartLoc) {
678    assert(!CurFn &&
679           "Do not use a CodeGenFunction object for more than one function");
680  
681    const Decl *D = GD.getDecl();
682  
683    DidCallStackSave = false;
684    CurCodeDecl = D;
685    if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
686      if (FD->usesSEHTry())
687        CurSEHParent = FD;
688    CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
689    FnRetTy = RetTy;
690    CurFn = Fn;
691    CurFnInfo = &FnInfo;
692    assert(CurFn->isDeclaration() && "Function already has body?");
693  
694    // If this function has been blacklisted for any of the enabled sanitizers,
695    // disable the sanitizer for the function.
696    do {
697  #define SANITIZER(NAME, ID)                                                    \
698    if (SanOpts.empty())                                                         \
699      break;                                                                     \
700    if (SanOpts.has(SanitizerKind::ID))                                          \
701      if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc))                \
702        SanOpts.set(SanitizerKind::ID, false);
703  
704  #include "clang/Basic/Sanitizers.def"
705  #undef SANITIZER
706    } while (0);
707  
708    if (D) {
709      // Apply the no_sanitize* attributes to SanOpts.
710      for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
711        SanitizerMask mask = Attr->getMask();
712        SanOpts.Mask &= ~mask;
713        if (mask & SanitizerKind::Address)
714          SanOpts.set(SanitizerKind::KernelAddress, false);
715        if (mask & SanitizerKind::KernelAddress)
716          SanOpts.set(SanitizerKind::Address, false);
717        if (mask & SanitizerKind::HWAddress)
718          SanOpts.set(SanitizerKind::KernelHWAddress, false);
719        if (mask & SanitizerKind::KernelHWAddress)
720          SanOpts.set(SanitizerKind::HWAddress, false);
721      }
722    }
723  
724    // Apply sanitizer attributes to the function.
725    if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
726      Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
727    if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
728      Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
729    if (SanOpts.has(SanitizerKind::MemTag))
730      Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
731    if (SanOpts.has(SanitizerKind::Thread))
732      Fn->addFnAttr(llvm::Attribute::SanitizeThread);
733    if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
734      Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
735    if (SanOpts.has(SanitizerKind::SafeStack))
736      Fn->addFnAttr(llvm::Attribute::SafeStack);
737    if (SanOpts.has(SanitizerKind::ShadowCallStack))
738      Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
739  
740    // Apply fuzzing attribute to the function.
741    if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
742      Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
743  
744    // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
745    // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
746    if (SanOpts.has(SanitizerKind::Thread)) {
747      if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
748        IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
749        if (OMD->getMethodFamily() == OMF_dealloc ||
750            OMD->getMethodFamily() == OMF_initialize ||
751            (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
752          markAsIgnoreThreadCheckingAtRuntime(Fn);
753        }
754      }
755    }
756  
757    // Ignore unrelated casts in STL allocate() since the allocator must cast
758    // from void* to T* before object initialization completes. Don't match on the
759    // namespace because not all allocators are in std::
760    if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
761      if (matchesStlAllocatorFn(D, getContext()))
762        SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
763    }
764  
765    // Ignore null checks in coroutine functions since the coroutines passes
766    // are not aware of how to move the extra UBSan instructions across the split
767    // coroutine boundaries.
768    if (D && SanOpts.has(SanitizerKind::Null))
769      if (const auto *FD = dyn_cast<FunctionDecl>(D))
770        if (FD->getBody() &&
771            FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
772          SanOpts.Mask &= ~SanitizerKind::Null;
773  
774    // Apply xray attributes to the function (as a string, for now)
775    if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
776      if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
777              XRayInstrKind::FunctionEntry) ||
778          CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
779              XRayInstrKind::FunctionExit)) {
780        if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction())
781          Fn->addFnAttr("function-instrument", "xray-always");
782        if (XRayAttr->neverXRayInstrument())
783          Fn->addFnAttr("function-instrument", "xray-never");
784        if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
785          if (ShouldXRayInstrumentFunction())
786            Fn->addFnAttr("xray-log-args",
787                          llvm::utostr(LogArgs->getArgumentCount()));
788      }
789    } else {
790      if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
791        Fn->addFnAttr(
792            "xray-instruction-threshold",
793            llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
794    }
795  
796    if (ShouldXRayInstrumentFunction()) {
797      if (CGM.getCodeGenOpts().XRayIgnoreLoops)
798        Fn->addFnAttr("xray-ignore-loops");
799  
800      if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
801              XRayInstrKind::FunctionExit))
802        Fn->addFnAttr("xray-skip-exit");
803  
804      if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
805              XRayInstrKind::FunctionEntry))
806        Fn->addFnAttr("xray-skip-entry");
807    }
808  
809    unsigned Count, Offset;
810    if (const auto *Attr =
811            D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
812      Count = Attr->getCount();
813      Offset = Attr->getOffset();
814    } else {
815      Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
816      Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
817    }
818    if (Count && Offset <= Count) {
819      Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
820      if (Offset)
821        Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
822    }
823  
824    // Add no-jump-tables value.
825    Fn->addFnAttr("no-jump-tables",
826                  llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
827  
828    // Add no-inline-line-tables value.
829    if (CGM.getCodeGenOpts().NoInlineLineTables)
830      Fn->addFnAttr("no-inline-line-tables");
831  
832    // Add profile-sample-accurate value.
833    if (CGM.getCodeGenOpts().ProfileSampleAccurate)
834      Fn->addFnAttr("profile-sample-accurate");
835  
836    if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
837      Fn->addFnAttr("use-sample-profile");
838  
839    if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
840      Fn->addFnAttr("cfi-canonical-jump-table");
841  
842    if (getLangOpts().OpenCL) {
843      // Add metadata for a kernel function.
844      if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
845        EmitOpenCLKernelMetadata(FD, Fn);
846    }
847  
848    // If we are checking function types, emit a function type signature as
849    // prologue data.
850    if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
851      if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
852        if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
853          // Remove any (C++17) exception specifications, to allow calling e.g. a
854          // noexcept function through a non-noexcept pointer.
855          auto ProtoTy =
856            getContext().getFunctionTypeWithExceptionSpec(FD->getType(),
857                                                          EST_None);
858          llvm::Constant *FTRTTIConst =
859              CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
860          llvm::Constant *FTRTTIConstEncoded =
861              EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
862          llvm::Constant *PrologueStructElems[] = {PrologueSig,
863                                                   FTRTTIConstEncoded};
864          llvm::Constant *PrologueStructConst =
865              llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
866          Fn->setPrologueData(PrologueStructConst);
867        }
868      }
869    }
870  
871    // If we're checking nullability, we need to know whether we can check the
872    // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
873    if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
874      auto Nullability = FnRetTy->getNullability(getContext());
875      if (Nullability && *Nullability == NullabilityKind::NonNull) {
876        if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
877              CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
878          RetValNullabilityPrecondition =
879              llvm::ConstantInt::getTrue(getLLVMContext());
880      }
881    }
882  
883    // If we're in C++ mode and the function name is "main", it is guaranteed
884    // to be norecurse by the standard (3.6.1.3 "The function main shall not be
885    // used within a program").
886    //
887    // OpenCL C 2.0 v2.2-11 s6.9.i:
888    //     Recursion is not supported.
889    //
890    // SYCL v1.2.1 s3.10:
891    //     kernels cannot include RTTI information, exception classes,
892    //     recursive code, virtual functions or make use of C++ libraries that
893    //     are not compiled for the device.
894    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
895      if ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL ||
896          getLangOpts().SYCLIsDevice ||
897          (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))
898        Fn->addFnAttr(llvm::Attribute::NoRecurse);
899    }
900  
901    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
902      Builder.setIsFPConstrained(FD->usesFPIntrin());
903      if (FD->usesFPIntrin())
904        Fn->addFnAttr(llvm::Attribute::StrictFP);
905    }
906  
907    // If a custom alignment is used, force realigning to this alignment on
908    // any main function which certainly will need it.
909    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
910      if ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
911          CGM.getCodeGenOpts().StackAlignment)
912        Fn->addFnAttr("stackrealign");
913  
914    llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
915  
916    // Create a marker to make it easy to insert allocas into the entryblock
917    // later.  Don't create this with the builder, because we don't want it
918    // folded.
919    llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
920    AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
921  
922    ReturnBlock = getJumpDestInCurrentScope("return");
923  
924    Builder.SetInsertPoint(EntryBB);
925  
926    // If we're checking the return value, allocate space for a pointer to a
927    // precise source location of the checked return statement.
928    if (requiresReturnValueCheck()) {
929      ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
930      InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
931    }
932  
933    // Emit subprogram debug descriptor.
934    if (CGDebugInfo *DI = getDebugInfo()) {
935      // Reconstruct the type from the argument list so that implicit parameters,
936      // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
937      // convention.
938      CallingConv CC = CallingConv::CC_C;
939      if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
940        if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
941          CC = SrcFnTy->getCallConv();
942      SmallVector<QualType, 16> ArgTypes;
943      for (const VarDecl *VD : Args)
944        ArgTypes.push_back(VD->getType());
945      QualType FnType = getContext().getFunctionType(
946          RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
947      DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk,
948                            Builder);
949    }
950  
951    if (ShouldInstrumentFunction()) {
952      if (CGM.getCodeGenOpts().InstrumentFunctions)
953        CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
954      if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
955        CurFn->addFnAttr("instrument-function-entry-inlined",
956                         "__cyg_profile_func_enter");
957      if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
958        CurFn->addFnAttr("instrument-function-entry-inlined",
959                         "__cyg_profile_func_enter_bare");
960    }
961  
962    // Since emitting the mcount call here impacts optimizations such as function
963    // inlining, we just add an attribute to insert a mcount call in backend.
964    // The attribute "counting-function" is set to mcount function name which is
965    // architecture dependent.
966    if (CGM.getCodeGenOpts().InstrumentForProfiling) {
967      // Calls to fentry/mcount should not be generated if function has
968      // the no_instrument_function attribute.
969      if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
970        if (CGM.getCodeGenOpts().CallFEntry)
971          Fn->addFnAttr("fentry-call", "true");
972        else {
973          Fn->addFnAttr("instrument-function-entry-inlined",
974                        getTarget().getMCountName());
975        }
976        if (CGM.getCodeGenOpts().MNopMCount) {
977          if (!CGM.getCodeGenOpts().CallFEntry)
978            CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
979              << "-mnop-mcount" << "-mfentry";
980          Fn->addFnAttr("mnop-mcount");
981        }
982  
983        if (CGM.getCodeGenOpts().RecordMCount) {
984          if (!CGM.getCodeGenOpts().CallFEntry)
985            CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
986              << "-mrecord-mcount" << "-mfentry";
987          Fn->addFnAttr("mrecord-mcount");
988        }
989      }
990    }
991  
992    if (CGM.getCodeGenOpts().PackedStack) {
993      if (getContext().getTargetInfo().getTriple().getArch() !=
994          llvm::Triple::systemz)
995        CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
996          << "-mpacked-stack";
997      Fn->addFnAttr("packed-stack");
998    }
999  
1000    if (RetTy->isVoidType()) {
1001      // Void type; nothing to return.
1002      ReturnValue = Address::invalid();
1003  
1004      // Count the implicit return.
1005      if (!endsWithReturn(D))
1006        ++NumReturnExprs;
1007    } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1008      // Indirect return; emit returned value directly into sret slot.
1009      // This reduces code size, and affects correctness in C++.
1010      auto AI = CurFn->arg_begin();
1011      if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1012        ++AI;
1013      ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1014      if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1015        ReturnValuePointer =
1016            CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1017        Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1018                                ReturnValue.getPointer(), Int8PtrTy),
1019                            ReturnValuePointer);
1020      }
1021    } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1022               !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1023      // Load the sret pointer from the argument struct and return into that.
1024      unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1025      llvm::Function::arg_iterator EI = CurFn->arg_end();
1026      --EI;
1027      llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
1028      ReturnValuePointer = Address(Addr, getPointerAlign());
1029      Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
1030      ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy));
1031    } else {
1032      ReturnValue = CreateIRTemp(RetTy, "retval");
1033  
1034      // Tell the epilog emitter to autorelease the result.  We do this
1035      // now so that various specialized functions can suppress it
1036      // during their IR-generation.
1037      if (getLangOpts().ObjCAutoRefCount &&
1038          !CurFnInfo->isReturnsRetained() &&
1039          RetTy->isObjCRetainableType())
1040        AutoreleaseResult = true;
1041    }
1042  
1043    EmitStartEHSpec(CurCodeDecl);
1044  
1045    PrologueCleanupDepth = EHStack.stable_begin();
1046  
1047    // Emit OpenMP specific initialization of the device functions.
1048    if (getLangOpts().OpenMP && CurCodeDecl)
1049      CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1050  
1051    EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1052  
1053    if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1054      CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1055      const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1056      if (MD->getParent()->isLambda() &&
1057          MD->getOverloadedOperator() == OO_Call) {
1058        // We're in a lambda; figure out the captures.
1059        MD->getParent()->getCaptureFields(LambdaCaptureFields,
1060                                          LambdaThisCaptureField);
1061        if (LambdaThisCaptureField) {
1062          // If the lambda captures the object referred to by '*this' - either by
1063          // value or by reference, make sure CXXThisValue points to the correct
1064          // object.
1065  
1066          // Get the lvalue for the field (which is a copy of the enclosing object
1067          // or contains the address of the enclosing object).
1068          LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1069          if (!LambdaThisCaptureField->getType()->isPointerType()) {
1070            // If the enclosing object was captured by value, just use its address.
1071            CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1072          } else {
1073            // Load the lvalue pointed to by the field, since '*this' was captured
1074            // by reference.
1075            CXXThisValue =
1076                EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1077          }
1078        }
1079        for (auto *FD : MD->getParent()->fields()) {
1080          if (FD->hasCapturedVLAType()) {
1081            auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1082                                             SourceLocation()).getScalarVal();
1083            auto VAT = FD->getCapturedVLAType();
1084            VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1085          }
1086        }
1087      } else {
1088        // Not in a lambda; just use 'this' from the method.
1089        // FIXME: Should we generate a new load for each use of 'this'?  The
1090        // fast register allocator would be happier...
1091        CXXThisValue = CXXABIThisValue;
1092      }
1093  
1094      // Check the 'this' pointer once per function, if it's available.
1095      if (CXXABIThisValue) {
1096        SanitizerSet SkippedChecks;
1097        SkippedChecks.set(SanitizerKind::ObjectSize, true);
1098        QualType ThisTy = MD->getThisType();
1099  
1100        // If this is the call operator of a lambda with no capture-default, it
1101        // may have a static invoker function, which may call this operator with
1102        // a null 'this' pointer.
1103        if (isLambdaCallOperator(MD) &&
1104            MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1105          SkippedChecks.set(SanitizerKind::Null, true);
1106  
1107        EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
1108                                                  : TCK_MemberCall,
1109                      Loc, CXXABIThisValue, ThisTy,
1110                      getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
1111                      SkippedChecks);
1112      }
1113    }
1114  
1115    // If any of the arguments have a variably modified type, make sure to
1116    // emit the type size.
1117    for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1118         i != e; ++i) {
1119      const VarDecl *VD = *i;
1120  
1121      // Dig out the type as written from ParmVarDecls; it's unclear whether
1122      // the standard (C99 6.9.1p10) requires this, but we're following the
1123      // precedent set by gcc.
1124      QualType Ty;
1125      if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1126        Ty = PVD->getOriginalType();
1127      else
1128        Ty = VD->getType();
1129  
1130      if (Ty->isVariablyModifiedType())
1131        EmitVariablyModifiedType(Ty);
1132    }
1133    // Emit a location at the end of the prologue.
1134    if (CGDebugInfo *DI = getDebugInfo())
1135      DI->EmitLocation(Builder, StartLoc);
1136  
1137    // TODO: Do we need to handle this in two places like we do with
1138    // target-features/target-cpu?
1139    if (CurFuncDecl)
1140      if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1141        LargestVectorWidth = VecWidth->getVectorWidth();
1142  }
1143  
1144  void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1145    incrementProfileCounter(Body);
1146    if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1147      EmitCompoundStmtWithoutScope(*S);
1148    else
1149      EmitStmt(Body);
1150  }
1151  
1152  /// When instrumenting to collect profile data, the counts for some blocks
1153  /// such as switch cases need to not include the fall-through counts, so
1154  /// emit a branch around the instrumentation code. When not instrumenting,
1155  /// this just calls EmitBlock().
1156  void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1157                                                 const Stmt *S) {
1158    llvm::BasicBlock *SkipCountBB = nullptr;
1159    if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1160      // When instrumenting for profiling, the fallthrough to certain
1161      // statements needs to skip over the instrumentation code so that we
1162      // get an accurate count.
1163      SkipCountBB = createBasicBlock("skipcount");
1164      EmitBranch(SkipCountBB);
1165    }
1166    EmitBlock(BB);
1167    uint64_t CurrentCount = getCurrentProfileCount();
1168    incrementProfileCounter(S);
1169    setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1170    if (SkipCountBB)
1171      EmitBlock(SkipCountBB);
1172  }
1173  
1174  /// Tries to mark the given function nounwind based on the
1175  /// non-existence of any throwing calls within it.  We believe this is
1176  /// lightweight enough to do at -O0.
1177  static void TryMarkNoThrow(llvm::Function *F) {
1178    // LLVM treats 'nounwind' on a function as part of the type, so we
1179    // can't do this on functions that can be overwritten.
1180    if (F->isInterposable()) return;
1181  
1182    for (llvm::BasicBlock &BB : *F)
1183      for (llvm::Instruction &I : BB)
1184        if (I.mayThrow())
1185          return;
1186  
1187    F->setDoesNotThrow();
1188  }
1189  
1190  QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1191                                                 FunctionArgList &Args) {
1192    const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1193    QualType ResTy = FD->getReturnType();
1194  
1195    const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1196    if (MD && MD->isInstance()) {
1197      if (CGM.getCXXABI().HasThisReturn(GD))
1198        ResTy = MD->getThisType();
1199      else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1200        ResTy = CGM.getContext().VoidPtrTy;
1201      CGM.getCXXABI().buildThisParam(*this, Args);
1202    }
1203  
1204    // The base version of an inheriting constructor whose constructed base is a
1205    // virtual base is not passed any arguments (because it doesn't actually call
1206    // the inherited constructor).
1207    bool PassedParams = true;
1208    if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1209      if (auto Inherited = CD->getInheritedConstructor())
1210        PassedParams =
1211            getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1212  
1213    if (PassedParams) {
1214      for (auto *Param : FD->parameters()) {
1215        Args.push_back(Param);
1216        if (!Param->hasAttr<PassObjectSizeAttr>())
1217          continue;
1218  
1219        auto *Implicit = ImplicitParamDecl::Create(
1220            getContext(), Param->getDeclContext(), Param->getLocation(),
1221            /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1222        SizeArguments[Param] = Implicit;
1223        Args.push_back(Implicit);
1224      }
1225    }
1226  
1227    if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1228      CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1229  
1230    return ResTy;
1231  }
1232  
1233  static bool
1234  shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1235                                               const ASTContext &Context) {
1236    QualType T = FD->getReturnType();
1237    // Avoid the optimization for functions that return a record type with a
1238    // trivial destructor or another trivially copyable type.
1239    if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1240      if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1241        return !ClassDecl->hasTrivialDestructor();
1242    }
1243    return !T.isTriviallyCopyableType(Context);
1244  }
1245  
1246  void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1247                                     const CGFunctionInfo &FnInfo) {
1248    const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1249    CurGD = GD;
1250  
1251    FunctionArgList Args;
1252    QualType ResTy = BuildFunctionArgList(GD, Args);
1253  
1254    // Check if we should generate debug info for this function.
1255    if (FD->hasAttr<NoDebugAttr>())
1256      DebugInfo = nullptr; // disable debug info indefinitely for this function
1257  
1258    // The function might not have a body if we're generating thunks for a
1259    // function declaration.
1260    SourceRange BodyRange;
1261    if (Stmt *Body = FD->getBody())
1262      BodyRange = Body->getSourceRange();
1263    else
1264      BodyRange = FD->getLocation();
1265    CurEHLocation = BodyRange.getEnd();
1266  
1267    // Use the location of the start of the function to determine where
1268    // the function definition is located. By default use the location
1269    // of the declaration as the location for the subprogram. A function
1270    // may lack a declaration in the source code if it is created by code
1271    // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1272    SourceLocation Loc = FD->getLocation();
1273  
1274    // If this is a function specialization then use the pattern body
1275    // as the location for the function.
1276    if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1277      if (SpecDecl->hasBody(SpecDecl))
1278        Loc = SpecDecl->getLocation();
1279  
1280    Stmt *Body = FD->getBody();
1281  
1282    // Initialize helper which will detect jumps which can cause invalid lifetime
1283    // markers.
1284    if (Body && ShouldEmitLifetimeMarkers)
1285      Bypasses.Init(Body);
1286  
1287    // Emit the standard function prologue.
1288    StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1289  
1290    // Generate the body of the function.
1291    PGO.assignRegionCounters(GD, CurFn);
1292    if (isa<CXXDestructorDecl>(FD))
1293      EmitDestructorBody(Args);
1294    else if (isa<CXXConstructorDecl>(FD))
1295      EmitConstructorBody(Args);
1296    else if (getLangOpts().CUDA &&
1297             !getLangOpts().CUDAIsDevice &&
1298             FD->hasAttr<CUDAGlobalAttr>())
1299      CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1300    else if (isa<CXXMethodDecl>(FD) &&
1301             cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1302      // The lambda static invoker function is special, because it forwards or
1303      // clones the body of the function call operator (but is actually static).
1304      EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1305    } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1306               (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1307                cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1308      // Implicit copy-assignment gets the same special treatment as implicit
1309      // copy-constructors.
1310      emitImplicitAssignmentOperatorBody(Args);
1311    } else if (Body) {
1312      EmitFunctionBody(Body);
1313    } else
1314      llvm_unreachable("no definition for emitted function");
1315  
1316    // C++11 [stmt.return]p2:
1317    //   Flowing off the end of a function [...] results in undefined behavior in
1318    //   a value-returning function.
1319    // C11 6.9.1p12:
1320    //   If the '}' that terminates a function is reached, and the value of the
1321    //   function call is used by the caller, the behavior is undefined.
1322    if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1323        !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1324      bool ShouldEmitUnreachable =
1325          CGM.getCodeGenOpts().StrictReturn ||
1326          shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1327      if (SanOpts.has(SanitizerKind::Return)) {
1328        SanitizerScope SanScope(this);
1329        llvm::Value *IsFalse = Builder.getFalse();
1330        EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1331                  SanitizerHandler::MissingReturn,
1332                  EmitCheckSourceLocation(FD->getLocation()), None);
1333      } else if (ShouldEmitUnreachable) {
1334        if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1335          EmitTrapCall(llvm::Intrinsic::trap);
1336      }
1337      if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1338        Builder.CreateUnreachable();
1339        Builder.ClearInsertionPoint();
1340      }
1341    }
1342  
1343    // Emit the standard function epilogue.
1344    FinishFunction(BodyRange.getEnd());
1345  
1346    // If we haven't marked the function nothrow through other means, do
1347    // a quick pass now to see if we can.
1348    if (!CurFn->doesNotThrow())
1349      TryMarkNoThrow(CurFn);
1350  }
1351  
1352  /// ContainsLabel - Return true if the statement contains a label in it.  If
1353  /// this statement is not executed normally, it not containing a label means
1354  /// that we can just remove the code.
1355  bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1356    // Null statement, not a label!
1357    if (!S) return false;
1358  
1359    // If this is a label, we have to emit the code, consider something like:
1360    // if (0) {  ...  foo:  bar(); }  goto foo;
1361    //
1362    // TODO: If anyone cared, we could track __label__'s, since we know that you
1363    // can't jump to one from outside their declared region.
1364    if (isa<LabelStmt>(S))
1365      return true;
1366  
1367    // If this is a case/default statement, and we haven't seen a switch, we have
1368    // to emit the code.
1369    if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1370      return true;
1371  
1372    // If this is a switch statement, we want to ignore cases below it.
1373    if (isa<SwitchStmt>(S))
1374      IgnoreCaseStmts = true;
1375  
1376    // Scan subexpressions for verboten labels.
1377    for (const Stmt *SubStmt : S->children())
1378      if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1379        return true;
1380  
1381    return false;
1382  }
1383  
1384  /// containsBreak - Return true if the statement contains a break out of it.
1385  /// If the statement (recursively) contains a switch or loop with a break
1386  /// inside of it, this is fine.
1387  bool CodeGenFunction::containsBreak(const Stmt *S) {
1388    // Null statement, not a label!
1389    if (!S) return false;
1390  
1391    // If this is a switch or loop that defines its own break scope, then we can
1392    // include it and anything inside of it.
1393    if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1394        isa<ForStmt>(S))
1395      return false;
1396  
1397    if (isa<BreakStmt>(S))
1398      return true;
1399  
1400    // Scan subexpressions for verboten breaks.
1401    for (const Stmt *SubStmt : S->children())
1402      if (containsBreak(SubStmt))
1403        return true;
1404  
1405    return false;
1406  }
1407  
1408  bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1409    if (!S) return false;
1410  
1411    // Some statement kinds add a scope and thus never add a decl to the current
1412    // scope. Note, this list is longer than the list of statements that might
1413    // have an unscoped decl nested within them, but this way is conservatively
1414    // correct even if more statement kinds are added.
1415    if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1416        isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1417        isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1418        isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1419      return false;
1420  
1421    if (isa<DeclStmt>(S))
1422      return true;
1423  
1424    for (const Stmt *SubStmt : S->children())
1425      if (mightAddDeclToScope(SubStmt))
1426        return true;
1427  
1428    return false;
1429  }
1430  
1431  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1432  /// to a constant, or if it does but contains a label, return false.  If it
1433  /// constant folds return true and set the boolean result in Result.
1434  bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1435                                                     bool &ResultBool,
1436                                                     bool AllowLabels) {
1437    llvm::APSInt ResultInt;
1438    if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1439      return false;
1440  
1441    ResultBool = ResultInt.getBoolValue();
1442    return true;
1443  }
1444  
1445  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1446  /// to a constant, or if it does but contains a label, return false.  If it
1447  /// constant folds return true and set the folded value.
1448  bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1449                                                     llvm::APSInt &ResultInt,
1450                                                     bool AllowLabels) {
1451    // FIXME: Rename and handle conversion of other evaluatable things
1452    // to bool.
1453    Expr::EvalResult Result;
1454    if (!Cond->EvaluateAsInt(Result, getContext()))
1455      return false;  // Not foldable, not integer or not fully evaluatable.
1456  
1457    llvm::APSInt Int = Result.Val.getInt();
1458    if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1459      return false;  // Contains a label.
1460  
1461    ResultInt = Int;
1462    return true;
1463  }
1464  
1465  
1466  
1467  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1468  /// statement) to the specified blocks.  Based on the condition, this might try
1469  /// to simplify the codegen of the conditional based on the branch.
1470  ///
1471  void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1472                                             llvm::BasicBlock *TrueBlock,
1473                                             llvm::BasicBlock *FalseBlock,
1474                                             uint64_t TrueCount) {
1475    Cond = Cond->IgnoreParens();
1476  
1477    if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1478  
1479      // Handle X && Y in a condition.
1480      if (CondBOp->getOpcode() == BO_LAnd) {
1481        // If we have "1 && X", simplify the code.  "0 && X" would have constant
1482        // folded if the case was simple enough.
1483        bool ConstantBool = false;
1484        if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1485            ConstantBool) {
1486          // br(1 && X) -> br(X).
1487          incrementProfileCounter(CondBOp);
1488          return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1489                                      TrueCount);
1490        }
1491  
1492        // If we have "X && 1", simplify the code to use an uncond branch.
1493        // "X && 0" would have been constant folded to 0.
1494        if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1495            ConstantBool) {
1496          // br(X && 1) -> br(X).
1497          return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1498                                      TrueCount);
1499        }
1500  
1501        // Emit the LHS as a conditional.  If the LHS conditional is false, we
1502        // want to jump to the FalseBlock.
1503        llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1504        // The counter tells us how often we evaluate RHS, and all of TrueCount
1505        // can be propagated to that branch.
1506        uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1507  
1508        ConditionalEvaluation eval(*this);
1509        {
1510          ApplyDebugLocation DL(*this, Cond);
1511          EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1512          EmitBlock(LHSTrue);
1513        }
1514  
1515        incrementProfileCounter(CondBOp);
1516        setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1517  
1518        // Any temporaries created here are conditional.
1519        eval.begin(*this);
1520        EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1521        eval.end(*this);
1522  
1523        return;
1524      }
1525  
1526      if (CondBOp->getOpcode() == BO_LOr) {
1527        // If we have "0 || X", simplify the code.  "1 || X" would have constant
1528        // folded if the case was simple enough.
1529        bool ConstantBool = false;
1530        if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1531            !ConstantBool) {
1532          // br(0 || X) -> br(X).
1533          incrementProfileCounter(CondBOp);
1534          return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1535                                      TrueCount);
1536        }
1537  
1538        // If we have "X || 0", simplify the code to use an uncond branch.
1539        // "X || 1" would have been constant folded to 1.
1540        if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1541            !ConstantBool) {
1542          // br(X || 0) -> br(X).
1543          return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1544                                      TrueCount);
1545        }
1546  
1547        // Emit the LHS as a conditional.  If the LHS conditional is true, we
1548        // want to jump to the TrueBlock.
1549        llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1550        // We have the count for entry to the RHS and for the whole expression
1551        // being true, so we can divy up True count between the short circuit and
1552        // the RHS.
1553        uint64_t LHSCount =
1554            getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1555        uint64_t RHSCount = TrueCount - LHSCount;
1556  
1557        ConditionalEvaluation eval(*this);
1558        {
1559          ApplyDebugLocation DL(*this, Cond);
1560          EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1561          EmitBlock(LHSFalse);
1562        }
1563  
1564        incrementProfileCounter(CondBOp);
1565        setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1566  
1567        // Any temporaries created here are conditional.
1568        eval.begin(*this);
1569        EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1570  
1571        eval.end(*this);
1572  
1573        return;
1574      }
1575    }
1576  
1577    if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1578      // br(!x, t, f) -> br(x, f, t)
1579      if (CondUOp->getOpcode() == UO_LNot) {
1580        // Negate the count.
1581        uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1582        // Negate the condition and swap the destination blocks.
1583        return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1584                                    FalseCount);
1585      }
1586    }
1587  
1588    if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1589      // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1590      llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1591      llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1592  
1593      ConditionalEvaluation cond(*this);
1594      EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1595                           getProfileCount(CondOp));
1596  
1597      // When computing PGO branch weights, we only know the overall count for
1598      // the true block. This code is essentially doing tail duplication of the
1599      // naive code-gen, introducing new edges for which counts are not
1600      // available. Divide the counts proportionally between the LHS and RHS of
1601      // the conditional operator.
1602      uint64_t LHSScaledTrueCount = 0;
1603      if (TrueCount) {
1604        double LHSRatio =
1605            getProfileCount(CondOp) / (double)getCurrentProfileCount();
1606        LHSScaledTrueCount = TrueCount * LHSRatio;
1607      }
1608  
1609      cond.begin(*this);
1610      EmitBlock(LHSBlock);
1611      incrementProfileCounter(CondOp);
1612      {
1613        ApplyDebugLocation DL(*this, Cond);
1614        EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1615                             LHSScaledTrueCount);
1616      }
1617      cond.end(*this);
1618  
1619      cond.begin(*this);
1620      EmitBlock(RHSBlock);
1621      EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1622                           TrueCount - LHSScaledTrueCount);
1623      cond.end(*this);
1624  
1625      return;
1626    }
1627  
1628    if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1629      // Conditional operator handling can give us a throw expression as a
1630      // condition for a case like:
1631      //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1632      // Fold this to:
1633      //   br(c, throw x, br(y, t, f))
1634      EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1635      return;
1636    }
1637  
1638    // If the branch has a condition wrapped by __builtin_unpredictable,
1639    // create metadata that specifies that the branch is unpredictable.
1640    // Don't bother if not optimizing because that metadata would not be used.
1641    llvm::MDNode *Unpredictable = nullptr;
1642    auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1643    if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1644      auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1645      if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1646        llvm::MDBuilder MDHelper(getLLVMContext());
1647        Unpredictable = MDHelper.createUnpredictable();
1648      }
1649    }
1650  
1651    // Create branch weights based on the number of times we get here and the
1652    // number of times the condition should be true.
1653    uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1654    llvm::MDNode *Weights =
1655        createProfileWeights(TrueCount, CurrentCount - TrueCount);
1656  
1657    // Emit the code with the fully general case.
1658    llvm::Value *CondV;
1659    {
1660      ApplyDebugLocation DL(*this, Cond);
1661      CondV = EvaluateExprAsBool(Cond);
1662    }
1663    Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1664  }
1665  
1666  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1667  /// specified stmt yet.
1668  void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1669    CGM.ErrorUnsupported(S, Type);
1670  }
1671  
1672  /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1673  /// variable-length array whose elements have a non-zero bit-pattern.
1674  ///
1675  /// \param baseType the inner-most element type of the array
1676  /// \param src - a char* pointing to the bit-pattern for a single
1677  /// base element of the array
1678  /// \param sizeInChars - the total size of the VLA, in chars
1679  static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1680                                 Address dest, Address src,
1681                                 llvm::Value *sizeInChars) {
1682    CGBuilderTy &Builder = CGF.Builder;
1683  
1684    CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1685    llvm::Value *baseSizeInChars
1686      = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1687  
1688    Address begin =
1689      Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1690    llvm::Value *end =
1691      Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1692  
1693    llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1694    llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1695    llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1696  
1697    // Make a loop over the VLA.  C99 guarantees that the VLA element
1698    // count must be nonzero.
1699    CGF.EmitBlock(loopBB);
1700  
1701    llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1702    cur->addIncoming(begin.getPointer(), originBB);
1703  
1704    CharUnits curAlign =
1705      dest.getAlignment().alignmentOfArrayElement(baseSize);
1706  
1707    // memcpy the individual element bit-pattern.
1708    Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1709                         /*volatile*/ false);
1710  
1711    // Go to the next element.
1712    llvm::Value *next =
1713      Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1714  
1715    // Leave if that's the end of the VLA.
1716    llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1717    Builder.CreateCondBr(done, contBB, loopBB);
1718    cur->addIncoming(next, loopBB);
1719  
1720    CGF.EmitBlock(contBB);
1721  }
1722  
1723  void
1724  CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1725    // Ignore empty classes in C++.
1726    if (getLangOpts().CPlusPlus) {
1727      if (const RecordType *RT = Ty->getAs<RecordType>()) {
1728        if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1729          return;
1730      }
1731    }
1732  
1733    // Cast the dest ptr to the appropriate i8 pointer type.
1734    if (DestPtr.getElementType() != Int8Ty)
1735      DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1736  
1737    // Get size and alignment info for this aggregate.
1738    CharUnits size = getContext().getTypeSizeInChars(Ty);
1739  
1740    llvm::Value *SizeVal;
1741    const VariableArrayType *vla;
1742  
1743    // Don't bother emitting a zero-byte memset.
1744    if (size.isZero()) {
1745      // But note that getTypeInfo returns 0 for a VLA.
1746      if (const VariableArrayType *vlaType =
1747            dyn_cast_or_null<VariableArrayType>(
1748                                            getContext().getAsArrayType(Ty))) {
1749        auto VlaSize = getVLASize(vlaType);
1750        SizeVal = VlaSize.NumElts;
1751        CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1752        if (!eltSize.isOne())
1753          SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1754        vla = vlaType;
1755      } else {
1756        return;
1757      }
1758    } else {
1759      SizeVal = CGM.getSize(size);
1760      vla = nullptr;
1761    }
1762  
1763    // If the type contains a pointer to data member we can't memset it to zero.
1764    // Instead, create a null constant and copy it to the destination.
1765    // TODO: there are other patterns besides zero that we can usefully memset,
1766    // like -1, which happens to be the pattern used by member-pointers.
1767    if (!CGM.getTypes().isZeroInitializable(Ty)) {
1768      // For a VLA, emit a single element, then splat that over the VLA.
1769      if (vla) Ty = getContext().getBaseElementType(vla);
1770  
1771      llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1772  
1773      llvm::GlobalVariable *NullVariable =
1774        new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1775                                 /*isConstant=*/true,
1776                                 llvm::GlobalVariable::PrivateLinkage,
1777                                 NullConstant, Twine());
1778      CharUnits NullAlign = DestPtr.getAlignment();
1779      NullVariable->setAlignment(NullAlign.getAsAlign());
1780      Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1781                     NullAlign);
1782  
1783      if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1784  
1785      // Get and call the appropriate llvm.memcpy overload.
1786      Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1787      return;
1788    }
1789  
1790    // Otherwise, just memset the whole thing to zero.  This is legal
1791    // because in LLVM, all default initializers (other than the ones we just
1792    // handled above) are guaranteed to have a bit pattern of all zeros.
1793    Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1794  }
1795  
1796  llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1797    // Make sure that there is a block for the indirect goto.
1798    if (!IndirectBranch)
1799      GetIndirectGotoBlock();
1800  
1801    llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1802  
1803    // Make sure the indirect branch includes all of the address-taken blocks.
1804    IndirectBranch->addDestination(BB);
1805    return llvm::BlockAddress::get(CurFn, BB);
1806  }
1807  
1808  llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1809    // If we already made the indirect branch for indirect goto, return its block.
1810    if (IndirectBranch) return IndirectBranch->getParent();
1811  
1812    CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1813  
1814    // Create the PHI node that indirect gotos will add entries to.
1815    llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1816                                                "indirect.goto.dest");
1817  
1818    // Create the indirect branch instruction.
1819    IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1820    return IndirectBranch->getParent();
1821  }
1822  
1823  /// Computes the length of an array in elements, as well as the base
1824  /// element type and a properly-typed first element pointer.
1825  llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1826                                                QualType &baseType,
1827                                                Address &addr) {
1828    const ArrayType *arrayType = origArrayType;
1829  
1830    // If it's a VLA, we have to load the stored size.  Note that
1831    // this is the size of the VLA in bytes, not its size in elements.
1832    llvm::Value *numVLAElements = nullptr;
1833    if (isa<VariableArrayType>(arrayType)) {
1834      numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
1835  
1836      // Walk into all VLAs.  This doesn't require changes to addr,
1837      // which has type T* where T is the first non-VLA element type.
1838      do {
1839        QualType elementType = arrayType->getElementType();
1840        arrayType = getContext().getAsArrayType(elementType);
1841  
1842        // If we only have VLA components, 'addr' requires no adjustment.
1843        if (!arrayType) {
1844          baseType = elementType;
1845          return numVLAElements;
1846        }
1847      } while (isa<VariableArrayType>(arrayType));
1848  
1849      // We get out here only if we find a constant array type
1850      // inside the VLA.
1851    }
1852  
1853    // We have some number of constant-length arrays, so addr should
1854    // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1855    // down to the first element of addr.
1856    SmallVector<llvm::Value*, 8> gepIndices;
1857  
1858    // GEP down to the array type.
1859    llvm::ConstantInt *zero = Builder.getInt32(0);
1860    gepIndices.push_back(zero);
1861  
1862    uint64_t countFromCLAs = 1;
1863    QualType eltType;
1864  
1865    llvm::ArrayType *llvmArrayType =
1866      dyn_cast<llvm::ArrayType>(addr.getElementType());
1867    while (llvmArrayType) {
1868      assert(isa<ConstantArrayType>(arrayType));
1869      assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1870               == llvmArrayType->getNumElements());
1871  
1872      gepIndices.push_back(zero);
1873      countFromCLAs *= llvmArrayType->getNumElements();
1874      eltType = arrayType->getElementType();
1875  
1876      llvmArrayType =
1877        dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1878      arrayType = getContext().getAsArrayType(arrayType->getElementType());
1879      assert((!llvmArrayType || arrayType) &&
1880             "LLVM and Clang types are out-of-synch");
1881    }
1882  
1883    if (arrayType) {
1884      // From this point onwards, the Clang array type has been emitted
1885      // as some other type (probably a packed struct). Compute the array
1886      // size, and just emit the 'begin' expression as a bitcast.
1887      while (arrayType) {
1888        countFromCLAs *=
1889            cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1890        eltType = arrayType->getElementType();
1891        arrayType = getContext().getAsArrayType(eltType);
1892      }
1893  
1894      llvm::Type *baseType = ConvertType(eltType);
1895      addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1896    } else {
1897      // Create the actual GEP.
1898      addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1899                                               gepIndices, "array.begin"),
1900                     addr.getAlignment());
1901    }
1902  
1903    baseType = eltType;
1904  
1905    llvm::Value *numElements
1906      = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1907  
1908    // If we had any VLA dimensions, factor them in.
1909    if (numVLAElements)
1910      numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1911  
1912    return numElements;
1913  }
1914  
1915  CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
1916    const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1917    assert(vla && "type was not a variable array type!");
1918    return getVLASize(vla);
1919  }
1920  
1921  CodeGenFunction::VlaSizePair
1922  CodeGenFunction::getVLASize(const VariableArrayType *type) {
1923    // The number of elements so far; always size_t.
1924    llvm::Value *numElements = nullptr;
1925  
1926    QualType elementType;
1927    do {
1928      elementType = type->getElementType();
1929      llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1930      assert(vlaSize && "no size for VLA!");
1931      assert(vlaSize->getType() == SizeTy);
1932  
1933      if (!numElements) {
1934        numElements = vlaSize;
1935      } else {
1936        // It's undefined behavior if this wraps around, so mark it that way.
1937        // FIXME: Teach -fsanitize=undefined to trap this.
1938        numElements = Builder.CreateNUWMul(numElements, vlaSize);
1939      }
1940    } while ((type = getContext().getAsVariableArrayType(elementType)));
1941  
1942    return { numElements, elementType };
1943  }
1944  
1945  CodeGenFunction::VlaSizePair
1946  CodeGenFunction::getVLAElements1D(QualType type) {
1947    const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1948    assert(vla && "type was not a variable array type!");
1949    return getVLAElements1D(vla);
1950  }
1951  
1952  CodeGenFunction::VlaSizePair
1953  CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
1954    llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
1955    assert(VlaSize && "no size for VLA!");
1956    assert(VlaSize->getType() == SizeTy);
1957    return { VlaSize, Vla->getElementType() };
1958  }
1959  
1960  void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1961    assert(type->isVariablyModifiedType() &&
1962           "Must pass variably modified type to EmitVLASizes!");
1963  
1964    EnsureInsertPoint();
1965  
1966    // We're going to walk down into the type and look for VLA
1967    // expressions.
1968    do {
1969      assert(type->isVariablyModifiedType());
1970  
1971      const Type *ty = type.getTypePtr();
1972      switch (ty->getTypeClass()) {
1973  
1974  #define TYPE(Class, Base)
1975  #define ABSTRACT_TYPE(Class, Base)
1976  #define NON_CANONICAL_TYPE(Class, Base)
1977  #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1978  #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1979  #include "clang/AST/TypeNodes.inc"
1980        llvm_unreachable("unexpected dependent type!");
1981  
1982      // These types are never variably-modified.
1983      case Type::Builtin:
1984      case Type::Complex:
1985      case Type::Vector:
1986      case Type::ExtVector:
1987      case Type::ConstantMatrix:
1988      case Type::Record:
1989      case Type::Enum:
1990      case Type::Elaborated:
1991      case Type::TemplateSpecialization:
1992      case Type::ObjCTypeParam:
1993      case Type::ObjCObject:
1994      case Type::ObjCInterface:
1995      case Type::ObjCObjectPointer:
1996      case Type::ExtInt:
1997        llvm_unreachable("type class is never variably-modified!");
1998  
1999      case Type::Adjusted:
2000        type = cast<AdjustedType>(ty)->getAdjustedType();
2001        break;
2002  
2003      case Type::Decayed:
2004        type = cast<DecayedType>(ty)->getPointeeType();
2005        break;
2006  
2007      case Type::Pointer:
2008        type = cast<PointerType>(ty)->getPointeeType();
2009        break;
2010  
2011      case Type::BlockPointer:
2012        type = cast<BlockPointerType>(ty)->getPointeeType();
2013        break;
2014  
2015      case Type::LValueReference:
2016      case Type::RValueReference:
2017        type = cast<ReferenceType>(ty)->getPointeeType();
2018        break;
2019  
2020      case Type::MemberPointer:
2021        type = cast<MemberPointerType>(ty)->getPointeeType();
2022        break;
2023  
2024      case Type::ConstantArray:
2025      case Type::IncompleteArray:
2026        // Losing element qualification here is fine.
2027        type = cast<ArrayType>(ty)->getElementType();
2028        break;
2029  
2030      case Type::VariableArray: {
2031        // Losing element qualification here is fine.
2032        const VariableArrayType *vat = cast<VariableArrayType>(ty);
2033  
2034        // Unknown size indication requires no size computation.
2035        // Otherwise, evaluate and record it.
2036        if (const Expr *size = vat->getSizeExpr()) {
2037          // It's possible that we might have emitted this already,
2038          // e.g. with a typedef and a pointer to it.
2039          llvm::Value *&entry = VLASizeMap[size];
2040          if (!entry) {
2041            llvm::Value *Size = EmitScalarExpr(size);
2042  
2043            // C11 6.7.6.2p5:
2044            //   If the size is an expression that is not an integer constant
2045            //   expression [...] each time it is evaluated it shall have a value
2046            //   greater than zero.
2047            if (SanOpts.has(SanitizerKind::VLABound) &&
2048                size->getType()->isSignedIntegerType()) {
2049              SanitizerScope SanScope(this);
2050              llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2051              llvm::Constant *StaticArgs[] = {
2052                  EmitCheckSourceLocation(size->getBeginLoc()),
2053                  EmitCheckTypeDescriptor(size->getType())};
2054              EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2055                                       SanitizerKind::VLABound),
2056                        SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2057            }
2058  
2059            // Always zexting here would be wrong if it weren't
2060            // undefined behavior to have a negative bound.
2061            entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2062          }
2063        }
2064        type = vat->getElementType();
2065        break;
2066      }
2067  
2068      case Type::FunctionProto:
2069      case Type::FunctionNoProto:
2070        type = cast<FunctionType>(ty)->getReturnType();
2071        break;
2072  
2073      case Type::Paren:
2074      case Type::TypeOf:
2075      case Type::UnaryTransform:
2076      case Type::Attributed:
2077      case Type::SubstTemplateTypeParm:
2078      case Type::PackExpansion:
2079      case Type::MacroQualified:
2080        // Keep walking after single level desugaring.
2081        type = type.getSingleStepDesugaredType(getContext());
2082        break;
2083  
2084      case Type::Typedef:
2085      case Type::Decltype:
2086      case Type::Auto:
2087      case Type::DeducedTemplateSpecialization:
2088        // Stop walking: nothing to do.
2089        return;
2090  
2091      case Type::TypeOfExpr:
2092        // Stop walking: emit typeof expression.
2093        EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2094        return;
2095  
2096      case Type::Atomic:
2097        type = cast<AtomicType>(ty)->getValueType();
2098        break;
2099  
2100      case Type::Pipe:
2101        type = cast<PipeType>(ty)->getElementType();
2102        break;
2103      }
2104    } while (type->isVariablyModifiedType());
2105  }
2106  
2107  Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2108    if (getContext().getBuiltinVaListType()->isArrayType())
2109      return EmitPointerWithAlignment(E);
2110    return EmitLValue(E).getAddress(*this);
2111  }
2112  
2113  Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2114    return EmitLValue(E).getAddress(*this);
2115  }
2116  
2117  void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2118                                                const APValue &Init) {
2119    assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2120    if (CGDebugInfo *Dbg = getDebugInfo())
2121      if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2122        Dbg->EmitGlobalVariable(E->getDecl(), Init);
2123  }
2124  
2125  CodeGenFunction::PeepholeProtection
2126  CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2127    // At the moment, the only aggressive peephole we do in IR gen
2128    // is trunc(zext) folding, but if we add more, we can easily
2129    // extend this protection.
2130  
2131    if (!rvalue.isScalar()) return PeepholeProtection();
2132    llvm::Value *value = rvalue.getScalarVal();
2133    if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2134  
2135    // Just make an extra bitcast.
2136    assert(HaveInsertPoint());
2137    llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2138                                                    Builder.GetInsertBlock());
2139  
2140    PeepholeProtection protection;
2141    protection.Inst = inst;
2142    return protection;
2143  }
2144  
2145  void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2146    if (!protection.Inst) return;
2147  
2148    // In theory, we could try to duplicate the peepholes now, but whatever.
2149    protection.Inst->eraseFromParent();
2150  }
2151  
2152  void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2153                                                QualType Ty, SourceLocation Loc,
2154                                                SourceLocation AssumptionLoc,
2155                                                llvm::Value *Alignment,
2156                                                llvm::Value *OffsetValue) {
2157    llvm::Value *TheCheck;
2158    llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2159        CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck);
2160    if (SanOpts.has(SanitizerKind::Alignment)) {
2161      emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2162                                   OffsetValue, TheCheck, Assumption);
2163    }
2164  }
2165  
2166  void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2167                                                const Expr *E,
2168                                                SourceLocation AssumptionLoc,
2169                                                llvm::Value *Alignment,
2170                                                llvm::Value *OffsetValue) {
2171    if (auto *CE = dyn_cast<CastExpr>(E))
2172      E = CE->getSubExprAsWritten();
2173    QualType Ty = E->getType();
2174    SourceLocation Loc = E->getExprLoc();
2175  
2176    emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2177                            OffsetValue);
2178  }
2179  
2180  llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2181                                                   llvm::Value *AnnotatedVal,
2182                                                   StringRef AnnotationStr,
2183                                                   SourceLocation Location) {
2184    llvm::Value *Args[4] = {
2185      AnnotatedVal,
2186      Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2187      Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2188      CGM.EmitAnnotationLineNo(Location)
2189    };
2190    return Builder.CreateCall(AnnotationFn, Args);
2191  }
2192  
2193  void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2194    assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2195    // FIXME We create a new bitcast for every annotation because that's what
2196    // llvm-gcc was doing.
2197    for (const auto *I : D->specific_attrs<AnnotateAttr>())
2198      EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2199                         Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2200                         I->getAnnotation(), D->getLocation());
2201  }
2202  
2203  Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2204                                                Address Addr) {
2205    assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2206    llvm::Value *V = Addr.getPointer();
2207    llvm::Type *VTy = V->getType();
2208    llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2209                                      CGM.Int8PtrTy);
2210  
2211    for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2212      // FIXME Always emit the cast inst so we can differentiate between
2213      // annotation on the first field of a struct and annotation on the struct
2214      // itself.
2215      if (VTy != CGM.Int8PtrTy)
2216        V = Builder.CreateBitCast(V, CGM.Int8PtrTy);
2217      V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2218      V = Builder.CreateBitCast(V, VTy);
2219    }
2220  
2221    return Address(V, Addr.getAlignment());
2222  }
2223  
2224  CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2225  
2226  CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2227      : CGF(CGF) {
2228    assert(!CGF->IsSanitizerScope);
2229    CGF->IsSanitizerScope = true;
2230  }
2231  
2232  CodeGenFunction::SanitizerScope::~SanitizerScope() {
2233    CGF->IsSanitizerScope = false;
2234  }
2235  
2236  void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2237                                     const llvm::Twine &Name,
2238                                     llvm::BasicBlock *BB,
2239                                     llvm::BasicBlock::iterator InsertPt) const {
2240    LoopStack.InsertHelper(I);
2241    if (IsSanitizerScope)
2242      CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2243  }
2244  
2245  void CGBuilderInserter::InsertHelper(
2246      llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2247      llvm::BasicBlock::iterator InsertPt) const {
2248    llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2249    if (CGF)
2250      CGF->InsertHelper(I, Name, BB, InsertPt);
2251  }
2252  
2253  static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2254                                  CodeGenModule &CGM, const FunctionDecl *FD,
2255                                  std::string &FirstMissing) {
2256    // If there aren't any required features listed then go ahead and return.
2257    if (ReqFeatures.empty())
2258      return false;
2259  
2260    // Now build up the set of caller features and verify that all the required
2261    // features are there.
2262    llvm::StringMap<bool> CallerFeatureMap;
2263    CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2264  
2265    // If we have at least one of the features in the feature list return
2266    // true, otherwise return false.
2267    return std::all_of(
2268        ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2269          SmallVector<StringRef, 1> OrFeatures;
2270          Feature.split(OrFeatures, '|');
2271          return llvm::any_of(OrFeatures, [&](StringRef Feature) {
2272            if (!CallerFeatureMap.lookup(Feature)) {
2273              FirstMissing = Feature.str();
2274              return false;
2275            }
2276            return true;
2277          });
2278        });
2279  }
2280  
2281  // Emits an error if we don't have a valid set of target features for the
2282  // called function.
2283  void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2284                                            const FunctionDecl *TargetDecl) {
2285    return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2286  }
2287  
2288  // Emits an error if we don't have a valid set of target features for the
2289  // called function.
2290  void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2291                                            const FunctionDecl *TargetDecl) {
2292    // Early exit if this is an indirect call.
2293    if (!TargetDecl)
2294      return;
2295  
2296    // Get the current enclosing function if it exists. If it doesn't
2297    // we can't check the target features anyhow.
2298    const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2299    if (!FD)
2300      return;
2301  
2302    // Grab the required features for the call. For a builtin this is listed in
2303    // the td file with the default cpu, for an always_inline function this is any
2304    // listed cpu and any listed features.
2305    unsigned BuiltinID = TargetDecl->getBuiltinID();
2306    std::string MissingFeature;
2307    if (BuiltinID) {
2308      SmallVector<StringRef, 1> ReqFeatures;
2309      const char *FeatureList =
2310          CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2311      // Return if the builtin doesn't have any required features.
2312      if (!FeatureList || StringRef(FeatureList) == "")
2313        return;
2314      StringRef(FeatureList).split(ReqFeatures, ',');
2315      if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2316        CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2317            << TargetDecl->getDeclName()
2318            << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2319  
2320    } else if (!TargetDecl->isMultiVersion() &&
2321               TargetDecl->hasAttr<TargetAttr>()) {
2322      // Get the required features for the callee.
2323  
2324      const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2325      ParsedTargetAttr ParsedAttr =
2326          CGM.getContext().filterFunctionTargetAttrs(TD);
2327  
2328      SmallVector<StringRef, 1> ReqFeatures;
2329      llvm::StringMap<bool> CalleeFeatureMap;
2330      CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2331  
2332      for (const auto &F : ParsedAttr.Features) {
2333        if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2334          ReqFeatures.push_back(StringRef(F).substr(1));
2335      }
2336  
2337      for (const auto &F : CalleeFeatureMap) {
2338        // Only positive features are "required".
2339        if (F.getValue())
2340          ReqFeatures.push_back(F.getKey());
2341      }
2342      if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2343        CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2344            << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2345    }
2346  }
2347  
2348  void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2349    if (!CGM.getCodeGenOpts().SanitizeStats)
2350      return;
2351  
2352    llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2353    IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2354    CGM.getSanStats().create(IRB, SSK);
2355  }
2356  
2357  llvm::Value *
2358  CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2359    llvm::Value *Condition = nullptr;
2360  
2361    if (!RO.Conditions.Architecture.empty())
2362      Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2363  
2364    if (!RO.Conditions.Features.empty()) {
2365      llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2366      Condition =
2367          Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2368    }
2369    return Condition;
2370  }
2371  
2372  static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2373                                               llvm::Function *Resolver,
2374                                               CGBuilderTy &Builder,
2375                                               llvm::Function *FuncToReturn,
2376                                               bool SupportsIFunc) {
2377    if (SupportsIFunc) {
2378      Builder.CreateRet(FuncToReturn);
2379      return;
2380    }
2381  
2382    llvm::SmallVector<llvm::Value *, 10> Args;
2383    llvm::for_each(Resolver->args(),
2384                   [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2385  
2386    llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2387    Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2388  
2389    if (Resolver->getReturnType()->isVoidTy())
2390      Builder.CreateRetVoid();
2391    else
2392      Builder.CreateRet(Result);
2393  }
2394  
2395  void CodeGenFunction::EmitMultiVersionResolver(
2396      llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2397    assert(getContext().getTargetInfo().getTriple().isX86() &&
2398           "Only implemented for x86 targets");
2399  
2400    bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2401  
2402    // Main function's basic block.
2403    llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2404    Builder.SetInsertPoint(CurBlock);
2405    EmitX86CpuInit();
2406  
2407    for (const MultiVersionResolverOption &RO : Options) {
2408      Builder.SetInsertPoint(CurBlock);
2409      llvm::Value *Condition = FormResolverCondition(RO);
2410  
2411      // The 'default' or 'generic' case.
2412      if (!Condition) {
2413        assert(&RO == Options.end() - 1 &&
2414               "Default or Generic case must be last");
2415        CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2416                                         SupportsIFunc);
2417        return;
2418      }
2419  
2420      llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2421      CGBuilderTy RetBuilder(*this, RetBlock);
2422      CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2423                                       SupportsIFunc);
2424      CurBlock = createBasicBlock("resolver_else", Resolver);
2425      Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2426    }
2427  
2428    // If no generic/default, emit an unreachable.
2429    Builder.SetInsertPoint(CurBlock);
2430    llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2431    TrapCall->setDoesNotReturn();
2432    TrapCall->setDoesNotThrow();
2433    Builder.CreateUnreachable();
2434    Builder.ClearInsertionPoint();
2435  }
2436  
2437  // Loc - where the diagnostic will point, where in the source code this
2438  //  alignment has failed.
2439  // SecondaryLoc - if present (will be present if sufficiently different from
2440  //  Loc), the diagnostic will additionally point a "Note:" to this location.
2441  //  It should be the location where the __attribute__((assume_aligned))
2442  //  was written e.g.
2443  void CodeGenFunction::emitAlignmentAssumptionCheck(
2444      llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2445      SourceLocation SecondaryLoc, llvm::Value *Alignment,
2446      llvm::Value *OffsetValue, llvm::Value *TheCheck,
2447      llvm::Instruction *Assumption) {
2448    assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2449           cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2450               llvm::Intrinsic::getDeclaration(
2451                   Builder.GetInsertBlock()->getParent()->getParent(),
2452                   llvm::Intrinsic::assume) &&
2453           "Assumption should be a call to llvm.assume().");
2454    assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2455           "Assumption should be the last instruction of the basic block, "
2456           "since the basic block is still being generated.");
2457  
2458    if (!SanOpts.has(SanitizerKind::Alignment))
2459      return;
2460  
2461    // Don't check pointers to volatile data. The behavior here is implementation-
2462    // defined.
2463    if (Ty->getPointeeType().isVolatileQualified())
2464      return;
2465  
2466    // We need to temorairly remove the assumption so we can insert the
2467    // sanitizer check before it, else the check will be dropped by optimizations.
2468    Assumption->removeFromParent();
2469  
2470    {
2471      SanitizerScope SanScope(this);
2472  
2473      if (!OffsetValue)
2474        OffsetValue = Builder.getInt1(0); // no offset.
2475  
2476      llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2477                                      EmitCheckSourceLocation(SecondaryLoc),
2478                                      EmitCheckTypeDescriptor(Ty)};
2479      llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2480                                    EmitCheckValue(Alignment),
2481                                    EmitCheckValue(OffsetValue)};
2482      EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2483                SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2484    }
2485  
2486    // We are now in the (new, empty) "cont" basic block.
2487    // Reintroduce the assumption.
2488    Builder.Insert(Assumption);
2489    // FIXME: Assumption still has it's original basic block as it's Parent.
2490  }
2491  
2492  llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2493    if (CGDebugInfo *DI = getDebugInfo())
2494      return DI->SourceLocToDebugLoc(Location);
2495  
2496    return llvm::DebugLoc();
2497  }
2498