xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision 38a52bd3b5cac3da6f7f6eef3dd050e6aa08ebb3)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/Expr.h"
29 #include "clang/AST/StmtCXX.h"
30 #include "clang/AST/StmtObjC.h"
31 #include "clang/Basic/Builtins.h"
32 #include "clang/Basic/CodeGenOptions.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/CodeGen/CGFunctionInfo.h"
35 #include "clang/Frontend/FrontendDiagnostic.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/FPEnv.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/MDBuilder.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/Support/CRC.h"
46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
47 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
48 
49 using namespace clang;
50 using namespace CodeGen;
51 
52 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
53 /// markers.
54 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
55                                       const LangOptions &LangOpts) {
56   if (CGOpts.DisableLifetimeMarkers)
57     return false;
58 
59   // Sanitizers may use markers.
60   if (CGOpts.SanitizeAddressUseAfterScope ||
61       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
62       LangOpts.Sanitize.has(SanitizerKind::Memory))
63     return true;
64 
65   // For now, only in optimized builds.
66   return CGOpts.OptimizationLevel != 0;
67 }
68 
69 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
70     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
71       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
72               CGBuilderInserterTy(this)),
73       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
74       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
75       ShouldEmitLifetimeMarkers(
76           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
77   if (!suppressNewContext)
78     CGM.getCXXABI().getMangleContext().startNewFunction();
79   EHStack.setCGF(this);
80 
81   SetFastMathFlags(CurFPFeatures);
82 }
83 
84 CodeGenFunction::~CodeGenFunction() {
85   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
86 
87   if (getLangOpts().OpenMP && CurFn)
88     CGM.getOpenMPRuntime().functionFinished(*this);
89 
90   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
91   // outlining etc) at some point. Doing it once the function codegen is done
92   // seems to be a reasonable spot. We do it here, as opposed to the deletion
93   // time of the CodeGenModule, because we have to ensure the IR has not yet
94   // been "emitted" to the outside, thus, modifications are still sensible.
95   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
96     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
97 }
98 
99 // Map the LangOption for exception behavior into
100 // the corresponding enum in the IR.
101 llvm::fp::ExceptionBehavior
102 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
103 
104   switch (Kind) {
105   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
106   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
107   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
108   }
109   llvm_unreachable("Unsupported FP Exception Behavior");
110 }
111 
112 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
113   llvm::FastMathFlags FMF;
114   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
115   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
116   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
117   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
118   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
119   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
120   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
121   Builder.setFastMathFlags(FMF);
122 }
123 
124 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
125                                                   const Expr *E)
126     : CGF(CGF) {
127   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
128 }
129 
130 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
131                                                   FPOptions FPFeatures)
132     : CGF(CGF) {
133   ConstructorHelper(FPFeatures);
134 }
135 
136 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
137   OldFPFeatures = CGF.CurFPFeatures;
138   CGF.CurFPFeatures = FPFeatures;
139 
140   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
141   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
142 
143   if (OldFPFeatures == FPFeatures)
144     return;
145 
146   FMFGuard.emplace(CGF.Builder);
147 
148   llvm::RoundingMode NewRoundingBehavior =
149       static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode());
150   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
151   auto NewExceptionBehavior =
152       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
153           FPFeatures.getFPExceptionMode()));
154   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
155 
156   CGF.SetFastMathFlags(FPFeatures);
157 
158   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
159           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
160           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
161           (NewExceptionBehavior == llvm::fp::ebIgnore &&
162            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
163          "FPConstrained should be enabled on entire function");
164 
165   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
166     auto OldValue =
167         CGF.CurFn->getFnAttribute(Name).getValueAsBool();
168     auto NewValue = OldValue & Value;
169     if (OldValue != NewValue)
170       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
171   };
172   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
173   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
174   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
175   mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() &&
176                                          FPFeatures.getAllowReciprocal() &&
177                                          FPFeatures.getAllowApproxFunc() &&
178                                          FPFeatures.getNoSignedZero());
179 }
180 
181 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
182   CGF.CurFPFeatures = OldFPFeatures;
183   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
184   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
185 }
186 
187 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
188   LValueBaseInfo BaseInfo;
189   TBAAAccessInfo TBAAInfo;
190   CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
191   Address Addr(V, ConvertTypeForMem(T), Alignment);
192   return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
193 }
194 
195 /// Given a value of type T* that may not be to a complete object,
196 /// construct an l-value with the natural pointee alignment of T.
197 LValue
198 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
199   LValueBaseInfo BaseInfo;
200   TBAAAccessInfo TBAAInfo;
201   CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
202                                                 /* forPointeeType= */ true);
203   Address Addr(V, ConvertTypeForMem(T), Align);
204   return MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
205 }
206 
207 
208 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
209   return CGM.getTypes().ConvertTypeForMem(T);
210 }
211 
212 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
213   return CGM.getTypes().ConvertType(T);
214 }
215 
216 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
217   type = type.getCanonicalType();
218   while (true) {
219     switch (type->getTypeClass()) {
220 #define TYPE(name, parent)
221 #define ABSTRACT_TYPE(name, parent)
222 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
223 #define DEPENDENT_TYPE(name, parent) case Type::name:
224 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
225 #include "clang/AST/TypeNodes.inc"
226       llvm_unreachable("non-canonical or dependent type in IR-generation");
227 
228     case Type::Auto:
229     case Type::DeducedTemplateSpecialization:
230       llvm_unreachable("undeduced type in IR-generation");
231 
232     // Various scalar types.
233     case Type::Builtin:
234     case Type::Pointer:
235     case Type::BlockPointer:
236     case Type::LValueReference:
237     case Type::RValueReference:
238     case Type::MemberPointer:
239     case Type::Vector:
240     case Type::ExtVector:
241     case Type::ConstantMatrix:
242     case Type::FunctionProto:
243     case Type::FunctionNoProto:
244     case Type::Enum:
245     case Type::ObjCObjectPointer:
246     case Type::Pipe:
247     case Type::BitInt:
248       return TEK_Scalar;
249 
250     // Complexes.
251     case Type::Complex:
252       return TEK_Complex;
253 
254     // Arrays, records, and Objective-C objects.
255     case Type::ConstantArray:
256     case Type::IncompleteArray:
257     case Type::VariableArray:
258     case Type::Record:
259     case Type::ObjCObject:
260     case Type::ObjCInterface:
261       return TEK_Aggregate;
262 
263     // We operate on atomic values according to their underlying type.
264     case Type::Atomic:
265       type = cast<AtomicType>(type)->getValueType();
266       continue;
267     }
268     llvm_unreachable("unknown type kind!");
269   }
270 }
271 
272 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
273   // For cleanliness, we try to avoid emitting the return block for
274   // simple cases.
275   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
276 
277   if (CurBB) {
278     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
279 
280     // We have a valid insert point, reuse it if it is empty or there are no
281     // explicit jumps to the return block.
282     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
283       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
284       delete ReturnBlock.getBlock();
285       ReturnBlock = JumpDest();
286     } else
287       EmitBlock(ReturnBlock.getBlock());
288     return llvm::DebugLoc();
289   }
290 
291   // Otherwise, if the return block is the target of a single direct
292   // branch then we can just put the code in that block instead. This
293   // cleans up functions which started with a unified return block.
294   if (ReturnBlock.getBlock()->hasOneUse()) {
295     llvm::BranchInst *BI =
296       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
297     if (BI && BI->isUnconditional() &&
298         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
299       // Record/return the DebugLoc of the simple 'return' expression to be used
300       // later by the actual 'ret' instruction.
301       llvm::DebugLoc Loc = BI->getDebugLoc();
302       Builder.SetInsertPoint(BI->getParent());
303       BI->eraseFromParent();
304       delete ReturnBlock.getBlock();
305       ReturnBlock = JumpDest();
306       return Loc;
307     }
308   }
309 
310   // FIXME: We are at an unreachable point, there is no reason to emit the block
311   // unless it has uses. However, we still need a place to put the debug
312   // region.end for now.
313 
314   EmitBlock(ReturnBlock.getBlock());
315   return llvm::DebugLoc();
316 }
317 
318 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
319   if (!BB) return;
320   if (!BB->use_empty())
321     return CGF.CurFn->getBasicBlockList().push_back(BB);
322   delete BB;
323 }
324 
325 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
326   assert(BreakContinueStack.empty() &&
327          "mismatched push/pop in break/continue stack!");
328 
329   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
330     && NumSimpleReturnExprs == NumReturnExprs
331     && ReturnBlock.getBlock()->use_empty();
332   // Usually the return expression is evaluated before the cleanup
333   // code.  If the function contains only a simple return statement,
334   // such as a constant, the location before the cleanup code becomes
335   // the last useful breakpoint in the function, because the simple
336   // return expression will be evaluated after the cleanup code. To be
337   // safe, set the debug location for cleanup code to the location of
338   // the return statement.  Otherwise the cleanup code should be at the
339   // end of the function's lexical scope.
340   //
341   // If there are multiple branches to the return block, the branch
342   // instructions will get the location of the return statements and
343   // all will be fine.
344   if (CGDebugInfo *DI = getDebugInfo()) {
345     if (OnlySimpleReturnStmts)
346       DI->EmitLocation(Builder, LastStopPoint);
347     else
348       DI->EmitLocation(Builder, EndLoc);
349   }
350 
351   // Pop any cleanups that might have been associated with the
352   // parameters.  Do this in whatever block we're currently in; it's
353   // important to do this before we enter the return block or return
354   // edges will be *really* confused.
355   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
356   bool HasOnlyLifetimeMarkers =
357       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
358   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
359   if (HasCleanups) {
360     // Make sure the line table doesn't jump back into the body for
361     // the ret after it's been at EndLoc.
362     Optional<ApplyDebugLocation> AL;
363     if (CGDebugInfo *DI = getDebugInfo()) {
364       if (OnlySimpleReturnStmts)
365         DI->EmitLocation(Builder, EndLoc);
366       else
367         // We may not have a valid end location. Try to apply it anyway, and
368         // fall back to an artificial location if needed.
369         AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
370     }
371 
372     PopCleanupBlocks(PrologueCleanupDepth);
373   }
374 
375   // Emit function epilog (to return).
376   llvm::DebugLoc Loc = EmitReturnBlock();
377 
378   if (ShouldInstrumentFunction()) {
379     if (CGM.getCodeGenOpts().InstrumentFunctions)
380       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
381     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
382       CurFn->addFnAttr("instrument-function-exit-inlined",
383                        "__cyg_profile_func_exit");
384   }
385 
386   if (ShouldSkipSanitizerInstrumentation())
387     CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
388 
389   // Emit debug descriptor for function end.
390   if (CGDebugInfo *DI = getDebugInfo())
391     DI->EmitFunctionEnd(Builder, CurFn);
392 
393   // Reset the debug location to that of the simple 'return' expression, if any
394   // rather than that of the end of the function's scope '}'.
395   ApplyDebugLocation AL(*this, Loc);
396   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
397   EmitEndEHSpec(CurCodeDecl);
398 
399   assert(EHStack.empty() &&
400          "did not remove all scopes from cleanup stack!");
401 
402   // If someone did an indirect goto, emit the indirect goto block at the end of
403   // the function.
404   if (IndirectBranch) {
405     EmitBlock(IndirectBranch->getParent());
406     Builder.ClearInsertionPoint();
407   }
408 
409   // If some of our locals escaped, insert a call to llvm.localescape in the
410   // entry block.
411   if (!EscapedLocals.empty()) {
412     // Invert the map from local to index into a simple vector. There should be
413     // no holes.
414     SmallVector<llvm::Value *, 4> EscapeArgs;
415     EscapeArgs.resize(EscapedLocals.size());
416     for (auto &Pair : EscapedLocals)
417       EscapeArgs[Pair.second] = Pair.first;
418     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
419         &CGM.getModule(), llvm::Intrinsic::localescape);
420     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
421   }
422 
423   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
424   llvm::Instruction *Ptr = AllocaInsertPt;
425   AllocaInsertPt = nullptr;
426   Ptr->eraseFromParent();
427 
428   // PostAllocaInsertPt, if created, was lazily created when it was required,
429   // remove it now since it was just created for our own convenience.
430   if (PostAllocaInsertPt) {
431     llvm::Instruction *PostPtr = PostAllocaInsertPt;
432     PostAllocaInsertPt = nullptr;
433     PostPtr->eraseFromParent();
434   }
435 
436   // If someone took the address of a label but never did an indirect goto, we
437   // made a zero entry PHI node, which is illegal, zap it now.
438   if (IndirectBranch) {
439     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
440     if (PN->getNumIncomingValues() == 0) {
441       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
442       PN->eraseFromParent();
443     }
444   }
445 
446   EmitIfUsed(*this, EHResumeBlock);
447   EmitIfUsed(*this, TerminateLandingPad);
448   EmitIfUsed(*this, TerminateHandler);
449   EmitIfUsed(*this, UnreachableBlock);
450 
451   for (const auto &FuncletAndParent : TerminateFunclets)
452     EmitIfUsed(*this, FuncletAndParent.second);
453 
454   if (CGM.getCodeGenOpts().EmitDeclMetadata)
455     EmitDeclMetadata();
456 
457   for (const auto &R : DeferredReplacements) {
458     if (llvm::Value *Old = R.first) {
459       Old->replaceAllUsesWith(R.second);
460       cast<llvm::Instruction>(Old)->eraseFromParent();
461     }
462   }
463   DeferredReplacements.clear();
464 
465   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
466   // PHIs if the current function is a coroutine. We don't do it for all
467   // functions as it may result in slight increase in numbers of instructions
468   // if compiled with no optimizations. We do it for coroutine as the lifetime
469   // of CleanupDestSlot alloca make correct coroutine frame building very
470   // difficult.
471   if (NormalCleanupDest.isValid() && isCoroutine()) {
472     llvm::DominatorTree DT(*CurFn);
473     llvm::PromoteMemToReg(
474         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
475     NormalCleanupDest = Address::invalid();
476   }
477 
478   // Scan function arguments for vector width.
479   for (llvm::Argument &A : CurFn->args())
480     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
481       LargestVectorWidth =
482           std::max((uint64_t)LargestVectorWidth,
483                    VT->getPrimitiveSizeInBits().getKnownMinSize());
484 
485   // Update vector width based on return type.
486   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
487     LargestVectorWidth =
488         std::max((uint64_t)LargestVectorWidth,
489                  VT->getPrimitiveSizeInBits().getKnownMinSize());
490 
491   // Add the required-vector-width attribute. This contains the max width from:
492   // 1. min-vector-width attribute used in the source program.
493   // 2. Any builtins used that have a vector width specified.
494   // 3. Values passed in and out of inline assembly.
495   // 4. Width of vector arguments and return types for this function.
496   // 5. Width of vector aguments and return types for functions called by this
497   //    function.
498   CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
499 
500   // Add vscale_range attribute if appropriate.
501   Optional<std::pair<unsigned, unsigned>> VScaleRange =
502       getContext().getTargetInfo().getVScaleRange(getLangOpts());
503   if (VScaleRange) {
504     CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
505         getLLVMContext(), VScaleRange.getValue().first,
506         VScaleRange.getValue().second));
507   }
508 
509   // If we generated an unreachable return block, delete it now.
510   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
511     Builder.ClearInsertionPoint();
512     ReturnBlock.getBlock()->eraseFromParent();
513   }
514   if (ReturnValue.isValid()) {
515     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
516     if (RetAlloca && RetAlloca->use_empty()) {
517       RetAlloca->eraseFromParent();
518       ReturnValue = Address::invalid();
519     }
520   }
521 }
522 
523 /// ShouldInstrumentFunction - Return true if the current function should be
524 /// instrumented with __cyg_profile_func_* calls
525 bool CodeGenFunction::ShouldInstrumentFunction() {
526   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
527       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
528       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
529     return false;
530   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
531     return false;
532   return true;
533 }
534 
535 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
536   if (!CurFuncDecl)
537     return false;
538   return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
539 }
540 
541 /// ShouldXRayInstrument - Return true if the current function should be
542 /// instrumented with XRay nop sleds.
543 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
544   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
545 }
546 
547 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
548 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
549 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
550   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
551          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
552           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
553               XRayInstrKind::Custom);
554 }
555 
556 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
557   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
558          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
559           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
560               XRayInstrKind::Typed);
561 }
562 
563 llvm::Constant *
564 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
565                                             llvm::Constant *Addr) {
566   // Addresses stored in prologue data can't require run-time fixups and must
567   // be PC-relative. Run-time fixups are undesirable because they necessitate
568   // writable text segments, which are unsafe. And absolute addresses are
569   // undesirable because they break PIE mode.
570 
571   // Add a layer of indirection through a private global. Taking its address
572   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
573   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
574                                       /*isConstant=*/true,
575                                       llvm::GlobalValue::PrivateLinkage, Addr);
576 
577   // Create a PC-relative address.
578   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
579   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
580   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
581   return (IntPtrTy == Int32Ty)
582              ? PCRelAsInt
583              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
584 }
585 
586 llvm::Value *
587 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
588                                           llvm::Value *EncodedAddr) {
589   // Reconstruct the address of the global.
590   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
591   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
592   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
593   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
594 
595   // Load the original pointer through the global.
596   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
597                             "decoded_addr");
598 }
599 
600 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
601                                                llvm::Function *Fn)
602 {
603   if (!FD->hasAttr<OpenCLKernelAttr>())
604     return;
605 
606   llvm::LLVMContext &Context = getLLVMContext();
607 
608   CGM.GenOpenCLArgMetadata(Fn, FD, this);
609 
610   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
611     QualType HintQTy = A->getTypeHint();
612     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
613     bool IsSignedInteger =
614         HintQTy->isSignedIntegerType() ||
615         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
616     llvm::Metadata *AttrMDArgs[] = {
617         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
618             CGM.getTypes().ConvertType(A->getTypeHint()))),
619         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
620             llvm::IntegerType::get(Context, 32),
621             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
622     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
623   }
624 
625   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
626     llvm::Metadata *AttrMDArgs[] = {
627         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
628         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
629         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
630     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
631   }
632 
633   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
634     llvm::Metadata *AttrMDArgs[] = {
635         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
636         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
637         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
638     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
639   }
640 
641   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
642           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
643     llvm::Metadata *AttrMDArgs[] = {
644         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
645     Fn->setMetadata("intel_reqd_sub_group_size",
646                     llvm::MDNode::get(Context, AttrMDArgs));
647   }
648 }
649 
650 /// Determine whether the function F ends with a return stmt.
651 static bool endsWithReturn(const Decl* F) {
652   const Stmt *Body = nullptr;
653   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
654     Body = FD->getBody();
655   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
656     Body = OMD->getBody();
657 
658   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
659     auto LastStmt = CS->body_rbegin();
660     if (LastStmt != CS->body_rend())
661       return isa<ReturnStmt>(*LastStmt);
662   }
663   return false;
664 }
665 
666 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
667   if (SanOpts.has(SanitizerKind::Thread)) {
668     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
669     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
670   }
671 }
672 
673 /// Check if the return value of this function requires sanitization.
674 bool CodeGenFunction::requiresReturnValueCheck() const {
675   return requiresReturnValueNullabilityCheck() ||
676          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
677           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
678 }
679 
680 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
681   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
682   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
683       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
684       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
685     return false;
686 
687   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
688     return false;
689 
690   if (MD->getNumParams() == 2) {
691     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
692     if (!PT || !PT->isVoidPointerType() ||
693         !PT->getPointeeType().isConstQualified())
694       return false;
695   }
696 
697   return true;
698 }
699 
700 /// Return the UBSan prologue signature for \p FD if one is available.
701 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
702                                             const FunctionDecl *FD) {
703   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
704     if (!MD->isStatic())
705       return nullptr;
706   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
707 }
708 
709 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
710                                     llvm::Function *Fn,
711                                     const CGFunctionInfo &FnInfo,
712                                     const FunctionArgList &Args,
713                                     SourceLocation Loc,
714                                     SourceLocation StartLoc) {
715   assert(!CurFn &&
716          "Do not use a CodeGenFunction object for more than one function");
717 
718   const Decl *D = GD.getDecl();
719 
720   DidCallStackSave = false;
721   CurCodeDecl = D;
722   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
723   if (FD && FD->usesSEHTry())
724     CurSEHParent = FD;
725   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
726   FnRetTy = RetTy;
727   CurFn = Fn;
728   CurFnInfo = &FnInfo;
729   assert(CurFn->isDeclaration() && "Function already has body?");
730 
731   // If this function is ignored for any of the enabled sanitizers,
732   // disable the sanitizer for the function.
733   do {
734 #define SANITIZER(NAME, ID)                                                    \
735   if (SanOpts.empty())                                                         \
736     break;                                                                     \
737   if (SanOpts.has(SanitizerKind::ID))                                          \
738     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
739       SanOpts.set(SanitizerKind::ID, false);
740 
741 #include "clang/Basic/Sanitizers.def"
742 #undef SANITIZER
743   } while (false);
744 
745   if (D) {
746     bool NoSanitizeCoverage = false;
747 
748     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
749       // Apply the no_sanitize* attributes to SanOpts.
750       SanitizerMask mask = Attr->getMask();
751       SanOpts.Mask &= ~mask;
752       if (mask & SanitizerKind::Address)
753         SanOpts.set(SanitizerKind::KernelAddress, false);
754       if (mask & SanitizerKind::KernelAddress)
755         SanOpts.set(SanitizerKind::Address, false);
756       if (mask & SanitizerKind::HWAddress)
757         SanOpts.set(SanitizerKind::KernelHWAddress, false);
758       if (mask & SanitizerKind::KernelHWAddress)
759         SanOpts.set(SanitizerKind::HWAddress, false);
760 
761       // SanitizeCoverage is not handled by SanOpts.
762       if (Attr->hasCoverage())
763         NoSanitizeCoverage = true;
764     }
765 
766     if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
767       Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
768   }
769 
770   // Apply sanitizer attributes to the function.
771   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
772     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
773   if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
774     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
775   if (SanOpts.has(SanitizerKind::MemTag))
776     Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
777   if (SanOpts.has(SanitizerKind::Thread))
778     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
779   if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
780     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
781   if (SanOpts.has(SanitizerKind::SafeStack))
782     Fn->addFnAttr(llvm::Attribute::SafeStack);
783   if (SanOpts.has(SanitizerKind::ShadowCallStack))
784     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
785 
786   // Apply fuzzing attribute to the function.
787   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
788     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
789 
790   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
791   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
792   if (SanOpts.has(SanitizerKind::Thread)) {
793     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
794       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
795       if (OMD->getMethodFamily() == OMF_dealloc ||
796           OMD->getMethodFamily() == OMF_initialize ||
797           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
798         markAsIgnoreThreadCheckingAtRuntime(Fn);
799       }
800     }
801   }
802 
803   // Ignore unrelated casts in STL allocate() since the allocator must cast
804   // from void* to T* before object initialization completes. Don't match on the
805   // namespace because not all allocators are in std::
806   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
807     if (matchesStlAllocatorFn(D, getContext()))
808       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
809   }
810 
811   // Ignore null checks in coroutine functions since the coroutines passes
812   // are not aware of how to move the extra UBSan instructions across the split
813   // coroutine boundaries.
814   if (D && SanOpts.has(SanitizerKind::Null))
815     if (FD && FD->getBody() &&
816         FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
817       SanOpts.Mask &= ~SanitizerKind::Null;
818 
819   // Apply xray attributes to the function (as a string, for now)
820   bool AlwaysXRayAttr = false;
821   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
822     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
823             XRayInstrKind::FunctionEntry) ||
824         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
825             XRayInstrKind::FunctionExit)) {
826       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
827         Fn->addFnAttr("function-instrument", "xray-always");
828         AlwaysXRayAttr = true;
829       }
830       if (XRayAttr->neverXRayInstrument())
831         Fn->addFnAttr("function-instrument", "xray-never");
832       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
833         if (ShouldXRayInstrumentFunction())
834           Fn->addFnAttr("xray-log-args",
835                         llvm::utostr(LogArgs->getArgumentCount()));
836     }
837   } else {
838     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
839       Fn->addFnAttr(
840           "xray-instruction-threshold",
841           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
842   }
843 
844   if (ShouldXRayInstrumentFunction()) {
845     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
846       Fn->addFnAttr("xray-ignore-loops");
847 
848     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
849             XRayInstrKind::FunctionExit))
850       Fn->addFnAttr("xray-skip-exit");
851 
852     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
853             XRayInstrKind::FunctionEntry))
854       Fn->addFnAttr("xray-skip-entry");
855 
856     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
857     if (FuncGroups > 1) {
858       auto FuncName = llvm::makeArrayRef<uint8_t>(
859           CurFn->getName().bytes_begin(), CurFn->getName().bytes_end());
860       auto Group = crc32(FuncName) % FuncGroups;
861       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
862           !AlwaysXRayAttr)
863         Fn->addFnAttr("function-instrument", "xray-never");
864     }
865   }
866 
867   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone)
868     if (CGM.isProfileInstrExcluded(Fn, Loc))
869       Fn->addFnAttr(llvm::Attribute::NoProfile);
870 
871   unsigned Count, Offset;
872   if (const auto *Attr =
873           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
874     Count = Attr->getCount();
875     Offset = Attr->getOffset();
876   } else {
877     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
878     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
879   }
880   if (Count && Offset <= Count) {
881     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
882     if (Offset)
883       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
884   }
885   // Instruct that functions for COFF/CodeView targets should start with a
886   // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
887   // backends as they don't need it -- instructions on these architectures are
888   // always atomically patchable at runtime.
889   if (CGM.getCodeGenOpts().HotPatch &&
890       getContext().getTargetInfo().getTriple().isX86())
891     Fn->addFnAttr("patchable-function", "prologue-short-redirect");
892 
893   // Add no-jump-tables value.
894   if (CGM.getCodeGenOpts().NoUseJumpTables)
895     Fn->addFnAttr("no-jump-tables", "true");
896 
897   // Add no-inline-line-tables value.
898   if (CGM.getCodeGenOpts().NoInlineLineTables)
899     Fn->addFnAttr("no-inline-line-tables");
900 
901   // Add profile-sample-accurate value.
902   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
903     Fn->addFnAttr("profile-sample-accurate");
904 
905   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
906     Fn->addFnAttr("use-sample-profile");
907 
908   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
909     Fn->addFnAttr("cfi-canonical-jump-table");
910 
911   if (D && D->hasAttr<NoProfileFunctionAttr>())
912     Fn->addFnAttr(llvm::Attribute::NoProfile);
913 
914   if (FD && getLangOpts().OpenCL) {
915     // Add metadata for a kernel function.
916     EmitOpenCLKernelMetadata(FD, Fn);
917   }
918 
919   // If we are checking function types, emit a function type signature as
920   // prologue data.
921   if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
922     if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
923       // Remove any (C++17) exception specifications, to allow calling e.g. a
924       // noexcept function through a non-noexcept pointer.
925       auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec(
926           FD->getType(), EST_None);
927       llvm::Constant *FTRTTIConst =
928           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
929       llvm::Constant *FTRTTIConstEncoded =
930           EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
931       llvm::Constant *PrologueStructElems[] = {PrologueSig, FTRTTIConstEncoded};
932       llvm::Constant *PrologueStructConst =
933           llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
934       Fn->setPrologueData(PrologueStructConst);
935     }
936   }
937 
938   // If we're checking nullability, we need to know whether we can check the
939   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
940   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
941     auto Nullability = FnRetTy->getNullability(getContext());
942     if (Nullability && *Nullability == NullabilityKind::NonNull) {
943       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
944             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
945         RetValNullabilityPrecondition =
946             llvm::ConstantInt::getTrue(getLLVMContext());
947     }
948   }
949 
950   // If we're in C++ mode and the function name is "main", it is guaranteed
951   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
952   // used within a program").
953   //
954   // OpenCL C 2.0 v2.2-11 s6.9.i:
955   //     Recursion is not supported.
956   //
957   // SYCL v1.2.1 s3.10:
958   //     kernels cannot include RTTI information, exception classes,
959   //     recursive code, virtual functions or make use of C++ libraries that
960   //     are not compiled for the device.
961   if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
962              getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
963              (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
964     Fn->addFnAttr(llvm::Attribute::NoRecurse);
965 
966   llvm::RoundingMode RM = getLangOpts().getFPRoundingMode();
967   llvm::fp::ExceptionBehavior FPExceptionBehavior =
968       ToConstrainedExceptMD(getLangOpts().getFPExceptionMode());
969   Builder.setDefaultConstrainedRounding(RM);
970   Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
971   if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
972       (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
973                RM != llvm::RoundingMode::NearestTiesToEven))) {
974     Builder.setIsFPConstrained(true);
975     Fn->addFnAttr(llvm::Attribute::StrictFP);
976   }
977 
978   // If a custom alignment is used, force realigning to this alignment on
979   // any main function which certainly will need it.
980   if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
981              CGM.getCodeGenOpts().StackAlignment))
982     Fn->addFnAttr("stackrealign");
983 
984   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
985 
986   // Create a marker to make it easy to insert allocas into the entryblock
987   // later.  Don't create this with the builder, because we don't want it
988   // folded.
989   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
990   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
991 
992   ReturnBlock = getJumpDestInCurrentScope("return");
993 
994   Builder.SetInsertPoint(EntryBB);
995 
996   // If we're checking the return value, allocate space for a pointer to a
997   // precise source location of the checked return statement.
998   if (requiresReturnValueCheck()) {
999     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1000     Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1001                         ReturnLocation);
1002   }
1003 
1004   // Emit subprogram debug descriptor.
1005   if (CGDebugInfo *DI = getDebugInfo()) {
1006     // Reconstruct the type from the argument list so that implicit parameters,
1007     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1008     // convention.
1009     DI->emitFunctionStart(GD, Loc, StartLoc,
1010                           DI->getFunctionType(FD, RetTy, Args), CurFn,
1011                           CurFuncIsThunk);
1012   }
1013 
1014   if (ShouldInstrumentFunction()) {
1015     if (CGM.getCodeGenOpts().InstrumentFunctions)
1016       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1017     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1018       CurFn->addFnAttr("instrument-function-entry-inlined",
1019                        "__cyg_profile_func_enter");
1020     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1021       CurFn->addFnAttr("instrument-function-entry-inlined",
1022                        "__cyg_profile_func_enter_bare");
1023   }
1024 
1025   // Since emitting the mcount call here impacts optimizations such as function
1026   // inlining, we just add an attribute to insert a mcount call in backend.
1027   // The attribute "counting-function" is set to mcount function name which is
1028   // architecture dependent.
1029   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1030     // Calls to fentry/mcount should not be generated if function has
1031     // the no_instrument_function attribute.
1032     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1033       if (CGM.getCodeGenOpts().CallFEntry)
1034         Fn->addFnAttr("fentry-call", "true");
1035       else {
1036         Fn->addFnAttr("instrument-function-entry-inlined",
1037                       getTarget().getMCountName());
1038       }
1039       if (CGM.getCodeGenOpts().MNopMCount) {
1040         if (!CGM.getCodeGenOpts().CallFEntry)
1041           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1042             << "-mnop-mcount" << "-mfentry";
1043         Fn->addFnAttr("mnop-mcount");
1044       }
1045 
1046       if (CGM.getCodeGenOpts().RecordMCount) {
1047         if (!CGM.getCodeGenOpts().CallFEntry)
1048           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1049             << "-mrecord-mcount" << "-mfentry";
1050         Fn->addFnAttr("mrecord-mcount");
1051       }
1052     }
1053   }
1054 
1055   if (CGM.getCodeGenOpts().PackedStack) {
1056     if (getContext().getTargetInfo().getTriple().getArch() !=
1057         llvm::Triple::systemz)
1058       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1059         << "-mpacked-stack";
1060     Fn->addFnAttr("packed-stack");
1061   }
1062 
1063   if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1064       !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1065     Fn->addFnAttr("warn-stack-size",
1066                   std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1067 
1068   if (RetTy->isVoidType()) {
1069     // Void type; nothing to return.
1070     ReturnValue = Address::invalid();
1071 
1072     // Count the implicit return.
1073     if (!endsWithReturn(D))
1074       ++NumReturnExprs;
1075   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1076     // Indirect return; emit returned value directly into sret slot.
1077     // This reduces code size, and affects correctness in C++.
1078     auto AI = CurFn->arg_begin();
1079     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1080       ++AI;
1081     ReturnValue = Address(&*AI, ConvertType(RetTy),
1082                           CurFnInfo->getReturnInfo().getIndirectAlign());
1083     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1084       ReturnValuePointer =
1085           CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1086       Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1087                               ReturnValue.getPointer(), Int8PtrTy),
1088                           ReturnValuePointer);
1089     }
1090   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1091              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1092     // Load the sret pointer from the argument struct and return into that.
1093     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1094     llvm::Function::arg_iterator EI = CurFn->arg_end();
1095     --EI;
1096     llvm::Value *Addr = Builder.CreateStructGEP(
1097         EI->getType()->getPointerElementType(), &*EI, Idx);
1098     llvm::Type *Ty =
1099         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1100     ReturnValuePointer = Address(Addr, getPointerAlign());
1101     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1102     ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy));
1103   } else {
1104     ReturnValue = CreateIRTemp(RetTy, "retval");
1105 
1106     // Tell the epilog emitter to autorelease the result.  We do this
1107     // now so that various specialized functions can suppress it
1108     // during their IR-generation.
1109     if (getLangOpts().ObjCAutoRefCount &&
1110         !CurFnInfo->isReturnsRetained() &&
1111         RetTy->isObjCRetainableType())
1112       AutoreleaseResult = true;
1113   }
1114 
1115   EmitStartEHSpec(CurCodeDecl);
1116 
1117   PrologueCleanupDepth = EHStack.stable_begin();
1118 
1119   // Emit OpenMP specific initialization of the device functions.
1120   if (getLangOpts().OpenMP && CurCodeDecl)
1121     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1122 
1123   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1124 
1125   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1126     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1127     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1128     if (MD->getParent()->isLambda() &&
1129         MD->getOverloadedOperator() == OO_Call) {
1130       // We're in a lambda; figure out the captures.
1131       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1132                                         LambdaThisCaptureField);
1133       if (LambdaThisCaptureField) {
1134         // If the lambda captures the object referred to by '*this' - either by
1135         // value or by reference, make sure CXXThisValue points to the correct
1136         // object.
1137 
1138         // Get the lvalue for the field (which is a copy of the enclosing object
1139         // or contains the address of the enclosing object).
1140         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1141         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1142           // If the enclosing object was captured by value, just use its address.
1143           CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1144         } else {
1145           // Load the lvalue pointed to by the field, since '*this' was captured
1146           // by reference.
1147           CXXThisValue =
1148               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1149         }
1150       }
1151       for (auto *FD : MD->getParent()->fields()) {
1152         if (FD->hasCapturedVLAType()) {
1153           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1154                                            SourceLocation()).getScalarVal();
1155           auto VAT = FD->getCapturedVLAType();
1156           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1157         }
1158       }
1159     } else {
1160       // Not in a lambda; just use 'this' from the method.
1161       // FIXME: Should we generate a new load for each use of 'this'?  The
1162       // fast register allocator would be happier...
1163       CXXThisValue = CXXABIThisValue;
1164     }
1165 
1166     // Check the 'this' pointer once per function, if it's available.
1167     if (CXXABIThisValue) {
1168       SanitizerSet SkippedChecks;
1169       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1170       QualType ThisTy = MD->getThisType();
1171 
1172       // If this is the call operator of a lambda with no capture-default, it
1173       // may have a static invoker function, which may call this operator with
1174       // a null 'this' pointer.
1175       if (isLambdaCallOperator(MD) &&
1176           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1177         SkippedChecks.set(SanitizerKind::Null, true);
1178 
1179       EmitTypeCheck(
1180           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1181           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1182     }
1183   }
1184 
1185   // If any of the arguments have a variably modified type, make sure to
1186   // emit the type size.
1187   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1188        i != e; ++i) {
1189     const VarDecl *VD = *i;
1190 
1191     // Dig out the type as written from ParmVarDecls; it's unclear whether
1192     // the standard (C99 6.9.1p10) requires this, but we're following the
1193     // precedent set by gcc.
1194     QualType Ty;
1195     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1196       Ty = PVD->getOriginalType();
1197     else
1198       Ty = VD->getType();
1199 
1200     if (Ty->isVariablyModifiedType())
1201       EmitVariablyModifiedType(Ty);
1202   }
1203   // Emit a location at the end of the prologue.
1204   if (CGDebugInfo *DI = getDebugInfo())
1205     DI->EmitLocation(Builder, StartLoc);
1206 
1207   // TODO: Do we need to handle this in two places like we do with
1208   // target-features/target-cpu?
1209   if (CurFuncDecl)
1210     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1211       LargestVectorWidth = VecWidth->getVectorWidth();
1212 }
1213 
1214 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1215   incrementProfileCounter(Body);
1216   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1217     EmitCompoundStmtWithoutScope(*S);
1218   else
1219     EmitStmt(Body);
1220 
1221   // This is checked after emitting the function body so we know if there
1222   // are any permitted infinite loops.
1223   if (checkIfFunctionMustProgress())
1224     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1225 }
1226 
1227 /// When instrumenting to collect profile data, the counts for some blocks
1228 /// such as switch cases need to not include the fall-through counts, so
1229 /// emit a branch around the instrumentation code. When not instrumenting,
1230 /// this just calls EmitBlock().
1231 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1232                                                const Stmt *S) {
1233   llvm::BasicBlock *SkipCountBB = nullptr;
1234   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1235     // When instrumenting for profiling, the fallthrough to certain
1236     // statements needs to skip over the instrumentation code so that we
1237     // get an accurate count.
1238     SkipCountBB = createBasicBlock("skipcount");
1239     EmitBranch(SkipCountBB);
1240   }
1241   EmitBlock(BB);
1242   uint64_t CurrentCount = getCurrentProfileCount();
1243   incrementProfileCounter(S);
1244   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1245   if (SkipCountBB)
1246     EmitBlock(SkipCountBB);
1247 }
1248 
1249 /// Tries to mark the given function nounwind based on the
1250 /// non-existence of any throwing calls within it.  We believe this is
1251 /// lightweight enough to do at -O0.
1252 static void TryMarkNoThrow(llvm::Function *F) {
1253   // LLVM treats 'nounwind' on a function as part of the type, so we
1254   // can't do this on functions that can be overwritten.
1255   if (F->isInterposable()) return;
1256 
1257   for (llvm::BasicBlock &BB : *F)
1258     for (llvm::Instruction &I : BB)
1259       if (I.mayThrow())
1260         return;
1261 
1262   F->setDoesNotThrow();
1263 }
1264 
1265 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1266                                                FunctionArgList &Args) {
1267   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1268   QualType ResTy = FD->getReturnType();
1269 
1270   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1271   if (MD && MD->isInstance()) {
1272     if (CGM.getCXXABI().HasThisReturn(GD))
1273       ResTy = MD->getThisType();
1274     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1275       ResTy = CGM.getContext().VoidPtrTy;
1276     CGM.getCXXABI().buildThisParam(*this, Args);
1277   }
1278 
1279   // The base version of an inheriting constructor whose constructed base is a
1280   // virtual base is not passed any arguments (because it doesn't actually call
1281   // the inherited constructor).
1282   bool PassedParams = true;
1283   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1284     if (auto Inherited = CD->getInheritedConstructor())
1285       PassedParams =
1286           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1287 
1288   if (PassedParams) {
1289     for (auto *Param : FD->parameters()) {
1290       Args.push_back(Param);
1291       if (!Param->hasAttr<PassObjectSizeAttr>())
1292         continue;
1293 
1294       auto *Implicit = ImplicitParamDecl::Create(
1295           getContext(), Param->getDeclContext(), Param->getLocation(),
1296           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1297       SizeArguments[Param] = Implicit;
1298       Args.push_back(Implicit);
1299     }
1300   }
1301 
1302   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1303     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1304 
1305   return ResTy;
1306 }
1307 
1308 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1309                                    const CGFunctionInfo &FnInfo) {
1310   assert(Fn && "generating code for null Function");
1311   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1312   CurGD = GD;
1313 
1314   FunctionArgList Args;
1315   QualType ResTy = BuildFunctionArgList(GD, Args);
1316 
1317   if (FD->isInlineBuiltinDeclaration()) {
1318     // When generating code for a builtin with an inline declaration, use a
1319     // mangled name to hold the actual body, while keeping an external
1320     // definition in case the function pointer is referenced somewhere.
1321     std::string FDInlineName = (Fn->getName() + ".inline").str();
1322     llvm::Module *M = Fn->getParent();
1323     llvm::Function *Clone = M->getFunction(FDInlineName);
1324     if (!Clone) {
1325       Clone = llvm::Function::Create(Fn->getFunctionType(),
1326                                      llvm::GlobalValue::InternalLinkage,
1327                                      Fn->getAddressSpace(), FDInlineName, M);
1328       Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1329     }
1330     Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1331     Fn = Clone;
1332   } else {
1333     // Detect the unusual situation where an inline version is shadowed by a
1334     // non-inline version. In that case we should pick the external one
1335     // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1336     // to detect that situation before we reach codegen, so do some late
1337     // replacement.
1338     for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1339          PD = PD->getPreviousDecl()) {
1340       if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1341         std::string FDInlineName = (Fn->getName() + ".inline").str();
1342         llvm::Module *M = Fn->getParent();
1343         if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1344           Clone->replaceAllUsesWith(Fn);
1345           Clone->eraseFromParent();
1346         }
1347         break;
1348       }
1349     }
1350   }
1351 
1352   // Check if we should generate debug info for this function.
1353   if (FD->hasAttr<NoDebugAttr>()) {
1354     // Clear non-distinct debug info that was possibly attached to the function
1355     // due to an earlier declaration without the nodebug attribute
1356     Fn->setSubprogram(nullptr);
1357     // Disable debug info indefinitely for this function
1358     DebugInfo = nullptr;
1359   }
1360 
1361   // The function might not have a body if we're generating thunks for a
1362   // function declaration.
1363   SourceRange BodyRange;
1364   if (Stmt *Body = FD->getBody())
1365     BodyRange = Body->getSourceRange();
1366   else
1367     BodyRange = FD->getLocation();
1368   CurEHLocation = BodyRange.getEnd();
1369 
1370   // Use the location of the start of the function to determine where
1371   // the function definition is located. By default use the location
1372   // of the declaration as the location for the subprogram. A function
1373   // may lack a declaration in the source code if it is created by code
1374   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1375   SourceLocation Loc = FD->getLocation();
1376 
1377   // If this is a function specialization then use the pattern body
1378   // as the location for the function.
1379   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1380     if (SpecDecl->hasBody(SpecDecl))
1381       Loc = SpecDecl->getLocation();
1382 
1383   Stmt *Body = FD->getBody();
1384 
1385   if (Body) {
1386     // Coroutines always emit lifetime markers.
1387     if (isa<CoroutineBodyStmt>(Body))
1388       ShouldEmitLifetimeMarkers = true;
1389 
1390     // Initialize helper which will detect jumps which can cause invalid
1391     // lifetime markers.
1392     if (ShouldEmitLifetimeMarkers)
1393       Bypasses.Init(Body);
1394   }
1395 
1396   // Emit the standard function prologue.
1397   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1398 
1399   // Save parameters for coroutine function.
1400   if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1401     for (const auto *ParamDecl : FD->parameters())
1402       FnArgs.push_back(ParamDecl);
1403 
1404   // Generate the body of the function.
1405   PGO.assignRegionCounters(GD, CurFn);
1406   if (isa<CXXDestructorDecl>(FD))
1407     EmitDestructorBody(Args);
1408   else if (isa<CXXConstructorDecl>(FD))
1409     EmitConstructorBody(Args);
1410   else if (getLangOpts().CUDA &&
1411            !getLangOpts().CUDAIsDevice &&
1412            FD->hasAttr<CUDAGlobalAttr>())
1413     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1414   else if (isa<CXXMethodDecl>(FD) &&
1415            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1416     // The lambda static invoker function is special, because it forwards or
1417     // clones the body of the function call operator (but is actually static).
1418     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1419   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1420              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1421               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1422     // Implicit copy-assignment gets the same special treatment as implicit
1423     // copy-constructors.
1424     emitImplicitAssignmentOperatorBody(Args);
1425   } else if (Body) {
1426     EmitFunctionBody(Body);
1427   } else
1428     llvm_unreachable("no definition for emitted function");
1429 
1430   // C++11 [stmt.return]p2:
1431   //   Flowing off the end of a function [...] results in undefined behavior in
1432   //   a value-returning function.
1433   // C11 6.9.1p12:
1434   //   If the '}' that terminates a function is reached, and the value of the
1435   //   function call is used by the caller, the behavior is undefined.
1436   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1437       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1438     bool ShouldEmitUnreachable =
1439         CGM.getCodeGenOpts().StrictReturn ||
1440         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1441     if (SanOpts.has(SanitizerKind::Return)) {
1442       SanitizerScope SanScope(this);
1443       llvm::Value *IsFalse = Builder.getFalse();
1444       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1445                 SanitizerHandler::MissingReturn,
1446                 EmitCheckSourceLocation(FD->getLocation()), None);
1447     } else if (ShouldEmitUnreachable) {
1448       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1449         EmitTrapCall(llvm::Intrinsic::trap);
1450     }
1451     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1452       Builder.CreateUnreachable();
1453       Builder.ClearInsertionPoint();
1454     }
1455   }
1456 
1457   // Emit the standard function epilogue.
1458   FinishFunction(BodyRange.getEnd());
1459 
1460   // If we haven't marked the function nothrow through other means, do
1461   // a quick pass now to see if we can.
1462   if (!CurFn->doesNotThrow())
1463     TryMarkNoThrow(CurFn);
1464 }
1465 
1466 /// ContainsLabel - Return true if the statement contains a label in it.  If
1467 /// this statement is not executed normally, it not containing a label means
1468 /// that we can just remove the code.
1469 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1470   // Null statement, not a label!
1471   if (!S) return false;
1472 
1473   // If this is a label, we have to emit the code, consider something like:
1474   // if (0) {  ...  foo:  bar(); }  goto foo;
1475   //
1476   // TODO: If anyone cared, we could track __label__'s, since we know that you
1477   // can't jump to one from outside their declared region.
1478   if (isa<LabelStmt>(S))
1479     return true;
1480 
1481   // If this is a case/default statement, and we haven't seen a switch, we have
1482   // to emit the code.
1483   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1484     return true;
1485 
1486   // If this is a switch statement, we want to ignore cases below it.
1487   if (isa<SwitchStmt>(S))
1488     IgnoreCaseStmts = true;
1489 
1490   // Scan subexpressions for verboten labels.
1491   for (const Stmt *SubStmt : S->children())
1492     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1493       return true;
1494 
1495   return false;
1496 }
1497 
1498 /// containsBreak - Return true if the statement contains a break out of it.
1499 /// If the statement (recursively) contains a switch or loop with a break
1500 /// inside of it, this is fine.
1501 bool CodeGenFunction::containsBreak(const Stmt *S) {
1502   // Null statement, not a label!
1503   if (!S) return false;
1504 
1505   // If this is a switch or loop that defines its own break scope, then we can
1506   // include it and anything inside of it.
1507   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1508       isa<ForStmt>(S))
1509     return false;
1510 
1511   if (isa<BreakStmt>(S))
1512     return true;
1513 
1514   // Scan subexpressions for verboten breaks.
1515   for (const Stmt *SubStmt : S->children())
1516     if (containsBreak(SubStmt))
1517       return true;
1518 
1519   return false;
1520 }
1521 
1522 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1523   if (!S) return false;
1524 
1525   // Some statement kinds add a scope and thus never add a decl to the current
1526   // scope. Note, this list is longer than the list of statements that might
1527   // have an unscoped decl nested within them, but this way is conservatively
1528   // correct even if more statement kinds are added.
1529   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1530       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1531       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1532       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1533     return false;
1534 
1535   if (isa<DeclStmt>(S))
1536     return true;
1537 
1538   for (const Stmt *SubStmt : S->children())
1539     if (mightAddDeclToScope(SubStmt))
1540       return true;
1541 
1542   return false;
1543 }
1544 
1545 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1546 /// to a constant, or if it does but contains a label, return false.  If it
1547 /// constant folds return true and set the boolean result in Result.
1548 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1549                                                    bool &ResultBool,
1550                                                    bool AllowLabels) {
1551   llvm::APSInt ResultInt;
1552   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1553     return false;
1554 
1555   ResultBool = ResultInt.getBoolValue();
1556   return true;
1557 }
1558 
1559 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1560 /// to a constant, or if it does but contains a label, return false.  If it
1561 /// constant folds return true and set the folded value.
1562 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1563                                                    llvm::APSInt &ResultInt,
1564                                                    bool AllowLabels) {
1565   // FIXME: Rename and handle conversion of other evaluatable things
1566   // to bool.
1567   Expr::EvalResult Result;
1568   if (!Cond->EvaluateAsInt(Result, getContext()))
1569     return false;  // Not foldable, not integer or not fully evaluatable.
1570 
1571   llvm::APSInt Int = Result.Val.getInt();
1572   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1573     return false;  // Contains a label.
1574 
1575   ResultInt = Int;
1576   return true;
1577 }
1578 
1579 /// Determine whether the given condition is an instrumentable condition
1580 /// (i.e. no "&&" or "||").
1581 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1582   // Bypass simplistic logical-NOT operator before determining whether the
1583   // condition contains any other logical operator.
1584   if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens()))
1585     if (UnOp->getOpcode() == UO_LNot)
1586       C = UnOp->getSubExpr();
1587 
1588   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens());
1589   return (!BOp || !BOp->isLogicalOp());
1590 }
1591 
1592 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1593 /// increments a profile counter based on the semantics of the given logical
1594 /// operator opcode.  This is used to instrument branch condition coverage for
1595 /// logical operators.
1596 void CodeGenFunction::EmitBranchToCounterBlock(
1597     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1598     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1599     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1600   // If not instrumenting, just emit a branch.
1601   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1602   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1603     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1604 
1605   llvm::BasicBlock *ThenBlock = nullptr;
1606   llvm::BasicBlock *ElseBlock = nullptr;
1607   llvm::BasicBlock *NextBlock = nullptr;
1608 
1609   // Create the block we'll use to increment the appropriate counter.
1610   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1611 
1612   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1613   // means we need to evaluate the condition and increment the counter on TRUE:
1614   //
1615   // if (Cond)
1616   //   goto CounterIncrBlock;
1617   // else
1618   //   goto FalseBlock;
1619   //
1620   // CounterIncrBlock:
1621   //   Counter++;
1622   //   goto TrueBlock;
1623 
1624   if (LOp == BO_LAnd) {
1625     ThenBlock = CounterIncrBlock;
1626     ElseBlock = FalseBlock;
1627     NextBlock = TrueBlock;
1628   }
1629 
1630   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1631   // we need to evaluate the condition and increment the counter on FALSE:
1632   //
1633   // if (Cond)
1634   //   goto TrueBlock;
1635   // else
1636   //   goto CounterIncrBlock;
1637   //
1638   // CounterIncrBlock:
1639   //   Counter++;
1640   //   goto FalseBlock;
1641 
1642   else if (LOp == BO_LOr) {
1643     ThenBlock = TrueBlock;
1644     ElseBlock = CounterIncrBlock;
1645     NextBlock = FalseBlock;
1646   } else {
1647     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1648   }
1649 
1650   // Emit Branch based on condition.
1651   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1652 
1653   // Emit the block containing the counter increment(s).
1654   EmitBlock(CounterIncrBlock);
1655 
1656   // Increment corresponding counter; if index not provided, use Cond as index.
1657   incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1658 
1659   // Go to the next block.
1660   EmitBranch(NextBlock);
1661 }
1662 
1663 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1664 /// statement) to the specified blocks.  Based on the condition, this might try
1665 /// to simplify the codegen of the conditional based on the branch.
1666 /// \param LH The value of the likelihood attribute on the True branch.
1667 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1668                                            llvm::BasicBlock *TrueBlock,
1669                                            llvm::BasicBlock *FalseBlock,
1670                                            uint64_t TrueCount,
1671                                            Stmt::Likelihood LH) {
1672   Cond = Cond->IgnoreParens();
1673 
1674   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1675 
1676     // Handle X && Y in a condition.
1677     if (CondBOp->getOpcode() == BO_LAnd) {
1678       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1679       // folded if the case was simple enough.
1680       bool ConstantBool = false;
1681       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1682           ConstantBool) {
1683         // br(1 && X) -> br(X).
1684         incrementProfileCounter(CondBOp);
1685         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1686                                         FalseBlock, TrueCount, LH);
1687       }
1688 
1689       // If we have "X && 1", simplify the code to use an uncond branch.
1690       // "X && 0" would have been constant folded to 0.
1691       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1692           ConstantBool) {
1693         // br(X && 1) -> br(X).
1694         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1695                                         FalseBlock, TrueCount, LH, CondBOp);
1696       }
1697 
1698       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1699       // want to jump to the FalseBlock.
1700       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1701       // The counter tells us how often we evaluate RHS, and all of TrueCount
1702       // can be propagated to that branch.
1703       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1704 
1705       ConditionalEvaluation eval(*this);
1706       {
1707         ApplyDebugLocation DL(*this, Cond);
1708         // Propagate the likelihood attribute like __builtin_expect
1709         // __builtin_expect(X && Y, 1) -> X and Y are likely
1710         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1711         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1712                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1713         EmitBlock(LHSTrue);
1714       }
1715 
1716       incrementProfileCounter(CondBOp);
1717       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1718 
1719       // Any temporaries created here are conditional.
1720       eval.begin(*this);
1721       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1722                                FalseBlock, TrueCount, LH);
1723       eval.end(*this);
1724 
1725       return;
1726     }
1727 
1728     if (CondBOp->getOpcode() == BO_LOr) {
1729       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1730       // folded if the case was simple enough.
1731       bool ConstantBool = false;
1732       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1733           !ConstantBool) {
1734         // br(0 || X) -> br(X).
1735         incrementProfileCounter(CondBOp);
1736         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1737                                         FalseBlock, TrueCount, LH);
1738       }
1739 
1740       // If we have "X || 0", simplify the code to use an uncond branch.
1741       // "X || 1" would have been constant folded to 1.
1742       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1743           !ConstantBool) {
1744         // br(X || 0) -> br(X).
1745         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1746                                         FalseBlock, TrueCount, LH, CondBOp);
1747       }
1748 
1749       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1750       // want to jump to the TrueBlock.
1751       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1752       // We have the count for entry to the RHS and for the whole expression
1753       // being true, so we can divy up True count between the short circuit and
1754       // the RHS.
1755       uint64_t LHSCount =
1756           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1757       uint64_t RHSCount = TrueCount - LHSCount;
1758 
1759       ConditionalEvaluation eval(*this);
1760       {
1761         // Propagate the likelihood attribute like __builtin_expect
1762         // __builtin_expect(X || Y, 1) -> only Y is likely
1763         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1764         ApplyDebugLocation DL(*this, Cond);
1765         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1766                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1767         EmitBlock(LHSFalse);
1768       }
1769 
1770       incrementProfileCounter(CondBOp);
1771       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1772 
1773       // Any temporaries created here are conditional.
1774       eval.begin(*this);
1775       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1776                                RHSCount, LH);
1777 
1778       eval.end(*this);
1779 
1780       return;
1781     }
1782   }
1783 
1784   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1785     // br(!x, t, f) -> br(x, f, t)
1786     if (CondUOp->getOpcode() == UO_LNot) {
1787       // Negate the count.
1788       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1789       // The values of the enum are chosen to make this negation possible.
1790       LH = static_cast<Stmt::Likelihood>(-LH);
1791       // Negate the condition and swap the destination blocks.
1792       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1793                                   FalseCount, LH);
1794     }
1795   }
1796 
1797   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1798     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1799     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1800     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1801 
1802     // The ConditionalOperator itself has no likelihood information for its
1803     // true and false branches. This matches the behavior of __builtin_expect.
1804     ConditionalEvaluation cond(*this);
1805     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1806                          getProfileCount(CondOp), Stmt::LH_None);
1807 
1808     // When computing PGO branch weights, we only know the overall count for
1809     // the true block. This code is essentially doing tail duplication of the
1810     // naive code-gen, introducing new edges for which counts are not
1811     // available. Divide the counts proportionally between the LHS and RHS of
1812     // the conditional operator.
1813     uint64_t LHSScaledTrueCount = 0;
1814     if (TrueCount) {
1815       double LHSRatio =
1816           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1817       LHSScaledTrueCount = TrueCount * LHSRatio;
1818     }
1819 
1820     cond.begin(*this);
1821     EmitBlock(LHSBlock);
1822     incrementProfileCounter(CondOp);
1823     {
1824       ApplyDebugLocation DL(*this, Cond);
1825       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1826                            LHSScaledTrueCount, LH);
1827     }
1828     cond.end(*this);
1829 
1830     cond.begin(*this);
1831     EmitBlock(RHSBlock);
1832     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1833                          TrueCount - LHSScaledTrueCount, LH);
1834     cond.end(*this);
1835 
1836     return;
1837   }
1838 
1839   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1840     // Conditional operator handling can give us a throw expression as a
1841     // condition for a case like:
1842     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1843     // Fold this to:
1844     //   br(c, throw x, br(y, t, f))
1845     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1846     return;
1847   }
1848 
1849   // Emit the code with the fully general case.
1850   llvm::Value *CondV;
1851   {
1852     ApplyDebugLocation DL(*this, Cond);
1853     CondV = EvaluateExprAsBool(Cond);
1854   }
1855 
1856   llvm::MDNode *Weights = nullptr;
1857   llvm::MDNode *Unpredictable = nullptr;
1858 
1859   // If the branch has a condition wrapped by __builtin_unpredictable,
1860   // create metadata that specifies that the branch is unpredictable.
1861   // Don't bother if not optimizing because that metadata would not be used.
1862   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1863   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1864     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1865     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1866       llvm::MDBuilder MDHelper(getLLVMContext());
1867       Unpredictable = MDHelper.createUnpredictable();
1868     }
1869   }
1870 
1871   // If there is a Likelihood knowledge for the cond, lower it.
1872   // Note that if not optimizing this won't emit anything.
1873   llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
1874   if (CondV != NewCondV)
1875     CondV = NewCondV;
1876   else {
1877     // Otherwise, lower profile counts. Note that we do this even at -O0.
1878     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1879     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
1880   }
1881 
1882   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1883 }
1884 
1885 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1886 /// specified stmt yet.
1887 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1888   CGM.ErrorUnsupported(S, Type);
1889 }
1890 
1891 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1892 /// variable-length array whose elements have a non-zero bit-pattern.
1893 ///
1894 /// \param baseType the inner-most element type of the array
1895 /// \param src - a char* pointing to the bit-pattern for a single
1896 /// base element of the array
1897 /// \param sizeInChars - the total size of the VLA, in chars
1898 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1899                                Address dest, Address src,
1900                                llvm::Value *sizeInChars) {
1901   CGBuilderTy &Builder = CGF.Builder;
1902 
1903   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1904   llvm::Value *baseSizeInChars
1905     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1906 
1907   Address begin =
1908     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1909   llvm::Value *end = Builder.CreateInBoundsGEP(
1910       begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end");
1911 
1912   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1913   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1914   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1915 
1916   // Make a loop over the VLA.  C99 guarantees that the VLA element
1917   // count must be nonzero.
1918   CGF.EmitBlock(loopBB);
1919 
1920   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1921   cur->addIncoming(begin.getPointer(), originBB);
1922 
1923   CharUnits curAlign =
1924     dest.getAlignment().alignmentOfArrayElement(baseSize);
1925 
1926   // memcpy the individual element bit-pattern.
1927   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1928                        /*volatile*/ false);
1929 
1930   // Go to the next element.
1931   llvm::Value *next =
1932     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1933 
1934   // Leave if that's the end of the VLA.
1935   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1936   Builder.CreateCondBr(done, contBB, loopBB);
1937   cur->addIncoming(next, loopBB);
1938 
1939   CGF.EmitBlock(contBB);
1940 }
1941 
1942 void
1943 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1944   // Ignore empty classes in C++.
1945   if (getLangOpts().CPlusPlus) {
1946     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1947       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1948         return;
1949     }
1950   }
1951 
1952   // Cast the dest ptr to the appropriate i8 pointer type.
1953   if (DestPtr.getElementType() != Int8Ty)
1954     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1955 
1956   // Get size and alignment info for this aggregate.
1957   CharUnits size = getContext().getTypeSizeInChars(Ty);
1958 
1959   llvm::Value *SizeVal;
1960   const VariableArrayType *vla;
1961 
1962   // Don't bother emitting a zero-byte memset.
1963   if (size.isZero()) {
1964     // But note that getTypeInfo returns 0 for a VLA.
1965     if (const VariableArrayType *vlaType =
1966           dyn_cast_or_null<VariableArrayType>(
1967                                           getContext().getAsArrayType(Ty))) {
1968       auto VlaSize = getVLASize(vlaType);
1969       SizeVal = VlaSize.NumElts;
1970       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1971       if (!eltSize.isOne())
1972         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1973       vla = vlaType;
1974     } else {
1975       return;
1976     }
1977   } else {
1978     SizeVal = CGM.getSize(size);
1979     vla = nullptr;
1980   }
1981 
1982   // If the type contains a pointer to data member we can't memset it to zero.
1983   // Instead, create a null constant and copy it to the destination.
1984   // TODO: there are other patterns besides zero that we can usefully memset,
1985   // like -1, which happens to be the pattern used by member-pointers.
1986   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1987     // For a VLA, emit a single element, then splat that over the VLA.
1988     if (vla) Ty = getContext().getBaseElementType(vla);
1989 
1990     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1991 
1992     llvm::GlobalVariable *NullVariable =
1993       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1994                                /*isConstant=*/true,
1995                                llvm::GlobalVariable::PrivateLinkage,
1996                                NullConstant, Twine());
1997     CharUnits NullAlign = DestPtr.getAlignment();
1998     NullVariable->setAlignment(NullAlign.getAsAlign());
1999     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
2000                    NullAlign);
2001 
2002     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2003 
2004     // Get and call the appropriate llvm.memcpy overload.
2005     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2006     return;
2007   }
2008 
2009   // Otherwise, just memset the whole thing to zero.  This is legal
2010   // because in LLVM, all default initializers (other than the ones we just
2011   // handled above) are guaranteed to have a bit pattern of all zeros.
2012   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2013 }
2014 
2015 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2016   // Make sure that there is a block for the indirect goto.
2017   if (!IndirectBranch)
2018     GetIndirectGotoBlock();
2019 
2020   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2021 
2022   // Make sure the indirect branch includes all of the address-taken blocks.
2023   IndirectBranch->addDestination(BB);
2024   return llvm::BlockAddress::get(CurFn, BB);
2025 }
2026 
2027 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2028   // If we already made the indirect branch for indirect goto, return its block.
2029   if (IndirectBranch) return IndirectBranch->getParent();
2030 
2031   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2032 
2033   // Create the PHI node that indirect gotos will add entries to.
2034   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2035                                               "indirect.goto.dest");
2036 
2037   // Create the indirect branch instruction.
2038   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2039   return IndirectBranch->getParent();
2040 }
2041 
2042 /// Computes the length of an array in elements, as well as the base
2043 /// element type and a properly-typed first element pointer.
2044 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2045                                               QualType &baseType,
2046                                               Address &addr) {
2047   const ArrayType *arrayType = origArrayType;
2048 
2049   // If it's a VLA, we have to load the stored size.  Note that
2050   // this is the size of the VLA in bytes, not its size in elements.
2051   llvm::Value *numVLAElements = nullptr;
2052   if (isa<VariableArrayType>(arrayType)) {
2053     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2054 
2055     // Walk into all VLAs.  This doesn't require changes to addr,
2056     // which has type T* where T is the first non-VLA element type.
2057     do {
2058       QualType elementType = arrayType->getElementType();
2059       arrayType = getContext().getAsArrayType(elementType);
2060 
2061       // If we only have VLA components, 'addr' requires no adjustment.
2062       if (!arrayType) {
2063         baseType = elementType;
2064         return numVLAElements;
2065       }
2066     } while (isa<VariableArrayType>(arrayType));
2067 
2068     // We get out here only if we find a constant array type
2069     // inside the VLA.
2070   }
2071 
2072   // We have some number of constant-length arrays, so addr should
2073   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2074   // down to the first element of addr.
2075   SmallVector<llvm::Value*, 8> gepIndices;
2076 
2077   // GEP down to the array type.
2078   llvm::ConstantInt *zero = Builder.getInt32(0);
2079   gepIndices.push_back(zero);
2080 
2081   uint64_t countFromCLAs = 1;
2082   QualType eltType;
2083 
2084   llvm::ArrayType *llvmArrayType =
2085     dyn_cast<llvm::ArrayType>(addr.getElementType());
2086   while (llvmArrayType) {
2087     assert(isa<ConstantArrayType>(arrayType));
2088     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
2089              == llvmArrayType->getNumElements());
2090 
2091     gepIndices.push_back(zero);
2092     countFromCLAs *= llvmArrayType->getNumElements();
2093     eltType = arrayType->getElementType();
2094 
2095     llvmArrayType =
2096       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2097     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2098     assert((!llvmArrayType || arrayType) &&
2099            "LLVM and Clang types are out-of-synch");
2100   }
2101 
2102   if (arrayType) {
2103     // From this point onwards, the Clang array type has been emitted
2104     // as some other type (probably a packed struct). Compute the array
2105     // size, and just emit the 'begin' expression as a bitcast.
2106     while (arrayType) {
2107       countFromCLAs *=
2108           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
2109       eltType = arrayType->getElementType();
2110       arrayType = getContext().getAsArrayType(eltType);
2111     }
2112 
2113     llvm::Type *baseType = ConvertType(eltType);
2114     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
2115   } else {
2116     // Create the actual GEP.
2117     addr = Address(Builder.CreateInBoundsGEP(
2118         addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"),
2119         ConvertTypeForMem(eltType),
2120         addr.getAlignment());
2121   }
2122 
2123   baseType = eltType;
2124 
2125   llvm::Value *numElements
2126     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2127 
2128   // If we had any VLA dimensions, factor them in.
2129   if (numVLAElements)
2130     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2131 
2132   return numElements;
2133 }
2134 
2135 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2136   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2137   assert(vla && "type was not a variable array type!");
2138   return getVLASize(vla);
2139 }
2140 
2141 CodeGenFunction::VlaSizePair
2142 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2143   // The number of elements so far; always size_t.
2144   llvm::Value *numElements = nullptr;
2145 
2146   QualType elementType;
2147   do {
2148     elementType = type->getElementType();
2149     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2150     assert(vlaSize && "no size for VLA!");
2151     assert(vlaSize->getType() == SizeTy);
2152 
2153     if (!numElements) {
2154       numElements = vlaSize;
2155     } else {
2156       // It's undefined behavior if this wraps around, so mark it that way.
2157       // FIXME: Teach -fsanitize=undefined to trap this.
2158       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2159     }
2160   } while ((type = getContext().getAsVariableArrayType(elementType)));
2161 
2162   return { numElements, elementType };
2163 }
2164 
2165 CodeGenFunction::VlaSizePair
2166 CodeGenFunction::getVLAElements1D(QualType type) {
2167   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2168   assert(vla && "type was not a variable array type!");
2169   return getVLAElements1D(vla);
2170 }
2171 
2172 CodeGenFunction::VlaSizePair
2173 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2174   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2175   assert(VlaSize && "no size for VLA!");
2176   assert(VlaSize->getType() == SizeTy);
2177   return { VlaSize, Vla->getElementType() };
2178 }
2179 
2180 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2181   assert(type->isVariablyModifiedType() &&
2182          "Must pass variably modified type to EmitVLASizes!");
2183 
2184   EnsureInsertPoint();
2185 
2186   // We're going to walk down into the type and look for VLA
2187   // expressions.
2188   do {
2189     assert(type->isVariablyModifiedType());
2190 
2191     const Type *ty = type.getTypePtr();
2192     switch (ty->getTypeClass()) {
2193 
2194 #define TYPE(Class, Base)
2195 #define ABSTRACT_TYPE(Class, Base)
2196 #define NON_CANONICAL_TYPE(Class, Base)
2197 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2198 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2199 #include "clang/AST/TypeNodes.inc"
2200       llvm_unreachable("unexpected dependent type!");
2201 
2202     // These types are never variably-modified.
2203     case Type::Builtin:
2204     case Type::Complex:
2205     case Type::Vector:
2206     case Type::ExtVector:
2207     case Type::ConstantMatrix:
2208     case Type::Record:
2209     case Type::Enum:
2210     case Type::Elaborated:
2211     case Type::Using:
2212     case Type::TemplateSpecialization:
2213     case Type::ObjCTypeParam:
2214     case Type::ObjCObject:
2215     case Type::ObjCInterface:
2216     case Type::ObjCObjectPointer:
2217     case Type::BitInt:
2218       llvm_unreachable("type class is never variably-modified!");
2219 
2220     case Type::Adjusted:
2221       type = cast<AdjustedType>(ty)->getAdjustedType();
2222       break;
2223 
2224     case Type::Decayed:
2225       type = cast<DecayedType>(ty)->getPointeeType();
2226       break;
2227 
2228     case Type::Pointer:
2229       type = cast<PointerType>(ty)->getPointeeType();
2230       break;
2231 
2232     case Type::BlockPointer:
2233       type = cast<BlockPointerType>(ty)->getPointeeType();
2234       break;
2235 
2236     case Type::LValueReference:
2237     case Type::RValueReference:
2238       type = cast<ReferenceType>(ty)->getPointeeType();
2239       break;
2240 
2241     case Type::MemberPointer:
2242       type = cast<MemberPointerType>(ty)->getPointeeType();
2243       break;
2244 
2245     case Type::ConstantArray:
2246     case Type::IncompleteArray:
2247       // Losing element qualification here is fine.
2248       type = cast<ArrayType>(ty)->getElementType();
2249       break;
2250 
2251     case Type::VariableArray: {
2252       // Losing element qualification here is fine.
2253       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2254 
2255       // Unknown size indication requires no size computation.
2256       // Otherwise, evaluate and record it.
2257       if (const Expr *sizeExpr = vat->getSizeExpr()) {
2258         // It's possible that we might have emitted this already,
2259         // e.g. with a typedef and a pointer to it.
2260         llvm::Value *&entry = VLASizeMap[sizeExpr];
2261         if (!entry) {
2262           llvm::Value *size = EmitScalarExpr(sizeExpr);
2263 
2264           // C11 6.7.6.2p5:
2265           //   If the size is an expression that is not an integer constant
2266           //   expression [...] each time it is evaluated it shall have a value
2267           //   greater than zero.
2268           if (SanOpts.has(SanitizerKind::VLABound)) {
2269             SanitizerScope SanScope(this);
2270             llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2271             clang::QualType SEType = sizeExpr->getType();
2272             llvm::Value *CheckCondition =
2273                 SEType->isSignedIntegerType()
2274                     ? Builder.CreateICmpSGT(size, Zero)
2275                     : Builder.CreateICmpUGT(size, Zero);
2276             llvm::Constant *StaticArgs[] = {
2277                 EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2278                 EmitCheckTypeDescriptor(SEType)};
2279             EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2280                       SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2281           }
2282 
2283           // Always zexting here would be wrong if it weren't
2284           // undefined behavior to have a negative bound.
2285           // FIXME: What about when size's type is larger than size_t?
2286           entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2287         }
2288       }
2289       type = vat->getElementType();
2290       break;
2291     }
2292 
2293     case Type::FunctionProto:
2294     case Type::FunctionNoProto:
2295       type = cast<FunctionType>(ty)->getReturnType();
2296       break;
2297 
2298     case Type::Paren:
2299     case Type::TypeOf:
2300     case Type::UnaryTransform:
2301     case Type::Attributed:
2302     case Type::SubstTemplateTypeParm:
2303     case Type::MacroQualified:
2304       // Keep walking after single level desugaring.
2305       type = type.getSingleStepDesugaredType(getContext());
2306       break;
2307 
2308     case Type::Typedef:
2309     case Type::Decltype:
2310     case Type::Auto:
2311     case Type::DeducedTemplateSpecialization:
2312       // Stop walking: nothing to do.
2313       return;
2314 
2315     case Type::TypeOfExpr:
2316       // Stop walking: emit typeof expression.
2317       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2318       return;
2319 
2320     case Type::Atomic:
2321       type = cast<AtomicType>(ty)->getValueType();
2322       break;
2323 
2324     case Type::Pipe:
2325       type = cast<PipeType>(ty)->getElementType();
2326       break;
2327     }
2328   } while (type->isVariablyModifiedType());
2329 }
2330 
2331 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2332   if (getContext().getBuiltinVaListType()->isArrayType())
2333     return EmitPointerWithAlignment(E);
2334   return EmitLValue(E).getAddress(*this);
2335 }
2336 
2337 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2338   return EmitLValue(E).getAddress(*this);
2339 }
2340 
2341 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2342                                               const APValue &Init) {
2343   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2344   if (CGDebugInfo *Dbg = getDebugInfo())
2345     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2346       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2347 }
2348 
2349 CodeGenFunction::PeepholeProtection
2350 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2351   // At the moment, the only aggressive peephole we do in IR gen
2352   // is trunc(zext) folding, but if we add more, we can easily
2353   // extend this protection.
2354 
2355   if (!rvalue.isScalar()) return PeepholeProtection();
2356   llvm::Value *value = rvalue.getScalarVal();
2357   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2358 
2359   // Just make an extra bitcast.
2360   assert(HaveInsertPoint());
2361   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2362                                                   Builder.GetInsertBlock());
2363 
2364   PeepholeProtection protection;
2365   protection.Inst = inst;
2366   return protection;
2367 }
2368 
2369 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2370   if (!protection.Inst) return;
2371 
2372   // In theory, we could try to duplicate the peepholes now, but whatever.
2373   protection.Inst->eraseFromParent();
2374 }
2375 
2376 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2377                                               QualType Ty, SourceLocation Loc,
2378                                               SourceLocation AssumptionLoc,
2379                                               llvm::Value *Alignment,
2380                                               llvm::Value *OffsetValue) {
2381   if (Alignment->getType() != IntPtrTy)
2382     Alignment =
2383         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2384   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2385     OffsetValue =
2386         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2387   llvm::Value *TheCheck = nullptr;
2388   if (SanOpts.has(SanitizerKind::Alignment)) {
2389     llvm::Value *PtrIntValue =
2390         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2391 
2392     if (OffsetValue) {
2393       bool IsOffsetZero = false;
2394       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2395         IsOffsetZero = CI->isZero();
2396 
2397       if (!IsOffsetZero)
2398         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2399     }
2400 
2401     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2402     llvm::Value *Mask =
2403         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2404     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2405     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2406   }
2407   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2408       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2409 
2410   if (!SanOpts.has(SanitizerKind::Alignment))
2411     return;
2412   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2413                                OffsetValue, TheCheck, Assumption);
2414 }
2415 
2416 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2417                                               const Expr *E,
2418                                               SourceLocation AssumptionLoc,
2419                                               llvm::Value *Alignment,
2420                                               llvm::Value *OffsetValue) {
2421   if (auto *CE = dyn_cast<CastExpr>(E))
2422     E = CE->getSubExprAsWritten();
2423   QualType Ty = E->getType();
2424   SourceLocation Loc = E->getExprLoc();
2425 
2426   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2427                           OffsetValue);
2428 }
2429 
2430 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2431                                                  llvm::Value *AnnotatedVal,
2432                                                  StringRef AnnotationStr,
2433                                                  SourceLocation Location,
2434                                                  const AnnotateAttr *Attr) {
2435   SmallVector<llvm::Value *, 5> Args = {
2436       AnnotatedVal,
2437       Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2438       Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2439       CGM.EmitAnnotationLineNo(Location),
2440   };
2441   if (Attr)
2442     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2443   return Builder.CreateCall(AnnotationFn, Args);
2444 }
2445 
2446 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2447   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2448   // FIXME We create a new bitcast for every annotation because that's what
2449   // llvm-gcc was doing.
2450   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2451     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2452                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2453                        I->getAnnotation(), D->getLocation(), I);
2454 }
2455 
2456 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2457                                               Address Addr) {
2458   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2459   llvm::Value *V = Addr.getPointer();
2460   llvm::Type *VTy = V->getType();
2461   auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2462   unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2463   llvm::PointerType *IntrinTy =
2464       llvm::PointerType::getWithSamePointeeType(CGM.Int8PtrTy, AS);
2465   llvm::Function *F =
2466       CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, IntrinTy);
2467 
2468   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2469     // FIXME Always emit the cast inst so we can differentiate between
2470     // annotation on the first field of a struct and annotation on the struct
2471     // itself.
2472     if (VTy != IntrinTy)
2473       V = Builder.CreateBitCast(V, IntrinTy);
2474     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2475     V = Builder.CreateBitCast(V, VTy);
2476   }
2477 
2478   return Address(V, Addr.getAlignment());
2479 }
2480 
2481 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2482 
2483 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2484     : CGF(CGF) {
2485   assert(!CGF->IsSanitizerScope);
2486   CGF->IsSanitizerScope = true;
2487 }
2488 
2489 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2490   CGF->IsSanitizerScope = false;
2491 }
2492 
2493 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2494                                    const llvm::Twine &Name,
2495                                    llvm::BasicBlock *BB,
2496                                    llvm::BasicBlock::iterator InsertPt) const {
2497   LoopStack.InsertHelper(I);
2498   if (IsSanitizerScope)
2499     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2500 }
2501 
2502 void CGBuilderInserter::InsertHelper(
2503     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2504     llvm::BasicBlock::iterator InsertPt) const {
2505   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2506   if (CGF)
2507     CGF->InsertHelper(I, Name, BB, InsertPt);
2508 }
2509 
2510 // Emits an error if we don't have a valid set of target features for the
2511 // called function.
2512 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2513                                           const FunctionDecl *TargetDecl) {
2514   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2515 }
2516 
2517 // Emits an error if we don't have a valid set of target features for the
2518 // called function.
2519 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2520                                           const FunctionDecl *TargetDecl) {
2521   // Early exit if this is an indirect call.
2522   if (!TargetDecl)
2523     return;
2524 
2525   // Get the current enclosing function if it exists. If it doesn't
2526   // we can't check the target features anyhow.
2527   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2528   if (!FD)
2529     return;
2530 
2531   // Grab the required features for the call. For a builtin this is listed in
2532   // the td file with the default cpu, for an always_inline function this is any
2533   // listed cpu and any listed features.
2534   unsigned BuiltinID = TargetDecl->getBuiltinID();
2535   std::string MissingFeature;
2536   llvm::StringMap<bool> CallerFeatureMap;
2537   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2538   if (BuiltinID) {
2539     StringRef FeatureList(
2540         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2541     // Return if the builtin doesn't have any required features.
2542     if (FeatureList.empty())
2543       return;
2544     assert(!FeatureList.contains(' ') && "Space in feature list");
2545     TargetFeatures TF(CallerFeatureMap);
2546     if (!TF.hasRequiredFeatures(FeatureList))
2547       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2548           << TargetDecl->getDeclName() << FeatureList;
2549   } else if (!TargetDecl->isMultiVersion() &&
2550              TargetDecl->hasAttr<TargetAttr>()) {
2551     // Get the required features for the callee.
2552 
2553     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2554     ParsedTargetAttr ParsedAttr =
2555         CGM.getContext().filterFunctionTargetAttrs(TD);
2556 
2557     SmallVector<StringRef, 1> ReqFeatures;
2558     llvm::StringMap<bool> CalleeFeatureMap;
2559     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2560 
2561     for (const auto &F : ParsedAttr.Features) {
2562       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2563         ReqFeatures.push_back(StringRef(F).substr(1));
2564     }
2565 
2566     for (const auto &F : CalleeFeatureMap) {
2567       // Only positive features are "required".
2568       if (F.getValue())
2569         ReqFeatures.push_back(F.getKey());
2570     }
2571     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2572       if (!CallerFeatureMap.lookup(Feature)) {
2573         MissingFeature = Feature.str();
2574         return false;
2575       }
2576       return true;
2577     }))
2578       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2579           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2580   }
2581 }
2582 
2583 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2584   if (!CGM.getCodeGenOpts().SanitizeStats)
2585     return;
2586 
2587   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2588   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2589   CGM.getSanStats().create(IRB, SSK);
2590 }
2591 
2592 llvm::Value *
2593 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2594   llvm::Value *Condition = nullptr;
2595 
2596   if (!RO.Conditions.Architecture.empty())
2597     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2598 
2599   if (!RO.Conditions.Features.empty()) {
2600     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2601     Condition =
2602         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2603   }
2604   return Condition;
2605 }
2606 
2607 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2608                                              llvm::Function *Resolver,
2609                                              CGBuilderTy &Builder,
2610                                              llvm::Function *FuncToReturn,
2611                                              bool SupportsIFunc) {
2612   if (SupportsIFunc) {
2613     Builder.CreateRet(FuncToReturn);
2614     return;
2615   }
2616 
2617   llvm::SmallVector<llvm::Value *, 10> Args;
2618   llvm::for_each(Resolver->args(),
2619                  [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2620 
2621   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2622   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2623 
2624   if (Resolver->getReturnType()->isVoidTy())
2625     Builder.CreateRetVoid();
2626   else
2627     Builder.CreateRet(Result);
2628 }
2629 
2630 void CodeGenFunction::EmitMultiVersionResolver(
2631     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2632   assert(getContext().getTargetInfo().getTriple().isX86() &&
2633          "Only implemented for x86 targets");
2634 
2635   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2636 
2637   // Main function's basic block.
2638   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2639   Builder.SetInsertPoint(CurBlock);
2640   EmitX86CpuInit();
2641 
2642   for (const MultiVersionResolverOption &RO : Options) {
2643     Builder.SetInsertPoint(CurBlock);
2644     llvm::Value *Condition = FormResolverCondition(RO);
2645 
2646     // The 'default' or 'generic' case.
2647     if (!Condition) {
2648       assert(&RO == Options.end() - 1 &&
2649              "Default or Generic case must be last");
2650       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2651                                        SupportsIFunc);
2652       return;
2653     }
2654 
2655     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2656     CGBuilderTy RetBuilder(*this, RetBlock);
2657     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2658                                      SupportsIFunc);
2659     CurBlock = createBasicBlock("resolver_else", Resolver);
2660     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2661   }
2662 
2663   // If no generic/default, emit an unreachable.
2664   Builder.SetInsertPoint(CurBlock);
2665   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2666   TrapCall->setDoesNotReturn();
2667   TrapCall->setDoesNotThrow();
2668   Builder.CreateUnreachable();
2669   Builder.ClearInsertionPoint();
2670 }
2671 
2672 // Loc - where the diagnostic will point, where in the source code this
2673 //  alignment has failed.
2674 // SecondaryLoc - if present (will be present if sufficiently different from
2675 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2676 //  It should be the location where the __attribute__((assume_aligned))
2677 //  was written e.g.
2678 void CodeGenFunction::emitAlignmentAssumptionCheck(
2679     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2680     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2681     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2682     llvm::Instruction *Assumption) {
2683   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2684          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2685              llvm::Intrinsic::getDeclaration(
2686                  Builder.GetInsertBlock()->getParent()->getParent(),
2687                  llvm::Intrinsic::assume) &&
2688          "Assumption should be a call to llvm.assume().");
2689   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2690          "Assumption should be the last instruction of the basic block, "
2691          "since the basic block is still being generated.");
2692 
2693   if (!SanOpts.has(SanitizerKind::Alignment))
2694     return;
2695 
2696   // Don't check pointers to volatile data. The behavior here is implementation-
2697   // defined.
2698   if (Ty->getPointeeType().isVolatileQualified())
2699     return;
2700 
2701   // We need to temorairly remove the assumption so we can insert the
2702   // sanitizer check before it, else the check will be dropped by optimizations.
2703   Assumption->removeFromParent();
2704 
2705   {
2706     SanitizerScope SanScope(this);
2707 
2708     if (!OffsetValue)
2709       OffsetValue = Builder.getInt1(false); // no offset.
2710 
2711     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2712                                     EmitCheckSourceLocation(SecondaryLoc),
2713                                     EmitCheckTypeDescriptor(Ty)};
2714     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2715                                   EmitCheckValue(Alignment),
2716                                   EmitCheckValue(OffsetValue)};
2717     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2718               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2719   }
2720 
2721   // We are now in the (new, empty) "cont" basic block.
2722   // Reintroduce the assumption.
2723   Builder.Insert(Assumption);
2724   // FIXME: Assumption still has it's original basic block as it's Parent.
2725 }
2726 
2727 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2728   if (CGDebugInfo *DI = getDebugInfo())
2729     return DI->SourceLocToDebugLoc(Location);
2730 
2731   return llvm::DebugLoc();
2732 }
2733 
2734 llvm::Value *
2735 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
2736                                                       Stmt::Likelihood LH) {
2737   switch (LH) {
2738   case Stmt::LH_None:
2739     return Cond;
2740   case Stmt::LH_Likely:
2741   case Stmt::LH_Unlikely:
2742     // Don't generate llvm.expect on -O0 as the backend won't use it for
2743     // anything.
2744     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2745       return Cond;
2746     llvm::Type *CondTy = Cond->getType();
2747     assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
2748     llvm::Function *FnExpect =
2749         CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
2750     llvm::Value *ExpectedValueOfCond =
2751         llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
2752     return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
2753                               Cond->getName() + ".expval");
2754   }
2755   llvm_unreachable("Unknown Likelihood");
2756 }
2757