xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision 34b696e41259e41ae3ac61a539bd152d3afb73ae)
1  //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This coordinates the per-function state used while generating code.
10  //
11  //===----------------------------------------------------------------------===//
12  
13  #include "CodeGenFunction.h"
14  #include "CGBlocks.h"
15  #include "CGCUDARuntime.h"
16  #include "CGCXXABI.h"
17  #include "CGCleanup.h"
18  #include "CGDebugInfo.h"
19  #include "CGOpenMPRuntime.h"
20  #include "CodeGenModule.h"
21  #include "CodeGenPGO.h"
22  #include "TargetInfo.h"
23  #include "clang/AST/ASTContext.h"
24  #include "clang/AST/ASTLambda.h"
25  #include "clang/AST/Attr.h"
26  #include "clang/AST/Decl.h"
27  #include "clang/AST/DeclCXX.h"
28  #include "clang/AST/Expr.h"
29  #include "clang/AST/StmtCXX.h"
30  #include "clang/AST/StmtObjC.h"
31  #include "clang/Basic/Builtins.h"
32  #include "clang/Basic/CodeGenOptions.h"
33  #include "clang/Basic/TargetInfo.h"
34  #include "clang/CodeGen/CGFunctionInfo.h"
35  #include "clang/Frontend/FrontendDiagnostic.h"
36  #include "llvm/ADT/ArrayRef.h"
37  #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
38  #include "llvm/IR/DataLayout.h"
39  #include "llvm/IR/Dominators.h"
40  #include "llvm/IR/FPEnv.h"
41  #include "llvm/IR/IntrinsicInst.h"
42  #include "llvm/IR/Intrinsics.h"
43  #include "llvm/IR/MDBuilder.h"
44  #include "llvm/IR/Operator.h"
45  #include "llvm/Support/CRC.h"
46  #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
47  #include "llvm/Transforms/Utils/PromoteMemToReg.h"
48  
49  using namespace clang;
50  using namespace CodeGen;
51  
52  /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
53  /// markers.
54  static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
55                                        const LangOptions &LangOpts) {
56    if (CGOpts.DisableLifetimeMarkers)
57      return false;
58  
59    // Sanitizers may use markers.
60    if (CGOpts.SanitizeAddressUseAfterScope ||
61        LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
62        LangOpts.Sanitize.has(SanitizerKind::Memory))
63      return true;
64  
65    // For now, only in optimized builds.
66    return CGOpts.OptimizationLevel != 0;
67  }
68  
69  CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
70      : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
71        Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
72                CGBuilderInserterTy(this)),
73        SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
74        DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
75        ShouldEmitLifetimeMarkers(
76            shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
77    if (!suppressNewContext)
78      CGM.getCXXABI().getMangleContext().startNewFunction();
79    EHStack.setCGF(this);
80  
81    SetFastMathFlags(CurFPFeatures);
82  }
83  
84  CodeGenFunction::~CodeGenFunction() {
85    assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
86  
87    if (getLangOpts().OpenMP && CurFn)
88      CGM.getOpenMPRuntime().functionFinished(*this);
89  
90    // If we have an OpenMPIRBuilder we want to finalize functions (incl.
91    // outlining etc) at some point. Doing it once the function codegen is done
92    // seems to be a reasonable spot. We do it here, as opposed to the deletion
93    // time of the CodeGenModule, because we have to ensure the IR has not yet
94    // been "emitted" to the outside, thus, modifications are still sensible.
95    if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
96      CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
97  }
98  
99  // Map the LangOption for exception behavior into
100  // the corresponding enum in the IR.
101  llvm::fp::ExceptionBehavior
102  clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
103  
104    switch (Kind) {
105    case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
106    case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
107    case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
108    default:
109      llvm_unreachable("Unsupported FP Exception Behavior");
110    }
111  }
112  
113  void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
114    llvm::FastMathFlags FMF;
115    FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
116    FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
117    FMF.setNoInfs(FPFeatures.getNoHonorInfs());
118    FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
119    FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
120    FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
121    FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
122    Builder.setFastMathFlags(FMF);
123  }
124  
125  CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
126                                                    const Expr *E)
127      : CGF(CGF) {
128    ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
129  }
130  
131  CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
132                                                    FPOptions FPFeatures)
133      : CGF(CGF) {
134    ConstructorHelper(FPFeatures);
135  }
136  
137  void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
138    OldFPFeatures = CGF.CurFPFeatures;
139    CGF.CurFPFeatures = FPFeatures;
140  
141    OldExcept = CGF.Builder.getDefaultConstrainedExcept();
142    OldRounding = CGF.Builder.getDefaultConstrainedRounding();
143  
144    if (OldFPFeatures == FPFeatures)
145      return;
146  
147    FMFGuard.emplace(CGF.Builder);
148  
149    llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode();
150    CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
151    auto NewExceptionBehavior =
152        ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
153            FPFeatures.getExceptionMode()));
154    CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
155  
156    CGF.SetFastMathFlags(FPFeatures);
157  
158    assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
159            isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
160            isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
161            (NewExceptionBehavior == llvm::fp::ebIgnore &&
162             NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
163           "FPConstrained should be enabled on entire function");
164  
165    auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
166      auto OldValue =
167          CGF.CurFn->getFnAttribute(Name).getValueAsBool();
168      auto NewValue = OldValue & Value;
169      if (OldValue != NewValue)
170        CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
171    };
172    mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
173    mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
174    mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
175    mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() &&
176                                           FPFeatures.getAllowReciprocal() &&
177                                           FPFeatures.getAllowApproxFunc() &&
178                                           FPFeatures.getNoSignedZero());
179  }
180  
181  CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
182    CGF.CurFPFeatures = OldFPFeatures;
183    CGF.Builder.setDefaultConstrainedExcept(OldExcept);
184    CGF.Builder.setDefaultConstrainedRounding(OldRounding);
185  }
186  
187  LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
188    LValueBaseInfo BaseInfo;
189    TBAAAccessInfo TBAAInfo;
190    CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
191    Address Addr(V, ConvertTypeForMem(T), Alignment);
192    return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
193  }
194  
195  /// Given a value of type T* that may not be to a complete object,
196  /// construct an l-value with the natural pointee alignment of T.
197  LValue
198  CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
199    LValueBaseInfo BaseInfo;
200    TBAAAccessInfo TBAAInfo;
201    CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
202                                                  /* forPointeeType= */ true);
203    Address Addr(V, ConvertTypeForMem(T), Align);
204    return MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
205  }
206  
207  
208  llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
209    return CGM.getTypes().ConvertTypeForMem(T);
210  }
211  
212  llvm::Type *CodeGenFunction::ConvertType(QualType T) {
213    return CGM.getTypes().ConvertType(T);
214  }
215  
216  TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
217    type = type.getCanonicalType();
218    while (true) {
219      switch (type->getTypeClass()) {
220  #define TYPE(name, parent)
221  #define ABSTRACT_TYPE(name, parent)
222  #define NON_CANONICAL_TYPE(name, parent) case Type::name:
223  #define DEPENDENT_TYPE(name, parent) case Type::name:
224  #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
225  #include "clang/AST/TypeNodes.inc"
226        llvm_unreachable("non-canonical or dependent type in IR-generation");
227  
228      case Type::Auto:
229      case Type::DeducedTemplateSpecialization:
230        llvm_unreachable("undeduced type in IR-generation");
231  
232      // Various scalar types.
233      case Type::Builtin:
234      case Type::Pointer:
235      case Type::BlockPointer:
236      case Type::LValueReference:
237      case Type::RValueReference:
238      case Type::MemberPointer:
239      case Type::Vector:
240      case Type::ExtVector:
241      case Type::ConstantMatrix:
242      case Type::FunctionProto:
243      case Type::FunctionNoProto:
244      case Type::Enum:
245      case Type::ObjCObjectPointer:
246      case Type::Pipe:
247      case Type::BitInt:
248        return TEK_Scalar;
249  
250      // Complexes.
251      case Type::Complex:
252        return TEK_Complex;
253  
254      // Arrays, records, and Objective-C objects.
255      case Type::ConstantArray:
256      case Type::IncompleteArray:
257      case Type::VariableArray:
258      case Type::Record:
259      case Type::ObjCObject:
260      case Type::ObjCInterface:
261        return TEK_Aggregate;
262  
263      // We operate on atomic values according to their underlying type.
264      case Type::Atomic:
265        type = cast<AtomicType>(type)->getValueType();
266        continue;
267      }
268      llvm_unreachable("unknown type kind!");
269    }
270  }
271  
272  llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
273    // For cleanliness, we try to avoid emitting the return block for
274    // simple cases.
275    llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
276  
277    if (CurBB) {
278      assert(!CurBB->getTerminator() && "Unexpected terminated block.");
279  
280      // We have a valid insert point, reuse it if it is empty or there are no
281      // explicit jumps to the return block.
282      if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
283        ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
284        delete ReturnBlock.getBlock();
285        ReturnBlock = JumpDest();
286      } else
287        EmitBlock(ReturnBlock.getBlock());
288      return llvm::DebugLoc();
289    }
290  
291    // Otherwise, if the return block is the target of a single direct
292    // branch then we can just put the code in that block instead. This
293    // cleans up functions which started with a unified return block.
294    if (ReturnBlock.getBlock()->hasOneUse()) {
295      llvm::BranchInst *BI =
296        dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
297      if (BI && BI->isUnconditional() &&
298          BI->getSuccessor(0) == ReturnBlock.getBlock()) {
299        // Record/return the DebugLoc of the simple 'return' expression to be used
300        // later by the actual 'ret' instruction.
301        llvm::DebugLoc Loc = BI->getDebugLoc();
302        Builder.SetInsertPoint(BI->getParent());
303        BI->eraseFromParent();
304        delete ReturnBlock.getBlock();
305        ReturnBlock = JumpDest();
306        return Loc;
307      }
308    }
309  
310    // FIXME: We are at an unreachable point, there is no reason to emit the block
311    // unless it has uses. However, we still need a place to put the debug
312    // region.end for now.
313  
314    EmitBlock(ReturnBlock.getBlock());
315    return llvm::DebugLoc();
316  }
317  
318  static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
319    if (!BB) return;
320    if (!BB->use_empty())
321      return CGF.CurFn->getBasicBlockList().push_back(BB);
322    delete BB;
323  }
324  
325  void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
326    assert(BreakContinueStack.empty() &&
327           "mismatched push/pop in break/continue stack!");
328  
329    bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
330      && NumSimpleReturnExprs == NumReturnExprs
331      && ReturnBlock.getBlock()->use_empty();
332    // Usually the return expression is evaluated before the cleanup
333    // code.  If the function contains only a simple return statement,
334    // such as a constant, the location before the cleanup code becomes
335    // the last useful breakpoint in the function, because the simple
336    // return expression will be evaluated after the cleanup code. To be
337    // safe, set the debug location for cleanup code to the location of
338    // the return statement.  Otherwise the cleanup code should be at the
339    // end of the function's lexical scope.
340    //
341    // If there are multiple branches to the return block, the branch
342    // instructions will get the location of the return statements and
343    // all will be fine.
344    if (CGDebugInfo *DI = getDebugInfo()) {
345      if (OnlySimpleReturnStmts)
346        DI->EmitLocation(Builder, LastStopPoint);
347      else
348        DI->EmitLocation(Builder, EndLoc);
349    }
350  
351    // Pop any cleanups that might have been associated with the
352    // parameters.  Do this in whatever block we're currently in; it's
353    // important to do this before we enter the return block or return
354    // edges will be *really* confused.
355    bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
356    bool HasOnlyLifetimeMarkers =
357        HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
358    bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
359    if (HasCleanups) {
360      // Make sure the line table doesn't jump back into the body for
361      // the ret after it's been at EndLoc.
362      Optional<ApplyDebugLocation> AL;
363      if (CGDebugInfo *DI = getDebugInfo()) {
364        if (OnlySimpleReturnStmts)
365          DI->EmitLocation(Builder, EndLoc);
366        else
367          // We may not have a valid end location. Try to apply it anyway, and
368          // fall back to an artificial location if needed.
369          AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
370      }
371  
372      PopCleanupBlocks(PrologueCleanupDepth);
373    }
374  
375    // Emit function epilog (to return).
376    llvm::DebugLoc Loc = EmitReturnBlock();
377  
378    if (ShouldInstrumentFunction()) {
379      if (CGM.getCodeGenOpts().InstrumentFunctions)
380        CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
381      if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
382        CurFn->addFnAttr("instrument-function-exit-inlined",
383                         "__cyg_profile_func_exit");
384    }
385  
386    // Emit debug descriptor for function end.
387    if (CGDebugInfo *DI = getDebugInfo())
388      DI->EmitFunctionEnd(Builder, CurFn);
389  
390    // Reset the debug location to that of the simple 'return' expression, if any
391    // rather than that of the end of the function's scope '}'.
392    ApplyDebugLocation AL(*this, Loc);
393    EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
394    EmitEndEHSpec(CurCodeDecl);
395  
396    assert(EHStack.empty() &&
397           "did not remove all scopes from cleanup stack!");
398  
399    // If someone did an indirect goto, emit the indirect goto block at the end of
400    // the function.
401    if (IndirectBranch) {
402      EmitBlock(IndirectBranch->getParent());
403      Builder.ClearInsertionPoint();
404    }
405  
406    // If some of our locals escaped, insert a call to llvm.localescape in the
407    // entry block.
408    if (!EscapedLocals.empty()) {
409      // Invert the map from local to index into a simple vector. There should be
410      // no holes.
411      SmallVector<llvm::Value *, 4> EscapeArgs;
412      EscapeArgs.resize(EscapedLocals.size());
413      for (auto &Pair : EscapedLocals)
414        EscapeArgs[Pair.second] = Pair.first;
415      llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
416          &CGM.getModule(), llvm::Intrinsic::localescape);
417      CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
418    }
419  
420    // Remove the AllocaInsertPt instruction, which is just a convenience for us.
421    llvm::Instruction *Ptr = AllocaInsertPt;
422    AllocaInsertPt = nullptr;
423    Ptr->eraseFromParent();
424  
425    // PostAllocaInsertPt, if created, was lazily created when it was required,
426    // remove it now since it was just created for our own convenience.
427    if (PostAllocaInsertPt) {
428      llvm::Instruction *PostPtr = PostAllocaInsertPt;
429      PostAllocaInsertPt = nullptr;
430      PostPtr->eraseFromParent();
431    }
432  
433    // If someone took the address of a label but never did an indirect goto, we
434    // made a zero entry PHI node, which is illegal, zap it now.
435    if (IndirectBranch) {
436      llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
437      if (PN->getNumIncomingValues() == 0) {
438        PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
439        PN->eraseFromParent();
440      }
441    }
442  
443    EmitIfUsed(*this, EHResumeBlock);
444    EmitIfUsed(*this, TerminateLandingPad);
445    EmitIfUsed(*this, TerminateHandler);
446    EmitIfUsed(*this, UnreachableBlock);
447  
448    for (const auto &FuncletAndParent : TerminateFunclets)
449      EmitIfUsed(*this, FuncletAndParent.second);
450  
451    if (CGM.getCodeGenOpts().EmitDeclMetadata)
452      EmitDeclMetadata();
453  
454    for (const auto &R : DeferredReplacements) {
455      if (llvm::Value *Old = R.first) {
456        Old->replaceAllUsesWith(R.second);
457        cast<llvm::Instruction>(Old)->eraseFromParent();
458      }
459    }
460    DeferredReplacements.clear();
461  
462    // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
463    // PHIs if the current function is a coroutine. We don't do it for all
464    // functions as it may result in slight increase in numbers of instructions
465    // if compiled with no optimizations. We do it for coroutine as the lifetime
466    // of CleanupDestSlot alloca make correct coroutine frame building very
467    // difficult.
468    if (NormalCleanupDest.isValid() && isCoroutine()) {
469      llvm::DominatorTree DT(*CurFn);
470      llvm::PromoteMemToReg(
471          cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
472      NormalCleanupDest = Address::invalid();
473    }
474  
475    // Scan function arguments for vector width.
476    for (llvm::Argument &A : CurFn->args())
477      if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
478        LargestVectorWidth =
479            std::max((uint64_t)LargestVectorWidth,
480                     VT->getPrimitiveSizeInBits().getKnownMinSize());
481  
482    // Update vector width based on return type.
483    if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
484      LargestVectorWidth =
485          std::max((uint64_t)LargestVectorWidth,
486                   VT->getPrimitiveSizeInBits().getKnownMinSize());
487  
488    if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth)
489      LargestVectorWidth = CurFnInfo->getMaxVectorWidth();
490  
491    // Add the required-vector-width attribute. This contains the max width from:
492    // 1. min-vector-width attribute used in the source program.
493    // 2. Any builtins used that have a vector width specified.
494    // 3. Values passed in and out of inline assembly.
495    // 4. Width of vector arguments and return types for this function.
496    // 5. Width of vector aguments and return types for functions called by this
497    //    function.
498    CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
499  
500    // Add vscale_range attribute if appropriate.
501    Optional<std::pair<unsigned, unsigned>> VScaleRange =
502        getContext().getTargetInfo().getVScaleRange(getLangOpts());
503    if (VScaleRange) {
504      CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
505          getLLVMContext(), VScaleRange->first, VScaleRange->second));
506    }
507  
508    // If we generated an unreachable return block, delete it now.
509    if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
510      Builder.ClearInsertionPoint();
511      ReturnBlock.getBlock()->eraseFromParent();
512    }
513    if (ReturnValue.isValid()) {
514      auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
515      if (RetAlloca && RetAlloca->use_empty()) {
516        RetAlloca->eraseFromParent();
517        ReturnValue = Address::invalid();
518      }
519    }
520  }
521  
522  /// ShouldInstrumentFunction - Return true if the current function should be
523  /// instrumented with __cyg_profile_func_* calls
524  bool CodeGenFunction::ShouldInstrumentFunction() {
525    if (!CGM.getCodeGenOpts().InstrumentFunctions &&
526        !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
527        !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
528      return false;
529    if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
530      return false;
531    return true;
532  }
533  
534  bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
535    if (!CurFuncDecl)
536      return false;
537    return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
538  }
539  
540  /// ShouldXRayInstrument - Return true if the current function should be
541  /// instrumented with XRay nop sleds.
542  bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
543    return CGM.getCodeGenOpts().XRayInstrumentFunctions;
544  }
545  
546  /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
547  /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
548  bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
549    return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
550           (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
551            CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
552                XRayInstrKind::Custom);
553  }
554  
555  bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
556    return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
557           (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
558            CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
559                XRayInstrKind::Typed);
560  }
561  
562  llvm::Value *
563  CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
564                                            llvm::Value *EncodedAddr) {
565    // Reconstruct the address of the global.
566    auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
567    auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
568    auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
569    auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
570  
571    // Load the original pointer through the global.
572    return Builder.CreateLoad(Address(GOTAddr, Int8PtrTy, getPointerAlign()),
573                              "decoded_addr");
574  }
575  
576  void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD,
577                                           llvm::Function *Fn) {
578    if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>())
579      return;
580  
581    llvm::LLVMContext &Context = getLLVMContext();
582  
583    CGM.GenKernelArgMetadata(Fn, FD, this);
584  
585    if (!getLangOpts().OpenCL)
586      return;
587  
588    if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
589      QualType HintQTy = A->getTypeHint();
590      const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
591      bool IsSignedInteger =
592          HintQTy->isSignedIntegerType() ||
593          (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
594      llvm::Metadata *AttrMDArgs[] = {
595          llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
596              CGM.getTypes().ConvertType(A->getTypeHint()))),
597          llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
598              llvm::IntegerType::get(Context, 32),
599              llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
600      Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
601    }
602  
603    if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
604      llvm::Metadata *AttrMDArgs[] = {
605          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
606          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
607          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
608      Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
609    }
610  
611    if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
612      llvm::Metadata *AttrMDArgs[] = {
613          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
614          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
615          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
616      Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
617    }
618  
619    if (const OpenCLIntelReqdSubGroupSizeAttr *A =
620            FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
621      llvm::Metadata *AttrMDArgs[] = {
622          llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
623      Fn->setMetadata("intel_reqd_sub_group_size",
624                      llvm::MDNode::get(Context, AttrMDArgs));
625    }
626  }
627  
628  /// Determine whether the function F ends with a return stmt.
629  static bool endsWithReturn(const Decl* F) {
630    const Stmt *Body = nullptr;
631    if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
632      Body = FD->getBody();
633    else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
634      Body = OMD->getBody();
635  
636    if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
637      auto LastStmt = CS->body_rbegin();
638      if (LastStmt != CS->body_rend())
639        return isa<ReturnStmt>(*LastStmt);
640    }
641    return false;
642  }
643  
644  void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
645    if (SanOpts.has(SanitizerKind::Thread)) {
646      Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
647      Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
648    }
649  }
650  
651  /// Check if the return value of this function requires sanitization.
652  bool CodeGenFunction::requiresReturnValueCheck() const {
653    return requiresReturnValueNullabilityCheck() ||
654           (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
655            CurCodeDecl->getAttr<ReturnsNonNullAttr>());
656  }
657  
658  static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
659    auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
660    if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
661        !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
662        (MD->getNumParams() != 1 && MD->getNumParams() != 2))
663      return false;
664  
665    if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
666      return false;
667  
668    if (MD->getNumParams() == 2) {
669      auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
670      if (!PT || !PT->isVoidPointerType() ||
671          !PT->getPointeeType().isConstQualified())
672        return false;
673    }
674  
675    return true;
676  }
677  
678  /// Return the UBSan prologue signature for \p FD if one is available.
679  static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
680                                              const FunctionDecl *FD) {
681    if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
682      if (!MD->isStatic())
683        return nullptr;
684    return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
685  }
686  
687  void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
688                                      llvm::Function *Fn,
689                                      const CGFunctionInfo &FnInfo,
690                                      const FunctionArgList &Args,
691                                      SourceLocation Loc,
692                                      SourceLocation StartLoc) {
693    assert(!CurFn &&
694           "Do not use a CodeGenFunction object for more than one function");
695  
696    const Decl *D = GD.getDecl();
697  
698    DidCallStackSave = false;
699    CurCodeDecl = D;
700    const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
701    if (FD && FD->usesSEHTry())
702      CurSEHParent = FD;
703    CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
704    FnRetTy = RetTy;
705    CurFn = Fn;
706    CurFnInfo = &FnInfo;
707    assert(CurFn->isDeclaration() && "Function already has body?");
708  
709    // If this function is ignored for any of the enabled sanitizers,
710    // disable the sanitizer for the function.
711    do {
712  #define SANITIZER(NAME, ID)                                                    \
713    if (SanOpts.empty())                                                         \
714      break;                                                                     \
715    if (SanOpts.has(SanitizerKind::ID))                                          \
716      if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
717        SanOpts.set(SanitizerKind::ID, false);
718  
719  #include "clang/Basic/Sanitizers.def"
720  #undef SANITIZER
721    } while (false);
722  
723    if (D) {
724      const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds);
725      bool NoSanitizeCoverage = false;
726  
727      for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
728        // Apply the no_sanitize* attributes to SanOpts.
729        SanitizerMask mask = Attr->getMask();
730        SanOpts.Mask &= ~mask;
731        if (mask & SanitizerKind::Address)
732          SanOpts.set(SanitizerKind::KernelAddress, false);
733        if (mask & SanitizerKind::KernelAddress)
734          SanOpts.set(SanitizerKind::Address, false);
735        if (mask & SanitizerKind::HWAddress)
736          SanOpts.set(SanitizerKind::KernelHWAddress, false);
737        if (mask & SanitizerKind::KernelHWAddress)
738          SanOpts.set(SanitizerKind::HWAddress, false);
739  
740        // SanitizeCoverage is not handled by SanOpts.
741        if (Attr->hasCoverage())
742          NoSanitizeCoverage = true;
743      }
744  
745      if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds))
746        Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds);
747  
748      if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
749        Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
750    }
751  
752    if (ShouldSkipSanitizerInstrumentation()) {
753      CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
754    } else {
755      // Apply sanitizer attributes to the function.
756      if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
757        Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
758      if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
759                           SanitizerKind::KernelHWAddress))
760        Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
761      if (SanOpts.has(SanitizerKind::MemtagStack))
762        Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
763      if (SanOpts.has(SanitizerKind::Thread))
764        Fn->addFnAttr(llvm::Attribute::SanitizeThread);
765      if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
766        Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
767    }
768    if (SanOpts.has(SanitizerKind::SafeStack))
769      Fn->addFnAttr(llvm::Attribute::SafeStack);
770    if (SanOpts.has(SanitizerKind::ShadowCallStack))
771      Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
772  
773    // Apply fuzzing attribute to the function.
774    if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
775      Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
776  
777    // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
778    // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
779    if (SanOpts.has(SanitizerKind::Thread)) {
780      if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
781        IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
782        if (OMD->getMethodFamily() == OMF_dealloc ||
783            OMD->getMethodFamily() == OMF_initialize ||
784            (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
785          markAsIgnoreThreadCheckingAtRuntime(Fn);
786        }
787      }
788    }
789  
790    // Ignore unrelated casts in STL allocate() since the allocator must cast
791    // from void* to T* before object initialization completes. Don't match on the
792    // namespace because not all allocators are in std::
793    if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
794      if (matchesStlAllocatorFn(D, getContext()))
795        SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
796    }
797  
798    // Ignore null checks in coroutine functions since the coroutines passes
799    // are not aware of how to move the extra UBSan instructions across the split
800    // coroutine boundaries.
801    if (D && SanOpts.has(SanitizerKind::Null))
802      if (FD && FD->getBody() &&
803          FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
804        SanOpts.Mask &= ~SanitizerKind::Null;
805  
806    // Apply xray attributes to the function (as a string, for now)
807    bool AlwaysXRayAttr = false;
808    if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
809      if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
810              XRayInstrKind::FunctionEntry) ||
811          CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
812              XRayInstrKind::FunctionExit)) {
813        if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
814          Fn->addFnAttr("function-instrument", "xray-always");
815          AlwaysXRayAttr = true;
816        }
817        if (XRayAttr->neverXRayInstrument())
818          Fn->addFnAttr("function-instrument", "xray-never");
819        if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
820          if (ShouldXRayInstrumentFunction())
821            Fn->addFnAttr("xray-log-args",
822                          llvm::utostr(LogArgs->getArgumentCount()));
823      }
824    } else {
825      if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
826        Fn->addFnAttr(
827            "xray-instruction-threshold",
828            llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
829    }
830  
831    if (ShouldXRayInstrumentFunction()) {
832      if (CGM.getCodeGenOpts().XRayIgnoreLoops)
833        Fn->addFnAttr("xray-ignore-loops");
834  
835      if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
836              XRayInstrKind::FunctionExit))
837        Fn->addFnAttr("xray-skip-exit");
838  
839      if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
840              XRayInstrKind::FunctionEntry))
841        Fn->addFnAttr("xray-skip-entry");
842  
843      auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
844      if (FuncGroups > 1) {
845        auto FuncName = llvm::makeArrayRef<uint8_t>(
846            CurFn->getName().bytes_begin(), CurFn->getName().bytes_end());
847        auto Group = crc32(FuncName) % FuncGroups;
848        if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
849            !AlwaysXRayAttr)
850          Fn->addFnAttr("function-instrument", "xray-never");
851      }
852    }
853  
854    if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone)
855      if (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc))
856        Fn->addFnAttr(llvm::Attribute::NoProfile);
857  
858    unsigned Count, Offset;
859    if (const auto *Attr =
860            D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
861      Count = Attr->getCount();
862      Offset = Attr->getOffset();
863    } else {
864      Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
865      Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
866    }
867    if (Count && Offset <= Count) {
868      Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
869      if (Offset)
870        Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
871    }
872    // Instruct that functions for COFF/CodeView targets should start with a
873    // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
874    // backends as they don't need it -- instructions on these architectures are
875    // always atomically patchable at runtime.
876    if (CGM.getCodeGenOpts().HotPatch &&
877        getContext().getTargetInfo().getTriple().isX86())
878      Fn->addFnAttr("patchable-function", "prologue-short-redirect");
879  
880    // Add no-jump-tables value.
881    if (CGM.getCodeGenOpts().NoUseJumpTables)
882      Fn->addFnAttr("no-jump-tables", "true");
883  
884    // Add no-inline-line-tables value.
885    if (CGM.getCodeGenOpts().NoInlineLineTables)
886      Fn->addFnAttr("no-inline-line-tables");
887  
888    // Add profile-sample-accurate value.
889    if (CGM.getCodeGenOpts().ProfileSampleAccurate)
890      Fn->addFnAttr("profile-sample-accurate");
891  
892    if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
893      Fn->addFnAttr("use-sample-profile");
894  
895    if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
896      Fn->addFnAttr("cfi-canonical-jump-table");
897  
898    if (D && D->hasAttr<NoProfileFunctionAttr>())
899      Fn->addFnAttr(llvm::Attribute::NoProfile);
900  
901    if (D) {
902      // Function attributes take precedence over command line flags.
903      if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) {
904        switch (A->getThunkType()) {
905        case FunctionReturnThunksAttr::Kind::Keep:
906          break;
907        case FunctionReturnThunksAttr::Kind::Extern:
908          Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
909          break;
910        }
911      } else if (CGM.getCodeGenOpts().FunctionReturnThunks)
912        Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
913    }
914  
915    if (FD && (getLangOpts().OpenCL ||
916               (getLangOpts().HIP && getLangOpts().CUDAIsDevice))) {
917      // Add metadata for a kernel function.
918      EmitKernelMetadata(FD, Fn);
919    }
920  
921    // If we are checking function types, emit a function type signature as
922    // prologue data.
923    if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
924      if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
925        // Remove any (C++17) exception specifications, to allow calling e.g. a
926        // noexcept function through a non-noexcept pointer.
927        auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec(
928            FD->getType(), EST_None);
929        llvm::Constant *FTRTTIConst =
930            CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
931        llvm::GlobalVariable *FTRTTIProxy =
932            CGM.GetOrCreateRTTIProxyGlobalVariable(FTRTTIConst);
933        llvm::LLVMContext &Ctx = Fn->getContext();
934        llvm::MDBuilder MDB(Ctx);
935        Fn->setMetadata(llvm::LLVMContext::MD_func_sanitize,
936                        MDB.createRTTIPointerPrologue(PrologueSig, FTRTTIProxy));
937        CGM.addCompilerUsedGlobal(FTRTTIProxy);
938      }
939    }
940  
941    // If we're checking nullability, we need to know whether we can check the
942    // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
943    if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
944      auto Nullability = FnRetTy->getNullability(getContext());
945      if (Nullability && *Nullability == NullabilityKind::NonNull) {
946        if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
947              CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
948          RetValNullabilityPrecondition =
949              llvm::ConstantInt::getTrue(getLLVMContext());
950      }
951    }
952  
953    // If we're in C++ mode and the function name is "main", it is guaranteed
954    // to be norecurse by the standard (3.6.1.3 "The function main shall not be
955    // used within a program").
956    //
957    // OpenCL C 2.0 v2.2-11 s6.9.i:
958    //     Recursion is not supported.
959    //
960    // SYCL v1.2.1 s3.10:
961    //     kernels cannot include RTTI information, exception classes,
962    //     recursive code, virtual functions or make use of C++ libraries that
963    //     are not compiled for the device.
964    if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
965               getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
966               (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
967      Fn->addFnAttr(llvm::Attribute::NoRecurse);
968  
969    llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode();
970    llvm::fp::ExceptionBehavior FPExceptionBehavior =
971        ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
972    Builder.setDefaultConstrainedRounding(RM);
973    Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
974    if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
975        (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
976                 RM != llvm::RoundingMode::NearestTiesToEven))) {
977      Builder.setIsFPConstrained(true);
978      Fn->addFnAttr(llvm::Attribute::StrictFP);
979    }
980  
981    // If a custom alignment is used, force realigning to this alignment on
982    // any main function which certainly will need it.
983    if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
984               CGM.getCodeGenOpts().StackAlignment))
985      Fn->addFnAttr("stackrealign");
986  
987    // "main" doesn't need to zero out call-used registers.
988    if (FD && FD->isMain())
989      Fn->removeFnAttr("zero-call-used-regs");
990  
991    llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
992  
993    // Create a marker to make it easy to insert allocas into the entryblock
994    // later.  Don't create this with the builder, because we don't want it
995    // folded.
996    llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
997    AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
998  
999    ReturnBlock = getJumpDestInCurrentScope("return");
1000  
1001    Builder.SetInsertPoint(EntryBB);
1002  
1003    // If we're checking the return value, allocate space for a pointer to a
1004    // precise source location of the checked return statement.
1005    if (requiresReturnValueCheck()) {
1006      ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1007      Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1008                          ReturnLocation);
1009    }
1010  
1011    // Emit subprogram debug descriptor.
1012    if (CGDebugInfo *DI = getDebugInfo()) {
1013      // Reconstruct the type from the argument list so that implicit parameters,
1014      // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1015      // convention.
1016      DI->emitFunctionStart(GD, Loc, StartLoc,
1017                            DI->getFunctionType(FD, RetTy, Args), CurFn,
1018                            CurFuncIsThunk);
1019    }
1020  
1021    if (ShouldInstrumentFunction()) {
1022      if (CGM.getCodeGenOpts().InstrumentFunctions)
1023        CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1024      if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1025        CurFn->addFnAttr("instrument-function-entry-inlined",
1026                         "__cyg_profile_func_enter");
1027      if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1028        CurFn->addFnAttr("instrument-function-entry-inlined",
1029                         "__cyg_profile_func_enter_bare");
1030    }
1031  
1032    // Since emitting the mcount call here impacts optimizations such as function
1033    // inlining, we just add an attribute to insert a mcount call in backend.
1034    // The attribute "counting-function" is set to mcount function name which is
1035    // architecture dependent.
1036    if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1037      // Calls to fentry/mcount should not be generated if function has
1038      // the no_instrument_function attribute.
1039      if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1040        if (CGM.getCodeGenOpts().CallFEntry)
1041          Fn->addFnAttr("fentry-call", "true");
1042        else {
1043          Fn->addFnAttr("instrument-function-entry-inlined",
1044                        getTarget().getMCountName());
1045        }
1046        if (CGM.getCodeGenOpts().MNopMCount) {
1047          if (!CGM.getCodeGenOpts().CallFEntry)
1048            CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1049              << "-mnop-mcount" << "-mfentry";
1050          Fn->addFnAttr("mnop-mcount");
1051        }
1052  
1053        if (CGM.getCodeGenOpts().RecordMCount) {
1054          if (!CGM.getCodeGenOpts().CallFEntry)
1055            CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1056              << "-mrecord-mcount" << "-mfentry";
1057          Fn->addFnAttr("mrecord-mcount");
1058        }
1059      }
1060    }
1061  
1062    if (CGM.getCodeGenOpts().PackedStack) {
1063      if (getContext().getTargetInfo().getTriple().getArch() !=
1064          llvm::Triple::systemz)
1065        CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1066          << "-mpacked-stack";
1067      Fn->addFnAttr("packed-stack");
1068    }
1069  
1070    if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1071        !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1072      Fn->addFnAttr("warn-stack-size",
1073                    std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1074  
1075    if (RetTy->isVoidType()) {
1076      // Void type; nothing to return.
1077      ReturnValue = Address::invalid();
1078  
1079      // Count the implicit return.
1080      if (!endsWithReturn(D))
1081        ++NumReturnExprs;
1082    } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1083      // Indirect return; emit returned value directly into sret slot.
1084      // This reduces code size, and affects correctness in C++.
1085      auto AI = CurFn->arg_begin();
1086      if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1087        ++AI;
1088      ReturnValue = Address(&*AI, ConvertType(RetTy),
1089                            CurFnInfo->getReturnInfo().getIndirectAlign());
1090      if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1091        ReturnValuePointer =
1092            CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1093        Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1094                                ReturnValue.getPointer(), Int8PtrTy),
1095                            ReturnValuePointer);
1096      }
1097    } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1098               !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1099      // Load the sret pointer from the argument struct and return into that.
1100      unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1101      llvm::Function::arg_iterator EI = CurFn->arg_end();
1102      --EI;
1103      llvm::Value *Addr = Builder.CreateStructGEP(
1104          CurFnInfo->getArgStruct(), &*EI, Idx);
1105      llvm::Type *Ty =
1106          cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1107      ReturnValuePointer = Address(Addr, Ty, getPointerAlign());
1108      Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1109      ReturnValue =
1110          Address(Addr, ConvertType(RetTy), CGM.getNaturalTypeAlignment(RetTy));
1111    } else {
1112      ReturnValue = CreateIRTemp(RetTy, "retval");
1113  
1114      // Tell the epilog emitter to autorelease the result.  We do this
1115      // now so that various specialized functions can suppress it
1116      // during their IR-generation.
1117      if (getLangOpts().ObjCAutoRefCount &&
1118          !CurFnInfo->isReturnsRetained() &&
1119          RetTy->isObjCRetainableType())
1120        AutoreleaseResult = true;
1121    }
1122  
1123    EmitStartEHSpec(CurCodeDecl);
1124  
1125    PrologueCleanupDepth = EHStack.stable_begin();
1126  
1127    // Emit OpenMP specific initialization of the device functions.
1128    if (getLangOpts().OpenMP && CurCodeDecl)
1129      CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1130  
1131    EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1132  
1133    if (isa_and_nonnull<CXXMethodDecl>(D) &&
1134        cast<CXXMethodDecl>(D)->isInstance()) {
1135      CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1136      const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1137      if (MD->getParent()->isLambda() &&
1138          MD->getOverloadedOperator() == OO_Call) {
1139        // We're in a lambda; figure out the captures.
1140        MD->getParent()->getCaptureFields(LambdaCaptureFields,
1141                                          LambdaThisCaptureField);
1142        if (LambdaThisCaptureField) {
1143          // If the lambda captures the object referred to by '*this' - either by
1144          // value or by reference, make sure CXXThisValue points to the correct
1145          // object.
1146  
1147          // Get the lvalue for the field (which is a copy of the enclosing object
1148          // or contains the address of the enclosing object).
1149          LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1150          if (!LambdaThisCaptureField->getType()->isPointerType()) {
1151            // If the enclosing object was captured by value, just use its address.
1152            CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1153          } else {
1154            // Load the lvalue pointed to by the field, since '*this' was captured
1155            // by reference.
1156            CXXThisValue =
1157                EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1158          }
1159        }
1160        for (auto *FD : MD->getParent()->fields()) {
1161          if (FD->hasCapturedVLAType()) {
1162            auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1163                                             SourceLocation()).getScalarVal();
1164            auto VAT = FD->getCapturedVLAType();
1165            VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1166          }
1167        }
1168      } else {
1169        // Not in a lambda; just use 'this' from the method.
1170        // FIXME: Should we generate a new load for each use of 'this'?  The
1171        // fast register allocator would be happier...
1172        CXXThisValue = CXXABIThisValue;
1173      }
1174  
1175      // Check the 'this' pointer once per function, if it's available.
1176      if (CXXABIThisValue) {
1177        SanitizerSet SkippedChecks;
1178        SkippedChecks.set(SanitizerKind::ObjectSize, true);
1179        QualType ThisTy = MD->getThisType();
1180  
1181        // If this is the call operator of a lambda with no capture-default, it
1182        // may have a static invoker function, which may call this operator with
1183        // a null 'this' pointer.
1184        if (isLambdaCallOperator(MD) &&
1185            MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1186          SkippedChecks.set(SanitizerKind::Null, true);
1187  
1188        EmitTypeCheck(
1189            isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1190            Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1191      }
1192    }
1193  
1194    // If any of the arguments have a variably modified type, make sure to
1195    // emit the type size, but only if the function is not naked. Naked functions
1196    // have no prolog to run this evaluation.
1197    if (!FD || !FD->hasAttr<NakedAttr>()) {
1198      for (const VarDecl *VD : Args) {
1199        // Dig out the type as written from ParmVarDecls; it's unclear whether
1200        // the standard (C99 6.9.1p10) requires this, but we're following the
1201        // precedent set by gcc.
1202        QualType Ty;
1203        if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1204          Ty = PVD->getOriginalType();
1205        else
1206          Ty = VD->getType();
1207  
1208        if (Ty->isVariablyModifiedType())
1209          EmitVariablyModifiedType(Ty);
1210      }
1211    }
1212    // Emit a location at the end of the prologue.
1213    if (CGDebugInfo *DI = getDebugInfo())
1214      DI->EmitLocation(Builder, StartLoc);
1215    // TODO: Do we need to handle this in two places like we do with
1216    // target-features/target-cpu?
1217    if (CurFuncDecl)
1218      if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1219        LargestVectorWidth = VecWidth->getVectorWidth();
1220  }
1221  
1222  void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1223    incrementProfileCounter(Body);
1224    if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1225      EmitCompoundStmtWithoutScope(*S);
1226    else
1227      EmitStmt(Body);
1228  
1229    // This is checked after emitting the function body so we know if there
1230    // are any permitted infinite loops.
1231    if (checkIfFunctionMustProgress())
1232      CurFn->addFnAttr(llvm::Attribute::MustProgress);
1233  }
1234  
1235  /// When instrumenting to collect profile data, the counts for some blocks
1236  /// such as switch cases need to not include the fall-through counts, so
1237  /// emit a branch around the instrumentation code. When not instrumenting,
1238  /// this just calls EmitBlock().
1239  void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1240                                                 const Stmt *S) {
1241    llvm::BasicBlock *SkipCountBB = nullptr;
1242    if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1243      // When instrumenting for profiling, the fallthrough to certain
1244      // statements needs to skip over the instrumentation code so that we
1245      // get an accurate count.
1246      SkipCountBB = createBasicBlock("skipcount");
1247      EmitBranch(SkipCountBB);
1248    }
1249    EmitBlock(BB);
1250    uint64_t CurrentCount = getCurrentProfileCount();
1251    incrementProfileCounter(S);
1252    setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1253    if (SkipCountBB)
1254      EmitBlock(SkipCountBB);
1255  }
1256  
1257  /// Tries to mark the given function nounwind based on the
1258  /// non-existence of any throwing calls within it.  We believe this is
1259  /// lightweight enough to do at -O0.
1260  static void TryMarkNoThrow(llvm::Function *F) {
1261    // LLVM treats 'nounwind' on a function as part of the type, so we
1262    // can't do this on functions that can be overwritten.
1263    if (F->isInterposable()) return;
1264  
1265    for (llvm::BasicBlock &BB : *F)
1266      for (llvm::Instruction &I : BB)
1267        if (I.mayThrow())
1268          return;
1269  
1270    F->setDoesNotThrow();
1271  }
1272  
1273  QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1274                                                 FunctionArgList &Args) {
1275    const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1276    QualType ResTy = FD->getReturnType();
1277  
1278    const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1279    if (MD && MD->isInstance()) {
1280      if (CGM.getCXXABI().HasThisReturn(GD))
1281        ResTy = MD->getThisType();
1282      else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1283        ResTy = CGM.getContext().VoidPtrTy;
1284      CGM.getCXXABI().buildThisParam(*this, Args);
1285    }
1286  
1287    // The base version of an inheriting constructor whose constructed base is a
1288    // virtual base is not passed any arguments (because it doesn't actually call
1289    // the inherited constructor).
1290    bool PassedParams = true;
1291    if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1292      if (auto Inherited = CD->getInheritedConstructor())
1293        PassedParams =
1294            getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1295  
1296    if (PassedParams) {
1297      for (auto *Param : FD->parameters()) {
1298        Args.push_back(Param);
1299        if (!Param->hasAttr<PassObjectSizeAttr>())
1300          continue;
1301  
1302        auto *Implicit = ImplicitParamDecl::Create(
1303            getContext(), Param->getDeclContext(), Param->getLocation(),
1304            /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1305        SizeArguments[Param] = Implicit;
1306        Args.push_back(Implicit);
1307      }
1308    }
1309  
1310    if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1311      CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1312  
1313    return ResTy;
1314  }
1315  
1316  void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1317                                     const CGFunctionInfo &FnInfo) {
1318    assert(Fn && "generating code for null Function");
1319    const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1320    CurGD = GD;
1321  
1322    FunctionArgList Args;
1323    QualType ResTy = BuildFunctionArgList(GD, Args);
1324  
1325    if (FD->isInlineBuiltinDeclaration()) {
1326      // When generating code for a builtin with an inline declaration, use a
1327      // mangled name to hold the actual body, while keeping an external
1328      // definition in case the function pointer is referenced somewhere.
1329      std::string FDInlineName = (Fn->getName() + ".inline").str();
1330      llvm::Module *M = Fn->getParent();
1331      llvm::Function *Clone = M->getFunction(FDInlineName);
1332      if (!Clone) {
1333        Clone = llvm::Function::Create(Fn->getFunctionType(),
1334                                       llvm::GlobalValue::InternalLinkage,
1335                                       Fn->getAddressSpace(), FDInlineName, M);
1336        Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1337      }
1338      Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1339      Fn = Clone;
1340    } else {
1341      // Detect the unusual situation where an inline version is shadowed by a
1342      // non-inline version. In that case we should pick the external one
1343      // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1344      // to detect that situation before we reach codegen, so do some late
1345      // replacement.
1346      for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1347           PD = PD->getPreviousDecl()) {
1348        if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1349          std::string FDInlineName = (Fn->getName() + ".inline").str();
1350          llvm::Module *M = Fn->getParent();
1351          if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1352            Clone->replaceAllUsesWith(Fn);
1353            Clone->eraseFromParent();
1354          }
1355          break;
1356        }
1357      }
1358    }
1359  
1360    // Check if we should generate debug info for this function.
1361    if (FD->hasAttr<NoDebugAttr>()) {
1362      // Clear non-distinct debug info that was possibly attached to the function
1363      // due to an earlier declaration without the nodebug attribute
1364      Fn->setSubprogram(nullptr);
1365      // Disable debug info indefinitely for this function
1366      DebugInfo = nullptr;
1367    }
1368  
1369    // The function might not have a body if we're generating thunks for a
1370    // function declaration.
1371    SourceRange BodyRange;
1372    if (Stmt *Body = FD->getBody())
1373      BodyRange = Body->getSourceRange();
1374    else
1375      BodyRange = FD->getLocation();
1376    CurEHLocation = BodyRange.getEnd();
1377  
1378    // Use the location of the start of the function to determine where
1379    // the function definition is located. By default use the location
1380    // of the declaration as the location for the subprogram. A function
1381    // may lack a declaration in the source code if it is created by code
1382    // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1383    SourceLocation Loc = FD->getLocation();
1384  
1385    // If this is a function specialization then use the pattern body
1386    // as the location for the function.
1387    if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1388      if (SpecDecl->hasBody(SpecDecl))
1389        Loc = SpecDecl->getLocation();
1390  
1391    Stmt *Body = FD->getBody();
1392  
1393    if (Body) {
1394      // Coroutines always emit lifetime markers.
1395      if (isa<CoroutineBodyStmt>(Body))
1396        ShouldEmitLifetimeMarkers = true;
1397  
1398      // Initialize helper which will detect jumps which can cause invalid
1399      // lifetime markers.
1400      if (ShouldEmitLifetimeMarkers)
1401        Bypasses.Init(Body);
1402    }
1403  
1404    // Emit the standard function prologue.
1405    StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1406  
1407    // Save parameters for coroutine function.
1408    if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1409      llvm::append_range(FnArgs, FD->parameters());
1410  
1411    // Generate the body of the function.
1412    PGO.assignRegionCounters(GD, CurFn);
1413    if (isa<CXXDestructorDecl>(FD))
1414      EmitDestructorBody(Args);
1415    else if (isa<CXXConstructorDecl>(FD))
1416      EmitConstructorBody(Args);
1417    else if (getLangOpts().CUDA &&
1418             !getLangOpts().CUDAIsDevice &&
1419             FD->hasAttr<CUDAGlobalAttr>())
1420      CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1421    else if (isa<CXXMethodDecl>(FD) &&
1422             cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1423      // The lambda static invoker function is special, because it forwards or
1424      // clones the body of the function call operator (but is actually static).
1425      EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1426    } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1427               (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1428                cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1429      // Implicit copy-assignment gets the same special treatment as implicit
1430      // copy-constructors.
1431      emitImplicitAssignmentOperatorBody(Args);
1432    } else if (Body) {
1433      EmitFunctionBody(Body);
1434    } else
1435      llvm_unreachable("no definition for emitted function");
1436  
1437    // C++11 [stmt.return]p2:
1438    //   Flowing off the end of a function [...] results in undefined behavior in
1439    //   a value-returning function.
1440    // C11 6.9.1p12:
1441    //   If the '}' that terminates a function is reached, and the value of the
1442    //   function call is used by the caller, the behavior is undefined.
1443    if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1444        !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1445      bool ShouldEmitUnreachable =
1446          CGM.getCodeGenOpts().StrictReturn ||
1447          !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1448      if (SanOpts.has(SanitizerKind::Return)) {
1449        SanitizerScope SanScope(this);
1450        llvm::Value *IsFalse = Builder.getFalse();
1451        EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1452                  SanitizerHandler::MissingReturn,
1453                  EmitCheckSourceLocation(FD->getLocation()), None);
1454      } else if (ShouldEmitUnreachable) {
1455        if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1456          EmitTrapCall(llvm::Intrinsic::trap);
1457      }
1458      if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1459        Builder.CreateUnreachable();
1460        Builder.ClearInsertionPoint();
1461      }
1462    }
1463  
1464    // Emit the standard function epilogue.
1465    FinishFunction(BodyRange.getEnd());
1466  
1467    // If we haven't marked the function nothrow through other means, do
1468    // a quick pass now to see if we can.
1469    if (!CurFn->doesNotThrow())
1470      TryMarkNoThrow(CurFn);
1471  }
1472  
1473  /// ContainsLabel - Return true if the statement contains a label in it.  If
1474  /// this statement is not executed normally, it not containing a label means
1475  /// that we can just remove the code.
1476  bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1477    // Null statement, not a label!
1478    if (!S) return false;
1479  
1480    // If this is a label, we have to emit the code, consider something like:
1481    // if (0) {  ...  foo:  bar(); }  goto foo;
1482    //
1483    // TODO: If anyone cared, we could track __label__'s, since we know that you
1484    // can't jump to one from outside their declared region.
1485    if (isa<LabelStmt>(S))
1486      return true;
1487  
1488    // If this is a case/default statement, and we haven't seen a switch, we have
1489    // to emit the code.
1490    if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1491      return true;
1492  
1493    // If this is a switch statement, we want to ignore cases below it.
1494    if (isa<SwitchStmt>(S))
1495      IgnoreCaseStmts = true;
1496  
1497    // Scan subexpressions for verboten labels.
1498    for (const Stmt *SubStmt : S->children())
1499      if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1500        return true;
1501  
1502    return false;
1503  }
1504  
1505  /// containsBreak - Return true if the statement contains a break out of it.
1506  /// If the statement (recursively) contains a switch or loop with a break
1507  /// inside of it, this is fine.
1508  bool CodeGenFunction::containsBreak(const Stmt *S) {
1509    // Null statement, not a label!
1510    if (!S) return false;
1511  
1512    // If this is a switch or loop that defines its own break scope, then we can
1513    // include it and anything inside of it.
1514    if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1515        isa<ForStmt>(S))
1516      return false;
1517  
1518    if (isa<BreakStmt>(S))
1519      return true;
1520  
1521    // Scan subexpressions for verboten breaks.
1522    for (const Stmt *SubStmt : S->children())
1523      if (containsBreak(SubStmt))
1524        return true;
1525  
1526    return false;
1527  }
1528  
1529  bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1530    if (!S) return false;
1531  
1532    // Some statement kinds add a scope and thus never add a decl to the current
1533    // scope. Note, this list is longer than the list of statements that might
1534    // have an unscoped decl nested within them, but this way is conservatively
1535    // correct even if more statement kinds are added.
1536    if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1537        isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1538        isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1539        isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1540      return false;
1541  
1542    if (isa<DeclStmt>(S))
1543      return true;
1544  
1545    for (const Stmt *SubStmt : S->children())
1546      if (mightAddDeclToScope(SubStmt))
1547        return true;
1548  
1549    return false;
1550  }
1551  
1552  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1553  /// to a constant, or if it does but contains a label, return false.  If it
1554  /// constant folds return true and set the boolean result in Result.
1555  bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1556                                                     bool &ResultBool,
1557                                                     bool AllowLabels) {
1558    llvm::APSInt ResultInt;
1559    if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1560      return false;
1561  
1562    ResultBool = ResultInt.getBoolValue();
1563    return true;
1564  }
1565  
1566  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1567  /// to a constant, or if it does but contains a label, return false.  If it
1568  /// constant folds return true and set the folded value.
1569  bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1570                                                     llvm::APSInt &ResultInt,
1571                                                     bool AllowLabels) {
1572    // FIXME: Rename and handle conversion of other evaluatable things
1573    // to bool.
1574    Expr::EvalResult Result;
1575    if (!Cond->EvaluateAsInt(Result, getContext()))
1576      return false;  // Not foldable, not integer or not fully evaluatable.
1577  
1578    llvm::APSInt Int = Result.Val.getInt();
1579    if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1580      return false;  // Contains a label.
1581  
1582    ResultInt = Int;
1583    return true;
1584  }
1585  
1586  /// Determine whether the given condition is an instrumentable condition
1587  /// (i.e. no "&&" or "||").
1588  bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1589    // Bypass simplistic logical-NOT operator before determining whether the
1590    // condition contains any other logical operator.
1591    if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens()))
1592      if (UnOp->getOpcode() == UO_LNot)
1593        C = UnOp->getSubExpr();
1594  
1595    const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens());
1596    return (!BOp || !BOp->isLogicalOp());
1597  }
1598  
1599  /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1600  /// increments a profile counter based on the semantics of the given logical
1601  /// operator opcode.  This is used to instrument branch condition coverage for
1602  /// logical operators.
1603  void CodeGenFunction::EmitBranchToCounterBlock(
1604      const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1605      llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1606      Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1607    // If not instrumenting, just emit a branch.
1608    bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1609    if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1610      return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1611  
1612    llvm::BasicBlock *ThenBlock = nullptr;
1613    llvm::BasicBlock *ElseBlock = nullptr;
1614    llvm::BasicBlock *NextBlock = nullptr;
1615  
1616    // Create the block we'll use to increment the appropriate counter.
1617    llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1618  
1619    // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1620    // means we need to evaluate the condition and increment the counter on TRUE:
1621    //
1622    // if (Cond)
1623    //   goto CounterIncrBlock;
1624    // else
1625    //   goto FalseBlock;
1626    //
1627    // CounterIncrBlock:
1628    //   Counter++;
1629    //   goto TrueBlock;
1630  
1631    if (LOp == BO_LAnd) {
1632      ThenBlock = CounterIncrBlock;
1633      ElseBlock = FalseBlock;
1634      NextBlock = TrueBlock;
1635    }
1636  
1637    // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1638    // we need to evaluate the condition and increment the counter on FALSE:
1639    //
1640    // if (Cond)
1641    //   goto TrueBlock;
1642    // else
1643    //   goto CounterIncrBlock;
1644    //
1645    // CounterIncrBlock:
1646    //   Counter++;
1647    //   goto FalseBlock;
1648  
1649    else if (LOp == BO_LOr) {
1650      ThenBlock = TrueBlock;
1651      ElseBlock = CounterIncrBlock;
1652      NextBlock = FalseBlock;
1653    } else {
1654      llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1655    }
1656  
1657    // Emit Branch based on condition.
1658    EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1659  
1660    // Emit the block containing the counter increment(s).
1661    EmitBlock(CounterIncrBlock);
1662  
1663    // Increment corresponding counter; if index not provided, use Cond as index.
1664    incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1665  
1666    // Go to the next block.
1667    EmitBranch(NextBlock);
1668  }
1669  
1670  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1671  /// statement) to the specified blocks.  Based on the condition, this might try
1672  /// to simplify the codegen of the conditional based on the branch.
1673  /// \param LH The value of the likelihood attribute on the True branch.
1674  void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1675                                             llvm::BasicBlock *TrueBlock,
1676                                             llvm::BasicBlock *FalseBlock,
1677                                             uint64_t TrueCount,
1678                                             Stmt::Likelihood LH) {
1679    Cond = Cond->IgnoreParens();
1680  
1681    if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1682  
1683      // Handle X && Y in a condition.
1684      if (CondBOp->getOpcode() == BO_LAnd) {
1685        // If we have "1 && X", simplify the code.  "0 && X" would have constant
1686        // folded if the case was simple enough.
1687        bool ConstantBool = false;
1688        if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1689            ConstantBool) {
1690          // br(1 && X) -> br(X).
1691          incrementProfileCounter(CondBOp);
1692          return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1693                                          FalseBlock, TrueCount, LH);
1694        }
1695  
1696        // If we have "X && 1", simplify the code to use an uncond branch.
1697        // "X && 0" would have been constant folded to 0.
1698        if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1699            ConstantBool) {
1700          // br(X && 1) -> br(X).
1701          return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1702                                          FalseBlock, TrueCount, LH, CondBOp);
1703        }
1704  
1705        // Emit the LHS as a conditional.  If the LHS conditional is false, we
1706        // want to jump to the FalseBlock.
1707        llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1708        // The counter tells us how often we evaluate RHS, and all of TrueCount
1709        // can be propagated to that branch.
1710        uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1711  
1712        ConditionalEvaluation eval(*this);
1713        {
1714          ApplyDebugLocation DL(*this, Cond);
1715          // Propagate the likelihood attribute like __builtin_expect
1716          // __builtin_expect(X && Y, 1) -> X and Y are likely
1717          // __builtin_expect(X && Y, 0) -> only Y is unlikely
1718          EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1719                               LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1720          EmitBlock(LHSTrue);
1721        }
1722  
1723        incrementProfileCounter(CondBOp);
1724        setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1725  
1726        // Any temporaries created here are conditional.
1727        eval.begin(*this);
1728        EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1729                                 FalseBlock, TrueCount, LH);
1730        eval.end(*this);
1731  
1732        return;
1733      }
1734  
1735      if (CondBOp->getOpcode() == BO_LOr) {
1736        // If we have "0 || X", simplify the code.  "1 || X" would have constant
1737        // folded if the case was simple enough.
1738        bool ConstantBool = false;
1739        if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1740            !ConstantBool) {
1741          // br(0 || X) -> br(X).
1742          incrementProfileCounter(CondBOp);
1743          return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1744                                          FalseBlock, TrueCount, LH);
1745        }
1746  
1747        // If we have "X || 0", simplify the code to use an uncond branch.
1748        // "X || 1" would have been constant folded to 1.
1749        if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1750            !ConstantBool) {
1751          // br(X || 0) -> br(X).
1752          return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1753                                          FalseBlock, TrueCount, LH, CondBOp);
1754        }
1755  
1756        // Emit the LHS as a conditional.  If the LHS conditional is true, we
1757        // want to jump to the TrueBlock.
1758        llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1759        // We have the count for entry to the RHS and for the whole expression
1760        // being true, so we can divy up True count between the short circuit and
1761        // the RHS.
1762        uint64_t LHSCount =
1763            getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1764        uint64_t RHSCount = TrueCount - LHSCount;
1765  
1766        ConditionalEvaluation eval(*this);
1767        {
1768          // Propagate the likelihood attribute like __builtin_expect
1769          // __builtin_expect(X || Y, 1) -> only Y is likely
1770          // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1771          ApplyDebugLocation DL(*this, Cond);
1772          EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1773                               LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1774          EmitBlock(LHSFalse);
1775        }
1776  
1777        incrementProfileCounter(CondBOp);
1778        setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1779  
1780        // Any temporaries created here are conditional.
1781        eval.begin(*this);
1782        EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1783                                 RHSCount, LH);
1784  
1785        eval.end(*this);
1786  
1787        return;
1788      }
1789    }
1790  
1791    if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1792      // br(!x, t, f) -> br(x, f, t)
1793      if (CondUOp->getOpcode() == UO_LNot) {
1794        // Negate the count.
1795        uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1796        // The values of the enum are chosen to make this negation possible.
1797        LH = static_cast<Stmt::Likelihood>(-LH);
1798        // Negate the condition and swap the destination blocks.
1799        return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1800                                    FalseCount, LH);
1801      }
1802    }
1803  
1804    if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1805      // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1806      llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1807      llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1808  
1809      // The ConditionalOperator itself has no likelihood information for its
1810      // true and false branches. This matches the behavior of __builtin_expect.
1811      ConditionalEvaluation cond(*this);
1812      EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1813                           getProfileCount(CondOp), Stmt::LH_None);
1814  
1815      // When computing PGO branch weights, we only know the overall count for
1816      // the true block. This code is essentially doing tail duplication of the
1817      // naive code-gen, introducing new edges for which counts are not
1818      // available. Divide the counts proportionally between the LHS and RHS of
1819      // the conditional operator.
1820      uint64_t LHSScaledTrueCount = 0;
1821      if (TrueCount) {
1822        double LHSRatio =
1823            getProfileCount(CondOp) / (double)getCurrentProfileCount();
1824        LHSScaledTrueCount = TrueCount * LHSRatio;
1825      }
1826  
1827      cond.begin(*this);
1828      EmitBlock(LHSBlock);
1829      incrementProfileCounter(CondOp);
1830      {
1831        ApplyDebugLocation DL(*this, Cond);
1832        EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1833                             LHSScaledTrueCount, LH);
1834      }
1835      cond.end(*this);
1836  
1837      cond.begin(*this);
1838      EmitBlock(RHSBlock);
1839      EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1840                           TrueCount - LHSScaledTrueCount, LH);
1841      cond.end(*this);
1842  
1843      return;
1844    }
1845  
1846    if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1847      // Conditional operator handling can give us a throw expression as a
1848      // condition for a case like:
1849      //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1850      // Fold this to:
1851      //   br(c, throw x, br(y, t, f))
1852      EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1853      return;
1854    }
1855  
1856    // Emit the code with the fully general case.
1857    llvm::Value *CondV;
1858    {
1859      ApplyDebugLocation DL(*this, Cond);
1860      CondV = EvaluateExprAsBool(Cond);
1861    }
1862  
1863    llvm::MDNode *Weights = nullptr;
1864    llvm::MDNode *Unpredictable = nullptr;
1865  
1866    // If the branch has a condition wrapped by __builtin_unpredictable,
1867    // create metadata that specifies that the branch is unpredictable.
1868    // Don't bother if not optimizing because that metadata would not be used.
1869    auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1870    if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1871      auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1872      if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1873        llvm::MDBuilder MDHelper(getLLVMContext());
1874        Unpredictable = MDHelper.createUnpredictable();
1875      }
1876    }
1877  
1878    // If there is a Likelihood knowledge for the cond, lower it.
1879    // Note that if not optimizing this won't emit anything.
1880    llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
1881    if (CondV != NewCondV)
1882      CondV = NewCondV;
1883    else {
1884      // Otherwise, lower profile counts. Note that we do this even at -O0.
1885      uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1886      Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
1887    }
1888  
1889    Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1890  }
1891  
1892  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1893  /// specified stmt yet.
1894  void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1895    CGM.ErrorUnsupported(S, Type);
1896  }
1897  
1898  /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1899  /// variable-length array whose elements have a non-zero bit-pattern.
1900  ///
1901  /// \param baseType the inner-most element type of the array
1902  /// \param src - a char* pointing to the bit-pattern for a single
1903  /// base element of the array
1904  /// \param sizeInChars - the total size of the VLA, in chars
1905  static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1906                                 Address dest, Address src,
1907                                 llvm::Value *sizeInChars) {
1908    CGBuilderTy &Builder = CGF.Builder;
1909  
1910    CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1911    llvm::Value *baseSizeInChars
1912      = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1913  
1914    Address begin =
1915      Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1916    llvm::Value *end = Builder.CreateInBoundsGEP(
1917        begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end");
1918  
1919    llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1920    llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1921    llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1922  
1923    // Make a loop over the VLA.  C99 guarantees that the VLA element
1924    // count must be nonzero.
1925    CGF.EmitBlock(loopBB);
1926  
1927    llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1928    cur->addIncoming(begin.getPointer(), originBB);
1929  
1930    CharUnits curAlign =
1931      dest.getAlignment().alignmentOfArrayElement(baseSize);
1932  
1933    // memcpy the individual element bit-pattern.
1934    Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars,
1935                         /*volatile*/ false);
1936  
1937    // Go to the next element.
1938    llvm::Value *next =
1939      Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1940  
1941    // Leave if that's the end of the VLA.
1942    llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1943    Builder.CreateCondBr(done, contBB, loopBB);
1944    cur->addIncoming(next, loopBB);
1945  
1946    CGF.EmitBlock(contBB);
1947  }
1948  
1949  void
1950  CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1951    // Ignore empty classes in C++.
1952    if (getLangOpts().CPlusPlus) {
1953      if (const RecordType *RT = Ty->getAs<RecordType>()) {
1954        if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1955          return;
1956      }
1957    }
1958  
1959    // Cast the dest ptr to the appropriate i8 pointer type.
1960    if (DestPtr.getElementType() != Int8Ty)
1961      DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1962  
1963    // Get size and alignment info for this aggregate.
1964    CharUnits size = getContext().getTypeSizeInChars(Ty);
1965  
1966    llvm::Value *SizeVal;
1967    const VariableArrayType *vla;
1968  
1969    // Don't bother emitting a zero-byte memset.
1970    if (size.isZero()) {
1971      // But note that getTypeInfo returns 0 for a VLA.
1972      if (const VariableArrayType *vlaType =
1973            dyn_cast_or_null<VariableArrayType>(
1974                                            getContext().getAsArrayType(Ty))) {
1975        auto VlaSize = getVLASize(vlaType);
1976        SizeVal = VlaSize.NumElts;
1977        CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1978        if (!eltSize.isOne())
1979          SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1980        vla = vlaType;
1981      } else {
1982        return;
1983      }
1984    } else {
1985      SizeVal = CGM.getSize(size);
1986      vla = nullptr;
1987    }
1988  
1989    // If the type contains a pointer to data member we can't memset it to zero.
1990    // Instead, create a null constant and copy it to the destination.
1991    // TODO: there are other patterns besides zero that we can usefully memset,
1992    // like -1, which happens to be the pattern used by member-pointers.
1993    if (!CGM.getTypes().isZeroInitializable(Ty)) {
1994      // For a VLA, emit a single element, then splat that over the VLA.
1995      if (vla) Ty = getContext().getBaseElementType(vla);
1996  
1997      llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1998  
1999      llvm::GlobalVariable *NullVariable =
2000        new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
2001                                 /*isConstant=*/true,
2002                                 llvm::GlobalVariable::PrivateLinkage,
2003                                 NullConstant, Twine());
2004      CharUnits NullAlign = DestPtr.getAlignment();
2005      NullVariable->setAlignment(NullAlign.getAsAlign());
2006      Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
2007                     Builder.getInt8Ty(), NullAlign);
2008  
2009      if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2010  
2011      // Get and call the appropriate llvm.memcpy overload.
2012      Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2013      return;
2014    }
2015  
2016    // Otherwise, just memset the whole thing to zero.  This is legal
2017    // because in LLVM, all default initializers (other than the ones we just
2018    // handled above) are guaranteed to have a bit pattern of all zeros.
2019    Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2020  }
2021  
2022  llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2023    // Make sure that there is a block for the indirect goto.
2024    if (!IndirectBranch)
2025      GetIndirectGotoBlock();
2026  
2027    llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2028  
2029    // Make sure the indirect branch includes all of the address-taken blocks.
2030    IndirectBranch->addDestination(BB);
2031    return llvm::BlockAddress::get(CurFn, BB);
2032  }
2033  
2034  llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2035    // If we already made the indirect branch for indirect goto, return its block.
2036    if (IndirectBranch) return IndirectBranch->getParent();
2037  
2038    CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2039  
2040    // Create the PHI node that indirect gotos will add entries to.
2041    llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2042                                                "indirect.goto.dest");
2043  
2044    // Create the indirect branch instruction.
2045    IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2046    return IndirectBranch->getParent();
2047  }
2048  
2049  /// Computes the length of an array in elements, as well as the base
2050  /// element type and a properly-typed first element pointer.
2051  llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2052                                                QualType &baseType,
2053                                                Address &addr) {
2054    const ArrayType *arrayType = origArrayType;
2055  
2056    // If it's a VLA, we have to load the stored size.  Note that
2057    // this is the size of the VLA in bytes, not its size in elements.
2058    llvm::Value *numVLAElements = nullptr;
2059    if (isa<VariableArrayType>(arrayType)) {
2060      numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2061  
2062      // Walk into all VLAs.  This doesn't require changes to addr,
2063      // which has type T* where T is the first non-VLA element type.
2064      do {
2065        QualType elementType = arrayType->getElementType();
2066        arrayType = getContext().getAsArrayType(elementType);
2067  
2068        // If we only have VLA components, 'addr' requires no adjustment.
2069        if (!arrayType) {
2070          baseType = elementType;
2071          return numVLAElements;
2072        }
2073      } while (isa<VariableArrayType>(arrayType));
2074  
2075      // We get out here only if we find a constant array type
2076      // inside the VLA.
2077    }
2078  
2079    // We have some number of constant-length arrays, so addr should
2080    // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2081    // down to the first element of addr.
2082    SmallVector<llvm::Value*, 8> gepIndices;
2083  
2084    // GEP down to the array type.
2085    llvm::ConstantInt *zero = Builder.getInt32(0);
2086    gepIndices.push_back(zero);
2087  
2088    uint64_t countFromCLAs = 1;
2089    QualType eltType;
2090  
2091    llvm::ArrayType *llvmArrayType =
2092      dyn_cast<llvm::ArrayType>(addr.getElementType());
2093    while (llvmArrayType) {
2094      assert(isa<ConstantArrayType>(arrayType));
2095      assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
2096               == llvmArrayType->getNumElements());
2097  
2098      gepIndices.push_back(zero);
2099      countFromCLAs *= llvmArrayType->getNumElements();
2100      eltType = arrayType->getElementType();
2101  
2102      llvmArrayType =
2103        dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2104      arrayType = getContext().getAsArrayType(arrayType->getElementType());
2105      assert((!llvmArrayType || arrayType) &&
2106             "LLVM and Clang types are out-of-synch");
2107    }
2108  
2109    if (arrayType) {
2110      // From this point onwards, the Clang array type has been emitted
2111      // as some other type (probably a packed struct). Compute the array
2112      // size, and just emit the 'begin' expression as a bitcast.
2113      while (arrayType) {
2114        countFromCLAs *=
2115            cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
2116        eltType = arrayType->getElementType();
2117        arrayType = getContext().getAsArrayType(eltType);
2118      }
2119  
2120      llvm::Type *baseType = ConvertType(eltType);
2121      addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
2122    } else {
2123      // Create the actual GEP.
2124      addr = Address(Builder.CreateInBoundsGEP(
2125          addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"),
2126          ConvertTypeForMem(eltType),
2127          addr.getAlignment());
2128    }
2129  
2130    baseType = eltType;
2131  
2132    llvm::Value *numElements
2133      = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2134  
2135    // If we had any VLA dimensions, factor them in.
2136    if (numVLAElements)
2137      numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2138  
2139    return numElements;
2140  }
2141  
2142  CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2143    const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2144    assert(vla && "type was not a variable array type!");
2145    return getVLASize(vla);
2146  }
2147  
2148  CodeGenFunction::VlaSizePair
2149  CodeGenFunction::getVLASize(const VariableArrayType *type) {
2150    // The number of elements so far; always size_t.
2151    llvm::Value *numElements = nullptr;
2152  
2153    QualType elementType;
2154    do {
2155      elementType = type->getElementType();
2156      llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2157      assert(vlaSize && "no size for VLA!");
2158      assert(vlaSize->getType() == SizeTy);
2159  
2160      if (!numElements) {
2161        numElements = vlaSize;
2162      } else {
2163        // It's undefined behavior if this wraps around, so mark it that way.
2164        // FIXME: Teach -fsanitize=undefined to trap this.
2165        numElements = Builder.CreateNUWMul(numElements, vlaSize);
2166      }
2167    } while ((type = getContext().getAsVariableArrayType(elementType)));
2168  
2169    return { numElements, elementType };
2170  }
2171  
2172  CodeGenFunction::VlaSizePair
2173  CodeGenFunction::getVLAElements1D(QualType type) {
2174    const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2175    assert(vla && "type was not a variable array type!");
2176    return getVLAElements1D(vla);
2177  }
2178  
2179  CodeGenFunction::VlaSizePair
2180  CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2181    llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2182    assert(VlaSize && "no size for VLA!");
2183    assert(VlaSize->getType() == SizeTy);
2184    return { VlaSize, Vla->getElementType() };
2185  }
2186  
2187  void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2188    assert(type->isVariablyModifiedType() &&
2189           "Must pass variably modified type to EmitVLASizes!");
2190  
2191    EnsureInsertPoint();
2192  
2193    // We're going to walk down into the type and look for VLA
2194    // expressions.
2195    do {
2196      assert(type->isVariablyModifiedType());
2197  
2198      const Type *ty = type.getTypePtr();
2199      switch (ty->getTypeClass()) {
2200  
2201  #define TYPE(Class, Base)
2202  #define ABSTRACT_TYPE(Class, Base)
2203  #define NON_CANONICAL_TYPE(Class, Base)
2204  #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2205  #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2206  #include "clang/AST/TypeNodes.inc"
2207        llvm_unreachable("unexpected dependent type!");
2208  
2209      // These types are never variably-modified.
2210      case Type::Builtin:
2211      case Type::Complex:
2212      case Type::Vector:
2213      case Type::ExtVector:
2214      case Type::ConstantMatrix:
2215      case Type::Record:
2216      case Type::Enum:
2217      case Type::Elaborated:
2218      case Type::Using:
2219      case Type::TemplateSpecialization:
2220      case Type::ObjCTypeParam:
2221      case Type::ObjCObject:
2222      case Type::ObjCInterface:
2223      case Type::ObjCObjectPointer:
2224      case Type::BitInt:
2225        llvm_unreachable("type class is never variably-modified!");
2226  
2227      case Type::Adjusted:
2228        type = cast<AdjustedType>(ty)->getAdjustedType();
2229        break;
2230  
2231      case Type::Decayed:
2232        type = cast<DecayedType>(ty)->getPointeeType();
2233        break;
2234  
2235      case Type::Pointer:
2236        type = cast<PointerType>(ty)->getPointeeType();
2237        break;
2238  
2239      case Type::BlockPointer:
2240        type = cast<BlockPointerType>(ty)->getPointeeType();
2241        break;
2242  
2243      case Type::LValueReference:
2244      case Type::RValueReference:
2245        type = cast<ReferenceType>(ty)->getPointeeType();
2246        break;
2247  
2248      case Type::MemberPointer:
2249        type = cast<MemberPointerType>(ty)->getPointeeType();
2250        break;
2251  
2252      case Type::ConstantArray:
2253      case Type::IncompleteArray:
2254        // Losing element qualification here is fine.
2255        type = cast<ArrayType>(ty)->getElementType();
2256        break;
2257  
2258      case Type::VariableArray: {
2259        // Losing element qualification here is fine.
2260        const VariableArrayType *vat = cast<VariableArrayType>(ty);
2261  
2262        // Unknown size indication requires no size computation.
2263        // Otherwise, evaluate and record it.
2264        if (const Expr *sizeExpr = vat->getSizeExpr()) {
2265          // It's possible that we might have emitted this already,
2266          // e.g. with a typedef and a pointer to it.
2267          llvm::Value *&entry = VLASizeMap[sizeExpr];
2268          if (!entry) {
2269            llvm::Value *size = EmitScalarExpr(sizeExpr);
2270  
2271            // C11 6.7.6.2p5:
2272            //   If the size is an expression that is not an integer constant
2273            //   expression [...] each time it is evaluated it shall have a value
2274            //   greater than zero.
2275            if (SanOpts.has(SanitizerKind::VLABound)) {
2276              SanitizerScope SanScope(this);
2277              llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2278              clang::QualType SEType = sizeExpr->getType();
2279              llvm::Value *CheckCondition =
2280                  SEType->isSignedIntegerType()
2281                      ? Builder.CreateICmpSGT(size, Zero)
2282                      : Builder.CreateICmpUGT(size, Zero);
2283              llvm::Constant *StaticArgs[] = {
2284                  EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2285                  EmitCheckTypeDescriptor(SEType)};
2286              EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2287                        SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2288            }
2289  
2290            // Always zexting here would be wrong if it weren't
2291            // undefined behavior to have a negative bound.
2292            // FIXME: What about when size's type is larger than size_t?
2293            entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2294          }
2295        }
2296        type = vat->getElementType();
2297        break;
2298      }
2299  
2300      case Type::FunctionProto:
2301      case Type::FunctionNoProto:
2302        type = cast<FunctionType>(ty)->getReturnType();
2303        break;
2304  
2305      case Type::Paren:
2306      case Type::TypeOf:
2307      case Type::UnaryTransform:
2308      case Type::Attributed:
2309      case Type::BTFTagAttributed:
2310      case Type::SubstTemplateTypeParm:
2311      case Type::MacroQualified:
2312        // Keep walking after single level desugaring.
2313        type = type.getSingleStepDesugaredType(getContext());
2314        break;
2315  
2316      case Type::Typedef:
2317      case Type::Decltype:
2318      case Type::Auto:
2319      case Type::DeducedTemplateSpecialization:
2320        // Stop walking: nothing to do.
2321        return;
2322  
2323      case Type::TypeOfExpr:
2324        // Stop walking: emit typeof expression.
2325        EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2326        return;
2327  
2328      case Type::Atomic:
2329        type = cast<AtomicType>(ty)->getValueType();
2330        break;
2331  
2332      case Type::Pipe:
2333        type = cast<PipeType>(ty)->getElementType();
2334        break;
2335      }
2336    } while (type->isVariablyModifiedType());
2337  }
2338  
2339  Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2340    if (getContext().getBuiltinVaListType()->isArrayType())
2341      return EmitPointerWithAlignment(E);
2342    return EmitLValue(E).getAddress(*this);
2343  }
2344  
2345  Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2346    return EmitLValue(E).getAddress(*this);
2347  }
2348  
2349  void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2350                                                const APValue &Init) {
2351    assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2352    if (CGDebugInfo *Dbg = getDebugInfo())
2353      if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2354        Dbg->EmitGlobalVariable(E->getDecl(), Init);
2355  }
2356  
2357  CodeGenFunction::PeepholeProtection
2358  CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2359    // At the moment, the only aggressive peephole we do in IR gen
2360    // is trunc(zext) folding, but if we add more, we can easily
2361    // extend this protection.
2362  
2363    if (!rvalue.isScalar()) return PeepholeProtection();
2364    llvm::Value *value = rvalue.getScalarVal();
2365    if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2366  
2367    // Just make an extra bitcast.
2368    assert(HaveInsertPoint());
2369    llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2370                                                    Builder.GetInsertBlock());
2371  
2372    PeepholeProtection protection;
2373    protection.Inst = inst;
2374    return protection;
2375  }
2376  
2377  void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2378    if (!protection.Inst) return;
2379  
2380    // In theory, we could try to duplicate the peepholes now, but whatever.
2381    protection.Inst->eraseFromParent();
2382  }
2383  
2384  void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2385                                                QualType Ty, SourceLocation Loc,
2386                                                SourceLocation AssumptionLoc,
2387                                                llvm::Value *Alignment,
2388                                                llvm::Value *OffsetValue) {
2389    if (Alignment->getType() != IntPtrTy)
2390      Alignment =
2391          Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2392    if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2393      OffsetValue =
2394          Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2395    llvm::Value *TheCheck = nullptr;
2396    if (SanOpts.has(SanitizerKind::Alignment)) {
2397      llvm::Value *PtrIntValue =
2398          Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2399  
2400      if (OffsetValue) {
2401        bool IsOffsetZero = false;
2402        if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2403          IsOffsetZero = CI->isZero();
2404  
2405        if (!IsOffsetZero)
2406          PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2407      }
2408  
2409      llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2410      llvm::Value *Mask =
2411          Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2412      llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2413      TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2414    }
2415    llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2416        CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2417  
2418    if (!SanOpts.has(SanitizerKind::Alignment))
2419      return;
2420    emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2421                                 OffsetValue, TheCheck, Assumption);
2422  }
2423  
2424  void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2425                                                const Expr *E,
2426                                                SourceLocation AssumptionLoc,
2427                                                llvm::Value *Alignment,
2428                                                llvm::Value *OffsetValue) {
2429    if (auto *CE = dyn_cast<CastExpr>(E))
2430      E = CE->getSubExprAsWritten();
2431    QualType Ty = E->getType();
2432    SourceLocation Loc = E->getExprLoc();
2433  
2434    emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2435                            OffsetValue);
2436  }
2437  
2438  llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2439                                                   llvm::Value *AnnotatedVal,
2440                                                   StringRef AnnotationStr,
2441                                                   SourceLocation Location,
2442                                                   const AnnotateAttr *Attr) {
2443    SmallVector<llvm::Value *, 5> Args = {
2444        AnnotatedVal,
2445        Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2446        Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2447        CGM.EmitAnnotationLineNo(Location),
2448    };
2449    if (Attr)
2450      Args.push_back(CGM.EmitAnnotationArgs(Attr));
2451    return Builder.CreateCall(AnnotationFn, Args);
2452  }
2453  
2454  void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2455    assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2456    // FIXME We create a new bitcast for every annotation because that's what
2457    // llvm-gcc was doing.
2458    for (const auto *I : D->specific_attrs<AnnotateAttr>())
2459      EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2460                         Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2461                         I->getAnnotation(), D->getLocation(), I);
2462  }
2463  
2464  Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2465                                                Address Addr) {
2466    assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2467    llvm::Value *V = Addr.getPointer();
2468    llvm::Type *VTy = V->getType();
2469    auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2470    unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2471    llvm::PointerType *IntrinTy =
2472        llvm::PointerType::getWithSamePointeeType(CGM.Int8PtrTy, AS);
2473    llvm::Function *F =
2474        CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, IntrinTy);
2475  
2476    for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2477      // FIXME Always emit the cast inst so we can differentiate between
2478      // annotation on the first field of a struct and annotation on the struct
2479      // itself.
2480      if (VTy != IntrinTy)
2481        V = Builder.CreateBitCast(V, IntrinTy);
2482      V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2483      V = Builder.CreateBitCast(V, VTy);
2484    }
2485  
2486    return Address(V, Addr.getElementType(), Addr.getAlignment());
2487  }
2488  
2489  CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2490  
2491  CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2492      : CGF(CGF) {
2493    assert(!CGF->IsSanitizerScope);
2494    CGF->IsSanitizerScope = true;
2495  }
2496  
2497  CodeGenFunction::SanitizerScope::~SanitizerScope() {
2498    CGF->IsSanitizerScope = false;
2499  }
2500  
2501  void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2502                                     const llvm::Twine &Name,
2503                                     llvm::BasicBlock *BB,
2504                                     llvm::BasicBlock::iterator InsertPt) const {
2505    LoopStack.InsertHelper(I);
2506    if (IsSanitizerScope)
2507      CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2508  }
2509  
2510  void CGBuilderInserter::InsertHelper(
2511      llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2512      llvm::BasicBlock::iterator InsertPt) const {
2513    llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2514    if (CGF)
2515      CGF->InsertHelper(I, Name, BB, InsertPt);
2516  }
2517  
2518  // Emits an error if we don't have a valid set of target features for the
2519  // called function.
2520  void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2521                                            const FunctionDecl *TargetDecl) {
2522    return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2523  }
2524  
2525  // Emits an error if we don't have a valid set of target features for the
2526  // called function.
2527  void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2528                                            const FunctionDecl *TargetDecl) {
2529    // Early exit if this is an indirect call.
2530    if (!TargetDecl)
2531      return;
2532  
2533    // Get the current enclosing function if it exists. If it doesn't
2534    // we can't check the target features anyhow.
2535    const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2536    if (!FD)
2537      return;
2538  
2539    // Grab the required features for the call. For a builtin this is listed in
2540    // the td file with the default cpu, for an always_inline function this is any
2541    // listed cpu and any listed features.
2542    unsigned BuiltinID = TargetDecl->getBuiltinID();
2543    std::string MissingFeature;
2544    llvm::StringMap<bool> CallerFeatureMap;
2545    CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2546    if (BuiltinID) {
2547      StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2548      if (!Builtin::evaluateRequiredTargetFeatures(
2549          FeatureList, CallerFeatureMap)) {
2550        CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2551            << TargetDecl->getDeclName()
2552            << FeatureList;
2553      }
2554    } else if (!TargetDecl->isMultiVersion() &&
2555               TargetDecl->hasAttr<TargetAttr>()) {
2556      // Get the required features for the callee.
2557  
2558      const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2559      ParsedTargetAttr ParsedAttr =
2560          CGM.getContext().filterFunctionTargetAttrs(TD);
2561  
2562      SmallVector<StringRef, 1> ReqFeatures;
2563      llvm::StringMap<bool> CalleeFeatureMap;
2564      CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2565  
2566      for (const auto &F : ParsedAttr.Features) {
2567        if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2568          ReqFeatures.push_back(StringRef(F).substr(1));
2569      }
2570  
2571      for (const auto &F : CalleeFeatureMap) {
2572        // Only positive features are "required".
2573        if (F.getValue())
2574          ReqFeatures.push_back(F.getKey());
2575      }
2576      if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2577        if (!CallerFeatureMap.lookup(Feature)) {
2578          MissingFeature = Feature.str();
2579          return false;
2580        }
2581        return true;
2582      }))
2583        CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2584            << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2585    }
2586  }
2587  
2588  void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2589    if (!CGM.getCodeGenOpts().SanitizeStats)
2590      return;
2591  
2592    llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2593    IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2594    CGM.getSanStats().create(IRB, SSK);
2595  }
2596  
2597  llvm::Value *
2598  CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2599    llvm::Value *Condition = nullptr;
2600  
2601    if (!RO.Conditions.Architecture.empty())
2602      Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2603  
2604    if (!RO.Conditions.Features.empty()) {
2605      llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2606      Condition =
2607          Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2608    }
2609    return Condition;
2610  }
2611  
2612  static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2613                                               llvm::Function *Resolver,
2614                                               CGBuilderTy &Builder,
2615                                               llvm::Function *FuncToReturn,
2616                                               bool SupportsIFunc) {
2617    if (SupportsIFunc) {
2618      Builder.CreateRet(FuncToReturn);
2619      return;
2620    }
2621  
2622    llvm::SmallVector<llvm::Value *, 10> Args(
2623        llvm::make_pointer_range(Resolver->args()));
2624  
2625    llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2626    Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2627  
2628    if (Resolver->getReturnType()->isVoidTy())
2629      Builder.CreateRetVoid();
2630    else
2631      Builder.CreateRet(Result);
2632  }
2633  
2634  void CodeGenFunction::EmitMultiVersionResolver(
2635      llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2636    assert(getContext().getTargetInfo().getTriple().isX86() &&
2637           "Only implemented for x86 targets");
2638  
2639    bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2640  
2641    // Main function's basic block.
2642    llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2643    Builder.SetInsertPoint(CurBlock);
2644    EmitX86CpuInit();
2645  
2646    for (const MultiVersionResolverOption &RO : Options) {
2647      Builder.SetInsertPoint(CurBlock);
2648      llvm::Value *Condition = FormResolverCondition(RO);
2649  
2650      // The 'default' or 'generic' case.
2651      if (!Condition) {
2652        assert(&RO == Options.end() - 1 &&
2653               "Default or Generic case must be last");
2654        CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2655                                         SupportsIFunc);
2656        return;
2657      }
2658  
2659      llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2660      CGBuilderTy RetBuilder(*this, RetBlock);
2661      CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2662                                       SupportsIFunc);
2663      CurBlock = createBasicBlock("resolver_else", Resolver);
2664      Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2665    }
2666  
2667    // If no generic/default, emit an unreachable.
2668    Builder.SetInsertPoint(CurBlock);
2669    llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2670    TrapCall->setDoesNotReturn();
2671    TrapCall->setDoesNotThrow();
2672    Builder.CreateUnreachable();
2673    Builder.ClearInsertionPoint();
2674  }
2675  
2676  // Loc - where the diagnostic will point, where in the source code this
2677  //  alignment has failed.
2678  // SecondaryLoc - if present (will be present if sufficiently different from
2679  //  Loc), the diagnostic will additionally point a "Note:" to this location.
2680  //  It should be the location where the __attribute__((assume_aligned))
2681  //  was written e.g.
2682  void CodeGenFunction::emitAlignmentAssumptionCheck(
2683      llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2684      SourceLocation SecondaryLoc, llvm::Value *Alignment,
2685      llvm::Value *OffsetValue, llvm::Value *TheCheck,
2686      llvm::Instruction *Assumption) {
2687    assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2688           cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2689               llvm::Intrinsic::getDeclaration(
2690                   Builder.GetInsertBlock()->getParent()->getParent(),
2691                   llvm::Intrinsic::assume) &&
2692           "Assumption should be a call to llvm.assume().");
2693    assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2694           "Assumption should be the last instruction of the basic block, "
2695           "since the basic block is still being generated.");
2696  
2697    if (!SanOpts.has(SanitizerKind::Alignment))
2698      return;
2699  
2700    // Don't check pointers to volatile data. The behavior here is implementation-
2701    // defined.
2702    if (Ty->getPointeeType().isVolatileQualified())
2703      return;
2704  
2705    // We need to temorairly remove the assumption so we can insert the
2706    // sanitizer check before it, else the check will be dropped by optimizations.
2707    Assumption->removeFromParent();
2708  
2709    {
2710      SanitizerScope SanScope(this);
2711  
2712      if (!OffsetValue)
2713        OffsetValue = Builder.getInt1(false); // no offset.
2714  
2715      llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2716                                      EmitCheckSourceLocation(SecondaryLoc),
2717                                      EmitCheckTypeDescriptor(Ty)};
2718      llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2719                                    EmitCheckValue(Alignment),
2720                                    EmitCheckValue(OffsetValue)};
2721      EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2722                SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2723    }
2724  
2725    // We are now in the (new, empty) "cont" basic block.
2726    // Reintroduce the assumption.
2727    Builder.Insert(Assumption);
2728    // FIXME: Assumption still has it's original basic block as it's Parent.
2729  }
2730  
2731  llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2732    if (CGDebugInfo *DI = getDebugInfo())
2733      return DI->SourceLocToDebugLoc(Location);
2734  
2735    return llvm::DebugLoc();
2736  }
2737  
2738  llvm::Value *
2739  CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
2740                                                        Stmt::Likelihood LH) {
2741    switch (LH) {
2742    case Stmt::LH_None:
2743      return Cond;
2744    case Stmt::LH_Likely:
2745    case Stmt::LH_Unlikely:
2746      // Don't generate llvm.expect on -O0 as the backend won't use it for
2747      // anything.
2748      if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2749        return Cond;
2750      llvm::Type *CondTy = Cond->getType();
2751      assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
2752      llvm::Function *FnExpect =
2753          CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
2754      llvm::Value *ExpectedValueOfCond =
2755          llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
2756      return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
2757                                Cond->getName() + ".expval");
2758    }
2759    llvm_unreachable("Unknown Likelihood");
2760  }
2761  
2762  llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec,
2763                                                      unsigned NumElementsDst,
2764                                                      const llvm::Twine &Name) {
2765    auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType());
2766    unsigned NumElementsSrc = SrcTy->getNumElements();
2767    if (NumElementsSrc == NumElementsDst)
2768      return SrcVec;
2769  
2770    std::vector<int> ShuffleMask(NumElementsDst, -1);
2771    for (unsigned MaskIdx = 0;
2772         MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx)
2773      ShuffleMask[MaskIdx] = MaskIdx;
2774  
2775    return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name);
2776  }
2777