xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGHLSLRuntime.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/Expr.h"
30 #include "clang/AST/StmtCXX.h"
31 #include "clang/AST/StmtObjC.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/TargetBuiltins.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "clang/CodeGen/CGFunctionInfo.h"
37 #include "clang/Frontend/FrontendDiagnostic.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/FPEnv.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/MDBuilder.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/Support/CRC.h"
48 #include "llvm/Support/xxhash.h"
49 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
50 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
51 #include <optional>
52 
53 using namespace clang;
54 using namespace CodeGen;
55 
56 namespace llvm {
57 extern cl::opt<bool> EnableSingleByteCoverage;
58 } // namespace llvm
59 
60 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
61 /// markers.
62 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
63                                       const LangOptions &LangOpts) {
64   if (CGOpts.DisableLifetimeMarkers)
65     return false;
66 
67   // Sanitizers may use markers.
68   if (CGOpts.SanitizeAddressUseAfterScope ||
69       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
70       LangOpts.Sanitize.has(SanitizerKind::Memory))
71     return true;
72 
73   // For now, only in optimized builds.
74   return CGOpts.OptimizationLevel != 0;
75 }
76 
77 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
78     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
79       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
80               CGBuilderInserterTy(this)),
81       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
82       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
83       ShouldEmitLifetimeMarkers(
84           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
85   if (!suppressNewContext)
86     CGM.getCXXABI().getMangleContext().startNewFunction();
87   EHStack.setCGF(this);
88 
89   SetFastMathFlags(CurFPFeatures);
90 }
91 
92 CodeGenFunction::~CodeGenFunction() {
93   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
94   assert(DeferredDeactivationCleanupStack.empty() &&
95          "missed to deactivate a cleanup");
96 
97   if (getLangOpts().OpenMP && CurFn)
98     CGM.getOpenMPRuntime().functionFinished(*this);
99 
100   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
101   // outlining etc) at some point. Doing it once the function codegen is done
102   // seems to be a reasonable spot. We do it here, as opposed to the deletion
103   // time of the CodeGenModule, because we have to ensure the IR has not yet
104   // been "emitted" to the outside, thus, modifications are still sensible.
105   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
106     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
107 }
108 
109 // Map the LangOption for exception behavior into
110 // the corresponding enum in the IR.
111 llvm::fp::ExceptionBehavior
112 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
113 
114   switch (Kind) {
115   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
116   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
117   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
118   default:
119     llvm_unreachable("Unsupported FP Exception Behavior");
120   }
121 }
122 
123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
124   llvm::FastMathFlags FMF;
125   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
126   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
127   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
128   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
129   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
130   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
131   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
132   Builder.setFastMathFlags(FMF);
133 }
134 
135 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
136                                                   const Expr *E)
137     : CGF(CGF) {
138   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
139 }
140 
141 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
142                                                   FPOptions FPFeatures)
143     : CGF(CGF) {
144   ConstructorHelper(FPFeatures);
145 }
146 
147 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
148   OldFPFeatures = CGF.CurFPFeatures;
149   CGF.CurFPFeatures = FPFeatures;
150 
151   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
152   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
153 
154   if (OldFPFeatures == FPFeatures)
155     return;
156 
157   FMFGuard.emplace(CGF.Builder);
158 
159   llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode();
160   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
161   auto NewExceptionBehavior =
162       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
163           FPFeatures.getExceptionMode()));
164   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
165 
166   CGF.SetFastMathFlags(FPFeatures);
167 
168   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
169           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
170           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
171           (NewExceptionBehavior == llvm::fp::ebIgnore &&
172            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
173          "FPConstrained should be enabled on entire function");
174 
175   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
176     auto OldValue =
177         CGF.CurFn->getFnAttribute(Name).getValueAsBool();
178     auto NewValue = OldValue & Value;
179     if (OldValue != NewValue)
180       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
181   };
182   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
183   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
184   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
185   mergeFnAttrValue(
186       "unsafe-fp-math",
187       FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() &&
188           FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() &&
189           FPFeatures.allowFPContractAcrossStatement());
190 }
191 
192 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
193   CGF.CurFPFeatures = OldFPFeatures;
194   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
195   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
196 }
197 
198 static LValue
199 makeNaturalAlignAddrLValue(llvm::Value *V, QualType T, bool ForPointeeType,
200                            bool MightBeSigned, CodeGenFunction &CGF,
201                            KnownNonNull_t IsKnownNonNull = NotKnownNonNull) {
202   LValueBaseInfo BaseInfo;
203   TBAAAccessInfo TBAAInfo;
204   CharUnits Alignment =
205       CGF.CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, ForPointeeType);
206   Address Addr =
207       MightBeSigned
208           ? CGF.makeNaturalAddressForPointer(V, T, Alignment, false, nullptr,
209                                              nullptr, IsKnownNonNull)
210           : Address(V, CGF.ConvertTypeForMem(T), Alignment, IsKnownNonNull);
211   return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
212 }
213 
214 LValue
215 CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T,
216                                             KnownNonNull_t IsKnownNonNull) {
217   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
218                                       /*MightBeSigned*/ true, *this,
219                                       IsKnownNonNull);
220 }
221 
222 LValue
223 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
224   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
225                                       /*MightBeSigned*/ true, *this);
226 }
227 
228 LValue CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value *V,
229                                                       QualType T) {
230   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
231                                       /*MightBeSigned*/ false, *this);
232 }
233 
234 LValue CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V,
235                                                              QualType T) {
236   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
237                                       /*MightBeSigned*/ false, *this);
238 }
239 
240 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
241   return CGM.getTypes().ConvertTypeForMem(T);
242 }
243 
244 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
245   return CGM.getTypes().ConvertType(T);
246 }
247 
248 llvm::Type *CodeGenFunction::convertTypeForLoadStore(QualType ASTTy,
249                                                      llvm::Type *LLVMTy) {
250   return CGM.getTypes().convertTypeForLoadStore(ASTTy, LLVMTy);
251 }
252 
253 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
254   type = type.getCanonicalType();
255   while (true) {
256     switch (type->getTypeClass()) {
257 #define TYPE(name, parent)
258 #define ABSTRACT_TYPE(name, parent)
259 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
260 #define DEPENDENT_TYPE(name, parent) case Type::name:
261 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
262 #include "clang/AST/TypeNodes.inc"
263       llvm_unreachable("non-canonical or dependent type in IR-generation");
264 
265     case Type::Auto:
266     case Type::DeducedTemplateSpecialization:
267       llvm_unreachable("undeduced type in IR-generation");
268 
269     // Various scalar types.
270     case Type::Builtin:
271     case Type::Pointer:
272     case Type::BlockPointer:
273     case Type::LValueReference:
274     case Type::RValueReference:
275     case Type::MemberPointer:
276     case Type::Vector:
277     case Type::ExtVector:
278     case Type::ConstantMatrix:
279     case Type::FunctionProto:
280     case Type::FunctionNoProto:
281     case Type::Enum:
282     case Type::ObjCObjectPointer:
283     case Type::Pipe:
284     case Type::BitInt:
285       return TEK_Scalar;
286 
287     // Complexes.
288     case Type::Complex:
289       return TEK_Complex;
290 
291     // Arrays, records, and Objective-C objects.
292     case Type::ConstantArray:
293     case Type::IncompleteArray:
294     case Type::VariableArray:
295     case Type::Record:
296     case Type::ObjCObject:
297     case Type::ObjCInterface:
298     case Type::ArrayParameter:
299       return TEK_Aggregate;
300 
301     // We operate on atomic values according to their underlying type.
302     case Type::Atomic:
303       type = cast<AtomicType>(type)->getValueType();
304       continue;
305     }
306     llvm_unreachable("unknown type kind!");
307   }
308 }
309 
310 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
311   // For cleanliness, we try to avoid emitting the return block for
312   // simple cases.
313   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
314 
315   if (CurBB) {
316     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
317 
318     // We have a valid insert point, reuse it if it is empty or there are no
319     // explicit jumps to the return block.
320     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
321       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
322       delete ReturnBlock.getBlock();
323       ReturnBlock = JumpDest();
324     } else
325       EmitBlock(ReturnBlock.getBlock());
326     return llvm::DebugLoc();
327   }
328 
329   // Otherwise, if the return block is the target of a single direct
330   // branch then we can just put the code in that block instead. This
331   // cleans up functions which started with a unified return block.
332   if (ReturnBlock.getBlock()->hasOneUse()) {
333     llvm::BranchInst *BI =
334       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
335     if (BI && BI->isUnconditional() &&
336         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
337       // Record/return the DebugLoc of the simple 'return' expression to be used
338       // later by the actual 'ret' instruction.
339       llvm::DebugLoc Loc = BI->getDebugLoc();
340       Builder.SetInsertPoint(BI->getParent());
341       BI->eraseFromParent();
342       delete ReturnBlock.getBlock();
343       ReturnBlock = JumpDest();
344       return Loc;
345     }
346   }
347 
348   // FIXME: We are at an unreachable point, there is no reason to emit the block
349   // unless it has uses. However, we still need a place to put the debug
350   // region.end for now.
351 
352   EmitBlock(ReturnBlock.getBlock());
353   return llvm::DebugLoc();
354 }
355 
356 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
357   if (!BB) return;
358   if (!BB->use_empty()) {
359     CGF.CurFn->insert(CGF.CurFn->end(), BB);
360     return;
361   }
362   delete BB;
363 }
364 
365 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
366   assert(BreakContinueStack.empty() &&
367          "mismatched push/pop in break/continue stack!");
368   assert(LifetimeExtendedCleanupStack.empty() &&
369          "mismatched push/pop of cleanups in EHStack!");
370   assert(DeferredDeactivationCleanupStack.empty() &&
371          "mismatched activate/deactivate of cleanups!");
372 
373   if (CGM.shouldEmitConvergenceTokens()) {
374     ConvergenceTokenStack.pop_back();
375     assert(ConvergenceTokenStack.empty() &&
376            "mismatched push/pop in convergence stack!");
377   }
378 
379   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
380     && NumSimpleReturnExprs == NumReturnExprs
381     && ReturnBlock.getBlock()->use_empty();
382   // Usually the return expression is evaluated before the cleanup
383   // code.  If the function contains only a simple return statement,
384   // such as a constant, the location before the cleanup code becomes
385   // the last useful breakpoint in the function, because the simple
386   // return expression will be evaluated after the cleanup code. To be
387   // safe, set the debug location for cleanup code to the location of
388   // the return statement.  Otherwise the cleanup code should be at the
389   // end of the function's lexical scope.
390   //
391   // If there are multiple branches to the return block, the branch
392   // instructions will get the location of the return statements and
393   // all will be fine.
394   if (CGDebugInfo *DI = getDebugInfo()) {
395     if (OnlySimpleReturnStmts)
396       DI->EmitLocation(Builder, LastStopPoint);
397     else
398       DI->EmitLocation(Builder, EndLoc);
399   }
400 
401   // Pop any cleanups that might have been associated with the
402   // parameters.  Do this in whatever block we're currently in; it's
403   // important to do this before we enter the return block or return
404   // edges will be *really* confused.
405   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
406   bool HasOnlyLifetimeMarkers =
407       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
408   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
409 
410   std::optional<ApplyDebugLocation> OAL;
411   if (HasCleanups) {
412     // Make sure the line table doesn't jump back into the body for
413     // the ret after it's been at EndLoc.
414     if (CGDebugInfo *DI = getDebugInfo()) {
415       if (OnlySimpleReturnStmts)
416         DI->EmitLocation(Builder, EndLoc);
417       else
418         // We may not have a valid end location. Try to apply it anyway, and
419         // fall back to an artificial location if needed.
420         OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
421     }
422 
423     PopCleanupBlocks(PrologueCleanupDepth);
424   }
425 
426   // Emit function epilog (to return).
427   llvm::DebugLoc Loc = EmitReturnBlock();
428 
429   if (ShouldInstrumentFunction()) {
430     if (CGM.getCodeGenOpts().InstrumentFunctions)
431       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
432     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
433       CurFn->addFnAttr("instrument-function-exit-inlined",
434                        "__cyg_profile_func_exit");
435   }
436 
437   // Emit debug descriptor for function end.
438   if (CGDebugInfo *DI = getDebugInfo())
439     DI->EmitFunctionEnd(Builder, CurFn);
440 
441   // Reset the debug location to that of the simple 'return' expression, if any
442   // rather than that of the end of the function's scope '}'.
443   ApplyDebugLocation AL(*this, Loc);
444   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
445   EmitEndEHSpec(CurCodeDecl);
446 
447   assert(EHStack.empty() &&
448          "did not remove all scopes from cleanup stack!");
449 
450   // If someone did an indirect goto, emit the indirect goto block at the end of
451   // the function.
452   if (IndirectBranch) {
453     EmitBlock(IndirectBranch->getParent());
454     Builder.ClearInsertionPoint();
455   }
456 
457   // If some of our locals escaped, insert a call to llvm.localescape in the
458   // entry block.
459   if (!EscapedLocals.empty()) {
460     // Invert the map from local to index into a simple vector. There should be
461     // no holes.
462     SmallVector<llvm::Value *, 4> EscapeArgs;
463     EscapeArgs.resize(EscapedLocals.size());
464     for (auto &Pair : EscapedLocals)
465       EscapeArgs[Pair.second] = Pair.first;
466     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
467         &CGM.getModule(), llvm::Intrinsic::localescape);
468     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
469   }
470 
471   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
472   llvm::Instruction *Ptr = AllocaInsertPt;
473   AllocaInsertPt = nullptr;
474   Ptr->eraseFromParent();
475 
476   // PostAllocaInsertPt, if created, was lazily created when it was required,
477   // remove it now since it was just created for our own convenience.
478   if (PostAllocaInsertPt) {
479     llvm::Instruction *PostPtr = PostAllocaInsertPt;
480     PostAllocaInsertPt = nullptr;
481     PostPtr->eraseFromParent();
482   }
483 
484   // If someone took the address of a label but never did an indirect goto, we
485   // made a zero entry PHI node, which is illegal, zap it now.
486   if (IndirectBranch) {
487     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
488     if (PN->getNumIncomingValues() == 0) {
489       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
490       PN->eraseFromParent();
491     }
492   }
493 
494   EmitIfUsed(*this, EHResumeBlock);
495   EmitIfUsed(*this, TerminateLandingPad);
496   EmitIfUsed(*this, TerminateHandler);
497   EmitIfUsed(*this, UnreachableBlock);
498 
499   for (const auto &FuncletAndParent : TerminateFunclets)
500     EmitIfUsed(*this, FuncletAndParent.second);
501 
502   if (CGM.getCodeGenOpts().EmitDeclMetadata)
503     EmitDeclMetadata();
504 
505   for (const auto &R : DeferredReplacements) {
506     if (llvm::Value *Old = R.first) {
507       Old->replaceAllUsesWith(R.second);
508       cast<llvm::Instruction>(Old)->eraseFromParent();
509     }
510   }
511   DeferredReplacements.clear();
512 
513   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
514   // PHIs if the current function is a coroutine. We don't do it for all
515   // functions as it may result in slight increase in numbers of instructions
516   // if compiled with no optimizations. We do it for coroutine as the lifetime
517   // of CleanupDestSlot alloca make correct coroutine frame building very
518   // difficult.
519   if (NormalCleanupDest.isValid() && isCoroutine()) {
520     llvm::DominatorTree DT(*CurFn);
521     llvm::PromoteMemToReg(
522         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
523     NormalCleanupDest = Address::invalid();
524   }
525 
526   // Scan function arguments for vector width.
527   for (llvm::Argument &A : CurFn->args())
528     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
529       LargestVectorWidth =
530           std::max((uint64_t)LargestVectorWidth,
531                    VT->getPrimitiveSizeInBits().getKnownMinValue());
532 
533   // Update vector width based on return type.
534   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
535     LargestVectorWidth =
536         std::max((uint64_t)LargestVectorWidth,
537                  VT->getPrimitiveSizeInBits().getKnownMinValue());
538 
539   if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth)
540     LargestVectorWidth = CurFnInfo->getMaxVectorWidth();
541 
542   // Add the min-legal-vector-width attribute. This contains the max width from:
543   // 1. min-vector-width attribute used in the source program.
544   // 2. Any builtins used that have a vector width specified.
545   // 3. Values passed in and out of inline assembly.
546   // 4. Width of vector arguments and return types for this function.
547   // 5. Width of vector arguments and return types for functions called by this
548   //    function.
549   if (getContext().getTargetInfo().getTriple().isX86())
550     CurFn->addFnAttr("min-legal-vector-width",
551                      llvm::utostr(LargestVectorWidth));
552 
553   // Add vscale_range attribute if appropriate.
554   std::optional<std::pair<unsigned, unsigned>> VScaleRange =
555       getContext().getTargetInfo().getVScaleRange(getLangOpts());
556   if (VScaleRange) {
557     CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
558         getLLVMContext(), VScaleRange->first, VScaleRange->second));
559   }
560 
561   // If we generated an unreachable return block, delete it now.
562   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
563     Builder.ClearInsertionPoint();
564     ReturnBlock.getBlock()->eraseFromParent();
565   }
566   if (ReturnValue.isValid()) {
567     auto *RetAlloca =
568         dyn_cast<llvm::AllocaInst>(ReturnValue.emitRawPointer(*this));
569     if (RetAlloca && RetAlloca->use_empty()) {
570       RetAlloca->eraseFromParent();
571       ReturnValue = Address::invalid();
572     }
573   }
574 }
575 
576 /// ShouldInstrumentFunction - Return true if the current function should be
577 /// instrumented with __cyg_profile_func_* calls
578 bool CodeGenFunction::ShouldInstrumentFunction() {
579   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
580       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
581       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
582     return false;
583   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
584     return false;
585   return true;
586 }
587 
588 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
589   if (!CurFuncDecl)
590     return false;
591   return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
592 }
593 
594 /// ShouldXRayInstrument - Return true if the current function should be
595 /// instrumented with XRay nop sleds.
596 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
597   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
598 }
599 
600 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
601 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
602 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
603   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
604          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
605           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
606               XRayInstrKind::Custom);
607 }
608 
609 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
610   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
611          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
612           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
613               XRayInstrKind::Typed);
614 }
615 
616 llvm::ConstantInt *
617 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const {
618   // Remove any (C++17) exception specifications, to allow calling e.g. a
619   // noexcept function through a non-noexcept pointer.
620   if (!Ty->isFunctionNoProtoType())
621     Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None);
622   std::string Mangled;
623   llvm::raw_string_ostream Out(Mangled);
624   CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false);
625   return llvm::ConstantInt::get(
626       CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled)));
627 }
628 
629 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD,
630                                          llvm::Function *Fn) {
631   if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>())
632     return;
633 
634   llvm::LLVMContext &Context = getLLVMContext();
635 
636   CGM.GenKernelArgMetadata(Fn, FD, this);
637 
638   if (!getLangOpts().OpenCL)
639     return;
640 
641   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
642     QualType HintQTy = A->getTypeHint();
643     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
644     bool IsSignedInteger =
645         HintQTy->isSignedIntegerType() ||
646         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
647     llvm::Metadata *AttrMDArgs[] = {
648         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
649             CGM.getTypes().ConvertType(A->getTypeHint()))),
650         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
651             llvm::IntegerType::get(Context, 32),
652             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
653     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
654   }
655 
656   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
657     llvm::Metadata *AttrMDArgs[] = {
658         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
659         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
660         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
661     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
662   }
663 
664   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
665     llvm::Metadata *AttrMDArgs[] = {
666         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
667         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
668         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
669     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
670   }
671 
672   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
673           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
674     llvm::Metadata *AttrMDArgs[] = {
675         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
676     Fn->setMetadata("intel_reqd_sub_group_size",
677                     llvm::MDNode::get(Context, AttrMDArgs));
678   }
679 }
680 
681 /// Determine whether the function F ends with a return stmt.
682 static bool endsWithReturn(const Decl* F) {
683   const Stmt *Body = nullptr;
684   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
685     Body = FD->getBody();
686   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
687     Body = OMD->getBody();
688 
689   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
690     auto LastStmt = CS->body_rbegin();
691     if (LastStmt != CS->body_rend())
692       return isa<ReturnStmt>(*LastStmt);
693   }
694   return false;
695 }
696 
697 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
698   if (SanOpts.has(SanitizerKind::Thread)) {
699     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
700     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
701   }
702 }
703 
704 /// Check if the return value of this function requires sanitization.
705 bool CodeGenFunction::requiresReturnValueCheck() const {
706   return requiresReturnValueNullabilityCheck() ||
707          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
708           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
709 }
710 
711 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
712   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
713   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
714       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
715       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
716     return false;
717 
718   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
719     return false;
720 
721   if (MD->getNumParams() == 2) {
722     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
723     if (!PT || !PT->isVoidPointerType() ||
724         !PT->getPointeeType().isConstQualified())
725       return false;
726   }
727 
728   return true;
729 }
730 
731 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) {
732   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
733   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
734 }
735 
736 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) {
737   return getTarget().getTriple().getArch() == llvm::Triple::x86 &&
738          getTarget().getCXXABI().isMicrosoft() &&
739          llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) {
740            return isInAllocaArgument(CGM.getCXXABI(), P->getType());
741          });
742 }
743 
744 /// Return the UBSan prologue signature for \p FD if one is available.
745 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
746                                             const FunctionDecl *FD) {
747   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
748     if (!MD->isStatic())
749       return nullptr;
750   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
751 }
752 
753 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
754                                     llvm::Function *Fn,
755                                     const CGFunctionInfo &FnInfo,
756                                     const FunctionArgList &Args,
757                                     SourceLocation Loc,
758                                     SourceLocation StartLoc) {
759   assert(!CurFn &&
760          "Do not use a CodeGenFunction object for more than one function");
761 
762   const Decl *D = GD.getDecl();
763 
764   DidCallStackSave = false;
765   CurCodeDecl = D;
766   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
767   if (FD && FD->usesSEHTry())
768     CurSEHParent = GD;
769   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
770   FnRetTy = RetTy;
771   CurFn = Fn;
772   CurFnInfo = &FnInfo;
773   assert(CurFn->isDeclaration() && "Function already has body?");
774 
775   // If this function is ignored for any of the enabled sanitizers,
776   // disable the sanitizer for the function.
777   do {
778 #define SANITIZER(NAME, ID)                                                    \
779   if (SanOpts.empty())                                                         \
780     break;                                                                     \
781   if (SanOpts.has(SanitizerKind::ID))                                          \
782     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
783       SanOpts.set(SanitizerKind::ID, false);
784 
785 #include "clang/Basic/Sanitizers.def"
786 #undef SANITIZER
787   } while (false);
788 
789   if (D) {
790     const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds);
791     SanitizerMask no_sanitize_mask;
792     bool NoSanitizeCoverage = false;
793 
794     for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) {
795       no_sanitize_mask |= Attr->getMask();
796       // SanitizeCoverage is not handled by SanOpts.
797       if (Attr->hasCoverage())
798         NoSanitizeCoverage = true;
799     }
800 
801     // Apply the no_sanitize* attributes to SanOpts.
802     SanOpts.Mask &= ~no_sanitize_mask;
803     if (no_sanitize_mask & SanitizerKind::Address)
804       SanOpts.set(SanitizerKind::KernelAddress, false);
805     if (no_sanitize_mask & SanitizerKind::KernelAddress)
806       SanOpts.set(SanitizerKind::Address, false);
807     if (no_sanitize_mask & SanitizerKind::HWAddress)
808       SanOpts.set(SanitizerKind::KernelHWAddress, false);
809     if (no_sanitize_mask & SanitizerKind::KernelHWAddress)
810       SanOpts.set(SanitizerKind::HWAddress, false);
811 
812     if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds))
813       Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds);
814 
815     if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
816       Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
817 
818     // Some passes need the non-negated no_sanitize attribute. Pass them on.
819     if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) {
820       if (no_sanitize_mask & SanitizerKind::Thread)
821         Fn->addFnAttr("no_sanitize_thread");
822     }
823   }
824 
825   if (ShouldSkipSanitizerInstrumentation()) {
826     CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
827   } else {
828     // Apply sanitizer attributes to the function.
829     if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
830       Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
831     if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
832                          SanitizerKind::KernelHWAddress))
833       Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
834     if (SanOpts.has(SanitizerKind::MemtagStack))
835       Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
836     if (SanOpts.has(SanitizerKind::Thread))
837       Fn->addFnAttr(llvm::Attribute::SanitizeThread);
838     if (SanOpts.has(SanitizerKind::NumericalStability))
839       Fn->addFnAttr(llvm::Attribute::SanitizeNumericalStability);
840     if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
841       Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
842   }
843   if (SanOpts.has(SanitizerKind::SafeStack))
844     Fn->addFnAttr(llvm::Attribute::SafeStack);
845   if (SanOpts.has(SanitizerKind::ShadowCallStack))
846     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
847 
848   // Apply fuzzing attribute to the function.
849   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
850     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
851 
852   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
853   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
854   if (SanOpts.has(SanitizerKind::Thread)) {
855     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
856       const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
857       if (OMD->getMethodFamily() == OMF_dealloc ||
858           OMD->getMethodFamily() == OMF_initialize ||
859           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
860         markAsIgnoreThreadCheckingAtRuntime(Fn);
861       }
862     }
863   }
864 
865   // Ignore unrelated casts in STL allocate() since the allocator must cast
866   // from void* to T* before object initialization completes. Don't match on the
867   // namespace because not all allocators are in std::
868   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
869     if (matchesStlAllocatorFn(D, getContext()))
870       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
871   }
872 
873   // Ignore null checks in coroutine functions since the coroutines passes
874   // are not aware of how to move the extra UBSan instructions across the split
875   // coroutine boundaries.
876   if (D && SanOpts.has(SanitizerKind::Null))
877     if (FD && FD->getBody() &&
878         FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
879       SanOpts.Mask &= ~SanitizerKind::Null;
880 
881   // Add pointer authentication attributes.
882   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
883   if (CodeGenOpts.PointerAuth.FunctionPointers)
884     Fn->addFnAttr("ptrauth-calls");
885   if (CodeGenOpts.PointerAuth.IndirectGotos)
886     Fn->addFnAttr("ptrauth-indirect-gotos");
887 
888   // Apply xray attributes to the function (as a string, for now)
889   bool AlwaysXRayAttr = false;
890   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
891     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
892             XRayInstrKind::FunctionEntry) ||
893         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
894             XRayInstrKind::FunctionExit)) {
895       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
896         Fn->addFnAttr("function-instrument", "xray-always");
897         AlwaysXRayAttr = true;
898       }
899       if (XRayAttr->neverXRayInstrument())
900         Fn->addFnAttr("function-instrument", "xray-never");
901       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
902         if (ShouldXRayInstrumentFunction())
903           Fn->addFnAttr("xray-log-args",
904                         llvm::utostr(LogArgs->getArgumentCount()));
905     }
906   } else {
907     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
908       Fn->addFnAttr(
909           "xray-instruction-threshold",
910           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
911   }
912 
913   if (ShouldXRayInstrumentFunction()) {
914     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
915       Fn->addFnAttr("xray-ignore-loops");
916 
917     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
918             XRayInstrKind::FunctionExit))
919       Fn->addFnAttr("xray-skip-exit");
920 
921     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
922             XRayInstrKind::FunctionEntry))
923       Fn->addFnAttr("xray-skip-entry");
924 
925     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
926     if (FuncGroups > 1) {
927       auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(),
928                                               CurFn->getName().bytes_end());
929       auto Group = crc32(FuncName) % FuncGroups;
930       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
931           !AlwaysXRayAttr)
932         Fn->addFnAttr("function-instrument", "xray-never");
933     }
934   }
935 
936   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) {
937     switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) {
938     case ProfileList::Skip:
939       Fn->addFnAttr(llvm::Attribute::SkipProfile);
940       break;
941     case ProfileList::Forbid:
942       Fn->addFnAttr(llvm::Attribute::NoProfile);
943       break;
944     case ProfileList::Allow:
945       break;
946     }
947   }
948 
949   unsigned Count, Offset;
950   if (const auto *Attr =
951           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
952     Count = Attr->getCount();
953     Offset = Attr->getOffset();
954   } else {
955     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
956     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
957   }
958   if (Count && Offset <= Count) {
959     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
960     if (Offset)
961       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
962   }
963   // Instruct that functions for COFF/CodeView targets should start with a
964   // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
965   // backends as they don't need it -- instructions on these architectures are
966   // always atomically patchable at runtime.
967   if (CGM.getCodeGenOpts().HotPatch &&
968       getContext().getTargetInfo().getTriple().isX86() &&
969       getContext().getTargetInfo().getTriple().getEnvironment() !=
970           llvm::Triple::CODE16)
971     Fn->addFnAttr("patchable-function", "prologue-short-redirect");
972 
973   // Add no-jump-tables value.
974   if (CGM.getCodeGenOpts().NoUseJumpTables)
975     Fn->addFnAttr("no-jump-tables", "true");
976 
977   // Add no-inline-line-tables value.
978   if (CGM.getCodeGenOpts().NoInlineLineTables)
979     Fn->addFnAttr("no-inline-line-tables");
980 
981   // Add profile-sample-accurate value.
982   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
983     Fn->addFnAttr("profile-sample-accurate");
984 
985   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
986     Fn->addFnAttr("use-sample-profile");
987 
988   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
989     Fn->addFnAttr("cfi-canonical-jump-table");
990 
991   if (D && D->hasAttr<NoProfileFunctionAttr>())
992     Fn->addFnAttr(llvm::Attribute::NoProfile);
993 
994   if (D) {
995     // Function attributes take precedence over command line flags.
996     if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) {
997       switch (A->getThunkType()) {
998       case FunctionReturnThunksAttr::Kind::Keep:
999         break;
1000       case FunctionReturnThunksAttr::Kind::Extern:
1001         Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1002         break;
1003       }
1004     } else if (CGM.getCodeGenOpts().FunctionReturnThunks)
1005       Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1006   }
1007 
1008   if (FD && (getLangOpts().OpenCL ||
1009              (getLangOpts().HIP && getLangOpts().CUDAIsDevice))) {
1010     // Add metadata for a kernel function.
1011     EmitKernelMetadata(FD, Fn);
1012   }
1013 
1014   if (FD && FD->hasAttr<ClspvLibclcBuiltinAttr>()) {
1015     Fn->setMetadata("clspv_libclc_builtin",
1016                     llvm::MDNode::get(getLLVMContext(), {}));
1017   }
1018 
1019   // If we are checking function types, emit a function type signature as
1020   // prologue data.
1021   if (FD && SanOpts.has(SanitizerKind::Function)) {
1022     if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
1023       llvm::LLVMContext &Ctx = Fn->getContext();
1024       llvm::MDBuilder MDB(Ctx);
1025       Fn->setMetadata(
1026           llvm::LLVMContext::MD_func_sanitize,
1027           MDB.createRTTIPointerPrologue(
1028               PrologueSig, getUBSanFunctionTypeHash(FD->getType())));
1029     }
1030   }
1031 
1032   // If we're checking nullability, we need to know whether we can check the
1033   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
1034   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
1035     auto Nullability = FnRetTy->getNullability();
1036     if (Nullability && *Nullability == NullabilityKind::NonNull &&
1037         !FnRetTy->isRecordType()) {
1038       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1039             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
1040         RetValNullabilityPrecondition =
1041             llvm::ConstantInt::getTrue(getLLVMContext());
1042     }
1043   }
1044 
1045   // If we're in C++ mode and the function name is "main", it is guaranteed
1046   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
1047   // used within a program").
1048   //
1049   // OpenCL C 2.0 v2.2-11 s6.9.i:
1050   //     Recursion is not supported.
1051   //
1052   // SYCL v1.2.1 s3.10:
1053   //     kernels cannot include RTTI information, exception classes,
1054   //     recursive code, virtual functions or make use of C++ libraries that
1055   //     are not compiled for the device.
1056   if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
1057              getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
1058              (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
1059     Fn->addFnAttr(llvm::Attribute::NoRecurse);
1060 
1061   llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode();
1062   llvm::fp::ExceptionBehavior FPExceptionBehavior =
1063       ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
1064   Builder.setDefaultConstrainedRounding(RM);
1065   Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
1066   if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
1067       (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
1068                RM != llvm::RoundingMode::NearestTiesToEven))) {
1069     Builder.setIsFPConstrained(true);
1070     Fn->addFnAttr(llvm::Attribute::StrictFP);
1071   }
1072 
1073   // If a custom alignment is used, force realigning to this alignment on
1074   // any main function which certainly will need it.
1075   if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
1076              CGM.getCodeGenOpts().StackAlignment))
1077     Fn->addFnAttr("stackrealign");
1078 
1079   // "main" doesn't need to zero out call-used registers.
1080   if (FD && FD->isMain())
1081     Fn->removeFnAttr("zero-call-used-regs");
1082 
1083   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
1084 
1085   // Create a marker to make it easy to insert allocas into the entryblock
1086   // later.  Don't create this with the builder, because we don't want it
1087   // folded.
1088   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
1089   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
1090 
1091   ReturnBlock = getJumpDestInCurrentScope("return");
1092 
1093   Builder.SetInsertPoint(EntryBB);
1094 
1095   // If we're checking the return value, allocate space for a pointer to a
1096   // precise source location of the checked return statement.
1097   if (requiresReturnValueCheck()) {
1098     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1099     Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1100                         ReturnLocation);
1101   }
1102 
1103   // Emit subprogram debug descriptor.
1104   if (CGDebugInfo *DI = getDebugInfo()) {
1105     // Reconstruct the type from the argument list so that implicit parameters,
1106     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1107     // convention.
1108     DI->emitFunctionStart(GD, Loc, StartLoc,
1109                           DI->getFunctionType(FD, RetTy, Args), CurFn,
1110                           CurFuncIsThunk);
1111   }
1112 
1113   if (ShouldInstrumentFunction()) {
1114     if (CGM.getCodeGenOpts().InstrumentFunctions)
1115       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1116     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1117       CurFn->addFnAttr("instrument-function-entry-inlined",
1118                        "__cyg_profile_func_enter");
1119     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1120       CurFn->addFnAttr("instrument-function-entry-inlined",
1121                        "__cyg_profile_func_enter_bare");
1122   }
1123 
1124   // Since emitting the mcount call here impacts optimizations such as function
1125   // inlining, we just add an attribute to insert a mcount call in backend.
1126   // The attribute "counting-function" is set to mcount function name which is
1127   // architecture dependent.
1128   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1129     // Calls to fentry/mcount should not be generated if function has
1130     // the no_instrument_function attribute.
1131     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1132       if (CGM.getCodeGenOpts().CallFEntry)
1133         Fn->addFnAttr("fentry-call", "true");
1134       else {
1135         Fn->addFnAttr("instrument-function-entry-inlined",
1136                       getTarget().getMCountName());
1137       }
1138       if (CGM.getCodeGenOpts().MNopMCount) {
1139         if (!CGM.getCodeGenOpts().CallFEntry)
1140           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1141             << "-mnop-mcount" << "-mfentry";
1142         Fn->addFnAttr("mnop-mcount");
1143       }
1144 
1145       if (CGM.getCodeGenOpts().RecordMCount) {
1146         if (!CGM.getCodeGenOpts().CallFEntry)
1147           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1148             << "-mrecord-mcount" << "-mfentry";
1149         Fn->addFnAttr("mrecord-mcount");
1150       }
1151     }
1152   }
1153 
1154   if (CGM.getCodeGenOpts().PackedStack) {
1155     if (getContext().getTargetInfo().getTriple().getArch() !=
1156         llvm::Triple::systemz)
1157       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1158         << "-mpacked-stack";
1159     Fn->addFnAttr("packed-stack");
1160   }
1161 
1162   if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1163       !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1164     Fn->addFnAttr("warn-stack-size",
1165                   std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1166 
1167   if (RetTy->isVoidType()) {
1168     // Void type; nothing to return.
1169     ReturnValue = Address::invalid();
1170 
1171     // Count the implicit return.
1172     if (!endsWithReturn(D))
1173       ++NumReturnExprs;
1174   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1175     // Indirect return; emit returned value directly into sret slot.
1176     // This reduces code size, and affects correctness in C++.
1177     auto AI = CurFn->arg_begin();
1178     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1179       ++AI;
1180     ReturnValue = makeNaturalAddressForPointer(
1181         &*AI, RetTy, CurFnInfo->getReturnInfo().getIndirectAlign(), false,
1182         nullptr, nullptr, KnownNonNull);
1183     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1184       ReturnValuePointer =
1185           CreateDefaultAlignTempAlloca(ReturnValue.getType(), "result.ptr");
1186       Builder.CreateStore(ReturnValue.emitRawPointer(*this),
1187                           ReturnValuePointer);
1188     }
1189   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1190              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1191     // Load the sret pointer from the argument struct and return into that.
1192     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1193     llvm::Function::arg_iterator EI = CurFn->arg_end();
1194     --EI;
1195     llvm::Value *Addr = Builder.CreateStructGEP(
1196         CurFnInfo->getArgStruct(), &*EI, Idx);
1197     llvm::Type *Ty =
1198         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1199     ReturnValuePointer = Address(Addr, Ty, getPointerAlign());
1200     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1201     ReturnValue = Address(Addr, ConvertType(RetTy),
1202                           CGM.getNaturalTypeAlignment(RetTy), KnownNonNull);
1203   } else {
1204     ReturnValue = CreateIRTemp(RetTy, "retval");
1205 
1206     // Tell the epilog emitter to autorelease the result.  We do this
1207     // now so that various specialized functions can suppress it
1208     // during their IR-generation.
1209     if (getLangOpts().ObjCAutoRefCount &&
1210         !CurFnInfo->isReturnsRetained() &&
1211         RetTy->isObjCRetainableType())
1212       AutoreleaseResult = true;
1213   }
1214 
1215   EmitStartEHSpec(CurCodeDecl);
1216 
1217   PrologueCleanupDepth = EHStack.stable_begin();
1218 
1219   // Emit OpenMP specific initialization of the device functions.
1220   if (getLangOpts().OpenMP && CurCodeDecl)
1221     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1222 
1223   // Handle emitting HLSL entry functions.
1224   if (D && D->hasAttr<HLSLShaderAttr>())
1225     CGM.getHLSLRuntime().emitEntryFunction(FD, Fn);
1226 
1227   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1228 
1229   if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D);
1230       MD && !MD->isStatic()) {
1231     bool IsInLambda =
1232         MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call;
1233     if (MD->isImplicitObjectMemberFunction())
1234       CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1235     if (IsInLambda) {
1236       // We're in a lambda; figure out the captures.
1237       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1238                                         LambdaThisCaptureField);
1239       if (LambdaThisCaptureField) {
1240         // If the lambda captures the object referred to by '*this' - either by
1241         // value or by reference, make sure CXXThisValue points to the correct
1242         // object.
1243 
1244         // Get the lvalue for the field (which is a copy of the enclosing object
1245         // or contains the address of the enclosing object).
1246         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1247         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1248           // If the enclosing object was captured by value, just use its
1249           // address. Sign this pointer.
1250           CXXThisValue = ThisFieldLValue.getPointer(*this);
1251         } else {
1252           // Load the lvalue pointed to by the field, since '*this' was captured
1253           // by reference.
1254           CXXThisValue =
1255               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1256         }
1257       }
1258       for (auto *FD : MD->getParent()->fields()) {
1259         if (FD->hasCapturedVLAType()) {
1260           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1261                                            SourceLocation()).getScalarVal();
1262           auto VAT = FD->getCapturedVLAType();
1263           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1264         }
1265       }
1266     } else if (MD->isImplicitObjectMemberFunction()) {
1267       // Not in a lambda; just use 'this' from the method.
1268       // FIXME: Should we generate a new load for each use of 'this'?  The
1269       // fast register allocator would be happier...
1270       CXXThisValue = CXXABIThisValue;
1271     }
1272 
1273     // Check the 'this' pointer once per function, if it's available.
1274     if (CXXABIThisValue) {
1275       SanitizerSet SkippedChecks;
1276       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1277       QualType ThisTy = MD->getThisType();
1278 
1279       // If this is the call operator of a lambda with no captures, it
1280       // may have a static invoker function, which may call this operator with
1281       // a null 'this' pointer.
1282       if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda())
1283         SkippedChecks.set(SanitizerKind::Null, true);
1284 
1285       EmitTypeCheck(
1286           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1287           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1288     }
1289   }
1290 
1291   // If any of the arguments have a variably modified type, make sure to
1292   // emit the type size, but only if the function is not naked. Naked functions
1293   // have no prolog to run this evaluation.
1294   if (!FD || !FD->hasAttr<NakedAttr>()) {
1295     for (const VarDecl *VD : Args) {
1296       // Dig out the type as written from ParmVarDecls; it's unclear whether
1297       // the standard (C99 6.9.1p10) requires this, but we're following the
1298       // precedent set by gcc.
1299       QualType Ty;
1300       if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1301         Ty = PVD->getOriginalType();
1302       else
1303         Ty = VD->getType();
1304 
1305       if (Ty->isVariablyModifiedType())
1306         EmitVariablyModifiedType(Ty);
1307     }
1308   }
1309   // Emit a location at the end of the prologue.
1310   if (CGDebugInfo *DI = getDebugInfo())
1311     DI->EmitLocation(Builder, StartLoc);
1312   // TODO: Do we need to handle this in two places like we do with
1313   // target-features/target-cpu?
1314   if (CurFuncDecl)
1315     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1316       LargestVectorWidth = VecWidth->getVectorWidth();
1317 
1318   if (CGM.shouldEmitConvergenceTokens())
1319     ConvergenceTokenStack.push_back(getOrEmitConvergenceEntryToken(CurFn));
1320 }
1321 
1322 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1323   incrementProfileCounter(Body);
1324   maybeCreateMCDCCondBitmap();
1325   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1326     EmitCompoundStmtWithoutScope(*S);
1327   else
1328     EmitStmt(Body);
1329 }
1330 
1331 /// When instrumenting to collect profile data, the counts for some blocks
1332 /// such as switch cases need to not include the fall-through counts, so
1333 /// emit a branch around the instrumentation code. When not instrumenting,
1334 /// this just calls EmitBlock().
1335 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1336                                                const Stmt *S) {
1337   llvm::BasicBlock *SkipCountBB = nullptr;
1338   // Do not skip over the instrumentation when single byte coverage mode is
1339   // enabled.
1340   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1341       !llvm::EnableSingleByteCoverage) {
1342     // When instrumenting for profiling, the fallthrough to certain
1343     // statements needs to skip over the instrumentation code so that we
1344     // get an accurate count.
1345     SkipCountBB = createBasicBlock("skipcount");
1346     EmitBranch(SkipCountBB);
1347   }
1348   EmitBlock(BB);
1349   uint64_t CurrentCount = getCurrentProfileCount();
1350   incrementProfileCounter(S);
1351   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1352   if (SkipCountBB)
1353     EmitBlock(SkipCountBB);
1354 }
1355 
1356 /// Tries to mark the given function nounwind based on the
1357 /// non-existence of any throwing calls within it.  We believe this is
1358 /// lightweight enough to do at -O0.
1359 static void TryMarkNoThrow(llvm::Function *F) {
1360   // LLVM treats 'nounwind' on a function as part of the type, so we
1361   // can't do this on functions that can be overwritten.
1362   if (F->isInterposable()) return;
1363 
1364   for (llvm::BasicBlock &BB : *F)
1365     for (llvm::Instruction &I : BB)
1366       if (I.mayThrow())
1367         return;
1368 
1369   F->setDoesNotThrow();
1370 }
1371 
1372 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1373                                                FunctionArgList &Args) {
1374   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1375   QualType ResTy = FD->getReturnType();
1376 
1377   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1378   if (MD && MD->isImplicitObjectMemberFunction()) {
1379     if (CGM.getCXXABI().HasThisReturn(GD))
1380       ResTy = MD->getThisType();
1381     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1382       ResTy = CGM.getContext().VoidPtrTy;
1383     CGM.getCXXABI().buildThisParam(*this, Args);
1384   }
1385 
1386   // The base version of an inheriting constructor whose constructed base is a
1387   // virtual base is not passed any arguments (because it doesn't actually call
1388   // the inherited constructor).
1389   bool PassedParams = true;
1390   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1391     if (auto Inherited = CD->getInheritedConstructor())
1392       PassedParams =
1393           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1394 
1395   if (PassedParams) {
1396     for (auto *Param : FD->parameters()) {
1397       Args.push_back(Param);
1398       if (!Param->hasAttr<PassObjectSizeAttr>())
1399         continue;
1400 
1401       auto *Implicit = ImplicitParamDecl::Create(
1402           getContext(), Param->getDeclContext(), Param->getLocation(),
1403           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other);
1404       SizeArguments[Param] = Implicit;
1405       Args.push_back(Implicit);
1406     }
1407   }
1408 
1409   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1410     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1411 
1412   return ResTy;
1413 }
1414 
1415 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1416                                    const CGFunctionInfo &FnInfo) {
1417   assert(Fn && "generating code for null Function");
1418   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1419   CurGD = GD;
1420 
1421   FunctionArgList Args;
1422   QualType ResTy = BuildFunctionArgList(GD, Args);
1423 
1424   CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, FD);
1425 
1426   if (FD->isInlineBuiltinDeclaration()) {
1427     // When generating code for a builtin with an inline declaration, use a
1428     // mangled name to hold the actual body, while keeping an external
1429     // definition in case the function pointer is referenced somewhere.
1430     std::string FDInlineName = (Fn->getName() + ".inline").str();
1431     llvm::Module *M = Fn->getParent();
1432     llvm::Function *Clone = M->getFunction(FDInlineName);
1433     if (!Clone) {
1434       Clone = llvm::Function::Create(Fn->getFunctionType(),
1435                                      llvm::GlobalValue::InternalLinkage,
1436                                      Fn->getAddressSpace(), FDInlineName, M);
1437       Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1438     }
1439     Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1440     Fn = Clone;
1441   } else {
1442     // Detect the unusual situation where an inline version is shadowed by a
1443     // non-inline version. In that case we should pick the external one
1444     // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1445     // to detect that situation before we reach codegen, so do some late
1446     // replacement.
1447     for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1448          PD = PD->getPreviousDecl()) {
1449       if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1450         std::string FDInlineName = (Fn->getName() + ".inline").str();
1451         llvm::Module *M = Fn->getParent();
1452         if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1453           Clone->replaceAllUsesWith(Fn);
1454           Clone->eraseFromParent();
1455         }
1456         break;
1457       }
1458     }
1459   }
1460 
1461   // Check if we should generate debug info for this function.
1462   if (FD->hasAttr<NoDebugAttr>()) {
1463     // Clear non-distinct debug info that was possibly attached to the function
1464     // due to an earlier declaration without the nodebug attribute
1465     Fn->setSubprogram(nullptr);
1466     // Disable debug info indefinitely for this function
1467     DebugInfo = nullptr;
1468   }
1469 
1470   // The function might not have a body if we're generating thunks for a
1471   // function declaration.
1472   SourceRange BodyRange;
1473   if (Stmt *Body = FD->getBody())
1474     BodyRange = Body->getSourceRange();
1475   else
1476     BodyRange = FD->getLocation();
1477   CurEHLocation = BodyRange.getEnd();
1478 
1479   // Use the location of the start of the function to determine where
1480   // the function definition is located. By default use the location
1481   // of the declaration as the location for the subprogram. A function
1482   // may lack a declaration in the source code if it is created by code
1483   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1484   SourceLocation Loc = FD->getLocation();
1485 
1486   // If this is a function specialization then use the pattern body
1487   // as the location for the function.
1488   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1489     if (SpecDecl->hasBody(SpecDecl))
1490       Loc = SpecDecl->getLocation();
1491 
1492   Stmt *Body = FD->getBody();
1493 
1494   if (Body) {
1495     // Coroutines always emit lifetime markers.
1496     if (isa<CoroutineBodyStmt>(Body))
1497       ShouldEmitLifetimeMarkers = true;
1498 
1499     // Initialize helper which will detect jumps which can cause invalid
1500     // lifetime markers.
1501     if (ShouldEmitLifetimeMarkers)
1502       Bypasses.Init(Body);
1503   }
1504 
1505   // Emit the standard function prologue.
1506   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1507 
1508   // Save parameters for coroutine function.
1509   if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1510     llvm::append_range(FnArgs, FD->parameters());
1511 
1512   // Ensure that the function adheres to the forward progress guarantee, which
1513   // is required by certain optimizations.
1514   // In C++11 and up, the attribute will be removed if the body contains a
1515   // trivial empty loop.
1516   if (checkIfFunctionMustProgress())
1517     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1518 
1519   // Generate the body of the function.
1520   PGO.assignRegionCounters(GD, CurFn);
1521   if (isa<CXXDestructorDecl>(FD))
1522     EmitDestructorBody(Args);
1523   else if (isa<CXXConstructorDecl>(FD))
1524     EmitConstructorBody(Args);
1525   else if (getLangOpts().CUDA &&
1526            !getLangOpts().CUDAIsDevice &&
1527            FD->hasAttr<CUDAGlobalAttr>())
1528     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1529   else if (isa<CXXMethodDecl>(FD) &&
1530            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1531     // The lambda static invoker function is special, because it forwards or
1532     // clones the body of the function call operator (but is actually static).
1533     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1534   } else if (isa<CXXMethodDecl>(FD) &&
1535              isLambdaCallOperator(cast<CXXMethodDecl>(FD)) &&
1536              !FnInfo.isDelegateCall() &&
1537              cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() &&
1538              hasInAllocaArg(cast<CXXMethodDecl>(FD))) {
1539     // If emitting a lambda with static invoker on X86 Windows, change
1540     // the call operator body.
1541     // Make sure that this is a call operator with an inalloca arg and check
1542     // for delegate call to make sure this is the original call op and not the
1543     // new forwarding function for the static invoker.
1544     EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD));
1545   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1546              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1547               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1548     // Implicit copy-assignment gets the same special treatment as implicit
1549     // copy-constructors.
1550     emitImplicitAssignmentOperatorBody(Args);
1551   } else if (Body) {
1552     EmitFunctionBody(Body);
1553   } else
1554     llvm_unreachable("no definition for emitted function");
1555 
1556   // C++11 [stmt.return]p2:
1557   //   Flowing off the end of a function [...] results in undefined behavior in
1558   //   a value-returning function.
1559   // C11 6.9.1p12:
1560   //   If the '}' that terminates a function is reached, and the value of the
1561   //   function call is used by the caller, the behavior is undefined.
1562   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1563       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1564     bool ShouldEmitUnreachable =
1565         CGM.getCodeGenOpts().StrictReturn ||
1566         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1567     if (SanOpts.has(SanitizerKind::Return)) {
1568       SanitizerScope SanScope(this);
1569       llvm::Value *IsFalse = Builder.getFalse();
1570       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1571                 SanitizerHandler::MissingReturn,
1572                 EmitCheckSourceLocation(FD->getLocation()), std::nullopt);
1573     } else if (ShouldEmitUnreachable) {
1574       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1575         EmitTrapCall(llvm::Intrinsic::trap);
1576     }
1577     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1578       Builder.CreateUnreachable();
1579       Builder.ClearInsertionPoint();
1580     }
1581   }
1582 
1583   // Emit the standard function epilogue.
1584   FinishFunction(BodyRange.getEnd());
1585 
1586   // If we haven't marked the function nothrow through other means, do
1587   // a quick pass now to see if we can.
1588   if (!CurFn->doesNotThrow())
1589     TryMarkNoThrow(CurFn);
1590 }
1591 
1592 /// ContainsLabel - Return true if the statement contains a label in it.  If
1593 /// this statement is not executed normally, it not containing a label means
1594 /// that we can just remove the code.
1595 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1596   // Null statement, not a label!
1597   if (!S) return false;
1598 
1599   // If this is a label, we have to emit the code, consider something like:
1600   // if (0) {  ...  foo:  bar(); }  goto foo;
1601   //
1602   // TODO: If anyone cared, we could track __label__'s, since we know that you
1603   // can't jump to one from outside their declared region.
1604   if (isa<LabelStmt>(S))
1605     return true;
1606 
1607   // If this is a case/default statement, and we haven't seen a switch, we have
1608   // to emit the code.
1609   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1610     return true;
1611 
1612   // If this is a switch statement, we want to ignore cases below it.
1613   if (isa<SwitchStmt>(S))
1614     IgnoreCaseStmts = true;
1615 
1616   // Scan subexpressions for verboten labels.
1617   for (const Stmt *SubStmt : S->children())
1618     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1619       return true;
1620 
1621   return false;
1622 }
1623 
1624 /// containsBreak - Return true if the statement contains a break out of it.
1625 /// If the statement (recursively) contains a switch or loop with a break
1626 /// inside of it, this is fine.
1627 bool CodeGenFunction::containsBreak(const Stmt *S) {
1628   // Null statement, not a label!
1629   if (!S) return false;
1630 
1631   // If this is a switch or loop that defines its own break scope, then we can
1632   // include it and anything inside of it.
1633   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1634       isa<ForStmt>(S))
1635     return false;
1636 
1637   if (isa<BreakStmt>(S))
1638     return true;
1639 
1640   // Scan subexpressions for verboten breaks.
1641   for (const Stmt *SubStmt : S->children())
1642     if (containsBreak(SubStmt))
1643       return true;
1644 
1645   return false;
1646 }
1647 
1648 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1649   if (!S) return false;
1650 
1651   // Some statement kinds add a scope and thus never add a decl to the current
1652   // scope. Note, this list is longer than the list of statements that might
1653   // have an unscoped decl nested within them, but this way is conservatively
1654   // correct even if more statement kinds are added.
1655   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1656       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1657       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1658       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1659     return false;
1660 
1661   if (isa<DeclStmt>(S))
1662     return true;
1663 
1664   for (const Stmt *SubStmt : S->children())
1665     if (mightAddDeclToScope(SubStmt))
1666       return true;
1667 
1668   return false;
1669 }
1670 
1671 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1672 /// to a constant, or if it does but contains a label, return false.  If it
1673 /// constant folds return true and set the boolean result in Result.
1674 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1675                                                    bool &ResultBool,
1676                                                    bool AllowLabels) {
1677   // If MC/DC is enabled, disable folding so that we can instrument all
1678   // conditions to yield complete test vectors. We still keep track of
1679   // folded conditions during region mapping and visualization.
1680   if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1681       CGM.getCodeGenOpts().MCDCCoverage)
1682     return false;
1683 
1684   llvm::APSInt ResultInt;
1685   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1686     return false;
1687 
1688   ResultBool = ResultInt.getBoolValue();
1689   return true;
1690 }
1691 
1692 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1693 /// to a constant, or if it does but contains a label, return false.  If it
1694 /// constant folds return true and set the folded value.
1695 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1696                                                    llvm::APSInt &ResultInt,
1697                                                    bool AllowLabels) {
1698   // FIXME: Rename and handle conversion of other evaluatable things
1699   // to bool.
1700   Expr::EvalResult Result;
1701   if (!Cond->EvaluateAsInt(Result, getContext()))
1702     return false;  // Not foldable, not integer or not fully evaluatable.
1703 
1704   llvm::APSInt Int = Result.Val.getInt();
1705   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1706     return false;  // Contains a label.
1707 
1708   ResultInt = Int;
1709   return true;
1710 }
1711 
1712 /// Strip parentheses and simplistic logical-NOT operators.
1713 const Expr *CodeGenFunction::stripCond(const Expr *C) {
1714   while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) {
1715     if (Op->getOpcode() != UO_LNot)
1716       break;
1717     C = Op->getSubExpr();
1718   }
1719   return C->IgnoreParens();
1720 }
1721 
1722 /// Determine whether the given condition is an instrumentable condition
1723 /// (i.e. no "&&" or "||").
1724 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1725   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C));
1726   return (!BOp || !BOp->isLogicalOp());
1727 }
1728 
1729 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1730 /// increments a profile counter based on the semantics of the given logical
1731 /// operator opcode.  This is used to instrument branch condition coverage for
1732 /// logical operators.
1733 void CodeGenFunction::EmitBranchToCounterBlock(
1734     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1735     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1736     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1737   // If not instrumenting, just emit a branch.
1738   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1739   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1740     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1741 
1742   llvm::BasicBlock *ThenBlock = nullptr;
1743   llvm::BasicBlock *ElseBlock = nullptr;
1744   llvm::BasicBlock *NextBlock = nullptr;
1745 
1746   // Create the block we'll use to increment the appropriate counter.
1747   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1748 
1749   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1750   // means we need to evaluate the condition and increment the counter on TRUE:
1751   //
1752   // if (Cond)
1753   //   goto CounterIncrBlock;
1754   // else
1755   //   goto FalseBlock;
1756   //
1757   // CounterIncrBlock:
1758   //   Counter++;
1759   //   goto TrueBlock;
1760 
1761   if (LOp == BO_LAnd) {
1762     ThenBlock = CounterIncrBlock;
1763     ElseBlock = FalseBlock;
1764     NextBlock = TrueBlock;
1765   }
1766 
1767   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1768   // we need to evaluate the condition and increment the counter on FALSE:
1769   //
1770   // if (Cond)
1771   //   goto TrueBlock;
1772   // else
1773   //   goto CounterIncrBlock;
1774   //
1775   // CounterIncrBlock:
1776   //   Counter++;
1777   //   goto FalseBlock;
1778 
1779   else if (LOp == BO_LOr) {
1780     ThenBlock = TrueBlock;
1781     ElseBlock = CounterIncrBlock;
1782     NextBlock = FalseBlock;
1783   } else {
1784     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1785   }
1786 
1787   // Emit Branch based on condition.
1788   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1789 
1790   // Emit the block containing the counter increment(s).
1791   EmitBlock(CounterIncrBlock);
1792 
1793   // Increment corresponding counter; if index not provided, use Cond as index.
1794   incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1795 
1796   // Go to the next block.
1797   EmitBranch(NextBlock);
1798 }
1799 
1800 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1801 /// statement) to the specified blocks.  Based on the condition, this might try
1802 /// to simplify the codegen of the conditional based on the branch.
1803 /// \param LH The value of the likelihood attribute on the True branch.
1804 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the
1805 /// ConditionalOperator (ternary) through a recursive call for the operator's
1806 /// LHS and RHS nodes.
1807 void CodeGenFunction::EmitBranchOnBoolExpr(
1808     const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock,
1809     uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) {
1810   Cond = Cond->IgnoreParens();
1811 
1812   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1813     // Handle X && Y in a condition.
1814     if (CondBOp->getOpcode() == BO_LAnd) {
1815       MCDCLogOpStack.push_back(CondBOp);
1816 
1817       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1818       // folded if the case was simple enough.
1819       bool ConstantBool = false;
1820       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1821           ConstantBool) {
1822         // br(1 && X) -> br(X).
1823         incrementProfileCounter(CondBOp);
1824         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1825                                  FalseBlock, TrueCount, LH);
1826         MCDCLogOpStack.pop_back();
1827         return;
1828       }
1829 
1830       // If we have "X && 1", simplify the code to use an uncond branch.
1831       // "X && 0" would have been constant folded to 0.
1832       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1833           ConstantBool) {
1834         // br(X && 1) -> br(X).
1835         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1836                                  FalseBlock, TrueCount, LH, CondBOp);
1837         MCDCLogOpStack.pop_back();
1838         return;
1839       }
1840 
1841       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1842       // want to jump to the FalseBlock.
1843       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1844       // The counter tells us how often we evaluate RHS, and all of TrueCount
1845       // can be propagated to that branch.
1846       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1847 
1848       ConditionalEvaluation eval(*this);
1849       {
1850         ApplyDebugLocation DL(*this, Cond);
1851         // Propagate the likelihood attribute like __builtin_expect
1852         // __builtin_expect(X && Y, 1) -> X and Y are likely
1853         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1854         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1855                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1856         EmitBlock(LHSTrue);
1857       }
1858 
1859       incrementProfileCounter(CondBOp);
1860       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1861 
1862       // Any temporaries created here are conditional.
1863       eval.begin(*this);
1864       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1865                                FalseBlock, TrueCount, LH);
1866       eval.end(*this);
1867       MCDCLogOpStack.pop_back();
1868       return;
1869     }
1870 
1871     if (CondBOp->getOpcode() == BO_LOr) {
1872       MCDCLogOpStack.push_back(CondBOp);
1873 
1874       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1875       // folded if the case was simple enough.
1876       bool ConstantBool = false;
1877       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1878           !ConstantBool) {
1879         // br(0 || X) -> br(X).
1880         incrementProfileCounter(CondBOp);
1881         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1882                                  FalseBlock, TrueCount, LH);
1883         MCDCLogOpStack.pop_back();
1884         return;
1885       }
1886 
1887       // If we have "X || 0", simplify the code to use an uncond branch.
1888       // "X || 1" would have been constant folded to 1.
1889       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1890           !ConstantBool) {
1891         // br(X || 0) -> br(X).
1892         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1893                                  FalseBlock, TrueCount, LH, CondBOp);
1894         MCDCLogOpStack.pop_back();
1895         return;
1896       }
1897       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1898       // want to jump to the TrueBlock.
1899       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1900       // We have the count for entry to the RHS and for the whole expression
1901       // being true, so we can divy up True count between the short circuit and
1902       // the RHS.
1903       uint64_t LHSCount =
1904           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1905       uint64_t RHSCount = TrueCount - LHSCount;
1906 
1907       ConditionalEvaluation eval(*this);
1908       {
1909         // Propagate the likelihood attribute like __builtin_expect
1910         // __builtin_expect(X || Y, 1) -> only Y is likely
1911         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1912         ApplyDebugLocation DL(*this, Cond);
1913         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1914                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1915         EmitBlock(LHSFalse);
1916       }
1917 
1918       incrementProfileCounter(CondBOp);
1919       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1920 
1921       // Any temporaries created here are conditional.
1922       eval.begin(*this);
1923       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1924                                RHSCount, LH);
1925 
1926       eval.end(*this);
1927       MCDCLogOpStack.pop_back();
1928       return;
1929     }
1930   }
1931 
1932   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1933     // br(!x, t, f) -> br(x, f, t)
1934     // Avoid doing this optimization when instrumenting a condition for MC/DC.
1935     // LNot is taken as part of the condition for simplicity, and changing its
1936     // sense negatively impacts test vector tracking.
1937     bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() &&
1938                          CGM.getCodeGenOpts().MCDCCoverage &&
1939                          isInstrumentedCondition(Cond);
1940     if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) {
1941       // Negate the count.
1942       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1943       // The values of the enum are chosen to make this negation possible.
1944       LH = static_cast<Stmt::Likelihood>(-LH);
1945       // Negate the condition and swap the destination blocks.
1946       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1947                                   FalseCount, LH);
1948     }
1949   }
1950 
1951   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1952     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1953     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1954     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1955 
1956     // The ConditionalOperator itself has no likelihood information for its
1957     // true and false branches. This matches the behavior of __builtin_expect.
1958     ConditionalEvaluation cond(*this);
1959     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1960                          getProfileCount(CondOp), Stmt::LH_None);
1961 
1962     // When computing PGO branch weights, we only know the overall count for
1963     // the true block. This code is essentially doing tail duplication of the
1964     // naive code-gen, introducing new edges for which counts are not
1965     // available. Divide the counts proportionally between the LHS and RHS of
1966     // the conditional operator.
1967     uint64_t LHSScaledTrueCount = 0;
1968     if (TrueCount) {
1969       double LHSRatio =
1970           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1971       LHSScaledTrueCount = TrueCount * LHSRatio;
1972     }
1973 
1974     cond.begin(*this);
1975     EmitBlock(LHSBlock);
1976     incrementProfileCounter(CondOp);
1977     {
1978       ApplyDebugLocation DL(*this, Cond);
1979       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1980                            LHSScaledTrueCount, LH, CondOp);
1981     }
1982     cond.end(*this);
1983 
1984     cond.begin(*this);
1985     EmitBlock(RHSBlock);
1986     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1987                          TrueCount - LHSScaledTrueCount, LH, CondOp);
1988     cond.end(*this);
1989 
1990     return;
1991   }
1992 
1993   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1994     // Conditional operator handling can give us a throw expression as a
1995     // condition for a case like:
1996     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1997     // Fold this to:
1998     //   br(c, throw x, br(y, t, f))
1999     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
2000     return;
2001   }
2002 
2003   // Emit the code with the fully general case.
2004   llvm::Value *CondV;
2005   {
2006     ApplyDebugLocation DL(*this, Cond);
2007     CondV = EvaluateExprAsBool(Cond);
2008   }
2009 
2010   // If not at the top of the logical operator nest, update MCDC temp with the
2011   // boolean result of the evaluated condition.
2012   if (!MCDCLogOpStack.empty()) {
2013     const Expr *MCDCBaseExpr = Cond;
2014     // When a nested ConditionalOperator (ternary) is encountered in a boolean
2015     // expression, MC/DC tracks the result of the ternary, and this is tied to
2016     // the ConditionalOperator expression and not the ternary's LHS or RHS. If
2017     // this is the case, the ConditionalOperator expression is passed through
2018     // the ConditionalOp parameter and then used as the MCDC base expression.
2019     if (ConditionalOp)
2020       MCDCBaseExpr = ConditionalOp;
2021 
2022     maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV);
2023   }
2024 
2025   llvm::MDNode *Weights = nullptr;
2026   llvm::MDNode *Unpredictable = nullptr;
2027 
2028   // If the branch has a condition wrapped by __builtin_unpredictable,
2029   // create metadata that specifies that the branch is unpredictable.
2030   // Don't bother if not optimizing because that metadata would not be used.
2031   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
2032   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
2033     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
2034     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
2035       llvm::MDBuilder MDHelper(getLLVMContext());
2036       Unpredictable = MDHelper.createUnpredictable();
2037     }
2038   }
2039 
2040   // If there is a Likelihood knowledge for the cond, lower it.
2041   // Note that if not optimizing this won't emit anything.
2042   llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
2043   if (CondV != NewCondV)
2044     CondV = NewCondV;
2045   else {
2046     // Otherwise, lower profile counts. Note that we do this even at -O0.
2047     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
2048     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
2049   }
2050 
2051   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
2052 }
2053 
2054 /// ErrorUnsupported - Print out an error that codegen doesn't support the
2055 /// specified stmt yet.
2056 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
2057   CGM.ErrorUnsupported(S, Type);
2058 }
2059 
2060 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
2061 /// variable-length array whose elements have a non-zero bit-pattern.
2062 ///
2063 /// \param baseType the inner-most element type of the array
2064 /// \param src - a char* pointing to the bit-pattern for a single
2065 /// base element of the array
2066 /// \param sizeInChars - the total size of the VLA, in chars
2067 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
2068                                Address dest, Address src,
2069                                llvm::Value *sizeInChars) {
2070   CGBuilderTy &Builder = CGF.Builder;
2071 
2072   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
2073   llvm::Value *baseSizeInChars
2074     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
2075 
2076   Address begin = dest.withElementType(CGF.Int8Ty);
2077   llvm::Value *end = Builder.CreateInBoundsGEP(begin.getElementType(),
2078                                                begin.emitRawPointer(CGF),
2079                                                sizeInChars, "vla.end");
2080 
2081   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
2082   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
2083   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
2084 
2085   // Make a loop over the VLA.  C99 guarantees that the VLA element
2086   // count must be nonzero.
2087   CGF.EmitBlock(loopBB);
2088 
2089   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
2090   cur->addIncoming(begin.emitRawPointer(CGF), originBB);
2091 
2092   CharUnits curAlign =
2093     dest.getAlignment().alignmentOfArrayElement(baseSize);
2094 
2095   // memcpy the individual element bit-pattern.
2096   Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars,
2097                        /*volatile*/ false);
2098 
2099   // Go to the next element.
2100   llvm::Value *next =
2101     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
2102 
2103   // Leave if that's the end of the VLA.
2104   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
2105   Builder.CreateCondBr(done, contBB, loopBB);
2106   cur->addIncoming(next, loopBB);
2107 
2108   CGF.EmitBlock(contBB);
2109 }
2110 
2111 void
2112 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
2113   // Ignore empty classes in C++.
2114   if (getLangOpts().CPlusPlus) {
2115     if (const RecordType *RT = Ty->getAs<RecordType>()) {
2116       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
2117         return;
2118     }
2119   }
2120 
2121   if (DestPtr.getElementType() != Int8Ty)
2122     DestPtr = DestPtr.withElementType(Int8Ty);
2123 
2124   // Get size and alignment info for this aggregate.
2125   CharUnits size = getContext().getTypeSizeInChars(Ty);
2126 
2127   llvm::Value *SizeVal;
2128   const VariableArrayType *vla;
2129 
2130   // Don't bother emitting a zero-byte memset.
2131   if (size.isZero()) {
2132     // But note that getTypeInfo returns 0 for a VLA.
2133     if (const VariableArrayType *vlaType =
2134           dyn_cast_or_null<VariableArrayType>(
2135                                           getContext().getAsArrayType(Ty))) {
2136       auto VlaSize = getVLASize(vlaType);
2137       SizeVal = VlaSize.NumElts;
2138       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
2139       if (!eltSize.isOne())
2140         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
2141       vla = vlaType;
2142     } else {
2143       return;
2144     }
2145   } else {
2146     SizeVal = CGM.getSize(size);
2147     vla = nullptr;
2148   }
2149 
2150   // If the type contains a pointer to data member we can't memset it to zero.
2151   // Instead, create a null constant and copy it to the destination.
2152   // TODO: there are other patterns besides zero that we can usefully memset,
2153   // like -1, which happens to be the pattern used by member-pointers.
2154   if (!CGM.getTypes().isZeroInitializable(Ty)) {
2155     // For a VLA, emit a single element, then splat that over the VLA.
2156     if (vla) Ty = getContext().getBaseElementType(vla);
2157 
2158     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
2159 
2160     llvm::GlobalVariable *NullVariable =
2161       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
2162                                /*isConstant=*/true,
2163                                llvm::GlobalVariable::PrivateLinkage,
2164                                NullConstant, Twine());
2165     CharUnits NullAlign = DestPtr.getAlignment();
2166     NullVariable->setAlignment(NullAlign.getAsAlign());
2167     Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign);
2168 
2169     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2170 
2171     // Get and call the appropriate llvm.memcpy overload.
2172     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2173     return;
2174   }
2175 
2176   // Otherwise, just memset the whole thing to zero.  This is legal
2177   // because in LLVM, all default initializers (other than the ones we just
2178   // handled above) are guaranteed to have a bit pattern of all zeros.
2179   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2180 }
2181 
2182 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2183   // Make sure that there is a block for the indirect goto.
2184   if (!IndirectBranch)
2185     GetIndirectGotoBlock();
2186 
2187   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2188 
2189   // Make sure the indirect branch includes all of the address-taken blocks.
2190   IndirectBranch->addDestination(BB);
2191   return llvm::BlockAddress::get(CurFn, BB);
2192 }
2193 
2194 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2195   // If we already made the indirect branch for indirect goto, return its block.
2196   if (IndirectBranch) return IndirectBranch->getParent();
2197 
2198   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2199 
2200   // Create the PHI node that indirect gotos will add entries to.
2201   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2202                                               "indirect.goto.dest");
2203 
2204   // Create the indirect branch instruction.
2205   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2206   return IndirectBranch->getParent();
2207 }
2208 
2209 /// Computes the length of an array in elements, as well as the base
2210 /// element type and a properly-typed first element pointer.
2211 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2212                                               QualType &baseType,
2213                                               Address &addr) {
2214   const ArrayType *arrayType = origArrayType;
2215 
2216   // If it's a VLA, we have to load the stored size.  Note that
2217   // this is the size of the VLA in bytes, not its size in elements.
2218   llvm::Value *numVLAElements = nullptr;
2219   if (isa<VariableArrayType>(arrayType)) {
2220     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2221 
2222     // Walk into all VLAs.  This doesn't require changes to addr,
2223     // which has type T* where T is the first non-VLA element type.
2224     do {
2225       QualType elementType = arrayType->getElementType();
2226       arrayType = getContext().getAsArrayType(elementType);
2227 
2228       // If we only have VLA components, 'addr' requires no adjustment.
2229       if (!arrayType) {
2230         baseType = elementType;
2231         return numVLAElements;
2232       }
2233     } while (isa<VariableArrayType>(arrayType));
2234 
2235     // We get out here only if we find a constant array type
2236     // inside the VLA.
2237   }
2238 
2239   // We have some number of constant-length arrays, so addr should
2240   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2241   // down to the first element of addr.
2242   SmallVector<llvm::Value*, 8> gepIndices;
2243 
2244   // GEP down to the array type.
2245   llvm::ConstantInt *zero = Builder.getInt32(0);
2246   gepIndices.push_back(zero);
2247 
2248   uint64_t countFromCLAs = 1;
2249   QualType eltType;
2250 
2251   llvm::ArrayType *llvmArrayType =
2252     dyn_cast<llvm::ArrayType>(addr.getElementType());
2253   while (llvmArrayType) {
2254     assert(isa<ConstantArrayType>(arrayType));
2255     assert(cast<ConstantArrayType>(arrayType)->getZExtSize() ==
2256            llvmArrayType->getNumElements());
2257 
2258     gepIndices.push_back(zero);
2259     countFromCLAs *= llvmArrayType->getNumElements();
2260     eltType = arrayType->getElementType();
2261 
2262     llvmArrayType =
2263       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2264     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2265     assert((!llvmArrayType || arrayType) &&
2266            "LLVM and Clang types are out-of-synch");
2267   }
2268 
2269   if (arrayType) {
2270     // From this point onwards, the Clang array type has been emitted
2271     // as some other type (probably a packed struct). Compute the array
2272     // size, and just emit the 'begin' expression as a bitcast.
2273     while (arrayType) {
2274       countFromCLAs *= cast<ConstantArrayType>(arrayType)->getZExtSize();
2275       eltType = arrayType->getElementType();
2276       arrayType = getContext().getAsArrayType(eltType);
2277     }
2278 
2279     llvm::Type *baseType = ConvertType(eltType);
2280     addr = addr.withElementType(baseType);
2281   } else {
2282     // Create the actual GEP.
2283     addr = Address(Builder.CreateInBoundsGEP(addr.getElementType(),
2284                                              addr.emitRawPointer(*this),
2285                                              gepIndices, "array.begin"),
2286                    ConvertTypeForMem(eltType), addr.getAlignment());
2287   }
2288 
2289   baseType = eltType;
2290 
2291   llvm::Value *numElements
2292     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2293 
2294   // If we had any VLA dimensions, factor them in.
2295   if (numVLAElements)
2296     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2297 
2298   return numElements;
2299 }
2300 
2301 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2302   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2303   assert(vla && "type was not a variable array type!");
2304   return getVLASize(vla);
2305 }
2306 
2307 CodeGenFunction::VlaSizePair
2308 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2309   // The number of elements so far; always size_t.
2310   llvm::Value *numElements = nullptr;
2311 
2312   QualType elementType;
2313   do {
2314     elementType = type->getElementType();
2315     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2316     assert(vlaSize && "no size for VLA!");
2317     assert(vlaSize->getType() == SizeTy);
2318 
2319     if (!numElements) {
2320       numElements = vlaSize;
2321     } else {
2322       // It's undefined behavior if this wraps around, so mark it that way.
2323       // FIXME: Teach -fsanitize=undefined to trap this.
2324       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2325     }
2326   } while ((type = getContext().getAsVariableArrayType(elementType)));
2327 
2328   return { numElements, elementType };
2329 }
2330 
2331 CodeGenFunction::VlaSizePair
2332 CodeGenFunction::getVLAElements1D(QualType type) {
2333   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2334   assert(vla && "type was not a variable array type!");
2335   return getVLAElements1D(vla);
2336 }
2337 
2338 CodeGenFunction::VlaSizePair
2339 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2340   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2341   assert(VlaSize && "no size for VLA!");
2342   assert(VlaSize->getType() == SizeTy);
2343   return { VlaSize, Vla->getElementType() };
2344 }
2345 
2346 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2347   assert(type->isVariablyModifiedType() &&
2348          "Must pass variably modified type to EmitVLASizes!");
2349 
2350   EnsureInsertPoint();
2351 
2352   // We're going to walk down into the type and look for VLA
2353   // expressions.
2354   do {
2355     assert(type->isVariablyModifiedType());
2356 
2357     const Type *ty = type.getTypePtr();
2358     switch (ty->getTypeClass()) {
2359 
2360 #define TYPE(Class, Base)
2361 #define ABSTRACT_TYPE(Class, Base)
2362 #define NON_CANONICAL_TYPE(Class, Base)
2363 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2364 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2365 #include "clang/AST/TypeNodes.inc"
2366       llvm_unreachable("unexpected dependent type!");
2367 
2368     // These types are never variably-modified.
2369     case Type::Builtin:
2370     case Type::Complex:
2371     case Type::Vector:
2372     case Type::ExtVector:
2373     case Type::ConstantMatrix:
2374     case Type::Record:
2375     case Type::Enum:
2376     case Type::Using:
2377     case Type::TemplateSpecialization:
2378     case Type::ObjCTypeParam:
2379     case Type::ObjCObject:
2380     case Type::ObjCInterface:
2381     case Type::ObjCObjectPointer:
2382     case Type::BitInt:
2383       llvm_unreachable("type class is never variably-modified!");
2384 
2385     case Type::Elaborated:
2386       type = cast<ElaboratedType>(ty)->getNamedType();
2387       break;
2388 
2389     case Type::Adjusted:
2390       type = cast<AdjustedType>(ty)->getAdjustedType();
2391       break;
2392 
2393     case Type::Decayed:
2394       type = cast<DecayedType>(ty)->getPointeeType();
2395       break;
2396 
2397     case Type::Pointer:
2398       type = cast<PointerType>(ty)->getPointeeType();
2399       break;
2400 
2401     case Type::BlockPointer:
2402       type = cast<BlockPointerType>(ty)->getPointeeType();
2403       break;
2404 
2405     case Type::LValueReference:
2406     case Type::RValueReference:
2407       type = cast<ReferenceType>(ty)->getPointeeType();
2408       break;
2409 
2410     case Type::MemberPointer:
2411       type = cast<MemberPointerType>(ty)->getPointeeType();
2412       break;
2413 
2414     case Type::ArrayParameter:
2415     case Type::ConstantArray:
2416     case Type::IncompleteArray:
2417       // Losing element qualification here is fine.
2418       type = cast<ArrayType>(ty)->getElementType();
2419       break;
2420 
2421     case Type::VariableArray: {
2422       // Losing element qualification here is fine.
2423       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2424 
2425       // Unknown size indication requires no size computation.
2426       // Otherwise, evaluate and record it.
2427       if (const Expr *sizeExpr = vat->getSizeExpr()) {
2428         // It's possible that we might have emitted this already,
2429         // e.g. with a typedef and a pointer to it.
2430         llvm::Value *&entry = VLASizeMap[sizeExpr];
2431         if (!entry) {
2432           llvm::Value *size = EmitScalarExpr(sizeExpr);
2433 
2434           // C11 6.7.6.2p5:
2435           //   If the size is an expression that is not an integer constant
2436           //   expression [...] each time it is evaluated it shall have a value
2437           //   greater than zero.
2438           if (SanOpts.has(SanitizerKind::VLABound)) {
2439             SanitizerScope SanScope(this);
2440             llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2441             clang::QualType SEType = sizeExpr->getType();
2442             llvm::Value *CheckCondition =
2443                 SEType->isSignedIntegerType()
2444                     ? Builder.CreateICmpSGT(size, Zero)
2445                     : Builder.CreateICmpUGT(size, Zero);
2446             llvm::Constant *StaticArgs[] = {
2447                 EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2448                 EmitCheckTypeDescriptor(SEType)};
2449             EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2450                       SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2451           }
2452 
2453           // Always zexting here would be wrong if it weren't
2454           // undefined behavior to have a negative bound.
2455           // FIXME: What about when size's type is larger than size_t?
2456           entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2457         }
2458       }
2459       type = vat->getElementType();
2460       break;
2461     }
2462 
2463     case Type::FunctionProto:
2464     case Type::FunctionNoProto:
2465       type = cast<FunctionType>(ty)->getReturnType();
2466       break;
2467 
2468     case Type::Paren:
2469     case Type::TypeOf:
2470     case Type::UnaryTransform:
2471     case Type::Attributed:
2472     case Type::BTFTagAttributed:
2473     case Type::SubstTemplateTypeParm:
2474     case Type::MacroQualified:
2475     case Type::CountAttributed:
2476       // Keep walking after single level desugaring.
2477       type = type.getSingleStepDesugaredType(getContext());
2478       break;
2479 
2480     case Type::Typedef:
2481     case Type::Decltype:
2482     case Type::Auto:
2483     case Type::DeducedTemplateSpecialization:
2484     case Type::PackIndexing:
2485       // Stop walking: nothing to do.
2486       return;
2487 
2488     case Type::TypeOfExpr:
2489       // Stop walking: emit typeof expression.
2490       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2491       return;
2492 
2493     case Type::Atomic:
2494       type = cast<AtomicType>(ty)->getValueType();
2495       break;
2496 
2497     case Type::Pipe:
2498       type = cast<PipeType>(ty)->getElementType();
2499       break;
2500     }
2501   } while (type->isVariablyModifiedType());
2502 }
2503 
2504 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2505   if (getContext().getBuiltinVaListType()->isArrayType())
2506     return EmitPointerWithAlignment(E);
2507   return EmitLValue(E).getAddress();
2508 }
2509 
2510 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2511   return EmitLValue(E).getAddress();
2512 }
2513 
2514 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2515                                               const APValue &Init) {
2516   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2517   if (CGDebugInfo *Dbg = getDebugInfo())
2518     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2519       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2520 }
2521 
2522 CodeGenFunction::PeepholeProtection
2523 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2524   // At the moment, the only aggressive peephole we do in IR gen
2525   // is trunc(zext) folding, but if we add more, we can easily
2526   // extend this protection.
2527 
2528   if (!rvalue.isScalar()) return PeepholeProtection();
2529   llvm::Value *value = rvalue.getScalarVal();
2530   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2531 
2532   // Just make an extra bitcast.
2533   assert(HaveInsertPoint());
2534   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2535                                                   Builder.GetInsertBlock());
2536 
2537   PeepholeProtection protection;
2538   protection.Inst = inst;
2539   return protection;
2540 }
2541 
2542 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2543   if (!protection.Inst) return;
2544 
2545   // In theory, we could try to duplicate the peepholes now, but whatever.
2546   protection.Inst->eraseFromParent();
2547 }
2548 
2549 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2550                                               QualType Ty, SourceLocation Loc,
2551                                               SourceLocation AssumptionLoc,
2552                                               llvm::Value *Alignment,
2553                                               llvm::Value *OffsetValue) {
2554   if (Alignment->getType() != IntPtrTy)
2555     Alignment =
2556         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2557   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2558     OffsetValue =
2559         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2560   llvm::Value *TheCheck = nullptr;
2561   if (SanOpts.has(SanitizerKind::Alignment)) {
2562     llvm::Value *PtrIntValue =
2563         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2564 
2565     if (OffsetValue) {
2566       bool IsOffsetZero = false;
2567       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2568         IsOffsetZero = CI->isZero();
2569 
2570       if (!IsOffsetZero)
2571         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2572     }
2573 
2574     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2575     llvm::Value *Mask =
2576         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2577     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2578     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2579   }
2580   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2581       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2582 
2583   if (!SanOpts.has(SanitizerKind::Alignment))
2584     return;
2585   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2586                                OffsetValue, TheCheck, Assumption);
2587 }
2588 
2589 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2590                                               const Expr *E,
2591                                               SourceLocation AssumptionLoc,
2592                                               llvm::Value *Alignment,
2593                                               llvm::Value *OffsetValue) {
2594   QualType Ty = E->getType();
2595   SourceLocation Loc = E->getExprLoc();
2596 
2597   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2598                           OffsetValue);
2599 }
2600 
2601 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2602                                                  llvm::Value *AnnotatedVal,
2603                                                  StringRef AnnotationStr,
2604                                                  SourceLocation Location,
2605                                                  const AnnotateAttr *Attr) {
2606   SmallVector<llvm::Value *, 5> Args = {
2607       AnnotatedVal,
2608       CGM.EmitAnnotationString(AnnotationStr),
2609       CGM.EmitAnnotationUnit(Location),
2610       CGM.EmitAnnotationLineNo(Location),
2611   };
2612   if (Attr)
2613     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2614   return Builder.CreateCall(AnnotationFn, Args);
2615 }
2616 
2617 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2618   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2619   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2620     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation,
2621                                         {V->getType(), CGM.ConstGlobalsPtrTy}),
2622                        V, I->getAnnotation(), D->getLocation(), I);
2623 }
2624 
2625 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2626                                               Address Addr) {
2627   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2628   llvm::Value *V = Addr.emitRawPointer(*this);
2629   llvm::Type *VTy = V->getType();
2630   auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2631   unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2632   llvm::PointerType *IntrinTy =
2633       llvm::PointerType::get(CGM.getLLVMContext(), AS);
2634   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2635                                        {IntrinTy, CGM.ConstGlobalsPtrTy});
2636 
2637   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2638     // FIXME Always emit the cast inst so we can differentiate between
2639     // annotation on the first field of a struct and annotation on the struct
2640     // itself.
2641     if (VTy != IntrinTy)
2642       V = Builder.CreateBitCast(V, IntrinTy);
2643     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2644     V = Builder.CreateBitCast(V, VTy);
2645   }
2646 
2647   return Address(V, Addr.getElementType(), Addr.getAlignment());
2648 }
2649 
2650 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2651 
2652 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2653     : CGF(CGF) {
2654   assert(!CGF->IsSanitizerScope);
2655   CGF->IsSanitizerScope = true;
2656 }
2657 
2658 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2659   CGF->IsSanitizerScope = false;
2660 }
2661 
2662 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2663                                    const llvm::Twine &Name,
2664                                    llvm::BasicBlock::iterator InsertPt) const {
2665   LoopStack.InsertHelper(I);
2666   if (IsSanitizerScope)
2667     I->setNoSanitizeMetadata();
2668 }
2669 
2670 void CGBuilderInserter::InsertHelper(
2671     llvm::Instruction *I, const llvm::Twine &Name,
2672     llvm::BasicBlock::iterator InsertPt) const {
2673   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, InsertPt);
2674   if (CGF)
2675     CGF->InsertHelper(I, Name, InsertPt);
2676 }
2677 
2678 // Emits an error if we don't have a valid set of target features for the
2679 // called function.
2680 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2681                                           const FunctionDecl *TargetDecl) {
2682   // SemaChecking cannot handle below x86 builtins because they have different
2683   // parameter ranges with different TargetAttribute of caller.
2684   if (CGM.getContext().getTargetInfo().getTriple().isX86()) {
2685     unsigned BuiltinID = TargetDecl->getBuiltinID();
2686     if (BuiltinID == X86::BI__builtin_ia32_cmpps ||
2687         BuiltinID == X86::BI__builtin_ia32_cmpss ||
2688         BuiltinID == X86::BI__builtin_ia32_cmppd ||
2689         BuiltinID == X86::BI__builtin_ia32_cmpsd) {
2690       const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2691       llvm::StringMap<bool> TargetFetureMap;
2692       CGM.getContext().getFunctionFeatureMap(TargetFetureMap, FD);
2693       llvm::APSInt Result =
2694           *(E->getArg(2)->getIntegerConstantExpr(CGM.getContext()));
2695       if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup("avx"))
2696         CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature)
2697             << TargetDecl->getDeclName() << "avx";
2698     }
2699   }
2700   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2701 }
2702 
2703 // Emits an error if we don't have a valid set of target features for the
2704 // called function.
2705 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2706                                           const FunctionDecl *TargetDecl) {
2707   // Early exit if this is an indirect call.
2708   if (!TargetDecl)
2709     return;
2710 
2711   // Get the current enclosing function if it exists. If it doesn't
2712   // we can't check the target features anyhow.
2713   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2714   if (!FD)
2715     return;
2716 
2717   // Grab the required features for the call. For a builtin this is listed in
2718   // the td file with the default cpu, for an always_inline function this is any
2719   // listed cpu and any listed features.
2720   unsigned BuiltinID = TargetDecl->getBuiltinID();
2721   std::string MissingFeature;
2722   llvm::StringMap<bool> CallerFeatureMap;
2723   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2724   // When compiling in HipStdPar mode we have to be conservative in rejecting
2725   // target specific features in the FE, and defer the possible error to the
2726   // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is
2727   // referenced by an accelerator executable function, we emit an error.
2728   bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice;
2729   if (BuiltinID) {
2730     StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2731     if (!Builtin::evaluateRequiredTargetFeatures(
2732         FeatureList, CallerFeatureMap) && !IsHipStdPar) {
2733       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2734           << TargetDecl->getDeclName()
2735           << FeatureList;
2736     }
2737   } else if (!TargetDecl->isMultiVersion() &&
2738              TargetDecl->hasAttr<TargetAttr>()) {
2739     // Get the required features for the callee.
2740 
2741     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2742     ParsedTargetAttr ParsedAttr =
2743         CGM.getContext().filterFunctionTargetAttrs(TD);
2744 
2745     SmallVector<StringRef, 1> ReqFeatures;
2746     llvm::StringMap<bool> CalleeFeatureMap;
2747     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2748 
2749     for (const auto &F : ParsedAttr.Features) {
2750       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2751         ReqFeatures.push_back(StringRef(F).substr(1));
2752     }
2753 
2754     for (const auto &F : CalleeFeatureMap) {
2755       // Only positive features are "required".
2756       if (F.getValue())
2757         ReqFeatures.push_back(F.getKey());
2758     }
2759     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2760       if (!CallerFeatureMap.lookup(Feature)) {
2761         MissingFeature = Feature.str();
2762         return false;
2763       }
2764       return true;
2765     }) && !IsHipStdPar)
2766       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2767           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2768   } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) {
2769     llvm::StringMap<bool> CalleeFeatureMap;
2770     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2771 
2772     for (const auto &F : CalleeFeatureMap) {
2773       if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) ||
2774                            !CallerFeatureMap.find(F.getKey())->getValue()) &&
2775           !IsHipStdPar)
2776         CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2777             << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey();
2778     }
2779   }
2780 }
2781 
2782 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2783   if (!CGM.getCodeGenOpts().SanitizeStats)
2784     return;
2785 
2786   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2787   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2788   CGM.getSanStats().create(IRB, SSK);
2789 }
2790 
2791 void CodeGenFunction::EmitKCFIOperandBundle(
2792     const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
2793   const FunctionProtoType *FP =
2794       Callee.getAbstractInfo().getCalleeFunctionProtoType();
2795   if (FP)
2796     Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar()));
2797 }
2798 
2799 llvm::Value *CodeGenFunction::FormAArch64ResolverCondition(
2800     const MultiVersionResolverOption &RO) {
2801   llvm::SmallVector<StringRef, 8> CondFeatures;
2802   for (const StringRef &Feature : RO.Conditions.Features)
2803     CondFeatures.push_back(Feature);
2804   if (!CondFeatures.empty()) {
2805     return EmitAArch64CpuSupports(CondFeatures);
2806   }
2807   return nullptr;
2808 }
2809 
2810 llvm::Value *CodeGenFunction::FormX86ResolverCondition(
2811     const MultiVersionResolverOption &RO) {
2812   llvm::Value *Condition = nullptr;
2813 
2814   if (!RO.Conditions.Architecture.empty()) {
2815     StringRef Arch = RO.Conditions.Architecture;
2816     // If arch= specifies an x86-64 micro-architecture level, test the feature
2817     // with __builtin_cpu_supports, otherwise use __builtin_cpu_is.
2818     if (Arch.starts_with("x86-64"))
2819       Condition = EmitX86CpuSupports({Arch});
2820     else
2821       Condition = EmitX86CpuIs(Arch);
2822   }
2823 
2824   if (!RO.Conditions.Features.empty()) {
2825     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2826     Condition =
2827         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2828   }
2829   return Condition;
2830 }
2831 
2832 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2833                                              llvm::Function *Resolver,
2834                                              CGBuilderTy &Builder,
2835                                              llvm::Function *FuncToReturn,
2836                                              bool SupportsIFunc) {
2837   if (SupportsIFunc) {
2838     Builder.CreateRet(FuncToReturn);
2839     return;
2840   }
2841 
2842   llvm::SmallVector<llvm::Value *, 10> Args(
2843       llvm::make_pointer_range(Resolver->args()));
2844 
2845   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2846   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2847 
2848   if (Resolver->getReturnType()->isVoidTy())
2849     Builder.CreateRetVoid();
2850   else
2851     Builder.CreateRet(Result);
2852 }
2853 
2854 void CodeGenFunction::EmitMultiVersionResolver(
2855     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2856 
2857   llvm::Triple::ArchType ArchType =
2858       getContext().getTargetInfo().getTriple().getArch();
2859 
2860   switch (ArchType) {
2861   case llvm::Triple::x86:
2862   case llvm::Triple::x86_64:
2863     EmitX86MultiVersionResolver(Resolver, Options);
2864     return;
2865   case llvm::Triple::aarch64:
2866     EmitAArch64MultiVersionResolver(Resolver, Options);
2867     return;
2868 
2869   default:
2870     assert(false && "Only implemented for x86 and AArch64 targets");
2871   }
2872 }
2873 
2874 void CodeGenFunction::EmitAArch64MultiVersionResolver(
2875     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2876   assert(!Options.empty() && "No multiversion resolver options found");
2877   assert(Options.back().Conditions.Features.size() == 0 &&
2878          "Default case must be last");
2879   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2880   assert(SupportsIFunc &&
2881          "Multiversion resolver requires target IFUNC support");
2882   bool AArch64CpuInitialized = false;
2883   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2884 
2885   for (const MultiVersionResolverOption &RO : Options) {
2886     Builder.SetInsertPoint(CurBlock);
2887     llvm::Value *Condition = FormAArch64ResolverCondition(RO);
2888 
2889     // The 'default' or 'all features enabled' case.
2890     if (!Condition) {
2891       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2892                                        SupportsIFunc);
2893       return;
2894     }
2895 
2896     if (!AArch64CpuInitialized) {
2897       Builder.SetInsertPoint(CurBlock, CurBlock->begin());
2898       EmitAArch64CpuInit();
2899       AArch64CpuInitialized = true;
2900       Builder.SetInsertPoint(CurBlock);
2901     }
2902 
2903     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2904     CGBuilderTy RetBuilder(*this, RetBlock);
2905     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2906                                      SupportsIFunc);
2907     CurBlock = createBasicBlock("resolver_else", Resolver);
2908     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2909   }
2910 
2911   // If no default, emit an unreachable.
2912   Builder.SetInsertPoint(CurBlock);
2913   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2914   TrapCall->setDoesNotReturn();
2915   TrapCall->setDoesNotThrow();
2916   Builder.CreateUnreachable();
2917   Builder.ClearInsertionPoint();
2918 }
2919 
2920 void CodeGenFunction::EmitX86MultiVersionResolver(
2921     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2922 
2923   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2924 
2925   // Main function's basic block.
2926   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2927   Builder.SetInsertPoint(CurBlock);
2928   EmitX86CpuInit();
2929 
2930   for (const MultiVersionResolverOption &RO : Options) {
2931     Builder.SetInsertPoint(CurBlock);
2932     llvm::Value *Condition = FormX86ResolverCondition(RO);
2933 
2934     // The 'default' or 'generic' case.
2935     if (!Condition) {
2936       assert(&RO == Options.end() - 1 &&
2937              "Default or Generic case must be last");
2938       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2939                                        SupportsIFunc);
2940       return;
2941     }
2942 
2943     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2944     CGBuilderTy RetBuilder(*this, RetBlock);
2945     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2946                                      SupportsIFunc);
2947     CurBlock = createBasicBlock("resolver_else", Resolver);
2948     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2949   }
2950 
2951   // If no generic/default, emit an unreachable.
2952   Builder.SetInsertPoint(CurBlock);
2953   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2954   TrapCall->setDoesNotReturn();
2955   TrapCall->setDoesNotThrow();
2956   Builder.CreateUnreachable();
2957   Builder.ClearInsertionPoint();
2958 }
2959 
2960 // Loc - where the diagnostic will point, where in the source code this
2961 //  alignment has failed.
2962 // SecondaryLoc - if present (will be present if sufficiently different from
2963 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2964 //  It should be the location where the __attribute__((assume_aligned))
2965 //  was written e.g.
2966 void CodeGenFunction::emitAlignmentAssumptionCheck(
2967     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2968     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2969     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2970     llvm::Instruction *Assumption) {
2971   assert(isa_and_nonnull<llvm::CallInst>(Assumption) &&
2972          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2973              llvm::Intrinsic::getDeclaration(
2974                  Builder.GetInsertBlock()->getParent()->getParent(),
2975                  llvm::Intrinsic::assume) &&
2976          "Assumption should be a call to llvm.assume().");
2977   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2978          "Assumption should be the last instruction of the basic block, "
2979          "since the basic block is still being generated.");
2980 
2981   if (!SanOpts.has(SanitizerKind::Alignment))
2982     return;
2983 
2984   // Don't check pointers to volatile data. The behavior here is implementation-
2985   // defined.
2986   if (Ty->getPointeeType().isVolatileQualified())
2987     return;
2988 
2989   // We need to temorairly remove the assumption so we can insert the
2990   // sanitizer check before it, else the check will be dropped by optimizations.
2991   Assumption->removeFromParent();
2992 
2993   {
2994     SanitizerScope SanScope(this);
2995 
2996     if (!OffsetValue)
2997       OffsetValue = Builder.getInt1(false); // no offset.
2998 
2999     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
3000                                     EmitCheckSourceLocation(SecondaryLoc),
3001                                     EmitCheckTypeDescriptor(Ty)};
3002     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
3003                                   EmitCheckValue(Alignment),
3004                                   EmitCheckValue(OffsetValue)};
3005     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
3006               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
3007   }
3008 
3009   // We are now in the (new, empty) "cont" basic block.
3010   // Reintroduce the assumption.
3011   Builder.Insert(Assumption);
3012   // FIXME: Assumption still has it's original basic block as it's Parent.
3013 }
3014 
3015 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
3016   if (CGDebugInfo *DI = getDebugInfo())
3017     return DI->SourceLocToDebugLoc(Location);
3018 
3019   return llvm::DebugLoc();
3020 }
3021 
3022 llvm::Value *
3023 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
3024                                                       Stmt::Likelihood LH) {
3025   switch (LH) {
3026   case Stmt::LH_None:
3027     return Cond;
3028   case Stmt::LH_Likely:
3029   case Stmt::LH_Unlikely:
3030     // Don't generate llvm.expect on -O0 as the backend won't use it for
3031     // anything.
3032     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
3033       return Cond;
3034     llvm::Type *CondTy = Cond->getType();
3035     assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
3036     llvm::Function *FnExpect =
3037         CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
3038     llvm::Value *ExpectedValueOfCond =
3039         llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
3040     return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
3041                               Cond->getName() + ".expval");
3042   }
3043   llvm_unreachable("Unknown Likelihood");
3044 }
3045 
3046 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec,
3047                                                     unsigned NumElementsDst,
3048                                                     const llvm::Twine &Name) {
3049   auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType());
3050   unsigned NumElementsSrc = SrcTy->getNumElements();
3051   if (NumElementsSrc == NumElementsDst)
3052     return SrcVec;
3053 
3054   std::vector<int> ShuffleMask(NumElementsDst, -1);
3055   for (unsigned MaskIdx = 0;
3056        MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx)
3057     ShuffleMask[MaskIdx] = MaskIdx;
3058 
3059   return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name);
3060 }
3061 
3062 void CodeGenFunction::EmitPointerAuthOperandBundle(
3063     const CGPointerAuthInfo &PointerAuth,
3064     SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
3065   if (!PointerAuth.isSigned())
3066     return;
3067 
3068   auto *Key = Builder.getInt32(PointerAuth.getKey());
3069 
3070   llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3071   if (!Discriminator)
3072     Discriminator = Builder.getSize(0);
3073 
3074   llvm::Value *Args[] = {Key, Discriminator};
3075   Bundles.emplace_back("ptrauth", Args);
3076 }
3077 
3078 static llvm::Value *EmitPointerAuthCommon(CodeGenFunction &CGF,
3079                                           const CGPointerAuthInfo &PointerAuth,
3080                                           llvm::Value *Pointer,
3081                                           unsigned IntrinsicID) {
3082   if (!PointerAuth)
3083     return Pointer;
3084 
3085   auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3086 
3087   llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3088   if (!Discriminator) {
3089     Discriminator = CGF.Builder.getSize(0);
3090   }
3091 
3092   // Convert the pointer to intptr_t before signing it.
3093   auto OrigType = Pointer->getType();
3094   Pointer = CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy);
3095 
3096   // call i64 @llvm.ptrauth.sign.i64(i64 %pointer, i32 %key, i64 %discriminator)
3097   auto Intrinsic = CGF.CGM.getIntrinsic(IntrinsicID);
3098   Pointer = CGF.EmitRuntimeCall(Intrinsic, {Pointer, Key, Discriminator});
3099 
3100   // Convert back to the original type.
3101   Pointer = CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3102   return Pointer;
3103 }
3104 
3105 llvm::Value *
3106 CodeGenFunction::EmitPointerAuthSign(const CGPointerAuthInfo &PointerAuth,
3107                                      llvm::Value *Pointer) {
3108   if (!PointerAuth.shouldSign())
3109     return Pointer;
3110   return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3111                                llvm::Intrinsic::ptrauth_sign);
3112 }
3113 
3114 static llvm::Value *EmitStrip(CodeGenFunction &CGF,
3115                               const CGPointerAuthInfo &PointerAuth,
3116                               llvm::Value *Pointer) {
3117   auto StripIntrinsic = CGF.CGM.getIntrinsic(llvm::Intrinsic::ptrauth_strip);
3118 
3119   auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3120   // Convert the pointer to intptr_t before signing it.
3121   auto OrigType = Pointer->getType();
3122   Pointer = CGF.EmitRuntimeCall(
3123       StripIntrinsic, {CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy), Key});
3124   return CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3125 }
3126 
3127 llvm::Value *
3128 CodeGenFunction::EmitPointerAuthAuth(const CGPointerAuthInfo &PointerAuth,
3129                                      llvm::Value *Pointer) {
3130   if (PointerAuth.shouldStrip()) {
3131     return EmitStrip(*this, PointerAuth, Pointer);
3132   }
3133   if (!PointerAuth.shouldAuth()) {
3134     return Pointer;
3135   }
3136 
3137   return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3138                                llvm::Intrinsic::ptrauth_auth);
3139 }
3140