1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/StmtCXX.h" 29 #include "clang/AST/StmtObjC.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/CodeGenOptions.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/CodeGen/CGFunctionInfo.h" 34 #include "clang/Frontend/FrontendDiagnostic.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/FPEnv.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/MDBuilder.h" 41 #include "llvm/IR/Operator.h" 42 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 43 using namespace clang; 44 using namespace CodeGen; 45 46 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 47 /// markers. 48 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 49 const LangOptions &LangOpts) { 50 if (CGOpts.DisableLifetimeMarkers) 51 return false; 52 53 // Sanitizers may use markers. 54 if (CGOpts.SanitizeAddressUseAfterScope || 55 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 56 LangOpts.Sanitize.has(SanitizerKind::Memory)) 57 return true; 58 59 // For now, only in optimized builds. 60 return CGOpts.OptimizationLevel != 0; 61 } 62 63 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 64 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 65 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 66 CGBuilderInserterTy(this)), 67 SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()), 68 PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers( 69 CGM.getCodeGenOpts(), CGM.getLangOpts())) { 70 if (!suppressNewContext) 71 CGM.getCXXABI().getMangleContext().startNewFunction(); 72 73 llvm::FastMathFlags FMF; 74 if (CGM.getLangOpts().FastMath) 75 FMF.setFast(); 76 if (CGM.getLangOpts().FiniteMathOnly) { 77 FMF.setNoNaNs(); 78 FMF.setNoInfs(); 79 } 80 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 81 FMF.setNoNaNs(); 82 } 83 if (CGM.getCodeGenOpts().NoSignedZeros) { 84 FMF.setNoSignedZeros(); 85 } 86 if (CGM.getCodeGenOpts().ReciprocalMath) { 87 FMF.setAllowReciprocal(); 88 } 89 if (CGM.getCodeGenOpts().Reassociate) { 90 FMF.setAllowReassoc(); 91 } 92 Builder.setFastMathFlags(FMF); 93 SetFPModel(); 94 } 95 96 CodeGenFunction::~CodeGenFunction() { 97 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 98 99 // If there are any unclaimed block infos, go ahead and destroy them 100 // now. This can happen if IR-gen gets clever and skips evaluating 101 // something. 102 if (FirstBlockInfo) 103 destroyBlockInfos(FirstBlockInfo); 104 105 if (getLangOpts().OpenMP && CurFn) 106 CGM.getOpenMPRuntime().functionFinished(*this); 107 } 108 109 // Map the LangOption for rounding mode into 110 // the corresponding enum in the IR. 111 static llvm::fp::RoundingMode ToConstrainedRoundingMD( 112 LangOptions::FPRoundingModeKind Kind) { 113 114 switch (Kind) { 115 case LangOptions::FPR_ToNearest: return llvm::fp::rmToNearest; 116 case LangOptions::FPR_Downward: return llvm::fp::rmDownward; 117 case LangOptions::FPR_Upward: return llvm::fp::rmUpward; 118 case LangOptions::FPR_TowardZero: return llvm::fp::rmTowardZero; 119 case LangOptions::FPR_Dynamic: return llvm::fp::rmDynamic; 120 } 121 llvm_unreachable("Unsupported FP RoundingMode"); 122 } 123 124 // Map the LangOption for exception behavior into 125 // the corresponding enum in the IR. 126 static llvm::fp::ExceptionBehavior ToConstrainedExceptMD( 127 LangOptions::FPExceptionModeKind Kind) { 128 129 switch (Kind) { 130 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 131 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 132 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 133 } 134 llvm_unreachable("Unsupported FP Exception Behavior"); 135 } 136 137 void CodeGenFunction::SetFPModel() { 138 auto fpRoundingMode = ToConstrainedRoundingMD( 139 getLangOpts().getFPRoundingMode()); 140 auto fpExceptionBehavior = ToConstrainedExceptMD( 141 getLangOpts().getFPExceptionMode()); 142 143 if (fpExceptionBehavior == llvm::fp::ebIgnore && 144 fpRoundingMode == llvm::fp::rmToNearest) 145 // Constrained intrinsics are not used. 146 ; 147 else { 148 Builder.setIsFPConstrained(true); 149 Builder.setDefaultConstrainedRounding(fpRoundingMode); 150 Builder.setDefaultConstrainedExcept(fpExceptionBehavior); 151 } 152 } 153 154 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 155 LValueBaseInfo *BaseInfo, 156 TBAAAccessInfo *TBAAInfo) { 157 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 158 /* forPointeeType= */ true); 159 } 160 161 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 162 LValueBaseInfo *BaseInfo, 163 TBAAAccessInfo *TBAAInfo, 164 bool forPointeeType) { 165 if (TBAAInfo) 166 *TBAAInfo = CGM.getTBAAAccessInfo(T); 167 168 // Honor alignment typedef attributes even on incomplete types. 169 // We also honor them straight for C++ class types, even as pointees; 170 // there's an expressivity gap here. 171 if (auto TT = T->getAs<TypedefType>()) { 172 if (auto Align = TT->getDecl()->getMaxAlignment()) { 173 if (BaseInfo) 174 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 175 return getContext().toCharUnitsFromBits(Align); 176 } 177 } 178 179 if (BaseInfo) 180 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 181 182 CharUnits Alignment; 183 if (T->isIncompleteType()) { 184 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 185 } else { 186 // For C++ class pointees, we don't know whether we're pointing at a 187 // base or a complete object, so we generally need to use the 188 // non-virtual alignment. 189 const CXXRecordDecl *RD; 190 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 191 Alignment = CGM.getClassPointerAlignment(RD); 192 } else { 193 Alignment = getContext().getTypeAlignInChars(T); 194 if (T.getQualifiers().hasUnaligned()) 195 Alignment = CharUnits::One(); 196 } 197 198 // Cap to the global maximum type alignment unless the alignment 199 // was somehow explicit on the type. 200 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 201 if (Alignment.getQuantity() > MaxAlign && 202 !getContext().isAlignmentRequired(T)) 203 Alignment = CharUnits::fromQuantity(MaxAlign); 204 } 205 } 206 return Alignment; 207 } 208 209 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 210 LValueBaseInfo BaseInfo; 211 TBAAAccessInfo TBAAInfo; 212 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 213 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 214 TBAAInfo); 215 } 216 217 /// Given a value of type T* that may not be to a complete object, 218 /// construct an l-value with the natural pointee alignment of T. 219 LValue 220 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 221 LValueBaseInfo BaseInfo; 222 TBAAAccessInfo TBAAInfo; 223 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 224 /* forPointeeType= */ true); 225 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 226 } 227 228 229 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 230 return CGM.getTypes().ConvertTypeForMem(T); 231 } 232 233 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 234 return CGM.getTypes().ConvertType(T); 235 } 236 237 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 238 type = type.getCanonicalType(); 239 while (true) { 240 switch (type->getTypeClass()) { 241 #define TYPE(name, parent) 242 #define ABSTRACT_TYPE(name, parent) 243 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 244 #define DEPENDENT_TYPE(name, parent) case Type::name: 245 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 246 #include "clang/AST/TypeNodes.inc" 247 llvm_unreachable("non-canonical or dependent type in IR-generation"); 248 249 case Type::Auto: 250 case Type::DeducedTemplateSpecialization: 251 llvm_unreachable("undeduced type in IR-generation"); 252 253 // Various scalar types. 254 case Type::Builtin: 255 case Type::Pointer: 256 case Type::BlockPointer: 257 case Type::LValueReference: 258 case Type::RValueReference: 259 case Type::MemberPointer: 260 case Type::Vector: 261 case Type::ExtVector: 262 case Type::FunctionProto: 263 case Type::FunctionNoProto: 264 case Type::Enum: 265 case Type::ObjCObjectPointer: 266 case Type::Pipe: 267 return TEK_Scalar; 268 269 // Complexes. 270 case Type::Complex: 271 return TEK_Complex; 272 273 // Arrays, records, and Objective-C objects. 274 case Type::ConstantArray: 275 case Type::IncompleteArray: 276 case Type::VariableArray: 277 case Type::Record: 278 case Type::ObjCObject: 279 case Type::ObjCInterface: 280 return TEK_Aggregate; 281 282 // We operate on atomic values according to their underlying type. 283 case Type::Atomic: 284 type = cast<AtomicType>(type)->getValueType(); 285 continue; 286 } 287 llvm_unreachable("unknown type kind!"); 288 } 289 } 290 291 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 292 // For cleanliness, we try to avoid emitting the return block for 293 // simple cases. 294 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 295 296 if (CurBB) { 297 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 298 299 // We have a valid insert point, reuse it if it is empty or there are no 300 // explicit jumps to the return block. 301 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 302 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 303 delete ReturnBlock.getBlock(); 304 ReturnBlock = JumpDest(); 305 } else 306 EmitBlock(ReturnBlock.getBlock()); 307 return llvm::DebugLoc(); 308 } 309 310 // Otherwise, if the return block is the target of a single direct 311 // branch then we can just put the code in that block instead. This 312 // cleans up functions which started with a unified return block. 313 if (ReturnBlock.getBlock()->hasOneUse()) { 314 llvm::BranchInst *BI = 315 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 316 if (BI && BI->isUnconditional() && 317 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 318 // Record/return the DebugLoc of the simple 'return' expression to be used 319 // later by the actual 'ret' instruction. 320 llvm::DebugLoc Loc = BI->getDebugLoc(); 321 Builder.SetInsertPoint(BI->getParent()); 322 BI->eraseFromParent(); 323 delete ReturnBlock.getBlock(); 324 ReturnBlock = JumpDest(); 325 return Loc; 326 } 327 } 328 329 // FIXME: We are at an unreachable point, there is no reason to emit the block 330 // unless it has uses. However, we still need a place to put the debug 331 // region.end for now. 332 333 EmitBlock(ReturnBlock.getBlock()); 334 return llvm::DebugLoc(); 335 } 336 337 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 338 if (!BB) return; 339 if (!BB->use_empty()) 340 return CGF.CurFn->getBasicBlockList().push_back(BB); 341 delete BB; 342 } 343 344 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 345 assert(BreakContinueStack.empty() && 346 "mismatched push/pop in break/continue stack!"); 347 348 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 349 && NumSimpleReturnExprs == NumReturnExprs 350 && ReturnBlock.getBlock()->use_empty(); 351 // Usually the return expression is evaluated before the cleanup 352 // code. If the function contains only a simple return statement, 353 // such as a constant, the location before the cleanup code becomes 354 // the last useful breakpoint in the function, because the simple 355 // return expression will be evaluated after the cleanup code. To be 356 // safe, set the debug location for cleanup code to the location of 357 // the return statement. Otherwise the cleanup code should be at the 358 // end of the function's lexical scope. 359 // 360 // If there are multiple branches to the return block, the branch 361 // instructions will get the location of the return statements and 362 // all will be fine. 363 if (CGDebugInfo *DI = getDebugInfo()) { 364 if (OnlySimpleReturnStmts) 365 DI->EmitLocation(Builder, LastStopPoint); 366 else 367 DI->EmitLocation(Builder, EndLoc); 368 } 369 370 // Pop any cleanups that might have been associated with the 371 // parameters. Do this in whatever block we're currently in; it's 372 // important to do this before we enter the return block or return 373 // edges will be *really* confused. 374 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 375 bool HasOnlyLifetimeMarkers = 376 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 377 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 378 if (HasCleanups) { 379 // Make sure the line table doesn't jump back into the body for 380 // the ret after it's been at EndLoc. 381 Optional<ApplyDebugLocation> AL; 382 if (CGDebugInfo *DI = getDebugInfo()) { 383 if (OnlySimpleReturnStmts) 384 DI->EmitLocation(Builder, EndLoc); 385 else 386 // We may not have a valid end location. Try to apply it anyway, and 387 // fall back to an artificial location if needed. 388 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 389 } 390 391 PopCleanupBlocks(PrologueCleanupDepth); 392 } 393 394 // Emit function epilog (to return). 395 llvm::DebugLoc Loc = EmitReturnBlock(); 396 397 if (ShouldInstrumentFunction()) { 398 if (CGM.getCodeGenOpts().InstrumentFunctions) 399 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 400 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 401 CurFn->addFnAttr("instrument-function-exit-inlined", 402 "__cyg_profile_func_exit"); 403 } 404 405 // Emit debug descriptor for function end. 406 if (CGDebugInfo *DI = getDebugInfo()) 407 DI->EmitFunctionEnd(Builder, CurFn); 408 409 // Reset the debug location to that of the simple 'return' expression, if any 410 // rather than that of the end of the function's scope '}'. 411 ApplyDebugLocation AL(*this, Loc); 412 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 413 EmitEndEHSpec(CurCodeDecl); 414 415 assert(EHStack.empty() && 416 "did not remove all scopes from cleanup stack!"); 417 418 // If someone did an indirect goto, emit the indirect goto block at the end of 419 // the function. 420 if (IndirectBranch) { 421 EmitBlock(IndirectBranch->getParent()); 422 Builder.ClearInsertionPoint(); 423 } 424 425 // If some of our locals escaped, insert a call to llvm.localescape in the 426 // entry block. 427 if (!EscapedLocals.empty()) { 428 // Invert the map from local to index into a simple vector. There should be 429 // no holes. 430 SmallVector<llvm::Value *, 4> EscapeArgs; 431 EscapeArgs.resize(EscapedLocals.size()); 432 for (auto &Pair : EscapedLocals) 433 EscapeArgs[Pair.second] = Pair.first; 434 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 435 &CGM.getModule(), llvm::Intrinsic::localescape); 436 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 437 } 438 439 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 440 llvm::Instruction *Ptr = AllocaInsertPt; 441 AllocaInsertPt = nullptr; 442 Ptr->eraseFromParent(); 443 444 // If someone took the address of a label but never did an indirect goto, we 445 // made a zero entry PHI node, which is illegal, zap it now. 446 if (IndirectBranch) { 447 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 448 if (PN->getNumIncomingValues() == 0) { 449 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 450 PN->eraseFromParent(); 451 } 452 } 453 454 EmitIfUsed(*this, EHResumeBlock); 455 EmitIfUsed(*this, TerminateLandingPad); 456 EmitIfUsed(*this, TerminateHandler); 457 EmitIfUsed(*this, UnreachableBlock); 458 459 for (const auto &FuncletAndParent : TerminateFunclets) 460 EmitIfUsed(*this, FuncletAndParent.second); 461 462 if (CGM.getCodeGenOpts().EmitDeclMetadata) 463 EmitDeclMetadata(); 464 465 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 466 I = DeferredReplacements.begin(), 467 E = DeferredReplacements.end(); 468 I != E; ++I) { 469 I->first->replaceAllUsesWith(I->second); 470 I->first->eraseFromParent(); 471 } 472 473 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 474 // PHIs if the current function is a coroutine. We don't do it for all 475 // functions as it may result in slight increase in numbers of instructions 476 // if compiled with no optimizations. We do it for coroutine as the lifetime 477 // of CleanupDestSlot alloca make correct coroutine frame building very 478 // difficult. 479 if (NormalCleanupDest.isValid() && isCoroutine()) { 480 llvm::DominatorTree DT(*CurFn); 481 llvm::PromoteMemToReg( 482 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 483 NormalCleanupDest = Address::invalid(); 484 } 485 486 // Scan function arguments for vector width. 487 for (llvm::Argument &A : CurFn->args()) 488 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 489 LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, 490 VT->getPrimitiveSizeInBits().getFixedSize()); 491 492 // Update vector width based on return type. 493 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 494 LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, 495 VT->getPrimitiveSizeInBits().getFixedSize()); 496 497 // Add the required-vector-width attribute. This contains the max width from: 498 // 1. min-vector-width attribute used in the source program. 499 // 2. Any builtins used that have a vector width specified. 500 // 3. Values passed in and out of inline assembly. 501 // 4. Width of vector arguments and return types for this function. 502 // 5. Width of vector aguments and return types for functions called by this 503 // function. 504 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 505 506 // If we generated an unreachable return block, delete it now. 507 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 508 Builder.ClearInsertionPoint(); 509 ReturnBlock.getBlock()->eraseFromParent(); 510 } 511 if (ReturnValue.isValid()) { 512 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 513 if (RetAlloca && RetAlloca->use_empty()) { 514 RetAlloca->eraseFromParent(); 515 ReturnValue = Address::invalid(); 516 } 517 } 518 } 519 520 /// ShouldInstrumentFunction - Return true if the current function should be 521 /// instrumented with __cyg_profile_func_* calls 522 bool CodeGenFunction::ShouldInstrumentFunction() { 523 if (!CGM.getCodeGenOpts().InstrumentFunctions && 524 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 525 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 526 return false; 527 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 528 return false; 529 return true; 530 } 531 532 /// ShouldXRayInstrument - Return true if the current function should be 533 /// instrumented with XRay nop sleds. 534 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 535 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 536 } 537 538 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 539 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 540 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 541 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 542 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 543 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 544 XRayInstrKind::Custom); 545 } 546 547 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 548 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 549 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 550 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 551 XRayInstrKind::Typed); 552 } 553 554 llvm::Constant * 555 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 556 llvm::Constant *Addr) { 557 // Addresses stored in prologue data can't require run-time fixups and must 558 // be PC-relative. Run-time fixups are undesirable because they necessitate 559 // writable text segments, which are unsafe. And absolute addresses are 560 // undesirable because they break PIE mode. 561 562 // Add a layer of indirection through a private global. Taking its address 563 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 564 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 565 /*isConstant=*/true, 566 llvm::GlobalValue::PrivateLinkage, Addr); 567 568 // Create a PC-relative address. 569 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 570 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 571 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 572 return (IntPtrTy == Int32Ty) 573 ? PCRelAsInt 574 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 575 } 576 577 llvm::Value * 578 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 579 llvm::Value *EncodedAddr) { 580 // Reconstruct the address of the global. 581 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 582 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 583 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 584 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 585 586 // Load the original pointer through the global. 587 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 588 "decoded_addr"); 589 } 590 591 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 592 llvm::Function *Fn) 593 { 594 if (!FD->hasAttr<OpenCLKernelAttr>()) 595 return; 596 597 llvm::LLVMContext &Context = getLLVMContext(); 598 599 CGM.GenOpenCLArgMetadata(Fn, FD, this); 600 601 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 602 QualType HintQTy = A->getTypeHint(); 603 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 604 bool IsSignedInteger = 605 HintQTy->isSignedIntegerType() || 606 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 607 llvm::Metadata *AttrMDArgs[] = { 608 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 609 CGM.getTypes().ConvertType(A->getTypeHint()))), 610 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 611 llvm::IntegerType::get(Context, 32), 612 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 613 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 614 } 615 616 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 617 llvm::Metadata *AttrMDArgs[] = { 618 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 619 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 620 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 621 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 622 } 623 624 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 625 llvm::Metadata *AttrMDArgs[] = { 626 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 627 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 628 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 629 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 630 } 631 632 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 633 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 634 llvm::Metadata *AttrMDArgs[] = { 635 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 636 Fn->setMetadata("intel_reqd_sub_group_size", 637 llvm::MDNode::get(Context, AttrMDArgs)); 638 } 639 } 640 641 /// Determine whether the function F ends with a return stmt. 642 static bool endsWithReturn(const Decl* F) { 643 const Stmt *Body = nullptr; 644 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 645 Body = FD->getBody(); 646 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 647 Body = OMD->getBody(); 648 649 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 650 auto LastStmt = CS->body_rbegin(); 651 if (LastStmt != CS->body_rend()) 652 return isa<ReturnStmt>(*LastStmt); 653 } 654 return false; 655 } 656 657 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 658 if (SanOpts.has(SanitizerKind::Thread)) { 659 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 660 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 661 } 662 } 663 664 /// Check if the return value of this function requires sanitization. 665 bool CodeGenFunction::requiresReturnValueCheck() const { 666 return requiresReturnValueNullabilityCheck() || 667 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 668 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 669 } 670 671 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 672 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 673 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 674 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 675 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 676 return false; 677 678 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 679 return false; 680 681 if (MD->getNumParams() == 2) { 682 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 683 if (!PT || !PT->isVoidPointerType() || 684 !PT->getPointeeType().isConstQualified()) 685 return false; 686 } 687 688 return true; 689 } 690 691 /// Return the UBSan prologue signature for \p FD if one is available. 692 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 693 const FunctionDecl *FD) { 694 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 695 if (!MD->isStatic()) 696 return nullptr; 697 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 698 } 699 700 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 701 llvm::Function *Fn, 702 const CGFunctionInfo &FnInfo, 703 const FunctionArgList &Args, 704 SourceLocation Loc, 705 SourceLocation StartLoc) { 706 assert(!CurFn && 707 "Do not use a CodeGenFunction object for more than one function"); 708 709 const Decl *D = GD.getDecl(); 710 711 DidCallStackSave = false; 712 CurCodeDecl = D; 713 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 714 if (FD->usesSEHTry()) 715 CurSEHParent = FD; 716 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 717 FnRetTy = RetTy; 718 CurFn = Fn; 719 CurFnInfo = &FnInfo; 720 assert(CurFn->isDeclaration() && "Function already has body?"); 721 722 // If this function has been blacklisted for any of the enabled sanitizers, 723 // disable the sanitizer for the function. 724 do { 725 #define SANITIZER(NAME, ID) \ 726 if (SanOpts.empty()) \ 727 break; \ 728 if (SanOpts.has(SanitizerKind::ID)) \ 729 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 730 SanOpts.set(SanitizerKind::ID, false); 731 732 #include "clang/Basic/Sanitizers.def" 733 #undef SANITIZER 734 } while (0); 735 736 if (D) { 737 // Apply the no_sanitize* attributes to SanOpts. 738 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 739 SanitizerMask mask = Attr->getMask(); 740 SanOpts.Mask &= ~mask; 741 if (mask & SanitizerKind::Address) 742 SanOpts.set(SanitizerKind::KernelAddress, false); 743 if (mask & SanitizerKind::KernelAddress) 744 SanOpts.set(SanitizerKind::Address, false); 745 if (mask & SanitizerKind::HWAddress) 746 SanOpts.set(SanitizerKind::KernelHWAddress, false); 747 if (mask & SanitizerKind::KernelHWAddress) 748 SanOpts.set(SanitizerKind::HWAddress, false); 749 } 750 } 751 752 // Apply sanitizer attributes to the function. 753 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 754 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 755 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 756 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 757 if (SanOpts.has(SanitizerKind::MemTag)) 758 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 759 if (SanOpts.has(SanitizerKind::Thread)) 760 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 761 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 762 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 763 if (SanOpts.has(SanitizerKind::SafeStack)) 764 Fn->addFnAttr(llvm::Attribute::SafeStack); 765 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 766 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 767 768 // Apply fuzzing attribute to the function. 769 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 770 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 771 772 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 773 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 774 if (SanOpts.has(SanitizerKind::Thread)) { 775 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 776 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 777 if (OMD->getMethodFamily() == OMF_dealloc || 778 OMD->getMethodFamily() == OMF_initialize || 779 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 780 markAsIgnoreThreadCheckingAtRuntime(Fn); 781 } 782 } 783 } 784 785 // Ignore unrelated casts in STL allocate() since the allocator must cast 786 // from void* to T* before object initialization completes. Don't match on the 787 // namespace because not all allocators are in std:: 788 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 789 if (matchesStlAllocatorFn(D, getContext())) 790 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 791 } 792 793 // Ignore null checks in coroutine functions since the coroutines passes 794 // are not aware of how to move the extra UBSan instructions across the split 795 // coroutine boundaries. 796 if (D && SanOpts.has(SanitizerKind::Null)) 797 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 798 if (FD->getBody() && 799 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 800 SanOpts.Mask &= ~SanitizerKind::Null; 801 802 if (D) { 803 // Apply xray attributes to the function (as a string, for now) 804 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 805 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 806 XRayInstrKind::Function)) { 807 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) 808 Fn->addFnAttr("function-instrument", "xray-always"); 809 if (XRayAttr->neverXRayInstrument()) 810 Fn->addFnAttr("function-instrument", "xray-never"); 811 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 812 if (ShouldXRayInstrumentFunction()) 813 Fn->addFnAttr("xray-log-args", 814 llvm::utostr(LogArgs->getArgumentCount())); 815 } 816 } else { 817 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 818 Fn->addFnAttr( 819 "xray-instruction-threshold", 820 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 821 } 822 823 unsigned Count, Offset; 824 if (const auto *Attr = D->getAttr<PatchableFunctionEntryAttr>()) { 825 Count = Attr->getCount(); 826 Offset = Attr->getOffset(); 827 } else { 828 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 829 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 830 } 831 if (Count && Offset <= Count) { 832 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 833 if (Offset) 834 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 835 } 836 } 837 838 // Add no-jump-tables value. 839 Fn->addFnAttr("no-jump-tables", 840 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 841 842 // Add no-inline-line-tables value. 843 if (CGM.getCodeGenOpts().NoInlineLineTables) 844 Fn->addFnAttr("no-inline-line-tables"); 845 846 // Add profile-sample-accurate value. 847 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 848 Fn->addFnAttr("profile-sample-accurate"); 849 850 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 851 Fn->addFnAttr("cfi-canonical-jump-table"); 852 853 if (getLangOpts().OpenCL) { 854 // Add metadata for a kernel function. 855 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 856 EmitOpenCLKernelMetadata(FD, Fn); 857 } 858 859 // If we are checking function types, emit a function type signature as 860 // prologue data. 861 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 862 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 863 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 864 // Remove any (C++17) exception specifications, to allow calling e.g. a 865 // noexcept function through a non-noexcept pointer. 866 auto ProtoTy = 867 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 868 EST_None); 869 llvm::Constant *FTRTTIConst = 870 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 871 llvm::Constant *FTRTTIConstEncoded = 872 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 873 llvm::Constant *PrologueStructElems[] = {PrologueSig, 874 FTRTTIConstEncoded}; 875 llvm::Constant *PrologueStructConst = 876 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 877 Fn->setPrologueData(PrologueStructConst); 878 } 879 } 880 } 881 882 // If we're checking nullability, we need to know whether we can check the 883 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 884 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 885 auto Nullability = FnRetTy->getNullability(getContext()); 886 if (Nullability && *Nullability == NullabilityKind::NonNull) { 887 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 888 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 889 RetValNullabilityPrecondition = 890 llvm::ConstantInt::getTrue(getLLVMContext()); 891 } 892 } 893 894 // If we're in C++ mode and the function name is "main", it is guaranteed 895 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 896 // used within a program"). 897 if (getLangOpts().CPlusPlus) 898 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 899 if (FD->isMain()) 900 Fn->addFnAttr(llvm::Attribute::NoRecurse); 901 902 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 903 if (FD->usesFPIntrin()) 904 Fn->addFnAttr(llvm::Attribute::StrictFP); 905 906 // If a custom alignment is used, force realigning to this alignment on 907 // any main function which certainly will need it. 908 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 909 if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 910 CGM.getCodeGenOpts().StackAlignment) 911 Fn->addFnAttr("stackrealign"); 912 913 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 914 915 // Create a marker to make it easy to insert allocas into the entryblock 916 // later. Don't create this with the builder, because we don't want it 917 // folded. 918 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 919 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 920 921 ReturnBlock = getJumpDestInCurrentScope("return"); 922 923 Builder.SetInsertPoint(EntryBB); 924 925 // If we're checking the return value, allocate space for a pointer to a 926 // precise source location of the checked return statement. 927 if (requiresReturnValueCheck()) { 928 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 929 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 930 } 931 932 // Emit subprogram debug descriptor. 933 if (CGDebugInfo *DI = getDebugInfo()) { 934 // Reconstruct the type from the argument list so that implicit parameters, 935 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 936 // convention. 937 CallingConv CC = CallingConv::CC_C; 938 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 939 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 940 CC = SrcFnTy->getCallConv(); 941 SmallVector<QualType, 16> ArgTypes; 942 for (const VarDecl *VD : Args) 943 ArgTypes.push_back(VD->getType()); 944 QualType FnType = getContext().getFunctionType( 945 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 946 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk, 947 Builder); 948 } 949 950 if (ShouldInstrumentFunction()) { 951 if (CGM.getCodeGenOpts().InstrumentFunctions) 952 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 953 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 954 CurFn->addFnAttr("instrument-function-entry-inlined", 955 "__cyg_profile_func_enter"); 956 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 957 CurFn->addFnAttr("instrument-function-entry-inlined", 958 "__cyg_profile_func_enter_bare"); 959 } 960 961 // Since emitting the mcount call here impacts optimizations such as function 962 // inlining, we just add an attribute to insert a mcount call in backend. 963 // The attribute "counting-function" is set to mcount function name which is 964 // architecture dependent. 965 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 966 // Calls to fentry/mcount should not be generated if function has 967 // the no_instrument_function attribute. 968 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 969 if (CGM.getCodeGenOpts().CallFEntry) 970 Fn->addFnAttr("fentry-call", "true"); 971 else { 972 Fn->addFnAttr("instrument-function-entry-inlined", 973 getTarget().getMCountName()); 974 } 975 if (CGM.getCodeGenOpts().MNopMCount) { 976 if (!CGM.getCodeGenOpts().CallFEntry) 977 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 978 << "-mnop-mcount" << "-mfentry"; 979 Fn->addFnAttr("mnop-mcount"); 980 } 981 982 if (CGM.getCodeGenOpts().RecordMCount) { 983 if (!CGM.getCodeGenOpts().CallFEntry) 984 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 985 << "-mrecord-mcount" << "-mfentry"; 986 Fn->addFnAttr("mrecord-mcount"); 987 } 988 } 989 } 990 991 if (CGM.getCodeGenOpts().PackedStack) { 992 if (getContext().getTargetInfo().getTriple().getArch() != 993 llvm::Triple::systemz) 994 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 995 << "-mpacked-stack"; 996 Fn->addFnAttr("packed-stack"); 997 } 998 999 if (RetTy->isVoidType()) { 1000 // Void type; nothing to return. 1001 ReturnValue = Address::invalid(); 1002 1003 // Count the implicit return. 1004 if (!endsWithReturn(D)) 1005 ++NumReturnExprs; 1006 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1007 // Indirect return; emit returned value directly into sret slot. 1008 // This reduces code size, and affects correctness in C++. 1009 auto AI = CurFn->arg_begin(); 1010 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1011 ++AI; 1012 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1013 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1014 ReturnValuePointer = 1015 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 1016 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 1017 ReturnValue.getPointer(), Int8PtrTy), 1018 ReturnValuePointer); 1019 } 1020 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1021 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1022 // Load the sret pointer from the argument struct and return into that. 1023 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1024 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1025 --EI; 1026 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1027 ReturnValuePointer = Address(Addr, getPointerAlign()); 1028 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 1029 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 1030 } else { 1031 ReturnValue = CreateIRTemp(RetTy, "retval"); 1032 1033 // Tell the epilog emitter to autorelease the result. We do this 1034 // now so that various specialized functions can suppress it 1035 // during their IR-generation. 1036 if (getLangOpts().ObjCAutoRefCount && 1037 !CurFnInfo->isReturnsRetained() && 1038 RetTy->isObjCRetainableType()) 1039 AutoreleaseResult = true; 1040 } 1041 1042 EmitStartEHSpec(CurCodeDecl); 1043 1044 PrologueCleanupDepth = EHStack.stable_begin(); 1045 1046 // Emit OpenMP specific initialization of the device functions. 1047 if (getLangOpts().OpenMP && CurCodeDecl) 1048 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1049 1050 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1051 1052 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1053 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1054 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1055 if (MD->getParent()->isLambda() && 1056 MD->getOverloadedOperator() == OO_Call) { 1057 // We're in a lambda; figure out the captures. 1058 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1059 LambdaThisCaptureField); 1060 if (LambdaThisCaptureField) { 1061 // If the lambda captures the object referred to by '*this' - either by 1062 // value or by reference, make sure CXXThisValue points to the correct 1063 // object. 1064 1065 // Get the lvalue for the field (which is a copy of the enclosing object 1066 // or contains the address of the enclosing object). 1067 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1068 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1069 // If the enclosing object was captured by value, just use its address. 1070 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1071 } else { 1072 // Load the lvalue pointed to by the field, since '*this' was captured 1073 // by reference. 1074 CXXThisValue = 1075 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1076 } 1077 } 1078 for (auto *FD : MD->getParent()->fields()) { 1079 if (FD->hasCapturedVLAType()) { 1080 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1081 SourceLocation()).getScalarVal(); 1082 auto VAT = FD->getCapturedVLAType(); 1083 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1084 } 1085 } 1086 } else { 1087 // Not in a lambda; just use 'this' from the method. 1088 // FIXME: Should we generate a new load for each use of 'this'? The 1089 // fast register allocator would be happier... 1090 CXXThisValue = CXXABIThisValue; 1091 } 1092 1093 // Check the 'this' pointer once per function, if it's available. 1094 if (CXXABIThisValue) { 1095 SanitizerSet SkippedChecks; 1096 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1097 QualType ThisTy = MD->getThisType(); 1098 1099 // If this is the call operator of a lambda with no capture-default, it 1100 // may have a static invoker function, which may call this operator with 1101 // a null 'this' pointer. 1102 if (isLambdaCallOperator(MD) && 1103 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1104 SkippedChecks.set(SanitizerKind::Null, true); 1105 1106 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1107 : TCK_MemberCall, 1108 Loc, CXXABIThisValue, ThisTy, 1109 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1110 SkippedChecks); 1111 } 1112 } 1113 1114 // If any of the arguments have a variably modified type, make sure to 1115 // emit the type size. 1116 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1117 i != e; ++i) { 1118 const VarDecl *VD = *i; 1119 1120 // Dig out the type as written from ParmVarDecls; it's unclear whether 1121 // the standard (C99 6.9.1p10) requires this, but we're following the 1122 // precedent set by gcc. 1123 QualType Ty; 1124 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1125 Ty = PVD->getOriginalType(); 1126 else 1127 Ty = VD->getType(); 1128 1129 if (Ty->isVariablyModifiedType()) 1130 EmitVariablyModifiedType(Ty); 1131 } 1132 // Emit a location at the end of the prologue. 1133 if (CGDebugInfo *DI = getDebugInfo()) 1134 DI->EmitLocation(Builder, StartLoc); 1135 1136 // TODO: Do we need to handle this in two places like we do with 1137 // target-features/target-cpu? 1138 if (CurFuncDecl) 1139 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1140 LargestVectorWidth = VecWidth->getVectorWidth(); 1141 } 1142 1143 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1144 incrementProfileCounter(Body); 1145 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1146 EmitCompoundStmtWithoutScope(*S); 1147 else 1148 EmitStmt(Body); 1149 } 1150 1151 /// When instrumenting to collect profile data, the counts for some blocks 1152 /// such as switch cases need to not include the fall-through counts, so 1153 /// emit a branch around the instrumentation code. When not instrumenting, 1154 /// this just calls EmitBlock(). 1155 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1156 const Stmt *S) { 1157 llvm::BasicBlock *SkipCountBB = nullptr; 1158 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1159 // When instrumenting for profiling, the fallthrough to certain 1160 // statements needs to skip over the instrumentation code so that we 1161 // get an accurate count. 1162 SkipCountBB = createBasicBlock("skipcount"); 1163 EmitBranch(SkipCountBB); 1164 } 1165 EmitBlock(BB); 1166 uint64_t CurrentCount = getCurrentProfileCount(); 1167 incrementProfileCounter(S); 1168 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1169 if (SkipCountBB) 1170 EmitBlock(SkipCountBB); 1171 } 1172 1173 /// Tries to mark the given function nounwind based on the 1174 /// non-existence of any throwing calls within it. We believe this is 1175 /// lightweight enough to do at -O0. 1176 static void TryMarkNoThrow(llvm::Function *F) { 1177 // LLVM treats 'nounwind' on a function as part of the type, so we 1178 // can't do this on functions that can be overwritten. 1179 if (F->isInterposable()) return; 1180 1181 for (llvm::BasicBlock &BB : *F) 1182 for (llvm::Instruction &I : BB) 1183 if (I.mayThrow()) 1184 return; 1185 1186 F->setDoesNotThrow(); 1187 } 1188 1189 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1190 FunctionArgList &Args) { 1191 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1192 QualType ResTy = FD->getReturnType(); 1193 1194 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1195 if (MD && MD->isInstance()) { 1196 if (CGM.getCXXABI().HasThisReturn(GD)) 1197 ResTy = MD->getThisType(); 1198 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1199 ResTy = CGM.getContext().VoidPtrTy; 1200 CGM.getCXXABI().buildThisParam(*this, Args); 1201 } 1202 1203 // The base version of an inheriting constructor whose constructed base is a 1204 // virtual base is not passed any arguments (because it doesn't actually call 1205 // the inherited constructor). 1206 bool PassedParams = true; 1207 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1208 if (auto Inherited = CD->getInheritedConstructor()) 1209 PassedParams = 1210 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1211 1212 if (PassedParams) { 1213 for (auto *Param : FD->parameters()) { 1214 Args.push_back(Param); 1215 if (!Param->hasAttr<PassObjectSizeAttr>()) 1216 continue; 1217 1218 auto *Implicit = ImplicitParamDecl::Create( 1219 getContext(), Param->getDeclContext(), Param->getLocation(), 1220 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1221 SizeArguments[Param] = Implicit; 1222 Args.push_back(Implicit); 1223 } 1224 } 1225 1226 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1227 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1228 1229 return ResTy; 1230 } 1231 1232 static bool 1233 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1234 const ASTContext &Context) { 1235 QualType T = FD->getReturnType(); 1236 // Avoid the optimization for functions that return a record type with a 1237 // trivial destructor or another trivially copyable type. 1238 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1239 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1240 return !ClassDecl->hasTrivialDestructor(); 1241 } 1242 return !T.isTriviallyCopyableType(Context); 1243 } 1244 1245 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1246 const CGFunctionInfo &FnInfo) { 1247 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1248 CurGD = GD; 1249 1250 FunctionArgList Args; 1251 QualType ResTy = BuildFunctionArgList(GD, Args); 1252 1253 // Check if we should generate debug info for this function. 1254 if (FD->hasAttr<NoDebugAttr>()) 1255 DebugInfo = nullptr; // disable debug info indefinitely for this function 1256 1257 // The function might not have a body if we're generating thunks for a 1258 // function declaration. 1259 SourceRange BodyRange; 1260 if (Stmt *Body = FD->getBody()) 1261 BodyRange = Body->getSourceRange(); 1262 else 1263 BodyRange = FD->getLocation(); 1264 CurEHLocation = BodyRange.getEnd(); 1265 1266 // Use the location of the start of the function to determine where 1267 // the function definition is located. By default use the location 1268 // of the declaration as the location for the subprogram. A function 1269 // may lack a declaration in the source code if it is created by code 1270 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1271 SourceLocation Loc = FD->getLocation(); 1272 1273 // If this is a function specialization then use the pattern body 1274 // as the location for the function. 1275 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1276 if (SpecDecl->hasBody(SpecDecl)) 1277 Loc = SpecDecl->getLocation(); 1278 1279 Stmt *Body = FD->getBody(); 1280 1281 // Initialize helper which will detect jumps which can cause invalid lifetime 1282 // markers. 1283 if (Body && ShouldEmitLifetimeMarkers) 1284 Bypasses.Init(Body); 1285 1286 // Emit the standard function prologue. 1287 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1288 1289 // Generate the body of the function. 1290 PGO.assignRegionCounters(GD, CurFn); 1291 if (isa<CXXDestructorDecl>(FD)) 1292 EmitDestructorBody(Args); 1293 else if (isa<CXXConstructorDecl>(FD)) 1294 EmitConstructorBody(Args); 1295 else if (getLangOpts().CUDA && 1296 !getLangOpts().CUDAIsDevice && 1297 FD->hasAttr<CUDAGlobalAttr>()) 1298 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1299 else if (isa<CXXMethodDecl>(FD) && 1300 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1301 // The lambda static invoker function is special, because it forwards or 1302 // clones the body of the function call operator (but is actually static). 1303 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1304 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1305 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1306 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1307 // Implicit copy-assignment gets the same special treatment as implicit 1308 // copy-constructors. 1309 emitImplicitAssignmentOperatorBody(Args); 1310 } else if (Body) { 1311 EmitFunctionBody(Body); 1312 } else 1313 llvm_unreachable("no definition for emitted function"); 1314 1315 // C++11 [stmt.return]p2: 1316 // Flowing off the end of a function [...] results in undefined behavior in 1317 // a value-returning function. 1318 // C11 6.9.1p12: 1319 // If the '}' that terminates a function is reached, and the value of the 1320 // function call is used by the caller, the behavior is undefined. 1321 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1322 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1323 bool ShouldEmitUnreachable = 1324 CGM.getCodeGenOpts().StrictReturn || 1325 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1326 if (SanOpts.has(SanitizerKind::Return)) { 1327 SanitizerScope SanScope(this); 1328 llvm::Value *IsFalse = Builder.getFalse(); 1329 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1330 SanitizerHandler::MissingReturn, 1331 EmitCheckSourceLocation(FD->getLocation()), None); 1332 } else if (ShouldEmitUnreachable) { 1333 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1334 EmitTrapCall(llvm::Intrinsic::trap); 1335 } 1336 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1337 Builder.CreateUnreachable(); 1338 Builder.ClearInsertionPoint(); 1339 } 1340 } 1341 1342 // Emit the standard function epilogue. 1343 FinishFunction(BodyRange.getEnd()); 1344 1345 // If we haven't marked the function nothrow through other means, do 1346 // a quick pass now to see if we can. 1347 if (!CurFn->doesNotThrow()) 1348 TryMarkNoThrow(CurFn); 1349 } 1350 1351 /// ContainsLabel - Return true if the statement contains a label in it. If 1352 /// this statement is not executed normally, it not containing a label means 1353 /// that we can just remove the code. 1354 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1355 // Null statement, not a label! 1356 if (!S) return false; 1357 1358 // If this is a label, we have to emit the code, consider something like: 1359 // if (0) { ... foo: bar(); } goto foo; 1360 // 1361 // TODO: If anyone cared, we could track __label__'s, since we know that you 1362 // can't jump to one from outside their declared region. 1363 if (isa<LabelStmt>(S)) 1364 return true; 1365 1366 // If this is a case/default statement, and we haven't seen a switch, we have 1367 // to emit the code. 1368 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1369 return true; 1370 1371 // If this is a switch statement, we want to ignore cases below it. 1372 if (isa<SwitchStmt>(S)) 1373 IgnoreCaseStmts = true; 1374 1375 // Scan subexpressions for verboten labels. 1376 for (const Stmt *SubStmt : S->children()) 1377 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1378 return true; 1379 1380 return false; 1381 } 1382 1383 /// containsBreak - Return true if the statement contains a break out of it. 1384 /// If the statement (recursively) contains a switch or loop with a break 1385 /// inside of it, this is fine. 1386 bool CodeGenFunction::containsBreak(const Stmt *S) { 1387 // Null statement, not a label! 1388 if (!S) return false; 1389 1390 // If this is a switch or loop that defines its own break scope, then we can 1391 // include it and anything inside of it. 1392 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1393 isa<ForStmt>(S)) 1394 return false; 1395 1396 if (isa<BreakStmt>(S)) 1397 return true; 1398 1399 // Scan subexpressions for verboten breaks. 1400 for (const Stmt *SubStmt : S->children()) 1401 if (containsBreak(SubStmt)) 1402 return true; 1403 1404 return false; 1405 } 1406 1407 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1408 if (!S) return false; 1409 1410 // Some statement kinds add a scope and thus never add a decl to the current 1411 // scope. Note, this list is longer than the list of statements that might 1412 // have an unscoped decl nested within them, but this way is conservatively 1413 // correct even if more statement kinds are added. 1414 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1415 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1416 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1417 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1418 return false; 1419 1420 if (isa<DeclStmt>(S)) 1421 return true; 1422 1423 for (const Stmt *SubStmt : S->children()) 1424 if (mightAddDeclToScope(SubStmt)) 1425 return true; 1426 1427 return false; 1428 } 1429 1430 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1431 /// to a constant, or if it does but contains a label, return false. If it 1432 /// constant folds return true and set the boolean result in Result. 1433 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1434 bool &ResultBool, 1435 bool AllowLabels) { 1436 llvm::APSInt ResultInt; 1437 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1438 return false; 1439 1440 ResultBool = ResultInt.getBoolValue(); 1441 return true; 1442 } 1443 1444 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1445 /// to a constant, or if it does but contains a label, return false. If it 1446 /// constant folds return true and set the folded value. 1447 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1448 llvm::APSInt &ResultInt, 1449 bool AllowLabels) { 1450 // FIXME: Rename and handle conversion of other evaluatable things 1451 // to bool. 1452 Expr::EvalResult Result; 1453 if (!Cond->EvaluateAsInt(Result, getContext())) 1454 return false; // Not foldable, not integer or not fully evaluatable. 1455 1456 llvm::APSInt Int = Result.Val.getInt(); 1457 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1458 return false; // Contains a label. 1459 1460 ResultInt = Int; 1461 return true; 1462 } 1463 1464 1465 1466 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1467 /// statement) to the specified blocks. Based on the condition, this might try 1468 /// to simplify the codegen of the conditional based on the branch. 1469 /// 1470 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1471 llvm::BasicBlock *TrueBlock, 1472 llvm::BasicBlock *FalseBlock, 1473 uint64_t TrueCount) { 1474 Cond = Cond->IgnoreParens(); 1475 1476 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1477 1478 // Handle X && Y in a condition. 1479 if (CondBOp->getOpcode() == BO_LAnd) { 1480 // If we have "1 && X", simplify the code. "0 && X" would have constant 1481 // folded if the case was simple enough. 1482 bool ConstantBool = false; 1483 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1484 ConstantBool) { 1485 // br(1 && X) -> br(X). 1486 incrementProfileCounter(CondBOp); 1487 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1488 TrueCount); 1489 } 1490 1491 // If we have "X && 1", simplify the code to use an uncond branch. 1492 // "X && 0" would have been constant folded to 0. 1493 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1494 ConstantBool) { 1495 // br(X && 1) -> br(X). 1496 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1497 TrueCount); 1498 } 1499 1500 // Emit the LHS as a conditional. If the LHS conditional is false, we 1501 // want to jump to the FalseBlock. 1502 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1503 // The counter tells us how often we evaluate RHS, and all of TrueCount 1504 // can be propagated to that branch. 1505 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1506 1507 ConditionalEvaluation eval(*this); 1508 { 1509 ApplyDebugLocation DL(*this, Cond); 1510 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1511 EmitBlock(LHSTrue); 1512 } 1513 1514 incrementProfileCounter(CondBOp); 1515 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1516 1517 // Any temporaries created here are conditional. 1518 eval.begin(*this); 1519 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1520 eval.end(*this); 1521 1522 return; 1523 } 1524 1525 if (CondBOp->getOpcode() == BO_LOr) { 1526 // If we have "0 || X", simplify the code. "1 || X" would have constant 1527 // folded if the case was simple enough. 1528 bool ConstantBool = false; 1529 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1530 !ConstantBool) { 1531 // br(0 || X) -> br(X). 1532 incrementProfileCounter(CondBOp); 1533 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1534 TrueCount); 1535 } 1536 1537 // If we have "X || 0", simplify the code to use an uncond branch. 1538 // "X || 1" would have been constant folded to 1. 1539 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1540 !ConstantBool) { 1541 // br(X || 0) -> br(X). 1542 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1543 TrueCount); 1544 } 1545 1546 // Emit the LHS as a conditional. If the LHS conditional is true, we 1547 // want to jump to the TrueBlock. 1548 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1549 // We have the count for entry to the RHS and for the whole expression 1550 // being true, so we can divy up True count between the short circuit and 1551 // the RHS. 1552 uint64_t LHSCount = 1553 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1554 uint64_t RHSCount = TrueCount - LHSCount; 1555 1556 ConditionalEvaluation eval(*this); 1557 { 1558 ApplyDebugLocation DL(*this, Cond); 1559 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1560 EmitBlock(LHSFalse); 1561 } 1562 1563 incrementProfileCounter(CondBOp); 1564 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1565 1566 // Any temporaries created here are conditional. 1567 eval.begin(*this); 1568 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1569 1570 eval.end(*this); 1571 1572 return; 1573 } 1574 } 1575 1576 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1577 // br(!x, t, f) -> br(x, f, t) 1578 if (CondUOp->getOpcode() == UO_LNot) { 1579 // Negate the count. 1580 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1581 // Negate the condition and swap the destination blocks. 1582 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1583 FalseCount); 1584 } 1585 } 1586 1587 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1588 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1589 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1590 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1591 1592 ConditionalEvaluation cond(*this); 1593 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1594 getProfileCount(CondOp)); 1595 1596 // When computing PGO branch weights, we only know the overall count for 1597 // the true block. This code is essentially doing tail duplication of the 1598 // naive code-gen, introducing new edges for which counts are not 1599 // available. Divide the counts proportionally between the LHS and RHS of 1600 // the conditional operator. 1601 uint64_t LHSScaledTrueCount = 0; 1602 if (TrueCount) { 1603 double LHSRatio = 1604 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1605 LHSScaledTrueCount = TrueCount * LHSRatio; 1606 } 1607 1608 cond.begin(*this); 1609 EmitBlock(LHSBlock); 1610 incrementProfileCounter(CondOp); 1611 { 1612 ApplyDebugLocation DL(*this, Cond); 1613 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1614 LHSScaledTrueCount); 1615 } 1616 cond.end(*this); 1617 1618 cond.begin(*this); 1619 EmitBlock(RHSBlock); 1620 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1621 TrueCount - LHSScaledTrueCount); 1622 cond.end(*this); 1623 1624 return; 1625 } 1626 1627 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1628 // Conditional operator handling can give us a throw expression as a 1629 // condition for a case like: 1630 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1631 // Fold this to: 1632 // br(c, throw x, br(y, t, f)) 1633 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1634 return; 1635 } 1636 1637 // If the branch has a condition wrapped by __builtin_unpredictable, 1638 // create metadata that specifies that the branch is unpredictable. 1639 // Don't bother if not optimizing because that metadata would not be used. 1640 llvm::MDNode *Unpredictable = nullptr; 1641 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1642 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1643 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1644 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1645 llvm::MDBuilder MDHelper(getLLVMContext()); 1646 Unpredictable = MDHelper.createUnpredictable(); 1647 } 1648 } 1649 1650 // Create branch weights based on the number of times we get here and the 1651 // number of times the condition should be true. 1652 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1653 llvm::MDNode *Weights = 1654 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1655 1656 // Emit the code with the fully general case. 1657 llvm::Value *CondV; 1658 { 1659 ApplyDebugLocation DL(*this, Cond); 1660 CondV = EvaluateExprAsBool(Cond); 1661 } 1662 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1663 } 1664 1665 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1666 /// specified stmt yet. 1667 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1668 CGM.ErrorUnsupported(S, Type); 1669 } 1670 1671 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1672 /// variable-length array whose elements have a non-zero bit-pattern. 1673 /// 1674 /// \param baseType the inner-most element type of the array 1675 /// \param src - a char* pointing to the bit-pattern for a single 1676 /// base element of the array 1677 /// \param sizeInChars - the total size of the VLA, in chars 1678 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1679 Address dest, Address src, 1680 llvm::Value *sizeInChars) { 1681 CGBuilderTy &Builder = CGF.Builder; 1682 1683 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1684 llvm::Value *baseSizeInChars 1685 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1686 1687 Address begin = 1688 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1689 llvm::Value *end = 1690 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1691 1692 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1693 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1694 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1695 1696 // Make a loop over the VLA. C99 guarantees that the VLA element 1697 // count must be nonzero. 1698 CGF.EmitBlock(loopBB); 1699 1700 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1701 cur->addIncoming(begin.getPointer(), originBB); 1702 1703 CharUnits curAlign = 1704 dest.getAlignment().alignmentOfArrayElement(baseSize); 1705 1706 // memcpy the individual element bit-pattern. 1707 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1708 /*volatile*/ false); 1709 1710 // Go to the next element. 1711 llvm::Value *next = 1712 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1713 1714 // Leave if that's the end of the VLA. 1715 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1716 Builder.CreateCondBr(done, contBB, loopBB); 1717 cur->addIncoming(next, loopBB); 1718 1719 CGF.EmitBlock(contBB); 1720 } 1721 1722 void 1723 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1724 // Ignore empty classes in C++. 1725 if (getLangOpts().CPlusPlus) { 1726 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1727 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1728 return; 1729 } 1730 } 1731 1732 // Cast the dest ptr to the appropriate i8 pointer type. 1733 if (DestPtr.getElementType() != Int8Ty) 1734 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1735 1736 // Get size and alignment info for this aggregate. 1737 CharUnits size = getContext().getTypeSizeInChars(Ty); 1738 1739 llvm::Value *SizeVal; 1740 const VariableArrayType *vla; 1741 1742 // Don't bother emitting a zero-byte memset. 1743 if (size.isZero()) { 1744 // But note that getTypeInfo returns 0 for a VLA. 1745 if (const VariableArrayType *vlaType = 1746 dyn_cast_or_null<VariableArrayType>( 1747 getContext().getAsArrayType(Ty))) { 1748 auto VlaSize = getVLASize(vlaType); 1749 SizeVal = VlaSize.NumElts; 1750 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1751 if (!eltSize.isOne()) 1752 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1753 vla = vlaType; 1754 } else { 1755 return; 1756 } 1757 } else { 1758 SizeVal = CGM.getSize(size); 1759 vla = nullptr; 1760 } 1761 1762 // If the type contains a pointer to data member we can't memset it to zero. 1763 // Instead, create a null constant and copy it to the destination. 1764 // TODO: there are other patterns besides zero that we can usefully memset, 1765 // like -1, which happens to be the pattern used by member-pointers. 1766 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1767 // For a VLA, emit a single element, then splat that over the VLA. 1768 if (vla) Ty = getContext().getBaseElementType(vla); 1769 1770 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1771 1772 llvm::GlobalVariable *NullVariable = 1773 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1774 /*isConstant=*/true, 1775 llvm::GlobalVariable::PrivateLinkage, 1776 NullConstant, Twine()); 1777 CharUnits NullAlign = DestPtr.getAlignment(); 1778 NullVariable->setAlignment(NullAlign.getAsAlign()); 1779 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1780 NullAlign); 1781 1782 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1783 1784 // Get and call the appropriate llvm.memcpy overload. 1785 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1786 return; 1787 } 1788 1789 // Otherwise, just memset the whole thing to zero. This is legal 1790 // because in LLVM, all default initializers (other than the ones we just 1791 // handled above) are guaranteed to have a bit pattern of all zeros. 1792 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1793 } 1794 1795 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1796 // Make sure that there is a block for the indirect goto. 1797 if (!IndirectBranch) 1798 GetIndirectGotoBlock(); 1799 1800 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1801 1802 // Make sure the indirect branch includes all of the address-taken blocks. 1803 IndirectBranch->addDestination(BB); 1804 return llvm::BlockAddress::get(CurFn, BB); 1805 } 1806 1807 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1808 // If we already made the indirect branch for indirect goto, return its block. 1809 if (IndirectBranch) return IndirectBranch->getParent(); 1810 1811 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1812 1813 // Create the PHI node that indirect gotos will add entries to. 1814 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1815 "indirect.goto.dest"); 1816 1817 // Create the indirect branch instruction. 1818 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1819 return IndirectBranch->getParent(); 1820 } 1821 1822 /// Computes the length of an array in elements, as well as the base 1823 /// element type and a properly-typed first element pointer. 1824 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1825 QualType &baseType, 1826 Address &addr) { 1827 const ArrayType *arrayType = origArrayType; 1828 1829 // If it's a VLA, we have to load the stored size. Note that 1830 // this is the size of the VLA in bytes, not its size in elements. 1831 llvm::Value *numVLAElements = nullptr; 1832 if (isa<VariableArrayType>(arrayType)) { 1833 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1834 1835 // Walk into all VLAs. This doesn't require changes to addr, 1836 // which has type T* where T is the first non-VLA element type. 1837 do { 1838 QualType elementType = arrayType->getElementType(); 1839 arrayType = getContext().getAsArrayType(elementType); 1840 1841 // If we only have VLA components, 'addr' requires no adjustment. 1842 if (!arrayType) { 1843 baseType = elementType; 1844 return numVLAElements; 1845 } 1846 } while (isa<VariableArrayType>(arrayType)); 1847 1848 // We get out here only if we find a constant array type 1849 // inside the VLA. 1850 } 1851 1852 // We have some number of constant-length arrays, so addr should 1853 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1854 // down to the first element of addr. 1855 SmallVector<llvm::Value*, 8> gepIndices; 1856 1857 // GEP down to the array type. 1858 llvm::ConstantInt *zero = Builder.getInt32(0); 1859 gepIndices.push_back(zero); 1860 1861 uint64_t countFromCLAs = 1; 1862 QualType eltType; 1863 1864 llvm::ArrayType *llvmArrayType = 1865 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1866 while (llvmArrayType) { 1867 assert(isa<ConstantArrayType>(arrayType)); 1868 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1869 == llvmArrayType->getNumElements()); 1870 1871 gepIndices.push_back(zero); 1872 countFromCLAs *= llvmArrayType->getNumElements(); 1873 eltType = arrayType->getElementType(); 1874 1875 llvmArrayType = 1876 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1877 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1878 assert((!llvmArrayType || arrayType) && 1879 "LLVM and Clang types are out-of-synch"); 1880 } 1881 1882 if (arrayType) { 1883 // From this point onwards, the Clang array type has been emitted 1884 // as some other type (probably a packed struct). Compute the array 1885 // size, and just emit the 'begin' expression as a bitcast. 1886 while (arrayType) { 1887 countFromCLAs *= 1888 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1889 eltType = arrayType->getElementType(); 1890 arrayType = getContext().getAsArrayType(eltType); 1891 } 1892 1893 llvm::Type *baseType = ConvertType(eltType); 1894 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1895 } else { 1896 // Create the actual GEP. 1897 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1898 gepIndices, "array.begin"), 1899 addr.getAlignment()); 1900 } 1901 1902 baseType = eltType; 1903 1904 llvm::Value *numElements 1905 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1906 1907 // If we had any VLA dimensions, factor them in. 1908 if (numVLAElements) 1909 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1910 1911 return numElements; 1912 } 1913 1914 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 1915 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1916 assert(vla && "type was not a variable array type!"); 1917 return getVLASize(vla); 1918 } 1919 1920 CodeGenFunction::VlaSizePair 1921 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1922 // The number of elements so far; always size_t. 1923 llvm::Value *numElements = nullptr; 1924 1925 QualType elementType; 1926 do { 1927 elementType = type->getElementType(); 1928 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1929 assert(vlaSize && "no size for VLA!"); 1930 assert(vlaSize->getType() == SizeTy); 1931 1932 if (!numElements) { 1933 numElements = vlaSize; 1934 } else { 1935 // It's undefined behavior if this wraps around, so mark it that way. 1936 // FIXME: Teach -fsanitize=undefined to trap this. 1937 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1938 } 1939 } while ((type = getContext().getAsVariableArrayType(elementType))); 1940 1941 return { numElements, elementType }; 1942 } 1943 1944 CodeGenFunction::VlaSizePair 1945 CodeGenFunction::getVLAElements1D(QualType type) { 1946 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1947 assert(vla && "type was not a variable array type!"); 1948 return getVLAElements1D(vla); 1949 } 1950 1951 CodeGenFunction::VlaSizePair 1952 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 1953 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 1954 assert(VlaSize && "no size for VLA!"); 1955 assert(VlaSize->getType() == SizeTy); 1956 return { VlaSize, Vla->getElementType() }; 1957 } 1958 1959 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1960 assert(type->isVariablyModifiedType() && 1961 "Must pass variably modified type to EmitVLASizes!"); 1962 1963 EnsureInsertPoint(); 1964 1965 // We're going to walk down into the type and look for VLA 1966 // expressions. 1967 do { 1968 assert(type->isVariablyModifiedType()); 1969 1970 const Type *ty = type.getTypePtr(); 1971 switch (ty->getTypeClass()) { 1972 1973 #define TYPE(Class, Base) 1974 #define ABSTRACT_TYPE(Class, Base) 1975 #define NON_CANONICAL_TYPE(Class, Base) 1976 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1977 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1978 #include "clang/AST/TypeNodes.inc" 1979 llvm_unreachable("unexpected dependent type!"); 1980 1981 // These types are never variably-modified. 1982 case Type::Builtin: 1983 case Type::Complex: 1984 case Type::Vector: 1985 case Type::ExtVector: 1986 case Type::Record: 1987 case Type::Enum: 1988 case Type::Elaborated: 1989 case Type::TemplateSpecialization: 1990 case Type::ObjCTypeParam: 1991 case Type::ObjCObject: 1992 case Type::ObjCInterface: 1993 case Type::ObjCObjectPointer: 1994 llvm_unreachable("type class is never variably-modified!"); 1995 1996 case Type::Adjusted: 1997 type = cast<AdjustedType>(ty)->getAdjustedType(); 1998 break; 1999 2000 case Type::Decayed: 2001 type = cast<DecayedType>(ty)->getPointeeType(); 2002 break; 2003 2004 case Type::Pointer: 2005 type = cast<PointerType>(ty)->getPointeeType(); 2006 break; 2007 2008 case Type::BlockPointer: 2009 type = cast<BlockPointerType>(ty)->getPointeeType(); 2010 break; 2011 2012 case Type::LValueReference: 2013 case Type::RValueReference: 2014 type = cast<ReferenceType>(ty)->getPointeeType(); 2015 break; 2016 2017 case Type::MemberPointer: 2018 type = cast<MemberPointerType>(ty)->getPointeeType(); 2019 break; 2020 2021 case Type::ConstantArray: 2022 case Type::IncompleteArray: 2023 // Losing element qualification here is fine. 2024 type = cast<ArrayType>(ty)->getElementType(); 2025 break; 2026 2027 case Type::VariableArray: { 2028 // Losing element qualification here is fine. 2029 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2030 2031 // Unknown size indication requires no size computation. 2032 // Otherwise, evaluate and record it. 2033 if (const Expr *size = vat->getSizeExpr()) { 2034 // It's possible that we might have emitted this already, 2035 // e.g. with a typedef and a pointer to it. 2036 llvm::Value *&entry = VLASizeMap[size]; 2037 if (!entry) { 2038 llvm::Value *Size = EmitScalarExpr(size); 2039 2040 // C11 6.7.6.2p5: 2041 // If the size is an expression that is not an integer constant 2042 // expression [...] each time it is evaluated it shall have a value 2043 // greater than zero. 2044 if (SanOpts.has(SanitizerKind::VLABound) && 2045 size->getType()->isSignedIntegerType()) { 2046 SanitizerScope SanScope(this); 2047 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2048 llvm::Constant *StaticArgs[] = { 2049 EmitCheckSourceLocation(size->getBeginLoc()), 2050 EmitCheckTypeDescriptor(size->getType())}; 2051 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2052 SanitizerKind::VLABound), 2053 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2054 } 2055 2056 // Always zexting here would be wrong if it weren't 2057 // undefined behavior to have a negative bound. 2058 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2059 } 2060 } 2061 type = vat->getElementType(); 2062 break; 2063 } 2064 2065 case Type::FunctionProto: 2066 case Type::FunctionNoProto: 2067 type = cast<FunctionType>(ty)->getReturnType(); 2068 break; 2069 2070 case Type::Paren: 2071 case Type::TypeOf: 2072 case Type::UnaryTransform: 2073 case Type::Attributed: 2074 case Type::SubstTemplateTypeParm: 2075 case Type::PackExpansion: 2076 case Type::MacroQualified: 2077 // Keep walking after single level desugaring. 2078 type = type.getSingleStepDesugaredType(getContext()); 2079 break; 2080 2081 case Type::Typedef: 2082 case Type::Decltype: 2083 case Type::Auto: 2084 case Type::DeducedTemplateSpecialization: 2085 // Stop walking: nothing to do. 2086 return; 2087 2088 case Type::TypeOfExpr: 2089 // Stop walking: emit typeof expression. 2090 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2091 return; 2092 2093 case Type::Atomic: 2094 type = cast<AtomicType>(ty)->getValueType(); 2095 break; 2096 2097 case Type::Pipe: 2098 type = cast<PipeType>(ty)->getElementType(); 2099 break; 2100 } 2101 } while (type->isVariablyModifiedType()); 2102 } 2103 2104 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2105 if (getContext().getBuiltinVaListType()->isArrayType()) 2106 return EmitPointerWithAlignment(E); 2107 return EmitLValue(E).getAddress(*this); 2108 } 2109 2110 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2111 return EmitLValue(E).getAddress(*this); 2112 } 2113 2114 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2115 const APValue &Init) { 2116 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2117 if (CGDebugInfo *Dbg = getDebugInfo()) 2118 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2119 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2120 } 2121 2122 CodeGenFunction::PeepholeProtection 2123 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2124 // At the moment, the only aggressive peephole we do in IR gen 2125 // is trunc(zext) folding, but if we add more, we can easily 2126 // extend this protection. 2127 2128 if (!rvalue.isScalar()) return PeepholeProtection(); 2129 llvm::Value *value = rvalue.getScalarVal(); 2130 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2131 2132 // Just make an extra bitcast. 2133 assert(HaveInsertPoint()); 2134 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2135 Builder.GetInsertBlock()); 2136 2137 PeepholeProtection protection; 2138 protection.Inst = inst; 2139 return protection; 2140 } 2141 2142 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2143 if (!protection.Inst) return; 2144 2145 // In theory, we could try to duplicate the peepholes now, but whatever. 2146 protection.Inst->eraseFromParent(); 2147 } 2148 2149 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2150 QualType Ty, SourceLocation Loc, 2151 SourceLocation AssumptionLoc, 2152 llvm::Value *Alignment, 2153 llvm::Value *OffsetValue) { 2154 llvm::Value *TheCheck; 2155 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2156 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck); 2157 if (SanOpts.has(SanitizerKind::Alignment)) { 2158 EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2159 OffsetValue, TheCheck, Assumption); 2160 } 2161 } 2162 2163 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2164 const Expr *E, 2165 SourceLocation AssumptionLoc, 2166 llvm::Value *Alignment, 2167 llvm::Value *OffsetValue) { 2168 if (auto *CE = dyn_cast<CastExpr>(E)) 2169 E = CE->getSubExprAsWritten(); 2170 QualType Ty = E->getType(); 2171 SourceLocation Loc = E->getExprLoc(); 2172 2173 EmitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2174 OffsetValue); 2175 } 2176 2177 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2178 llvm::Value *AnnotatedVal, 2179 StringRef AnnotationStr, 2180 SourceLocation Location) { 2181 llvm::Value *Args[4] = { 2182 AnnotatedVal, 2183 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2184 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2185 CGM.EmitAnnotationLineNo(Location) 2186 }; 2187 return Builder.CreateCall(AnnotationFn, Args); 2188 } 2189 2190 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2191 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2192 // FIXME We create a new bitcast for every annotation because that's what 2193 // llvm-gcc was doing. 2194 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2195 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2196 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2197 I->getAnnotation(), D->getLocation()); 2198 } 2199 2200 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2201 Address Addr) { 2202 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2203 llvm::Value *V = Addr.getPointer(); 2204 llvm::Type *VTy = V->getType(); 2205 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2206 CGM.Int8PtrTy); 2207 2208 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2209 // FIXME Always emit the cast inst so we can differentiate between 2210 // annotation on the first field of a struct and annotation on the struct 2211 // itself. 2212 if (VTy != CGM.Int8PtrTy) 2213 V = Builder.CreateBitCast(V, CGM.Int8PtrTy); 2214 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2215 V = Builder.CreateBitCast(V, VTy); 2216 } 2217 2218 return Address(V, Addr.getAlignment()); 2219 } 2220 2221 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2222 2223 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2224 : CGF(CGF) { 2225 assert(!CGF->IsSanitizerScope); 2226 CGF->IsSanitizerScope = true; 2227 } 2228 2229 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2230 CGF->IsSanitizerScope = false; 2231 } 2232 2233 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2234 const llvm::Twine &Name, 2235 llvm::BasicBlock *BB, 2236 llvm::BasicBlock::iterator InsertPt) const { 2237 LoopStack.InsertHelper(I); 2238 if (IsSanitizerScope) 2239 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2240 } 2241 2242 void CGBuilderInserter::InsertHelper( 2243 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2244 llvm::BasicBlock::iterator InsertPt) const { 2245 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2246 if (CGF) 2247 CGF->InsertHelper(I, Name, BB, InsertPt); 2248 } 2249 2250 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2251 CodeGenModule &CGM, const FunctionDecl *FD, 2252 std::string &FirstMissing) { 2253 // If there aren't any required features listed then go ahead and return. 2254 if (ReqFeatures.empty()) 2255 return false; 2256 2257 // Now build up the set of caller features and verify that all the required 2258 // features are there. 2259 llvm::StringMap<bool> CallerFeatureMap; 2260 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2261 2262 // If we have at least one of the features in the feature list return 2263 // true, otherwise return false. 2264 return std::all_of( 2265 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2266 SmallVector<StringRef, 1> OrFeatures; 2267 Feature.split(OrFeatures, '|'); 2268 return llvm::any_of(OrFeatures, [&](StringRef Feature) { 2269 if (!CallerFeatureMap.lookup(Feature)) { 2270 FirstMissing = Feature.str(); 2271 return false; 2272 } 2273 return true; 2274 }); 2275 }); 2276 } 2277 2278 // Emits an error if we don't have a valid set of target features for the 2279 // called function. 2280 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2281 const FunctionDecl *TargetDecl) { 2282 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2283 } 2284 2285 // Emits an error if we don't have a valid set of target features for the 2286 // called function. 2287 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2288 const FunctionDecl *TargetDecl) { 2289 // Early exit if this is an indirect call. 2290 if (!TargetDecl) 2291 return; 2292 2293 // Get the current enclosing function if it exists. If it doesn't 2294 // we can't check the target features anyhow. 2295 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2296 if (!FD) 2297 return; 2298 2299 // Grab the required features for the call. For a builtin this is listed in 2300 // the td file with the default cpu, for an always_inline function this is any 2301 // listed cpu and any listed features. 2302 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2303 std::string MissingFeature; 2304 if (BuiltinID) { 2305 SmallVector<StringRef, 1> ReqFeatures; 2306 const char *FeatureList = 2307 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2308 // Return if the builtin doesn't have any required features. 2309 if (!FeatureList || StringRef(FeatureList) == "") 2310 return; 2311 StringRef(FeatureList).split(ReqFeatures, ','); 2312 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2313 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2314 << TargetDecl->getDeclName() 2315 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2316 2317 } else if (!TargetDecl->isMultiVersion() && 2318 TargetDecl->hasAttr<TargetAttr>()) { 2319 // Get the required features for the callee. 2320 2321 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2322 ParsedTargetAttr ParsedAttr = 2323 CGM.getContext().filterFunctionTargetAttrs(TD); 2324 2325 SmallVector<StringRef, 1> ReqFeatures; 2326 llvm::StringMap<bool> CalleeFeatureMap; 2327 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, 2328 GlobalDecl(TargetDecl)); 2329 2330 for (const auto &F : ParsedAttr.Features) { 2331 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2332 ReqFeatures.push_back(StringRef(F).substr(1)); 2333 } 2334 2335 for (const auto &F : CalleeFeatureMap) { 2336 // Only positive features are "required". 2337 if (F.getValue()) 2338 ReqFeatures.push_back(F.getKey()); 2339 } 2340 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2341 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2342 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2343 } 2344 } 2345 2346 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2347 if (!CGM.getCodeGenOpts().SanitizeStats) 2348 return; 2349 2350 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2351 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2352 CGM.getSanStats().create(IRB, SSK); 2353 } 2354 2355 llvm::Value * 2356 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2357 llvm::Value *Condition = nullptr; 2358 2359 if (!RO.Conditions.Architecture.empty()) 2360 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2361 2362 if (!RO.Conditions.Features.empty()) { 2363 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2364 Condition = 2365 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2366 } 2367 return Condition; 2368 } 2369 2370 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2371 llvm::Function *Resolver, 2372 CGBuilderTy &Builder, 2373 llvm::Function *FuncToReturn, 2374 bool SupportsIFunc) { 2375 if (SupportsIFunc) { 2376 Builder.CreateRet(FuncToReturn); 2377 return; 2378 } 2379 2380 llvm::SmallVector<llvm::Value *, 10> Args; 2381 llvm::for_each(Resolver->args(), 2382 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2383 2384 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2385 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2386 2387 if (Resolver->getReturnType()->isVoidTy()) 2388 Builder.CreateRetVoid(); 2389 else 2390 Builder.CreateRet(Result); 2391 } 2392 2393 void CodeGenFunction::EmitMultiVersionResolver( 2394 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2395 assert(getContext().getTargetInfo().getTriple().isX86() && 2396 "Only implemented for x86 targets"); 2397 2398 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2399 2400 // Main function's basic block. 2401 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2402 Builder.SetInsertPoint(CurBlock); 2403 EmitX86CpuInit(); 2404 2405 for (const MultiVersionResolverOption &RO : Options) { 2406 Builder.SetInsertPoint(CurBlock); 2407 llvm::Value *Condition = FormResolverCondition(RO); 2408 2409 // The 'default' or 'generic' case. 2410 if (!Condition) { 2411 assert(&RO == Options.end() - 1 && 2412 "Default or Generic case must be last"); 2413 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2414 SupportsIFunc); 2415 return; 2416 } 2417 2418 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2419 CGBuilderTy RetBuilder(*this, RetBlock); 2420 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2421 SupportsIFunc); 2422 CurBlock = createBasicBlock("resolver_else", Resolver); 2423 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2424 } 2425 2426 // If no generic/default, emit an unreachable. 2427 Builder.SetInsertPoint(CurBlock); 2428 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2429 TrapCall->setDoesNotReturn(); 2430 TrapCall->setDoesNotThrow(); 2431 Builder.CreateUnreachable(); 2432 Builder.ClearInsertionPoint(); 2433 } 2434 2435 // Loc - where the diagnostic will point, where in the source code this 2436 // alignment has failed. 2437 // SecondaryLoc - if present (will be present if sufficiently different from 2438 // Loc), the diagnostic will additionally point a "Note:" to this location. 2439 // It should be the location where the __attribute__((assume_aligned)) 2440 // was written e.g. 2441 void CodeGenFunction::EmitAlignmentAssumptionCheck( 2442 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2443 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2444 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2445 llvm::Instruction *Assumption) { 2446 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2447 cast<llvm::CallInst>(Assumption)->getCalledValue() == 2448 llvm::Intrinsic::getDeclaration( 2449 Builder.GetInsertBlock()->getParent()->getParent(), 2450 llvm::Intrinsic::assume) && 2451 "Assumption should be a call to llvm.assume()."); 2452 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2453 "Assumption should be the last instruction of the basic block, " 2454 "since the basic block is still being generated."); 2455 2456 if (!SanOpts.has(SanitizerKind::Alignment)) 2457 return; 2458 2459 // Don't check pointers to volatile data. The behavior here is implementation- 2460 // defined. 2461 if (Ty->getPointeeType().isVolatileQualified()) 2462 return; 2463 2464 // We need to temorairly remove the assumption so we can insert the 2465 // sanitizer check before it, else the check will be dropped by optimizations. 2466 Assumption->removeFromParent(); 2467 2468 { 2469 SanitizerScope SanScope(this); 2470 2471 if (!OffsetValue) 2472 OffsetValue = Builder.getInt1(0); // no offset. 2473 2474 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2475 EmitCheckSourceLocation(SecondaryLoc), 2476 EmitCheckTypeDescriptor(Ty)}; 2477 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2478 EmitCheckValue(Alignment), 2479 EmitCheckValue(OffsetValue)}; 2480 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2481 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2482 } 2483 2484 // We are now in the (new, empty) "cont" basic block. 2485 // Reintroduce the assumption. 2486 Builder.Insert(Assumption); 2487 // FIXME: Assumption still has it's original basic block as it's Parent. 2488 } 2489 2490 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2491 if (CGDebugInfo *DI = getDebugInfo()) 2492 return DI->SourceLocToDebugLoc(Location); 2493 2494 return llvm::DebugLoc(); 2495 } 2496