xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGValue.h (revision 963f5dc7a30624e95d72fb7f87b8892651164e46)
1 //===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes implement wrappers around llvm::Value in order to
10 // fully represent the range of values for C L- and R- values.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CGVALUE_H
15 #define LLVM_CLANG_LIB_CODEGEN_CGVALUE_H
16 
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/Type.h"
19 #include "llvm/IR/Value.h"
20 #include "llvm/IR/Type.h"
21 #include "Address.h"
22 #include "CodeGenTBAA.h"
23 
24 namespace llvm {
25   class Constant;
26   class MDNode;
27 }
28 
29 namespace clang {
30 namespace CodeGen {
31   class AggValueSlot;
32   class CodeGenFunction;
33   struct CGBitFieldInfo;
34 
35 /// RValue - This trivial value class is used to represent the result of an
36 /// expression that is evaluated.  It can be one of three things: either a
37 /// simple LLVM SSA value, a pair of SSA values for complex numbers, or the
38 /// address of an aggregate value in memory.
39 class RValue {
40   enum Flavor { Scalar, Complex, Aggregate };
41 
42   // The shift to make to an aggregate's alignment to make it look
43   // like a pointer.
44   enum { AggAlignShift = 4 };
45 
46   // Stores first value and flavor.
47   llvm::PointerIntPair<llvm::Value *, 2, Flavor> V1;
48   // Stores second value and volatility.
49   llvm::PointerIntPair<llvm::Value *, 1, bool> V2;
50 
51 public:
52   bool isScalar() const { return V1.getInt() == Scalar; }
53   bool isComplex() const { return V1.getInt() == Complex; }
54   bool isAggregate() const { return V1.getInt() == Aggregate; }
55 
56   bool isVolatileQualified() const { return V2.getInt(); }
57 
58   /// getScalarVal() - Return the Value* of this scalar value.
59   llvm::Value *getScalarVal() const {
60     assert(isScalar() && "Not a scalar!");
61     return V1.getPointer();
62   }
63 
64   /// getComplexVal - Return the real/imag components of this complex value.
65   ///
66   std::pair<llvm::Value *, llvm::Value *> getComplexVal() const {
67     return std::make_pair(V1.getPointer(), V2.getPointer());
68   }
69 
70   /// getAggregateAddr() - Return the Value* of the address of the aggregate.
71   Address getAggregateAddress() const {
72     assert(isAggregate() && "Not an aggregate!");
73     auto align = reinterpret_cast<uintptr_t>(V2.getPointer()) >> AggAlignShift;
74     return Address(V1.getPointer(), CharUnits::fromQuantity(align));
75   }
76   llvm::Value *getAggregatePointer() const {
77     assert(isAggregate() && "Not an aggregate!");
78     return V1.getPointer();
79   }
80 
81   static RValue getIgnored() {
82     // FIXME: should we make this a more explicit state?
83     return get(nullptr);
84   }
85 
86   static RValue get(llvm::Value *V) {
87     RValue ER;
88     ER.V1.setPointer(V);
89     ER.V1.setInt(Scalar);
90     ER.V2.setInt(false);
91     return ER;
92   }
93   static RValue getComplex(llvm::Value *V1, llvm::Value *V2) {
94     RValue ER;
95     ER.V1.setPointer(V1);
96     ER.V2.setPointer(V2);
97     ER.V1.setInt(Complex);
98     ER.V2.setInt(false);
99     return ER;
100   }
101   static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) {
102     return getComplex(C.first, C.second);
103   }
104   // FIXME: Aggregate rvalues need to retain information about whether they are
105   // volatile or not.  Remove default to find all places that probably get this
106   // wrong.
107   static RValue getAggregate(Address addr, bool isVolatile = false) {
108     RValue ER;
109     ER.V1.setPointer(addr.getPointer());
110     ER.V1.setInt(Aggregate);
111 
112     auto align = static_cast<uintptr_t>(addr.getAlignment().getQuantity());
113     ER.V2.setPointer(reinterpret_cast<llvm::Value*>(align << AggAlignShift));
114     ER.V2.setInt(isVolatile);
115     return ER;
116   }
117 };
118 
119 /// Does an ARC strong l-value have precise lifetime?
120 enum ARCPreciseLifetime_t {
121   ARCImpreciseLifetime, ARCPreciseLifetime
122 };
123 
124 /// The source of the alignment of an l-value; an expression of
125 /// confidence in the alignment actually matching the estimate.
126 enum class AlignmentSource {
127   /// The l-value was an access to a declared entity or something
128   /// equivalently strong, like the address of an array allocated by a
129   /// language runtime.
130   Decl,
131 
132   /// The l-value was considered opaque, so the alignment was
133   /// determined from a type, but that type was an explicitly-aligned
134   /// typedef.
135   AttributedType,
136 
137   /// The l-value was considered opaque, so the alignment was
138   /// determined from a type.
139   Type
140 };
141 
142 /// Given that the base address has the given alignment source, what's
143 /// our confidence in the alignment of the field?
144 static inline AlignmentSource getFieldAlignmentSource(AlignmentSource Source) {
145   // For now, we don't distinguish fields of opaque pointers from
146   // top-level declarations, but maybe we should.
147   return AlignmentSource::Decl;
148 }
149 
150 class LValueBaseInfo {
151   AlignmentSource AlignSource;
152 
153 public:
154   explicit LValueBaseInfo(AlignmentSource Source = AlignmentSource::Type)
155     : AlignSource(Source) {}
156   AlignmentSource getAlignmentSource() const { return AlignSource; }
157   void setAlignmentSource(AlignmentSource Source) { AlignSource = Source; }
158 
159   void mergeForCast(const LValueBaseInfo &Info) {
160     setAlignmentSource(Info.getAlignmentSource());
161   }
162 };
163 
164 /// LValue - This represents an lvalue references.  Because C/C++ allow
165 /// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a
166 /// bitrange.
167 class LValue {
168   enum {
169     Simple,       // This is a normal l-value, use getAddress().
170     VectorElt,    // This is a vector element l-value (V[i]), use getVector*
171     BitField,     // This is a bitfield l-value, use getBitfield*.
172     ExtVectorElt, // This is an extended vector subset, use getExtVectorComp
173     GlobalReg,    // This is a register l-value, use getGlobalReg()
174     MatrixElt     // This is a matrix element, use getVector*
175   } LVType;
176 
177   llvm::Value *V;
178 
179   union {
180     // Index into a vector subscript: V[i]
181     llvm::Value *VectorIdx;
182 
183     // ExtVector element subset: V.xyx
184     llvm::Constant *VectorElts;
185 
186     // BitField start bit and size
187     const CGBitFieldInfo *BitFieldInfo;
188   };
189 
190   QualType Type;
191 
192   // 'const' is unused here
193   Qualifiers Quals;
194 
195   // The alignment to use when accessing this lvalue.  (For vector elements,
196   // this is the alignment of the whole vector.)
197   unsigned Alignment;
198 
199   // objective-c's ivar
200   bool Ivar:1;
201 
202   // objective-c's ivar is an array
203   bool ObjIsArray:1;
204 
205   // LValue is non-gc'able for any reason, including being a parameter or local
206   // variable.
207   bool NonGC: 1;
208 
209   // Lvalue is a global reference of an objective-c object
210   bool GlobalObjCRef : 1;
211 
212   // Lvalue is a thread local reference
213   bool ThreadLocalRef : 1;
214 
215   // Lvalue has ARC imprecise lifetime.  We store this inverted to try
216   // to make the default bitfield pattern all-zeroes.
217   bool ImpreciseLifetime : 1;
218 
219   // This flag shows if a nontemporal load/stores should be used when accessing
220   // this lvalue.
221   bool Nontemporal : 1;
222 
223   LValueBaseInfo BaseInfo;
224   TBAAAccessInfo TBAAInfo;
225 
226   Expr *BaseIvarExp;
227 
228 private:
229   void Initialize(QualType Type, Qualifiers Quals, CharUnits Alignment,
230                   LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
231     assert((!Alignment.isZero() || Type->isIncompleteType()) &&
232            "initializing l-value with zero alignment!");
233     this->Type = Type;
234     this->Quals = Quals;
235     const unsigned MaxAlign = 1U << 31;
236     this->Alignment = Alignment.getQuantity() <= MaxAlign
237                           ? Alignment.getQuantity()
238                           : MaxAlign;
239     assert(this->Alignment == Alignment.getQuantity() &&
240            "Alignment exceeds allowed max!");
241     this->BaseInfo = BaseInfo;
242     this->TBAAInfo = TBAAInfo;
243 
244     // Initialize Objective-C flags.
245     this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false;
246     this->ImpreciseLifetime = false;
247     this->Nontemporal = false;
248     this->ThreadLocalRef = false;
249     this->BaseIvarExp = nullptr;
250   }
251 
252 public:
253   bool isSimple() const { return LVType == Simple; }
254   bool isVectorElt() const { return LVType == VectorElt; }
255   bool isBitField() const { return LVType == BitField; }
256   bool isExtVectorElt() const { return LVType == ExtVectorElt; }
257   bool isGlobalReg() const { return LVType == GlobalReg; }
258   bool isMatrixElt() const { return LVType == MatrixElt; }
259 
260   bool isVolatileQualified() const { return Quals.hasVolatile(); }
261   bool isRestrictQualified() const { return Quals.hasRestrict(); }
262   unsigned getVRQualifiers() const {
263     return Quals.getCVRQualifiers() & ~Qualifiers::Const;
264   }
265 
266   QualType getType() const { return Type; }
267 
268   Qualifiers::ObjCLifetime getObjCLifetime() const {
269     return Quals.getObjCLifetime();
270   }
271 
272   bool isObjCIvar() const { return Ivar; }
273   void setObjCIvar(bool Value) { Ivar = Value; }
274 
275   bool isObjCArray() const { return ObjIsArray; }
276   void setObjCArray(bool Value) { ObjIsArray = Value; }
277 
278   bool isNonGC () const { return NonGC; }
279   void setNonGC(bool Value) { NonGC = Value; }
280 
281   bool isGlobalObjCRef() const { return GlobalObjCRef; }
282   void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; }
283 
284   bool isThreadLocalRef() const { return ThreadLocalRef; }
285   void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;}
286 
287   ARCPreciseLifetime_t isARCPreciseLifetime() const {
288     return ARCPreciseLifetime_t(!ImpreciseLifetime);
289   }
290   void setARCPreciseLifetime(ARCPreciseLifetime_t value) {
291     ImpreciseLifetime = (value == ARCImpreciseLifetime);
292   }
293   bool isNontemporal() const { return Nontemporal; }
294   void setNontemporal(bool Value) { Nontemporal = Value; }
295 
296   bool isObjCWeak() const {
297     return Quals.getObjCGCAttr() == Qualifiers::Weak;
298   }
299   bool isObjCStrong() const {
300     return Quals.getObjCGCAttr() == Qualifiers::Strong;
301   }
302 
303   bool isVolatile() const {
304     return Quals.hasVolatile();
305   }
306 
307   Expr *getBaseIvarExp() const { return BaseIvarExp; }
308   void setBaseIvarExp(Expr *V) { BaseIvarExp = V; }
309 
310   TBAAAccessInfo getTBAAInfo() const { return TBAAInfo; }
311   void setTBAAInfo(TBAAAccessInfo Info) { TBAAInfo = Info; }
312 
313   const Qualifiers &getQuals() const { return Quals; }
314   Qualifiers &getQuals() { return Quals; }
315 
316   LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
317 
318   CharUnits getAlignment() const { return CharUnits::fromQuantity(Alignment); }
319   void setAlignment(CharUnits A) { Alignment = A.getQuantity(); }
320 
321   LValueBaseInfo getBaseInfo() const { return BaseInfo; }
322   void setBaseInfo(LValueBaseInfo Info) { BaseInfo = Info; }
323 
324   // simple lvalue
325   llvm::Value *getPointer(CodeGenFunction &CGF) const {
326     assert(isSimple());
327     return V;
328   }
329   Address getAddress(CodeGenFunction &CGF) const {
330     return Address(getPointer(CGF), getAlignment());
331   }
332   void setAddress(Address address) {
333     assert(isSimple());
334     V = address.getPointer();
335     Alignment = address.getAlignment().getQuantity();
336   }
337 
338   // vector elt lvalue
339   Address getVectorAddress() const {
340     return Address(getVectorPointer(), getAlignment());
341   }
342   llvm::Value *getVectorPointer() const {
343     assert(isVectorElt());
344     return V;
345   }
346   llvm::Value *getVectorIdx() const {
347     assert(isVectorElt());
348     return VectorIdx;
349   }
350 
351   Address getMatrixAddress() const {
352     return Address(getMatrixPointer(), getAlignment());
353   }
354   llvm::Value *getMatrixPointer() const {
355     assert(isMatrixElt());
356     return V;
357   }
358   llvm::Value *getMatrixIdx() const {
359     assert(isMatrixElt());
360     return VectorIdx;
361   }
362 
363   // extended vector elements.
364   Address getExtVectorAddress() const {
365     return Address(getExtVectorPointer(), getAlignment());
366   }
367   llvm::Value *getExtVectorPointer() const {
368     assert(isExtVectorElt());
369     return V;
370   }
371   llvm::Constant *getExtVectorElts() const {
372     assert(isExtVectorElt());
373     return VectorElts;
374   }
375 
376   // bitfield lvalue
377   Address getBitFieldAddress() const {
378     return Address(getBitFieldPointer(), getAlignment());
379   }
380   llvm::Value *getBitFieldPointer() const { assert(isBitField()); return V; }
381   const CGBitFieldInfo &getBitFieldInfo() const {
382     assert(isBitField());
383     return *BitFieldInfo;
384   }
385 
386   // global register lvalue
387   llvm::Value *getGlobalReg() const { assert(isGlobalReg()); return V; }
388 
389   static LValue MakeAddr(Address address, QualType type, ASTContext &Context,
390                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
391     Qualifiers qs = type.getQualifiers();
392     qs.setObjCGCAttr(Context.getObjCGCAttrKind(type));
393 
394     LValue R;
395     R.LVType = Simple;
396     assert(address.getPointer()->getType()->isPointerTy());
397     R.V = address.getPointer();
398     R.Initialize(type, qs, address.getAlignment(), BaseInfo, TBAAInfo);
399     return R;
400   }
401 
402   static LValue MakeVectorElt(Address vecAddress, llvm::Value *Idx,
403                               QualType type, LValueBaseInfo BaseInfo,
404                               TBAAAccessInfo TBAAInfo) {
405     LValue R;
406     R.LVType = VectorElt;
407     R.V = vecAddress.getPointer();
408     R.VectorIdx = Idx;
409     R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(),
410                  BaseInfo, TBAAInfo);
411     return R;
412   }
413 
414   static LValue MakeExtVectorElt(Address vecAddress, llvm::Constant *Elts,
415                                  QualType type, LValueBaseInfo BaseInfo,
416                                  TBAAAccessInfo TBAAInfo) {
417     LValue R;
418     R.LVType = ExtVectorElt;
419     R.V = vecAddress.getPointer();
420     R.VectorElts = Elts;
421     R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(),
422                  BaseInfo, TBAAInfo);
423     return R;
424   }
425 
426   /// Create a new object to represent a bit-field access.
427   ///
428   /// \param Addr - The base address of the bit-field sequence this
429   /// bit-field refers to.
430   /// \param Info - The information describing how to perform the bit-field
431   /// access.
432   static LValue MakeBitfield(Address Addr, const CGBitFieldInfo &Info,
433                              QualType type, LValueBaseInfo BaseInfo,
434                              TBAAAccessInfo TBAAInfo) {
435     LValue R;
436     R.LVType = BitField;
437     R.V = Addr.getPointer();
438     R.BitFieldInfo = &Info;
439     R.Initialize(type, type.getQualifiers(), Addr.getAlignment(), BaseInfo,
440                  TBAAInfo);
441     return R;
442   }
443 
444   static LValue MakeGlobalReg(Address Reg, QualType type) {
445     LValue R;
446     R.LVType = GlobalReg;
447     R.V = Reg.getPointer();
448     R.Initialize(type, type.getQualifiers(), Reg.getAlignment(),
449                  LValueBaseInfo(AlignmentSource::Decl), TBAAAccessInfo());
450     return R;
451   }
452 
453   static LValue MakeMatrixElt(Address matAddress, llvm::Value *Idx,
454                               QualType type, LValueBaseInfo BaseInfo,
455                               TBAAAccessInfo TBAAInfo) {
456     LValue R;
457     R.LVType = MatrixElt;
458     R.V = matAddress.getPointer();
459     R.VectorIdx = Idx;
460     R.Initialize(type, type.getQualifiers(), matAddress.getAlignment(),
461                  BaseInfo, TBAAInfo);
462     return R;
463   }
464 
465   RValue asAggregateRValue(CodeGenFunction &CGF) const {
466     return RValue::getAggregate(getAddress(CGF), isVolatileQualified());
467   }
468 };
469 
470 /// An aggregate value slot.
471 class AggValueSlot {
472   /// The address.
473   llvm::Value *Addr;
474 
475   // Qualifiers
476   Qualifiers Quals;
477 
478   unsigned Alignment;
479 
480   /// DestructedFlag - This is set to true if some external code is
481   /// responsible for setting up a destructor for the slot.  Otherwise
482   /// the code which constructs it should push the appropriate cleanup.
483   bool DestructedFlag : 1;
484 
485   /// ObjCGCFlag - This is set to true if writing to the memory in the
486   /// slot might require calling an appropriate Objective-C GC
487   /// barrier.  The exact interaction here is unnecessarily mysterious.
488   bool ObjCGCFlag : 1;
489 
490   /// ZeroedFlag - This is set to true if the memory in the slot is
491   /// known to be zero before the assignment into it.  This means that
492   /// zero fields don't need to be set.
493   bool ZeroedFlag : 1;
494 
495   /// AliasedFlag - This is set to true if the slot might be aliased
496   /// and it's not undefined behavior to access it through such an
497   /// alias.  Note that it's always undefined behavior to access a C++
498   /// object that's under construction through an alias derived from
499   /// outside the construction process.
500   ///
501   /// This flag controls whether calls that produce the aggregate
502   /// value may be evaluated directly into the slot, or whether they
503   /// must be evaluated into an unaliased temporary and then memcpy'ed
504   /// over.  Since it's invalid in general to memcpy a non-POD C++
505   /// object, it's important that this flag never be set when
506   /// evaluating an expression which constructs such an object.
507   bool AliasedFlag : 1;
508 
509   /// This is set to true if the tail padding of this slot might overlap
510   /// another object that may have already been initialized (and whose
511   /// value must be preserved by this initialization). If so, we may only
512   /// store up to the dsize of the type. Otherwise we can widen stores to
513   /// the size of the type.
514   bool OverlapFlag : 1;
515 
516   /// If is set to true, sanitizer checks are already generated for this address
517   /// or not required. For instance, if this address represents an object
518   /// created in 'new' expression, sanitizer checks for memory is made as a part
519   /// of 'operator new' emission and object constructor should not generate
520   /// them.
521   bool SanitizerCheckedFlag : 1;
522 
523 public:
524   enum IsAliased_t { IsNotAliased, IsAliased };
525   enum IsDestructed_t { IsNotDestructed, IsDestructed };
526   enum IsZeroed_t { IsNotZeroed, IsZeroed };
527   enum Overlap_t { DoesNotOverlap, MayOverlap };
528   enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers };
529   enum IsSanitizerChecked_t { IsNotSanitizerChecked, IsSanitizerChecked };
530 
531   /// ignored - Returns an aggregate value slot indicating that the
532   /// aggregate value is being ignored.
533   static AggValueSlot ignored() {
534     return forAddr(Address::invalid(), Qualifiers(), IsNotDestructed,
535                    DoesNotNeedGCBarriers, IsNotAliased, DoesNotOverlap);
536   }
537 
538   /// forAddr - Make a slot for an aggregate value.
539   ///
540   /// \param quals - The qualifiers that dictate how the slot should
541   /// be initialied. Only 'volatile' and the Objective-C lifetime
542   /// qualifiers matter.
543   ///
544   /// \param isDestructed - true if something else is responsible
545   ///   for calling destructors on this object
546   /// \param needsGC - true if the slot is potentially located
547   ///   somewhere that ObjC GC calls should be emitted for
548   static AggValueSlot forAddr(Address addr,
549                               Qualifiers quals,
550                               IsDestructed_t isDestructed,
551                               NeedsGCBarriers_t needsGC,
552                               IsAliased_t isAliased,
553                               Overlap_t mayOverlap,
554                               IsZeroed_t isZeroed = IsNotZeroed,
555                        IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) {
556     AggValueSlot AV;
557     if (addr.isValid()) {
558       AV.Addr = addr.getPointer();
559       AV.Alignment = addr.getAlignment().getQuantity();
560     } else {
561       AV.Addr = nullptr;
562       AV.Alignment = 0;
563     }
564     AV.Quals = quals;
565     AV.DestructedFlag = isDestructed;
566     AV.ObjCGCFlag = needsGC;
567     AV.ZeroedFlag = isZeroed;
568     AV.AliasedFlag = isAliased;
569     AV.OverlapFlag = mayOverlap;
570     AV.SanitizerCheckedFlag = isChecked;
571     return AV;
572   }
573 
574   static AggValueSlot
575   forLValue(const LValue &LV, CodeGenFunction &CGF, IsDestructed_t isDestructed,
576             NeedsGCBarriers_t needsGC, IsAliased_t isAliased,
577             Overlap_t mayOverlap, IsZeroed_t isZeroed = IsNotZeroed,
578             IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) {
579     return forAddr(LV.getAddress(CGF), LV.getQuals(), isDestructed, needsGC,
580                    isAliased, mayOverlap, isZeroed, isChecked);
581   }
582 
583   IsDestructed_t isExternallyDestructed() const {
584     return IsDestructed_t(DestructedFlag);
585   }
586   void setExternallyDestructed(bool destructed = true) {
587     DestructedFlag = destructed;
588   }
589 
590   Qualifiers getQualifiers() const { return Quals; }
591 
592   bool isVolatile() const {
593     return Quals.hasVolatile();
594   }
595 
596   void setVolatile(bool flag) {
597     if (flag)
598       Quals.addVolatile();
599     else
600       Quals.removeVolatile();
601   }
602 
603   Qualifiers::ObjCLifetime getObjCLifetime() const {
604     return Quals.getObjCLifetime();
605   }
606 
607   NeedsGCBarriers_t requiresGCollection() const {
608     return NeedsGCBarriers_t(ObjCGCFlag);
609   }
610 
611   llvm::Value *getPointer() const {
612     return Addr;
613   }
614 
615   Address getAddress() const {
616     return Address(Addr, getAlignment());
617   }
618 
619   bool isIgnored() const {
620     return Addr == nullptr;
621   }
622 
623   CharUnits getAlignment() const {
624     return CharUnits::fromQuantity(Alignment);
625   }
626 
627   IsAliased_t isPotentiallyAliased() const {
628     return IsAliased_t(AliasedFlag);
629   }
630 
631   Overlap_t mayOverlap() const {
632     return Overlap_t(OverlapFlag);
633   }
634 
635   bool isSanitizerChecked() const {
636     return SanitizerCheckedFlag;
637   }
638 
639   RValue asRValue() const {
640     if (isIgnored()) {
641       return RValue::getIgnored();
642     } else {
643       return RValue::getAggregate(getAddress(), isVolatile());
644     }
645   }
646 
647   void setZeroed(bool V = true) { ZeroedFlag = V; }
648   IsZeroed_t isZeroed() const {
649     return IsZeroed_t(ZeroedFlag);
650   }
651 
652   /// Get the preferred size to use when storing a value to this slot. This
653   /// is the type size unless that might overlap another object, in which
654   /// case it's the dsize.
655   CharUnits getPreferredSize(ASTContext &Ctx, QualType Type) const {
656     return mayOverlap() ? Ctx.getTypeInfoDataSizeInChars(Type).Width
657                         : Ctx.getTypeSizeInChars(Type);
658   }
659 };
660 
661 }  // end namespace CodeGen
662 }  // end namespace clang
663 
664 #endif
665