1 //===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes implement wrappers around llvm::Value in order to 10 // fully represent the range of values for C L- and R- values. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_LIB_CODEGEN_CGVALUE_H 15 #define LLVM_CLANG_LIB_CODEGEN_CGVALUE_H 16 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/Type.h" 19 #include "llvm/IR/Value.h" 20 #include "llvm/IR/Type.h" 21 #include "Address.h" 22 #include "CodeGenTBAA.h" 23 24 namespace llvm { 25 class Constant; 26 class MDNode; 27 } 28 29 namespace clang { 30 namespace CodeGen { 31 class AggValueSlot; 32 class CodeGenFunction; 33 struct CGBitFieldInfo; 34 35 /// RValue - This trivial value class is used to represent the result of an 36 /// expression that is evaluated. It can be one of three things: either a 37 /// simple LLVM SSA value, a pair of SSA values for complex numbers, or the 38 /// address of an aggregate value in memory. 39 class RValue { 40 enum Flavor { Scalar, Complex, Aggregate }; 41 42 // The shift to make to an aggregate's alignment to make it look 43 // like a pointer. 44 enum { AggAlignShift = 4 }; 45 46 // Stores first value and flavor. 47 llvm::PointerIntPair<llvm::Value *, 2, Flavor> V1; 48 // Stores second value and volatility. 49 llvm::PointerIntPair<llvm::Value *, 1, bool> V2; 50 // Stores element type for aggregate values. 51 llvm::Type *ElementType; 52 53 public: 54 bool isScalar() const { return V1.getInt() == Scalar; } 55 bool isComplex() const { return V1.getInt() == Complex; } 56 bool isAggregate() const { return V1.getInt() == Aggregate; } 57 58 bool isVolatileQualified() const { return V2.getInt(); } 59 60 /// getScalarVal() - Return the Value* of this scalar value. 61 llvm::Value *getScalarVal() const { 62 assert(isScalar() && "Not a scalar!"); 63 return V1.getPointer(); 64 } 65 66 /// getComplexVal - Return the real/imag components of this complex value. 67 /// 68 std::pair<llvm::Value *, llvm::Value *> getComplexVal() const { 69 return std::make_pair(V1.getPointer(), V2.getPointer()); 70 } 71 72 /// getAggregateAddr() - Return the Value* of the address of the aggregate. 73 Address getAggregateAddress() const { 74 assert(isAggregate() && "Not an aggregate!"); 75 auto align = reinterpret_cast<uintptr_t>(V2.getPointer()) >> AggAlignShift; 76 return Address( 77 V1.getPointer(), ElementType, CharUnits::fromQuantity(align)); 78 } 79 llvm::Value *getAggregatePointer() const { 80 assert(isAggregate() && "Not an aggregate!"); 81 return V1.getPointer(); 82 } 83 84 static RValue getIgnored() { 85 // FIXME: should we make this a more explicit state? 86 return get(nullptr); 87 } 88 89 static RValue get(llvm::Value *V) { 90 RValue ER; 91 ER.V1.setPointer(V); 92 ER.V1.setInt(Scalar); 93 ER.V2.setInt(false); 94 return ER; 95 } 96 static RValue getComplex(llvm::Value *V1, llvm::Value *V2) { 97 RValue ER; 98 ER.V1.setPointer(V1); 99 ER.V2.setPointer(V2); 100 ER.V1.setInt(Complex); 101 ER.V2.setInt(false); 102 return ER; 103 } 104 static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) { 105 return getComplex(C.first, C.second); 106 } 107 // FIXME: Aggregate rvalues need to retain information about whether they are 108 // volatile or not. Remove default to find all places that probably get this 109 // wrong. 110 static RValue getAggregate(Address addr, bool isVolatile = false) { 111 RValue ER; 112 ER.V1.setPointer(addr.getPointer()); 113 ER.V1.setInt(Aggregate); 114 ER.ElementType = addr.getElementType(); 115 116 auto align = static_cast<uintptr_t>(addr.getAlignment().getQuantity()); 117 ER.V2.setPointer(reinterpret_cast<llvm::Value*>(align << AggAlignShift)); 118 ER.V2.setInt(isVolatile); 119 return ER; 120 } 121 }; 122 123 /// Does an ARC strong l-value have precise lifetime? 124 enum ARCPreciseLifetime_t { 125 ARCImpreciseLifetime, ARCPreciseLifetime 126 }; 127 128 /// The source of the alignment of an l-value; an expression of 129 /// confidence in the alignment actually matching the estimate. 130 enum class AlignmentSource { 131 /// The l-value was an access to a declared entity or something 132 /// equivalently strong, like the address of an array allocated by a 133 /// language runtime. 134 Decl, 135 136 /// The l-value was considered opaque, so the alignment was 137 /// determined from a type, but that type was an explicitly-aligned 138 /// typedef. 139 AttributedType, 140 141 /// The l-value was considered opaque, so the alignment was 142 /// determined from a type. 143 Type 144 }; 145 146 /// Given that the base address has the given alignment source, what's 147 /// our confidence in the alignment of the field? 148 static inline AlignmentSource getFieldAlignmentSource(AlignmentSource Source) { 149 // For now, we don't distinguish fields of opaque pointers from 150 // top-level declarations, but maybe we should. 151 return AlignmentSource::Decl; 152 } 153 154 class LValueBaseInfo { 155 AlignmentSource AlignSource; 156 157 public: 158 explicit LValueBaseInfo(AlignmentSource Source = AlignmentSource::Type) 159 : AlignSource(Source) {} 160 AlignmentSource getAlignmentSource() const { return AlignSource; } 161 void setAlignmentSource(AlignmentSource Source) { AlignSource = Source; } 162 163 void mergeForCast(const LValueBaseInfo &Info) { 164 setAlignmentSource(Info.getAlignmentSource()); 165 } 166 }; 167 168 /// LValue - This represents an lvalue references. Because C/C++ allow 169 /// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a 170 /// bitrange. 171 class LValue { 172 enum { 173 Simple, // This is a normal l-value, use getAddress(). 174 VectorElt, // This is a vector element l-value (V[i]), use getVector* 175 BitField, // This is a bitfield l-value, use getBitfield*. 176 ExtVectorElt, // This is an extended vector subset, use getExtVectorComp 177 GlobalReg, // This is a register l-value, use getGlobalReg() 178 MatrixElt // This is a matrix element, use getVector* 179 } LVType; 180 181 llvm::Value *V; 182 llvm::Type *ElementType; 183 184 union { 185 // Index into a vector subscript: V[i] 186 llvm::Value *VectorIdx; 187 188 // ExtVector element subset: V.xyx 189 llvm::Constant *VectorElts; 190 191 // BitField start bit and size 192 const CGBitFieldInfo *BitFieldInfo; 193 }; 194 195 QualType Type; 196 197 // 'const' is unused here 198 Qualifiers Quals; 199 200 // The alignment to use when accessing this lvalue. (For vector elements, 201 // this is the alignment of the whole vector.) 202 unsigned Alignment; 203 204 // objective-c's ivar 205 bool Ivar:1; 206 207 // objective-c's ivar is an array 208 bool ObjIsArray:1; 209 210 // LValue is non-gc'able for any reason, including being a parameter or local 211 // variable. 212 bool NonGC: 1; 213 214 // Lvalue is a global reference of an objective-c object 215 bool GlobalObjCRef : 1; 216 217 // Lvalue is a thread local reference 218 bool ThreadLocalRef : 1; 219 220 // Lvalue has ARC imprecise lifetime. We store this inverted to try 221 // to make the default bitfield pattern all-zeroes. 222 bool ImpreciseLifetime : 1; 223 224 // This flag shows if a nontemporal load/stores should be used when accessing 225 // this lvalue. 226 bool Nontemporal : 1; 227 228 // The pointer is known not to be null. 229 bool IsKnownNonNull : 1; 230 231 LValueBaseInfo BaseInfo; 232 TBAAAccessInfo TBAAInfo; 233 234 Expr *BaseIvarExp; 235 236 private: 237 void Initialize(QualType Type, Qualifiers Quals, CharUnits Alignment, 238 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { 239 assert((!Alignment.isZero() || Type->isIncompleteType()) && 240 "initializing l-value with zero alignment!"); 241 if (isGlobalReg()) 242 assert(ElementType == nullptr && "Global reg does not store elem type"); 243 else 244 assert(ElementType != nullptr && "Must have elem type"); 245 246 this->Type = Type; 247 this->Quals = Quals; 248 const unsigned MaxAlign = 1U << 31; 249 this->Alignment = Alignment.getQuantity() <= MaxAlign 250 ? Alignment.getQuantity() 251 : MaxAlign; 252 assert(this->Alignment == Alignment.getQuantity() && 253 "Alignment exceeds allowed max!"); 254 this->BaseInfo = BaseInfo; 255 this->TBAAInfo = TBAAInfo; 256 257 // Initialize Objective-C flags. 258 this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false; 259 this->ImpreciseLifetime = false; 260 this->Nontemporal = false; 261 this->ThreadLocalRef = false; 262 this->BaseIvarExp = nullptr; 263 } 264 265 public: 266 bool isSimple() const { return LVType == Simple; } 267 bool isVectorElt() const { return LVType == VectorElt; } 268 bool isBitField() const { return LVType == BitField; } 269 bool isExtVectorElt() const { return LVType == ExtVectorElt; } 270 bool isGlobalReg() const { return LVType == GlobalReg; } 271 bool isMatrixElt() const { return LVType == MatrixElt; } 272 273 bool isVolatileQualified() const { return Quals.hasVolatile(); } 274 bool isRestrictQualified() const { return Quals.hasRestrict(); } 275 unsigned getVRQualifiers() const { 276 return Quals.getCVRQualifiers() & ~Qualifiers::Const; 277 } 278 279 QualType getType() const { return Type; } 280 281 Qualifiers::ObjCLifetime getObjCLifetime() const { 282 return Quals.getObjCLifetime(); 283 } 284 285 bool isObjCIvar() const { return Ivar; } 286 void setObjCIvar(bool Value) { Ivar = Value; } 287 288 bool isObjCArray() const { return ObjIsArray; } 289 void setObjCArray(bool Value) { ObjIsArray = Value; } 290 291 bool isNonGC () const { return NonGC; } 292 void setNonGC(bool Value) { NonGC = Value; } 293 294 bool isGlobalObjCRef() const { return GlobalObjCRef; } 295 void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; } 296 297 bool isThreadLocalRef() const { return ThreadLocalRef; } 298 void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;} 299 300 ARCPreciseLifetime_t isARCPreciseLifetime() const { 301 return ARCPreciseLifetime_t(!ImpreciseLifetime); 302 } 303 void setARCPreciseLifetime(ARCPreciseLifetime_t value) { 304 ImpreciseLifetime = (value == ARCImpreciseLifetime); 305 } 306 bool isNontemporal() const { return Nontemporal; } 307 void setNontemporal(bool Value) { Nontemporal = Value; } 308 309 bool isObjCWeak() const { 310 return Quals.getObjCGCAttr() == Qualifiers::Weak; 311 } 312 bool isObjCStrong() const { 313 return Quals.getObjCGCAttr() == Qualifiers::Strong; 314 } 315 316 bool isVolatile() const { 317 return Quals.hasVolatile(); 318 } 319 320 Expr *getBaseIvarExp() const { return BaseIvarExp; } 321 void setBaseIvarExp(Expr *V) { BaseIvarExp = V; } 322 323 TBAAAccessInfo getTBAAInfo() const { return TBAAInfo; } 324 void setTBAAInfo(TBAAAccessInfo Info) { TBAAInfo = Info; } 325 326 const Qualifiers &getQuals() const { return Quals; } 327 Qualifiers &getQuals() { return Quals; } 328 329 LangAS getAddressSpace() const { return Quals.getAddressSpace(); } 330 331 CharUnits getAlignment() const { return CharUnits::fromQuantity(Alignment); } 332 void setAlignment(CharUnits A) { Alignment = A.getQuantity(); } 333 334 LValueBaseInfo getBaseInfo() const { return BaseInfo; } 335 void setBaseInfo(LValueBaseInfo Info) { BaseInfo = Info; } 336 337 KnownNonNull_t isKnownNonNull() const { 338 return (KnownNonNull_t)IsKnownNonNull; 339 } 340 LValue setKnownNonNull() { 341 IsKnownNonNull = true; 342 return *this; 343 } 344 345 // simple lvalue 346 llvm::Value *getPointer(CodeGenFunction &CGF) const { 347 assert(isSimple()); 348 return V; 349 } 350 Address getAddress(CodeGenFunction &CGF) const { 351 return Address(getPointer(CGF), ElementType, getAlignment(), 352 isKnownNonNull()); 353 } 354 void setAddress(Address address) { 355 assert(isSimple()); 356 V = address.getPointer(); 357 ElementType = address.getElementType(); 358 Alignment = address.getAlignment().getQuantity(); 359 IsKnownNonNull = address.isKnownNonNull(); 360 } 361 362 // vector elt lvalue 363 Address getVectorAddress() const { 364 return Address(getVectorPointer(), ElementType, getAlignment(), 365 (KnownNonNull_t)isKnownNonNull()); 366 } 367 llvm::Value *getVectorPointer() const { 368 assert(isVectorElt()); 369 return V; 370 } 371 llvm::Value *getVectorIdx() const { 372 assert(isVectorElt()); 373 return VectorIdx; 374 } 375 376 Address getMatrixAddress() const { 377 return Address(getMatrixPointer(), ElementType, getAlignment(), 378 (KnownNonNull_t)isKnownNonNull()); 379 } 380 llvm::Value *getMatrixPointer() const { 381 assert(isMatrixElt()); 382 return V; 383 } 384 llvm::Value *getMatrixIdx() const { 385 assert(isMatrixElt()); 386 return VectorIdx; 387 } 388 389 // extended vector elements. 390 Address getExtVectorAddress() const { 391 return Address(getExtVectorPointer(), ElementType, getAlignment(), 392 (KnownNonNull_t)isKnownNonNull()); 393 } 394 llvm::Value *getExtVectorPointer() const { 395 assert(isExtVectorElt()); 396 return V; 397 } 398 llvm::Constant *getExtVectorElts() const { 399 assert(isExtVectorElt()); 400 return VectorElts; 401 } 402 403 // bitfield lvalue 404 Address getBitFieldAddress() const { 405 return Address(getBitFieldPointer(), ElementType, getAlignment(), 406 (KnownNonNull_t)isKnownNonNull()); 407 } 408 llvm::Value *getBitFieldPointer() const { assert(isBitField()); return V; } 409 const CGBitFieldInfo &getBitFieldInfo() const { 410 assert(isBitField()); 411 return *BitFieldInfo; 412 } 413 414 // global register lvalue 415 llvm::Value *getGlobalReg() const { assert(isGlobalReg()); return V; } 416 417 static LValue MakeAddr(Address address, QualType type, ASTContext &Context, 418 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { 419 Qualifiers qs = type.getQualifiers(); 420 qs.setObjCGCAttr(Context.getObjCGCAttrKind(type)); 421 422 LValue R; 423 R.LVType = Simple; 424 assert(address.getPointer()->getType()->isPointerTy()); 425 R.V = address.getPointer(); 426 R.ElementType = address.getElementType(); 427 R.IsKnownNonNull = address.isKnownNonNull(); 428 R.Initialize(type, qs, address.getAlignment(), BaseInfo, TBAAInfo); 429 return R; 430 } 431 432 static LValue MakeVectorElt(Address vecAddress, llvm::Value *Idx, 433 QualType type, LValueBaseInfo BaseInfo, 434 TBAAAccessInfo TBAAInfo) { 435 LValue R; 436 R.LVType = VectorElt; 437 R.V = vecAddress.getPointer(); 438 R.ElementType = vecAddress.getElementType(); 439 R.VectorIdx = Idx; 440 R.IsKnownNonNull = vecAddress.isKnownNonNull(); 441 R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(), 442 BaseInfo, TBAAInfo); 443 return R; 444 } 445 446 static LValue MakeExtVectorElt(Address vecAddress, llvm::Constant *Elts, 447 QualType type, LValueBaseInfo BaseInfo, 448 TBAAAccessInfo TBAAInfo) { 449 LValue R; 450 R.LVType = ExtVectorElt; 451 R.V = vecAddress.getPointer(); 452 R.ElementType = vecAddress.getElementType(); 453 R.VectorElts = Elts; 454 R.IsKnownNonNull = vecAddress.isKnownNonNull(); 455 R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(), 456 BaseInfo, TBAAInfo); 457 return R; 458 } 459 460 /// Create a new object to represent a bit-field access. 461 /// 462 /// \param Addr - The base address of the bit-field sequence this 463 /// bit-field refers to. 464 /// \param Info - The information describing how to perform the bit-field 465 /// access. 466 static LValue MakeBitfield(Address Addr, const CGBitFieldInfo &Info, 467 QualType type, LValueBaseInfo BaseInfo, 468 TBAAAccessInfo TBAAInfo) { 469 LValue R; 470 R.LVType = BitField; 471 R.V = Addr.getPointer(); 472 R.ElementType = Addr.getElementType(); 473 R.BitFieldInfo = &Info; 474 R.IsKnownNonNull = Addr.isKnownNonNull(); 475 R.Initialize(type, type.getQualifiers(), Addr.getAlignment(), BaseInfo, 476 TBAAInfo); 477 return R; 478 } 479 480 static LValue MakeGlobalReg(llvm::Value *V, CharUnits alignment, 481 QualType type) { 482 LValue R; 483 R.LVType = GlobalReg; 484 R.V = V; 485 R.ElementType = nullptr; 486 R.IsKnownNonNull = true; 487 R.Initialize(type, type.getQualifiers(), alignment, 488 LValueBaseInfo(AlignmentSource::Decl), TBAAAccessInfo()); 489 return R; 490 } 491 492 static LValue MakeMatrixElt(Address matAddress, llvm::Value *Idx, 493 QualType type, LValueBaseInfo BaseInfo, 494 TBAAAccessInfo TBAAInfo) { 495 LValue R; 496 R.LVType = MatrixElt; 497 R.V = matAddress.getPointer(); 498 R.ElementType = matAddress.getElementType(); 499 R.VectorIdx = Idx; 500 R.IsKnownNonNull = matAddress.isKnownNonNull(); 501 R.Initialize(type, type.getQualifiers(), matAddress.getAlignment(), 502 BaseInfo, TBAAInfo); 503 return R; 504 } 505 506 RValue asAggregateRValue(CodeGenFunction &CGF) const { 507 return RValue::getAggregate(getAddress(CGF), isVolatileQualified()); 508 } 509 }; 510 511 /// An aggregate value slot. 512 class AggValueSlot { 513 /// The address. 514 Address Addr; 515 516 // Qualifiers 517 Qualifiers Quals; 518 519 /// DestructedFlag - This is set to true if some external code is 520 /// responsible for setting up a destructor for the slot. Otherwise 521 /// the code which constructs it should push the appropriate cleanup. 522 bool DestructedFlag : 1; 523 524 /// ObjCGCFlag - This is set to true if writing to the memory in the 525 /// slot might require calling an appropriate Objective-C GC 526 /// barrier. The exact interaction here is unnecessarily mysterious. 527 bool ObjCGCFlag : 1; 528 529 /// ZeroedFlag - This is set to true if the memory in the slot is 530 /// known to be zero before the assignment into it. This means that 531 /// zero fields don't need to be set. 532 bool ZeroedFlag : 1; 533 534 /// AliasedFlag - This is set to true if the slot might be aliased 535 /// and it's not undefined behavior to access it through such an 536 /// alias. Note that it's always undefined behavior to access a C++ 537 /// object that's under construction through an alias derived from 538 /// outside the construction process. 539 /// 540 /// This flag controls whether calls that produce the aggregate 541 /// value may be evaluated directly into the slot, or whether they 542 /// must be evaluated into an unaliased temporary and then memcpy'ed 543 /// over. Since it's invalid in general to memcpy a non-POD C++ 544 /// object, it's important that this flag never be set when 545 /// evaluating an expression which constructs such an object. 546 bool AliasedFlag : 1; 547 548 /// This is set to true if the tail padding of this slot might overlap 549 /// another object that may have already been initialized (and whose 550 /// value must be preserved by this initialization). If so, we may only 551 /// store up to the dsize of the type. Otherwise we can widen stores to 552 /// the size of the type. 553 bool OverlapFlag : 1; 554 555 /// If is set to true, sanitizer checks are already generated for this address 556 /// or not required. For instance, if this address represents an object 557 /// created in 'new' expression, sanitizer checks for memory is made as a part 558 /// of 'operator new' emission and object constructor should not generate 559 /// them. 560 bool SanitizerCheckedFlag : 1; 561 562 AggValueSlot(Address Addr, Qualifiers Quals, bool DestructedFlag, 563 bool ObjCGCFlag, bool ZeroedFlag, bool AliasedFlag, 564 bool OverlapFlag, bool SanitizerCheckedFlag) 565 : Addr(Addr), Quals(Quals), DestructedFlag(DestructedFlag), 566 ObjCGCFlag(ObjCGCFlag), ZeroedFlag(ZeroedFlag), 567 AliasedFlag(AliasedFlag), OverlapFlag(OverlapFlag), 568 SanitizerCheckedFlag(SanitizerCheckedFlag) {} 569 570 public: 571 enum IsAliased_t { IsNotAliased, IsAliased }; 572 enum IsDestructed_t { IsNotDestructed, IsDestructed }; 573 enum IsZeroed_t { IsNotZeroed, IsZeroed }; 574 enum Overlap_t { DoesNotOverlap, MayOverlap }; 575 enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers }; 576 enum IsSanitizerChecked_t { IsNotSanitizerChecked, IsSanitizerChecked }; 577 578 /// ignored - Returns an aggregate value slot indicating that the 579 /// aggregate value is being ignored. 580 static AggValueSlot ignored() { 581 return forAddr(Address::invalid(), Qualifiers(), IsNotDestructed, 582 DoesNotNeedGCBarriers, IsNotAliased, DoesNotOverlap); 583 } 584 585 /// forAddr - Make a slot for an aggregate value. 586 /// 587 /// \param quals - The qualifiers that dictate how the slot should 588 /// be initialied. Only 'volatile' and the Objective-C lifetime 589 /// qualifiers matter. 590 /// 591 /// \param isDestructed - true if something else is responsible 592 /// for calling destructors on this object 593 /// \param needsGC - true if the slot is potentially located 594 /// somewhere that ObjC GC calls should be emitted for 595 static AggValueSlot forAddr(Address addr, 596 Qualifiers quals, 597 IsDestructed_t isDestructed, 598 NeedsGCBarriers_t needsGC, 599 IsAliased_t isAliased, 600 Overlap_t mayOverlap, 601 IsZeroed_t isZeroed = IsNotZeroed, 602 IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) { 603 if (addr.isValid()) 604 addr.setKnownNonNull(); 605 return AggValueSlot(addr, quals, isDestructed, needsGC, isZeroed, isAliased, 606 mayOverlap, isChecked); 607 } 608 609 static AggValueSlot 610 forLValue(const LValue &LV, CodeGenFunction &CGF, IsDestructed_t isDestructed, 611 NeedsGCBarriers_t needsGC, IsAliased_t isAliased, 612 Overlap_t mayOverlap, IsZeroed_t isZeroed = IsNotZeroed, 613 IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) { 614 return forAddr(LV.getAddress(CGF), LV.getQuals(), isDestructed, needsGC, 615 isAliased, mayOverlap, isZeroed, isChecked); 616 } 617 618 IsDestructed_t isExternallyDestructed() const { 619 return IsDestructed_t(DestructedFlag); 620 } 621 void setExternallyDestructed(bool destructed = true) { 622 DestructedFlag = destructed; 623 } 624 625 Qualifiers getQualifiers() const { return Quals; } 626 627 bool isVolatile() const { 628 return Quals.hasVolatile(); 629 } 630 631 void setVolatile(bool flag) { 632 if (flag) 633 Quals.addVolatile(); 634 else 635 Quals.removeVolatile(); 636 } 637 638 Qualifiers::ObjCLifetime getObjCLifetime() const { 639 return Quals.getObjCLifetime(); 640 } 641 642 NeedsGCBarriers_t requiresGCollection() const { 643 return NeedsGCBarriers_t(ObjCGCFlag); 644 } 645 646 llvm::Value *getPointer() const { 647 return Addr.getPointer(); 648 } 649 650 Address getAddress() const { 651 return Addr; 652 } 653 654 bool isIgnored() const { 655 return !Addr.isValid(); 656 } 657 658 CharUnits getAlignment() const { 659 return Addr.getAlignment(); 660 } 661 662 IsAliased_t isPotentiallyAliased() const { 663 return IsAliased_t(AliasedFlag); 664 } 665 666 Overlap_t mayOverlap() const { 667 return Overlap_t(OverlapFlag); 668 } 669 670 bool isSanitizerChecked() const { 671 return SanitizerCheckedFlag; 672 } 673 674 RValue asRValue() const { 675 if (isIgnored()) { 676 return RValue::getIgnored(); 677 } else { 678 return RValue::getAggregate(getAddress(), isVolatile()); 679 } 680 } 681 682 void setZeroed(bool V = true) { ZeroedFlag = V; } 683 IsZeroed_t isZeroed() const { 684 return IsZeroed_t(ZeroedFlag); 685 } 686 687 /// Get the preferred size to use when storing a value to this slot. This 688 /// is the type size unless that might overlap another object, in which 689 /// case it's the dsize. 690 CharUnits getPreferredSize(ASTContext &Ctx, QualType Type) const { 691 return mayOverlap() ? Ctx.getTypeInfoDataSizeInChars(Type).Width 692 : Ctx.getTypeSizeInChars(Type); 693 } 694 }; 695 696 } // end namespace CodeGen 697 } // end namespace clang 698 699 #endif 700