1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with C++ code generation of virtual tables. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/RecordLayout.h" 19 #include "clang/Basic/CodeGenOptions.h" 20 #include "clang/CodeGen/CGFunctionInfo.h" 21 #include "clang/CodeGen/ConstantInitBuilder.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/Support/Format.h" 24 #include "llvm/Transforms/Utils/Cloning.h" 25 #include <algorithm> 26 #include <cstdio> 27 28 using namespace clang; 29 using namespace CodeGen; 30 31 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM) 32 : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {} 33 34 llvm::Constant *CodeGenModule::GetAddrOfThunk(StringRef Name, llvm::Type *FnTy, 35 GlobalDecl GD) { 36 return GetOrCreateLLVMFunction(Name, FnTy, GD, /*ForVTable=*/true, 37 /*DontDefer=*/true, /*IsThunk=*/true); 38 } 39 40 static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk, 41 llvm::Function *ThunkFn, bool ForVTable, 42 GlobalDecl GD) { 43 CGM.setFunctionLinkage(GD, ThunkFn); 44 CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD, 45 !Thunk.Return.isEmpty()); 46 47 // Set the right visibility. 48 CGM.setGVProperties(ThunkFn, GD); 49 50 if (!CGM.getCXXABI().exportThunk()) { 51 ThunkFn->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 52 ThunkFn->setDSOLocal(true); 53 } 54 55 if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker()) 56 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 57 } 58 59 #ifndef NDEBUG 60 static bool similar(const ABIArgInfo &infoL, CanQualType typeL, 61 const ABIArgInfo &infoR, CanQualType typeR) { 62 return (infoL.getKind() == infoR.getKind() && 63 (typeL == typeR || 64 (isa<PointerType>(typeL) && isa<PointerType>(typeR)) || 65 (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR)))); 66 } 67 #endif 68 69 static RValue PerformReturnAdjustment(CodeGenFunction &CGF, 70 QualType ResultType, RValue RV, 71 const ThunkInfo &Thunk) { 72 // Emit the return adjustment. 73 bool NullCheckValue = !ResultType->isReferenceType(); 74 75 llvm::BasicBlock *AdjustNull = nullptr; 76 llvm::BasicBlock *AdjustNotNull = nullptr; 77 llvm::BasicBlock *AdjustEnd = nullptr; 78 79 llvm::Value *ReturnValue = RV.getScalarVal(); 80 81 if (NullCheckValue) { 82 AdjustNull = CGF.createBasicBlock("adjust.null"); 83 AdjustNotNull = CGF.createBasicBlock("adjust.notnull"); 84 AdjustEnd = CGF.createBasicBlock("adjust.end"); 85 86 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue); 87 CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull); 88 CGF.EmitBlock(AdjustNotNull); 89 } 90 91 auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl(); 92 auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl); 93 ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment( 94 CGF, 95 Address(ReturnValue, CGF.ConvertTypeForMem(ResultType->getPointeeType()), 96 ClassAlign), 97 Thunk.Return); 98 99 if (NullCheckValue) { 100 CGF.Builder.CreateBr(AdjustEnd); 101 CGF.EmitBlock(AdjustNull); 102 CGF.Builder.CreateBr(AdjustEnd); 103 CGF.EmitBlock(AdjustEnd); 104 105 llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2); 106 PHI->addIncoming(ReturnValue, AdjustNotNull); 107 PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()), 108 AdjustNull); 109 ReturnValue = PHI; 110 } 111 112 return RValue::get(ReturnValue); 113 } 114 115 /// This function clones a function's DISubprogram node and enters it into 116 /// a value map with the intent that the map can be utilized by the cloner 117 /// to short-circuit Metadata node mapping. 118 /// Furthermore, the function resolves any DILocalVariable nodes referenced 119 /// by dbg.value intrinsics so they can be properly mapped during cloning. 120 static void resolveTopLevelMetadata(llvm::Function *Fn, 121 llvm::ValueToValueMapTy &VMap) { 122 // Clone the DISubprogram node and put it into the Value map. 123 auto *DIS = Fn->getSubprogram(); 124 if (!DIS) 125 return; 126 auto *NewDIS = DIS->replaceWithDistinct(DIS->clone()); 127 VMap.MD()[DIS].reset(NewDIS); 128 129 // Find all llvm.dbg.declare intrinsics and resolve the DILocalVariable nodes 130 // they are referencing. 131 for (auto &BB : Fn->getBasicBlockList()) { 132 for (auto &I : BB) { 133 if (auto *DII = dyn_cast<llvm::DbgVariableIntrinsic>(&I)) { 134 auto *DILocal = DII->getVariable(); 135 if (!DILocal->isResolved()) 136 DILocal->resolve(); 137 } 138 } 139 } 140 } 141 142 // This function does roughly the same thing as GenerateThunk, but in a 143 // very different way, so that va_start and va_end work correctly. 144 // FIXME: This function assumes "this" is the first non-sret LLVM argument of 145 // a function, and that there is an alloca built in the entry block 146 // for all accesses to "this". 147 // FIXME: This function assumes there is only one "ret" statement per function. 148 // FIXME: Cloning isn't correct in the presence of indirect goto! 149 // FIXME: This implementation of thunks bloats codesize by duplicating the 150 // function definition. There are alternatives: 151 // 1. Add some sort of stub support to LLVM for cases where we can 152 // do a this adjustment, then a sibcall. 153 // 2. We could transform the definition to take a va_list instead of an 154 // actual variable argument list, then have the thunks (including a 155 // no-op thunk for the regular definition) call va_start/va_end. 156 // There's a bit of per-call overhead for this solution, but it's 157 // better for codesize if the definition is long. 158 llvm::Function * 159 CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn, 160 const CGFunctionInfo &FnInfo, 161 GlobalDecl GD, const ThunkInfo &Thunk) { 162 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 163 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 164 QualType ResultType = FPT->getReturnType(); 165 166 // Get the original function 167 assert(FnInfo.isVariadic()); 168 llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo); 169 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 170 llvm::Function *BaseFn = cast<llvm::Function>(Callee); 171 172 // Cloning can't work if we don't have a definition. The Microsoft ABI may 173 // require thunks when a definition is not available. Emit an error in these 174 // cases. 175 if (!MD->isDefined()) { 176 CGM.ErrorUnsupported(MD, "return-adjusting thunk with variadic arguments"); 177 return Fn; 178 } 179 assert(!BaseFn->isDeclaration() && "cannot clone undefined variadic method"); 180 181 // Clone to thunk. 182 llvm::ValueToValueMapTy VMap; 183 184 // We are cloning a function while some Metadata nodes are still unresolved. 185 // Ensure that the value mapper does not encounter any of them. 186 resolveTopLevelMetadata(BaseFn, VMap); 187 llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap); 188 Fn->replaceAllUsesWith(NewFn); 189 NewFn->takeName(Fn); 190 Fn->eraseFromParent(); 191 Fn = NewFn; 192 193 // "Initialize" CGF (minimally). 194 CurFn = Fn; 195 196 // Get the "this" value 197 llvm::Function::arg_iterator AI = Fn->arg_begin(); 198 if (CGM.ReturnTypeUsesSRet(FnInfo)) 199 ++AI; 200 201 // Find the first store of "this", which will be to the alloca associated 202 // with "this". 203 Address ThisPtr = 204 Address(&*AI, ConvertTypeForMem(MD->getThisType()->getPointeeType()), 205 CGM.getClassPointerAlignment(MD->getParent())); 206 llvm::BasicBlock *EntryBB = &Fn->front(); 207 llvm::BasicBlock::iterator ThisStore = 208 llvm::find_if(*EntryBB, [&](llvm::Instruction &I) { 209 return isa<llvm::StoreInst>(I) && 210 I.getOperand(0) == ThisPtr.getPointer(); 211 }); 212 assert(ThisStore != EntryBB->end() && 213 "Store of this should be in entry block?"); 214 // Adjust "this", if necessary. 215 Builder.SetInsertPoint(&*ThisStore); 216 llvm::Value *AdjustedThisPtr = 217 CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This); 218 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, 219 ThisStore->getOperand(0)->getType()); 220 ThisStore->setOperand(0, AdjustedThisPtr); 221 222 if (!Thunk.Return.isEmpty()) { 223 // Fix up the returned value, if necessary. 224 for (llvm::BasicBlock &BB : *Fn) { 225 llvm::Instruction *T = BB.getTerminator(); 226 if (isa<llvm::ReturnInst>(T)) { 227 RValue RV = RValue::get(T->getOperand(0)); 228 T->eraseFromParent(); 229 Builder.SetInsertPoint(&BB); 230 RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); 231 Builder.CreateRet(RV.getScalarVal()); 232 break; 233 } 234 } 235 } 236 237 return Fn; 238 } 239 240 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD, 241 const CGFunctionInfo &FnInfo, 242 bool IsUnprototyped) { 243 assert(!CurGD.getDecl() && "CurGD was already set!"); 244 CurGD = GD; 245 CurFuncIsThunk = true; 246 247 // Build FunctionArgs. 248 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 249 QualType ThisType = MD->getThisType(); 250 QualType ResultType; 251 if (IsUnprototyped) 252 ResultType = CGM.getContext().VoidTy; 253 else if (CGM.getCXXABI().HasThisReturn(GD)) 254 ResultType = ThisType; 255 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 256 ResultType = CGM.getContext().VoidPtrTy; 257 else 258 ResultType = MD->getType()->castAs<FunctionProtoType>()->getReturnType(); 259 FunctionArgList FunctionArgs; 260 261 // Create the implicit 'this' parameter declaration. 262 CGM.getCXXABI().buildThisParam(*this, FunctionArgs); 263 264 // Add the rest of the parameters, if we have a prototype to work with. 265 if (!IsUnprototyped) { 266 FunctionArgs.append(MD->param_begin(), MD->param_end()); 267 268 if (isa<CXXDestructorDecl>(MD)) 269 CGM.getCXXABI().addImplicitStructorParams(*this, ResultType, 270 FunctionArgs); 271 } 272 273 // Start defining the function. 274 auto NL = ApplyDebugLocation::CreateEmpty(*this); 275 StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs, 276 MD->getLocation()); 277 // Create a scope with an artificial location for the body of this function. 278 auto AL = ApplyDebugLocation::CreateArtificial(*this); 279 280 // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves. 281 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 282 CXXThisValue = CXXABIThisValue; 283 CurCodeDecl = MD; 284 CurFuncDecl = MD; 285 } 286 287 void CodeGenFunction::FinishThunk() { 288 // Clear these to restore the invariants expected by 289 // StartFunction/FinishFunction. 290 CurCodeDecl = nullptr; 291 CurFuncDecl = nullptr; 292 293 FinishFunction(); 294 } 295 296 void CodeGenFunction::EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 297 const ThunkInfo *Thunk, 298 bool IsUnprototyped) { 299 assert(isa<CXXMethodDecl>(CurGD.getDecl()) && 300 "Please use a new CGF for this thunk"); 301 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl()); 302 303 // Adjust the 'this' pointer if necessary 304 llvm::Value *AdjustedThisPtr = 305 Thunk ? CGM.getCXXABI().performThisAdjustment( 306 *this, LoadCXXThisAddress(), Thunk->This) 307 : LoadCXXThis(); 308 309 // If perfect forwarding is required a variadic method, a method using 310 // inalloca, or an unprototyped thunk, use musttail. Emit an error if this 311 // thunk requires a return adjustment, since that is impossible with musttail. 312 if (CurFnInfo->usesInAlloca() || CurFnInfo->isVariadic() || IsUnprototyped) { 313 if (Thunk && !Thunk->Return.isEmpty()) { 314 if (IsUnprototyped) 315 CGM.ErrorUnsupported( 316 MD, "return-adjusting thunk with incomplete parameter type"); 317 else if (CurFnInfo->isVariadic()) 318 llvm_unreachable("shouldn't try to emit musttail return-adjusting " 319 "thunks for variadic functions"); 320 else 321 CGM.ErrorUnsupported( 322 MD, "non-trivial argument copy for return-adjusting thunk"); 323 } 324 EmitMustTailThunk(CurGD, AdjustedThisPtr, Callee); 325 return; 326 } 327 328 // Start building CallArgs. 329 CallArgList CallArgs; 330 QualType ThisType = MD->getThisType(); 331 CallArgs.add(RValue::get(AdjustedThisPtr), ThisType); 332 333 if (isa<CXXDestructorDecl>(MD)) 334 CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs); 335 336 #ifndef NDEBUG 337 unsigned PrefixArgs = CallArgs.size() - 1; 338 #endif 339 // Add the rest of the arguments. 340 for (const ParmVarDecl *PD : MD->parameters()) 341 EmitDelegateCallArg(CallArgs, PD, SourceLocation()); 342 343 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 344 345 #ifndef NDEBUG 346 const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall( 347 CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1), PrefixArgs); 348 assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() && 349 CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() && 350 CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention()); 351 assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types 352 similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(), 353 CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType())); 354 assert(CallFnInfo.arg_size() == CurFnInfo->arg_size()); 355 for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i) 356 assert(similar(CallFnInfo.arg_begin()[i].info, 357 CallFnInfo.arg_begin()[i].type, 358 CurFnInfo->arg_begin()[i].info, 359 CurFnInfo->arg_begin()[i].type)); 360 #endif 361 362 // Determine whether we have a return value slot to use. 363 QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD) 364 ? ThisType 365 : CGM.getCXXABI().hasMostDerivedReturn(CurGD) 366 ? CGM.getContext().VoidPtrTy 367 : FPT->getReturnType(); 368 ReturnValueSlot Slot; 369 if (!ResultType->isVoidType() && 370 (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect || 371 hasAggregateEvaluationKind(ResultType))) 372 Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified(), 373 /*IsUnused=*/false, /*IsExternallyDestructed=*/true); 374 375 // Now emit our call. 376 llvm::CallBase *CallOrInvoke; 377 RValue RV = EmitCall(*CurFnInfo, CGCallee::forDirect(Callee, CurGD), Slot, 378 CallArgs, &CallOrInvoke); 379 380 // Consider return adjustment if we have ThunkInfo. 381 if (Thunk && !Thunk->Return.isEmpty()) 382 RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk); 383 else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke)) 384 Call->setTailCallKind(llvm::CallInst::TCK_Tail); 385 386 // Emit return. 387 if (!ResultType->isVoidType() && Slot.isNull()) 388 CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType); 389 390 // Disable the final ARC autorelease. 391 AutoreleaseResult = false; 392 393 FinishThunk(); 394 } 395 396 void CodeGenFunction::EmitMustTailThunk(GlobalDecl GD, 397 llvm::Value *AdjustedThisPtr, 398 llvm::FunctionCallee Callee) { 399 // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery 400 // to translate AST arguments into LLVM IR arguments. For thunks, we know 401 // that the caller prototype more or less matches the callee prototype with 402 // the exception of 'this'. 403 SmallVector<llvm::Value *, 8> Args(llvm::make_pointer_range(CurFn->args())); 404 405 // Set the adjusted 'this' pointer. 406 const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info; 407 if (ThisAI.isDirect()) { 408 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 409 int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0; 410 llvm::Type *ThisType = Args[ThisArgNo]->getType(); 411 if (ThisType != AdjustedThisPtr->getType()) 412 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 413 Args[ThisArgNo] = AdjustedThisPtr; 414 } else { 415 assert(ThisAI.isInAlloca() && "this is passed directly or inalloca"); 416 Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl); 417 llvm::Type *ThisType = ThisAddr.getElementType(); 418 if (ThisType != AdjustedThisPtr->getType()) 419 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 420 Builder.CreateStore(AdjustedThisPtr, ThisAddr); 421 } 422 423 // Emit the musttail call manually. Even if the prologue pushed cleanups, we 424 // don't actually want to run them. 425 llvm::CallInst *Call = Builder.CreateCall(Callee, Args); 426 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 427 428 // Apply the standard set of call attributes. 429 unsigned CallingConv; 430 llvm::AttributeList Attrs; 431 CGM.ConstructAttributeList(Callee.getCallee()->getName(), *CurFnInfo, GD, 432 Attrs, CallingConv, /*AttrOnCallSite=*/true, 433 /*IsThunk=*/false); 434 Call->setAttributes(Attrs); 435 Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 436 437 if (Call->getType()->isVoidTy()) 438 Builder.CreateRetVoid(); 439 else 440 Builder.CreateRet(Call); 441 442 // Finish the function to maintain CodeGenFunction invariants. 443 // FIXME: Don't emit unreachable code. 444 EmitBlock(createBasicBlock()); 445 446 FinishThunk(); 447 } 448 449 void CodeGenFunction::generateThunk(llvm::Function *Fn, 450 const CGFunctionInfo &FnInfo, GlobalDecl GD, 451 const ThunkInfo &Thunk, 452 bool IsUnprototyped) { 453 StartThunk(Fn, GD, FnInfo, IsUnprototyped); 454 // Create a scope with an artificial location for the body of this function. 455 auto AL = ApplyDebugLocation::CreateArtificial(*this); 456 457 // Get our callee. Use a placeholder type if this method is unprototyped so 458 // that CodeGenModule doesn't try to set attributes. 459 llvm::Type *Ty; 460 if (IsUnprototyped) 461 Ty = llvm::StructType::get(getLLVMContext()); 462 else 463 Ty = CGM.getTypes().GetFunctionType(FnInfo); 464 465 llvm::Constant *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 466 467 // Fix up the function type for an unprototyped musttail call. 468 if (IsUnprototyped) 469 Callee = llvm::ConstantExpr::getBitCast(Callee, Fn->getType()); 470 471 // Make the call and return the result. 472 EmitCallAndReturnForThunk(llvm::FunctionCallee(Fn->getFunctionType(), Callee), 473 &Thunk, IsUnprototyped); 474 } 475 476 static bool shouldEmitVTableThunk(CodeGenModule &CGM, const CXXMethodDecl *MD, 477 bool IsUnprototyped, bool ForVTable) { 478 // Always emit thunks in the MS C++ ABI. We cannot rely on other TUs to 479 // provide thunks for us. 480 if (CGM.getTarget().getCXXABI().isMicrosoft()) 481 return true; 482 483 // In the Itanium C++ ABI, vtable thunks are provided by TUs that provide 484 // definitions of the main method. Therefore, emitting thunks with the vtable 485 // is purely an optimization. Emit the thunk if optimizations are enabled and 486 // all of the parameter types are complete. 487 if (ForVTable) 488 return CGM.getCodeGenOpts().OptimizationLevel && !IsUnprototyped; 489 490 // Always emit thunks along with the method definition. 491 return true; 492 } 493 494 llvm::Constant *CodeGenVTables::maybeEmitThunk(GlobalDecl GD, 495 const ThunkInfo &TI, 496 bool ForVTable) { 497 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 498 499 // First, get a declaration. Compute the mangled name. Don't worry about 500 // getting the function prototype right, since we may only need this 501 // declaration to fill in a vtable slot. 502 SmallString<256> Name; 503 MangleContext &MCtx = CGM.getCXXABI().getMangleContext(); 504 llvm::raw_svector_ostream Out(Name); 505 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) 506 MCtx.mangleCXXDtorThunk(DD, GD.getDtorType(), TI.This, Out); 507 else 508 MCtx.mangleThunk(MD, TI, Out); 509 llvm::Type *ThunkVTableTy = CGM.getTypes().GetFunctionTypeForVTable(GD); 510 llvm::Constant *Thunk = CGM.GetAddrOfThunk(Name, ThunkVTableTy, GD); 511 512 // If we don't need to emit a definition, return this declaration as is. 513 bool IsUnprototyped = !CGM.getTypes().isFuncTypeConvertible( 514 MD->getType()->castAs<FunctionType>()); 515 if (!shouldEmitVTableThunk(CGM, MD, IsUnprototyped, ForVTable)) 516 return Thunk; 517 518 // Arrange a function prototype appropriate for a function definition. In some 519 // cases in the MS ABI, we may need to build an unprototyped musttail thunk. 520 const CGFunctionInfo &FnInfo = 521 IsUnprototyped ? CGM.getTypes().arrangeUnprototypedMustTailThunk(MD) 522 : CGM.getTypes().arrangeGlobalDeclaration(GD); 523 llvm::FunctionType *ThunkFnTy = CGM.getTypes().GetFunctionType(FnInfo); 524 525 // If the type of the underlying GlobalValue is wrong, we'll have to replace 526 // it. It should be a declaration. 527 llvm::Function *ThunkFn = cast<llvm::Function>(Thunk->stripPointerCasts()); 528 if (ThunkFn->getFunctionType() != ThunkFnTy) { 529 llvm::GlobalValue *OldThunkFn = ThunkFn; 530 531 assert(OldThunkFn->isDeclaration() && "Shouldn't replace non-declaration"); 532 533 // Remove the name from the old thunk function and get a new thunk. 534 OldThunkFn->setName(StringRef()); 535 ThunkFn = llvm::Function::Create(ThunkFnTy, llvm::Function::ExternalLinkage, 536 Name.str(), &CGM.getModule()); 537 CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn, /*IsThunk=*/false); 538 539 // If needed, replace the old thunk with a bitcast. 540 if (!OldThunkFn->use_empty()) { 541 llvm::Constant *NewPtrForOldDecl = 542 llvm::ConstantExpr::getBitCast(ThunkFn, OldThunkFn->getType()); 543 OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl); 544 } 545 546 // Remove the old thunk. 547 OldThunkFn->eraseFromParent(); 548 } 549 550 bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions(); 551 bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions; 552 553 if (!ThunkFn->isDeclaration()) { 554 if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) { 555 // There is already a thunk emitted for this function, do nothing. 556 return ThunkFn; 557 } 558 559 setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD); 560 return ThunkFn; 561 } 562 563 // If this will be unprototyped, add the "thunk" attribute so that LLVM knows 564 // that the return type is meaningless. These thunks can be used to call 565 // functions with differing return types, and the caller is required to cast 566 // the prototype appropriately to extract the correct value. 567 if (IsUnprototyped) 568 ThunkFn->addFnAttr("thunk"); 569 570 CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn); 571 572 // Thunks for variadic methods are special because in general variadic 573 // arguments cannot be perfectly forwarded. In the general case, clang 574 // implements such thunks by cloning the original function body. However, for 575 // thunks with no return adjustment on targets that support musttail, we can 576 // use musttail to perfectly forward the variadic arguments. 577 bool ShouldCloneVarArgs = false; 578 if (!IsUnprototyped && ThunkFn->isVarArg()) { 579 ShouldCloneVarArgs = true; 580 if (TI.Return.isEmpty()) { 581 switch (CGM.getTriple().getArch()) { 582 case llvm::Triple::x86_64: 583 case llvm::Triple::x86: 584 case llvm::Triple::aarch64: 585 ShouldCloneVarArgs = false; 586 break; 587 default: 588 break; 589 } 590 } 591 } 592 593 if (ShouldCloneVarArgs) { 594 if (UseAvailableExternallyLinkage) 595 return ThunkFn; 596 ThunkFn = 597 CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, TI); 598 } else { 599 // Normal thunk body generation. 600 CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, TI, IsUnprototyped); 601 } 602 603 setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD); 604 return ThunkFn; 605 } 606 607 void CodeGenVTables::EmitThunks(GlobalDecl GD) { 608 const CXXMethodDecl *MD = 609 cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl(); 610 611 // We don't need to generate thunks for the base destructor. 612 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 613 return; 614 615 const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector = 616 VTContext->getThunkInfo(GD); 617 618 if (!ThunkInfoVector) 619 return; 620 621 for (const ThunkInfo& Thunk : *ThunkInfoVector) 622 maybeEmitThunk(GD, Thunk, /*ForVTable=*/false); 623 } 624 625 void CodeGenVTables::addRelativeComponent(ConstantArrayBuilder &builder, 626 llvm::Constant *component, 627 unsigned vtableAddressPoint, 628 bool vtableHasLocalLinkage, 629 bool isCompleteDtor) const { 630 // No need to get the offset of a nullptr. 631 if (component->isNullValue()) 632 return builder.add(llvm::ConstantInt::get(CGM.Int32Ty, 0)); 633 634 auto *globalVal = 635 cast<llvm::GlobalValue>(component->stripPointerCastsAndAliases()); 636 llvm::Module &module = CGM.getModule(); 637 638 // We don't want to copy the linkage of the vtable exactly because we still 639 // want the stub/proxy to be emitted for properly calculating the offset. 640 // Examples where there would be no symbol emitted are available_externally 641 // and private linkages. 642 auto stubLinkage = vtableHasLocalLinkage ? llvm::GlobalValue::InternalLinkage 643 : llvm::GlobalValue::ExternalLinkage; 644 645 llvm::Constant *target; 646 if (auto *func = dyn_cast<llvm::Function>(globalVal)) { 647 target = llvm::DSOLocalEquivalent::get(func); 648 } else { 649 llvm::SmallString<16> rttiProxyName(globalVal->getName()); 650 rttiProxyName.append(".rtti_proxy"); 651 652 // The RTTI component may not always be emitted in the same linkage unit as 653 // the vtable. As a general case, we can make a dso_local proxy to the RTTI 654 // that points to the actual RTTI struct somewhere. This will result in a 655 // GOTPCREL relocation when taking the relative offset to the proxy. 656 llvm::GlobalVariable *proxy = module.getNamedGlobal(rttiProxyName); 657 if (!proxy) { 658 proxy = new llvm::GlobalVariable(module, globalVal->getType(), 659 /*isConstant=*/true, stubLinkage, 660 globalVal, rttiProxyName); 661 proxy->setDSOLocal(true); 662 proxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 663 if (!proxy->hasLocalLinkage()) { 664 proxy->setVisibility(llvm::GlobalValue::HiddenVisibility); 665 proxy->setComdat(module.getOrInsertComdat(rttiProxyName)); 666 } 667 } 668 target = proxy; 669 } 670 671 builder.addRelativeOffsetToPosition(CGM.Int32Ty, target, 672 /*position=*/vtableAddressPoint); 673 } 674 675 bool CodeGenVTables::useRelativeLayout() const { 676 return CGM.getTarget().getCXXABI().isItaniumFamily() && 677 CGM.getItaniumVTableContext().isRelativeLayout(); 678 } 679 680 llvm::Type *CodeGenVTables::getVTableComponentType() const { 681 if (useRelativeLayout()) 682 return CGM.Int32Ty; 683 return CGM.Int8PtrTy; 684 } 685 686 static void AddPointerLayoutOffset(const CodeGenModule &CGM, 687 ConstantArrayBuilder &builder, 688 CharUnits offset) { 689 builder.add(llvm::ConstantExpr::getIntToPtr( 690 llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()), 691 CGM.Int8PtrTy)); 692 } 693 694 static void AddRelativeLayoutOffset(const CodeGenModule &CGM, 695 ConstantArrayBuilder &builder, 696 CharUnits offset) { 697 builder.add(llvm::ConstantInt::get(CGM.Int32Ty, offset.getQuantity())); 698 } 699 700 void CodeGenVTables::addVTableComponent(ConstantArrayBuilder &builder, 701 const VTableLayout &layout, 702 unsigned componentIndex, 703 llvm::Constant *rtti, 704 unsigned &nextVTableThunkIndex, 705 unsigned vtableAddressPoint, 706 bool vtableHasLocalLinkage) { 707 auto &component = layout.vtable_components()[componentIndex]; 708 709 auto addOffsetConstant = 710 useRelativeLayout() ? AddRelativeLayoutOffset : AddPointerLayoutOffset; 711 712 switch (component.getKind()) { 713 case VTableComponent::CK_VCallOffset: 714 return addOffsetConstant(CGM, builder, component.getVCallOffset()); 715 716 case VTableComponent::CK_VBaseOffset: 717 return addOffsetConstant(CGM, builder, component.getVBaseOffset()); 718 719 case VTableComponent::CK_OffsetToTop: 720 return addOffsetConstant(CGM, builder, component.getOffsetToTop()); 721 722 case VTableComponent::CK_RTTI: 723 if (useRelativeLayout()) 724 return addRelativeComponent(builder, rtti, vtableAddressPoint, 725 vtableHasLocalLinkage, 726 /*isCompleteDtor=*/false); 727 else 728 return builder.add(llvm::ConstantExpr::getBitCast(rtti, CGM.Int8PtrTy)); 729 730 case VTableComponent::CK_FunctionPointer: 731 case VTableComponent::CK_CompleteDtorPointer: 732 case VTableComponent::CK_DeletingDtorPointer: { 733 GlobalDecl GD = component.getGlobalDecl(); 734 735 if (CGM.getLangOpts().CUDA) { 736 // Emit NULL for methods we can't codegen on this 737 // side. Otherwise we'd end up with vtable with unresolved 738 // references. 739 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 740 // OK on device side: functions w/ __device__ attribute 741 // OK on host side: anything except __device__-only functions. 742 bool CanEmitMethod = 743 CGM.getLangOpts().CUDAIsDevice 744 ? MD->hasAttr<CUDADeviceAttr>() 745 : (MD->hasAttr<CUDAHostAttr>() || !MD->hasAttr<CUDADeviceAttr>()); 746 if (!CanEmitMethod) 747 return builder.add(llvm::ConstantExpr::getNullValue(CGM.Int8PtrTy)); 748 // Method is acceptable, continue processing as usual. 749 } 750 751 auto getSpecialVirtualFn = [&](StringRef name) -> llvm::Constant * { 752 // FIXME(PR43094): When merging comdat groups, lld can select a local 753 // symbol as the signature symbol even though it cannot be accessed 754 // outside that symbol's TU. The relative vtables ABI would make 755 // __cxa_pure_virtual and __cxa_deleted_virtual local symbols, and 756 // depending on link order, the comdat groups could resolve to the one 757 // with the local symbol. As a temporary solution, fill these components 758 // with zero. We shouldn't be calling these in the first place anyway. 759 if (useRelativeLayout()) 760 return llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 761 762 // For NVPTX devices in OpenMP emit special functon as null pointers, 763 // otherwise linking ends up with unresolved references. 764 if (CGM.getLangOpts().OpenMP && CGM.getLangOpts().OpenMPIsDevice && 765 CGM.getTriple().isNVPTX()) 766 return llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 767 llvm::FunctionType *fnTy = 768 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 769 llvm::Constant *fn = cast<llvm::Constant>( 770 CGM.CreateRuntimeFunction(fnTy, name).getCallee()); 771 if (auto f = dyn_cast<llvm::Function>(fn)) 772 f->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 773 return llvm::ConstantExpr::getBitCast(fn, CGM.Int8PtrTy); 774 }; 775 776 llvm::Constant *fnPtr; 777 778 // Pure virtual member functions. 779 if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) { 780 if (!PureVirtualFn) 781 PureVirtualFn = 782 getSpecialVirtualFn(CGM.getCXXABI().GetPureVirtualCallName()); 783 fnPtr = PureVirtualFn; 784 785 // Deleted virtual member functions. 786 } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) { 787 if (!DeletedVirtualFn) 788 DeletedVirtualFn = 789 getSpecialVirtualFn(CGM.getCXXABI().GetDeletedVirtualCallName()); 790 fnPtr = DeletedVirtualFn; 791 792 // Thunks. 793 } else if (nextVTableThunkIndex < layout.vtable_thunks().size() && 794 layout.vtable_thunks()[nextVTableThunkIndex].first == 795 componentIndex) { 796 auto &thunkInfo = layout.vtable_thunks()[nextVTableThunkIndex].second; 797 798 nextVTableThunkIndex++; 799 fnPtr = maybeEmitThunk(GD, thunkInfo, /*ForVTable=*/true); 800 801 // Otherwise we can use the method definition directly. 802 } else { 803 llvm::Type *fnTy = CGM.getTypes().GetFunctionTypeForVTable(GD); 804 fnPtr = CGM.GetAddrOfFunction(GD, fnTy, /*ForVTable=*/true); 805 } 806 807 if (useRelativeLayout()) { 808 return addRelativeComponent( 809 builder, fnPtr, vtableAddressPoint, vtableHasLocalLinkage, 810 component.getKind() == VTableComponent::CK_CompleteDtorPointer); 811 } else 812 return builder.add(llvm::ConstantExpr::getBitCast(fnPtr, CGM.Int8PtrTy)); 813 } 814 815 case VTableComponent::CK_UnusedFunctionPointer: 816 if (useRelativeLayout()) 817 return builder.add(llvm::ConstantExpr::getNullValue(CGM.Int32Ty)); 818 else 819 return builder.addNullPointer(CGM.Int8PtrTy); 820 } 821 822 llvm_unreachable("Unexpected vtable component kind"); 823 } 824 825 llvm::Type *CodeGenVTables::getVTableType(const VTableLayout &layout) { 826 SmallVector<llvm::Type *, 4> tys; 827 llvm::Type *componentType = getVTableComponentType(); 828 for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i) 829 tys.push_back(llvm::ArrayType::get(componentType, layout.getVTableSize(i))); 830 831 return llvm::StructType::get(CGM.getLLVMContext(), tys); 832 } 833 834 void CodeGenVTables::createVTableInitializer(ConstantStructBuilder &builder, 835 const VTableLayout &layout, 836 llvm::Constant *rtti, 837 bool vtableHasLocalLinkage) { 838 llvm::Type *componentType = getVTableComponentType(); 839 840 const auto &addressPoints = layout.getAddressPointIndices(); 841 unsigned nextVTableThunkIndex = 0; 842 for (unsigned vtableIndex = 0, endIndex = layout.getNumVTables(); 843 vtableIndex != endIndex; ++vtableIndex) { 844 auto vtableElem = builder.beginArray(componentType); 845 846 size_t vtableStart = layout.getVTableOffset(vtableIndex); 847 size_t vtableEnd = vtableStart + layout.getVTableSize(vtableIndex); 848 for (size_t componentIndex = vtableStart; componentIndex < vtableEnd; 849 ++componentIndex) { 850 addVTableComponent(vtableElem, layout, componentIndex, rtti, 851 nextVTableThunkIndex, addressPoints[vtableIndex], 852 vtableHasLocalLinkage); 853 } 854 vtableElem.finishAndAddTo(builder); 855 } 856 } 857 858 llvm::GlobalVariable *CodeGenVTables::GenerateConstructionVTable( 859 const CXXRecordDecl *RD, const BaseSubobject &Base, bool BaseIsVirtual, 860 llvm::GlobalVariable::LinkageTypes Linkage, 861 VTableAddressPointsMapTy &AddressPoints) { 862 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 863 DI->completeClassData(Base.getBase()); 864 865 std::unique_ptr<VTableLayout> VTLayout( 866 getItaniumVTableContext().createConstructionVTableLayout( 867 Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD)); 868 869 // Add the address points. 870 AddressPoints = VTLayout->getAddressPoints(); 871 872 // Get the mangled construction vtable name. 873 SmallString<256> OutName; 874 llvm::raw_svector_ostream Out(OutName); 875 cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext()) 876 .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(), 877 Base.getBase(), Out); 878 SmallString<256> Name(OutName); 879 880 bool UsingRelativeLayout = getItaniumVTableContext().isRelativeLayout(); 881 bool VTableAliasExists = 882 UsingRelativeLayout && CGM.getModule().getNamedAlias(Name); 883 if (VTableAliasExists) { 884 // We previously made the vtable hidden and changed its name. 885 Name.append(".local"); 886 } 887 888 llvm::Type *VTType = getVTableType(*VTLayout); 889 890 // Construction vtable symbols are not part of the Itanium ABI, so we cannot 891 // guarantee that they actually will be available externally. Instead, when 892 // emitting an available_externally VTT, we provide references to an internal 893 // linkage construction vtable. The ABI only requires complete-object vtables 894 // to be the same for all instances of a type, not construction vtables. 895 if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage) 896 Linkage = llvm::GlobalVariable::InternalLinkage; 897 898 unsigned Align = CGM.getDataLayout().getABITypeAlignment(VTType); 899 900 // Create the variable that will hold the construction vtable. 901 llvm::GlobalVariable *VTable = 902 CGM.CreateOrReplaceCXXRuntimeVariable(Name, VTType, Linkage, Align); 903 904 // V-tables are always unnamed_addr. 905 VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 906 907 llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor( 908 CGM.getContext().getTagDeclType(Base.getBase())); 909 910 // Create and set the initializer. 911 ConstantInitBuilder builder(CGM); 912 auto components = builder.beginStruct(); 913 createVTableInitializer(components, *VTLayout, RTTI, 914 VTable->hasLocalLinkage()); 915 components.finishAndSetAsInitializer(VTable); 916 917 // Set properties only after the initializer has been set to ensure that the 918 // GV is treated as definition and not declaration. 919 assert(!VTable->isDeclaration() && "Shouldn't set properties on declaration"); 920 CGM.setGVProperties(VTable, RD); 921 922 CGM.EmitVTableTypeMetadata(RD, VTable, *VTLayout.get()); 923 924 if (UsingRelativeLayout && !VTable->isDSOLocal()) 925 GenerateRelativeVTableAlias(VTable, OutName); 926 927 return VTable; 928 } 929 930 // If the VTable is not dso_local, then we will not be able to indicate that 931 // the VTable does not need a relocation and move into rodata. A frequent 932 // time this can occur is for classes that should be made public from a DSO 933 // (like in libc++). For cases like these, we can make the vtable hidden or 934 // private and create a public alias with the same visibility and linkage as 935 // the original vtable type. 936 void CodeGenVTables::GenerateRelativeVTableAlias(llvm::GlobalVariable *VTable, 937 llvm::StringRef AliasNameRef) { 938 assert(getItaniumVTableContext().isRelativeLayout() && 939 "Can only use this if the relative vtable ABI is used"); 940 assert(!VTable->isDSOLocal() && "This should be called only if the vtable is " 941 "not guaranteed to be dso_local"); 942 943 // If the vtable is available_externally, we shouldn't (or need to) generate 944 // an alias for it in the first place since the vtable won't actually by 945 // emitted in this compilation unit. 946 if (VTable->hasAvailableExternallyLinkage()) 947 return; 948 949 // Create a new string in the event the alias is already the name of the 950 // vtable. Using the reference directly could lead to use of an inititialized 951 // value in the module's StringMap. 952 llvm::SmallString<256> AliasName(AliasNameRef); 953 VTable->setName(AliasName + ".local"); 954 955 auto Linkage = VTable->getLinkage(); 956 assert(llvm::GlobalAlias::isValidLinkage(Linkage) && 957 "Invalid vtable alias linkage"); 958 959 llvm::GlobalAlias *VTableAlias = CGM.getModule().getNamedAlias(AliasName); 960 if (!VTableAlias) { 961 VTableAlias = llvm::GlobalAlias::create(VTable->getValueType(), 962 VTable->getAddressSpace(), Linkage, 963 AliasName, &CGM.getModule()); 964 } else { 965 assert(VTableAlias->getValueType() == VTable->getValueType()); 966 assert(VTableAlias->getLinkage() == Linkage); 967 } 968 VTableAlias->setVisibility(VTable->getVisibility()); 969 VTableAlias->setUnnamedAddr(VTable->getUnnamedAddr()); 970 971 // Both of these imply dso_local for the vtable. 972 if (!VTable->hasComdat()) { 973 // If this is in a comdat, then we shouldn't make the linkage private due to 974 // an issue in lld where private symbols can be used as the key symbol when 975 // choosing the prevelant group. This leads to "relocation refers to a 976 // symbol in a discarded section". 977 VTable->setLinkage(llvm::GlobalValue::PrivateLinkage); 978 } else { 979 // We should at least make this hidden since we don't want to expose it. 980 VTable->setVisibility(llvm::GlobalValue::HiddenVisibility); 981 } 982 983 VTableAlias->setAliasee(VTable); 984 } 985 986 static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM, 987 const CXXRecordDecl *RD) { 988 return CGM.getCodeGenOpts().OptimizationLevel > 0 && 989 CGM.getCXXABI().canSpeculativelyEmitVTable(RD); 990 } 991 992 /// Compute the required linkage of the vtable for the given class. 993 /// 994 /// Note that we only call this at the end of the translation unit. 995 llvm::GlobalVariable::LinkageTypes 996 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 997 if (!RD->isExternallyVisible()) 998 return llvm::GlobalVariable::InternalLinkage; 999 1000 // We're at the end of the translation unit, so the current key 1001 // function is fully correct. 1002 const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD); 1003 if (keyFunction && !RD->hasAttr<DLLImportAttr>()) { 1004 // If this class has a key function, use that to determine the 1005 // linkage of the vtable. 1006 const FunctionDecl *def = nullptr; 1007 if (keyFunction->hasBody(def)) 1008 keyFunction = cast<CXXMethodDecl>(def); 1009 1010 switch (keyFunction->getTemplateSpecializationKind()) { 1011 case TSK_Undeclared: 1012 case TSK_ExplicitSpecialization: 1013 assert((def || CodeGenOpts.OptimizationLevel > 0 || 1014 CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo) && 1015 "Shouldn't query vtable linkage without key function, " 1016 "optimizations, or debug info"); 1017 if (!def && CodeGenOpts.OptimizationLevel > 0) 1018 return llvm::GlobalVariable::AvailableExternallyLinkage; 1019 1020 if (keyFunction->isInlined()) 1021 return !Context.getLangOpts().AppleKext ? 1022 llvm::GlobalVariable::LinkOnceODRLinkage : 1023 llvm::Function::InternalLinkage; 1024 1025 return llvm::GlobalVariable::ExternalLinkage; 1026 1027 case TSK_ImplicitInstantiation: 1028 return !Context.getLangOpts().AppleKext ? 1029 llvm::GlobalVariable::LinkOnceODRLinkage : 1030 llvm::Function::InternalLinkage; 1031 1032 case TSK_ExplicitInstantiationDefinition: 1033 return !Context.getLangOpts().AppleKext ? 1034 llvm::GlobalVariable::WeakODRLinkage : 1035 llvm::Function::InternalLinkage; 1036 1037 case TSK_ExplicitInstantiationDeclaration: 1038 llvm_unreachable("Should not have been asked to emit this"); 1039 } 1040 } 1041 1042 // -fapple-kext mode does not support weak linkage, so we must use 1043 // internal linkage. 1044 if (Context.getLangOpts().AppleKext) 1045 return llvm::Function::InternalLinkage; 1046 1047 llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage = 1048 llvm::GlobalValue::LinkOnceODRLinkage; 1049 llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage = 1050 llvm::GlobalValue::WeakODRLinkage; 1051 if (RD->hasAttr<DLLExportAttr>()) { 1052 // Cannot discard exported vtables. 1053 DiscardableODRLinkage = NonDiscardableODRLinkage; 1054 } else if (RD->hasAttr<DLLImportAttr>()) { 1055 // Imported vtables are available externally. 1056 DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 1057 NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 1058 } 1059 1060 switch (RD->getTemplateSpecializationKind()) { 1061 case TSK_Undeclared: 1062 case TSK_ExplicitSpecialization: 1063 case TSK_ImplicitInstantiation: 1064 return DiscardableODRLinkage; 1065 1066 case TSK_ExplicitInstantiationDeclaration: 1067 // Explicit instantiations in MSVC do not provide vtables, so we must emit 1068 // our own. 1069 if (getTarget().getCXXABI().isMicrosoft()) 1070 return DiscardableODRLinkage; 1071 return shouldEmitAvailableExternallyVTable(*this, RD) 1072 ? llvm::GlobalVariable::AvailableExternallyLinkage 1073 : llvm::GlobalVariable::ExternalLinkage; 1074 1075 case TSK_ExplicitInstantiationDefinition: 1076 return NonDiscardableODRLinkage; 1077 } 1078 1079 llvm_unreachable("Invalid TemplateSpecializationKind!"); 1080 } 1081 1082 /// This is a callback from Sema to tell us that a particular vtable is 1083 /// required to be emitted in this translation unit. 1084 /// 1085 /// This is only called for vtables that _must_ be emitted (mainly due to key 1086 /// functions). For weak vtables, CodeGen tracks when they are needed and 1087 /// emits them as-needed. 1088 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) { 1089 VTables.GenerateClassData(theClass); 1090 } 1091 1092 void 1093 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) { 1094 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 1095 DI->completeClassData(RD); 1096 1097 if (RD->getNumVBases()) 1098 CGM.getCXXABI().emitVirtualInheritanceTables(RD); 1099 1100 CGM.getCXXABI().emitVTableDefinitions(*this, RD); 1101 } 1102 1103 /// At this point in the translation unit, does it appear that can we 1104 /// rely on the vtable being defined elsewhere in the program? 1105 /// 1106 /// The response is really only definitive when called at the end of 1107 /// the translation unit. 1108 /// 1109 /// The only semantic restriction here is that the object file should 1110 /// not contain a vtable definition when that vtable is defined 1111 /// strongly elsewhere. Otherwise, we'd just like to avoid emitting 1112 /// vtables when unnecessary. 1113 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) { 1114 assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable."); 1115 1116 // We always synthesize vtables if they are needed in the MS ABI. MSVC doesn't 1117 // emit them even if there is an explicit template instantiation. 1118 if (CGM.getTarget().getCXXABI().isMicrosoft()) 1119 return false; 1120 1121 // If we have an explicit instantiation declaration (and not a 1122 // definition), the vtable is defined elsewhere. 1123 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); 1124 if (TSK == TSK_ExplicitInstantiationDeclaration) 1125 return true; 1126 1127 // Otherwise, if the class is an instantiated template, the 1128 // vtable must be defined here. 1129 if (TSK == TSK_ImplicitInstantiation || 1130 TSK == TSK_ExplicitInstantiationDefinition) 1131 return false; 1132 1133 // Otherwise, if the class doesn't have a key function (possibly 1134 // anymore), the vtable must be defined here. 1135 const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD); 1136 if (!keyFunction) 1137 return false; 1138 1139 // Otherwise, if we don't have a definition of the key function, the 1140 // vtable must be defined somewhere else. 1141 return !keyFunction->hasBody(); 1142 } 1143 1144 /// Given that we're currently at the end of the translation unit, and 1145 /// we've emitted a reference to the vtable for this class, should 1146 /// we define that vtable? 1147 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM, 1148 const CXXRecordDecl *RD) { 1149 // If vtable is internal then it has to be done. 1150 if (!CGM.getVTables().isVTableExternal(RD)) 1151 return true; 1152 1153 // If it's external then maybe we will need it as available_externally. 1154 return shouldEmitAvailableExternallyVTable(CGM, RD); 1155 } 1156 1157 /// Given that at some point we emitted a reference to one or more 1158 /// vtables, and that we are now at the end of the translation unit, 1159 /// decide whether we should emit them. 1160 void CodeGenModule::EmitDeferredVTables() { 1161 #ifndef NDEBUG 1162 // Remember the size of DeferredVTables, because we're going to assume 1163 // that this entire operation doesn't modify it. 1164 size_t savedSize = DeferredVTables.size(); 1165 #endif 1166 1167 for (const CXXRecordDecl *RD : DeferredVTables) 1168 if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD)) 1169 VTables.GenerateClassData(RD); 1170 else if (shouldOpportunisticallyEmitVTables()) 1171 OpportunisticVTables.push_back(RD); 1172 1173 assert(savedSize == DeferredVTables.size() && 1174 "deferred extra vtables during vtable emission?"); 1175 DeferredVTables.clear(); 1176 } 1177 1178 bool CodeGenModule::AlwaysHasLTOVisibilityPublic(const CXXRecordDecl *RD) { 1179 if (RD->hasAttr<LTOVisibilityPublicAttr>() || RD->hasAttr<UuidAttr>()) 1180 return true; 1181 1182 if (!getCodeGenOpts().LTOVisibilityPublicStd) 1183 return false; 1184 1185 const DeclContext *DC = RD; 1186 while (true) { 1187 auto *D = cast<Decl>(DC); 1188 DC = DC->getParent(); 1189 if (isa<TranslationUnitDecl>(DC->getRedeclContext())) { 1190 if (auto *ND = dyn_cast<NamespaceDecl>(D)) 1191 if (const IdentifierInfo *II = ND->getIdentifier()) 1192 if (II->isStr("std") || II->isStr("stdext")) 1193 return true; 1194 break; 1195 } 1196 } 1197 1198 return false; 1199 } 1200 1201 bool CodeGenModule::HasHiddenLTOVisibility(const CXXRecordDecl *RD) { 1202 LinkageInfo LV = RD->getLinkageAndVisibility(); 1203 if (!isExternallyVisible(LV.getLinkage())) 1204 return true; 1205 1206 if (getTriple().isOSBinFormatCOFF()) { 1207 if (RD->hasAttr<DLLExportAttr>() || RD->hasAttr<DLLImportAttr>()) 1208 return false; 1209 } else { 1210 if (LV.getVisibility() != HiddenVisibility) 1211 return false; 1212 } 1213 1214 return !AlwaysHasLTOVisibilityPublic(RD); 1215 } 1216 1217 llvm::GlobalObject::VCallVisibility CodeGenModule::GetVCallVisibilityLevel( 1218 const CXXRecordDecl *RD, llvm::DenseSet<const CXXRecordDecl *> &Visited) { 1219 // If we have already visited this RD (which means this is a recursive call 1220 // since the initial call should have an empty Visited set), return the max 1221 // visibility. The recursive calls below compute the min between the result 1222 // of the recursive call and the current TypeVis, so returning the max here 1223 // ensures that it will have no effect on the current TypeVis. 1224 if (!Visited.insert(RD).second) 1225 return llvm::GlobalObject::VCallVisibilityTranslationUnit; 1226 1227 LinkageInfo LV = RD->getLinkageAndVisibility(); 1228 llvm::GlobalObject::VCallVisibility TypeVis; 1229 if (!isExternallyVisible(LV.getLinkage())) 1230 TypeVis = llvm::GlobalObject::VCallVisibilityTranslationUnit; 1231 else if (HasHiddenLTOVisibility(RD)) 1232 TypeVis = llvm::GlobalObject::VCallVisibilityLinkageUnit; 1233 else 1234 TypeVis = llvm::GlobalObject::VCallVisibilityPublic; 1235 1236 for (auto B : RD->bases()) 1237 if (B.getType()->getAsCXXRecordDecl()->isDynamicClass()) 1238 TypeVis = std::min( 1239 TypeVis, 1240 GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl(), Visited)); 1241 1242 for (auto B : RD->vbases()) 1243 if (B.getType()->getAsCXXRecordDecl()->isDynamicClass()) 1244 TypeVis = std::min( 1245 TypeVis, 1246 GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl(), Visited)); 1247 1248 return TypeVis; 1249 } 1250 1251 void CodeGenModule::EmitVTableTypeMetadata(const CXXRecordDecl *RD, 1252 llvm::GlobalVariable *VTable, 1253 const VTableLayout &VTLayout) { 1254 if (!getCodeGenOpts().LTOUnit) 1255 return; 1256 1257 CharUnits PointerWidth = 1258 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); 1259 1260 typedef std::pair<const CXXRecordDecl *, unsigned> AddressPoint; 1261 std::vector<AddressPoint> AddressPoints; 1262 for (auto &&AP : VTLayout.getAddressPoints()) 1263 AddressPoints.push_back(std::make_pair( 1264 AP.first.getBase(), VTLayout.getVTableOffset(AP.second.VTableIndex) + 1265 AP.second.AddressPointIndex)); 1266 1267 // Sort the address points for determinism. 1268 llvm::sort(AddressPoints, [this](const AddressPoint &AP1, 1269 const AddressPoint &AP2) { 1270 if (&AP1 == &AP2) 1271 return false; 1272 1273 std::string S1; 1274 llvm::raw_string_ostream O1(S1); 1275 getCXXABI().getMangleContext().mangleTypeName( 1276 QualType(AP1.first->getTypeForDecl(), 0), O1); 1277 O1.flush(); 1278 1279 std::string S2; 1280 llvm::raw_string_ostream O2(S2); 1281 getCXXABI().getMangleContext().mangleTypeName( 1282 QualType(AP2.first->getTypeForDecl(), 0), O2); 1283 O2.flush(); 1284 1285 if (S1 < S2) 1286 return true; 1287 if (S1 != S2) 1288 return false; 1289 1290 return AP1.second < AP2.second; 1291 }); 1292 1293 ArrayRef<VTableComponent> Comps = VTLayout.vtable_components(); 1294 for (auto AP : AddressPoints) { 1295 // Create type metadata for the address point. 1296 AddVTableTypeMetadata(VTable, PointerWidth * AP.second, AP.first); 1297 1298 // The class associated with each address point could also potentially be 1299 // used for indirect calls via a member function pointer, so we need to 1300 // annotate the address of each function pointer with the appropriate member 1301 // function pointer type. 1302 for (unsigned I = 0; I != Comps.size(); ++I) { 1303 if (Comps[I].getKind() != VTableComponent::CK_FunctionPointer) 1304 continue; 1305 llvm::Metadata *MD = CreateMetadataIdentifierForVirtualMemPtrType( 1306 Context.getMemberPointerType( 1307 Comps[I].getFunctionDecl()->getType(), 1308 Context.getRecordType(AP.first).getTypePtr())); 1309 VTable->addTypeMetadata((PointerWidth * I).getQuantity(), MD); 1310 } 1311 } 1312 1313 if (getCodeGenOpts().VirtualFunctionElimination || 1314 getCodeGenOpts().WholeProgramVTables) { 1315 llvm::DenseSet<const CXXRecordDecl *> Visited; 1316 llvm::GlobalObject::VCallVisibility TypeVis = 1317 GetVCallVisibilityLevel(RD, Visited); 1318 if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic) 1319 VTable->setVCallVisibilityMetadata(TypeVis); 1320 } 1321 } 1322