1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with C++ code generation of virtual tables. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/CXXInheritance.h" 17 #include "clang/AST/RecordLayout.h" 18 #include "clang/Basic/CodeGenOptions.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "clang/CodeGen/ConstantInitBuilder.h" 21 #include "llvm/IR/IntrinsicInst.h" 22 #include "llvm/Support/Format.h" 23 #include "llvm/Transforms/Utils/Cloning.h" 24 #include <algorithm> 25 #include <cstdio> 26 27 using namespace clang; 28 using namespace CodeGen; 29 30 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM) 31 : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {} 32 33 llvm::Constant *CodeGenModule::GetAddrOfThunk(StringRef Name, llvm::Type *FnTy, 34 GlobalDecl GD) { 35 return GetOrCreateLLVMFunction(Name, FnTy, GD, /*ForVTable=*/true, 36 /*DontDefer=*/true, /*IsThunk=*/true); 37 } 38 39 static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk, 40 llvm::Function *ThunkFn, bool ForVTable, 41 GlobalDecl GD) { 42 CGM.setFunctionLinkage(GD, ThunkFn); 43 CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD, 44 !Thunk.Return.isEmpty()); 45 46 // Set the right visibility. 47 CGM.setGVProperties(ThunkFn, GD); 48 49 if (!CGM.getCXXABI().exportThunk()) { 50 ThunkFn->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 51 ThunkFn->setDSOLocal(true); 52 } 53 54 if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker()) 55 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 56 } 57 58 #ifndef NDEBUG 59 static bool similar(const ABIArgInfo &infoL, CanQualType typeL, 60 const ABIArgInfo &infoR, CanQualType typeR) { 61 return (infoL.getKind() == infoR.getKind() && 62 (typeL == typeR || 63 (isa<PointerType>(typeL) && isa<PointerType>(typeR)) || 64 (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR)))); 65 } 66 #endif 67 68 static RValue PerformReturnAdjustment(CodeGenFunction &CGF, 69 QualType ResultType, RValue RV, 70 const ThunkInfo &Thunk) { 71 // Emit the return adjustment. 72 bool NullCheckValue = !ResultType->isReferenceType(); 73 74 llvm::BasicBlock *AdjustNull = nullptr; 75 llvm::BasicBlock *AdjustNotNull = nullptr; 76 llvm::BasicBlock *AdjustEnd = nullptr; 77 78 llvm::Value *ReturnValue = RV.getScalarVal(); 79 80 if (NullCheckValue) { 81 AdjustNull = CGF.createBasicBlock("adjust.null"); 82 AdjustNotNull = CGF.createBasicBlock("adjust.notnull"); 83 AdjustEnd = CGF.createBasicBlock("adjust.end"); 84 85 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue); 86 CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull); 87 CGF.EmitBlock(AdjustNotNull); 88 } 89 90 auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl(); 91 auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl); 92 ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF, 93 Address(ReturnValue, ClassAlign), 94 Thunk.Return); 95 96 if (NullCheckValue) { 97 CGF.Builder.CreateBr(AdjustEnd); 98 CGF.EmitBlock(AdjustNull); 99 CGF.Builder.CreateBr(AdjustEnd); 100 CGF.EmitBlock(AdjustEnd); 101 102 llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2); 103 PHI->addIncoming(ReturnValue, AdjustNotNull); 104 PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()), 105 AdjustNull); 106 ReturnValue = PHI; 107 } 108 109 return RValue::get(ReturnValue); 110 } 111 112 /// This function clones a function's DISubprogram node and enters it into 113 /// a value map with the intent that the map can be utilized by the cloner 114 /// to short-circuit Metadata node mapping. 115 /// Furthermore, the function resolves any DILocalVariable nodes referenced 116 /// by dbg.value intrinsics so they can be properly mapped during cloning. 117 static void resolveTopLevelMetadata(llvm::Function *Fn, 118 llvm::ValueToValueMapTy &VMap) { 119 // Clone the DISubprogram node and put it into the Value map. 120 auto *DIS = Fn->getSubprogram(); 121 if (!DIS) 122 return; 123 auto *NewDIS = DIS->replaceWithDistinct(DIS->clone()); 124 VMap.MD()[DIS].reset(NewDIS); 125 126 // Find all llvm.dbg.declare intrinsics and resolve the DILocalVariable nodes 127 // they are referencing. 128 for (auto &BB : Fn->getBasicBlockList()) { 129 for (auto &I : BB) { 130 if (auto *DII = dyn_cast<llvm::DbgVariableIntrinsic>(&I)) { 131 auto *DILocal = DII->getVariable(); 132 if (!DILocal->isResolved()) 133 DILocal->resolve(); 134 } 135 } 136 } 137 } 138 139 // This function does roughly the same thing as GenerateThunk, but in a 140 // very different way, so that va_start and va_end work correctly. 141 // FIXME: This function assumes "this" is the first non-sret LLVM argument of 142 // a function, and that there is an alloca built in the entry block 143 // for all accesses to "this". 144 // FIXME: This function assumes there is only one "ret" statement per function. 145 // FIXME: Cloning isn't correct in the presence of indirect goto! 146 // FIXME: This implementation of thunks bloats codesize by duplicating the 147 // function definition. There are alternatives: 148 // 1. Add some sort of stub support to LLVM for cases where we can 149 // do a this adjustment, then a sibcall. 150 // 2. We could transform the definition to take a va_list instead of an 151 // actual variable argument list, then have the thunks (including a 152 // no-op thunk for the regular definition) call va_start/va_end. 153 // There's a bit of per-call overhead for this solution, but it's 154 // better for codesize if the definition is long. 155 llvm::Function * 156 CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn, 157 const CGFunctionInfo &FnInfo, 158 GlobalDecl GD, const ThunkInfo &Thunk) { 159 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 160 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 161 QualType ResultType = FPT->getReturnType(); 162 163 // Get the original function 164 assert(FnInfo.isVariadic()); 165 llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo); 166 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 167 llvm::Function *BaseFn = cast<llvm::Function>(Callee); 168 169 // Cloning can't work if we don't have a definition. The Microsoft ABI may 170 // require thunks when a definition is not available. Emit an error in these 171 // cases. 172 if (!MD->isDefined()) { 173 CGM.ErrorUnsupported(MD, "return-adjusting thunk with variadic arguments"); 174 return Fn; 175 } 176 assert(!BaseFn->isDeclaration() && "cannot clone undefined variadic method"); 177 178 // Clone to thunk. 179 llvm::ValueToValueMapTy VMap; 180 181 // We are cloning a function while some Metadata nodes are still unresolved. 182 // Ensure that the value mapper does not encounter any of them. 183 resolveTopLevelMetadata(BaseFn, VMap); 184 llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap); 185 Fn->replaceAllUsesWith(NewFn); 186 NewFn->takeName(Fn); 187 Fn->eraseFromParent(); 188 Fn = NewFn; 189 190 // "Initialize" CGF (minimally). 191 CurFn = Fn; 192 193 // Get the "this" value 194 llvm::Function::arg_iterator AI = Fn->arg_begin(); 195 if (CGM.ReturnTypeUsesSRet(FnInfo)) 196 ++AI; 197 198 // Find the first store of "this", which will be to the alloca associated 199 // with "this". 200 Address ThisPtr(&*AI, CGM.getClassPointerAlignment(MD->getParent())); 201 llvm::BasicBlock *EntryBB = &Fn->front(); 202 llvm::BasicBlock::iterator ThisStore = 203 std::find_if(EntryBB->begin(), EntryBB->end(), [&](llvm::Instruction &I) { 204 return isa<llvm::StoreInst>(I) && 205 I.getOperand(0) == ThisPtr.getPointer(); 206 }); 207 assert(ThisStore != EntryBB->end() && 208 "Store of this should be in entry block?"); 209 // Adjust "this", if necessary. 210 Builder.SetInsertPoint(&*ThisStore); 211 llvm::Value *AdjustedThisPtr = 212 CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This); 213 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, 214 ThisStore->getOperand(0)->getType()); 215 ThisStore->setOperand(0, AdjustedThisPtr); 216 217 if (!Thunk.Return.isEmpty()) { 218 // Fix up the returned value, if necessary. 219 for (llvm::BasicBlock &BB : *Fn) { 220 llvm::Instruction *T = BB.getTerminator(); 221 if (isa<llvm::ReturnInst>(T)) { 222 RValue RV = RValue::get(T->getOperand(0)); 223 T->eraseFromParent(); 224 Builder.SetInsertPoint(&BB); 225 RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); 226 Builder.CreateRet(RV.getScalarVal()); 227 break; 228 } 229 } 230 } 231 232 return Fn; 233 } 234 235 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD, 236 const CGFunctionInfo &FnInfo, 237 bool IsUnprototyped) { 238 assert(!CurGD.getDecl() && "CurGD was already set!"); 239 CurGD = GD; 240 CurFuncIsThunk = true; 241 242 // Build FunctionArgs. 243 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 244 QualType ThisType = MD->getThisType(); 245 QualType ResultType; 246 if (IsUnprototyped) 247 ResultType = CGM.getContext().VoidTy; 248 else if (CGM.getCXXABI().HasThisReturn(GD)) 249 ResultType = ThisType; 250 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 251 ResultType = CGM.getContext().VoidPtrTy; 252 else 253 ResultType = MD->getType()->castAs<FunctionProtoType>()->getReturnType(); 254 FunctionArgList FunctionArgs; 255 256 // Create the implicit 'this' parameter declaration. 257 CGM.getCXXABI().buildThisParam(*this, FunctionArgs); 258 259 // Add the rest of the parameters, if we have a prototype to work with. 260 if (!IsUnprototyped) { 261 FunctionArgs.append(MD->param_begin(), MD->param_end()); 262 263 if (isa<CXXDestructorDecl>(MD)) 264 CGM.getCXXABI().addImplicitStructorParams(*this, ResultType, 265 FunctionArgs); 266 } 267 268 // Start defining the function. 269 auto NL = ApplyDebugLocation::CreateEmpty(*this); 270 StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs, 271 MD->getLocation()); 272 // Create a scope with an artificial location for the body of this function. 273 auto AL = ApplyDebugLocation::CreateArtificial(*this); 274 275 // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves. 276 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 277 CXXThisValue = CXXABIThisValue; 278 CurCodeDecl = MD; 279 CurFuncDecl = MD; 280 } 281 282 void CodeGenFunction::FinishThunk() { 283 // Clear these to restore the invariants expected by 284 // StartFunction/FinishFunction. 285 CurCodeDecl = nullptr; 286 CurFuncDecl = nullptr; 287 288 FinishFunction(); 289 } 290 291 void CodeGenFunction::EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 292 const ThunkInfo *Thunk, 293 bool IsUnprototyped) { 294 assert(isa<CXXMethodDecl>(CurGD.getDecl()) && 295 "Please use a new CGF for this thunk"); 296 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl()); 297 298 // Adjust the 'this' pointer if necessary 299 llvm::Value *AdjustedThisPtr = 300 Thunk ? CGM.getCXXABI().performThisAdjustment( 301 *this, LoadCXXThisAddress(), Thunk->This) 302 : LoadCXXThis(); 303 304 // If perfect forwarding is required a variadic method, a method using 305 // inalloca, or an unprototyped thunk, use musttail. Emit an error if this 306 // thunk requires a return adjustment, since that is impossible with musttail. 307 if (CurFnInfo->usesInAlloca() || CurFnInfo->isVariadic() || IsUnprototyped) { 308 if (Thunk && !Thunk->Return.isEmpty()) { 309 if (IsUnprototyped) 310 CGM.ErrorUnsupported( 311 MD, "return-adjusting thunk with incomplete parameter type"); 312 else if (CurFnInfo->isVariadic()) 313 llvm_unreachable("shouldn't try to emit musttail return-adjusting " 314 "thunks for variadic functions"); 315 else 316 CGM.ErrorUnsupported( 317 MD, "non-trivial argument copy for return-adjusting thunk"); 318 } 319 EmitMustTailThunk(CurGD, AdjustedThisPtr, Callee); 320 return; 321 } 322 323 // Start building CallArgs. 324 CallArgList CallArgs; 325 QualType ThisType = MD->getThisType(); 326 CallArgs.add(RValue::get(AdjustedThisPtr), ThisType); 327 328 if (isa<CXXDestructorDecl>(MD)) 329 CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs); 330 331 #ifndef NDEBUG 332 unsigned PrefixArgs = CallArgs.size() - 1; 333 #endif 334 // Add the rest of the arguments. 335 for (const ParmVarDecl *PD : MD->parameters()) 336 EmitDelegateCallArg(CallArgs, PD, SourceLocation()); 337 338 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 339 340 #ifndef NDEBUG 341 const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall( 342 CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1), PrefixArgs); 343 assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() && 344 CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() && 345 CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention()); 346 assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types 347 similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(), 348 CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType())); 349 assert(CallFnInfo.arg_size() == CurFnInfo->arg_size()); 350 for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i) 351 assert(similar(CallFnInfo.arg_begin()[i].info, 352 CallFnInfo.arg_begin()[i].type, 353 CurFnInfo->arg_begin()[i].info, 354 CurFnInfo->arg_begin()[i].type)); 355 #endif 356 357 // Determine whether we have a return value slot to use. 358 QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD) 359 ? ThisType 360 : CGM.getCXXABI().hasMostDerivedReturn(CurGD) 361 ? CGM.getContext().VoidPtrTy 362 : FPT->getReturnType(); 363 ReturnValueSlot Slot; 364 if (!ResultType->isVoidType() && 365 CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) 366 Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified()); 367 368 // Now emit our call. 369 llvm::CallBase *CallOrInvoke; 370 RValue RV = EmitCall(*CurFnInfo, CGCallee::forDirect(Callee, CurGD), Slot, 371 CallArgs, &CallOrInvoke); 372 373 // Consider return adjustment if we have ThunkInfo. 374 if (Thunk && !Thunk->Return.isEmpty()) 375 RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk); 376 else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke)) 377 Call->setTailCallKind(llvm::CallInst::TCK_Tail); 378 379 // Emit return. 380 if (!ResultType->isVoidType() && Slot.isNull()) 381 CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType); 382 383 // Disable the final ARC autorelease. 384 AutoreleaseResult = false; 385 386 FinishThunk(); 387 } 388 389 void CodeGenFunction::EmitMustTailThunk(GlobalDecl GD, 390 llvm::Value *AdjustedThisPtr, 391 llvm::FunctionCallee Callee) { 392 // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery 393 // to translate AST arguments into LLVM IR arguments. For thunks, we know 394 // that the caller prototype more or less matches the callee prototype with 395 // the exception of 'this'. 396 SmallVector<llvm::Value *, 8> Args; 397 for (llvm::Argument &A : CurFn->args()) 398 Args.push_back(&A); 399 400 // Set the adjusted 'this' pointer. 401 const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info; 402 if (ThisAI.isDirect()) { 403 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 404 int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0; 405 llvm::Type *ThisType = Args[ThisArgNo]->getType(); 406 if (ThisType != AdjustedThisPtr->getType()) 407 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 408 Args[ThisArgNo] = AdjustedThisPtr; 409 } else { 410 assert(ThisAI.isInAlloca() && "this is passed directly or inalloca"); 411 Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl); 412 llvm::Type *ThisType = ThisAddr.getElementType(); 413 if (ThisType != AdjustedThisPtr->getType()) 414 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 415 Builder.CreateStore(AdjustedThisPtr, ThisAddr); 416 } 417 418 // Emit the musttail call manually. Even if the prologue pushed cleanups, we 419 // don't actually want to run them. 420 llvm::CallInst *Call = Builder.CreateCall(Callee, Args); 421 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 422 423 // Apply the standard set of call attributes. 424 unsigned CallingConv; 425 llvm::AttributeList Attrs; 426 CGM.ConstructAttributeList(Callee.getCallee()->getName(), *CurFnInfo, GD, 427 Attrs, CallingConv, /*AttrOnCallSite=*/true); 428 Call->setAttributes(Attrs); 429 Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 430 431 if (Call->getType()->isVoidTy()) 432 Builder.CreateRetVoid(); 433 else 434 Builder.CreateRet(Call); 435 436 // Finish the function to maintain CodeGenFunction invariants. 437 // FIXME: Don't emit unreachable code. 438 EmitBlock(createBasicBlock()); 439 FinishFunction(); 440 } 441 442 void CodeGenFunction::generateThunk(llvm::Function *Fn, 443 const CGFunctionInfo &FnInfo, GlobalDecl GD, 444 const ThunkInfo &Thunk, 445 bool IsUnprototyped) { 446 StartThunk(Fn, GD, FnInfo, IsUnprototyped); 447 // Create a scope with an artificial location for the body of this function. 448 auto AL = ApplyDebugLocation::CreateArtificial(*this); 449 450 // Get our callee. Use a placeholder type if this method is unprototyped so 451 // that CodeGenModule doesn't try to set attributes. 452 llvm::Type *Ty; 453 if (IsUnprototyped) 454 Ty = llvm::StructType::get(getLLVMContext()); 455 else 456 Ty = CGM.getTypes().GetFunctionType(FnInfo); 457 458 llvm::Constant *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 459 460 // Fix up the function type for an unprototyped musttail call. 461 if (IsUnprototyped) 462 Callee = llvm::ConstantExpr::getBitCast(Callee, Fn->getType()); 463 464 // Make the call and return the result. 465 EmitCallAndReturnForThunk(llvm::FunctionCallee(Fn->getFunctionType(), Callee), 466 &Thunk, IsUnprototyped); 467 } 468 469 static bool shouldEmitVTableThunk(CodeGenModule &CGM, const CXXMethodDecl *MD, 470 bool IsUnprototyped, bool ForVTable) { 471 // Always emit thunks in the MS C++ ABI. We cannot rely on other TUs to 472 // provide thunks for us. 473 if (CGM.getTarget().getCXXABI().isMicrosoft()) 474 return true; 475 476 // In the Itanium C++ ABI, vtable thunks are provided by TUs that provide 477 // definitions of the main method. Therefore, emitting thunks with the vtable 478 // is purely an optimization. Emit the thunk if optimizations are enabled and 479 // all of the parameter types are complete. 480 if (ForVTable) 481 return CGM.getCodeGenOpts().OptimizationLevel && !IsUnprototyped; 482 483 // Always emit thunks along with the method definition. 484 return true; 485 } 486 487 llvm::Constant *CodeGenVTables::maybeEmitThunk(GlobalDecl GD, 488 const ThunkInfo &TI, 489 bool ForVTable) { 490 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 491 492 // First, get a declaration. Compute the mangled name. Don't worry about 493 // getting the function prototype right, since we may only need this 494 // declaration to fill in a vtable slot. 495 SmallString<256> Name; 496 MangleContext &MCtx = CGM.getCXXABI().getMangleContext(); 497 llvm::raw_svector_ostream Out(Name); 498 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) 499 MCtx.mangleCXXDtorThunk(DD, GD.getDtorType(), TI.This, Out); 500 else 501 MCtx.mangleThunk(MD, TI, Out); 502 llvm::Type *ThunkVTableTy = CGM.getTypes().GetFunctionTypeForVTable(GD); 503 llvm::Constant *Thunk = CGM.GetAddrOfThunk(Name, ThunkVTableTy, GD); 504 505 // If we don't need to emit a definition, return this declaration as is. 506 bool IsUnprototyped = !CGM.getTypes().isFuncTypeConvertible( 507 MD->getType()->castAs<FunctionType>()); 508 if (!shouldEmitVTableThunk(CGM, MD, IsUnprototyped, ForVTable)) 509 return Thunk; 510 511 // Arrange a function prototype appropriate for a function definition. In some 512 // cases in the MS ABI, we may need to build an unprototyped musttail thunk. 513 const CGFunctionInfo &FnInfo = 514 IsUnprototyped ? CGM.getTypes().arrangeUnprototypedMustTailThunk(MD) 515 : CGM.getTypes().arrangeGlobalDeclaration(GD); 516 llvm::FunctionType *ThunkFnTy = CGM.getTypes().GetFunctionType(FnInfo); 517 518 // If the type of the underlying GlobalValue is wrong, we'll have to replace 519 // it. It should be a declaration. 520 llvm::Function *ThunkFn = cast<llvm::Function>(Thunk->stripPointerCasts()); 521 if (ThunkFn->getFunctionType() != ThunkFnTy) { 522 llvm::GlobalValue *OldThunkFn = ThunkFn; 523 524 assert(OldThunkFn->isDeclaration() && "Shouldn't replace non-declaration"); 525 526 // Remove the name from the old thunk function and get a new thunk. 527 OldThunkFn->setName(StringRef()); 528 ThunkFn = llvm::Function::Create(ThunkFnTy, llvm::Function::ExternalLinkage, 529 Name.str(), &CGM.getModule()); 530 CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn); 531 532 // If needed, replace the old thunk with a bitcast. 533 if (!OldThunkFn->use_empty()) { 534 llvm::Constant *NewPtrForOldDecl = 535 llvm::ConstantExpr::getBitCast(ThunkFn, OldThunkFn->getType()); 536 OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl); 537 } 538 539 // Remove the old thunk. 540 OldThunkFn->eraseFromParent(); 541 } 542 543 bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions(); 544 bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions; 545 546 if (!ThunkFn->isDeclaration()) { 547 if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) { 548 // There is already a thunk emitted for this function, do nothing. 549 return ThunkFn; 550 } 551 552 setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD); 553 return ThunkFn; 554 } 555 556 // If this will be unprototyped, add the "thunk" attribute so that LLVM knows 557 // that the return type is meaningless. These thunks can be used to call 558 // functions with differing return types, and the caller is required to cast 559 // the prototype appropriately to extract the correct value. 560 if (IsUnprototyped) 561 ThunkFn->addFnAttr("thunk"); 562 563 CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn); 564 565 // Thunks for variadic methods are special because in general variadic 566 // arguments cannot be perferctly forwarded. In the general case, clang 567 // implements such thunks by cloning the original function body. However, for 568 // thunks with no return adjustment on targets that support musttail, we can 569 // use musttail to perfectly forward the variadic arguments. 570 bool ShouldCloneVarArgs = false; 571 if (!IsUnprototyped && ThunkFn->isVarArg()) { 572 ShouldCloneVarArgs = true; 573 if (TI.Return.isEmpty()) { 574 switch (CGM.getTriple().getArch()) { 575 case llvm::Triple::x86_64: 576 case llvm::Triple::x86: 577 case llvm::Triple::aarch64: 578 ShouldCloneVarArgs = false; 579 break; 580 default: 581 break; 582 } 583 } 584 } 585 586 if (ShouldCloneVarArgs) { 587 if (UseAvailableExternallyLinkage) 588 return ThunkFn; 589 ThunkFn = 590 CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, TI); 591 } else { 592 // Normal thunk body generation. 593 CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, TI, IsUnprototyped); 594 } 595 596 setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD); 597 return ThunkFn; 598 } 599 600 void CodeGenVTables::EmitThunks(GlobalDecl GD) { 601 const CXXMethodDecl *MD = 602 cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl(); 603 604 // We don't need to generate thunks for the base destructor. 605 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 606 return; 607 608 const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector = 609 VTContext->getThunkInfo(GD); 610 611 if (!ThunkInfoVector) 612 return; 613 614 for (const ThunkInfo& Thunk : *ThunkInfoVector) 615 maybeEmitThunk(GD, Thunk, /*ForVTable=*/false); 616 } 617 618 void CodeGenVTables::addVTableComponent( 619 ConstantArrayBuilder &builder, const VTableLayout &layout, 620 unsigned idx, llvm::Constant *rtti, unsigned &nextVTableThunkIndex) { 621 auto &component = layout.vtable_components()[idx]; 622 623 auto addOffsetConstant = [&](CharUnits offset) { 624 builder.add(llvm::ConstantExpr::getIntToPtr( 625 llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()), 626 CGM.Int8PtrTy)); 627 }; 628 629 switch (component.getKind()) { 630 case VTableComponent::CK_VCallOffset: 631 return addOffsetConstant(component.getVCallOffset()); 632 633 case VTableComponent::CK_VBaseOffset: 634 return addOffsetConstant(component.getVBaseOffset()); 635 636 case VTableComponent::CK_OffsetToTop: 637 return addOffsetConstant(component.getOffsetToTop()); 638 639 case VTableComponent::CK_RTTI: 640 return builder.add(llvm::ConstantExpr::getBitCast(rtti, CGM.Int8PtrTy)); 641 642 case VTableComponent::CK_FunctionPointer: 643 case VTableComponent::CK_CompleteDtorPointer: 644 case VTableComponent::CK_DeletingDtorPointer: { 645 GlobalDecl GD; 646 647 // Get the right global decl. 648 switch (component.getKind()) { 649 default: 650 llvm_unreachable("Unexpected vtable component kind"); 651 case VTableComponent::CK_FunctionPointer: 652 GD = component.getFunctionDecl(); 653 break; 654 case VTableComponent::CK_CompleteDtorPointer: 655 GD = GlobalDecl(component.getDestructorDecl(), Dtor_Complete); 656 break; 657 case VTableComponent::CK_DeletingDtorPointer: 658 GD = GlobalDecl(component.getDestructorDecl(), Dtor_Deleting); 659 break; 660 } 661 662 if (CGM.getLangOpts().CUDA) { 663 // Emit NULL for methods we can't codegen on this 664 // side. Otherwise we'd end up with vtable with unresolved 665 // references. 666 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 667 // OK on device side: functions w/ __device__ attribute 668 // OK on host side: anything except __device__-only functions. 669 bool CanEmitMethod = 670 CGM.getLangOpts().CUDAIsDevice 671 ? MD->hasAttr<CUDADeviceAttr>() 672 : (MD->hasAttr<CUDAHostAttr>() || !MD->hasAttr<CUDADeviceAttr>()); 673 if (!CanEmitMethod) 674 return builder.addNullPointer(CGM.Int8PtrTy); 675 // Method is acceptable, continue processing as usual. 676 } 677 678 auto getSpecialVirtualFn = [&](StringRef name) { 679 llvm::FunctionType *fnTy = 680 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 681 llvm::Constant *fn = cast<llvm::Constant>( 682 CGM.CreateRuntimeFunction(fnTy, name).getCallee()); 683 if (auto f = dyn_cast<llvm::Function>(fn)) 684 f->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 685 return llvm::ConstantExpr::getBitCast(fn, CGM.Int8PtrTy); 686 }; 687 688 llvm::Constant *fnPtr; 689 690 // Pure virtual member functions. 691 if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) { 692 if (!PureVirtualFn) 693 PureVirtualFn = 694 getSpecialVirtualFn(CGM.getCXXABI().GetPureVirtualCallName()); 695 fnPtr = PureVirtualFn; 696 697 // Deleted virtual member functions. 698 } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) { 699 if (!DeletedVirtualFn) 700 DeletedVirtualFn = 701 getSpecialVirtualFn(CGM.getCXXABI().GetDeletedVirtualCallName()); 702 fnPtr = DeletedVirtualFn; 703 704 // Thunks. 705 } else if (nextVTableThunkIndex < layout.vtable_thunks().size() && 706 layout.vtable_thunks()[nextVTableThunkIndex].first == idx) { 707 auto &thunkInfo = layout.vtable_thunks()[nextVTableThunkIndex].second; 708 709 nextVTableThunkIndex++; 710 fnPtr = maybeEmitThunk(GD, thunkInfo, /*ForVTable=*/true); 711 712 // Otherwise we can use the method definition directly. 713 } else { 714 llvm::Type *fnTy = CGM.getTypes().GetFunctionTypeForVTable(GD); 715 fnPtr = CGM.GetAddrOfFunction(GD, fnTy, /*ForVTable=*/true); 716 } 717 718 fnPtr = llvm::ConstantExpr::getBitCast(fnPtr, CGM.Int8PtrTy); 719 builder.add(fnPtr); 720 return; 721 } 722 723 case VTableComponent::CK_UnusedFunctionPointer: 724 return builder.addNullPointer(CGM.Int8PtrTy); 725 } 726 727 llvm_unreachable("Unexpected vtable component kind"); 728 } 729 730 llvm::Type *CodeGenVTables::getVTableType(const VTableLayout &layout) { 731 SmallVector<llvm::Type *, 4> tys; 732 for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i) { 733 tys.push_back(llvm::ArrayType::get(CGM.Int8PtrTy, layout.getVTableSize(i))); 734 } 735 736 return llvm::StructType::get(CGM.getLLVMContext(), tys); 737 } 738 739 void CodeGenVTables::createVTableInitializer(ConstantStructBuilder &builder, 740 const VTableLayout &layout, 741 llvm::Constant *rtti) { 742 unsigned nextVTableThunkIndex = 0; 743 for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i) { 744 auto vtableElem = builder.beginArray(CGM.Int8PtrTy); 745 size_t thisIndex = layout.getVTableOffset(i); 746 size_t nextIndex = thisIndex + layout.getVTableSize(i); 747 for (unsigned i = thisIndex; i != nextIndex; ++i) { 748 addVTableComponent(vtableElem, layout, i, rtti, nextVTableThunkIndex); 749 } 750 vtableElem.finishAndAddTo(builder); 751 } 752 } 753 754 llvm::GlobalVariable * 755 CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD, 756 const BaseSubobject &Base, 757 bool BaseIsVirtual, 758 llvm::GlobalVariable::LinkageTypes Linkage, 759 VTableAddressPointsMapTy& AddressPoints) { 760 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 761 DI->completeClassData(Base.getBase()); 762 763 std::unique_ptr<VTableLayout> VTLayout( 764 getItaniumVTableContext().createConstructionVTableLayout( 765 Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD)); 766 767 // Add the address points. 768 AddressPoints = VTLayout->getAddressPoints(); 769 770 // Get the mangled construction vtable name. 771 SmallString<256> OutName; 772 llvm::raw_svector_ostream Out(OutName); 773 cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext()) 774 .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(), 775 Base.getBase(), Out); 776 StringRef Name = OutName.str(); 777 778 llvm::Type *VTType = getVTableType(*VTLayout); 779 780 // Construction vtable symbols are not part of the Itanium ABI, so we cannot 781 // guarantee that they actually will be available externally. Instead, when 782 // emitting an available_externally VTT, we provide references to an internal 783 // linkage construction vtable. The ABI only requires complete-object vtables 784 // to be the same for all instances of a type, not construction vtables. 785 if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage) 786 Linkage = llvm::GlobalVariable::InternalLinkage; 787 788 unsigned Align = CGM.getDataLayout().getABITypeAlignment(VTType); 789 790 // Create the variable that will hold the construction vtable. 791 llvm::GlobalVariable *VTable = 792 CGM.CreateOrReplaceCXXRuntimeVariable(Name, VTType, Linkage, Align); 793 794 // V-tables are always unnamed_addr. 795 VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 796 797 llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor( 798 CGM.getContext().getTagDeclType(Base.getBase())); 799 800 // Create and set the initializer. 801 ConstantInitBuilder builder(CGM); 802 auto components = builder.beginStruct(); 803 createVTableInitializer(components, *VTLayout, RTTI); 804 components.finishAndSetAsInitializer(VTable); 805 806 // Set properties only after the initializer has been set to ensure that the 807 // GV is treated as definition and not declaration. 808 assert(!VTable->isDeclaration() && "Shouldn't set properties on declaration"); 809 CGM.setGVProperties(VTable, RD); 810 811 CGM.EmitVTableTypeMetadata(RD, VTable, *VTLayout.get()); 812 813 return VTable; 814 } 815 816 static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM, 817 const CXXRecordDecl *RD) { 818 return CGM.getCodeGenOpts().OptimizationLevel > 0 && 819 CGM.getCXXABI().canSpeculativelyEmitVTable(RD); 820 } 821 822 /// Compute the required linkage of the vtable for the given class. 823 /// 824 /// Note that we only call this at the end of the translation unit. 825 llvm::GlobalVariable::LinkageTypes 826 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 827 if (!RD->isExternallyVisible()) 828 return llvm::GlobalVariable::InternalLinkage; 829 830 // We're at the end of the translation unit, so the current key 831 // function is fully correct. 832 const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD); 833 if (keyFunction && !RD->hasAttr<DLLImportAttr>()) { 834 // If this class has a key function, use that to determine the 835 // linkage of the vtable. 836 const FunctionDecl *def = nullptr; 837 if (keyFunction->hasBody(def)) 838 keyFunction = cast<CXXMethodDecl>(def); 839 840 switch (keyFunction->getTemplateSpecializationKind()) { 841 case TSK_Undeclared: 842 case TSK_ExplicitSpecialization: 843 assert((def || CodeGenOpts.OptimizationLevel > 0 || 844 CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo) && 845 "Shouldn't query vtable linkage without key function, " 846 "optimizations, or debug info"); 847 if (!def && CodeGenOpts.OptimizationLevel > 0) 848 return llvm::GlobalVariable::AvailableExternallyLinkage; 849 850 if (keyFunction->isInlined()) 851 return !Context.getLangOpts().AppleKext ? 852 llvm::GlobalVariable::LinkOnceODRLinkage : 853 llvm::Function::InternalLinkage; 854 855 return llvm::GlobalVariable::ExternalLinkage; 856 857 case TSK_ImplicitInstantiation: 858 return !Context.getLangOpts().AppleKext ? 859 llvm::GlobalVariable::LinkOnceODRLinkage : 860 llvm::Function::InternalLinkage; 861 862 case TSK_ExplicitInstantiationDefinition: 863 return !Context.getLangOpts().AppleKext ? 864 llvm::GlobalVariable::WeakODRLinkage : 865 llvm::Function::InternalLinkage; 866 867 case TSK_ExplicitInstantiationDeclaration: 868 llvm_unreachable("Should not have been asked to emit this"); 869 } 870 } 871 872 // -fapple-kext mode does not support weak linkage, so we must use 873 // internal linkage. 874 if (Context.getLangOpts().AppleKext) 875 return llvm::Function::InternalLinkage; 876 877 llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage = 878 llvm::GlobalValue::LinkOnceODRLinkage; 879 llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage = 880 llvm::GlobalValue::WeakODRLinkage; 881 if (RD->hasAttr<DLLExportAttr>()) { 882 // Cannot discard exported vtables. 883 DiscardableODRLinkage = NonDiscardableODRLinkage; 884 } else if (RD->hasAttr<DLLImportAttr>()) { 885 // Imported vtables are available externally. 886 DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 887 NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 888 } 889 890 switch (RD->getTemplateSpecializationKind()) { 891 case TSK_Undeclared: 892 case TSK_ExplicitSpecialization: 893 case TSK_ImplicitInstantiation: 894 return DiscardableODRLinkage; 895 896 case TSK_ExplicitInstantiationDeclaration: 897 // Explicit instantiations in MSVC do not provide vtables, so we must emit 898 // our own. 899 if (getTarget().getCXXABI().isMicrosoft()) 900 return DiscardableODRLinkage; 901 return shouldEmitAvailableExternallyVTable(*this, RD) 902 ? llvm::GlobalVariable::AvailableExternallyLinkage 903 : llvm::GlobalVariable::ExternalLinkage; 904 905 case TSK_ExplicitInstantiationDefinition: 906 return NonDiscardableODRLinkage; 907 } 908 909 llvm_unreachable("Invalid TemplateSpecializationKind!"); 910 } 911 912 /// This is a callback from Sema to tell us that a particular vtable is 913 /// required to be emitted in this translation unit. 914 /// 915 /// This is only called for vtables that _must_ be emitted (mainly due to key 916 /// functions). For weak vtables, CodeGen tracks when they are needed and 917 /// emits them as-needed. 918 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) { 919 VTables.GenerateClassData(theClass); 920 } 921 922 void 923 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) { 924 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 925 DI->completeClassData(RD); 926 927 if (RD->getNumVBases()) 928 CGM.getCXXABI().emitVirtualInheritanceTables(RD); 929 930 CGM.getCXXABI().emitVTableDefinitions(*this, RD); 931 } 932 933 /// At this point in the translation unit, does it appear that can we 934 /// rely on the vtable being defined elsewhere in the program? 935 /// 936 /// The response is really only definitive when called at the end of 937 /// the translation unit. 938 /// 939 /// The only semantic restriction here is that the object file should 940 /// not contain a vtable definition when that vtable is defined 941 /// strongly elsewhere. Otherwise, we'd just like to avoid emitting 942 /// vtables when unnecessary. 943 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) { 944 assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable."); 945 946 // We always synthesize vtables if they are needed in the MS ABI. MSVC doesn't 947 // emit them even if there is an explicit template instantiation. 948 if (CGM.getTarget().getCXXABI().isMicrosoft()) 949 return false; 950 951 // If we have an explicit instantiation declaration (and not a 952 // definition), the vtable is defined elsewhere. 953 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); 954 if (TSK == TSK_ExplicitInstantiationDeclaration) 955 return true; 956 957 // Otherwise, if the class is an instantiated template, the 958 // vtable must be defined here. 959 if (TSK == TSK_ImplicitInstantiation || 960 TSK == TSK_ExplicitInstantiationDefinition) 961 return false; 962 963 // Otherwise, if the class doesn't have a key function (possibly 964 // anymore), the vtable must be defined here. 965 const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD); 966 if (!keyFunction) 967 return false; 968 969 // Otherwise, if we don't have a definition of the key function, the 970 // vtable must be defined somewhere else. 971 return !keyFunction->hasBody(); 972 } 973 974 /// Given that we're currently at the end of the translation unit, and 975 /// we've emitted a reference to the vtable for this class, should 976 /// we define that vtable? 977 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM, 978 const CXXRecordDecl *RD) { 979 // If vtable is internal then it has to be done. 980 if (!CGM.getVTables().isVTableExternal(RD)) 981 return true; 982 983 // If it's external then maybe we will need it as available_externally. 984 return shouldEmitAvailableExternallyVTable(CGM, RD); 985 } 986 987 /// Given that at some point we emitted a reference to one or more 988 /// vtables, and that we are now at the end of the translation unit, 989 /// decide whether we should emit them. 990 void CodeGenModule::EmitDeferredVTables() { 991 #ifndef NDEBUG 992 // Remember the size of DeferredVTables, because we're going to assume 993 // that this entire operation doesn't modify it. 994 size_t savedSize = DeferredVTables.size(); 995 #endif 996 997 for (const CXXRecordDecl *RD : DeferredVTables) 998 if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD)) 999 VTables.GenerateClassData(RD); 1000 else if (shouldOpportunisticallyEmitVTables()) 1001 OpportunisticVTables.push_back(RD); 1002 1003 assert(savedSize == DeferredVTables.size() && 1004 "deferred extra vtables during vtable emission?"); 1005 DeferredVTables.clear(); 1006 } 1007 1008 bool CodeGenModule::HasHiddenLTOVisibility(const CXXRecordDecl *RD) { 1009 LinkageInfo LV = RD->getLinkageAndVisibility(); 1010 if (!isExternallyVisible(LV.getLinkage())) 1011 return true; 1012 1013 if (RD->hasAttr<LTOVisibilityPublicAttr>() || RD->hasAttr<UuidAttr>()) 1014 return false; 1015 1016 if (getTriple().isOSBinFormatCOFF()) { 1017 if (RD->hasAttr<DLLExportAttr>() || RD->hasAttr<DLLImportAttr>()) 1018 return false; 1019 } else { 1020 if (LV.getVisibility() != HiddenVisibility) 1021 return false; 1022 } 1023 1024 if (getCodeGenOpts().LTOVisibilityPublicStd) { 1025 const DeclContext *DC = RD; 1026 while (1) { 1027 auto *D = cast<Decl>(DC); 1028 DC = DC->getParent(); 1029 if (isa<TranslationUnitDecl>(DC->getRedeclContext())) { 1030 if (auto *ND = dyn_cast<NamespaceDecl>(D)) 1031 if (const IdentifierInfo *II = ND->getIdentifier()) 1032 if (II->isStr("std") || II->isStr("stdext")) 1033 return false; 1034 break; 1035 } 1036 } 1037 } 1038 1039 return true; 1040 } 1041 1042 llvm::GlobalObject::VCallVisibility 1043 CodeGenModule::GetVCallVisibilityLevel(const CXXRecordDecl *RD) { 1044 LinkageInfo LV = RD->getLinkageAndVisibility(); 1045 llvm::GlobalObject::VCallVisibility TypeVis; 1046 if (!isExternallyVisible(LV.getLinkage())) 1047 TypeVis = llvm::GlobalObject::VCallVisibilityTranslationUnit; 1048 else if (HasHiddenLTOVisibility(RD)) 1049 TypeVis = llvm::GlobalObject::VCallVisibilityLinkageUnit; 1050 else 1051 TypeVis = llvm::GlobalObject::VCallVisibilityPublic; 1052 1053 for (auto B : RD->bases()) 1054 if (B.getType()->getAsCXXRecordDecl()->isDynamicClass()) 1055 TypeVis = std::min(TypeVis, 1056 GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl())); 1057 1058 for (auto B : RD->vbases()) 1059 if (B.getType()->getAsCXXRecordDecl()->isDynamicClass()) 1060 TypeVis = std::min(TypeVis, 1061 GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl())); 1062 1063 return TypeVis; 1064 } 1065 1066 void CodeGenModule::EmitVTableTypeMetadata(const CXXRecordDecl *RD, 1067 llvm::GlobalVariable *VTable, 1068 const VTableLayout &VTLayout) { 1069 if (!getCodeGenOpts().LTOUnit) 1070 return; 1071 1072 CharUnits PointerWidth = 1073 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); 1074 1075 typedef std::pair<const CXXRecordDecl *, unsigned> AddressPoint; 1076 std::vector<AddressPoint> AddressPoints; 1077 for (auto &&AP : VTLayout.getAddressPoints()) 1078 AddressPoints.push_back(std::make_pair( 1079 AP.first.getBase(), VTLayout.getVTableOffset(AP.second.VTableIndex) + 1080 AP.second.AddressPointIndex)); 1081 1082 // Sort the address points for determinism. 1083 llvm::sort(AddressPoints, [this](const AddressPoint &AP1, 1084 const AddressPoint &AP2) { 1085 if (&AP1 == &AP2) 1086 return false; 1087 1088 std::string S1; 1089 llvm::raw_string_ostream O1(S1); 1090 getCXXABI().getMangleContext().mangleTypeName( 1091 QualType(AP1.first->getTypeForDecl(), 0), O1); 1092 O1.flush(); 1093 1094 std::string S2; 1095 llvm::raw_string_ostream O2(S2); 1096 getCXXABI().getMangleContext().mangleTypeName( 1097 QualType(AP2.first->getTypeForDecl(), 0), O2); 1098 O2.flush(); 1099 1100 if (S1 < S2) 1101 return true; 1102 if (S1 != S2) 1103 return false; 1104 1105 return AP1.second < AP2.second; 1106 }); 1107 1108 ArrayRef<VTableComponent> Comps = VTLayout.vtable_components(); 1109 for (auto AP : AddressPoints) { 1110 // Create type metadata for the address point. 1111 AddVTableTypeMetadata(VTable, PointerWidth * AP.second, AP.first); 1112 1113 // The class associated with each address point could also potentially be 1114 // used for indirect calls via a member function pointer, so we need to 1115 // annotate the address of each function pointer with the appropriate member 1116 // function pointer type. 1117 for (unsigned I = 0; I != Comps.size(); ++I) { 1118 if (Comps[I].getKind() != VTableComponent::CK_FunctionPointer) 1119 continue; 1120 llvm::Metadata *MD = CreateMetadataIdentifierForVirtualMemPtrType( 1121 Context.getMemberPointerType( 1122 Comps[I].getFunctionDecl()->getType(), 1123 Context.getRecordType(AP.first).getTypePtr())); 1124 VTable->addTypeMetadata((PointerWidth * I).getQuantity(), MD); 1125 } 1126 } 1127 1128 if (getCodeGenOpts().VirtualFunctionElimination) { 1129 llvm::GlobalObject::VCallVisibility TypeVis = GetVCallVisibilityLevel(RD); 1130 if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic) 1131 VTable->addVCallVisibilityMetadata(TypeVis); 1132 } 1133 } 1134