1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with C++ code generation of virtual tables. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/RecordLayout.h" 19 #include "clang/Basic/CodeGenOptions.h" 20 #include "clang/CodeGen/CGFunctionInfo.h" 21 #include "clang/CodeGen/ConstantInitBuilder.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/Support/Format.h" 24 #include "llvm/Transforms/Utils/Cloning.h" 25 #include <algorithm> 26 #include <cstdio> 27 #include <utility> 28 29 using namespace clang; 30 using namespace CodeGen; 31 32 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM) 33 : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {} 34 35 llvm::Constant *CodeGenModule::GetAddrOfThunk(StringRef Name, llvm::Type *FnTy, 36 GlobalDecl GD) { 37 return GetOrCreateLLVMFunction(Name, FnTy, GD, /*ForVTable=*/true, 38 /*DontDefer=*/true, /*IsThunk=*/true); 39 } 40 41 static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk, 42 llvm::Function *ThunkFn, bool ForVTable, 43 GlobalDecl GD) { 44 CGM.setFunctionLinkage(GD, ThunkFn); 45 CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD, 46 !Thunk.Return.isEmpty()); 47 48 // Set the right visibility. 49 CGM.setGVProperties(ThunkFn, GD); 50 51 if (!CGM.getCXXABI().exportThunk()) { 52 ThunkFn->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 53 ThunkFn->setDSOLocal(true); 54 } 55 56 if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker()) 57 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 58 } 59 60 #ifndef NDEBUG 61 static bool similar(const ABIArgInfo &infoL, CanQualType typeL, 62 const ABIArgInfo &infoR, CanQualType typeR) { 63 return (infoL.getKind() == infoR.getKind() && 64 (typeL == typeR || 65 (isa<PointerType>(typeL) && isa<PointerType>(typeR)) || 66 (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR)))); 67 } 68 #endif 69 70 static RValue PerformReturnAdjustment(CodeGenFunction &CGF, 71 QualType ResultType, RValue RV, 72 const ThunkInfo &Thunk) { 73 // Emit the return adjustment. 74 bool NullCheckValue = !ResultType->isReferenceType(); 75 76 llvm::BasicBlock *AdjustNull = nullptr; 77 llvm::BasicBlock *AdjustNotNull = nullptr; 78 llvm::BasicBlock *AdjustEnd = nullptr; 79 80 llvm::Value *ReturnValue = RV.getScalarVal(); 81 82 if (NullCheckValue) { 83 AdjustNull = CGF.createBasicBlock("adjust.null"); 84 AdjustNotNull = CGF.createBasicBlock("adjust.notnull"); 85 AdjustEnd = CGF.createBasicBlock("adjust.end"); 86 87 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue); 88 CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull); 89 CGF.EmitBlock(AdjustNotNull); 90 } 91 92 auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl(); 93 auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl); 94 ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment( 95 CGF, 96 Address(ReturnValue, CGF.ConvertTypeForMem(ResultType->getPointeeType()), 97 ClassAlign), 98 Thunk.Return); 99 100 if (NullCheckValue) { 101 CGF.Builder.CreateBr(AdjustEnd); 102 CGF.EmitBlock(AdjustNull); 103 CGF.Builder.CreateBr(AdjustEnd); 104 CGF.EmitBlock(AdjustEnd); 105 106 llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2); 107 PHI->addIncoming(ReturnValue, AdjustNotNull); 108 PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()), 109 AdjustNull); 110 ReturnValue = PHI; 111 } 112 113 return RValue::get(ReturnValue); 114 } 115 116 /// This function clones a function's DISubprogram node and enters it into 117 /// a value map with the intent that the map can be utilized by the cloner 118 /// to short-circuit Metadata node mapping. 119 /// Furthermore, the function resolves any DILocalVariable nodes referenced 120 /// by dbg.value intrinsics so they can be properly mapped during cloning. 121 static void resolveTopLevelMetadata(llvm::Function *Fn, 122 llvm::ValueToValueMapTy &VMap) { 123 // Clone the DISubprogram node and put it into the Value map. 124 auto *DIS = Fn->getSubprogram(); 125 if (!DIS) 126 return; 127 auto *NewDIS = DIS->replaceWithDistinct(DIS->clone()); 128 VMap.MD()[DIS].reset(NewDIS); 129 130 // Find all llvm.dbg.declare intrinsics and resolve the DILocalVariable nodes 131 // they are referencing. 132 for (auto &BB : *Fn) { 133 for (auto &I : BB) { 134 if (auto *DII = dyn_cast<llvm::DbgVariableIntrinsic>(&I)) { 135 auto *DILocal = DII->getVariable(); 136 if (!DILocal->isResolved()) 137 DILocal->resolve(); 138 } 139 } 140 } 141 } 142 143 // This function does roughly the same thing as GenerateThunk, but in a 144 // very different way, so that va_start and va_end work correctly. 145 // FIXME: This function assumes "this" is the first non-sret LLVM argument of 146 // a function, and that there is an alloca built in the entry block 147 // for all accesses to "this". 148 // FIXME: This function assumes there is only one "ret" statement per function. 149 // FIXME: Cloning isn't correct in the presence of indirect goto! 150 // FIXME: This implementation of thunks bloats codesize by duplicating the 151 // function definition. There are alternatives: 152 // 1. Add some sort of stub support to LLVM for cases where we can 153 // do a this adjustment, then a sibcall. 154 // 2. We could transform the definition to take a va_list instead of an 155 // actual variable argument list, then have the thunks (including a 156 // no-op thunk for the regular definition) call va_start/va_end. 157 // There's a bit of per-call overhead for this solution, but it's 158 // better for codesize if the definition is long. 159 llvm::Function * 160 CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn, 161 const CGFunctionInfo &FnInfo, 162 GlobalDecl GD, const ThunkInfo &Thunk) { 163 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 164 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 165 QualType ResultType = FPT->getReturnType(); 166 167 // Get the original function 168 assert(FnInfo.isVariadic()); 169 llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo); 170 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 171 llvm::Function *BaseFn = cast<llvm::Function>(Callee); 172 173 // Cloning can't work if we don't have a definition. The Microsoft ABI may 174 // require thunks when a definition is not available. Emit an error in these 175 // cases. 176 if (!MD->isDefined()) { 177 CGM.ErrorUnsupported(MD, "return-adjusting thunk with variadic arguments"); 178 return Fn; 179 } 180 assert(!BaseFn->isDeclaration() && "cannot clone undefined variadic method"); 181 182 // Clone to thunk. 183 llvm::ValueToValueMapTy VMap; 184 185 // We are cloning a function while some Metadata nodes are still unresolved. 186 // Ensure that the value mapper does not encounter any of them. 187 resolveTopLevelMetadata(BaseFn, VMap); 188 llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap); 189 Fn->replaceAllUsesWith(NewFn); 190 NewFn->takeName(Fn); 191 Fn->eraseFromParent(); 192 Fn = NewFn; 193 194 // "Initialize" CGF (minimally). 195 CurFn = Fn; 196 197 // Get the "this" value 198 llvm::Function::arg_iterator AI = Fn->arg_begin(); 199 if (CGM.ReturnTypeUsesSRet(FnInfo)) 200 ++AI; 201 202 // Find the first store of "this", which will be to the alloca associated 203 // with "this". 204 Address ThisPtr = 205 Address(&*AI, ConvertTypeForMem(MD->getFunctionObjectParameterType()), 206 CGM.getClassPointerAlignment(MD->getParent())); 207 llvm::BasicBlock *EntryBB = &Fn->front(); 208 llvm::BasicBlock::iterator ThisStore = 209 llvm::find_if(*EntryBB, [&](llvm::Instruction &I) { 210 return isa<llvm::StoreInst>(I) && 211 I.getOperand(0) == ThisPtr.getPointer(); 212 }); 213 assert(ThisStore != EntryBB->end() && 214 "Store of this should be in entry block?"); 215 // Adjust "this", if necessary. 216 Builder.SetInsertPoint(&*ThisStore); 217 llvm::Value *AdjustedThisPtr = 218 CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This); 219 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, 220 ThisStore->getOperand(0)->getType()); 221 ThisStore->setOperand(0, AdjustedThisPtr); 222 223 if (!Thunk.Return.isEmpty()) { 224 // Fix up the returned value, if necessary. 225 for (llvm::BasicBlock &BB : *Fn) { 226 llvm::Instruction *T = BB.getTerminator(); 227 if (isa<llvm::ReturnInst>(T)) { 228 RValue RV = RValue::get(T->getOperand(0)); 229 T->eraseFromParent(); 230 Builder.SetInsertPoint(&BB); 231 RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); 232 Builder.CreateRet(RV.getScalarVal()); 233 break; 234 } 235 } 236 } 237 238 return Fn; 239 } 240 241 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD, 242 const CGFunctionInfo &FnInfo, 243 bool IsUnprototyped) { 244 assert(!CurGD.getDecl() && "CurGD was already set!"); 245 CurGD = GD; 246 CurFuncIsThunk = true; 247 248 // Build FunctionArgs. 249 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 250 QualType ThisType = MD->getThisType(); 251 QualType ResultType; 252 if (IsUnprototyped) 253 ResultType = CGM.getContext().VoidTy; 254 else if (CGM.getCXXABI().HasThisReturn(GD)) 255 ResultType = ThisType; 256 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 257 ResultType = CGM.getContext().VoidPtrTy; 258 else 259 ResultType = MD->getType()->castAs<FunctionProtoType>()->getReturnType(); 260 FunctionArgList FunctionArgs; 261 262 // Create the implicit 'this' parameter declaration. 263 CGM.getCXXABI().buildThisParam(*this, FunctionArgs); 264 265 // Add the rest of the parameters, if we have a prototype to work with. 266 if (!IsUnprototyped) { 267 FunctionArgs.append(MD->param_begin(), MD->param_end()); 268 269 if (isa<CXXDestructorDecl>(MD)) 270 CGM.getCXXABI().addImplicitStructorParams(*this, ResultType, 271 FunctionArgs); 272 } 273 274 // Start defining the function. 275 auto NL = ApplyDebugLocation::CreateEmpty(*this); 276 StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs, 277 MD->getLocation()); 278 // Create a scope with an artificial location for the body of this function. 279 auto AL = ApplyDebugLocation::CreateArtificial(*this); 280 281 // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves. 282 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 283 CXXThisValue = CXXABIThisValue; 284 CurCodeDecl = MD; 285 CurFuncDecl = MD; 286 } 287 288 void CodeGenFunction::FinishThunk() { 289 // Clear these to restore the invariants expected by 290 // StartFunction/FinishFunction. 291 CurCodeDecl = nullptr; 292 CurFuncDecl = nullptr; 293 294 FinishFunction(); 295 } 296 297 void CodeGenFunction::EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 298 const ThunkInfo *Thunk, 299 bool IsUnprototyped) { 300 assert(isa<CXXMethodDecl>(CurGD.getDecl()) && 301 "Please use a new CGF for this thunk"); 302 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl()); 303 304 // Adjust the 'this' pointer if necessary 305 llvm::Value *AdjustedThisPtr = 306 Thunk ? CGM.getCXXABI().performThisAdjustment( 307 *this, LoadCXXThisAddress(), Thunk->This) 308 : LoadCXXThis(); 309 310 // If perfect forwarding is required a variadic method, a method using 311 // inalloca, or an unprototyped thunk, use musttail. Emit an error if this 312 // thunk requires a return adjustment, since that is impossible with musttail. 313 if (CurFnInfo->usesInAlloca() || CurFnInfo->isVariadic() || IsUnprototyped) { 314 if (Thunk && !Thunk->Return.isEmpty()) { 315 if (IsUnprototyped) 316 CGM.ErrorUnsupported( 317 MD, "return-adjusting thunk with incomplete parameter type"); 318 else if (CurFnInfo->isVariadic()) 319 llvm_unreachable("shouldn't try to emit musttail return-adjusting " 320 "thunks for variadic functions"); 321 else 322 CGM.ErrorUnsupported( 323 MD, "non-trivial argument copy for return-adjusting thunk"); 324 } 325 EmitMustTailThunk(CurGD, AdjustedThisPtr, Callee); 326 return; 327 } 328 329 // Start building CallArgs. 330 CallArgList CallArgs; 331 QualType ThisType = MD->getThisType(); 332 CallArgs.add(RValue::get(AdjustedThisPtr), ThisType); 333 334 if (isa<CXXDestructorDecl>(MD)) 335 CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs); 336 337 #ifndef NDEBUG 338 unsigned PrefixArgs = CallArgs.size() - 1; 339 #endif 340 // Add the rest of the arguments. 341 for (const ParmVarDecl *PD : MD->parameters()) 342 EmitDelegateCallArg(CallArgs, PD, SourceLocation()); 343 344 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 345 346 #ifndef NDEBUG 347 const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall( 348 CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1), PrefixArgs); 349 assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() && 350 CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() && 351 CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention()); 352 assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types 353 similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(), 354 CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType())); 355 assert(CallFnInfo.arg_size() == CurFnInfo->arg_size()); 356 for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i) 357 assert(similar(CallFnInfo.arg_begin()[i].info, 358 CallFnInfo.arg_begin()[i].type, 359 CurFnInfo->arg_begin()[i].info, 360 CurFnInfo->arg_begin()[i].type)); 361 #endif 362 363 // Determine whether we have a return value slot to use. 364 QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD) 365 ? ThisType 366 : CGM.getCXXABI().hasMostDerivedReturn(CurGD) 367 ? CGM.getContext().VoidPtrTy 368 : FPT->getReturnType(); 369 ReturnValueSlot Slot; 370 if (!ResultType->isVoidType() && 371 (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect || 372 hasAggregateEvaluationKind(ResultType))) 373 Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified(), 374 /*IsUnused=*/false, /*IsExternallyDestructed=*/true); 375 376 // Now emit our call. 377 llvm::CallBase *CallOrInvoke; 378 RValue RV = EmitCall(*CurFnInfo, CGCallee::forDirect(Callee, CurGD), Slot, 379 CallArgs, &CallOrInvoke); 380 381 // Consider return adjustment if we have ThunkInfo. 382 if (Thunk && !Thunk->Return.isEmpty()) 383 RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk); 384 else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke)) 385 Call->setTailCallKind(llvm::CallInst::TCK_Tail); 386 387 // Emit return. 388 if (!ResultType->isVoidType() && Slot.isNull()) 389 CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType); 390 391 // Disable the final ARC autorelease. 392 AutoreleaseResult = false; 393 394 FinishThunk(); 395 } 396 397 void CodeGenFunction::EmitMustTailThunk(GlobalDecl GD, 398 llvm::Value *AdjustedThisPtr, 399 llvm::FunctionCallee Callee) { 400 // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery 401 // to translate AST arguments into LLVM IR arguments. For thunks, we know 402 // that the caller prototype more or less matches the callee prototype with 403 // the exception of 'this'. 404 SmallVector<llvm::Value *, 8> Args(llvm::make_pointer_range(CurFn->args())); 405 406 // Set the adjusted 'this' pointer. 407 const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info; 408 if (ThisAI.isDirect()) { 409 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 410 int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0; 411 llvm::Type *ThisType = Args[ThisArgNo]->getType(); 412 if (ThisType != AdjustedThisPtr->getType()) 413 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 414 Args[ThisArgNo] = AdjustedThisPtr; 415 } else { 416 assert(ThisAI.isInAlloca() && "this is passed directly or inalloca"); 417 Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl); 418 llvm::Type *ThisType = ThisAddr.getElementType(); 419 if (ThisType != AdjustedThisPtr->getType()) 420 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 421 Builder.CreateStore(AdjustedThisPtr, ThisAddr); 422 } 423 424 // Emit the musttail call manually. Even if the prologue pushed cleanups, we 425 // don't actually want to run them. 426 llvm::CallInst *Call = Builder.CreateCall(Callee, Args); 427 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 428 429 // Apply the standard set of call attributes. 430 unsigned CallingConv; 431 llvm::AttributeList Attrs; 432 CGM.ConstructAttributeList(Callee.getCallee()->getName(), *CurFnInfo, GD, 433 Attrs, CallingConv, /*AttrOnCallSite=*/true, 434 /*IsThunk=*/false); 435 Call->setAttributes(Attrs); 436 Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 437 438 if (Call->getType()->isVoidTy()) 439 Builder.CreateRetVoid(); 440 else 441 Builder.CreateRet(Call); 442 443 // Finish the function to maintain CodeGenFunction invariants. 444 // FIXME: Don't emit unreachable code. 445 EmitBlock(createBasicBlock()); 446 447 FinishThunk(); 448 } 449 450 void CodeGenFunction::generateThunk(llvm::Function *Fn, 451 const CGFunctionInfo &FnInfo, GlobalDecl GD, 452 const ThunkInfo &Thunk, 453 bool IsUnprototyped) { 454 StartThunk(Fn, GD, FnInfo, IsUnprototyped); 455 // Create a scope with an artificial location for the body of this function. 456 auto AL = ApplyDebugLocation::CreateArtificial(*this); 457 458 // Get our callee. Use a placeholder type if this method is unprototyped so 459 // that CodeGenModule doesn't try to set attributes. 460 llvm::Type *Ty; 461 if (IsUnprototyped) 462 Ty = llvm::StructType::get(getLLVMContext()); 463 else 464 Ty = CGM.getTypes().GetFunctionType(FnInfo); 465 466 llvm::Constant *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 467 468 // Make the call and return the result. 469 EmitCallAndReturnForThunk(llvm::FunctionCallee(Fn->getFunctionType(), Callee), 470 &Thunk, IsUnprototyped); 471 } 472 473 static bool shouldEmitVTableThunk(CodeGenModule &CGM, const CXXMethodDecl *MD, 474 bool IsUnprototyped, bool ForVTable) { 475 // Always emit thunks in the MS C++ ABI. We cannot rely on other TUs to 476 // provide thunks for us. 477 if (CGM.getTarget().getCXXABI().isMicrosoft()) 478 return true; 479 480 // In the Itanium C++ ABI, vtable thunks are provided by TUs that provide 481 // definitions of the main method. Therefore, emitting thunks with the vtable 482 // is purely an optimization. Emit the thunk if optimizations are enabled and 483 // all of the parameter types are complete. 484 if (ForVTable) 485 return CGM.getCodeGenOpts().OptimizationLevel && !IsUnprototyped; 486 487 // Always emit thunks along with the method definition. 488 return true; 489 } 490 491 llvm::Constant *CodeGenVTables::maybeEmitThunk(GlobalDecl GD, 492 const ThunkInfo &TI, 493 bool ForVTable) { 494 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 495 496 // First, get a declaration. Compute the mangled name. Don't worry about 497 // getting the function prototype right, since we may only need this 498 // declaration to fill in a vtable slot. 499 SmallString<256> Name; 500 MangleContext &MCtx = CGM.getCXXABI().getMangleContext(); 501 llvm::raw_svector_ostream Out(Name); 502 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) 503 MCtx.mangleCXXDtorThunk(DD, GD.getDtorType(), TI.This, Out); 504 else 505 MCtx.mangleThunk(MD, TI, Out); 506 llvm::Type *ThunkVTableTy = CGM.getTypes().GetFunctionTypeForVTable(GD); 507 llvm::Constant *Thunk = CGM.GetAddrOfThunk(Name, ThunkVTableTy, GD); 508 509 // If we don't need to emit a definition, return this declaration as is. 510 bool IsUnprototyped = !CGM.getTypes().isFuncTypeConvertible( 511 MD->getType()->castAs<FunctionType>()); 512 if (!shouldEmitVTableThunk(CGM, MD, IsUnprototyped, ForVTable)) 513 return Thunk; 514 515 // Arrange a function prototype appropriate for a function definition. In some 516 // cases in the MS ABI, we may need to build an unprototyped musttail thunk. 517 const CGFunctionInfo &FnInfo = 518 IsUnprototyped ? CGM.getTypes().arrangeUnprototypedMustTailThunk(MD) 519 : CGM.getTypes().arrangeGlobalDeclaration(GD); 520 llvm::FunctionType *ThunkFnTy = CGM.getTypes().GetFunctionType(FnInfo); 521 522 // If the type of the underlying GlobalValue is wrong, we'll have to replace 523 // it. It should be a declaration. 524 llvm::Function *ThunkFn = cast<llvm::Function>(Thunk->stripPointerCasts()); 525 if (ThunkFn->getFunctionType() != ThunkFnTy) { 526 llvm::GlobalValue *OldThunkFn = ThunkFn; 527 528 assert(OldThunkFn->isDeclaration() && "Shouldn't replace non-declaration"); 529 530 // Remove the name from the old thunk function and get a new thunk. 531 OldThunkFn->setName(StringRef()); 532 ThunkFn = llvm::Function::Create(ThunkFnTy, llvm::Function::ExternalLinkage, 533 Name.str(), &CGM.getModule()); 534 CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn, /*IsThunk=*/false); 535 536 if (!OldThunkFn->use_empty()) { 537 OldThunkFn->replaceAllUsesWith(ThunkFn); 538 } 539 540 // Remove the old thunk. 541 OldThunkFn->eraseFromParent(); 542 } 543 544 bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions(); 545 bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions; 546 547 if (!ThunkFn->isDeclaration()) { 548 if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) { 549 // There is already a thunk emitted for this function, do nothing. 550 return ThunkFn; 551 } 552 553 setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD); 554 return ThunkFn; 555 } 556 557 // If this will be unprototyped, add the "thunk" attribute so that LLVM knows 558 // that the return type is meaningless. These thunks can be used to call 559 // functions with differing return types, and the caller is required to cast 560 // the prototype appropriately to extract the correct value. 561 if (IsUnprototyped) 562 ThunkFn->addFnAttr("thunk"); 563 564 CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn); 565 566 // Thunks for variadic methods are special because in general variadic 567 // arguments cannot be perfectly forwarded. In the general case, clang 568 // implements such thunks by cloning the original function body. However, for 569 // thunks with no return adjustment on targets that support musttail, we can 570 // use musttail to perfectly forward the variadic arguments. 571 bool ShouldCloneVarArgs = false; 572 if (!IsUnprototyped && ThunkFn->isVarArg()) { 573 ShouldCloneVarArgs = true; 574 if (TI.Return.isEmpty()) { 575 switch (CGM.getTriple().getArch()) { 576 case llvm::Triple::x86_64: 577 case llvm::Triple::x86: 578 case llvm::Triple::aarch64: 579 ShouldCloneVarArgs = false; 580 break; 581 default: 582 break; 583 } 584 } 585 } 586 587 if (ShouldCloneVarArgs) { 588 if (UseAvailableExternallyLinkage) 589 return ThunkFn; 590 ThunkFn = 591 CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, TI); 592 } else { 593 // Normal thunk body generation. 594 CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, TI, IsUnprototyped); 595 } 596 597 setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD); 598 return ThunkFn; 599 } 600 601 void CodeGenVTables::EmitThunks(GlobalDecl GD) { 602 const CXXMethodDecl *MD = 603 cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl(); 604 605 // We don't need to generate thunks for the base destructor. 606 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 607 return; 608 609 const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector = 610 VTContext->getThunkInfo(GD); 611 612 if (!ThunkInfoVector) 613 return; 614 615 for (const ThunkInfo& Thunk : *ThunkInfoVector) 616 maybeEmitThunk(GD, Thunk, /*ForVTable=*/false); 617 } 618 619 void CodeGenVTables::addRelativeComponent(ConstantArrayBuilder &builder, 620 llvm::Constant *component, 621 unsigned vtableAddressPoint, 622 bool vtableHasLocalLinkage, 623 bool isCompleteDtor) const { 624 // No need to get the offset of a nullptr. 625 if (component->isNullValue()) 626 return builder.add(llvm::ConstantInt::get(CGM.Int32Ty, 0)); 627 628 auto *globalVal = 629 cast<llvm::GlobalValue>(component->stripPointerCastsAndAliases()); 630 llvm::Module &module = CGM.getModule(); 631 632 // We don't want to copy the linkage of the vtable exactly because we still 633 // want the stub/proxy to be emitted for properly calculating the offset. 634 // Examples where there would be no symbol emitted are available_externally 635 // and private linkages. 636 // 637 // `internal` linkage results in STB_LOCAL Elf binding while still manifesting a 638 // local symbol. 639 // 640 // `linkonce_odr` linkage results in a STB_DEFAULT Elf binding but also allows for 641 // the rtti_proxy to be transparently replaced with a GOTPCREL reloc by a 642 // target that supports this replacement. 643 auto stubLinkage = vtableHasLocalLinkage 644 ? llvm::GlobalValue::InternalLinkage 645 : llvm::GlobalValue::LinkOnceODRLinkage; 646 647 llvm::Constant *target; 648 if (auto *func = dyn_cast<llvm::Function>(globalVal)) { 649 target = llvm::DSOLocalEquivalent::get(func); 650 } else { 651 llvm::SmallString<16> rttiProxyName(globalVal->getName()); 652 rttiProxyName.append(".rtti_proxy"); 653 654 // The RTTI component may not always be emitted in the same linkage unit as 655 // the vtable. As a general case, we can make a dso_local proxy to the RTTI 656 // that points to the actual RTTI struct somewhere. This will result in a 657 // GOTPCREL relocation when taking the relative offset to the proxy. 658 llvm::GlobalVariable *proxy = module.getNamedGlobal(rttiProxyName); 659 if (!proxy) { 660 proxy = new llvm::GlobalVariable(module, globalVal->getType(), 661 /*isConstant=*/true, stubLinkage, 662 globalVal, rttiProxyName); 663 proxy->setDSOLocal(true); 664 proxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 665 if (!proxy->hasLocalLinkage()) { 666 proxy->setVisibility(llvm::GlobalValue::HiddenVisibility); 667 proxy->setComdat(module.getOrInsertComdat(rttiProxyName)); 668 } 669 // Do not instrument the rtti proxies with hwasan to avoid a duplicate 670 // symbol error. Aliases generated by hwasan will retain the same namebut 671 // the addresses they are set to may have different tags from different 672 // compilation units. We don't run into this without hwasan because the 673 // proxies are in comdat groups, but those aren't propagated to the alias. 674 RemoveHwasanMetadata(proxy); 675 } 676 target = proxy; 677 } 678 679 builder.addRelativeOffsetToPosition(CGM.Int32Ty, target, 680 /*position=*/vtableAddressPoint); 681 } 682 683 static bool UseRelativeLayout(const CodeGenModule &CGM) { 684 return CGM.getTarget().getCXXABI().isItaniumFamily() && 685 CGM.getItaniumVTableContext().isRelativeLayout(); 686 } 687 688 bool CodeGenVTables::useRelativeLayout() const { 689 return UseRelativeLayout(CGM); 690 } 691 692 llvm::Type *CodeGenModule::getVTableComponentType() const { 693 if (UseRelativeLayout(*this)) 694 return Int32Ty; 695 return GlobalsInt8PtrTy; 696 } 697 698 llvm::Type *CodeGenVTables::getVTableComponentType() const { 699 return CGM.getVTableComponentType(); 700 } 701 702 static void AddPointerLayoutOffset(const CodeGenModule &CGM, 703 ConstantArrayBuilder &builder, 704 CharUnits offset) { 705 builder.add(llvm::ConstantExpr::getIntToPtr( 706 llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()), 707 CGM.GlobalsInt8PtrTy)); 708 } 709 710 static void AddRelativeLayoutOffset(const CodeGenModule &CGM, 711 ConstantArrayBuilder &builder, 712 CharUnits offset) { 713 builder.add(llvm::ConstantInt::get(CGM.Int32Ty, offset.getQuantity())); 714 } 715 716 void CodeGenVTables::addVTableComponent(ConstantArrayBuilder &builder, 717 const VTableLayout &layout, 718 unsigned componentIndex, 719 llvm::Constant *rtti, 720 unsigned &nextVTableThunkIndex, 721 unsigned vtableAddressPoint, 722 bool vtableHasLocalLinkage) { 723 auto &component = layout.vtable_components()[componentIndex]; 724 725 auto addOffsetConstant = 726 useRelativeLayout() ? AddRelativeLayoutOffset : AddPointerLayoutOffset; 727 728 switch (component.getKind()) { 729 case VTableComponent::CK_VCallOffset: 730 return addOffsetConstant(CGM, builder, component.getVCallOffset()); 731 732 case VTableComponent::CK_VBaseOffset: 733 return addOffsetConstant(CGM, builder, component.getVBaseOffset()); 734 735 case VTableComponent::CK_OffsetToTop: 736 return addOffsetConstant(CGM, builder, component.getOffsetToTop()); 737 738 case VTableComponent::CK_RTTI: 739 if (useRelativeLayout()) 740 return addRelativeComponent(builder, rtti, vtableAddressPoint, 741 vtableHasLocalLinkage, 742 /*isCompleteDtor=*/false); 743 else 744 return builder.add(rtti); 745 746 case VTableComponent::CK_FunctionPointer: 747 case VTableComponent::CK_CompleteDtorPointer: 748 case VTableComponent::CK_DeletingDtorPointer: { 749 GlobalDecl GD = component.getGlobalDecl(); 750 751 if (CGM.getLangOpts().CUDA) { 752 // Emit NULL for methods we can't codegen on this 753 // side. Otherwise we'd end up with vtable with unresolved 754 // references. 755 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 756 // OK on device side: functions w/ __device__ attribute 757 // OK on host side: anything except __device__-only functions. 758 bool CanEmitMethod = 759 CGM.getLangOpts().CUDAIsDevice 760 ? MD->hasAttr<CUDADeviceAttr>() 761 : (MD->hasAttr<CUDAHostAttr>() || !MD->hasAttr<CUDADeviceAttr>()); 762 if (!CanEmitMethod) 763 return builder.add( 764 llvm::ConstantExpr::getNullValue(CGM.GlobalsInt8PtrTy)); 765 // Method is acceptable, continue processing as usual. 766 } 767 768 auto getSpecialVirtualFn = [&](StringRef name) -> llvm::Constant * { 769 // FIXME(PR43094): When merging comdat groups, lld can select a local 770 // symbol as the signature symbol even though it cannot be accessed 771 // outside that symbol's TU. The relative vtables ABI would make 772 // __cxa_pure_virtual and __cxa_deleted_virtual local symbols, and 773 // depending on link order, the comdat groups could resolve to the one 774 // with the local symbol. As a temporary solution, fill these components 775 // with zero. We shouldn't be calling these in the first place anyway. 776 if (useRelativeLayout()) 777 return llvm::ConstantPointerNull::get(CGM.GlobalsInt8PtrTy); 778 779 // For NVPTX devices in OpenMP emit special functon as null pointers, 780 // otherwise linking ends up with unresolved references. 781 if (CGM.getLangOpts().OpenMP && CGM.getLangOpts().OpenMPIsTargetDevice && 782 CGM.getTriple().isNVPTX()) 783 return llvm::ConstantPointerNull::get(CGM.GlobalsInt8PtrTy); 784 llvm::FunctionType *fnTy = 785 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 786 llvm::Constant *fn = cast<llvm::Constant>( 787 CGM.CreateRuntimeFunction(fnTy, name).getCallee()); 788 if (auto f = dyn_cast<llvm::Function>(fn)) 789 f->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 790 return fn; 791 }; 792 793 llvm::Constant *fnPtr; 794 795 // Pure virtual member functions. 796 if (cast<CXXMethodDecl>(GD.getDecl())->isPureVirtual()) { 797 if (!PureVirtualFn) 798 PureVirtualFn = 799 getSpecialVirtualFn(CGM.getCXXABI().GetPureVirtualCallName()); 800 fnPtr = PureVirtualFn; 801 802 // Deleted virtual member functions. 803 } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) { 804 if (!DeletedVirtualFn) 805 DeletedVirtualFn = 806 getSpecialVirtualFn(CGM.getCXXABI().GetDeletedVirtualCallName()); 807 fnPtr = DeletedVirtualFn; 808 809 // Thunks. 810 } else if (nextVTableThunkIndex < layout.vtable_thunks().size() && 811 layout.vtable_thunks()[nextVTableThunkIndex].first == 812 componentIndex) { 813 auto &thunkInfo = layout.vtable_thunks()[nextVTableThunkIndex].second; 814 815 nextVTableThunkIndex++; 816 fnPtr = maybeEmitThunk(GD, thunkInfo, /*ForVTable=*/true); 817 818 // Otherwise we can use the method definition directly. 819 } else { 820 llvm::Type *fnTy = CGM.getTypes().GetFunctionTypeForVTable(GD); 821 fnPtr = CGM.GetAddrOfFunction(GD, fnTy, /*ForVTable=*/true); 822 } 823 824 if (useRelativeLayout()) { 825 return addRelativeComponent( 826 builder, fnPtr, vtableAddressPoint, vtableHasLocalLinkage, 827 component.getKind() == VTableComponent::CK_CompleteDtorPointer); 828 } else { 829 // TODO: this icky and only exists due to functions being in the generic 830 // address space, rather than the global one, even though they are 831 // globals; fixing said issue might be intrusive, and will be done 832 // later. 833 unsigned FnAS = fnPtr->getType()->getPointerAddressSpace(); 834 unsigned GVAS = CGM.GlobalsInt8PtrTy->getPointerAddressSpace(); 835 836 if (FnAS != GVAS) 837 fnPtr = 838 llvm::ConstantExpr::getAddrSpaceCast(fnPtr, CGM.GlobalsInt8PtrTy); 839 return builder.add(fnPtr); 840 } 841 } 842 843 case VTableComponent::CK_UnusedFunctionPointer: 844 if (useRelativeLayout()) 845 return builder.add(llvm::ConstantExpr::getNullValue(CGM.Int32Ty)); 846 else 847 return builder.addNullPointer(CGM.GlobalsInt8PtrTy); 848 } 849 850 llvm_unreachable("Unexpected vtable component kind"); 851 } 852 853 llvm::Type *CodeGenVTables::getVTableType(const VTableLayout &layout) { 854 SmallVector<llvm::Type *, 4> tys; 855 llvm::Type *componentType = getVTableComponentType(); 856 for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i) 857 tys.push_back(llvm::ArrayType::get(componentType, layout.getVTableSize(i))); 858 859 return llvm::StructType::get(CGM.getLLVMContext(), tys); 860 } 861 862 void CodeGenVTables::createVTableInitializer(ConstantStructBuilder &builder, 863 const VTableLayout &layout, 864 llvm::Constant *rtti, 865 bool vtableHasLocalLinkage) { 866 llvm::Type *componentType = getVTableComponentType(); 867 868 const auto &addressPoints = layout.getAddressPointIndices(); 869 unsigned nextVTableThunkIndex = 0; 870 for (unsigned vtableIndex = 0, endIndex = layout.getNumVTables(); 871 vtableIndex != endIndex; ++vtableIndex) { 872 auto vtableElem = builder.beginArray(componentType); 873 874 size_t vtableStart = layout.getVTableOffset(vtableIndex); 875 size_t vtableEnd = vtableStart + layout.getVTableSize(vtableIndex); 876 for (size_t componentIndex = vtableStart; componentIndex < vtableEnd; 877 ++componentIndex) { 878 addVTableComponent(vtableElem, layout, componentIndex, rtti, 879 nextVTableThunkIndex, addressPoints[vtableIndex], 880 vtableHasLocalLinkage); 881 } 882 vtableElem.finishAndAddTo(builder); 883 } 884 } 885 886 llvm::GlobalVariable *CodeGenVTables::GenerateConstructionVTable( 887 const CXXRecordDecl *RD, const BaseSubobject &Base, bool BaseIsVirtual, 888 llvm::GlobalVariable::LinkageTypes Linkage, 889 VTableAddressPointsMapTy &AddressPoints) { 890 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 891 DI->completeClassData(Base.getBase()); 892 893 std::unique_ptr<VTableLayout> VTLayout( 894 getItaniumVTableContext().createConstructionVTableLayout( 895 Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD)); 896 897 // Add the address points. 898 AddressPoints = VTLayout->getAddressPoints(); 899 900 // Get the mangled construction vtable name. 901 SmallString<256> OutName; 902 llvm::raw_svector_ostream Out(OutName); 903 cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext()) 904 .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(), 905 Base.getBase(), Out); 906 SmallString<256> Name(OutName); 907 908 bool UsingRelativeLayout = getItaniumVTableContext().isRelativeLayout(); 909 bool VTableAliasExists = 910 UsingRelativeLayout && CGM.getModule().getNamedAlias(Name); 911 if (VTableAliasExists) { 912 // We previously made the vtable hidden and changed its name. 913 Name.append(".local"); 914 } 915 916 llvm::Type *VTType = getVTableType(*VTLayout); 917 918 // Construction vtable symbols are not part of the Itanium ABI, so we cannot 919 // guarantee that they actually will be available externally. Instead, when 920 // emitting an available_externally VTT, we provide references to an internal 921 // linkage construction vtable. The ABI only requires complete-object vtables 922 // to be the same for all instances of a type, not construction vtables. 923 if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage) 924 Linkage = llvm::GlobalVariable::InternalLinkage; 925 926 llvm::Align Align = CGM.getDataLayout().getABITypeAlign(VTType); 927 928 // Create the variable that will hold the construction vtable. 929 llvm::GlobalVariable *VTable = 930 CGM.CreateOrReplaceCXXRuntimeVariable(Name, VTType, Linkage, Align); 931 932 // V-tables are always unnamed_addr. 933 VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 934 935 llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor( 936 CGM.getContext().getTagDeclType(Base.getBase())); 937 938 // Create and set the initializer. 939 ConstantInitBuilder builder(CGM); 940 auto components = builder.beginStruct(); 941 createVTableInitializer(components, *VTLayout, RTTI, 942 VTable->hasLocalLinkage()); 943 components.finishAndSetAsInitializer(VTable); 944 945 // Set properties only after the initializer has been set to ensure that the 946 // GV is treated as definition and not declaration. 947 assert(!VTable->isDeclaration() && "Shouldn't set properties on declaration"); 948 CGM.setGVProperties(VTable, RD); 949 950 CGM.EmitVTableTypeMetadata(RD, VTable, *VTLayout.get()); 951 952 if (UsingRelativeLayout) { 953 RemoveHwasanMetadata(VTable); 954 if (!VTable->isDSOLocal()) 955 GenerateRelativeVTableAlias(VTable, OutName); 956 } 957 958 return VTable; 959 } 960 961 // Ensure this vtable is not instrumented by hwasan. That is, a global alias is 962 // not generated for it. This is mainly used by the relative-vtables ABI where 963 // vtables instead contain 32-bit offsets between the vtable and function 964 // pointers. Hwasan is disabled for these vtables for now because the tag in a 965 // vtable pointer may fail the overflow check when resolving 32-bit PLT 966 // relocations. A future alternative for this would be finding which usages of 967 // the vtable can continue to use the untagged hwasan value without any loss of 968 // value in hwasan. 969 void CodeGenVTables::RemoveHwasanMetadata(llvm::GlobalValue *GV) const { 970 if (CGM.getLangOpts().Sanitize.has(SanitizerKind::HWAddress)) { 971 llvm::GlobalValue::SanitizerMetadata Meta; 972 if (GV->hasSanitizerMetadata()) 973 Meta = GV->getSanitizerMetadata(); 974 Meta.NoHWAddress = true; 975 GV->setSanitizerMetadata(Meta); 976 } 977 } 978 979 // If the VTable is not dso_local, then we will not be able to indicate that 980 // the VTable does not need a relocation and move into rodata. A frequent 981 // time this can occur is for classes that should be made public from a DSO 982 // (like in libc++). For cases like these, we can make the vtable hidden or 983 // private and create a public alias with the same visibility and linkage as 984 // the original vtable type. 985 void CodeGenVTables::GenerateRelativeVTableAlias(llvm::GlobalVariable *VTable, 986 llvm::StringRef AliasNameRef) { 987 assert(getItaniumVTableContext().isRelativeLayout() && 988 "Can only use this if the relative vtable ABI is used"); 989 assert(!VTable->isDSOLocal() && "This should be called only if the vtable is " 990 "not guaranteed to be dso_local"); 991 992 // If the vtable is available_externally, we shouldn't (or need to) generate 993 // an alias for it in the first place since the vtable won't actually by 994 // emitted in this compilation unit. 995 if (VTable->hasAvailableExternallyLinkage()) 996 return; 997 998 // Create a new string in the event the alias is already the name of the 999 // vtable. Using the reference directly could lead to use of an inititialized 1000 // value in the module's StringMap. 1001 llvm::SmallString<256> AliasName(AliasNameRef); 1002 VTable->setName(AliasName + ".local"); 1003 1004 auto Linkage = VTable->getLinkage(); 1005 assert(llvm::GlobalAlias::isValidLinkage(Linkage) && 1006 "Invalid vtable alias linkage"); 1007 1008 llvm::GlobalAlias *VTableAlias = CGM.getModule().getNamedAlias(AliasName); 1009 if (!VTableAlias) { 1010 VTableAlias = llvm::GlobalAlias::create(VTable->getValueType(), 1011 VTable->getAddressSpace(), Linkage, 1012 AliasName, &CGM.getModule()); 1013 } else { 1014 assert(VTableAlias->getValueType() == VTable->getValueType()); 1015 assert(VTableAlias->getLinkage() == Linkage); 1016 } 1017 VTableAlias->setVisibility(VTable->getVisibility()); 1018 VTableAlias->setUnnamedAddr(VTable->getUnnamedAddr()); 1019 1020 // Both of these imply dso_local for the vtable. 1021 if (!VTable->hasComdat()) { 1022 // If this is in a comdat, then we shouldn't make the linkage private due to 1023 // an issue in lld where private symbols can be used as the key symbol when 1024 // choosing the prevelant group. This leads to "relocation refers to a 1025 // symbol in a discarded section". 1026 VTable->setLinkage(llvm::GlobalValue::PrivateLinkage); 1027 } else { 1028 // We should at least make this hidden since we don't want to expose it. 1029 VTable->setVisibility(llvm::GlobalValue::HiddenVisibility); 1030 } 1031 1032 VTableAlias->setAliasee(VTable); 1033 } 1034 1035 static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM, 1036 const CXXRecordDecl *RD) { 1037 return CGM.getCodeGenOpts().OptimizationLevel > 0 && 1038 CGM.getCXXABI().canSpeculativelyEmitVTable(RD); 1039 } 1040 1041 /// Compute the required linkage of the vtable for the given class. 1042 /// 1043 /// Note that we only call this at the end of the translation unit. 1044 llvm::GlobalVariable::LinkageTypes 1045 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1046 if (!RD->isExternallyVisible()) 1047 return llvm::GlobalVariable::InternalLinkage; 1048 1049 // We're at the end of the translation unit, so the current key 1050 // function is fully correct. 1051 const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD); 1052 if (keyFunction && !RD->hasAttr<DLLImportAttr>()) { 1053 // If this class has a key function, use that to determine the 1054 // linkage of the vtable. 1055 const FunctionDecl *def = nullptr; 1056 if (keyFunction->hasBody(def)) 1057 keyFunction = cast<CXXMethodDecl>(def); 1058 1059 switch (keyFunction->getTemplateSpecializationKind()) { 1060 case TSK_Undeclared: 1061 case TSK_ExplicitSpecialization: 1062 assert( 1063 (def || CodeGenOpts.OptimizationLevel > 0 || 1064 CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo) && 1065 "Shouldn't query vtable linkage without key function, " 1066 "optimizations, or debug info"); 1067 if (!def && CodeGenOpts.OptimizationLevel > 0) 1068 return llvm::GlobalVariable::AvailableExternallyLinkage; 1069 1070 if (keyFunction->isInlined()) 1071 return !Context.getLangOpts().AppleKext 1072 ? llvm::GlobalVariable::LinkOnceODRLinkage 1073 : llvm::Function::InternalLinkage; 1074 1075 return llvm::GlobalVariable::ExternalLinkage; 1076 1077 case TSK_ImplicitInstantiation: 1078 return !Context.getLangOpts().AppleKext ? 1079 llvm::GlobalVariable::LinkOnceODRLinkage : 1080 llvm::Function::InternalLinkage; 1081 1082 case TSK_ExplicitInstantiationDefinition: 1083 return !Context.getLangOpts().AppleKext ? 1084 llvm::GlobalVariable::WeakODRLinkage : 1085 llvm::Function::InternalLinkage; 1086 1087 case TSK_ExplicitInstantiationDeclaration: 1088 llvm_unreachable("Should not have been asked to emit this"); 1089 } 1090 } 1091 1092 // -fapple-kext mode does not support weak linkage, so we must use 1093 // internal linkage. 1094 if (Context.getLangOpts().AppleKext) 1095 return llvm::Function::InternalLinkage; 1096 1097 llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage = 1098 llvm::GlobalValue::LinkOnceODRLinkage; 1099 llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage = 1100 llvm::GlobalValue::WeakODRLinkage; 1101 if (RD->hasAttr<DLLExportAttr>()) { 1102 // Cannot discard exported vtables. 1103 DiscardableODRLinkage = NonDiscardableODRLinkage; 1104 } else if (RD->hasAttr<DLLImportAttr>()) { 1105 // Imported vtables are available externally. 1106 DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 1107 NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 1108 } 1109 1110 switch (RD->getTemplateSpecializationKind()) { 1111 case TSK_Undeclared: 1112 case TSK_ExplicitSpecialization: 1113 case TSK_ImplicitInstantiation: 1114 return DiscardableODRLinkage; 1115 1116 case TSK_ExplicitInstantiationDeclaration: 1117 // Explicit instantiations in MSVC do not provide vtables, so we must emit 1118 // our own. 1119 if (getTarget().getCXXABI().isMicrosoft()) 1120 return DiscardableODRLinkage; 1121 return shouldEmitAvailableExternallyVTable(*this, RD) 1122 ? llvm::GlobalVariable::AvailableExternallyLinkage 1123 : llvm::GlobalVariable::ExternalLinkage; 1124 1125 case TSK_ExplicitInstantiationDefinition: 1126 return NonDiscardableODRLinkage; 1127 } 1128 1129 llvm_unreachable("Invalid TemplateSpecializationKind!"); 1130 } 1131 1132 /// This is a callback from Sema to tell us that a particular vtable is 1133 /// required to be emitted in this translation unit. 1134 /// 1135 /// This is only called for vtables that _must_ be emitted (mainly due to key 1136 /// functions). For weak vtables, CodeGen tracks when they are needed and 1137 /// emits them as-needed. 1138 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) { 1139 VTables.GenerateClassData(theClass); 1140 } 1141 1142 void 1143 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) { 1144 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 1145 DI->completeClassData(RD); 1146 1147 if (RD->getNumVBases()) 1148 CGM.getCXXABI().emitVirtualInheritanceTables(RD); 1149 1150 CGM.getCXXABI().emitVTableDefinitions(*this, RD); 1151 } 1152 1153 /// At this point in the translation unit, does it appear that can we 1154 /// rely on the vtable being defined elsewhere in the program? 1155 /// 1156 /// The response is really only definitive when called at the end of 1157 /// the translation unit. 1158 /// 1159 /// The only semantic restriction here is that the object file should 1160 /// not contain a vtable definition when that vtable is defined 1161 /// strongly elsewhere. Otherwise, we'd just like to avoid emitting 1162 /// vtables when unnecessary. 1163 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) { 1164 assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable."); 1165 1166 // We always synthesize vtables if they are needed in the MS ABI. MSVC doesn't 1167 // emit them even if there is an explicit template instantiation. 1168 if (CGM.getTarget().getCXXABI().isMicrosoft()) 1169 return false; 1170 1171 // If we have an explicit instantiation declaration (and not a 1172 // definition), the vtable is defined elsewhere. 1173 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); 1174 if (TSK == TSK_ExplicitInstantiationDeclaration) 1175 return true; 1176 1177 // Otherwise, if the class is an instantiated template, the 1178 // vtable must be defined here. 1179 if (TSK == TSK_ImplicitInstantiation || 1180 TSK == TSK_ExplicitInstantiationDefinition) 1181 return false; 1182 1183 // Otherwise, if the class doesn't have a key function (possibly 1184 // anymore), the vtable must be defined here. 1185 const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD); 1186 if (!keyFunction) 1187 return false; 1188 1189 const FunctionDecl *Def; 1190 // Otherwise, if we don't have a definition of the key function, the 1191 // vtable must be defined somewhere else. 1192 if (!keyFunction->hasBody(Def)) 1193 return true; 1194 1195 assert(Def && "The body of the key function is not assigned to Def?"); 1196 // If the non-inline key function comes from another module unit, the vtable 1197 // must be defined there. 1198 return Def->isInAnotherModuleUnit() && !Def->isInlineSpecified(); 1199 } 1200 1201 /// Given that we're currently at the end of the translation unit, and 1202 /// we've emitted a reference to the vtable for this class, should 1203 /// we define that vtable? 1204 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM, 1205 const CXXRecordDecl *RD) { 1206 // If vtable is internal then it has to be done. 1207 if (!CGM.getVTables().isVTableExternal(RD)) 1208 return true; 1209 1210 // If it's external then maybe we will need it as available_externally. 1211 return shouldEmitAvailableExternallyVTable(CGM, RD); 1212 } 1213 1214 /// Given that at some point we emitted a reference to one or more 1215 /// vtables, and that we are now at the end of the translation unit, 1216 /// decide whether we should emit them. 1217 void CodeGenModule::EmitDeferredVTables() { 1218 #ifndef NDEBUG 1219 // Remember the size of DeferredVTables, because we're going to assume 1220 // that this entire operation doesn't modify it. 1221 size_t savedSize = DeferredVTables.size(); 1222 #endif 1223 1224 for (const CXXRecordDecl *RD : DeferredVTables) 1225 if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD)) 1226 VTables.GenerateClassData(RD); 1227 else if (shouldOpportunisticallyEmitVTables()) 1228 OpportunisticVTables.push_back(RD); 1229 1230 assert(savedSize == DeferredVTables.size() && 1231 "deferred extra vtables during vtable emission?"); 1232 DeferredVTables.clear(); 1233 } 1234 1235 bool CodeGenModule::AlwaysHasLTOVisibilityPublic(const CXXRecordDecl *RD) { 1236 if (RD->hasAttr<LTOVisibilityPublicAttr>() || RD->hasAttr<UuidAttr>() || 1237 RD->hasAttr<DLLExportAttr>() || RD->hasAttr<DLLImportAttr>()) 1238 return true; 1239 1240 if (!getCodeGenOpts().LTOVisibilityPublicStd) 1241 return false; 1242 1243 const DeclContext *DC = RD; 1244 while (true) { 1245 auto *D = cast<Decl>(DC); 1246 DC = DC->getParent(); 1247 if (isa<TranslationUnitDecl>(DC->getRedeclContext())) { 1248 if (auto *ND = dyn_cast<NamespaceDecl>(D)) 1249 if (const IdentifierInfo *II = ND->getIdentifier()) 1250 if (II->isStr("std") || II->isStr("stdext")) 1251 return true; 1252 break; 1253 } 1254 } 1255 1256 return false; 1257 } 1258 1259 bool CodeGenModule::HasHiddenLTOVisibility(const CXXRecordDecl *RD) { 1260 LinkageInfo LV = RD->getLinkageAndVisibility(); 1261 if (!isExternallyVisible(LV.getLinkage())) 1262 return true; 1263 1264 if (!getTriple().isOSBinFormatCOFF() && 1265 LV.getVisibility() != HiddenVisibility) 1266 return false; 1267 1268 return !AlwaysHasLTOVisibilityPublic(RD); 1269 } 1270 1271 llvm::GlobalObject::VCallVisibility CodeGenModule::GetVCallVisibilityLevel( 1272 const CXXRecordDecl *RD, llvm::DenseSet<const CXXRecordDecl *> &Visited) { 1273 // If we have already visited this RD (which means this is a recursive call 1274 // since the initial call should have an empty Visited set), return the max 1275 // visibility. The recursive calls below compute the min between the result 1276 // of the recursive call and the current TypeVis, so returning the max here 1277 // ensures that it will have no effect on the current TypeVis. 1278 if (!Visited.insert(RD).second) 1279 return llvm::GlobalObject::VCallVisibilityTranslationUnit; 1280 1281 LinkageInfo LV = RD->getLinkageAndVisibility(); 1282 llvm::GlobalObject::VCallVisibility TypeVis; 1283 if (!isExternallyVisible(LV.getLinkage())) 1284 TypeVis = llvm::GlobalObject::VCallVisibilityTranslationUnit; 1285 else if (HasHiddenLTOVisibility(RD)) 1286 TypeVis = llvm::GlobalObject::VCallVisibilityLinkageUnit; 1287 else 1288 TypeVis = llvm::GlobalObject::VCallVisibilityPublic; 1289 1290 for (const auto &B : RD->bases()) 1291 if (B.getType()->getAsCXXRecordDecl()->isDynamicClass()) 1292 TypeVis = std::min( 1293 TypeVis, 1294 GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl(), Visited)); 1295 1296 for (const auto &B : RD->vbases()) 1297 if (B.getType()->getAsCXXRecordDecl()->isDynamicClass()) 1298 TypeVis = std::min( 1299 TypeVis, 1300 GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl(), Visited)); 1301 1302 return TypeVis; 1303 } 1304 1305 void CodeGenModule::EmitVTableTypeMetadata(const CXXRecordDecl *RD, 1306 llvm::GlobalVariable *VTable, 1307 const VTableLayout &VTLayout) { 1308 // Emit type metadata on vtables with LTO or IR instrumentation. 1309 // In IR instrumentation, the type metadata is used to find out vtable 1310 // definitions (for type profiling) among all global variables. 1311 if (!getCodeGenOpts().LTOUnit && !getCodeGenOpts().hasProfileIRInstr()) 1312 return; 1313 1314 CharUnits ComponentWidth = GetTargetTypeStoreSize(getVTableComponentType()); 1315 1316 struct AddressPoint { 1317 const CXXRecordDecl *Base; 1318 size_t Offset; 1319 std::string TypeName; 1320 bool operator<(const AddressPoint &RHS) const { 1321 int D = TypeName.compare(RHS.TypeName); 1322 return D < 0 || (D == 0 && Offset < RHS.Offset); 1323 } 1324 }; 1325 std::vector<AddressPoint> AddressPoints; 1326 for (auto &&AP : VTLayout.getAddressPoints()) { 1327 AddressPoint N{AP.first.getBase(), 1328 VTLayout.getVTableOffset(AP.second.VTableIndex) + 1329 AP.second.AddressPointIndex, 1330 {}}; 1331 llvm::raw_string_ostream Stream(N.TypeName); 1332 getCXXABI().getMangleContext().mangleCanonicalTypeName( 1333 QualType(N.Base->getTypeForDecl(), 0), Stream); 1334 AddressPoints.push_back(std::move(N)); 1335 } 1336 1337 // Sort the address points for determinism. 1338 llvm::sort(AddressPoints); 1339 1340 ArrayRef<VTableComponent> Comps = VTLayout.vtable_components(); 1341 for (auto AP : AddressPoints) { 1342 // Create type metadata for the address point. 1343 AddVTableTypeMetadata(VTable, ComponentWidth * AP.Offset, AP.Base); 1344 1345 // The class associated with each address point could also potentially be 1346 // used for indirect calls via a member function pointer, so we need to 1347 // annotate the address of each function pointer with the appropriate member 1348 // function pointer type. 1349 for (unsigned I = 0; I != Comps.size(); ++I) { 1350 if (Comps[I].getKind() != VTableComponent::CK_FunctionPointer) 1351 continue; 1352 llvm::Metadata *MD = CreateMetadataIdentifierForVirtualMemPtrType( 1353 Context.getMemberPointerType( 1354 Comps[I].getFunctionDecl()->getType(), 1355 Context.getRecordType(AP.Base).getTypePtr())); 1356 VTable->addTypeMetadata((ComponentWidth * I).getQuantity(), MD); 1357 } 1358 } 1359 1360 if (getCodeGenOpts().VirtualFunctionElimination || 1361 getCodeGenOpts().WholeProgramVTables) { 1362 llvm::DenseSet<const CXXRecordDecl *> Visited; 1363 llvm::GlobalObject::VCallVisibility TypeVis = 1364 GetVCallVisibilityLevel(RD, Visited); 1365 if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic) 1366 VTable->setVCallVisibilityMetadata(TypeVis); 1367 } 1368 } 1369