1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with C++ code generation of virtual tables. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/RecordLayout.h" 19 #include "clang/Basic/CodeGenOptions.h" 20 #include "clang/CodeGen/CGFunctionInfo.h" 21 #include "clang/CodeGen/ConstantInitBuilder.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/Support/Format.h" 24 #include "llvm/Transforms/Utils/Cloning.h" 25 #include <algorithm> 26 #include <cstdio> 27 #include <utility> 28 29 using namespace clang; 30 using namespace CodeGen; 31 32 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM) 33 : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {} 34 35 llvm::Constant *CodeGenModule::GetAddrOfThunk(StringRef Name, llvm::Type *FnTy, 36 GlobalDecl GD) { 37 return GetOrCreateLLVMFunction(Name, FnTy, GD, /*ForVTable=*/true, 38 /*DontDefer=*/true, /*IsThunk=*/true); 39 } 40 41 static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk, 42 llvm::Function *ThunkFn, bool ForVTable, 43 GlobalDecl GD) { 44 CGM.setFunctionLinkage(GD, ThunkFn); 45 CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD, 46 !Thunk.Return.isEmpty()); 47 48 // Set the right visibility. 49 CGM.setGVProperties(ThunkFn, GD); 50 51 if (!CGM.getCXXABI().exportThunk()) { 52 ThunkFn->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 53 ThunkFn->setDSOLocal(true); 54 } 55 56 if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker()) 57 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 58 } 59 60 #ifndef NDEBUG 61 static bool similar(const ABIArgInfo &infoL, CanQualType typeL, 62 const ABIArgInfo &infoR, CanQualType typeR) { 63 return (infoL.getKind() == infoR.getKind() && 64 (typeL == typeR || 65 (isa<PointerType>(typeL) && isa<PointerType>(typeR)) || 66 (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR)))); 67 } 68 #endif 69 70 static RValue PerformReturnAdjustment(CodeGenFunction &CGF, 71 QualType ResultType, RValue RV, 72 const ThunkInfo &Thunk) { 73 // Emit the return adjustment. 74 bool NullCheckValue = !ResultType->isReferenceType(); 75 76 llvm::BasicBlock *AdjustNull = nullptr; 77 llvm::BasicBlock *AdjustNotNull = nullptr; 78 llvm::BasicBlock *AdjustEnd = nullptr; 79 80 llvm::Value *ReturnValue = RV.getScalarVal(); 81 82 if (NullCheckValue) { 83 AdjustNull = CGF.createBasicBlock("adjust.null"); 84 AdjustNotNull = CGF.createBasicBlock("adjust.notnull"); 85 AdjustEnd = CGF.createBasicBlock("adjust.end"); 86 87 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue); 88 CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull); 89 CGF.EmitBlock(AdjustNotNull); 90 } 91 92 auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl(); 93 auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl); 94 ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment( 95 CGF, 96 Address(ReturnValue, CGF.ConvertTypeForMem(ResultType->getPointeeType()), 97 ClassAlign), 98 ClassDecl, Thunk.Return); 99 100 if (NullCheckValue) { 101 CGF.Builder.CreateBr(AdjustEnd); 102 CGF.EmitBlock(AdjustNull); 103 CGF.Builder.CreateBr(AdjustEnd); 104 CGF.EmitBlock(AdjustEnd); 105 106 llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2); 107 PHI->addIncoming(ReturnValue, AdjustNotNull); 108 PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()), 109 AdjustNull); 110 ReturnValue = PHI; 111 } 112 113 return RValue::get(ReturnValue); 114 } 115 116 /// This function clones a function's DISubprogram node and enters it into 117 /// a value map with the intent that the map can be utilized by the cloner 118 /// to short-circuit Metadata node mapping. 119 /// Furthermore, the function resolves any DILocalVariable nodes referenced 120 /// by dbg.value intrinsics so they can be properly mapped during cloning. 121 static void resolveTopLevelMetadata(llvm::Function *Fn, 122 llvm::ValueToValueMapTy &VMap) { 123 // Clone the DISubprogram node and put it into the Value map. 124 auto *DIS = Fn->getSubprogram(); 125 if (!DIS) 126 return; 127 auto *NewDIS = DIS->replaceWithDistinct(DIS->clone()); 128 VMap.MD()[DIS].reset(NewDIS); 129 130 // Find all llvm.dbg.declare intrinsics and resolve the DILocalVariable nodes 131 // they are referencing. 132 for (auto &BB : *Fn) { 133 for (auto &I : BB) { 134 for (llvm::DbgVariableRecord &DVR : 135 llvm::filterDbgVars(I.getDbgRecordRange())) { 136 auto *DILocal = DVR.getVariable(); 137 if (!DILocal->isResolved()) 138 DILocal->resolve(); 139 } 140 if (auto *DII = dyn_cast<llvm::DbgVariableIntrinsic>(&I)) { 141 auto *DILocal = DII->getVariable(); 142 if (!DILocal->isResolved()) 143 DILocal->resolve(); 144 } 145 } 146 } 147 } 148 149 // This function does roughly the same thing as GenerateThunk, but in a 150 // very different way, so that va_start and va_end work correctly. 151 // FIXME: This function assumes "this" is the first non-sret LLVM argument of 152 // a function, and that there is an alloca built in the entry block 153 // for all accesses to "this". 154 // FIXME: This function assumes there is only one "ret" statement per function. 155 // FIXME: Cloning isn't correct in the presence of indirect goto! 156 // FIXME: This implementation of thunks bloats codesize by duplicating the 157 // function definition. There are alternatives: 158 // 1. Add some sort of stub support to LLVM for cases where we can 159 // do a this adjustment, then a sibcall. 160 // 2. We could transform the definition to take a va_list instead of an 161 // actual variable argument list, then have the thunks (including a 162 // no-op thunk for the regular definition) call va_start/va_end. 163 // There's a bit of per-call overhead for this solution, but it's 164 // better for codesize if the definition is long. 165 llvm::Function * 166 CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn, 167 const CGFunctionInfo &FnInfo, 168 GlobalDecl GD, const ThunkInfo &Thunk) { 169 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 170 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 171 QualType ResultType = FPT->getReturnType(); 172 173 // Get the original function 174 assert(FnInfo.isVariadic()); 175 llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo); 176 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 177 llvm::Function *BaseFn = cast<llvm::Function>(Callee); 178 179 // Cloning can't work if we don't have a definition. The Microsoft ABI may 180 // require thunks when a definition is not available. Emit an error in these 181 // cases. 182 if (!MD->isDefined()) { 183 CGM.ErrorUnsupported(MD, "return-adjusting thunk with variadic arguments"); 184 return Fn; 185 } 186 assert(!BaseFn->isDeclaration() && "cannot clone undefined variadic method"); 187 188 // Clone to thunk. 189 llvm::ValueToValueMapTy VMap; 190 191 // We are cloning a function while some Metadata nodes are still unresolved. 192 // Ensure that the value mapper does not encounter any of them. 193 resolveTopLevelMetadata(BaseFn, VMap); 194 llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap); 195 Fn->replaceAllUsesWith(NewFn); 196 NewFn->takeName(Fn); 197 Fn->eraseFromParent(); 198 Fn = NewFn; 199 200 // "Initialize" CGF (minimally). 201 CurFn = Fn; 202 203 // Get the "this" value 204 llvm::Function::arg_iterator AI = Fn->arg_begin(); 205 if (CGM.ReturnTypeUsesSRet(FnInfo)) 206 ++AI; 207 208 // Find the first store of "this", which will be to the alloca associated 209 // with "this". 210 Address ThisPtr = makeNaturalAddressForPointer( 211 &*AI, MD->getFunctionObjectParameterType(), 212 CGM.getClassPointerAlignment(MD->getParent())); 213 llvm::BasicBlock *EntryBB = &Fn->front(); 214 llvm::BasicBlock::iterator ThisStore = 215 llvm::find_if(*EntryBB, [&](llvm::Instruction &I) { 216 return isa<llvm::StoreInst>(I) && I.getOperand(0) == &*AI; 217 }); 218 assert(ThisStore != EntryBB->end() && 219 "Store of this should be in entry block?"); 220 // Adjust "this", if necessary. 221 Builder.SetInsertPoint(&*ThisStore); 222 223 const CXXRecordDecl *ThisValueClass = Thunk.ThisType->getPointeeCXXRecordDecl(); 224 llvm::Value *AdjustedThisPtr = CGM.getCXXABI().performThisAdjustment( 225 *this, ThisPtr, ThisValueClass, Thunk); 226 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, 227 ThisStore->getOperand(0)->getType()); 228 ThisStore->setOperand(0, AdjustedThisPtr); 229 230 if (!Thunk.Return.isEmpty()) { 231 // Fix up the returned value, if necessary. 232 for (llvm::BasicBlock &BB : *Fn) { 233 llvm::Instruction *T = BB.getTerminator(); 234 if (isa<llvm::ReturnInst>(T)) { 235 RValue RV = RValue::get(T->getOperand(0)); 236 T->eraseFromParent(); 237 Builder.SetInsertPoint(&BB); 238 RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); 239 Builder.CreateRet(RV.getScalarVal()); 240 break; 241 } 242 } 243 } 244 245 return Fn; 246 } 247 248 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD, 249 const CGFunctionInfo &FnInfo, 250 bool IsUnprototyped) { 251 assert(!CurGD.getDecl() && "CurGD was already set!"); 252 CurGD = GD; 253 CurFuncIsThunk = true; 254 255 // Build FunctionArgs. 256 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 257 QualType ThisType = MD->getThisType(); 258 QualType ResultType; 259 if (IsUnprototyped) 260 ResultType = CGM.getContext().VoidTy; 261 else if (CGM.getCXXABI().HasThisReturn(GD)) 262 ResultType = ThisType; 263 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 264 ResultType = CGM.getContext().VoidPtrTy; 265 else 266 ResultType = MD->getType()->castAs<FunctionProtoType>()->getReturnType(); 267 FunctionArgList FunctionArgs; 268 269 // Create the implicit 'this' parameter declaration. 270 CGM.getCXXABI().buildThisParam(*this, FunctionArgs); 271 272 // Add the rest of the parameters, if we have a prototype to work with. 273 if (!IsUnprototyped) { 274 FunctionArgs.append(MD->param_begin(), MD->param_end()); 275 276 if (isa<CXXDestructorDecl>(MD)) 277 CGM.getCXXABI().addImplicitStructorParams(*this, ResultType, 278 FunctionArgs); 279 } 280 281 // Start defining the function. 282 auto NL = ApplyDebugLocation::CreateEmpty(*this); 283 StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs, 284 MD->getLocation()); 285 // Create a scope with an artificial location for the body of this function. 286 auto AL = ApplyDebugLocation::CreateArtificial(*this); 287 288 // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves. 289 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 290 CXXThisValue = CXXABIThisValue; 291 CurCodeDecl = MD; 292 CurFuncDecl = MD; 293 } 294 295 void CodeGenFunction::FinishThunk() { 296 // Clear these to restore the invariants expected by 297 // StartFunction/FinishFunction. 298 CurCodeDecl = nullptr; 299 CurFuncDecl = nullptr; 300 301 FinishFunction(); 302 } 303 304 void CodeGenFunction::EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 305 const ThunkInfo *Thunk, 306 bool IsUnprototyped) { 307 assert(isa<CXXMethodDecl>(CurGD.getDecl()) && 308 "Please use a new CGF for this thunk"); 309 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl()); 310 311 // Adjust the 'this' pointer if necessary 312 const CXXRecordDecl *ThisValueClass = 313 MD->getThisType()->getPointeeCXXRecordDecl(); 314 if (Thunk) 315 ThisValueClass = Thunk->ThisType->getPointeeCXXRecordDecl(); 316 317 llvm::Value *AdjustedThisPtr = 318 Thunk ? CGM.getCXXABI().performThisAdjustment(*this, LoadCXXThisAddress(), 319 ThisValueClass, *Thunk) 320 : LoadCXXThis(); 321 322 // If perfect forwarding is required a variadic method, a method using 323 // inalloca, or an unprototyped thunk, use musttail. Emit an error if this 324 // thunk requires a return adjustment, since that is impossible with musttail. 325 if (CurFnInfo->usesInAlloca() || CurFnInfo->isVariadic() || IsUnprototyped) { 326 if (Thunk && !Thunk->Return.isEmpty()) { 327 if (IsUnprototyped) 328 CGM.ErrorUnsupported( 329 MD, "return-adjusting thunk with incomplete parameter type"); 330 else if (CurFnInfo->isVariadic()) 331 llvm_unreachable("shouldn't try to emit musttail return-adjusting " 332 "thunks for variadic functions"); 333 else 334 CGM.ErrorUnsupported( 335 MD, "non-trivial argument copy for return-adjusting thunk"); 336 } 337 EmitMustTailThunk(CurGD, AdjustedThisPtr, Callee); 338 return; 339 } 340 341 // Start building CallArgs. 342 CallArgList CallArgs; 343 QualType ThisType = MD->getThisType(); 344 CallArgs.add(RValue::get(AdjustedThisPtr), ThisType); 345 346 if (isa<CXXDestructorDecl>(MD)) 347 CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs); 348 349 #ifndef NDEBUG 350 unsigned PrefixArgs = CallArgs.size() - 1; 351 #endif 352 // Add the rest of the arguments. 353 for (const ParmVarDecl *PD : MD->parameters()) 354 EmitDelegateCallArg(CallArgs, PD, SourceLocation()); 355 356 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 357 358 #ifndef NDEBUG 359 const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall( 360 CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1), PrefixArgs); 361 assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() && 362 CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() && 363 CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention()); 364 assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types 365 similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(), 366 CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType())); 367 assert(CallFnInfo.arg_size() == CurFnInfo->arg_size()); 368 for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i) 369 assert(similar(CallFnInfo.arg_begin()[i].info, 370 CallFnInfo.arg_begin()[i].type, 371 CurFnInfo->arg_begin()[i].info, 372 CurFnInfo->arg_begin()[i].type)); 373 #endif 374 375 // Determine whether we have a return value slot to use. 376 QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD) 377 ? ThisType 378 : CGM.getCXXABI().hasMostDerivedReturn(CurGD) 379 ? CGM.getContext().VoidPtrTy 380 : FPT->getReturnType(); 381 ReturnValueSlot Slot; 382 if (!ResultType->isVoidType() && 383 (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect || 384 hasAggregateEvaluationKind(ResultType))) 385 Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified(), 386 /*IsUnused=*/false, /*IsExternallyDestructed=*/true); 387 388 // Now emit our call. 389 llvm::CallBase *CallOrInvoke; 390 RValue RV = EmitCall(*CurFnInfo, CGCallee::forDirect(Callee, CurGD), Slot, 391 CallArgs, &CallOrInvoke); 392 393 // Consider return adjustment if we have ThunkInfo. 394 if (Thunk && !Thunk->Return.isEmpty()) 395 RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk); 396 else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke)) 397 Call->setTailCallKind(llvm::CallInst::TCK_Tail); 398 399 // Emit return. 400 if (!ResultType->isVoidType() && Slot.isNull()) 401 CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType); 402 403 // Disable the final ARC autorelease. 404 AutoreleaseResult = false; 405 406 FinishThunk(); 407 } 408 409 void CodeGenFunction::EmitMustTailThunk(GlobalDecl GD, 410 llvm::Value *AdjustedThisPtr, 411 llvm::FunctionCallee Callee) { 412 // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery 413 // to translate AST arguments into LLVM IR arguments. For thunks, we know 414 // that the caller prototype more or less matches the callee prototype with 415 // the exception of 'this'. 416 SmallVector<llvm::Value *, 8> Args(llvm::make_pointer_range(CurFn->args())); 417 418 // Set the adjusted 'this' pointer. 419 const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info; 420 if (ThisAI.isDirect()) { 421 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 422 int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0; 423 llvm::Type *ThisType = Args[ThisArgNo]->getType(); 424 if (ThisType != AdjustedThisPtr->getType()) 425 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 426 Args[ThisArgNo] = AdjustedThisPtr; 427 } else { 428 assert(ThisAI.isInAlloca() && "this is passed directly or inalloca"); 429 Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl); 430 llvm::Type *ThisType = ThisAddr.getElementType(); 431 if (ThisType != AdjustedThisPtr->getType()) 432 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 433 Builder.CreateStore(AdjustedThisPtr, ThisAddr); 434 } 435 436 // Emit the musttail call manually. Even if the prologue pushed cleanups, we 437 // don't actually want to run them. 438 llvm::CallInst *Call = Builder.CreateCall(Callee, Args); 439 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 440 441 // Apply the standard set of call attributes. 442 unsigned CallingConv; 443 llvm::AttributeList Attrs; 444 CGM.ConstructAttributeList(Callee.getCallee()->getName(), *CurFnInfo, GD, 445 Attrs, CallingConv, /*AttrOnCallSite=*/true, 446 /*IsThunk=*/false); 447 Call->setAttributes(Attrs); 448 Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 449 450 if (Call->getType()->isVoidTy()) 451 Builder.CreateRetVoid(); 452 else 453 Builder.CreateRet(Call); 454 455 // Finish the function to maintain CodeGenFunction invariants. 456 // FIXME: Don't emit unreachable code. 457 EmitBlock(createBasicBlock()); 458 459 FinishThunk(); 460 } 461 462 void CodeGenFunction::generateThunk(llvm::Function *Fn, 463 const CGFunctionInfo &FnInfo, GlobalDecl GD, 464 const ThunkInfo &Thunk, 465 bool IsUnprototyped) { 466 StartThunk(Fn, GD, FnInfo, IsUnprototyped); 467 // Create a scope with an artificial location for the body of this function. 468 auto AL = ApplyDebugLocation::CreateArtificial(*this); 469 470 // Get our callee. Use a placeholder type if this method is unprototyped so 471 // that CodeGenModule doesn't try to set attributes. 472 llvm::Type *Ty; 473 if (IsUnprototyped) 474 Ty = llvm::StructType::get(getLLVMContext()); 475 else 476 Ty = CGM.getTypes().GetFunctionType(FnInfo); 477 478 llvm::Constant *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 479 480 // Make the call and return the result. 481 EmitCallAndReturnForThunk(llvm::FunctionCallee(Fn->getFunctionType(), Callee), 482 &Thunk, IsUnprototyped); 483 } 484 485 static bool shouldEmitVTableThunk(CodeGenModule &CGM, const CXXMethodDecl *MD, 486 bool IsUnprototyped, bool ForVTable) { 487 // Always emit thunks in the MS C++ ABI. We cannot rely on other TUs to 488 // provide thunks for us. 489 if (CGM.getTarget().getCXXABI().isMicrosoft()) 490 return true; 491 492 // In the Itanium C++ ABI, vtable thunks are provided by TUs that provide 493 // definitions of the main method. Therefore, emitting thunks with the vtable 494 // is purely an optimization. Emit the thunk if optimizations are enabled and 495 // all of the parameter types are complete. 496 if (ForVTable) 497 return CGM.getCodeGenOpts().OptimizationLevel && !IsUnprototyped; 498 499 // Always emit thunks along with the method definition. 500 return true; 501 } 502 503 llvm::Constant *CodeGenVTables::maybeEmitThunk(GlobalDecl GD, 504 const ThunkInfo &TI, 505 bool ForVTable) { 506 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 507 508 // First, get a declaration. Compute the mangled name. Don't worry about 509 // getting the function prototype right, since we may only need this 510 // declaration to fill in a vtable slot. 511 SmallString<256> Name; 512 MangleContext &MCtx = CGM.getCXXABI().getMangleContext(); 513 llvm::raw_svector_ostream Out(Name); 514 515 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 516 MCtx.mangleCXXDtorThunk(DD, GD.getDtorType(), TI, 517 /* elideOverrideInfo */ false, Out); 518 } else 519 MCtx.mangleThunk(MD, TI, /* elideOverrideInfo */ false, Out); 520 521 if (CGM.getContext().useAbbreviatedThunkName(GD, Name.str())) { 522 Name = ""; 523 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) 524 MCtx.mangleCXXDtorThunk(DD, GD.getDtorType(), TI, 525 /* elideOverrideInfo */ true, Out); 526 else 527 MCtx.mangleThunk(MD, TI, /* elideOverrideInfo */ true, Out); 528 } 529 530 llvm::Type *ThunkVTableTy = CGM.getTypes().GetFunctionTypeForVTable(GD); 531 llvm::Constant *Thunk = CGM.GetAddrOfThunk(Name, ThunkVTableTy, GD); 532 533 // If we don't need to emit a definition, return this declaration as is. 534 bool IsUnprototyped = !CGM.getTypes().isFuncTypeConvertible( 535 MD->getType()->castAs<FunctionType>()); 536 if (!shouldEmitVTableThunk(CGM, MD, IsUnprototyped, ForVTable)) 537 return Thunk; 538 539 // Arrange a function prototype appropriate for a function definition. In some 540 // cases in the MS ABI, we may need to build an unprototyped musttail thunk. 541 const CGFunctionInfo &FnInfo = 542 IsUnprototyped ? CGM.getTypes().arrangeUnprototypedMustTailThunk(MD) 543 : CGM.getTypes().arrangeGlobalDeclaration(GD); 544 llvm::FunctionType *ThunkFnTy = CGM.getTypes().GetFunctionType(FnInfo); 545 546 // If the type of the underlying GlobalValue is wrong, we'll have to replace 547 // it. It should be a declaration. 548 llvm::Function *ThunkFn = cast<llvm::Function>(Thunk->stripPointerCasts()); 549 if (ThunkFn->getFunctionType() != ThunkFnTy) { 550 llvm::GlobalValue *OldThunkFn = ThunkFn; 551 552 assert(OldThunkFn->isDeclaration() && "Shouldn't replace non-declaration"); 553 554 // Remove the name from the old thunk function and get a new thunk. 555 OldThunkFn->setName(StringRef()); 556 ThunkFn = llvm::Function::Create(ThunkFnTy, llvm::Function::ExternalLinkage, 557 Name.str(), &CGM.getModule()); 558 CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn, /*IsThunk=*/false); 559 560 if (!OldThunkFn->use_empty()) { 561 OldThunkFn->replaceAllUsesWith(ThunkFn); 562 } 563 564 // Remove the old thunk. 565 OldThunkFn->eraseFromParent(); 566 } 567 568 bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions(); 569 bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions; 570 571 if (!ThunkFn->isDeclaration()) { 572 if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) { 573 // There is already a thunk emitted for this function, do nothing. 574 return ThunkFn; 575 } 576 577 setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD); 578 return ThunkFn; 579 } 580 581 // If this will be unprototyped, add the "thunk" attribute so that LLVM knows 582 // that the return type is meaningless. These thunks can be used to call 583 // functions with differing return types, and the caller is required to cast 584 // the prototype appropriately to extract the correct value. 585 if (IsUnprototyped) 586 ThunkFn->addFnAttr("thunk"); 587 588 CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn); 589 590 // Thunks for variadic methods are special because in general variadic 591 // arguments cannot be perfectly forwarded. In the general case, clang 592 // implements such thunks by cloning the original function body. However, for 593 // thunks with no return adjustment on targets that support musttail, we can 594 // use musttail to perfectly forward the variadic arguments. 595 bool ShouldCloneVarArgs = false; 596 if (!IsUnprototyped && ThunkFn->isVarArg()) { 597 ShouldCloneVarArgs = true; 598 if (TI.Return.isEmpty()) { 599 switch (CGM.getTriple().getArch()) { 600 case llvm::Triple::x86_64: 601 case llvm::Triple::x86: 602 case llvm::Triple::aarch64: 603 ShouldCloneVarArgs = false; 604 break; 605 default: 606 break; 607 } 608 } 609 } 610 611 if (ShouldCloneVarArgs) { 612 if (UseAvailableExternallyLinkage) 613 return ThunkFn; 614 ThunkFn = 615 CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, TI); 616 } else { 617 // Normal thunk body generation. 618 CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, TI, IsUnprototyped); 619 } 620 621 setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD); 622 return ThunkFn; 623 } 624 625 void CodeGenVTables::EmitThunks(GlobalDecl GD) { 626 const CXXMethodDecl *MD = 627 cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl(); 628 629 // We don't need to generate thunks for the base destructor. 630 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 631 return; 632 633 const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector = 634 VTContext->getThunkInfo(GD); 635 636 if (!ThunkInfoVector) 637 return; 638 639 for (const ThunkInfo& Thunk : *ThunkInfoVector) 640 maybeEmitThunk(GD, Thunk, /*ForVTable=*/false); 641 } 642 643 void CodeGenVTables::addRelativeComponent(ConstantArrayBuilder &builder, 644 llvm::Constant *component, 645 unsigned vtableAddressPoint, 646 bool vtableHasLocalLinkage, 647 bool isCompleteDtor) const { 648 // No need to get the offset of a nullptr. 649 if (component->isNullValue()) 650 return builder.add(llvm::ConstantInt::get(CGM.Int32Ty, 0)); 651 652 auto *globalVal = 653 cast<llvm::GlobalValue>(component->stripPointerCastsAndAliases()); 654 llvm::Module &module = CGM.getModule(); 655 656 // We don't want to copy the linkage of the vtable exactly because we still 657 // want the stub/proxy to be emitted for properly calculating the offset. 658 // Examples where there would be no symbol emitted are available_externally 659 // and private linkages. 660 // 661 // `internal` linkage results in STB_LOCAL Elf binding while still manifesting a 662 // local symbol. 663 // 664 // `linkonce_odr` linkage results in a STB_DEFAULT Elf binding but also allows for 665 // the rtti_proxy to be transparently replaced with a GOTPCREL reloc by a 666 // target that supports this replacement. 667 auto stubLinkage = vtableHasLocalLinkage 668 ? llvm::GlobalValue::InternalLinkage 669 : llvm::GlobalValue::LinkOnceODRLinkage; 670 671 llvm::Constant *target; 672 if (auto *func = dyn_cast<llvm::Function>(globalVal)) { 673 target = llvm::DSOLocalEquivalent::get(func); 674 } else { 675 llvm::SmallString<16> rttiProxyName(globalVal->getName()); 676 rttiProxyName.append(".rtti_proxy"); 677 678 // The RTTI component may not always be emitted in the same linkage unit as 679 // the vtable. As a general case, we can make a dso_local proxy to the RTTI 680 // that points to the actual RTTI struct somewhere. This will result in a 681 // GOTPCREL relocation when taking the relative offset to the proxy. 682 llvm::GlobalVariable *proxy = module.getNamedGlobal(rttiProxyName); 683 if (!proxy) { 684 proxy = new llvm::GlobalVariable(module, globalVal->getType(), 685 /*isConstant=*/true, stubLinkage, 686 globalVal, rttiProxyName); 687 proxy->setDSOLocal(true); 688 proxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 689 if (!proxy->hasLocalLinkage()) { 690 proxy->setVisibility(llvm::GlobalValue::HiddenVisibility); 691 proxy->setComdat(module.getOrInsertComdat(rttiProxyName)); 692 } 693 // Do not instrument the rtti proxies with hwasan to avoid a duplicate 694 // symbol error. Aliases generated by hwasan will retain the same namebut 695 // the addresses they are set to may have different tags from different 696 // compilation units. We don't run into this without hwasan because the 697 // proxies are in comdat groups, but those aren't propagated to the alias. 698 RemoveHwasanMetadata(proxy); 699 } 700 target = proxy; 701 } 702 703 builder.addRelativeOffsetToPosition(CGM.Int32Ty, target, 704 /*position=*/vtableAddressPoint); 705 } 706 707 static bool UseRelativeLayout(const CodeGenModule &CGM) { 708 return CGM.getTarget().getCXXABI().isItaniumFamily() && 709 CGM.getItaniumVTableContext().isRelativeLayout(); 710 } 711 712 bool CodeGenVTables::useRelativeLayout() const { 713 return UseRelativeLayout(CGM); 714 } 715 716 llvm::Type *CodeGenModule::getVTableComponentType() const { 717 if (UseRelativeLayout(*this)) 718 return Int32Ty; 719 return GlobalsInt8PtrTy; 720 } 721 722 llvm::Type *CodeGenVTables::getVTableComponentType() const { 723 return CGM.getVTableComponentType(); 724 } 725 726 static void AddPointerLayoutOffset(const CodeGenModule &CGM, 727 ConstantArrayBuilder &builder, 728 CharUnits offset) { 729 builder.add(llvm::ConstantExpr::getIntToPtr( 730 llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()), 731 CGM.GlobalsInt8PtrTy)); 732 } 733 734 static void AddRelativeLayoutOffset(const CodeGenModule &CGM, 735 ConstantArrayBuilder &builder, 736 CharUnits offset) { 737 builder.add(llvm::ConstantInt::get(CGM.Int32Ty, offset.getQuantity())); 738 } 739 740 void CodeGenVTables::addVTableComponent(ConstantArrayBuilder &builder, 741 const VTableLayout &layout, 742 unsigned componentIndex, 743 llvm::Constant *rtti, 744 unsigned &nextVTableThunkIndex, 745 unsigned vtableAddressPoint, 746 bool vtableHasLocalLinkage) { 747 auto &component = layout.vtable_components()[componentIndex]; 748 749 auto addOffsetConstant = 750 useRelativeLayout() ? AddRelativeLayoutOffset : AddPointerLayoutOffset; 751 752 switch (component.getKind()) { 753 case VTableComponent::CK_VCallOffset: 754 return addOffsetConstant(CGM, builder, component.getVCallOffset()); 755 756 case VTableComponent::CK_VBaseOffset: 757 return addOffsetConstant(CGM, builder, component.getVBaseOffset()); 758 759 case VTableComponent::CK_OffsetToTop: 760 return addOffsetConstant(CGM, builder, component.getOffsetToTop()); 761 762 case VTableComponent::CK_RTTI: 763 if (useRelativeLayout()) 764 return addRelativeComponent(builder, rtti, vtableAddressPoint, 765 vtableHasLocalLinkage, 766 /*isCompleteDtor=*/false); 767 else 768 return builder.add(rtti); 769 770 case VTableComponent::CK_FunctionPointer: 771 case VTableComponent::CK_CompleteDtorPointer: 772 case VTableComponent::CK_DeletingDtorPointer: { 773 GlobalDecl GD = component.getGlobalDecl(); 774 775 if (CGM.getLangOpts().CUDA) { 776 // Emit NULL for methods we can't codegen on this 777 // side. Otherwise we'd end up with vtable with unresolved 778 // references. 779 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 780 // OK on device side: functions w/ __device__ attribute 781 // OK on host side: anything except __device__-only functions. 782 bool CanEmitMethod = 783 CGM.getLangOpts().CUDAIsDevice 784 ? MD->hasAttr<CUDADeviceAttr>() 785 : (MD->hasAttr<CUDAHostAttr>() || !MD->hasAttr<CUDADeviceAttr>()); 786 if (!CanEmitMethod) 787 return builder.add( 788 llvm::ConstantExpr::getNullValue(CGM.GlobalsInt8PtrTy)); 789 // Method is acceptable, continue processing as usual. 790 } 791 792 auto getSpecialVirtualFn = [&](StringRef name) -> llvm::Constant * { 793 // FIXME(PR43094): When merging comdat groups, lld can select a local 794 // symbol as the signature symbol even though it cannot be accessed 795 // outside that symbol's TU. The relative vtables ABI would make 796 // __cxa_pure_virtual and __cxa_deleted_virtual local symbols, and 797 // depending on link order, the comdat groups could resolve to the one 798 // with the local symbol. As a temporary solution, fill these components 799 // with zero. We shouldn't be calling these in the first place anyway. 800 if (useRelativeLayout()) 801 return llvm::ConstantPointerNull::get(CGM.GlobalsInt8PtrTy); 802 803 // For NVPTX devices in OpenMP emit special functon as null pointers, 804 // otherwise linking ends up with unresolved references. 805 if (CGM.getLangOpts().OpenMP && CGM.getLangOpts().OpenMPIsTargetDevice && 806 CGM.getTriple().isNVPTX()) 807 return llvm::ConstantPointerNull::get(CGM.GlobalsInt8PtrTy); 808 llvm::FunctionType *fnTy = 809 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 810 llvm::Constant *fn = cast<llvm::Constant>( 811 CGM.CreateRuntimeFunction(fnTy, name).getCallee()); 812 if (auto f = dyn_cast<llvm::Function>(fn)) 813 f->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 814 return fn; 815 }; 816 817 llvm::Constant *fnPtr; 818 819 // Pure virtual member functions. 820 if (cast<CXXMethodDecl>(GD.getDecl())->isPureVirtual()) { 821 if (!PureVirtualFn) 822 PureVirtualFn = 823 getSpecialVirtualFn(CGM.getCXXABI().GetPureVirtualCallName()); 824 fnPtr = PureVirtualFn; 825 826 // Deleted virtual member functions. 827 } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) { 828 if (!DeletedVirtualFn) 829 DeletedVirtualFn = 830 getSpecialVirtualFn(CGM.getCXXABI().GetDeletedVirtualCallName()); 831 fnPtr = DeletedVirtualFn; 832 833 // Thunks. 834 } else if (nextVTableThunkIndex < layout.vtable_thunks().size() && 835 layout.vtable_thunks()[nextVTableThunkIndex].first == 836 componentIndex) { 837 auto &thunkInfo = layout.vtable_thunks()[nextVTableThunkIndex].second; 838 839 nextVTableThunkIndex++; 840 fnPtr = maybeEmitThunk(GD, thunkInfo, /*ForVTable=*/true); 841 if (CGM.getCodeGenOpts().PointerAuth.CXXVirtualFunctionPointers) { 842 assert(thunkInfo.Method && "Method not set"); 843 GD = GD.getWithDecl(thunkInfo.Method); 844 } 845 846 // Otherwise we can use the method definition directly. 847 } else { 848 llvm::Type *fnTy = CGM.getTypes().GetFunctionTypeForVTable(GD); 849 fnPtr = CGM.GetAddrOfFunction(GD, fnTy, /*ForVTable=*/true); 850 if (CGM.getCodeGenOpts().PointerAuth.CXXVirtualFunctionPointers) 851 GD = getItaniumVTableContext().findOriginalMethod(GD); 852 } 853 854 if (useRelativeLayout()) { 855 return addRelativeComponent( 856 builder, fnPtr, vtableAddressPoint, vtableHasLocalLinkage, 857 component.getKind() == VTableComponent::CK_CompleteDtorPointer); 858 } else { 859 // TODO: this icky and only exists due to functions being in the generic 860 // address space, rather than the global one, even though they are 861 // globals; fixing said issue might be intrusive, and will be done 862 // later. 863 unsigned FnAS = fnPtr->getType()->getPointerAddressSpace(); 864 unsigned GVAS = CGM.GlobalsInt8PtrTy->getPointerAddressSpace(); 865 866 if (FnAS != GVAS) 867 fnPtr = 868 llvm::ConstantExpr::getAddrSpaceCast(fnPtr, CGM.GlobalsInt8PtrTy); 869 if (const auto &Schema = 870 CGM.getCodeGenOpts().PointerAuth.CXXVirtualFunctionPointers) 871 return builder.addSignedPointer(fnPtr, Schema, GD, QualType()); 872 return builder.add(fnPtr); 873 } 874 } 875 876 case VTableComponent::CK_UnusedFunctionPointer: 877 if (useRelativeLayout()) 878 return builder.add(llvm::ConstantExpr::getNullValue(CGM.Int32Ty)); 879 else 880 return builder.addNullPointer(CGM.GlobalsInt8PtrTy); 881 } 882 883 llvm_unreachable("Unexpected vtable component kind"); 884 } 885 886 llvm::Type *CodeGenVTables::getVTableType(const VTableLayout &layout) { 887 SmallVector<llvm::Type *, 4> tys; 888 llvm::Type *componentType = getVTableComponentType(); 889 for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i) 890 tys.push_back(llvm::ArrayType::get(componentType, layout.getVTableSize(i))); 891 892 return llvm::StructType::get(CGM.getLLVMContext(), tys); 893 } 894 895 void CodeGenVTables::createVTableInitializer(ConstantStructBuilder &builder, 896 const VTableLayout &layout, 897 llvm::Constant *rtti, 898 bool vtableHasLocalLinkage) { 899 llvm::Type *componentType = getVTableComponentType(); 900 901 const auto &addressPoints = layout.getAddressPointIndices(); 902 unsigned nextVTableThunkIndex = 0; 903 for (unsigned vtableIndex = 0, endIndex = layout.getNumVTables(); 904 vtableIndex != endIndex; ++vtableIndex) { 905 auto vtableElem = builder.beginArray(componentType); 906 907 size_t vtableStart = layout.getVTableOffset(vtableIndex); 908 size_t vtableEnd = vtableStart + layout.getVTableSize(vtableIndex); 909 for (size_t componentIndex = vtableStart; componentIndex < vtableEnd; 910 ++componentIndex) { 911 addVTableComponent(vtableElem, layout, componentIndex, rtti, 912 nextVTableThunkIndex, addressPoints[vtableIndex], 913 vtableHasLocalLinkage); 914 } 915 vtableElem.finishAndAddTo(builder); 916 } 917 } 918 919 llvm::GlobalVariable *CodeGenVTables::GenerateConstructionVTable( 920 const CXXRecordDecl *RD, const BaseSubobject &Base, bool BaseIsVirtual, 921 llvm::GlobalVariable::LinkageTypes Linkage, 922 VTableAddressPointsMapTy &AddressPoints) { 923 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 924 DI->completeClassData(Base.getBase()); 925 926 std::unique_ptr<VTableLayout> VTLayout( 927 getItaniumVTableContext().createConstructionVTableLayout( 928 Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD)); 929 930 // Add the address points. 931 AddressPoints = VTLayout->getAddressPoints(); 932 933 // Get the mangled construction vtable name. 934 SmallString<256> OutName; 935 llvm::raw_svector_ostream Out(OutName); 936 cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext()) 937 .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(), 938 Base.getBase(), Out); 939 SmallString<256> Name(OutName); 940 941 bool UsingRelativeLayout = getItaniumVTableContext().isRelativeLayout(); 942 bool VTableAliasExists = 943 UsingRelativeLayout && CGM.getModule().getNamedAlias(Name); 944 if (VTableAliasExists) { 945 // We previously made the vtable hidden and changed its name. 946 Name.append(".local"); 947 } 948 949 llvm::Type *VTType = getVTableType(*VTLayout); 950 951 // Construction vtable symbols are not part of the Itanium ABI, so we cannot 952 // guarantee that they actually will be available externally. Instead, when 953 // emitting an available_externally VTT, we provide references to an internal 954 // linkage construction vtable. The ABI only requires complete-object vtables 955 // to be the same for all instances of a type, not construction vtables. 956 if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage) 957 Linkage = llvm::GlobalVariable::InternalLinkage; 958 959 llvm::Align Align = CGM.getDataLayout().getABITypeAlign(VTType); 960 961 // Create the variable that will hold the construction vtable. 962 llvm::GlobalVariable *VTable = 963 CGM.CreateOrReplaceCXXRuntimeVariable(Name, VTType, Linkage, Align); 964 965 // V-tables are always unnamed_addr. 966 VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 967 968 llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor( 969 CGM.getContext().getTagDeclType(Base.getBase())); 970 971 // Create and set the initializer. 972 ConstantInitBuilder builder(CGM); 973 auto components = builder.beginStruct(); 974 createVTableInitializer(components, *VTLayout, RTTI, 975 VTable->hasLocalLinkage()); 976 components.finishAndSetAsInitializer(VTable); 977 978 // Set properties only after the initializer has been set to ensure that the 979 // GV is treated as definition and not declaration. 980 assert(!VTable->isDeclaration() && "Shouldn't set properties on declaration"); 981 CGM.setGVProperties(VTable, RD); 982 983 CGM.EmitVTableTypeMetadata(RD, VTable, *VTLayout.get()); 984 985 if (UsingRelativeLayout) { 986 RemoveHwasanMetadata(VTable); 987 if (!VTable->isDSOLocal()) 988 GenerateRelativeVTableAlias(VTable, OutName); 989 } 990 991 return VTable; 992 } 993 994 // Ensure this vtable is not instrumented by hwasan. That is, a global alias is 995 // not generated for it. This is mainly used by the relative-vtables ABI where 996 // vtables instead contain 32-bit offsets between the vtable and function 997 // pointers. Hwasan is disabled for these vtables for now because the tag in a 998 // vtable pointer may fail the overflow check when resolving 32-bit PLT 999 // relocations. A future alternative for this would be finding which usages of 1000 // the vtable can continue to use the untagged hwasan value without any loss of 1001 // value in hwasan. 1002 void CodeGenVTables::RemoveHwasanMetadata(llvm::GlobalValue *GV) const { 1003 if (CGM.getLangOpts().Sanitize.has(SanitizerKind::HWAddress)) { 1004 llvm::GlobalValue::SanitizerMetadata Meta; 1005 if (GV->hasSanitizerMetadata()) 1006 Meta = GV->getSanitizerMetadata(); 1007 Meta.NoHWAddress = true; 1008 GV->setSanitizerMetadata(Meta); 1009 } 1010 } 1011 1012 // If the VTable is not dso_local, then we will not be able to indicate that 1013 // the VTable does not need a relocation and move into rodata. A frequent 1014 // time this can occur is for classes that should be made public from a DSO 1015 // (like in libc++). For cases like these, we can make the vtable hidden or 1016 // private and create a public alias with the same visibility and linkage as 1017 // the original vtable type. 1018 void CodeGenVTables::GenerateRelativeVTableAlias(llvm::GlobalVariable *VTable, 1019 llvm::StringRef AliasNameRef) { 1020 assert(getItaniumVTableContext().isRelativeLayout() && 1021 "Can only use this if the relative vtable ABI is used"); 1022 assert(!VTable->isDSOLocal() && "This should be called only if the vtable is " 1023 "not guaranteed to be dso_local"); 1024 1025 // If the vtable is available_externally, we shouldn't (or need to) generate 1026 // an alias for it in the first place since the vtable won't actually by 1027 // emitted in this compilation unit. 1028 if (VTable->hasAvailableExternallyLinkage()) 1029 return; 1030 1031 // Create a new string in the event the alias is already the name of the 1032 // vtable. Using the reference directly could lead to use of an inititialized 1033 // value in the module's StringMap. 1034 llvm::SmallString<256> AliasName(AliasNameRef); 1035 VTable->setName(AliasName + ".local"); 1036 1037 auto Linkage = VTable->getLinkage(); 1038 assert(llvm::GlobalAlias::isValidLinkage(Linkage) && 1039 "Invalid vtable alias linkage"); 1040 1041 llvm::GlobalAlias *VTableAlias = CGM.getModule().getNamedAlias(AliasName); 1042 if (!VTableAlias) { 1043 VTableAlias = llvm::GlobalAlias::create(VTable->getValueType(), 1044 VTable->getAddressSpace(), Linkage, 1045 AliasName, &CGM.getModule()); 1046 } else { 1047 assert(VTableAlias->getValueType() == VTable->getValueType()); 1048 assert(VTableAlias->getLinkage() == Linkage); 1049 } 1050 VTableAlias->setVisibility(VTable->getVisibility()); 1051 VTableAlias->setUnnamedAddr(VTable->getUnnamedAddr()); 1052 1053 // Both of these imply dso_local for the vtable. 1054 if (!VTable->hasComdat()) { 1055 // If this is in a comdat, then we shouldn't make the linkage private due to 1056 // an issue in lld where private symbols can be used as the key symbol when 1057 // choosing the prevelant group. This leads to "relocation refers to a 1058 // symbol in a discarded section". 1059 VTable->setLinkage(llvm::GlobalValue::PrivateLinkage); 1060 } else { 1061 // We should at least make this hidden since we don't want to expose it. 1062 VTable->setVisibility(llvm::GlobalValue::HiddenVisibility); 1063 } 1064 1065 VTableAlias->setAliasee(VTable); 1066 } 1067 1068 static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM, 1069 const CXXRecordDecl *RD) { 1070 return CGM.getCodeGenOpts().OptimizationLevel > 0 && 1071 CGM.getCXXABI().canSpeculativelyEmitVTable(RD); 1072 } 1073 1074 /// Compute the required linkage of the vtable for the given class. 1075 /// 1076 /// Note that we only call this at the end of the translation unit. 1077 llvm::GlobalVariable::LinkageTypes 1078 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1079 if (!RD->isExternallyVisible()) 1080 return llvm::GlobalVariable::InternalLinkage; 1081 1082 // In windows, the linkage of vtable is not related to modules. 1083 bool IsInNamedModule = !getTarget().getCXXABI().isMicrosoft() && 1084 RD->isInNamedModule(); 1085 // If the CXXRecordDecl is not in a module unit, we need to get 1086 // its key function. We're at the end of the translation unit, so the current 1087 // key function is fully correct. 1088 const CXXMethodDecl *keyFunction = 1089 IsInNamedModule ? nullptr : Context.getCurrentKeyFunction(RD); 1090 if (IsInNamedModule || (keyFunction && !RD->hasAttr<DLLImportAttr>())) { 1091 // If this class has a key function, use that to determine the 1092 // linkage of the vtable. 1093 const FunctionDecl *def = nullptr; 1094 if (keyFunction && keyFunction->hasBody(def)) 1095 keyFunction = cast<CXXMethodDecl>(def); 1096 1097 bool IsExternalDefinition = 1098 IsInNamedModule ? RD->shouldEmitInExternalSource() : !def; 1099 1100 TemplateSpecializationKind Kind = 1101 IsInNamedModule ? RD->getTemplateSpecializationKind() 1102 : keyFunction->getTemplateSpecializationKind(); 1103 1104 switch (Kind) { 1105 case TSK_Undeclared: 1106 case TSK_ExplicitSpecialization: 1107 assert( 1108 (IsInNamedModule || def || CodeGenOpts.OptimizationLevel > 0 || 1109 CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo) && 1110 "Shouldn't query vtable linkage without the class in module units, " 1111 "key function, optimizations, or debug info"); 1112 if (IsExternalDefinition && CodeGenOpts.OptimizationLevel > 0) 1113 return llvm::GlobalVariable::AvailableExternallyLinkage; 1114 1115 if (keyFunction && keyFunction->isInlined()) 1116 return !Context.getLangOpts().AppleKext 1117 ? llvm::GlobalVariable::LinkOnceODRLinkage 1118 : llvm::Function::InternalLinkage; 1119 1120 return llvm::GlobalVariable::ExternalLinkage; 1121 1122 case TSK_ImplicitInstantiation: 1123 return !Context.getLangOpts().AppleKext ? 1124 llvm::GlobalVariable::LinkOnceODRLinkage : 1125 llvm::Function::InternalLinkage; 1126 1127 case TSK_ExplicitInstantiationDefinition: 1128 return !Context.getLangOpts().AppleKext ? 1129 llvm::GlobalVariable::WeakODRLinkage : 1130 llvm::Function::InternalLinkage; 1131 1132 case TSK_ExplicitInstantiationDeclaration: 1133 llvm_unreachable("Should not have been asked to emit this"); 1134 } 1135 } 1136 1137 // -fapple-kext mode does not support weak linkage, so we must use 1138 // internal linkage. 1139 if (Context.getLangOpts().AppleKext) 1140 return llvm::Function::InternalLinkage; 1141 1142 llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage = 1143 llvm::GlobalValue::LinkOnceODRLinkage; 1144 llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage = 1145 llvm::GlobalValue::WeakODRLinkage; 1146 if (RD->hasAttr<DLLExportAttr>()) { 1147 // Cannot discard exported vtables. 1148 DiscardableODRLinkage = NonDiscardableODRLinkage; 1149 } else if (RD->hasAttr<DLLImportAttr>()) { 1150 // Imported vtables are available externally. 1151 DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 1152 NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 1153 } 1154 1155 switch (RD->getTemplateSpecializationKind()) { 1156 case TSK_Undeclared: 1157 case TSK_ExplicitSpecialization: 1158 case TSK_ImplicitInstantiation: 1159 return DiscardableODRLinkage; 1160 1161 case TSK_ExplicitInstantiationDeclaration: 1162 // Explicit instantiations in MSVC do not provide vtables, so we must emit 1163 // our own. 1164 if (getTarget().getCXXABI().isMicrosoft()) 1165 return DiscardableODRLinkage; 1166 return shouldEmitAvailableExternallyVTable(*this, RD) 1167 ? llvm::GlobalVariable::AvailableExternallyLinkage 1168 : llvm::GlobalVariable::ExternalLinkage; 1169 1170 case TSK_ExplicitInstantiationDefinition: 1171 return NonDiscardableODRLinkage; 1172 } 1173 1174 llvm_unreachable("Invalid TemplateSpecializationKind!"); 1175 } 1176 1177 /// This is a callback from Sema to tell us that a particular vtable is 1178 /// required to be emitted in this translation unit. 1179 /// 1180 /// This is only called for vtables that _must_ be emitted (mainly due to key 1181 /// functions). For weak vtables, CodeGen tracks when they are needed and 1182 /// emits them as-needed. 1183 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) { 1184 VTables.GenerateClassData(theClass); 1185 } 1186 1187 void 1188 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) { 1189 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 1190 DI->completeClassData(RD); 1191 1192 if (RD->getNumVBases()) 1193 CGM.getCXXABI().emitVirtualInheritanceTables(RD); 1194 1195 CGM.getCXXABI().emitVTableDefinitions(*this, RD); 1196 } 1197 1198 /// At this point in the translation unit, does it appear that can we 1199 /// rely on the vtable being defined elsewhere in the program? 1200 /// 1201 /// The response is really only definitive when called at the end of 1202 /// the translation unit. 1203 /// 1204 /// The only semantic restriction here is that the object file should 1205 /// not contain a vtable definition when that vtable is defined 1206 /// strongly elsewhere. Otherwise, we'd just like to avoid emitting 1207 /// vtables when unnecessary. 1208 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) { 1209 assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable."); 1210 1211 // We always synthesize vtables if they are needed in the MS ABI. MSVC doesn't 1212 // emit them even if there is an explicit template instantiation. 1213 if (CGM.getTarget().getCXXABI().isMicrosoft()) 1214 return false; 1215 1216 // If we have an explicit instantiation declaration (and not a 1217 // definition), the vtable is defined elsewhere. 1218 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); 1219 if (TSK == TSK_ExplicitInstantiationDeclaration) 1220 return true; 1221 1222 // Otherwise, if the class is an instantiated template, the 1223 // vtable must be defined here. 1224 if (TSK == TSK_ImplicitInstantiation || 1225 TSK == TSK_ExplicitInstantiationDefinition) 1226 return false; 1227 1228 // Otherwise, if the class is attached to a module, the tables are uniquely 1229 // emitted in the object for the module unit in which it is defined. 1230 if (RD->isInNamedModule()) 1231 return RD->shouldEmitInExternalSource(); 1232 1233 // Otherwise, if the class doesn't have a key function (possibly 1234 // anymore), the vtable must be defined here. 1235 const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD); 1236 if (!keyFunction) 1237 return false; 1238 1239 // Otherwise, if we don't have a definition of the key function, the 1240 // vtable must be defined somewhere else. 1241 return !keyFunction->hasBody(); 1242 } 1243 1244 /// Given that we're currently at the end of the translation unit, and 1245 /// we've emitted a reference to the vtable for this class, should 1246 /// we define that vtable? 1247 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM, 1248 const CXXRecordDecl *RD) { 1249 // If vtable is internal then it has to be done. 1250 if (!CGM.getVTables().isVTableExternal(RD)) 1251 return true; 1252 1253 // If it's external then maybe we will need it as available_externally. 1254 return shouldEmitAvailableExternallyVTable(CGM, RD); 1255 } 1256 1257 /// Given that at some point we emitted a reference to one or more 1258 /// vtables, and that we are now at the end of the translation unit, 1259 /// decide whether we should emit them. 1260 void CodeGenModule::EmitDeferredVTables() { 1261 #ifndef NDEBUG 1262 // Remember the size of DeferredVTables, because we're going to assume 1263 // that this entire operation doesn't modify it. 1264 size_t savedSize = DeferredVTables.size(); 1265 #endif 1266 1267 for (const CXXRecordDecl *RD : DeferredVTables) 1268 if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD)) 1269 VTables.GenerateClassData(RD); 1270 else if (shouldOpportunisticallyEmitVTables()) 1271 OpportunisticVTables.push_back(RD); 1272 1273 assert(savedSize == DeferredVTables.size() && 1274 "deferred extra vtables during vtable emission?"); 1275 DeferredVTables.clear(); 1276 } 1277 1278 bool CodeGenModule::AlwaysHasLTOVisibilityPublic(const CXXRecordDecl *RD) { 1279 if (RD->hasAttr<LTOVisibilityPublicAttr>() || RD->hasAttr<UuidAttr>() || 1280 RD->hasAttr<DLLExportAttr>() || RD->hasAttr<DLLImportAttr>()) 1281 return true; 1282 1283 if (!getCodeGenOpts().LTOVisibilityPublicStd) 1284 return false; 1285 1286 const DeclContext *DC = RD; 1287 while (true) { 1288 auto *D = cast<Decl>(DC); 1289 DC = DC->getParent(); 1290 if (isa<TranslationUnitDecl>(DC->getRedeclContext())) { 1291 if (auto *ND = dyn_cast<NamespaceDecl>(D)) 1292 if (const IdentifierInfo *II = ND->getIdentifier()) 1293 if (II->isStr("std") || II->isStr("stdext")) 1294 return true; 1295 break; 1296 } 1297 } 1298 1299 return false; 1300 } 1301 1302 bool CodeGenModule::HasHiddenLTOVisibility(const CXXRecordDecl *RD) { 1303 LinkageInfo LV = RD->getLinkageAndVisibility(); 1304 if (!isExternallyVisible(LV.getLinkage())) 1305 return true; 1306 1307 if (!getTriple().isOSBinFormatCOFF() && 1308 LV.getVisibility() != HiddenVisibility) 1309 return false; 1310 1311 return !AlwaysHasLTOVisibilityPublic(RD); 1312 } 1313 1314 llvm::GlobalObject::VCallVisibility CodeGenModule::GetVCallVisibilityLevel( 1315 const CXXRecordDecl *RD, llvm::DenseSet<const CXXRecordDecl *> &Visited) { 1316 // If we have already visited this RD (which means this is a recursive call 1317 // since the initial call should have an empty Visited set), return the max 1318 // visibility. The recursive calls below compute the min between the result 1319 // of the recursive call and the current TypeVis, so returning the max here 1320 // ensures that it will have no effect on the current TypeVis. 1321 if (!Visited.insert(RD).second) 1322 return llvm::GlobalObject::VCallVisibilityTranslationUnit; 1323 1324 LinkageInfo LV = RD->getLinkageAndVisibility(); 1325 llvm::GlobalObject::VCallVisibility TypeVis; 1326 if (!isExternallyVisible(LV.getLinkage())) 1327 TypeVis = llvm::GlobalObject::VCallVisibilityTranslationUnit; 1328 else if (HasHiddenLTOVisibility(RD)) 1329 TypeVis = llvm::GlobalObject::VCallVisibilityLinkageUnit; 1330 else 1331 TypeVis = llvm::GlobalObject::VCallVisibilityPublic; 1332 1333 for (const auto &B : RD->bases()) 1334 if (B.getType()->getAsCXXRecordDecl()->isDynamicClass()) 1335 TypeVis = std::min( 1336 TypeVis, 1337 GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl(), Visited)); 1338 1339 for (const auto &B : RD->vbases()) 1340 if (B.getType()->getAsCXXRecordDecl()->isDynamicClass()) 1341 TypeVis = std::min( 1342 TypeVis, 1343 GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl(), Visited)); 1344 1345 return TypeVis; 1346 } 1347 1348 void CodeGenModule::EmitVTableTypeMetadata(const CXXRecordDecl *RD, 1349 llvm::GlobalVariable *VTable, 1350 const VTableLayout &VTLayout) { 1351 // Emit type metadata on vtables with LTO or IR instrumentation. 1352 // In IR instrumentation, the type metadata is used to find out vtable 1353 // definitions (for type profiling) among all global variables. 1354 if (!getCodeGenOpts().LTOUnit && !getCodeGenOpts().hasProfileIRInstr()) 1355 return; 1356 1357 CharUnits ComponentWidth = GetTargetTypeStoreSize(getVTableComponentType()); 1358 1359 struct AddressPoint { 1360 const CXXRecordDecl *Base; 1361 size_t Offset; 1362 std::string TypeName; 1363 bool operator<(const AddressPoint &RHS) const { 1364 int D = TypeName.compare(RHS.TypeName); 1365 return D < 0 || (D == 0 && Offset < RHS.Offset); 1366 } 1367 }; 1368 std::vector<AddressPoint> AddressPoints; 1369 for (auto &&AP : VTLayout.getAddressPoints()) { 1370 AddressPoint N{AP.first.getBase(), 1371 VTLayout.getVTableOffset(AP.second.VTableIndex) + 1372 AP.second.AddressPointIndex, 1373 {}}; 1374 llvm::raw_string_ostream Stream(N.TypeName); 1375 getCXXABI().getMangleContext().mangleCanonicalTypeName( 1376 QualType(N.Base->getTypeForDecl(), 0), Stream); 1377 AddressPoints.push_back(std::move(N)); 1378 } 1379 1380 // Sort the address points for determinism. 1381 llvm::sort(AddressPoints); 1382 1383 ArrayRef<VTableComponent> Comps = VTLayout.vtable_components(); 1384 for (auto AP : AddressPoints) { 1385 // Create type metadata for the address point. 1386 AddVTableTypeMetadata(VTable, ComponentWidth * AP.Offset, AP.Base); 1387 1388 // The class associated with each address point could also potentially be 1389 // used for indirect calls via a member function pointer, so we need to 1390 // annotate the address of each function pointer with the appropriate member 1391 // function pointer type. 1392 for (unsigned I = 0; I != Comps.size(); ++I) { 1393 if (Comps[I].getKind() != VTableComponent::CK_FunctionPointer) 1394 continue; 1395 llvm::Metadata *MD = CreateMetadataIdentifierForVirtualMemPtrType( 1396 Context.getMemberPointerType( 1397 Comps[I].getFunctionDecl()->getType(), 1398 Context.getRecordType(AP.Base).getTypePtr())); 1399 VTable->addTypeMetadata((ComponentWidth * I).getQuantity(), MD); 1400 } 1401 } 1402 1403 if (getCodeGenOpts().VirtualFunctionElimination || 1404 getCodeGenOpts().WholeProgramVTables) { 1405 llvm::DenseSet<const CXXRecordDecl *> Visited; 1406 llvm::GlobalObject::VCallVisibility TypeVis = 1407 GetVCallVisibilityLevel(RD, Visited); 1408 if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic) 1409 VTable->setVCallVisibilityMetadata(TypeVis); 1410 } 1411 } 1412