xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGVTables.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with C++ code generation of virtual tables.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/Basic/CodeGenOptions.h"
20 #include "clang/CodeGen/CGFunctionInfo.h"
21 #include "clang/CodeGen/ConstantInitBuilder.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/Support/Format.h"
24 #include "llvm/Transforms/Utils/Cloning.h"
25 #include <algorithm>
26 #include <cstdio>
27 #include <utility>
28 
29 using namespace clang;
30 using namespace CodeGen;
31 
32 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM)
33     : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {}
34 
35 llvm::Constant *CodeGenModule::GetAddrOfThunk(StringRef Name, llvm::Type *FnTy,
36                                               GlobalDecl GD) {
37   return GetOrCreateLLVMFunction(Name, FnTy, GD, /*ForVTable=*/true,
38                                  /*DontDefer=*/true, /*IsThunk=*/true);
39 }
40 
41 static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk,
42                                llvm::Function *ThunkFn, bool ForVTable,
43                                GlobalDecl GD) {
44   CGM.setFunctionLinkage(GD, ThunkFn);
45   CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD,
46                                   !Thunk.Return.isEmpty());
47 
48   // Set the right visibility.
49   CGM.setGVProperties(ThunkFn, GD);
50 
51   if (!CGM.getCXXABI().exportThunk()) {
52     ThunkFn->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
53     ThunkFn->setDSOLocal(true);
54   }
55 
56   if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker())
57     ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
58 }
59 
60 #ifndef NDEBUG
61 static bool similar(const ABIArgInfo &infoL, CanQualType typeL,
62                     const ABIArgInfo &infoR, CanQualType typeR) {
63   return (infoL.getKind() == infoR.getKind() &&
64           (typeL == typeR ||
65            (isa<PointerType>(typeL) && isa<PointerType>(typeR)) ||
66            (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR))));
67 }
68 #endif
69 
70 static RValue PerformReturnAdjustment(CodeGenFunction &CGF,
71                                       QualType ResultType, RValue RV,
72                                       const ThunkInfo &Thunk) {
73   // Emit the return adjustment.
74   bool NullCheckValue = !ResultType->isReferenceType();
75 
76   llvm::BasicBlock *AdjustNull = nullptr;
77   llvm::BasicBlock *AdjustNotNull = nullptr;
78   llvm::BasicBlock *AdjustEnd = nullptr;
79 
80   llvm::Value *ReturnValue = RV.getScalarVal();
81 
82   if (NullCheckValue) {
83     AdjustNull = CGF.createBasicBlock("adjust.null");
84     AdjustNotNull = CGF.createBasicBlock("adjust.notnull");
85     AdjustEnd = CGF.createBasicBlock("adjust.end");
86 
87     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue);
88     CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull);
89     CGF.EmitBlock(AdjustNotNull);
90   }
91 
92   auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl();
93   auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl);
94   ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(
95       CGF,
96       Address(ReturnValue, CGF.ConvertTypeForMem(ResultType->getPointeeType()),
97               ClassAlign),
98       Thunk.Return);
99 
100   if (NullCheckValue) {
101     CGF.Builder.CreateBr(AdjustEnd);
102     CGF.EmitBlock(AdjustNull);
103     CGF.Builder.CreateBr(AdjustEnd);
104     CGF.EmitBlock(AdjustEnd);
105 
106     llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2);
107     PHI->addIncoming(ReturnValue, AdjustNotNull);
108     PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()),
109                      AdjustNull);
110     ReturnValue = PHI;
111   }
112 
113   return RValue::get(ReturnValue);
114 }
115 
116 /// This function clones a function's DISubprogram node and enters it into
117 /// a value map with the intent that the map can be utilized by the cloner
118 /// to short-circuit Metadata node mapping.
119 /// Furthermore, the function resolves any DILocalVariable nodes referenced
120 /// by dbg.value intrinsics so they can be properly mapped during cloning.
121 static void resolveTopLevelMetadata(llvm::Function *Fn,
122                                     llvm::ValueToValueMapTy &VMap) {
123   // Clone the DISubprogram node and put it into the Value map.
124   auto *DIS = Fn->getSubprogram();
125   if (!DIS)
126     return;
127   auto *NewDIS = DIS->replaceWithDistinct(DIS->clone());
128   VMap.MD()[DIS].reset(NewDIS);
129 
130   // Find all llvm.dbg.declare intrinsics and resolve the DILocalVariable nodes
131   // they are referencing.
132   for (auto &BB : *Fn) {
133     for (auto &I : BB) {
134       if (auto *DII = dyn_cast<llvm::DbgVariableIntrinsic>(&I)) {
135         auto *DILocal = DII->getVariable();
136         if (!DILocal->isResolved())
137           DILocal->resolve();
138       }
139     }
140   }
141 }
142 
143 // This function does roughly the same thing as GenerateThunk, but in a
144 // very different way, so that va_start and va_end work correctly.
145 // FIXME: This function assumes "this" is the first non-sret LLVM argument of
146 //        a function, and that there is an alloca built in the entry block
147 //        for all accesses to "this".
148 // FIXME: This function assumes there is only one "ret" statement per function.
149 // FIXME: Cloning isn't correct in the presence of indirect goto!
150 // FIXME: This implementation of thunks bloats codesize by duplicating the
151 //        function definition.  There are alternatives:
152 //        1. Add some sort of stub support to LLVM for cases where we can
153 //           do a this adjustment, then a sibcall.
154 //        2. We could transform the definition to take a va_list instead of an
155 //           actual variable argument list, then have the thunks (including a
156 //           no-op thunk for the regular definition) call va_start/va_end.
157 //           There's a bit of per-call overhead for this solution, but it's
158 //           better for codesize if the definition is long.
159 llvm::Function *
160 CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn,
161                                       const CGFunctionInfo &FnInfo,
162                                       GlobalDecl GD, const ThunkInfo &Thunk) {
163   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
164   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
165   QualType ResultType = FPT->getReturnType();
166 
167   // Get the original function
168   assert(FnInfo.isVariadic());
169   llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo);
170   llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
171   llvm::Function *BaseFn = cast<llvm::Function>(Callee);
172 
173   // Cloning can't work if we don't have a definition. The Microsoft ABI may
174   // require thunks when a definition is not available. Emit an error in these
175   // cases.
176   if (!MD->isDefined()) {
177     CGM.ErrorUnsupported(MD, "return-adjusting thunk with variadic arguments");
178     return Fn;
179   }
180   assert(!BaseFn->isDeclaration() && "cannot clone undefined variadic method");
181 
182   // Clone to thunk.
183   llvm::ValueToValueMapTy VMap;
184 
185   // We are cloning a function while some Metadata nodes are still unresolved.
186   // Ensure that the value mapper does not encounter any of them.
187   resolveTopLevelMetadata(BaseFn, VMap);
188   llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap);
189   Fn->replaceAllUsesWith(NewFn);
190   NewFn->takeName(Fn);
191   Fn->eraseFromParent();
192   Fn = NewFn;
193 
194   // "Initialize" CGF (minimally).
195   CurFn = Fn;
196 
197   // Get the "this" value
198   llvm::Function::arg_iterator AI = Fn->arg_begin();
199   if (CGM.ReturnTypeUsesSRet(FnInfo))
200     ++AI;
201 
202   // Find the first store of "this", which will be to the alloca associated
203   // with "this".
204   Address ThisPtr =
205       Address(&*AI, ConvertTypeForMem(MD->getFunctionObjectParameterType()),
206               CGM.getClassPointerAlignment(MD->getParent()));
207   llvm::BasicBlock *EntryBB = &Fn->front();
208   llvm::BasicBlock::iterator ThisStore =
209       llvm::find_if(*EntryBB, [&](llvm::Instruction &I) {
210         return isa<llvm::StoreInst>(I) &&
211                I.getOperand(0) == ThisPtr.getPointer();
212       });
213   assert(ThisStore != EntryBB->end() &&
214          "Store of this should be in entry block?");
215   // Adjust "this", if necessary.
216   Builder.SetInsertPoint(&*ThisStore);
217   llvm::Value *AdjustedThisPtr =
218       CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This);
219   AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr,
220                                           ThisStore->getOperand(0)->getType());
221   ThisStore->setOperand(0, AdjustedThisPtr);
222 
223   if (!Thunk.Return.isEmpty()) {
224     // Fix up the returned value, if necessary.
225     for (llvm::BasicBlock &BB : *Fn) {
226       llvm::Instruction *T = BB.getTerminator();
227       if (isa<llvm::ReturnInst>(T)) {
228         RValue RV = RValue::get(T->getOperand(0));
229         T->eraseFromParent();
230         Builder.SetInsertPoint(&BB);
231         RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk);
232         Builder.CreateRet(RV.getScalarVal());
233         break;
234       }
235     }
236   }
237 
238   return Fn;
239 }
240 
241 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD,
242                                  const CGFunctionInfo &FnInfo,
243                                  bool IsUnprototyped) {
244   assert(!CurGD.getDecl() && "CurGD was already set!");
245   CurGD = GD;
246   CurFuncIsThunk = true;
247 
248   // Build FunctionArgs.
249   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
250   QualType ThisType = MD->getThisType();
251   QualType ResultType;
252   if (IsUnprototyped)
253     ResultType = CGM.getContext().VoidTy;
254   else if (CGM.getCXXABI().HasThisReturn(GD))
255     ResultType = ThisType;
256   else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
257     ResultType = CGM.getContext().VoidPtrTy;
258   else
259     ResultType = MD->getType()->castAs<FunctionProtoType>()->getReturnType();
260   FunctionArgList FunctionArgs;
261 
262   // Create the implicit 'this' parameter declaration.
263   CGM.getCXXABI().buildThisParam(*this, FunctionArgs);
264 
265   // Add the rest of the parameters, if we have a prototype to work with.
266   if (!IsUnprototyped) {
267     FunctionArgs.append(MD->param_begin(), MD->param_end());
268 
269     if (isa<CXXDestructorDecl>(MD))
270       CGM.getCXXABI().addImplicitStructorParams(*this, ResultType,
271                                                 FunctionArgs);
272   }
273 
274   // Start defining the function.
275   auto NL = ApplyDebugLocation::CreateEmpty(*this);
276   StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs,
277                 MD->getLocation());
278   // Create a scope with an artificial location for the body of this function.
279   auto AL = ApplyDebugLocation::CreateArtificial(*this);
280 
281   // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves.
282   CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
283   CXXThisValue = CXXABIThisValue;
284   CurCodeDecl = MD;
285   CurFuncDecl = MD;
286 }
287 
288 void CodeGenFunction::FinishThunk() {
289   // Clear these to restore the invariants expected by
290   // StartFunction/FinishFunction.
291   CurCodeDecl = nullptr;
292   CurFuncDecl = nullptr;
293 
294   FinishFunction();
295 }
296 
297 void CodeGenFunction::EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
298                                                 const ThunkInfo *Thunk,
299                                                 bool IsUnprototyped) {
300   assert(isa<CXXMethodDecl>(CurGD.getDecl()) &&
301          "Please use a new CGF for this thunk");
302   const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl());
303 
304   // Adjust the 'this' pointer if necessary
305   llvm::Value *AdjustedThisPtr =
306     Thunk ? CGM.getCXXABI().performThisAdjustment(
307                           *this, LoadCXXThisAddress(), Thunk->This)
308           : LoadCXXThis();
309 
310   // If perfect forwarding is required a variadic method, a method using
311   // inalloca, or an unprototyped thunk, use musttail. Emit an error if this
312   // thunk requires a return adjustment, since that is impossible with musttail.
313   if (CurFnInfo->usesInAlloca() || CurFnInfo->isVariadic() || IsUnprototyped) {
314     if (Thunk && !Thunk->Return.isEmpty()) {
315       if (IsUnprototyped)
316         CGM.ErrorUnsupported(
317             MD, "return-adjusting thunk with incomplete parameter type");
318       else if (CurFnInfo->isVariadic())
319         llvm_unreachable("shouldn't try to emit musttail return-adjusting "
320                          "thunks for variadic functions");
321       else
322         CGM.ErrorUnsupported(
323             MD, "non-trivial argument copy for return-adjusting thunk");
324     }
325     EmitMustTailThunk(CurGD, AdjustedThisPtr, Callee);
326     return;
327   }
328 
329   // Start building CallArgs.
330   CallArgList CallArgs;
331   QualType ThisType = MD->getThisType();
332   CallArgs.add(RValue::get(AdjustedThisPtr), ThisType);
333 
334   if (isa<CXXDestructorDecl>(MD))
335     CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs);
336 
337 #ifndef NDEBUG
338   unsigned PrefixArgs = CallArgs.size() - 1;
339 #endif
340   // Add the rest of the arguments.
341   for (const ParmVarDecl *PD : MD->parameters())
342     EmitDelegateCallArg(CallArgs, PD, SourceLocation());
343 
344   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
345 
346 #ifndef NDEBUG
347   const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall(
348       CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1), PrefixArgs);
349   assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() &&
350          CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() &&
351          CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention());
352   assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types
353          similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(),
354                  CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType()));
355   assert(CallFnInfo.arg_size() == CurFnInfo->arg_size());
356   for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i)
357     assert(similar(CallFnInfo.arg_begin()[i].info,
358                    CallFnInfo.arg_begin()[i].type,
359                    CurFnInfo->arg_begin()[i].info,
360                    CurFnInfo->arg_begin()[i].type));
361 #endif
362 
363   // Determine whether we have a return value slot to use.
364   QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD)
365                             ? ThisType
366                             : CGM.getCXXABI().hasMostDerivedReturn(CurGD)
367                                   ? CGM.getContext().VoidPtrTy
368                                   : FPT->getReturnType();
369   ReturnValueSlot Slot;
370   if (!ResultType->isVoidType() &&
371       (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect ||
372        hasAggregateEvaluationKind(ResultType)))
373     Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified(),
374                            /*IsUnused=*/false, /*IsExternallyDestructed=*/true);
375 
376   // Now emit our call.
377   llvm::CallBase *CallOrInvoke;
378   RValue RV = EmitCall(*CurFnInfo, CGCallee::forDirect(Callee, CurGD), Slot,
379                        CallArgs, &CallOrInvoke);
380 
381   // Consider return adjustment if we have ThunkInfo.
382   if (Thunk && !Thunk->Return.isEmpty())
383     RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk);
384   else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke))
385     Call->setTailCallKind(llvm::CallInst::TCK_Tail);
386 
387   // Emit return.
388   if (!ResultType->isVoidType() && Slot.isNull())
389     CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType);
390 
391   // Disable the final ARC autorelease.
392   AutoreleaseResult = false;
393 
394   FinishThunk();
395 }
396 
397 void CodeGenFunction::EmitMustTailThunk(GlobalDecl GD,
398                                         llvm::Value *AdjustedThisPtr,
399                                         llvm::FunctionCallee Callee) {
400   // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery
401   // to translate AST arguments into LLVM IR arguments.  For thunks, we know
402   // that the caller prototype more or less matches the callee prototype with
403   // the exception of 'this'.
404   SmallVector<llvm::Value *, 8> Args(llvm::make_pointer_range(CurFn->args()));
405 
406   // Set the adjusted 'this' pointer.
407   const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info;
408   if (ThisAI.isDirect()) {
409     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
410     int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0;
411     llvm::Type *ThisType = Args[ThisArgNo]->getType();
412     if (ThisType != AdjustedThisPtr->getType())
413       AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
414     Args[ThisArgNo] = AdjustedThisPtr;
415   } else {
416     assert(ThisAI.isInAlloca() && "this is passed directly or inalloca");
417     Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl);
418     llvm::Type *ThisType = ThisAddr.getElementType();
419     if (ThisType != AdjustedThisPtr->getType())
420       AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
421     Builder.CreateStore(AdjustedThisPtr, ThisAddr);
422   }
423 
424   // Emit the musttail call manually.  Even if the prologue pushed cleanups, we
425   // don't actually want to run them.
426   llvm::CallInst *Call = Builder.CreateCall(Callee, Args);
427   Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
428 
429   // Apply the standard set of call attributes.
430   unsigned CallingConv;
431   llvm::AttributeList Attrs;
432   CGM.ConstructAttributeList(Callee.getCallee()->getName(), *CurFnInfo, GD,
433                              Attrs, CallingConv, /*AttrOnCallSite=*/true,
434                              /*IsThunk=*/false);
435   Call->setAttributes(Attrs);
436   Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
437 
438   if (Call->getType()->isVoidTy())
439     Builder.CreateRetVoid();
440   else
441     Builder.CreateRet(Call);
442 
443   // Finish the function to maintain CodeGenFunction invariants.
444   // FIXME: Don't emit unreachable code.
445   EmitBlock(createBasicBlock());
446 
447   FinishThunk();
448 }
449 
450 void CodeGenFunction::generateThunk(llvm::Function *Fn,
451                                     const CGFunctionInfo &FnInfo, GlobalDecl GD,
452                                     const ThunkInfo &Thunk,
453                                     bool IsUnprototyped) {
454   StartThunk(Fn, GD, FnInfo, IsUnprototyped);
455   // Create a scope with an artificial location for the body of this function.
456   auto AL = ApplyDebugLocation::CreateArtificial(*this);
457 
458   // Get our callee. Use a placeholder type if this method is unprototyped so
459   // that CodeGenModule doesn't try to set attributes.
460   llvm::Type *Ty;
461   if (IsUnprototyped)
462     Ty = llvm::StructType::get(getLLVMContext());
463   else
464     Ty = CGM.getTypes().GetFunctionType(FnInfo);
465 
466   llvm::Constant *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
467 
468   // Make the call and return the result.
469   EmitCallAndReturnForThunk(llvm::FunctionCallee(Fn->getFunctionType(), Callee),
470                             &Thunk, IsUnprototyped);
471 }
472 
473 static bool shouldEmitVTableThunk(CodeGenModule &CGM, const CXXMethodDecl *MD,
474                                   bool IsUnprototyped, bool ForVTable) {
475   // Always emit thunks in the MS C++ ABI. We cannot rely on other TUs to
476   // provide thunks for us.
477   if (CGM.getTarget().getCXXABI().isMicrosoft())
478     return true;
479 
480   // In the Itanium C++ ABI, vtable thunks are provided by TUs that provide
481   // definitions of the main method. Therefore, emitting thunks with the vtable
482   // is purely an optimization. Emit the thunk if optimizations are enabled and
483   // all of the parameter types are complete.
484   if (ForVTable)
485     return CGM.getCodeGenOpts().OptimizationLevel && !IsUnprototyped;
486 
487   // Always emit thunks along with the method definition.
488   return true;
489 }
490 
491 llvm::Constant *CodeGenVTables::maybeEmitThunk(GlobalDecl GD,
492                                                const ThunkInfo &TI,
493                                                bool ForVTable) {
494   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
495 
496   // First, get a declaration. Compute the mangled name. Don't worry about
497   // getting the function prototype right, since we may only need this
498   // declaration to fill in a vtable slot.
499   SmallString<256> Name;
500   MangleContext &MCtx = CGM.getCXXABI().getMangleContext();
501   llvm::raw_svector_ostream Out(Name);
502   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD))
503     MCtx.mangleCXXDtorThunk(DD, GD.getDtorType(), TI.This, Out);
504   else
505     MCtx.mangleThunk(MD, TI, Out);
506   llvm::Type *ThunkVTableTy = CGM.getTypes().GetFunctionTypeForVTable(GD);
507   llvm::Constant *Thunk = CGM.GetAddrOfThunk(Name, ThunkVTableTy, GD);
508 
509   // If we don't need to emit a definition, return this declaration as is.
510   bool IsUnprototyped = !CGM.getTypes().isFuncTypeConvertible(
511       MD->getType()->castAs<FunctionType>());
512   if (!shouldEmitVTableThunk(CGM, MD, IsUnprototyped, ForVTable))
513     return Thunk;
514 
515   // Arrange a function prototype appropriate for a function definition. In some
516   // cases in the MS ABI, we may need to build an unprototyped musttail thunk.
517   const CGFunctionInfo &FnInfo =
518       IsUnprototyped ? CGM.getTypes().arrangeUnprototypedMustTailThunk(MD)
519                      : CGM.getTypes().arrangeGlobalDeclaration(GD);
520   llvm::FunctionType *ThunkFnTy = CGM.getTypes().GetFunctionType(FnInfo);
521 
522   // If the type of the underlying GlobalValue is wrong, we'll have to replace
523   // it. It should be a declaration.
524   llvm::Function *ThunkFn = cast<llvm::Function>(Thunk->stripPointerCasts());
525   if (ThunkFn->getFunctionType() != ThunkFnTy) {
526     llvm::GlobalValue *OldThunkFn = ThunkFn;
527 
528     assert(OldThunkFn->isDeclaration() && "Shouldn't replace non-declaration");
529 
530     // Remove the name from the old thunk function and get a new thunk.
531     OldThunkFn->setName(StringRef());
532     ThunkFn = llvm::Function::Create(ThunkFnTy, llvm::Function::ExternalLinkage,
533                                      Name.str(), &CGM.getModule());
534     CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn, /*IsThunk=*/false);
535 
536     if (!OldThunkFn->use_empty()) {
537       OldThunkFn->replaceAllUsesWith(ThunkFn);
538     }
539 
540     // Remove the old thunk.
541     OldThunkFn->eraseFromParent();
542   }
543 
544   bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions();
545   bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions;
546 
547   if (!ThunkFn->isDeclaration()) {
548     if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) {
549       // There is already a thunk emitted for this function, do nothing.
550       return ThunkFn;
551     }
552 
553     setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD);
554     return ThunkFn;
555   }
556 
557   // If this will be unprototyped, add the "thunk" attribute so that LLVM knows
558   // that the return type is meaningless. These thunks can be used to call
559   // functions with differing return types, and the caller is required to cast
560   // the prototype appropriately to extract the correct value.
561   if (IsUnprototyped)
562     ThunkFn->addFnAttr("thunk");
563 
564   CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn);
565 
566   // Thunks for variadic methods are special because in general variadic
567   // arguments cannot be perfectly forwarded. In the general case, clang
568   // implements such thunks by cloning the original function body. However, for
569   // thunks with no return adjustment on targets that support musttail, we can
570   // use musttail to perfectly forward the variadic arguments.
571   bool ShouldCloneVarArgs = false;
572   if (!IsUnprototyped && ThunkFn->isVarArg()) {
573     ShouldCloneVarArgs = true;
574     if (TI.Return.isEmpty()) {
575       switch (CGM.getTriple().getArch()) {
576       case llvm::Triple::x86_64:
577       case llvm::Triple::x86:
578       case llvm::Triple::aarch64:
579         ShouldCloneVarArgs = false;
580         break;
581       default:
582         break;
583       }
584     }
585   }
586 
587   if (ShouldCloneVarArgs) {
588     if (UseAvailableExternallyLinkage)
589       return ThunkFn;
590     ThunkFn =
591         CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, TI);
592   } else {
593     // Normal thunk body generation.
594     CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, TI, IsUnprototyped);
595   }
596 
597   setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD);
598   return ThunkFn;
599 }
600 
601 void CodeGenVTables::EmitThunks(GlobalDecl GD) {
602   const CXXMethodDecl *MD =
603     cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl();
604 
605   // We don't need to generate thunks for the base destructor.
606   if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
607     return;
608 
609   const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector =
610       VTContext->getThunkInfo(GD);
611 
612   if (!ThunkInfoVector)
613     return;
614 
615   for (const ThunkInfo& Thunk : *ThunkInfoVector)
616     maybeEmitThunk(GD, Thunk, /*ForVTable=*/false);
617 }
618 
619 void CodeGenVTables::addRelativeComponent(ConstantArrayBuilder &builder,
620                                           llvm::Constant *component,
621                                           unsigned vtableAddressPoint,
622                                           bool vtableHasLocalLinkage,
623                                           bool isCompleteDtor) const {
624   // No need to get the offset of a nullptr.
625   if (component->isNullValue())
626     return builder.add(llvm::ConstantInt::get(CGM.Int32Ty, 0));
627 
628   auto *globalVal =
629       cast<llvm::GlobalValue>(component->stripPointerCastsAndAliases());
630   llvm::Module &module = CGM.getModule();
631 
632   // We don't want to copy the linkage of the vtable exactly because we still
633   // want the stub/proxy to be emitted for properly calculating the offset.
634   // Examples where there would be no symbol emitted are available_externally
635   // and private linkages.
636   //
637   // `internal` linkage results in STB_LOCAL Elf binding while still manifesting a
638   // local symbol.
639   //
640   // `linkonce_odr` linkage results in a STB_DEFAULT Elf binding but also allows for
641   // the rtti_proxy to be transparently replaced with a GOTPCREL reloc by a
642   // target that supports this replacement.
643   auto stubLinkage = vtableHasLocalLinkage
644                          ? llvm::GlobalValue::InternalLinkage
645                          : llvm::GlobalValue::LinkOnceODRLinkage;
646 
647   llvm::Constant *target;
648   if (auto *func = dyn_cast<llvm::Function>(globalVal)) {
649     target = llvm::DSOLocalEquivalent::get(func);
650   } else {
651     llvm::SmallString<16> rttiProxyName(globalVal->getName());
652     rttiProxyName.append(".rtti_proxy");
653 
654     // The RTTI component may not always be emitted in the same linkage unit as
655     // the vtable. As a general case, we can make a dso_local proxy to the RTTI
656     // that points to the actual RTTI struct somewhere. This will result in a
657     // GOTPCREL relocation when taking the relative offset to the proxy.
658     llvm::GlobalVariable *proxy = module.getNamedGlobal(rttiProxyName);
659     if (!proxy) {
660       proxy = new llvm::GlobalVariable(module, globalVal->getType(),
661                                        /*isConstant=*/true, stubLinkage,
662                                        globalVal, rttiProxyName);
663       proxy->setDSOLocal(true);
664       proxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
665       if (!proxy->hasLocalLinkage()) {
666         proxy->setVisibility(llvm::GlobalValue::HiddenVisibility);
667         proxy->setComdat(module.getOrInsertComdat(rttiProxyName));
668       }
669       // Do not instrument the rtti proxies with hwasan to avoid a duplicate
670       // symbol error. Aliases generated by hwasan will retain the same namebut
671       // the addresses they are set to may have different tags from different
672       // compilation units. We don't run into this without hwasan because the
673       // proxies are in comdat groups, but those aren't propagated to the alias.
674       RemoveHwasanMetadata(proxy);
675     }
676     target = proxy;
677   }
678 
679   builder.addRelativeOffsetToPosition(CGM.Int32Ty, target,
680                                       /*position=*/vtableAddressPoint);
681 }
682 
683 static bool UseRelativeLayout(const CodeGenModule &CGM) {
684   return CGM.getTarget().getCXXABI().isItaniumFamily() &&
685          CGM.getItaniumVTableContext().isRelativeLayout();
686 }
687 
688 bool CodeGenVTables::useRelativeLayout() const {
689   return UseRelativeLayout(CGM);
690 }
691 
692 llvm::Type *CodeGenModule::getVTableComponentType() const {
693   if (UseRelativeLayout(*this))
694     return Int32Ty;
695   return GlobalsInt8PtrTy;
696 }
697 
698 llvm::Type *CodeGenVTables::getVTableComponentType() const {
699   return CGM.getVTableComponentType();
700 }
701 
702 static void AddPointerLayoutOffset(const CodeGenModule &CGM,
703                                    ConstantArrayBuilder &builder,
704                                    CharUnits offset) {
705   builder.add(llvm::ConstantExpr::getIntToPtr(
706       llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()),
707       CGM.GlobalsInt8PtrTy));
708 }
709 
710 static void AddRelativeLayoutOffset(const CodeGenModule &CGM,
711                                     ConstantArrayBuilder &builder,
712                                     CharUnits offset) {
713   builder.add(llvm::ConstantInt::get(CGM.Int32Ty, offset.getQuantity()));
714 }
715 
716 void CodeGenVTables::addVTableComponent(ConstantArrayBuilder &builder,
717                                         const VTableLayout &layout,
718                                         unsigned componentIndex,
719                                         llvm::Constant *rtti,
720                                         unsigned &nextVTableThunkIndex,
721                                         unsigned vtableAddressPoint,
722                                         bool vtableHasLocalLinkage) {
723   auto &component = layout.vtable_components()[componentIndex];
724 
725   auto addOffsetConstant =
726       useRelativeLayout() ? AddRelativeLayoutOffset : AddPointerLayoutOffset;
727 
728   switch (component.getKind()) {
729   case VTableComponent::CK_VCallOffset:
730     return addOffsetConstant(CGM, builder, component.getVCallOffset());
731 
732   case VTableComponent::CK_VBaseOffset:
733     return addOffsetConstant(CGM, builder, component.getVBaseOffset());
734 
735   case VTableComponent::CK_OffsetToTop:
736     return addOffsetConstant(CGM, builder, component.getOffsetToTop());
737 
738   case VTableComponent::CK_RTTI:
739     if (useRelativeLayout())
740       return addRelativeComponent(builder, rtti, vtableAddressPoint,
741                                   vtableHasLocalLinkage,
742                                   /*isCompleteDtor=*/false);
743     else
744       return builder.add(rtti);
745 
746   case VTableComponent::CK_FunctionPointer:
747   case VTableComponent::CK_CompleteDtorPointer:
748   case VTableComponent::CK_DeletingDtorPointer: {
749     GlobalDecl GD = component.getGlobalDecl();
750 
751     if (CGM.getLangOpts().CUDA) {
752       // Emit NULL for methods we can't codegen on this
753       // side. Otherwise we'd end up with vtable with unresolved
754       // references.
755       const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
756       // OK on device side: functions w/ __device__ attribute
757       // OK on host side: anything except __device__-only functions.
758       bool CanEmitMethod =
759           CGM.getLangOpts().CUDAIsDevice
760               ? MD->hasAttr<CUDADeviceAttr>()
761               : (MD->hasAttr<CUDAHostAttr>() || !MD->hasAttr<CUDADeviceAttr>());
762       if (!CanEmitMethod)
763         return builder.add(
764             llvm::ConstantExpr::getNullValue(CGM.GlobalsInt8PtrTy));
765       // Method is acceptable, continue processing as usual.
766     }
767 
768     auto getSpecialVirtualFn = [&](StringRef name) -> llvm::Constant * {
769       // FIXME(PR43094): When merging comdat groups, lld can select a local
770       // symbol as the signature symbol even though it cannot be accessed
771       // outside that symbol's TU. The relative vtables ABI would make
772       // __cxa_pure_virtual and __cxa_deleted_virtual local symbols, and
773       // depending on link order, the comdat groups could resolve to the one
774       // with the local symbol. As a temporary solution, fill these components
775       // with zero. We shouldn't be calling these in the first place anyway.
776       if (useRelativeLayout())
777         return llvm::ConstantPointerNull::get(CGM.GlobalsInt8PtrTy);
778 
779       // For NVPTX devices in OpenMP emit special functon as null pointers,
780       // otherwise linking ends up with unresolved references.
781       if (CGM.getLangOpts().OpenMP && CGM.getLangOpts().OpenMPIsTargetDevice &&
782           CGM.getTriple().isNVPTX())
783         return llvm::ConstantPointerNull::get(CGM.GlobalsInt8PtrTy);
784       llvm::FunctionType *fnTy =
785           llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
786       llvm::Constant *fn = cast<llvm::Constant>(
787           CGM.CreateRuntimeFunction(fnTy, name).getCallee());
788       if (auto f = dyn_cast<llvm::Function>(fn))
789         f->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
790       return fn;
791     };
792 
793     llvm::Constant *fnPtr;
794 
795     // Pure virtual member functions.
796     if (cast<CXXMethodDecl>(GD.getDecl())->isPureVirtual()) {
797       if (!PureVirtualFn)
798         PureVirtualFn =
799             getSpecialVirtualFn(CGM.getCXXABI().GetPureVirtualCallName());
800       fnPtr = PureVirtualFn;
801 
802     // Deleted virtual member functions.
803     } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) {
804       if (!DeletedVirtualFn)
805         DeletedVirtualFn =
806             getSpecialVirtualFn(CGM.getCXXABI().GetDeletedVirtualCallName());
807       fnPtr = DeletedVirtualFn;
808 
809     // Thunks.
810     } else if (nextVTableThunkIndex < layout.vtable_thunks().size() &&
811                layout.vtable_thunks()[nextVTableThunkIndex].first ==
812                    componentIndex) {
813       auto &thunkInfo = layout.vtable_thunks()[nextVTableThunkIndex].second;
814 
815       nextVTableThunkIndex++;
816       fnPtr = maybeEmitThunk(GD, thunkInfo, /*ForVTable=*/true);
817 
818     // Otherwise we can use the method definition directly.
819     } else {
820       llvm::Type *fnTy = CGM.getTypes().GetFunctionTypeForVTable(GD);
821       fnPtr = CGM.GetAddrOfFunction(GD, fnTy, /*ForVTable=*/true);
822     }
823 
824     if (useRelativeLayout()) {
825       return addRelativeComponent(
826           builder, fnPtr, vtableAddressPoint, vtableHasLocalLinkage,
827           component.getKind() == VTableComponent::CK_CompleteDtorPointer);
828     } else {
829       // TODO: this icky and only exists due to functions being in the generic
830       //       address space, rather than the global one, even though they are
831       //       globals;  fixing said issue might be intrusive, and will be done
832       //       later.
833       unsigned FnAS = fnPtr->getType()->getPointerAddressSpace();
834       unsigned GVAS = CGM.GlobalsInt8PtrTy->getPointerAddressSpace();
835 
836       if (FnAS != GVAS)
837         fnPtr =
838             llvm::ConstantExpr::getAddrSpaceCast(fnPtr, CGM.GlobalsInt8PtrTy);
839       return builder.add(fnPtr);
840     }
841   }
842 
843   case VTableComponent::CK_UnusedFunctionPointer:
844     if (useRelativeLayout())
845       return builder.add(llvm::ConstantExpr::getNullValue(CGM.Int32Ty));
846     else
847       return builder.addNullPointer(CGM.GlobalsInt8PtrTy);
848   }
849 
850   llvm_unreachable("Unexpected vtable component kind");
851 }
852 
853 llvm::Type *CodeGenVTables::getVTableType(const VTableLayout &layout) {
854   SmallVector<llvm::Type *, 4> tys;
855   llvm::Type *componentType = getVTableComponentType();
856   for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i)
857     tys.push_back(llvm::ArrayType::get(componentType, layout.getVTableSize(i)));
858 
859   return llvm::StructType::get(CGM.getLLVMContext(), tys);
860 }
861 
862 void CodeGenVTables::createVTableInitializer(ConstantStructBuilder &builder,
863                                              const VTableLayout &layout,
864                                              llvm::Constant *rtti,
865                                              bool vtableHasLocalLinkage) {
866   llvm::Type *componentType = getVTableComponentType();
867 
868   const auto &addressPoints = layout.getAddressPointIndices();
869   unsigned nextVTableThunkIndex = 0;
870   for (unsigned vtableIndex = 0, endIndex = layout.getNumVTables();
871        vtableIndex != endIndex; ++vtableIndex) {
872     auto vtableElem = builder.beginArray(componentType);
873 
874     size_t vtableStart = layout.getVTableOffset(vtableIndex);
875     size_t vtableEnd = vtableStart + layout.getVTableSize(vtableIndex);
876     for (size_t componentIndex = vtableStart; componentIndex < vtableEnd;
877          ++componentIndex) {
878       addVTableComponent(vtableElem, layout, componentIndex, rtti,
879                          nextVTableThunkIndex, addressPoints[vtableIndex],
880                          vtableHasLocalLinkage);
881     }
882     vtableElem.finishAndAddTo(builder);
883   }
884 }
885 
886 llvm::GlobalVariable *CodeGenVTables::GenerateConstructionVTable(
887     const CXXRecordDecl *RD, const BaseSubobject &Base, bool BaseIsVirtual,
888     llvm::GlobalVariable::LinkageTypes Linkage,
889     VTableAddressPointsMapTy &AddressPoints) {
890   if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
891     DI->completeClassData(Base.getBase());
892 
893   std::unique_ptr<VTableLayout> VTLayout(
894       getItaniumVTableContext().createConstructionVTableLayout(
895           Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD));
896 
897   // Add the address points.
898   AddressPoints = VTLayout->getAddressPoints();
899 
900   // Get the mangled construction vtable name.
901   SmallString<256> OutName;
902   llvm::raw_svector_ostream Out(OutName);
903   cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext())
904       .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(),
905                            Base.getBase(), Out);
906   SmallString<256> Name(OutName);
907 
908   bool UsingRelativeLayout = getItaniumVTableContext().isRelativeLayout();
909   bool VTableAliasExists =
910       UsingRelativeLayout && CGM.getModule().getNamedAlias(Name);
911   if (VTableAliasExists) {
912     // We previously made the vtable hidden and changed its name.
913     Name.append(".local");
914   }
915 
916   llvm::Type *VTType = getVTableType(*VTLayout);
917 
918   // Construction vtable symbols are not part of the Itanium ABI, so we cannot
919   // guarantee that they actually will be available externally. Instead, when
920   // emitting an available_externally VTT, we provide references to an internal
921   // linkage construction vtable. The ABI only requires complete-object vtables
922   // to be the same for all instances of a type, not construction vtables.
923   if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage)
924     Linkage = llvm::GlobalVariable::InternalLinkage;
925 
926   llvm::Align Align = CGM.getDataLayout().getABITypeAlign(VTType);
927 
928   // Create the variable that will hold the construction vtable.
929   llvm::GlobalVariable *VTable =
930       CGM.CreateOrReplaceCXXRuntimeVariable(Name, VTType, Linkage, Align);
931 
932   // V-tables are always unnamed_addr.
933   VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
934 
935   llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor(
936       CGM.getContext().getTagDeclType(Base.getBase()));
937 
938   // Create and set the initializer.
939   ConstantInitBuilder builder(CGM);
940   auto components = builder.beginStruct();
941   createVTableInitializer(components, *VTLayout, RTTI,
942                           VTable->hasLocalLinkage());
943   components.finishAndSetAsInitializer(VTable);
944 
945   // Set properties only after the initializer has been set to ensure that the
946   // GV is treated as definition and not declaration.
947   assert(!VTable->isDeclaration() && "Shouldn't set properties on declaration");
948   CGM.setGVProperties(VTable, RD);
949 
950   CGM.EmitVTableTypeMetadata(RD, VTable, *VTLayout.get());
951 
952   if (UsingRelativeLayout) {
953     RemoveHwasanMetadata(VTable);
954     if (!VTable->isDSOLocal())
955       GenerateRelativeVTableAlias(VTable, OutName);
956   }
957 
958   return VTable;
959 }
960 
961 // Ensure this vtable is not instrumented by hwasan. That is, a global alias is
962 // not generated for it. This is mainly used by the relative-vtables ABI where
963 // vtables instead contain 32-bit offsets between the vtable and function
964 // pointers. Hwasan is disabled for these vtables for now because the tag in a
965 // vtable pointer may fail the overflow check when resolving 32-bit PLT
966 // relocations. A future alternative for this would be finding which usages of
967 // the vtable can continue to use the untagged hwasan value without any loss of
968 // value in hwasan.
969 void CodeGenVTables::RemoveHwasanMetadata(llvm::GlobalValue *GV) const {
970   if (CGM.getLangOpts().Sanitize.has(SanitizerKind::HWAddress)) {
971     llvm::GlobalValue::SanitizerMetadata Meta;
972     if (GV->hasSanitizerMetadata())
973       Meta = GV->getSanitizerMetadata();
974     Meta.NoHWAddress = true;
975     GV->setSanitizerMetadata(Meta);
976   }
977 }
978 
979 // If the VTable is not dso_local, then we will not be able to indicate that
980 // the VTable does not need a relocation and move into rodata. A frequent
981 // time this can occur is for classes that should be made public from a DSO
982 // (like in libc++). For cases like these, we can make the vtable hidden or
983 // private and create a public alias with the same visibility and linkage as
984 // the original vtable type.
985 void CodeGenVTables::GenerateRelativeVTableAlias(llvm::GlobalVariable *VTable,
986                                                  llvm::StringRef AliasNameRef) {
987   assert(getItaniumVTableContext().isRelativeLayout() &&
988          "Can only use this if the relative vtable ABI is used");
989   assert(!VTable->isDSOLocal() && "This should be called only if the vtable is "
990                                   "not guaranteed to be dso_local");
991 
992   // If the vtable is available_externally, we shouldn't (or need to) generate
993   // an alias for it in the first place since the vtable won't actually by
994   // emitted in this compilation unit.
995   if (VTable->hasAvailableExternallyLinkage())
996     return;
997 
998   // Create a new string in the event the alias is already the name of the
999   // vtable. Using the reference directly could lead to use of an inititialized
1000   // value in the module's StringMap.
1001   llvm::SmallString<256> AliasName(AliasNameRef);
1002   VTable->setName(AliasName + ".local");
1003 
1004   auto Linkage = VTable->getLinkage();
1005   assert(llvm::GlobalAlias::isValidLinkage(Linkage) &&
1006          "Invalid vtable alias linkage");
1007 
1008   llvm::GlobalAlias *VTableAlias = CGM.getModule().getNamedAlias(AliasName);
1009   if (!VTableAlias) {
1010     VTableAlias = llvm::GlobalAlias::create(VTable->getValueType(),
1011                                             VTable->getAddressSpace(), Linkage,
1012                                             AliasName, &CGM.getModule());
1013   } else {
1014     assert(VTableAlias->getValueType() == VTable->getValueType());
1015     assert(VTableAlias->getLinkage() == Linkage);
1016   }
1017   VTableAlias->setVisibility(VTable->getVisibility());
1018   VTableAlias->setUnnamedAddr(VTable->getUnnamedAddr());
1019 
1020   // Both of these imply dso_local for the vtable.
1021   if (!VTable->hasComdat()) {
1022     // If this is in a comdat, then we shouldn't make the linkage private due to
1023     // an issue in lld where private symbols can be used as the key symbol when
1024     // choosing the prevelant group. This leads to "relocation refers to a
1025     // symbol in a discarded section".
1026     VTable->setLinkage(llvm::GlobalValue::PrivateLinkage);
1027   } else {
1028     // We should at least make this hidden since we don't want to expose it.
1029     VTable->setVisibility(llvm::GlobalValue::HiddenVisibility);
1030   }
1031 
1032   VTableAlias->setAliasee(VTable);
1033 }
1034 
1035 static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM,
1036                                                 const CXXRecordDecl *RD) {
1037   return CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1038          CGM.getCXXABI().canSpeculativelyEmitVTable(RD);
1039 }
1040 
1041 /// Compute the required linkage of the vtable for the given class.
1042 ///
1043 /// Note that we only call this at the end of the translation unit.
1044 llvm::GlobalVariable::LinkageTypes
1045 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1046   if (!RD->isExternallyVisible())
1047     return llvm::GlobalVariable::InternalLinkage;
1048 
1049   // We're at the end of the translation unit, so the current key
1050   // function is fully correct.
1051   const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD);
1052   if (keyFunction && !RD->hasAttr<DLLImportAttr>()) {
1053     // If this class has a key function, use that to determine the
1054     // linkage of the vtable.
1055     const FunctionDecl *def = nullptr;
1056     if (keyFunction->hasBody(def))
1057       keyFunction = cast<CXXMethodDecl>(def);
1058 
1059     switch (keyFunction->getTemplateSpecializationKind()) {
1060       case TSK_Undeclared:
1061       case TSK_ExplicitSpecialization:
1062       assert(
1063           (def || CodeGenOpts.OptimizationLevel > 0 ||
1064            CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo) &&
1065           "Shouldn't query vtable linkage without key function, "
1066           "optimizations, or debug info");
1067       if (!def && CodeGenOpts.OptimizationLevel > 0)
1068         return llvm::GlobalVariable::AvailableExternallyLinkage;
1069 
1070       if (keyFunction->isInlined())
1071         return !Context.getLangOpts().AppleKext
1072                    ? llvm::GlobalVariable::LinkOnceODRLinkage
1073                    : llvm::Function::InternalLinkage;
1074 
1075       return llvm::GlobalVariable::ExternalLinkage;
1076 
1077       case TSK_ImplicitInstantiation:
1078         return !Context.getLangOpts().AppleKext ?
1079                  llvm::GlobalVariable::LinkOnceODRLinkage :
1080                  llvm::Function::InternalLinkage;
1081 
1082       case TSK_ExplicitInstantiationDefinition:
1083         return !Context.getLangOpts().AppleKext ?
1084                  llvm::GlobalVariable::WeakODRLinkage :
1085                  llvm::Function::InternalLinkage;
1086 
1087       case TSK_ExplicitInstantiationDeclaration:
1088         llvm_unreachable("Should not have been asked to emit this");
1089     }
1090   }
1091 
1092   // -fapple-kext mode does not support weak linkage, so we must use
1093   // internal linkage.
1094   if (Context.getLangOpts().AppleKext)
1095     return llvm::Function::InternalLinkage;
1096 
1097   llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage =
1098       llvm::GlobalValue::LinkOnceODRLinkage;
1099   llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage =
1100       llvm::GlobalValue::WeakODRLinkage;
1101   if (RD->hasAttr<DLLExportAttr>()) {
1102     // Cannot discard exported vtables.
1103     DiscardableODRLinkage = NonDiscardableODRLinkage;
1104   } else if (RD->hasAttr<DLLImportAttr>()) {
1105     // Imported vtables are available externally.
1106     DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
1107     NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
1108   }
1109 
1110   switch (RD->getTemplateSpecializationKind()) {
1111     case TSK_Undeclared:
1112     case TSK_ExplicitSpecialization:
1113     case TSK_ImplicitInstantiation:
1114       return DiscardableODRLinkage;
1115 
1116     case TSK_ExplicitInstantiationDeclaration:
1117       // Explicit instantiations in MSVC do not provide vtables, so we must emit
1118       // our own.
1119       if (getTarget().getCXXABI().isMicrosoft())
1120         return DiscardableODRLinkage;
1121       return shouldEmitAvailableExternallyVTable(*this, RD)
1122                  ? llvm::GlobalVariable::AvailableExternallyLinkage
1123                  : llvm::GlobalVariable::ExternalLinkage;
1124 
1125     case TSK_ExplicitInstantiationDefinition:
1126       return NonDiscardableODRLinkage;
1127   }
1128 
1129   llvm_unreachable("Invalid TemplateSpecializationKind!");
1130 }
1131 
1132 /// This is a callback from Sema to tell us that a particular vtable is
1133 /// required to be emitted in this translation unit.
1134 ///
1135 /// This is only called for vtables that _must_ be emitted (mainly due to key
1136 /// functions).  For weak vtables, CodeGen tracks when they are needed and
1137 /// emits them as-needed.
1138 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) {
1139   VTables.GenerateClassData(theClass);
1140 }
1141 
1142 void
1143 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) {
1144   if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
1145     DI->completeClassData(RD);
1146 
1147   if (RD->getNumVBases())
1148     CGM.getCXXABI().emitVirtualInheritanceTables(RD);
1149 
1150   CGM.getCXXABI().emitVTableDefinitions(*this, RD);
1151 }
1152 
1153 /// At this point in the translation unit, does it appear that can we
1154 /// rely on the vtable being defined elsewhere in the program?
1155 ///
1156 /// The response is really only definitive when called at the end of
1157 /// the translation unit.
1158 ///
1159 /// The only semantic restriction here is that the object file should
1160 /// not contain a vtable definition when that vtable is defined
1161 /// strongly elsewhere.  Otherwise, we'd just like to avoid emitting
1162 /// vtables when unnecessary.
1163 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) {
1164   assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable.");
1165 
1166   // We always synthesize vtables if they are needed in the MS ABI. MSVC doesn't
1167   // emit them even if there is an explicit template instantiation.
1168   if (CGM.getTarget().getCXXABI().isMicrosoft())
1169     return false;
1170 
1171   // If we have an explicit instantiation declaration (and not a
1172   // definition), the vtable is defined elsewhere.
1173   TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
1174   if (TSK == TSK_ExplicitInstantiationDeclaration)
1175     return true;
1176 
1177   // Otherwise, if the class is an instantiated template, the
1178   // vtable must be defined here.
1179   if (TSK == TSK_ImplicitInstantiation ||
1180       TSK == TSK_ExplicitInstantiationDefinition)
1181     return false;
1182 
1183   // Otherwise, if the class doesn't have a key function (possibly
1184   // anymore), the vtable must be defined here.
1185   const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD);
1186   if (!keyFunction)
1187     return false;
1188 
1189   const FunctionDecl *Def;
1190   // Otherwise, if we don't have a definition of the key function, the
1191   // vtable must be defined somewhere else.
1192   if (!keyFunction->hasBody(Def))
1193     return true;
1194 
1195   assert(Def && "The body of the key function is not assigned to Def?");
1196   // If the non-inline key function comes from another module unit, the vtable
1197   // must be defined there.
1198   return Def->isInAnotherModuleUnit() && !Def->isInlineSpecified();
1199 }
1200 
1201 /// Given that we're currently at the end of the translation unit, and
1202 /// we've emitted a reference to the vtable for this class, should
1203 /// we define that vtable?
1204 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM,
1205                                                    const CXXRecordDecl *RD) {
1206   // If vtable is internal then it has to be done.
1207   if (!CGM.getVTables().isVTableExternal(RD))
1208     return true;
1209 
1210   // If it's external then maybe we will need it as available_externally.
1211   return shouldEmitAvailableExternallyVTable(CGM, RD);
1212 }
1213 
1214 /// Given that at some point we emitted a reference to one or more
1215 /// vtables, and that we are now at the end of the translation unit,
1216 /// decide whether we should emit them.
1217 void CodeGenModule::EmitDeferredVTables() {
1218 #ifndef NDEBUG
1219   // Remember the size of DeferredVTables, because we're going to assume
1220   // that this entire operation doesn't modify it.
1221   size_t savedSize = DeferredVTables.size();
1222 #endif
1223 
1224   for (const CXXRecordDecl *RD : DeferredVTables)
1225     if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD))
1226       VTables.GenerateClassData(RD);
1227     else if (shouldOpportunisticallyEmitVTables())
1228       OpportunisticVTables.push_back(RD);
1229 
1230   assert(savedSize == DeferredVTables.size() &&
1231          "deferred extra vtables during vtable emission?");
1232   DeferredVTables.clear();
1233 }
1234 
1235 bool CodeGenModule::AlwaysHasLTOVisibilityPublic(const CXXRecordDecl *RD) {
1236   if (RD->hasAttr<LTOVisibilityPublicAttr>() || RD->hasAttr<UuidAttr>() ||
1237       RD->hasAttr<DLLExportAttr>() || RD->hasAttr<DLLImportAttr>())
1238     return true;
1239 
1240   if (!getCodeGenOpts().LTOVisibilityPublicStd)
1241     return false;
1242 
1243   const DeclContext *DC = RD;
1244   while (true) {
1245     auto *D = cast<Decl>(DC);
1246     DC = DC->getParent();
1247     if (isa<TranslationUnitDecl>(DC->getRedeclContext())) {
1248       if (auto *ND = dyn_cast<NamespaceDecl>(D))
1249         if (const IdentifierInfo *II = ND->getIdentifier())
1250           if (II->isStr("std") || II->isStr("stdext"))
1251             return true;
1252       break;
1253     }
1254   }
1255 
1256   return false;
1257 }
1258 
1259 bool CodeGenModule::HasHiddenLTOVisibility(const CXXRecordDecl *RD) {
1260   LinkageInfo LV = RD->getLinkageAndVisibility();
1261   if (!isExternallyVisible(LV.getLinkage()))
1262     return true;
1263 
1264   if (!getTriple().isOSBinFormatCOFF() &&
1265       LV.getVisibility() != HiddenVisibility)
1266     return false;
1267 
1268   return !AlwaysHasLTOVisibilityPublic(RD);
1269 }
1270 
1271 llvm::GlobalObject::VCallVisibility CodeGenModule::GetVCallVisibilityLevel(
1272     const CXXRecordDecl *RD, llvm::DenseSet<const CXXRecordDecl *> &Visited) {
1273   // If we have already visited this RD (which means this is a recursive call
1274   // since the initial call should have an empty Visited set), return the max
1275   // visibility. The recursive calls below compute the min between the result
1276   // of the recursive call and the current TypeVis, so returning the max here
1277   // ensures that it will have no effect on the current TypeVis.
1278   if (!Visited.insert(RD).second)
1279     return llvm::GlobalObject::VCallVisibilityTranslationUnit;
1280 
1281   LinkageInfo LV = RD->getLinkageAndVisibility();
1282   llvm::GlobalObject::VCallVisibility TypeVis;
1283   if (!isExternallyVisible(LV.getLinkage()))
1284     TypeVis = llvm::GlobalObject::VCallVisibilityTranslationUnit;
1285   else if (HasHiddenLTOVisibility(RD))
1286     TypeVis = llvm::GlobalObject::VCallVisibilityLinkageUnit;
1287   else
1288     TypeVis = llvm::GlobalObject::VCallVisibilityPublic;
1289 
1290   for (const auto &B : RD->bases())
1291     if (B.getType()->getAsCXXRecordDecl()->isDynamicClass())
1292       TypeVis = std::min(
1293           TypeVis,
1294           GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl(), Visited));
1295 
1296   for (const auto &B : RD->vbases())
1297     if (B.getType()->getAsCXXRecordDecl()->isDynamicClass())
1298       TypeVis = std::min(
1299           TypeVis,
1300           GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl(), Visited));
1301 
1302   return TypeVis;
1303 }
1304 
1305 void CodeGenModule::EmitVTableTypeMetadata(const CXXRecordDecl *RD,
1306                                            llvm::GlobalVariable *VTable,
1307                                            const VTableLayout &VTLayout) {
1308   // Emit type metadata on vtables with LTO or IR instrumentation.
1309   // In IR instrumentation, the type metadata is used to find out vtable
1310   // definitions (for type profiling) among all global variables.
1311   if (!getCodeGenOpts().LTOUnit && !getCodeGenOpts().hasProfileIRInstr())
1312     return;
1313 
1314   CharUnits ComponentWidth = GetTargetTypeStoreSize(getVTableComponentType());
1315 
1316   struct AddressPoint {
1317     const CXXRecordDecl *Base;
1318     size_t Offset;
1319     std::string TypeName;
1320     bool operator<(const AddressPoint &RHS) const {
1321       int D = TypeName.compare(RHS.TypeName);
1322       return D < 0 || (D == 0 && Offset < RHS.Offset);
1323     }
1324   };
1325   std::vector<AddressPoint> AddressPoints;
1326   for (auto &&AP : VTLayout.getAddressPoints()) {
1327     AddressPoint N{AP.first.getBase(),
1328                    VTLayout.getVTableOffset(AP.second.VTableIndex) +
1329                        AP.second.AddressPointIndex,
1330                    {}};
1331     llvm::raw_string_ostream Stream(N.TypeName);
1332     getCXXABI().getMangleContext().mangleCanonicalTypeName(
1333         QualType(N.Base->getTypeForDecl(), 0), Stream);
1334     AddressPoints.push_back(std::move(N));
1335   }
1336 
1337   // Sort the address points for determinism.
1338   llvm::sort(AddressPoints);
1339 
1340   ArrayRef<VTableComponent> Comps = VTLayout.vtable_components();
1341   for (auto AP : AddressPoints) {
1342     // Create type metadata for the address point.
1343     AddVTableTypeMetadata(VTable, ComponentWidth * AP.Offset, AP.Base);
1344 
1345     // The class associated with each address point could also potentially be
1346     // used for indirect calls via a member function pointer, so we need to
1347     // annotate the address of each function pointer with the appropriate member
1348     // function pointer type.
1349     for (unsigned I = 0; I != Comps.size(); ++I) {
1350       if (Comps[I].getKind() != VTableComponent::CK_FunctionPointer)
1351         continue;
1352       llvm::Metadata *MD = CreateMetadataIdentifierForVirtualMemPtrType(
1353           Context.getMemberPointerType(
1354               Comps[I].getFunctionDecl()->getType(),
1355               Context.getRecordType(AP.Base).getTypePtr()));
1356       VTable->addTypeMetadata((ComponentWidth * I).getQuantity(), MD);
1357     }
1358   }
1359 
1360   if (getCodeGenOpts().VirtualFunctionElimination ||
1361       getCodeGenOpts().WholeProgramVTables) {
1362     llvm::DenseSet<const CXXRecordDecl *> Visited;
1363     llvm::GlobalObject::VCallVisibility TypeVis =
1364         GetVCallVisibilityLevel(RD, Visited);
1365     if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic)
1366       VTable->setVCallVisibilityMetadata(TypeVis);
1367   }
1368 }
1369