1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with C++ code generation of virtual tables. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/CXXInheritance.h" 17 #include "clang/AST/RecordLayout.h" 18 #include "clang/Basic/CodeGenOptions.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "clang/CodeGen/ConstantInitBuilder.h" 21 #include "llvm/IR/IntrinsicInst.h" 22 #include "llvm/Support/Format.h" 23 #include "llvm/Transforms/Utils/Cloning.h" 24 #include <algorithm> 25 #include <cstdio> 26 27 using namespace clang; 28 using namespace CodeGen; 29 30 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM) 31 : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {} 32 33 llvm::Constant *CodeGenModule::GetAddrOfThunk(StringRef Name, llvm::Type *FnTy, 34 GlobalDecl GD) { 35 return GetOrCreateLLVMFunction(Name, FnTy, GD, /*ForVTable=*/true, 36 /*DontDefer=*/true, /*IsThunk=*/true); 37 } 38 39 static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk, 40 llvm::Function *ThunkFn, bool ForVTable, 41 GlobalDecl GD) { 42 CGM.setFunctionLinkage(GD, ThunkFn); 43 CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD, 44 !Thunk.Return.isEmpty()); 45 46 // Set the right visibility. 47 CGM.setGVProperties(ThunkFn, GD); 48 49 if (!CGM.getCXXABI().exportThunk()) { 50 ThunkFn->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 51 ThunkFn->setDSOLocal(true); 52 } 53 54 if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker()) 55 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 56 } 57 58 #ifndef NDEBUG 59 static bool similar(const ABIArgInfo &infoL, CanQualType typeL, 60 const ABIArgInfo &infoR, CanQualType typeR) { 61 return (infoL.getKind() == infoR.getKind() && 62 (typeL == typeR || 63 (isa<PointerType>(typeL) && isa<PointerType>(typeR)) || 64 (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR)))); 65 } 66 #endif 67 68 static RValue PerformReturnAdjustment(CodeGenFunction &CGF, 69 QualType ResultType, RValue RV, 70 const ThunkInfo &Thunk) { 71 // Emit the return adjustment. 72 bool NullCheckValue = !ResultType->isReferenceType(); 73 74 llvm::BasicBlock *AdjustNull = nullptr; 75 llvm::BasicBlock *AdjustNotNull = nullptr; 76 llvm::BasicBlock *AdjustEnd = nullptr; 77 78 llvm::Value *ReturnValue = RV.getScalarVal(); 79 80 if (NullCheckValue) { 81 AdjustNull = CGF.createBasicBlock("adjust.null"); 82 AdjustNotNull = CGF.createBasicBlock("adjust.notnull"); 83 AdjustEnd = CGF.createBasicBlock("adjust.end"); 84 85 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue); 86 CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull); 87 CGF.EmitBlock(AdjustNotNull); 88 } 89 90 auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl(); 91 auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl); 92 ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF, 93 Address(ReturnValue, ClassAlign), 94 Thunk.Return); 95 96 if (NullCheckValue) { 97 CGF.Builder.CreateBr(AdjustEnd); 98 CGF.EmitBlock(AdjustNull); 99 CGF.Builder.CreateBr(AdjustEnd); 100 CGF.EmitBlock(AdjustEnd); 101 102 llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2); 103 PHI->addIncoming(ReturnValue, AdjustNotNull); 104 PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()), 105 AdjustNull); 106 ReturnValue = PHI; 107 } 108 109 return RValue::get(ReturnValue); 110 } 111 112 /// This function clones a function's DISubprogram node and enters it into 113 /// a value map with the intent that the map can be utilized by the cloner 114 /// to short-circuit Metadata node mapping. 115 /// Furthermore, the function resolves any DILocalVariable nodes referenced 116 /// by dbg.value intrinsics so they can be properly mapped during cloning. 117 static void resolveTopLevelMetadata(llvm::Function *Fn, 118 llvm::ValueToValueMapTy &VMap) { 119 // Clone the DISubprogram node and put it into the Value map. 120 auto *DIS = Fn->getSubprogram(); 121 if (!DIS) 122 return; 123 auto *NewDIS = DIS->replaceWithDistinct(DIS->clone()); 124 VMap.MD()[DIS].reset(NewDIS); 125 126 // Find all llvm.dbg.declare intrinsics and resolve the DILocalVariable nodes 127 // they are referencing. 128 for (auto &BB : Fn->getBasicBlockList()) { 129 for (auto &I : BB) { 130 if (auto *DII = dyn_cast<llvm::DbgVariableIntrinsic>(&I)) { 131 auto *DILocal = DII->getVariable(); 132 if (!DILocal->isResolved()) 133 DILocal->resolve(); 134 } 135 } 136 } 137 } 138 139 // This function does roughly the same thing as GenerateThunk, but in a 140 // very different way, so that va_start and va_end work correctly. 141 // FIXME: This function assumes "this" is the first non-sret LLVM argument of 142 // a function, and that there is an alloca built in the entry block 143 // for all accesses to "this". 144 // FIXME: This function assumes there is only one "ret" statement per function. 145 // FIXME: Cloning isn't correct in the presence of indirect goto! 146 // FIXME: This implementation of thunks bloats codesize by duplicating the 147 // function definition. There are alternatives: 148 // 1. Add some sort of stub support to LLVM for cases where we can 149 // do a this adjustment, then a sibcall. 150 // 2. We could transform the definition to take a va_list instead of an 151 // actual variable argument list, then have the thunks (including a 152 // no-op thunk for the regular definition) call va_start/va_end. 153 // There's a bit of per-call overhead for this solution, but it's 154 // better for codesize if the definition is long. 155 llvm::Function * 156 CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn, 157 const CGFunctionInfo &FnInfo, 158 GlobalDecl GD, const ThunkInfo &Thunk) { 159 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 160 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 161 QualType ResultType = FPT->getReturnType(); 162 163 // Get the original function 164 assert(FnInfo.isVariadic()); 165 llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo); 166 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 167 llvm::Function *BaseFn = cast<llvm::Function>(Callee); 168 169 // Clone to thunk. 170 llvm::ValueToValueMapTy VMap; 171 172 // We are cloning a function while some Metadata nodes are still unresolved. 173 // Ensure that the value mapper does not encounter any of them. 174 resolveTopLevelMetadata(BaseFn, VMap); 175 llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap); 176 Fn->replaceAllUsesWith(NewFn); 177 NewFn->takeName(Fn); 178 Fn->eraseFromParent(); 179 Fn = NewFn; 180 181 // "Initialize" CGF (minimally). 182 CurFn = Fn; 183 184 // Get the "this" value 185 llvm::Function::arg_iterator AI = Fn->arg_begin(); 186 if (CGM.ReturnTypeUsesSRet(FnInfo)) 187 ++AI; 188 189 // Find the first store of "this", which will be to the alloca associated 190 // with "this". 191 Address ThisPtr(&*AI, CGM.getClassPointerAlignment(MD->getParent())); 192 llvm::BasicBlock *EntryBB = &Fn->front(); 193 llvm::BasicBlock::iterator ThisStore = 194 std::find_if(EntryBB->begin(), EntryBB->end(), [&](llvm::Instruction &I) { 195 return isa<llvm::StoreInst>(I) && 196 I.getOperand(0) == ThisPtr.getPointer(); 197 }); 198 assert(ThisStore != EntryBB->end() && 199 "Store of this should be in entry block?"); 200 // Adjust "this", if necessary. 201 Builder.SetInsertPoint(&*ThisStore); 202 llvm::Value *AdjustedThisPtr = 203 CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This); 204 ThisStore->setOperand(0, AdjustedThisPtr); 205 206 if (!Thunk.Return.isEmpty()) { 207 // Fix up the returned value, if necessary. 208 for (llvm::BasicBlock &BB : *Fn) { 209 llvm::Instruction *T = BB.getTerminator(); 210 if (isa<llvm::ReturnInst>(T)) { 211 RValue RV = RValue::get(T->getOperand(0)); 212 T->eraseFromParent(); 213 Builder.SetInsertPoint(&BB); 214 RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); 215 Builder.CreateRet(RV.getScalarVal()); 216 break; 217 } 218 } 219 } 220 221 return Fn; 222 } 223 224 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD, 225 const CGFunctionInfo &FnInfo, 226 bool IsUnprototyped) { 227 assert(!CurGD.getDecl() && "CurGD was already set!"); 228 CurGD = GD; 229 CurFuncIsThunk = true; 230 231 // Build FunctionArgs. 232 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 233 QualType ThisType = MD->getThisType(); 234 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 235 QualType ResultType; 236 if (IsUnprototyped) 237 ResultType = CGM.getContext().VoidTy; 238 else if (CGM.getCXXABI().HasThisReturn(GD)) 239 ResultType = ThisType; 240 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 241 ResultType = CGM.getContext().VoidPtrTy; 242 else 243 ResultType = FPT->getReturnType(); 244 FunctionArgList FunctionArgs; 245 246 // Create the implicit 'this' parameter declaration. 247 CGM.getCXXABI().buildThisParam(*this, FunctionArgs); 248 249 // Add the rest of the parameters, if we have a prototype to work with. 250 if (!IsUnprototyped) { 251 FunctionArgs.append(MD->param_begin(), MD->param_end()); 252 253 if (isa<CXXDestructorDecl>(MD)) 254 CGM.getCXXABI().addImplicitStructorParams(*this, ResultType, 255 FunctionArgs); 256 } 257 258 // Start defining the function. 259 auto NL = ApplyDebugLocation::CreateEmpty(*this); 260 StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs, 261 MD->getLocation()); 262 // Create a scope with an artificial location for the body of this function. 263 auto AL = ApplyDebugLocation::CreateArtificial(*this); 264 265 // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves. 266 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 267 CXXThisValue = CXXABIThisValue; 268 CurCodeDecl = MD; 269 CurFuncDecl = MD; 270 } 271 272 void CodeGenFunction::FinishThunk() { 273 // Clear these to restore the invariants expected by 274 // StartFunction/FinishFunction. 275 CurCodeDecl = nullptr; 276 CurFuncDecl = nullptr; 277 278 FinishFunction(); 279 } 280 281 void CodeGenFunction::EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 282 const ThunkInfo *Thunk, 283 bool IsUnprototyped) { 284 assert(isa<CXXMethodDecl>(CurGD.getDecl()) && 285 "Please use a new CGF for this thunk"); 286 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl()); 287 288 // Adjust the 'this' pointer if necessary 289 llvm::Value *AdjustedThisPtr = 290 Thunk ? CGM.getCXXABI().performThisAdjustment( 291 *this, LoadCXXThisAddress(), Thunk->This) 292 : LoadCXXThis(); 293 294 if (CurFnInfo->usesInAlloca() || IsUnprototyped) { 295 // We don't handle return adjusting thunks, because they require us to call 296 // the copy constructor. For now, fall through and pretend the return 297 // adjustment was empty so we don't crash. 298 if (Thunk && !Thunk->Return.isEmpty()) { 299 if (IsUnprototyped) 300 CGM.ErrorUnsupported( 301 MD, "return-adjusting thunk with incomplete parameter type"); 302 else 303 CGM.ErrorUnsupported( 304 MD, "non-trivial argument copy for return-adjusting thunk"); 305 } 306 EmitMustTailThunk(CurGD, AdjustedThisPtr, Callee); 307 return; 308 } 309 310 // Start building CallArgs. 311 CallArgList CallArgs; 312 QualType ThisType = MD->getThisType(); 313 CallArgs.add(RValue::get(AdjustedThisPtr), ThisType); 314 315 if (isa<CXXDestructorDecl>(MD)) 316 CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs); 317 318 #ifndef NDEBUG 319 unsigned PrefixArgs = CallArgs.size() - 1; 320 #endif 321 // Add the rest of the arguments. 322 for (const ParmVarDecl *PD : MD->parameters()) 323 EmitDelegateCallArg(CallArgs, PD, SourceLocation()); 324 325 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 326 327 #ifndef NDEBUG 328 const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall( 329 CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1), PrefixArgs); 330 assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() && 331 CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() && 332 CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention()); 333 assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types 334 similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(), 335 CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType())); 336 assert(CallFnInfo.arg_size() == CurFnInfo->arg_size()); 337 for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i) 338 assert(similar(CallFnInfo.arg_begin()[i].info, 339 CallFnInfo.arg_begin()[i].type, 340 CurFnInfo->arg_begin()[i].info, 341 CurFnInfo->arg_begin()[i].type)); 342 #endif 343 344 // Determine whether we have a return value slot to use. 345 QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD) 346 ? ThisType 347 : CGM.getCXXABI().hasMostDerivedReturn(CurGD) 348 ? CGM.getContext().VoidPtrTy 349 : FPT->getReturnType(); 350 ReturnValueSlot Slot; 351 if (!ResultType->isVoidType() && 352 CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) 353 Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified()); 354 355 // Now emit our call. 356 llvm::CallBase *CallOrInvoke; 357 RValue RV = EmitCall(*CurFnInfo, CGCallee::forDirect(Callee, CurGD), Slot, 358 CallArgs, &CallOrInvoke); 359 360 // Consider return adjustment if we have ThunkInfo. 361 if (Thunk && !Thunk->Return.isEmpty()) 362 RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk); 363 else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke)) 364 Call->setTailCallKind(llvm::CallInst::TCK_Tail); 365 366 // Emit return. 367 if (!ResultType->isVoidType() && Slot.isNull()) 368 CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType); 369 370 // Disable the final ARC autorelease. 371 AutoreleaseResult = false; 372 373 FinishThunk(); 374 } 375 376 void CodeGenFunction::EmitMustTailThunk(GlobalDecl GD, 377 llvm::Value *AdjustedThisPtr, 378 llvm::FunctionCallee Callee) { 379 // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery 380 // to translate AST arguments into LLVM IR arguments. For thunks, we know 381 // that the caller prototype more or less matches the callee prototype with 382 // the exception of 'this'. 383 SmallVector<llvm::Value *, 8> Args; 384 for (llvm::Argument &A : CurFn->args()) 385 Args.push_back(&A); 386 387 // Set the adjusted 'this' pointer. 388 const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info; 389 if (ThisAI.isDirect()) { 390 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 391 int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0; 392 llvm::Type *ThisType = Args[ThisArgNo]->getType(); 393 if (ThisType != AdjustedThisPtr->getType()) 394 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 395 Args[ThisArgNo] = AdjustedThisPtr; 396 } else { 397 assert(ThisAI.isInAlloca() && "this is passed directly or inalloca"); 398 Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl); 399 llvm::Type *ThisType = ThisAddr.getElementType(); 400 if (ThisType != AdjustedThisPtr->getType()) 401 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 402 Builder.CreateStore(AdjustedThisPtr, ThisAddr); 403 } 404 405 // Emit the musttail call manually. Even if the prologue pushed cleanups, we 406 // don't actually want to run them. 407 llvm::CallInst *Call = Builder.CreateCall(Callee, Args); 408 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 409 410 // Apply the standard set of call attributes. 411 unsigned CallingConv; 412 llvm::AttributeList Attrs; 413 CGM.ConstructAttributeList(Callee.getCallee()->getName(), *CurFnInfo, GD, 414 Attrs, CallingConv, /*AttrOnCallSite=*/true); 415 Call->setAttributes(Attrs); 416 Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 417 418 if (Call->getType()->isVoidTy()) 419 Builder.CreateRetVoid(); 420 else 421 Builder.CreateRet(Call); 422 423 // Finish the function to maintain CodeGenFunction invariants. 424 // FIXME: Don't emit unreachable code. 425 EmitBlock(createBasicBlock()); 426 FinishFunction(); 427 } 428 429 void CodeGenFunction::generateThunk(llvm::Function *Fn, 430 const CGFunctionInfo &FnInfo, GlobalDecl GD, 431 const ThunkInfo &Thunk, 432 bool IsUnprototyped) { 433 StartThunk(Fn, GD, FnInfo, IsUnprototyped); 434 // Create a scope with an artificial location for the body of this function. 435 auto AL = ApplyDebugLocation::CreateArtificial(*this); 436 437 // Get our callee. Use a placeholder type if this method is unprototyped so 438 // that CodeGenModule doesn't try to set attributes. 439 llvm::Type *Ty; 440 if (IsUnprototyped) 441 Ty = llvm::StructType::get(getLLVMContext()); 442 else 443 Ty = CGM.getTypes().GetFunctionType(FnInfo); 444 445 llvm::Constant *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 446 447 // Fix up the function type for an unprototyped musttail call. 448 if (IsUnprototyped) 449 Callee = llvm::ConstantExpr::getBitCast(Callee, Fn->getType()); 450 451 // Make the call and return the result. 452 EmitCallAndReturnForThunk(llvm::FunctionCallee(Fn->getFunctionType(), Callee), 453 &Thunk, IsUnprototyped); 454 } 455 456 static bool shouldEmitVTableThunk(CodeGenModule &CGM, const CXXMethodDecl *MD, 457 bool IsUnprototyped, bool ForVTable) { 458 // Always emit thunks in the MS C++ ABI. We cannot rely on other TUs to 459 // provide thunks for us. 460 if (CGM.getTarget().getCXXABI().isMicrosoft()) 461 return true; 462 463 // In the Itanium C++ ABI, vtable thunks are provided by TUs that provide 464 // definitions of the main method. Therefore, emitting thunks with the vtable 465 // is purely an optimization. Emit the thunk if optimizations are enabled and 466 // all of the parameter types are complete. 467 if (ForVTable) 468 return CGM.getCodeGenOpts().OptimizationLevel && !IsUnprototyped; 469 470 // Always emit thunks along with the method definition. 471 return true; 472 } 473 474 llvm::Constant *CodeGenVTables::maybeEmitThunk(GlobalDecl GD, 475 const ThunkInfo &TI, 476 bool ForVTable) { 477 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 478 479 // First, get a declaration. Compute the mangled name. Don't worry about 480 // getting the function prototype right, since we may only need this 481 // declaration to fill in a vtable slot. 482 SmallString<256> Name; 483 MangleContext &MCtx = CGM.getCXXABI().getMangleContext(); 484 llvm::raw_svector_ostream Out(Name); 485 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) 486 MCtx.mangleCXXDtorThunk(DD, GD.getDtorType(), TI.This, Out); 487 else 488 MCtx.mangleThunk(MD, TI, Out); 489 llvm::Type *ThunkVTableTy = CGM.getTypes().GetFunctionTypeForVTable(GD); 490 llvm::Constant *Thunk = CGM.GetAddrOfThunk(Name, ThunkVTableTy, GD); 491 492 // If we don't need to emit a definition, return this declaration as is. 493 bool IsUnprototyped = !CGM.getTypes().isFuncTypeConvertible( 494 MD->getType()->castAs<FunctionType>()); 495 if (!shouldEmitVTableThunk(CGM, MD, IsUnprototyped, ForVTable)) 496 return Thunk; 497 498 // Arrange a function prototype appropriate for a function definition. In some 499 // cases in the MS ABI, we may need to build an unprototyped musttail thunk. 500 const CGFunctionInfo &FnInfo = 501 IsUnprototyped ? CGM.getTypes().arrangeUnprototypedMustTailThunk(MD) 502 : CGM.getTypes().arrangeGlobalDeclaration(GD); 503 llvm::FunctionType *ThunkFnTy = CGM.getTypes().GetFunctionType(FnInfo); 504 505 // If the type of the underlying GlobalValue is wrong, we'll have to replace 506 // it. It should be a declaration. 507 llvm::Function *ThunkFn = cast<llvm::Function>(Thunk->stripPointerCasts()); 508 if (ThunkFn->getFunctionType() != ThunkFnTy) { 509 llvm::GlobalValue *OldThunkFn = ThunkFn; 510 511 assert(OldThunkFn->isDeclaration() && "Shouldn't replace non-declaration"); 512 513 // Remove the name from the old thunk function and get a new thunk. 514 OldThunkFn->setName(StringRef()); 515 ThunkFn = llvm::Function::Create(ThunkFnTy, llvm::Function::ExternalLinkage, 516 Name.str(), &CGM.getModule()); 517 CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn); 518 519 // If needed, replace the old thunk with a bitcast. 520 if (!OldThunkFn->use_empty()) { 521 llvm::Constant *NewPtrForOldDecl = 522 llvm::ConstantExpr::getBitCast(ThunkFn, OldThunkFn->getType()); 523 OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl); 524 } 525 526 // Remove the old thunk. 527 OldThunkFn->eraseFromParent(); 528 } 529 530 bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions(); 531 bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions; 532 533 if (!ThunkFn->isDeclaration()) { 534 if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) { 535 // There is already a thunk emitted for this function, do nothing. 536 return ThunkFn; 537 } 538 539 setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD); 540 return ThunkFn; 541 } 542 543 // If this will be unprototyped, add the "thunk" attribute so that LLVM knows 544 // that the return type is meaningless. These thunks can be used to call 545 // functions with differing return types, and the caller is required to cast 546 // the prototype appropriately to extract the correct value. 547 if (IsUnprototyped) 548 ThunkFn->addFnAttr("thunk"); 549 550 CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn); 551 552 if (!IsUnprototyped && ThunkFn->isVarArg()) { 553 // Varargs thunks are special; we can't just generate a call because 554 // we can't copy the varargs. Our implementation is rather 555 // expensive/sucky at the moment, so don't generate the thunk unless 556 // we have to. 557 // FIXME: Do something better here; GenerateVarArgsThunk is extremely ugly. 558 if (UseAvailableExternallyLinkage) 559 return ThunkFn; 560 ThunkFn = CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, 561 TI); 562 } else { 563 // Normal thunk body generation. 564 CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, TI, IsUnprototyped); 565 } 566 567 setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD); 568 return ThunkFn; 569 } 570 571 void CodeGenVTables::EmitThunks(GlobalDecl GD) { 572 const CXXMethodDecl *MD = 573 cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl(); 574 575 // We don't need to generate thunks for the base destructor. 576 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 577 return; 578 579 const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector = 580 VTContext->getThunkInfo(GD); 581 582 if (!ThunkInfoVector) 583 return; 584 585 for (const ThunkInfo& Thunk : *ThunkInfoVector) 586 maybeEmitThunk(GD, Thunk, /*ForVTable=*/false); 587 } 588 589 void CodeGenVTables::addVTableComponent( 590 ConstantArrayBuilder &builder, const VTableLayout &layout, 591 unsigned idx, llvm::Constant *rtti, unsigned &nextVTableThunkIndex) { 592 auto &component = layout.vtable_components()[idx]; 593 594 auto addOffsetConstant = [&](CharUnits offset) { 595 builder.add(llvm::ConstantExpr::getIntToPtr( 596 llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()), 597 CGM.Int8PtrTy)); 598 }; 599 600 switch (component.getKind()) { 601 case VTableComponent::CK_VCallOffset: 602 return addOffsetConstant(component.getVCallOffset()); 603 604 case VTableComponent::CK_VBaseOffset: 605 return addOffsetConstant(component.getVBaseOffset()); 606 607 case VTableComponent::CK_OffsetToTop: 608 return addOffsetConstant(component.getOffsetToTop()); 609 610 case VTableComponent::CK_RTTI: 611 return builder.add(llvm::ConstantExpr::getBitCast(rtti, CGM.Int8PtrTy)); 612 613 case VTableComponent::CK_FunctionPointer: 614 case VTableComponent::CK_CompleteDtorPointer: 615 case VTableComponent::CK_DeletingDtorPointer: { 616 GlobalDecl GD; 617 618 // Get the right global decl. 619 switch (component.getKind()) { 620 default: 621 llvm_unreachable("Unexpected vtable component kind"); 622 case VTableComponent::CK_FunctionPointer: 623 GD = component.getFunctionDecl(); 624 break; 625 case VTableComponent::CK_CompleteDtorPointer: 626 GD = GlobalDecl(component.getDestructorDecl(), Dtor_Complete); 627 break; 628 case VTableComponent::CK_DeletingDtorPointer: 629 GD = GlobalDecl(component.getDestructorDecl(), Dtor_Deleting); 630 break; 631 } 632 633 if (CGM.getLangOpts().CUDA) { 634 // Emit NULL for methods we can't codegen on this 635 // side. Otherwise we'd end up with vtable with unresolved 636 // references. 637 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 638 // OK on device side: functions w/ __device__ attribute 639 // OK on host side: anything except __device__-only functions. 640 bool CanEmitMethod = 641 CGM.getLangOpts().CUDAIsDevice 642 ? MD->hasAttr<CUDADeviceAttr>() 643 : (MD->hasAttr<CUDAHostAttr>() || !MD->hasAttr<CUDADeviceAttr>()); 644 if (!CanEmitMethod) 645 return builder.addNullPointer(CGM.Int8PtrTy); 646 // Method is acceptable, continue processing as usual. 647 } 648 649 auto getSpecialVirtualFn = [&](StringRef name) { 650 llvm::FunctionType *fnTy = 651 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 652 llvm::Constant *fn = cast<llvm::Constant>( 653 CGM.CreateRuntimeFunction(fnTy, name).getCallee()); 654 if (auto f = dyn_cast<llvm::Function>(fn)) 655 f->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 656 return llvm::ConstantExpr::getBitCast(fn, CGM.Int8PtrTy); 657 }; 658 659 llvm::Constant *fnPtr; 660 661 // Pure virtual member functions. 662 if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) { 663 if (!PureVirtualFn) 664 PureVirtualFn = 665 getSpecialVirtualFn(CGM.getCXXABI().GetPureVirtualCallName()); 666 fnPtr = PureVirtualFn; 667 668 // Deleted virtual member functions. 669 } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) { 670 if (!DeletedVirtualFn) 671 DeletedVirtualFn = 672 getSpecialVirtualFn(CGM.getCXXABI().GetDeletedVirtualCallName()); 673 fnPtr = DeletedVirtualFn; 674 675 // Thunks. 676 } else if (nextVTableThunkIndex < layout.vtable_thunks().size() && 677 layout.vtable_thunks()[nextVTableThunkIndex].first == idx) { 678 auto &thunkInfo = layout.vtable_thunks()[nextVTableThunkIndex].second; 679 680 nextVTableThunkIndex++; 681 fnPtr = maybeEmitThunk(GD, thunkInfo, /*ForVTable=*/true); 682 683 // Otherwise we can use the method definition directly. 684 } else { 685 llvm::Type *fnTy = CGM.getTypes().GetFunctionTypeForVTable(GD); 686 fnPtr = CGM.GetAddrOfFunction(GD, fnTy, /*ForVTable=*/true); 687 } 688 689 fnPtr = llvm::ConstantExpr::getBitCast(fnPtr, CGM.Int8PtrTy); 690 builder.add(fnPtr); 691 return; 692 } 693 694 case VTableComponent::CK_UnusedFunctionPointer: 695 return builder.addNullPointer(CGM.Int8PtrTy); 696 } 697 698 llvm_unreachable("Unexpected vtable component kind"); 699 } 700 701 llvm::Type *CodeGenVTables::getVTableType(const VTableLayout &layout) { 702 SmallVector<llvm::Type *, 4> tys; 703 for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i) { 704 tys.push_back(llvm::ArrayType::get(CGM.Int8PtrTy, layout.getVTableSize(i))); 705 } 706 707 return llvm::StructType::get(CGM.getLLVMContext(), tys); 708 } 709 710 void CodeGenVTables::createVTableInitializer(ConstantStructBuilder &builder, 711 const VTableLayout &layout, 712 llvm::Constant *rtti) { 713 unsigned nextVTableThunkIndex = 0; 714 for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i) { 715 auto vtableElem = builder.beginArray(CGM.Int8PtrTy); 716 size_t thisIndex = layout.getVTableOffset(i); 717 size_t nextIndex = thisIndex + layout.getVTableSize(i); 718 for (unsigned i = thisIndex; i != nextIndex; ++i) { 719 addVTableComponent(vtableElem, layout, i, rtti, nextVTableThunkIndex); 720 } 721 vtableElem.finishAndAddTo(builder); 722 } 723 } 724 725 llvm::GlobalVariable * 726 CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD, 727 const BaseSubobject &Base, 728 bool BaseIsVirtual, 729 llvm::GlobalVariable::LinkageTypes Linkage, 730 VTableAddressPointsMapTy& AddressPoints) { 731 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 732 DI->completeClassData(Base.getBase()); 733 734 std::unique_ptr<VTableLayout> VTLayout( 735 getItaniumVTableContext().createConstructionVTableLayout( 736 Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD)); 737 738 // Add the address points. 739 AddressPoints = VTLayout->getAddressPoints(); 740 741 // Get the mangled construction vtable name. 742 SmallString<256> OutName; 743 llvm::raw_svector_ostream Out(OutName); 744 cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext()) 745 .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(), 746 Base.getBase(), Out); 747 StringRef Name = OutName.str(); 748 749 llvm::Type *VTType = getVTableType(*VTLayout); 750 751 // Construction vtable symbols are not part of the Itanium ABI, so we cannot 752 // guarantee that they actually will be available externally. Instead, when 753 // emitting an available_externally VTT, we provide references to an internal 754 // linkage construction vtable. The ABI only requires complete-object vtables 755 // to be the same for all instances of a type, not construction vtables. 756 if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage) 757 Linkage = llvm::GlobalVariable::InternalLinkage; 758 759 unsigned Align = CGM.getDataLayout().getABITypeAlignment(VTType); 760 761 // Create the variable that will hold the construction vtable. 762 llvm::GlobalVariable *VTable = 763 CGM.CreateOrReplaceCXXRuntimeVariable(Name, VTType, Linkage, Align); 764 765 // V-tables are always unnamed_addr. 766 VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 767 768 llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor( 769 CGM.getContext().getTagDeclType(Base.getBase())); 770 771 // Create and set the initializer. 772 ConstantInitBuilder builder(CGM); 773 auto components = builder.beginStruct(); 774 createVTableInitializer(components, *VTLayout, RTTI); 775 components.finishAndSetAsInitializer(VTable); 776 777 // Set properties only after the initializer has been set to ensure that the 778 // GV is treated as definition and not declaration. 779 assert(!VTable->isDeclaration() && "Shouldn't set properties on declaration"); 780 CGM.setGVProperties(VTable, RD); 781 782 CGM.EmitVTableTypeMetadata(VTable, *VTLayout.get()); 783 784 return VTable; 785 } 786 787 static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM, 788 const CXXRecordDecl *RD) { 789 return CGM.getCodeGenOpts().OptimizationLevel > 0 && 790 CGM.getCXXABI().canSpeculativelyEmitVTable(RD); 791 } 792 793 /// Compute the required linkage of the vtable for the given class. 794 /// 795 /// Note that we only call this at the end of the translation unit. 796 llvm::GlobalVariable::LinkageTypes 797 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 798 if (!RD->isExternallyVisible()) 799 return llvm::GlobalVariable::InternalLinkage; 800 801 // We're at the end of the translation unit, so the current key 802 // function is fully correct. 803 const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD); 804 if (keyFunction && !RD->hasAttr<DLLImportAttr>()) { 805 // If this class has a key function, use that to determine the 806 // linkage of the vtable. 807 const FunctionDecl *def = nullptr; 808 if (keyFunction->hasBody(def)) 809 keyFunction = cast<CXXMethodDecl>(def); 810 811 switch (keyFunction->getTemplateSpecializationKind()) { 812 case TSK_Undeclared: 813 case TSK_ExplicitSpecialization: 814 assert((def || CodeGenOpts.OptimizationLevel > 0 || 815 CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo) && 816 "Shouldn't query vtable linkage without key function, " 817 "optimizations, or debug info"); 818 if (!def && CodeGenOpts.OptimizationLevel > 0) 819 return llvm::GlobalVariable::AvailableExternallyLinkage; 820 821 if (keyFunction->isInlined()) 822 return !Context.getLangOpts().AppleKext ? 823 llvm::GlobalVariable::LinkOnceODRLinkage : 824 llvm::Function::InternalLinkage; 825 826 return llvm::GlobalVariable::ExternalLinkage; 827 828 case TSK_ImplicitInstantiation: 829 return !Context.getLangOpts().AppleKext ? 830 llvm::GlobalVariable::LinkOnceODRLinkage : 831 llvm::Function::InternalLinkage; 832 833 case TSK_ExplicitInstantiationDefinition: 834 return !Context.getLangOpts().AppleKext ? 835 llvm::GlobalVariable::WeakODRLinkage : 836 llvm::Function::InternalLinkage; 837 838 case TSK_ExplicitInstantiationDeclaration: 839 llvm_unreachable("Should not have been asked to emit this"); 840 } 841 } 842 843 // -fapple-kext mode does not support weak linkage, so we must use 844 // internal linkage. 845 if (Context.getLangOpts().AppleKext) 846 return llvm::Function::InternalLinkage; 847 848 llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage = 849 llvm::GlobalValue::LinkOnceODRLinkage; 850 llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage = 851 llvm::GlobalValue::WeakODRLinkage; 852 if (RD->hasAttr<DLLExportAttr>()) { 853 // Cannot discard exported vtables. 854 DiscardableODRLinkage = NonDiscardableODRLinkage; 855 } else if (RD->hasAttr<DLLImportAttr>()) { 856 // Imported vtables are available externally. 857 DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 858 NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 859 } 860 861 switch (RD->getTemplateSpecializationKind()) { 862 case TSK_Undeclared: 863 case TSK_ExplicitSpecialization: 864 case TSK_ImplicitInstantiation: 865 return DiscardableODRLinkage; 866 867 case TSK_ExplicitInstantiationDeclaration: 868 // Explicit instantiations in MSVC do not provide vtables, so we must emit 869 // our own. 870 if (getTarget().getCXXABI().isMicrosoft()) 871 return DiscardableODRLinkage; 872 return shouldEmitAvailableExternallyVTable(*this, RD) 873 ? llvm::GlobalVariable::AvailableExternallyLinkage 874 : llvm::GlobalVariable::ExternalLinkage; 875 876 case TSK_ExplicitInstantiationDefinition: 877 return NonDiscardableODRLinkage; 878 } 879 880 llvm_unreachable("Invalid TemplateSpecializationKind!"); 881 } 882 883 /// This is a callback from Sema to tell us that a particular vtable is 884 /// required to be emitted in this translation unit. 885 /// 886 /// This is only called for vtables that _must_ be emitted (mainly due to key 887 /// functions). For weak vtables, CodeGen tracks when they are needed and 888 /// emits them as-needed. 889 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) { 890 VTables.GenerateClassData(theClass); 891 } 892 893 void 894 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) { 895 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 896 DI->completeClassData(RD); 897 898 if (RD->getNumVBases()) 899 CGM.getCXXABI().emitVirtualInheritanceTables(RD); 900 901 CGM.getCXXABI().emitVTableDefinitions(*this, RD); 902 } 903 904 /// At this point in the translation unit, does it appear that can we 905 /// rely on the vtable being defined elsewhere in the program? 906 /// 907 /// The response is really only definitive when called at the end of 908 /// the translation unit. 909 /// 910 /// The only semantic restriction here is that the object file should 911 /// not contain a vtable definition when that vtable is defined 912 /// strongly elsewhere. Otherwise, we'd just like to avoid emitting 913 /// vtables when unnecessary. 914 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) { 915 assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable."); 916 917 // We always synthesize vtables if they are needed in the MS ABI. MSVC doesn't 918 // emit them even if there is an explicit template instantiation. 919 if (CGM.getTarget().getCXXABI().isMicrosoft()) 920 return false; 921 922 // If we have an explicit instantiation declaration (and not a 923 // definition), the vtable is defined elsewhere. 924 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); 925 if (TSK == TSK_ExplicitInstantiationDeclaration) 926 return true; 927 928 // Otherwise, if the class is an instantiated template, the 929 // vtable must be defined here. 930 if (TSK == TSK_ImplicitInstantiation || 931 TSK == TSK_ExplicitInstantiationDefinition) 932 return false; 933 934 // Otherwise, if the class doesn't have a key function (possibly 935 // anymore), the vtable must be defined here. 936 const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD); 937 if (!keyFunction) 938 return false; 939 940 // Otherwise, if we don't have a definition of the key function, the 941 // vtable must be defined somewhere else. 942 return !keyFunction->hasBody(); 943 } 944 945 /// Given that we're currently at the end of the translation unit, and 946 /// we've emitted a reference to the vtable for this class, should 947 /// we define that vtable? 948 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM, 949 const CXXRecordDecl *RD) { 950 // If vtable is internal then it has to be done. 951 if (!CGM.getVTables().isVTableExternal(RD)) 952 return true; 953 954 // If it's external then maybe we will need it as available_externally. 955 return shouldEmitAvailableExternallyVTable(CGM, RD); 956 } 957 958 /// Given that at some point we emitted a reference to one or more 959 /// vtables, and that we are now at the end of the translation unit, 960 /// decide whether we should emit them. 961 void CodeGenModule::EmitDeferredVTables() { 962 #ifndef NDEBUG 963 // Remember the size of DeferredVTables, because we're going to assume 964 // that this entire operation doesn't modify it. 965 size_t savedSize = DeferredVTables.size(); 966 #endif 967 968 for (const CXXRecordDecl *RD : DeferredVTables) 969 if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD)) 970 VTables.GenerateClassData(RD); 971 else if (shouldOpportunisticallyEmitVTables()) 972 OpportunisticVTables.push_back(RD); 973 974 assert(savedSize == DeferredVTables.size() && 975 "deferred extra vtables during vtable emission?"); 976 DeferredVTables.clear(); 977 } 978 979 bool CodeGenModule::HasHiddenLTOVisibility(const CXXRecordDecl *RD) { 980 LinkageInfo LV = RD->getLinkageAndVisibility(); 981 if (!isExternallyVisible(LV.getLinkage())) 982 return true; 983 984 if (RD->hasAttr<LTOVisibilityPublicAttr>() || RD->hasAttr<UuidAttr>()) 985 return false; 986 987 if (getTriple().isOSBinFormatCOFF()) { 988 if (RD->hasAttr<DLLExportAttr>() || RD->hasAttr<DLLImportAttr>()) 989 return false; 990 } else { 991 if (LV.getVisibility() != HiddenVisibility) 992 return false; 993 } 994 995 if (getCodeGenOpts().LTOVisibilityPublicStd) { 996 const DeclContext *DC = RD; 997 while (1) { 998 auto *D = cast<Decl>(DC); 999 DC = DC->getParent(); 1000 if (isa<TranslationUnitDecl>(DC->getRedeclContext())) { 1001 if (auto *ND = dyn_cast<NamespaceDecl>(D)) 1002 if (const IdentifierInfo *II = ND->getIdentifier()) 1003 if (II->isStr("std") || II->isStr("stdext")) 1004 return false; 1005 break; 1006 } 1007 } 1008 } 1009 1010 return true; 1011 } 1012 1013 void CodeGenModule::EmitVTableTypeMetadata(llvm::GlobalVariable *VTable, 1014 const VTableLayout &VTLayout) { 1015 if (!getCodeGenOpts().LTOUnit) 1016 return; 1017 1018 CharUnits PointerWidth = 1019 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); 1020 1021 typedef std::pair<const CXXRecordDecl *, unsigned> AddressPoint; 1022 std::vector<AddressPoint> AddressPoints; 1023 for (auto &&AP : VTLayout.getAddressPoints()) 1024 AddressPoints.push_back(std::make_pair( 1025 AP.first.getBase(), VTLayout.getVTableOffset(AP.second.VTableIndex) + 1026 AP.second.AddressPointIndex)); 1027 1028 // Sort the address points for determinism. 1029 llvm::sort(AddressPoints, [this](const AddressPoint &AP1, 1030 const AddressPoint &AP2) { 1031 if (&AP1 == &AP2) 1032 return false; 1033 1034 std::string S1; 1035 llvm::raw_string_ostream O1(S1); 1036 getCXXABI().getMangleContext().mangleTypeName( 1037 QualType(AP1.first->getTypeForDecl(), 0), O1); 1038 O1.flush(); 1039 1040 std::string S2; 1041 llvm::raw_string_ostream O2(S2); 1042 getCXXABI().getMangleContext().mangleTypeName( 1043 QualType(AP2.first->getTypeForDecl(), 0), O2); 1044 O2.flush(); 1045 1046 if (S1 < S2) 1047 return true; 1048 if (S1 != S2) 1049 return false; 1050 1051 return AP1.second < AP2.second; 1052 }); 1053 1054 ArrayRef<VTableComponent> Comps = VTLayout.vtable_components(); 1055 for (auto AP : AddressPoints) { 1056 // Create type metadata for the address point. 1057 AddVTableTypeMetadata(VTable, PointerWidth * AP.second, AP.first); 1058 1059 // The class associated with each address point could also potentially be 1060 // used for indirect calls via a member function pointer, so we need to 1061 // annotate the address of each function pointer with the appropriate member 1062 // function pointer type. 1063 for (unsigned I = 0; I != Comps.size(); ++I) { 1064 if (Comps[I].getKind() != VTableComponent::CK_FunctionPointer) 1065 continue; 1066 llvm::Metadata *MD = CreateMetadataIdentifierForVirtualMemPtrType( 1067 Context.getMemberPointerType( 1068 Comps[I].getFunctionDecl()->getType(), 1069 Context.getRecordType(AP.first).getTypePtr())); 1070 VTable->addTypeMetadata((PointerWidth * I).getQuantity(), MD); 1071 } 1072 } 1073 } 1074