1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with C++ code generation of virtual tables. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/RecordLayout.h" 19 #include "clang/Basic/CodeGenOptions.h" 20 #include "clang/CodeGen/CGFunctionInfo.h" 21 #include "clang/CodeGen/ConstantInitBuilder.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/Support/Format.h" 24 #include "llvm/Transforms/Utils/Cloning.h" 25 #include <algorithm> 26 #include <cstdio> 27 28 using namespace clang; 29 using namespace CodeGen; 30 31 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM) 32 : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {} 33 34 llvm::Constant *CodeGenModule::GetAddrOfThunk(StringRef Name, llvm::Type *FnTy, 35 GlobalDecl GD) { 36 return GetOrCreateLLVMFunction(Name, FnTy, GD, /*ForVTable=*/true, 37 /*DontDefer=*/true, /*IsThunk=*/true); 38 } 39 40 static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk, 41 llvm::Function *ThunkFn, bool ForVTable, 42 GlobalDecl GD) { 43 CGM.setFunctionLinkage(GD, ThunkFn); 44 CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD, 45 !Thunk.Return.isEmpty()); 46 47 // Set the right visibility. 48 CGM.setGVProperties(ThunkFn, GD); 49 50 if (!CGM.getCXXABI().exportThunk()) { 51 ThunkFn->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 52 ThunkFn->setDSOLocal(true); 53 } 54 55 if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker()) 56 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 57 } 58 59 #ifndef NDEBUG 60 static bool similar(const ABIArgInfo &infoL, CanQualType typeL, 61 const ABIArgInfo &infoR, CanQualType typeR) { 62 return (infoL.getKind() == infoR.getKind() && 63 (typeL == typeR || 64 (isa<PointerType>(typeL) && isa<PointerType>(typeR)) || 65 (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR)))); 66 } 67 #endif 68 69 static RValue PerformReturnAdjustment(CodeGenFunction &CGF, 70 QualType ResultType, RValue RV, 71 const ThunkInfo &Thunk) { 72 // Emit the return adjustment. 73 bool NullCheckValue = !ResultType->isReferenceType(); 74 75 llvm::BasicBlock *AdjustNull = nullptr; 76 llvm::BasicBlock *AdjustNotNull = nullptr; 77 llvm::BasicBlock *AdjustEnd = nullptr; 78 79 llvm::Value *ReturnValue = RV.getScalarVal(); 80 81 if (NullCheckValue) { 82 AdjustNull = CGF.createBasicBlock("adjust.null"); 83 AdjustNotNull = CGF.createBasicBlock("adjust.notnull"); 84 AdjustEnd = CGF.createBasicBlock("adjust.end"); 85 86 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue); 87 CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull); 88 CGF.EmitBlock(AdjustNotNull); 89 } 90 91 auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl(); 92 auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl); 93 ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF, 94 Address(ReturnValue, ClassAlign), 95 Thunk.Return); 96 97 if (NullCheckValue) { 98 CGF.Builder.CreateBr(AdjustEnd); 99 CGF.EmitBlock(AdjustNull); 100 CGF.Builder.CreateBr(AdjustEnd); 101 CGF.EmitBlock(AdjustEnd); 102 103 llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2); 104 PHI->addIncoming(ReturnValue, AdjustNotNull); 105 PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()), 106 AdjustNull); 107 ReturnValue = PHI; 108 } 109 110 return RValue::get(ReturnValue); 111 } 112 113 /// This function clones a function's DISubprogram node and enters it into 114 /// a value map with the intent that the map can be utilized by the cloner 115 /// to short-circuit Metadata node mapping. 116 /// Furthermore, the function resolves any DILocalVariable nodes referenced 117 /// by dbg.value intrinsics so they can be properly mapped during cloning. 118 static void resolveTopLevelMetadata(llvm::Function *Fn, 119 llvm::ValueToValueMapTy &VMap) { 120 // Clone the DISubprogram node and put it into the Value map. 121 auto *DIS = Fn->getSubprogram(); 122 if (!DIS) 123 return; 124 auto *NewDIS = DIS->replaceWithDistinct(DIS->clone()); 125 VMap.MD()[DIS].reset(NewDIS); 126 127 // Find all llvm.dbg.declare intrinsics and resolve the DILocalVariable nodes 128 // they are referencing. 129 for (auto &BB : Fn->getBasicBlockList()) { 130 for (auto &I : BB) { 131 if (auto *DII = dyn_cast<llvm::DbgVariableIntrinsic>(&I)) { 132 auto *DILocal = DII->getVariable(); 133 if (!DILocal->isResolved()) 134 DILocal->resolve(); 135 } 136 } 137 } 138 } 139 140 // This function does roughly the same thing as GenerateThunk, but in a 141 // very different way, so that va_start and va_end work correctly. 142 // FIXME: This function assumes "this" is the first non-sret LLVM argument of 143 // a function, and that there is an alloca built in the entry block 144 // for all accesses to "this". 145 // FIXME: This function assumes there is only one "ret" statement per function. 146 // FIXME: Cloning isn't correct in the presence of indirect goto! 147 // FIXME: This implementation of thunks bloats codesize by duplicating the 148 // function definition. There are alternatives: 149 // 1. Add some sort of stub support to LLVM for cases where we can 150 // do a this adjustment, then a sibcall. 151 // 2. We could transform the definition to take a va_list instead of an 152 // actual variable argument list, then have the thunks (including a 153 // no-op thunk for the regular definition) call va_start/va_end. 154 // There's a bit of per-call overhead for this solution, but it's 155 // better for codesize if the definition is long. 156 llvm::Function * 157 CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn, 158 const CGFunctionInfo &FnInfo, 159 GlobalDecl GD, const ThunkInfo &Thunk) { 160 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 161 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 162 QualType ResultType = FPT->getReturnType(); 163 164 // Get the original function 165 assert(FnInfo.isVariadic()); 166 llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo); 167 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 168 llvm::Function *BaseFn = cast<llvm::Function>(Callee); 169 170 // Cloning can't work if we don't have a definition. The Microsoft ABI may 171 // require thunks when a definition is not available. Emit an error in these 172 // cases. 173 if (!MD->isDefined()) { 174 CGM.ErrorUnsupported(MD, "return-adjusting thunk with variadic arguments"); 175 return Fn; 176 } 177 assert(!BaseFn->isDeclaration() && "cannot clone undefined variadic method"); 178 179 // Clone to thunk. 180 llvm::ValueToValueMapTy VMap; 181 182 // We are cloning a function while some Metadata nodes are still unresolved. 183 // Ensure that the value mapper does not encounter any of them. 184 resolveTopLevelMetadata(BaseFn, VMap); 185 llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap); 186 Fn->replaceAllUsesWith(NewFn); 187 NewFn->takeName(Fn); 188 Fn->eraseFromParent(); 189 Fn = NewFn; 190 191 // "Initialize" CGF (minimally). 192 CurFn = Fn; 193 194 // Get the "this" value 195 llvm::Function::arg_iterator AI = Fn->arg_begin(); 196 if (CGM.ReturnTypeUsesSRet(FnInfo)) 197 ++AI; 198 199 // Find the first store of "this", which will be to the alloca associated 200 // with "this". 201 Address ThisPtr(&*AI, CGM.getClassPointerAlignment(MD->getParent())); 202 llvm::BasicBlock *EntryBB = &Fn->front(); 203 llvm::BasicBlock::iterator ThisStore = 204 std::find_if(EntryBB->begin(), EntryBB->end(), [&](llvm::Instruction &I) { 205 return isa<llvm::StoreInst>(I) && 206 I.getOperand(0) == ThisPtr.getPointer(); 207 }); 208 assert(ThisStore != EntryBB->end() && 209 "Store of this should be in entry block?"); 210 // Adjust "this", if necessary. 211 Builder.SetInsertPoint(&*ThisStore); 212 llvm::Value *AdjustedThisPtr = 213 CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This); 214 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, 215 ThisStore->getOperand(0)->getType()); 216 ThisStore->setOperand(0, AdjustedThisPtr); 217 218 if (!Thunk.Return.isEmpty()) { 219 // Fix up the returned value, if necessary. 220 for (llvm::BasicBlock &BB : *Fn) { 221 llvm::Instruction *T = BB.getTerminator(); 222 if (isa<llvm::ReturnInst>(T)) { 223 RValue RV = RValue::get(T->getOperand(0)); 224 T->eraseFromParent(); 225 Builder.SetInsertPoint(&BB); 226 RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); 227 Builder.CreateRet(RV.getScalarVal()); 228 break; 229 } 230 } 231 } 232 233 return Fn; 234 } 235 236 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD, 237 const CGFunctionInfo &FnInfo, 238 bool IsUnprototyped) { 239 assert(!CurGD.getDecl() && "CurGD was already set!"); 240 CurGD = GD; 241 CurFuncIsThunk = true; 242 243 // Build FunctionArgs. 244 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 245 QualType ThisType = MD->getThisType(); 246 QualType ResultType; 247 if (IsUnprototyped) 248 ResultType = CGM.getContext().VoidTy; 249 else if (CGM.getCXXABI().HasThisReturn(GD)) 250 ResultType = ThisType; 251 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 252 ResultType = CGM.getContext().VoidPtrTy; 253 else 254 ResultType = MD->getType()->castAs<FunctionProtoType>()->getReturnType(); 255 FunctionArgList FunctionArgs; 256 257 // Create the implicit 'this' parameter declaration. 258 CGM.getCXXABI().buildThisParam(*this, FunctionArgs); 259 260 // Add the rest of the parameters, if we have a prototype to work with. 261 if (!IsUnprototyped) { 262 FunctionArgs.append(MD->param_begin(), MD->param_end()); 263 264 if (isa<CXXDestructorDecl>(MD)) 265 CGM.getCXXABI().addImplicitStructorParams(*this, ResultType, 266 FunctionArgs); 267 } 268 269 // Start defining the function. 270 auto NL = ApplyDebugLocation::CreateEmpty(*this); 271 StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs, 272 MD->getLocation()); 273 // Create a scope with an artificial location for the body of this function. 274 auto AL = ApplyDebugLocation::CreateArtificial(*this); 275 276 // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves. 277 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 278 CXXThisValue = CXXABIThisValue; 279 CurCodeDecl = MD; 280 CurFuncDecl = MD; 281 } 282 283 void CodeGenFunction::FinishThunk() { 284 // Clear these to restore the invariants expected by 285 // StartFunction/FinishFunction. 286 CurCodeDecl = nullptr; 287 CurFuncDecl = nullptr; 288 289 FinishFunction(); 290 } 291 292 void CodeGenFunction::EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 293 const ThunkInfo *Thunk, 294 bool IsUnprototyped) { 295 assert(isa<CXXMethodDecl>(CurGD.getDecl()) && 296 "Please use a new CGF for this thunk"); 297 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl()); 298 299 // Adjust the 'this' pointer if necessary 300 llvm::Value *AdjustedThisPtr = 301 Thunk ? CGM.getCXXABI().performThisAdjustment( 302 *this, LoadCXXThisAddress(), Thunk->This) 303 : LoadCXXThis(); 304 305 // If perfect forwarding is required a variadic method, a method using 306 // inalloca, or an unprototyped thunk, use musttail. Emit an error if this 307 // thunk requires a return adjustment, since that is impossible with musttail. 308 if (CurFnInfo->usesInAlloca() || CurFnInfo->isVariadic() || IsUnprototyped) { 309 if (Thunk && !Thunk->Return.isEmpty()) { 310 if (IsUnprototyped) 311 CGM.ErrorUnsupported( 312 MD, "return-adjusting thunk with incomplete parameter type"); 313 else if (CurFnInfo->isVariadic()) 314 llvm_unreachable("shouldn't try to emit musttail return-adjusting " 315 "thunks for variadic functions"); 316 else 317 CGM.ErrorUnsupported( 318 MD, "non-trivial argument copy for return-adjusting thunk"); 319 } 320 EmitMustTailThunk(CurGD, AdjustedThisPtr, Callee); 321 return; 322 } 323 324 // Start building CallArgs. 325 CallArgList CallArgs; 326 QualType ThisType = MD->getThisType(); 327 CallArgs.add(RValue::get(AdjustedThisPtr), ThisType); 328 329 if (isa<CXXDestructorDecl>(MD)) 330 CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs); 331 332 #ifndef NDEBUG 333 unsigned PrefixArgs = CallArgs.size() - 1; 334 #endif 335 // Add the rest of the arguments. 336 for (const ParmVarDecl *PD : MD->parameters()) 337 EmitDelegateCallArg(CallArgs, PD, SourceLocation()); 338 339 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 340 341 #ifndef NDEBUG 342 const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall( 343 CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1), PrefixArgs); 344 assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() && 345 CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() && 346 CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention()); 347 assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types 348 similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(), 349 CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType())); 350 assert(CallFnInfo.arg_size() == CurFnInfo->arg_size()); 351 for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i) 352 assert(similar(CallFnInfo.arg_begin()[i].info, 353 CallFnInfo.arg_begin()[i].type, 354 CurFnInfo->arg_begin()[i].info, 355 CurFnInfo->arg_begin()[i].type)); 356 #endif 357 358 // Determine whether we have a return value slot to use. 359 QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD) 360 ? ThisType 361 : CGM.getCXXABI().hasMostDerivedReturn(CurGD) 362 ? CGM.getContext().VoidPtrTy 363 : FPT->getReturnType(); 364 ReturnValueSlot Slot; 365 if (!ResultType->isVoidType() && 366 (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect || 367 hasAggregateEvaluationKind(ResultType))) 368 Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified(), 369 /*IsUnused=*/false, /*IsExternallyDestructed=*/true); 370 371 // Now emit our call. 372 llvm::CallBase *CallOrInvoke; 373 RValue RV = EmitCall(*CurFnInfo, CGCallee::forDirect(Callee, CurGD), Slot, 374 CallArgs, &CallOrInvoke); 375 376 // Consider return adjustment if we have ThunkInfo. 377 if (Thunk && !Thunk->Return.isEmpty()) 378 RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk); 379 else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke)) 380 Call->setTailCallKind(llvm::CallInst::TCK_Tail); 381 382 // Emit return. 383 if (!ResultType->isVoidType() && Slot.isNull()) 384 CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType); 385 386 // Disable the final ARC autorelease. 387 AutoreleaseResult = false; 388 389 FinishThunk(); 390 } 391 392 void CodeGenFunction::EmitMustTailThunk(GlobalDecl GD, 393 llvm::Value *AdjustedThisPtr, 394 llvm::FunctionCallee Callee) { 395 // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery 396 // to translate AST arguments into LLVM IR arguments. For thunks, we know 397 // that the caller prototype more or less matches the callee prototype with 398 // the exception of 'this'. 399 SmallVector<llvm::Value *, 8> Args; 400 for (llvm::Argument &A : CurFn->args()) 401 Args.push_back(&A); 402 403 // Set the adjusted 'this' pointer. 404 const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info; 405 if (ThisAI.isDirect()) { 406 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 407 int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0; 408 llvm::Type *ThisType = Args[ThisArgNo]->getType(); 409 if (ThisType != AdjustedThisPtr->getType()) 410 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 411 Args[ThisArgNo] = AdjustedThisPtr; 412 } else { 413 assert(ThisAI.isInAlloca() && "this is passed directly or inalloca"); 414 Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl); 415 llvm::Type *ThisType = ThisAddr.getElementType(); 416 if (ThisType != AdjustedThisPtr->getType()) 417 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 418 Builder.CreateStore(AdjustedThisPtr, ThisAddr); 419 } 420 421 // Emit the musttail call manually. Even if the prologue pushed cleanups, we 422 // don't actually want to run them. 423 llvm::CallInst *Call = Builder.CreateCall(Callee, Args); 424 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 425 426 // Apply the standard set of call attributes. 427 unsigned CallingConv; 428 llvm::AttributeList Attrs; 429 CGM.ConstructAttributeList(Callee.getCallee()->getName(), *CurFnInfo, GD, 430 Attrs, CallingConv, /*AttrOnCallSite=*/true); 431 Call->setAttributes(Attrs); 432 Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 433 434 if (Call->getType()->isVoidTy()) 435 Builder.CreateRetVoid(); 436 else 437 Builder.CreateRet(Call); 438 439 // Finish the function to maintain CodeGenFunction invariants. 440 // FIXME: Don't emit unreachable code. 441 EmitBlock(createBasicBlock()); 442 443 FinishThunk(); 444 } 445 446 void CodeGenFunction::generateThunk(llvm::Function *Fn, 447 const CGFunctionInfo &FnInfo, GlobalDecl GD, 448 const ThunkInfo &Thunk, 449 bool IsUnprototyped) { 450 StartThunk(Fn, GD, FnInfo, IsUnprototyped); 451 // Create a scope with an artificial location for the body of this function. 452 auto AL = ApplyDebugLocation::CreateArtificial(*this); 453 454 // Get our callee. Use a placeholder type if this method is unprototyped so 455 // that CodeGenModule doesn't try to set attributes. 456 llvm::Type *Ty; 457 if (IsUnprototyped) 458 Ty = llvm::StructType::get(getLLVMContext()); 459 else 460 Ty = CGM.getTypes().GetFunctionType(FnInfo); 461 462 llvm::Constant *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 463 464 // Fix up the function type for an unprototyped musttail call. 465 if (IsUnprototyped) 466 Callee = llvm::ConstantExpr::getBitCast(Callee, Fn->getType()); 467 468 // Make the call and return the result. 469 EmitCallAndReturnForThunk(llvm::FunctionCallee(Fn->getFunctionType(), Callee), 470 &Thunk, IsUnprototyped); 471 } 472 473 static bool shouldEmitVTableThunk(CodeGenModule &CGM, const CXXMethodDecl *MD, 474 bool IsUnprototyped, bool ForVTable) { 475 // Always emit thunks in the MS C++ ABI. We cannot rely on other TUs to 476 // provide thunks for us. 477 if (CGM.getTarget().getCXXABI().isMicrosoft()) 478 return true; 479 480 // In the Itanium C++ ABI, vtable thunks are provided by TUs that provide 481 // definitions of the main method. Therefore, emitting thunks with the vtable 482 // is purely an optimization. Emit the thunk if optimizations are enabled and 483 // all of the parameter types are complete. 484 if (ForVTable) 485 return CGM.getCodeGenOpts().OptimizationLevel && !IsUnprototyped; 486 487 // Always emit thunks along with the method definition. 488 return true; 489 } 490 491 llvm::Constant *CodeGenVTables::maybeEmitThunk(GlobalDecl GD, 492 const ThunkInfo &TI, 493 bool ForVTable) { 494 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 495 496 // First, get a declaration. Compute the mangled name. Don't worry about 497 // getting the function prototype right, since we may only need this 498 // declaration to fill in a vtable slot. 499 SmallString<256> Name; 500 MangleContext &MCtx = CGM.getCXXABI().getMangleContext(); 501 llvm::raw_svector_ostream Out(Name); 502 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) 503 MCtx.mangleCXXDtorThunk(DD, GD.getDtorType(), TI.This, Out); 504 else 505 MCtx.mangleThunk(MD, TI, Out); 506 llvm::Type *ThunkVTableTy = CGM.getTypes().GetFunctionTypeForVTable(GD); 507 llvm::Constant *Thunk = CGM.GetAddrOfThunk(Name, ThunkVTableTy, GD); 508 509 // If we don't need to emit a definition, return this declaration as is. 510 bool IsUnprototyped = !CGM.getTypes().isFuncTypeConvertible( 511 MD->getType()->castAs<FunctionType>()); 512 if (!shouldEmitVTableThunk(CGM, MD, IsUnprototyped, ForVTable)) 513 return Thunk; 514 515 // Arrange a function prototype appropriate for a function definition. In some 516 // cases in the MS ABI, we may need to build an unprototyped musttail thunk. 517 const CGFunctionInfo &FnInfo = 518 IsUnprototyped ? CGM.getTypes().arrangeUnprototypedMustTailThunk(MD) 519 : CGM.getTypes().arrangeGlobalDeclaration(GD); 520 llvm::FunctionType *ThunkFnTy = CGM.getTypes().GetFunctionType(FnInfo); 521 522 // If the type of the underlying GlobalValue is wrong, we'll have to replace 523 // it. It should be a declaration. 524 llvm::Function *ThunkFn = cast<llvm::Function>(Thunk->stripPointerCasts()); 525 if (ThunkFn->getFunctionType() != ThunkFnTy) { 526 llvm::GlobalValue *OldThunkFn = ThunkFn; 527 528 assert(OldThunkFn->isDeclaration() && "Shouldn't replace non-declaration"); 529 530 // Remove the name from the old thunk function and get a new thunk. 531 OldThunkFn->setName(StringRef()); 532 ThunkFn = llvm::Function::Create(ThunkFnTy, llvm::Function::ExternalLinkage, 533 Name.str(), &CGM.getModule()); 534 CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn); 535 536 // If needed, replace the old thunk with a bitcast. 537 if (!OldThunkFn->use_empty()) { 538 llvm::Constant *NewPtrForOldDecl = 539 llvm::ConstantExpr::getBitCast(ThunkFn, OldThunkFn->getType()); 540 OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl); 541 } 542 543 // Remove the old thunk. 544 OldThunkFn->eraseFromParent(); 545 } 546 547 bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions(); 548 bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions; 549 550 if (!ThunkFn->isDeclaration()) { 551 if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) { 552 // There is already a thunk emitted for this function, do nothing. 553 return ThunkFn; 554 } 555 556 setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD); 557 return ThunkFn; 558 } 559 560 // If this will be unprototyped, add the "thunk" attribute so that LLVM knows 561 // that the return type is meaningless. These thunks can be used to call 562 // functions with differing return types, and the caller is required to cast 563 // the prototype appropriately to extract the correct value. 564 if (IsUnprototyped) 565 ThunkFn->addFnAttr("thunk"); 566 567 CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn); 568 569 // Thunks for variadic methods are special because in general variadic 570 // arguments cannot be perfectly forwarded. In the general case, clang 571 // implements such thunks by cloning the original function body. However, for 572 // thunks with no return adjustment on targets that support musttail, we can 573 // use musttail to perfectly forward the variadic arguments. 574 bool ShouldCloneVarArgs = false; 575 if (!IsUnprototyped && ThunkFn->isVarArg()) { 576 ShouldCloneVarArgs = true; 577 if (TI.Return.isEmpty()) { 578 switch (CGM.getTriple().getArch()) { 579 case llvm::Triple::x86_64: 580 case llvm::Triple::x86: 581 case llvm::Triple::aarch64: 582 ShouldCloneVarArgs = false; 583 break; 584 default: 585 break; 586 } 587 } 588 } 589 590 if (ShouldCloneVarArgs) { 591 if (UseAvailableExternallyLinkage) 592 return ThunkFn; 593 ThunkFn = 594 CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, TI); 595 } else { 596 // Normal thunk body generation. 597 CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, TI, IsUnprototyped); 598 } 599 600 setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD); 601 return ThunkFn; 602 } 603 604 void CodeGenVTables::EmitThunks(GlobalDecl GD) { 605 const CXXMethodDecl *MD = 606 cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl(); 607 608 // We don't need to generate thunks for the base destructor. 609 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 610 return; 611 612 const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector = 613 VTContext->getThunkInfo(GD); 614 615 if (!ThunkInfoVector) 616 return; 617 618 for (const ThunkInfo& Thunk : *ThunkInfoVector) 619 maybeEmitThunk(GD, Thunk, /*ForVTable=*/false); 620 } 621 622 void CodeGenVTables::addRelativeComponent(ConstantArrayBuilder &builder, 623 llvm::Constant *component, 624 unsigned vtableAddressPoint, 625 bool vtableHasLocalLinkage, 626 bool isCompleteDtor) const { 627 // No need to get the offset of a nullptr. 628 if (component->isNullValue()) 629 return builder.add(llvm::ConstantInt::get(CGM.Int32Ty, 0)); 630 631 auto *globalVal = 632 cast<llvm::GlobalValue>(component->stripPointerCastsAndAliases()); 633 llvm::Module &module = CGM.getModule(); 634 635 // We don't want to copy the linkage of the vtable exactly because we still 636 // want the stub/proxy to be emitted for properly calculating the offset. 637 // Examples where there would be no symbol emitted are available_externally 638 // and private linkages. 639 auto stubLinkage = vtableHasLocalLinkage ? llvm::GlobalValue::InternalLinkage 640 : llvm::GlobalValue::ExternalLinkage; 641 642 llvm::Constant *target; 643 if (auto *func = dyn_cast<llvm::Function>(globalVal)) { 644 target = llvm::DSOLocalEquivalent::get(func); 645 } else { 646 llvm::SmallString<16> rttiProxyName(globalVal->getName()); 647 rttiProxyName.append(".rtti_proxy"); 648 649 // The RTTI component may not always be emitted in the same linkage unit as 650 // the vtable. As a general case, we can make a dso_local proxy to the RTTI 651 // that points to the actual RTTI struct somewhere. This will result in a 652 // GOTPCREL relocation when taking the relative offset to the proxy. 653 llvm::GlobalVariable *proxy = module.getNamedGlobal(rttiProxyName); 654 if (!proxy) { 655 proxy = new llvm::GlobalVariable(module, globalVal->getType(), 656 /*isConstant=*/true, stubLinkage, 657 globalVal, rttiProxyName); 658 proxy->setDSOLocal(true); 659 proxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 660 if (!proxy->hasLocalLinkage()) { 661 proxy->setVisibility(llvm::GlobalValue::HiddenVisibility); 662 proxy->setComdat(module.getOrInsertComdat(rttiProxyName)); 663 } 664 } 665 target = proxy; 666 } 667 668 builder.addRelativeOffsetToPosition(CGM.Int32Ty, target, 669 /*position=*/vtableAddressPoint); 670 } 671 672 bool CodeGenVTables::useRelativeLayout() const { 673 return CGM.getTarget().getCXXABI().isItaniumFamily() && 674 CGM.getItaniumVTableContext().isRelativeLayout(); 675 } 676 677 llvm::Type *CodeGenVTables::getVTableComponentType() const { 678 if (useRelativeLayout()) 679 return CGM.Int32Ty; 680 return CGM.Int8PtrTy; 681 } 682 683 static void AddPointerLayoutOffset(const CodeGenModule &CGM, 684 ConstantArrayBuilder &builder, 685 CharUnits offset) { 686 builder.add(llvm::ConstantExpr::getIntToPtr( 687 llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()), 688 CGM.Int8PtrTy)); 689 } 690 691 static void AddRelativeLayoutOffset(const CodeGenModule &CGM, 692 ConstantArrayBuilder &builder, 693 CharUnits offset) { 694 builder.add(llvm::ConstantInt::get(CGM.Int32Ty, offset.getQuantity())); 695 } 696 697 void CodeGenVTables::addVTableComponent(ConstantArrayBuilder &builder, 698 const VTableLayout &layout, 699 unsigned componentIndex, 700 llvm::Constant *rtti, 701 unsigned &nextVTableThunkIndex, 702 unsigned vtableAddressPoint, 703 bool vtableHasLocalLinkage) { 704 auto &component = layout.vtable_components()[componentIndex]; 705 706 auto addOffsetConstant = 707 useRelativeLayout() ? AddRelativeLayoutOffset : AddPointerLayoutOffset; 708 709 switch (component.getKind()) { 710 case VTableComponent::CK_VCallOffset: 711 return addOffsetConstant(CGM, builder, component.getVCallOffset()); 712 713 case VTableComponent::CK_VBaseOffset: 714 return addOffsetConstant(CGM, builder, component.getVBaseOffset()); 715 716 case VTableComponent::CK_OffsetToTop: 717 return addOffsetConstant(CGM, builder, component.getOffsetToTop()); 718 719 case VTableComponent::CK_RTTI: 720 if (useRelativeLayout()) 721 return addRelativeComponent(builder, rtti, vtableAddressPoint, 722 vtableHasLocalLinkage, 723 /*isCompleteDtor=*/false); 724 else 725 return builder.add(llvm::ConstantExpr::getBitCast(rtti, CGM.Int8PtrTy)); 726 727 case VTableComponent::CK_FunctionPointer: 728 case VTableComponent::CK_CompleteDtorPointer: 729 case VTableComponent::CK_DeletingDtorPointer: { 730 GlobalDecl GD; 731 732 // Get the right global decl. 733 switch (component.getKind()) { 734 default: 735 llvm_unreachable("Unexpected vtable component kind"); 736 case VTableComponent::CK_FunctionPointer: 737 GD = component.getFunctionDecl(); 738 break; 739 case VTableComponent::CK_CompleteDtorPointer: 740 GD = GlobalDecl(component.getDestructorDecl(), Dtor_Complete); 741 break; 742 case VTableComponent::CK_DeletingDtorPointer: 743 GD = GlobalDecl(component.getDestructorDecl(), Dtor_Deleting); 744 break; 745 } 746 747 if (CGM.getLangOpts().CUDA) { 748 // Emit NULL for methods we can't codegen on this 749 // side. Otherwise we'd end up with vtable with unresolved 750 // references. 751 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 752 // OK on device side: functions w/ __device__ attribute 753 // OK on host side: anything except __device__-only functions. 754 bool CanEmitMethod = 755 CGM.getLangOpts().CUDAIsDevice 756 ? MD->hasAttr<CUDADeviceAttr>() 757 : (MD->hasAttr<CUDAHostAttr>() || !MD->hasAttr<CUDADeviceAttr>()); 758 if (!CanEmitMethod) 759 return builder.add(llvm::ConstantExpr::getNullValue(CGM.Int8PtrTy)); 760 // Method is acceptable, continue processing as usual. 761 } 762 763 auto getSpecialVirtualFn = [&](StringRef name) -> llvm::Constant * { 764 // FIXME(PR43094): When merging comdat groups, lld can select a local 765 // symbol as the signature symbol even though it cannot be accessed 766 // outside that symbol's TU. The relative vtables ABI would make 767 // __cxa_pure_virtual and __cxa_deleted_virtual local symbols, and 768 // depending on link order, the comdat groups could resolve to the one 769 // with the local symbol. As a temporary solution, fill these components 770 // with zero. We shouldn't be calling these in the first place anyway. 771 if (useRelativeLayout()) 772 return llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 773 774 // For NVPTX devices in OpenMP emit special functon as null pointers, 775 // otherwise linking ends up with unresolved references. 776 if (CGM.getLangOpts().OpenMP && CGM.getLangOpts().OpenMPIsDevice && 777 CGM.getTriple().isNVPTX()) 778 return llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 779 llvm::FunctionType *fnTy = 780 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 781 llvm::Constant *fn = cast<llvm::Constant>( 782 CGM.CreateRuntimeFunction(fnTy, name).getCallee()); 783 if (auto f = dyn_cast<llvm::Function>(fn)) 784 f->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 785 return llvm::ConstantExpr::getBitCast(fn, CGM.Int8PtrTy); 786 }; 787 788 llvm::Constant *fnPtr; 789 790 // Pure virtual member functions. 791 if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) { 792 if (!PureVirtualFn) 793 PureVirtualFn = 794 getSpecialVirtualFn(CGM.getCXXABI().GetPureVirtualCallName()); 795 fnPtr = PureVirtualFn; 796 797 // Deleted virtual member functions. 798 } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) { 799 if (!DeletedVirtualFn) 800 DeletedVirtualFn = 801 getSpecialVirtualFn(CGM.getCXXABI().GetDeletedVirtualCallName()); 802 fnPtr = DeletedVirtualFn; 803 804 // Thunks. 805 } else if (nextVTableThunkIndex < layout.vtable_thunks().size() && 806 layout.vtable_thunks()[nextVTableThunkIndex].first == 807 componentIndex) { 808 auto &thunkInfo = layout.vtable_thunks()[nextVTableThunkIndex].second; 809 810 nextVTableThunkIndex++; 811 fnPtr = maybeEmitThunk(GD, thunkInfo, /*ForVTable=*/true); 812 813 // Otherwise we can use the method definition directly. 814 } else { 815 llvm::Type *fnTy = CGM.getTypes().GetFunctionTypeForVTable(GD); 816 fnPtr = CGM.GetAddrOfFunction(GD, fnTy, /*ForVTable=*/true); 817 } 818 819 if (useRelativeLayout()) { 820 return addRelativeComponent( 821 builder, fnPtr, vtableAddressPoint, vtableHasLocalLinkage, 822 component.getKind() == VTableComponent::CK_CompleteDtorPointer); 823 } else 824 return builder.add(llvm::ConstantExpr::getBitCast(fnPtr, CGM.Int8PtrTy)); 825 } 826 827 case VTableComponent::CK_UnusedFunctionPointer: 828 if (useRelativeLayout()) 829 return builder.add(llvm::ConstantExpr::getNullValue(CGM.Int32Ty)); 830 else 831 return builder.addNullPointer(CGM.Int8PtrTy); 832 } 833 834 llvm_unreachable("Unexpected vtable component kind"); 835 } 836 837 llvm::Type *CodeGenVTables::getVTableType(const VTableLayout &layout) { 838 SmallVector<llvm::Type *, 4> tys; 839 llvm::Type *componentType = getVTableComponentType(); 840 for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i) 841 tys.push_back(llvm::ArrayType::get(componentType, layout.getVTableSize(i))); 842 843 return llvm::StructType::get(CGM.getLLVMContext(), tys); 844 } 845 846 void CodeGenVTables::createVTableInitializer(ConstantStructBuilder &builder, 847 const VTableLayout &layout, 848 llvm::Constant *rtti, 849 bool vtableHasLocalLinkage) { 850 llvm::Type *componentType = getVTableComponentType(); 851 852 const auto &addressPoints = layout.getAddressPointIndices(); 853 unsigned nextVTableThunkIndex = 0; 854 for (unsigned vtableIndex = 0, endIndex = layout.getNumVTables(); 855 vtableIndex != endIndex; ++vtableIndex) { 856 auto vtableElem = builder.beginArray(componentType); 857 858 size_t vtableStart = layout.getVTableOffset(vtableIndex); 859 size_t vtableEnd = vtableStart + layout.getVTableSize(vtableIndex); 860 for (size_t componentIndex = vtableStart; componentIndex < vtableEnd; 861 ++componentIndex) { 862 addVTableComponent(vtableElem, layout, componentIndex, rtti, 863 nextVTableThunkIndex, addressPoints[vtableIndex], 864 vtableHasLocalLinkage); 865 } 866 vtableElem.finishAndAddTo(builder); 867 } 868 } 869 870 llvm::GlobalVariable *CodeGenVTables::GenerateConstructionVTable( 871 const CXXRecordDecl *RD, const BaseSubobject &Base, bool BaseIsVirtual, 872 llvm::GlobalVariable::LinkageTypes Linkage, 873 VTableAddressPointsMapTy &AddressPoints) { 874 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 875 DI->completeClassData(Base.getBase()); 876 877 std::unique_ptr<VTableLayout> VTLayout( 878 getItaniumVTableContext().createConstructionVTableLayout( 879 Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD)); 880 881 // Add the address points. 882 AddressPoints = VTLayout->getAddressPoints(); 883 884 // Get the mangled construction vtable name. 885 SmallString<256> OutName; 886 llvm::raw_svector_ostream Out(OutName); 887 cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext()) 888 .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(), 889 Base.getBase(), Out); 890 SmallString<256> Name(OutName); 891 892 bool UsingRelativeLayout = getItaniumVTableContext().isRelativeLayout(); 893 bool VTableAliasExists = 894 UsingRelativeLayout && CGM.getModule().getNamedAlias(Name); 895 if (VTableAliasExists) { 896 // We previously made the vtable hidden and changed its name. 897 Name.append(".local"); 898 } 899 900 llvm::Type *VTType = getVTableType(*VTLayout); 901 902 // Construction vtable symbols are not part of the Itanium ABI, so we cannot 903 // guarantee that they actually will be available externally. Instead, when 904 // emitting an available_externally VTT, we provide references to an internal 905 // linkage construction vtable. The ABI only requires complete-object vtables 906 // to be the same for all instances of a type, not construction vtables. 907 if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage) 908 Linkage = llvm::GlobalVariable::InternalLinkage; 909 910 unsigned Align = CGM.getDataLayout().getABITypeAlignment(VTType); 911 912 // Create the variable that will hold the construction vtable. 913 llvm::GlobalVariable *VTable = 914 CGM.CreateOrReplaceCXXRuntimeVariable(Name, VTType, Linkage, Align); 915 916 // V-tables are always unnamed_addr. 917 VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 918 919 llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor( 920 CGM.getContext().getTagDeclType(Base.getBase())); 921 922 // Create and set the initializer. 923 ConstantInitBuilder builder(CGM); 924 auto components = builder.beginStruct(); 925 createVTableInitializer(components, *VTLayout, RTTI, 926 VTable->hasLocalLinkage()); 927 components.finishAndSetAsInitializer(VTable); 928 929 // Set properties only after the initializer has been set to ensure that the 930 // GV is treated as definition and not declaration. 931 assert(!VTable->isDeclaration() && "Shouldn't set properties on declaration"); 932 CGM.setGVProperties(VTable, RD); 933 934 CGM.EmitVTableTypeMetadata(RD, VTable, *VTLayout.get()); 935 936 if (UsingRelativeLayout && !VTable->isDSOLocal()) 937 GenerateRelativeVTableAlias(VTable, OutName); 938 939 return VTable; 940 } 941 942 // If the VTable is not dso_local, then we will not be able to indicate that 943 // the VTable does not need a relocation and move into rodata. A frequent 944 // time this can occur is for classes that should be made public from a DSO 945 // (like in libc++). For cases like these, we can make the vtable hidden or 946 // private and create a public alias with the same visibility and linkage as 947 // the original vtable type. 948 void CodeGenVTables::GenerateRelativeVTableAlias(llvm::GlobalVariable *VTable, 949 llvm::StringRef AliasNameRef) { 950 assert(getItaniumVTableContext().isRelativeLayout() && 951 "Can only use this if the relative vtable ABI is used"); 952 assert(!VTable->isDSOLocal() && "This should be called only if the vtable is " 953 "not guaranteed to be dso_local"); 954 955 // If the vtable is available_externally, we shouldn't (or need to) generate 956 // an alias for it in the first place since the vtable won't actually by 957 // emitted in this compilation unit. 958 if (VTable->hasAvailableExternallyLinkage()) 959 return; 960 961 // Create a new string in the event the alias is already the name of the 962 // vtable. Using the reference directly could lead to use of an inititialized 963 // value in the module's StringMap. 964 llvm::SmallString<256> AliasName(AliasNameRef); 965 VTable->setName(AliasName + ".local"); 966 967 auto Linkage = VTable->getLinkage(); 968 assert(llvm::GlobalAlias::isValidLinkage(Linkage) && 969 "Invalid vtable alias linkage"); 970 971 llvm::GlobalAlias *VTableAlias = CGM.getModule().getNamedAlias(AliasName); 972 if (!VTableAlias) { 973 VTableAlias = llvm::GlobalAlias::create(VTable->getValueType(), 974 VTable->getAddressSpace(), Linkage, 975 AliasName, &CGM.getModule()); 976 } else { 977 assert(VTableAlias->getValueType() == VTable->getValueType()); 978 assert(VTableAlias->getLinkage() == Linkage); 979 } 980 VTableAlias->setVisibility(VTable->getVisibility()); 981 VTableAlias->setUnnamedAddr(VTable->getUnnamedAddr()); 982 983 // Both of these imply dso_local for the vtable. 984 if (!VTable->hasComdat()) { 985 // If this is in a comdat, then we shouldn't make the linkage private due to 986 // an issue in lld where private symbols can be used as the key symbol when 987 // choosing the prevelant group. This leads to "relocation refers to a 988 // symbol in a discarded section". 989 VTable->setLinkage(llvm::GlobalValue::PrivateLinkage); 990 } else { 991 // We should at least make this hidden since we don't want to expose it. 992 VTable->setVisibility(llvm::GlobalValue::HiddenVisibility); 993 } 994 995 VTableAlias->setAliasee(VTable); 996 } 997 998 static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM, 999 const CXXRecordDecl *RD) { 1000 return CGM.getCodeGenOpts().OptimizationLevel > 0 && 1001 CGM.getCXXABI().canSpeculativelyEmitVTable(RD); 1002 } 1003 1004 /// Compute the required linkage of the vtable for the given class. 1005 /// 1006 /// Note that we only call this at the end of the translation unit. 1007 llvm::GlobalVariable::LinkageTypes 1008 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1009 if (!RD->isExternallyVisible()) 1010 return llvm::GlobalVariable::InternalLinkage; 1011 1012 // We're at the end of the translation unit, so the current key 1013 // function is fully correct. 1014 const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD); 1015 if (keyFunction && !RD->hasAttr<DLLImportAttr>()) { 1016 // If this class has a key function, use that to determine the 1017 // linkage of the vtable. 1018 const FunctionDecl *def = nullptr; 1019 if (keyFunction->hasBody(def)) 1020 keyFunction = cast<CXXMethodDecl>(def); 1021 1022 switch (keyFunction->getTemplateSpecializationKind()) { 1023 case TSK_Undeclared: 1024 case TSK_ExplicitSpecialization: 1025 assert((def || CodeGenOpts.OptimizationLevel > 0 || 1026 CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo) && 1027 "Shouldn't query vtable linkage without key function, " 1028 "optimizations, or debug info"); 1029 if (!def && CodeGenOpts.OptimizationLevel > 0) 1030 return llvm::GlobalVariable::AvailableExternallyLinkage; 1031 1032 if (keyFunction->isInlined()) 1033 return !Context.getLangOpts().AppleKext ? 1034 llvm::GlobalVariable::LinkOnceODRLinkage : 1035 llvm::Function::InternalLinkage; 1036 1037 return llvm::GlobalVariable::ExternalLinkage; 1038 1039 case TSK_ImplicitInstantiation: 1040 return !Context.getLangOpts().AppleKext ? 1041 llvm::GlobalVariable::LinkOnceODRLinkage : 1042 llvm::Function::InternalLinkage; 1043 1044 case TSK_ExplicitInstantiationDefinition: 1045 return !Context.getLangOpts().AppleKext ? 1046 llvm::GlobalVariable::WeakODRLinkage : 1047 llvm::Function::InternalLinkage; 1048 1049 case TSK_ExplicitInstantiationDeclaration: 1050 llvm_unreachable("Should not have been asked to emit this"); 1051 } 1052 } 1053 1054 // -fapple-kext mode does not support weak linkage, so we must use 1055 // internal linkage. 1056 if (Context.getLangOpts().AppleKext) 1057 return llvm::Function::InternalLinkage; 1058 1059 llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage = 1060 llvm::GlobalValue::LinkOnceODRLinkage; 1061 llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage = 1062 llvm::GlobalValue::WeakODRLinkage; 1063 if (RD->hasAttr<DLLExportAttr>()) { 1064 // Cannot discard exported vtables. 1065 DiscardableODRLinkage = NonDiscardableODRLinkage; 1066 } else if (RD->hasAttr<DLLImportAttr>()) { 1067 // Imported vtables are available externally. 1068 DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 1069 NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 1070 } 1071 1072 switch (RD->getTemplateSpecializationKind()) { 1073 case TSK_Undeclared: 1074 case TSK_ExplicitSpecialization: 1075 case TSK_ImplicitInstantiation: 1076 return DiscardableODRLinkage; 1077 1078 case TSK_ExplicitInstantiationDeclaration: 1079 // Explicit instantiations in MSVC do not provide vtables, so we must emit 1080 // our own. 1081 if (getTarget().getCXXABI().isMicrosoft()) 1082 return DiscardableODRLinkage; 1083 return shouldEmitAvailableExternallyVTable(*this, RD) 1084 ? llvm::GlobalVariable::AvailableExternallyLinkage 1085 : llvm::GlobalVariable::ExternalLinkage; 1086 1087 case TSK_ExplicitInstantiationDefinition: 1088 return NonDiscardableODRLinkage; 1089 } 1090 1091 llvm_unreachable("Invalid TemplateSpecializationKind!"); 1092 } 1093 1094 /// This is a callback from Sema to tell us that a particular vtable is 1095 /// required to be emitted in this translation unit. 1096 /// 1097 /// This is only called for vtables that _must_ be emitted (mainly due to key 1098 /// functions). For weak vtables, CodeGen tracks when they are needed and 1099 /// emits them as-needed. 1100 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) { 1101 VTables.GenerateClassData(theClass); 1102 } 1103 1104 void 1105 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) { 1106 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 1107 DI->completeClassData(RD); 1108 1109 if (RD->getNumVBases()) 1110 CGM.getCXXABI().emitVirtualInheritanceTables(RD); 1111 1112 CGM.getCXXABI().emitVTableDefinitions(*this, RD); 1113 } 1114 1115 /// At this point in the translation unit, does it appear that can we 1116 /// rely on the vtable being defined elsewhere in the program? 1117 /// 1118 /// The response is really only definitive when called at the end of 1119 /// the translation unit. 1120 /// 1121 /// The only semantic restriction here is that the object file should 1122 /// not contain a vtable definition when that vtable is defined 1123 /// strongly elsewhere. Otherwise, we'd just like to avoid emitting 1124 /// vtables when unnecessary. 1125 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) { 1126 assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable."); 1127 1128 // We always synthesize vtables if they are needed in the MS ABI. MSVC doesn't 1129 // emit them even if there is an explicit template instantiation. 1130 if (CGM.getTarget().getCXXABI().isMicrosoft()) 1131 return false; 1132 1133 // If we have an explicit instantiation declaration (and not a 1134 // definition), the vtable is defined elsewhere. 1135 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); 1136 if (TSK == TSK_ExplicitInstantiationDeclaration) 1137 return true; 1138 1139 // Otherwise, if the class is an instantiated template, the 1140 // vtable must be defined here. 1141 if (TSK == TSK_ImplicitInstantiation || 1142 TSK == TSK_ExplicitInstantiationDefinition) 1143 return false; 1144 1145 // Otherwise, if the class doesn't have a key function (possibly 1146 // anymore), the vtable must be defined here. 1147 const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD); 1148 if (!keyFunction) 1149 return false; 1150 1151 // Otherwise, if we don't have a definition of the key function, the 1152 // vtable must be defined somewhere else. 1153 return !keyFunction->hasBody(); 1154 } 1155 1156 /// Given that we're currently at the end of the translation unit, and 1157 /// we've emitted a reference to the vtable for this class, should 1158 /// we define that vtable? 1159 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM, 1160 const CXXRecordDecl *RD) { 1161 // If vtable is internal then it has to be done. 1162 if (!CGM.getVTables().isVTableExternal(RD)) 1163 return true; 1164 1165 // If it's external then maybe we will need it as available_externally. 1166 return shouldEmitAvailableExternallyVTable(CGM, RD); 1167 } 1168 1169 /// Given that at some point we emitted a reference to one or more 1170 /// vtables, and that we are now at the end of the translation unit, 1171 /// decide whether we should emit them. 1172 void CodeGenModule::EmitDeferredVTables() { 1173 #ifndef NDEBUG 1174 // Remember the size of DeferredVTables, because we're going to assume 1175 // that this entire operation doesn't modify it. 1176 size_t savedSize = DeferredVTables.size(); 1177 #endif 1178 1179 for (const CXXRecordDecl *RD : DeferredVTables) 1180 if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD)) 1181 VTables.GenerateClassData(RD); 1182 else if (shouldOpportunisticallyEmitVTables()) 1183 OpportunisticVTables.push_back(RD); 1184 1185 assert(savedSize == DeferredVTables.size() && 1186 "deferred extra vtables during vtable emission?"); 1187 DeferredVTables.clear(); 1188 } 1189 1190 bool CodeGenModule::HasLTOVisibilityPublicStd(const CXXRecordDecl *RD) { 1191 if (!getCodeGenOpts().LTOVisibilityPublicStd) 1192 return false; 1193 1194 const DeclContext *DC = RD; 1195 while (1) { 1196 auto *D = cast<Decl>(DC); 1197 DC = DC->getParent(); 1198 if (isa<TranslationUnitDecl>(DC->getRedeclContext())) { 1199 if (auto *ND = dyn_cast<NamespaceDecl>(D)) 1200 if (const IdentifierInfo *II = ND->getIdentifier()) 1201 if (II->isStr("std") || II->isStr("stdext")) 1202 return true; 1203 break; 1204 } 1205 } 1206 1207 return false; 1208 } 1209 1210 bool CodeGenModule::HasHiddenLTOVisibility(const CXXRecordDecl *RD) { 1211 LinkageInfo LV = RD->getLinkageAndVisibility(); 1212 if (!isExternallyVisible(LV.getLinkage())) 1213 return true; 1214 1215 if (RD->hasAttr<LTOVisibilityPublicAttr>() || RD->hasAttr<UuidAttr>()) 1216 return false; 1217 1218 if (getTriple().isOSBinFormatCOFF()) { 1219 if (RD->hasAttr<DLLExportAttr>() || RD->hasAttr<DLLImportAttr>()) 1220 return false; 1221 } else { 1222 if (LV.getVisibility() != HiddenVisibility) 1223 return false; 1224 } 1225 1226 return !HasLTOVisibilityPublicStd(RD); 1227 } 1228 1229 llvm::GlobalObject::VCallVisibility CodeGenModule::GetVCallVisibilityLevel( 1230 const CXXRecordDecl *RD, llvm::DenseSet<const CXXRecordDecl *> &Visited) { 1231 // If we have already visited this RD (which means this is a recursive call 1232 // since the initial call should have an empty Visited set), return the max 1233 // visibility. The recursive calls below compute the min between the result 1234 // of the recursive call and the current TypeVis, so returning the max here 1235 // ensures that it will have no effect on the current TypeVis. 1236 if (!Visited.insert(RD).second) 1237 return llvm::GlobalObject::VCallVisibilityTranslationUnit; 1238 1239 LinkageInfo LV = RD->getLinkageAndVisibility(); 1240 llvm::GlobalObject::VCallVisibility TypeVis; 1241 if (!isExternallyVisible(LV.getLinkage())) 1242 TypeVis = llvm::GlobalObject::VCallVisibilityTranslationUnit; 1243 else if (HasHiddenLTOVisibility(RD)) 1244 TypeVis = llvm::GlobalObject::VCallVisibilityLinkageUnit; 1245 else 1246 TypeVis = llvm::GlobalObject::VCallVisibilityPublic; 1247 1248 for (auto B : RD->bases()) 1249 if (B.getType()->getAsCXXRecordDecl()->isDynamicClass()) 1250 TypeVis = std::min( 1251 TypeVis, 1252 GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl(), Visited)); 1253 1254 for (auto B : RD->vbases()) 1255 if (B.getType()->getAsCXXRecordDecl()->isDynamicClass()) 1256 TypeVis = std::min( 1257 TypeVis, 1258 GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl(), Visited)); 1259 1260 return TypeVis; 1261 } 1262 1263 void CodeGenModule::EmitVTableTypeMetadata(const CXXRecordDecl *RD, 1264 llvm::GlobalVariable *VTable, 1265 const VTableLayout &VTLayout) { 1266 if (!getCodeGenOpts().LTOUnit) 1267 return; 1268 1269 CharUnits PointerWidth = 1270 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); 1271 1272 typedef std::pair<const CXXRecordDecl *, unsigned> AddressPoint; 1273 std::vector<AddressPoint> AddressPoints; 1274 for (auto &&AP : VTLayout.getAddressPoints()) 1275 AddressPoints.push_back(std::make_pair( 1276 AP.first.getBase(), VTLayout.getVTableOffset(AP.second.VTableIndex) + 1277 AP.second.AddressPointIndex)); 1278 1279 // Sort the address points for determinism. 1280 llvm::sort(AddressPoints, [this](const AddressPoint &AP1, 1281 const AddressPoint &AP2) { 1282 if (&AP1 == &AP2) 1283 return false; 1284 1285 std::string S1; 1286 llvm::raw_string_ostream O1(S1); 1287 getCXXABI().getMangleContext().mangleTypeName( 1288 QualType(AP1.first->getTypeForDecl(), 0), O1); 1289 O1.flush(); 1290 1291 std::string S2; 1292 llvm::raw_string_ostream O2(S2); 1293 getCXXABI().getMangleContext().mangleTypeName( 1294 QualType(AP2.first->getTypeForDecl(), 0), O2); 1295 O2.flush(); 1296 1297 if (S1 < S2) 1298 return true; 1299 if (S1 != S2) 1300 return false; 1301 1302 return AP1.second < AP2.second; 1303 }); 1304 1305 ArrayRef<VTableComponent> Comps = VTLayout.vtable_components(); 1306 for (auto AP : AddressPoints) { 1307 // Create type metadata for the address point. 1308 AddVTableTypeMetadata(VTable, PointerWidth * AP.second, AP.first); 1309 1310 // The class associated with each address point could also potentially be 1311 // used for indirect calls via a member function pointer, so we need to 1312 // annotate the address of each function pointer with the appropriate member 1313 // function pointer type. 1314 for (unsigned I = 0; I != Comps.size(); ++I) { 1315 if (Comps[I].getKind() != VTableComponent::CK_FunctionPointer) 1316 continue; 1317 llvm::Metadata *MD = CreateMetadataIdentifierForVirtualMemPtrType( 1318 Context.getMemberPointerType( 1319 Comps[I].getFunctionDecl()->getType(), 1320 Context.getRecordType(AP.first).getTypePtr())); 1321 VTable->addTypeMetadata((PointerWidth * I).getQuantity(), MD); 1322 } 1323 } 1324 1325 if (getCodeGenOpts().VirtualFunctionElimination || 1326 getCodeGenOpts().WholeProgramVTables) { 1327 llvm::DenseSet<const CXXRecordDecl *> Visited; 1328 llvm::GlobalObject::VCallVisibility TypeVis = 1329 GetVCallVisibilityLevel(RD, Visited); 1330 if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic) 1331 VTable->setVCallVisibilityMetadata(TypeVis); 1332 } 1333 } 1334