1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit OpenMP nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCleanup.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/DeclOpenMP.h" 21 #include "clang/AST/OpenMPClause.h" 22 #include "clang/AST/Stmt.h" 23 #include "clang/AST/StmtOpenMP.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/Basic/OpenMPKinds.h" 26 #include "clang/Basic/PrettyStackTrace.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/BinaryFormat/Dwarf.h" 29 #include "llvm/Frontend/OpenMP/OMPConstants.h" 30 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DebugInfoMetadata.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/Support/AtomicOrdering.h" 37 #include <optional> 38 using namespace clang; 39 using namespace CodeGen; 40 using namespace llvm::omp; 41 42 static const VarDecl *getBaseDecl(const Expr *Ref); 43 44 namespace { 45 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 46 /// for captured expressions. 47 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 48 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 49 for (const auto *C : S.clauses()) { 50 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 51 if (const auto *PreInit = 52 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 53 for (const auto *I : PreInit->decls()) { 54 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 55 CGF.EmitVarDecl(cast<VarDecl>(*I)); 56 } else { 57 CodeGenFunction::AutoVarEmission Emission = 58 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 59 CGF.EmitAutoVarCleanups(Emission); 60 } 61 } 62 } 63 } 64 } 65 } 66 CodeGenFunction::OMPPrivateScope InlinedShareds; 67 68 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 69 return CGF.LambdaCaptureFields.lookup(VD) || 70 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 71 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 72 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 73 } 74 75 public: 76 OMPLexicalScope( 77 CodeGenFunction &CGF, const OMPExecutableDirective &S, 78 const std::optional<OpenMPDirectiveKind> CapturedRegion = std::nullopt, 79 const bool EmitPreInitStmt = true) 80 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 81 InlinedShareds(CGF) { 82 if (EmitPreInitStmt) 83 emitPreInitStmt(CGF, S); 84 if (!CapturedRegion) 85 return; 86 assert(S.hasAssociatedStmt() && 87 "Expected associated statement for inlined directive."); 88 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 89 for (const auto &C : CS->captures()) { 90 if (C.capturesVariable() || C.capturesVariableByCopy()) { 91 auto *VD = C.getCapturedVar(); 92 assert(VD == VD->getCanonicalDecl() && 93 "Canonical decl must be captured."); 94 DeclRefExpr DRE( 95 CGF.getContext(), const_cast<VarDecl *>(VD), 96 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 97 InlinedShareds.isGlobalVarCaptured(VD)), 98 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 99 InlinedShareds.addPrivate(VD, CGF.EmitLValue(&DRE).getAddress(CGF)); 100 } 101 } 102 (void)InlinedShareds.Privatize(); 103 } 104 }; 105 106 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 107 /// for captured expressions. 108 class OMPParallelScope final : public OMPLexicalScope { 109 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 110 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 111 return !(isOpenMPTargetExecutionDirective(Kind) || 112 isOpenMPLoopBoundSharingDirective(Kind)) && 113 isOpenMPParallelDirective(Kind); 114 } 115 116 public: 117 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 118 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/std::nullopt, 119 EmitPreInitStmt(S)) {} 120 }; 121 122 /// Lexical scope for OpenMP teams construct, that handles correct codegen 123 /// for captured expressions. 124 class OMPTeamsScope final : public OMPLexicalScope { 125 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 126 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 127 return !isOpenMPTargetExecutionDirective(Kind) && 128 isOpenMPTeamsDirective(Kind); 129 } 130 131 public: 132 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 133 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/std::nullopt, 134 EmitPreInitStmt(S)) {} 135 }; 136 137 /// Private scope for OpenMP loop-based directives, that supports capturing 138 /// of used expression from loop statement. 139 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 140 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopBasedDirective &S) { 141 const DeclStmt *PreInits; 142 CodeGenFunction::OMPMapVars PreCondVars; 143 if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) { 144 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 145 for (const auto *E : LD->counters()) { 146 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 147 EmittedAsPrivate.insert(VD->getCanonicalDecl()); 148 (void)PreCondVars.setVarAddr( 149 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 150 } 151 // Mark private vars as undefs. 152 for (const auto *C : LD->getClausesOfKind<OMPPrivateClause>()) { 153 for (const Expr *IRef : C->varlists()) { 154 const auto *OrigVD = 155 cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 156 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 157 QualType OrigVDTy = OrigVD->getType().getNonReferenceType(); 158 (void)PreCondVars.setVarAddr( 159 CGF, OrigVD, 160 Address(llvm::UndefValue::get(CGF.ConvertTypeForMem( 161 CGF.getContext().getPointerType(OrigVDTy))), 162 CGF.ConvertTypeForMem(OrigVDTy), 163 CGF.getContext().getDeclAlign(OrigVD))); 164 } 165 } 166 } 167 (void)PreCondVars.apply(CGF); 168 // Emit init, __range and __end variables for C++ range loops. 169 (void)OMPLoopBasedDirective::doForAllLoops( 170 LD->getInnermostCapturedStmt()->getCapturedStmt(), 171 /*TryImperfectlyNestedLoops=*/true, LD->getLoopsNumber(), 172 [&CGF](unsigned Cnt, const Stmt *CurStmt) { 173 if (const auto *CXXFor = dyn_cast<CXXForRangeStmt>(CurStmt)) { 174 if (const Stmt *Init = CXXFor->getInit()) 175 CGF.EmitStmt(Init); 176 CGF.EmitStmt(CXXFor->getRangeStmt()); 177 CGF.EmitStmt(CXXFor->getEndStmt()); 178 } 179 return false; 180 }); 181 PreInits = cast_or_null<DeclStmt>(LD->getPreInits()); 182 } else if (const auto *Tile = dyn_cast<OMPTileDirective>(&S)) { 183 PreInits = cast_or_null<DeclStmt>(Tile->getPreInits()); 184 } else if (const auto *Unroll = dyn_cast<OMPUnrollDirective>(&S)) { 185 PreInits = cast_or_null<DeclStmt>(Unroll->getPreInits()); 186 } else { 187 llvm_unreachable("Unknown loop-based directive kind."); 188 } 189 if (PreInits) { 190 for (const auto *I : PreInits->decls()) 191 CGF.EmitVarDecl(cast<VarDecl>(*I)); 192 } 193 PreCondVars.restore(CGF); 194 } 195 196 public: 197 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopBasedDirective &S) 198 : CodeGenFunction::RunCleanupsScope(CGF) { 199 emitPreInitStmt(CGF, S); 200 } 201 }; 202 203 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 204 CodeGenFunction::OMPPrivateScope InlinedShareds; 205 206 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 207 return CGF.LambdaCaptureFields.lookup(VD) || 208 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 209 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 210 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 211 } 212 213 public: 214 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 215 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 216 InlinedShareds(CGF) { 217 for (const auto *C : S.clauses()) { 218 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 219 if (const auto *PreInit = 220 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 221 for (const auto *I : PreInit->decls()) { 222 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 223 CGF.EmitVarDecl(cast<VarDecl>(*I)); 224 } else { 225 CodeGenFunction::AutoVarEmission Emission = 226 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 227 CGF.EmitAutoVarCleanups(Emission); 228 } 229 } 230 } 231 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 232 for (const Expr *E : UDP->varlists()) { 233 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 234 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 235 CGF.EmitVarDecl(*OED); 236 } 237 } else if (const auto *UDP = dyn_cast<OMPUseDeviceAddrClause>(C)) { 238 for (const Expr *E : UDP->varlists()) { 239 const Decl *D = getBaseDecl(E); 240 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 241 CGF.EmitVarDecl(*OED); 242 } 243 } 244 } 245 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 246 CGF.EmitOMPPrivateClause(S, InlinedShareds); 247 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 248 if (const Expr *E = TG->getReductionRef()) 249 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 250 } 251 // Temp copy arrays for inscan reductions should not be emitted as they are 252 // not used in simd only mode. 253 llvm::DenseSet<CanonicalDeclPtr<const Decl>> CopyArrayTemps; 254 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 255 if (C->getModifier() != OMPC_REDUCTION_inscan) 256 continue; 257 for (const Expr *E : C->copy_array_temps()) 258 CopyArrayTemps.insert(cast<DeclRefExpr>(E)->getDecl()); 259 } 260 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 261 while (CS) { 262 for (auto &C : CS->captures()) { 263 if (C.capturesVariable() || C.capturesVariableByCopy()) { 264 auto *VD = C.getCapturedVar(); 265 if (CopyArrayTemps.contains(VD)) 266 continue; 267 assert(VD == VD->getCanonicalDecl() && 268 "Canonical decl must be captured."); 269 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), 270 isCapturedVar(CGF, VD) || 271 (CGF.CapturedStmtInfo && 272 InlinedShareds.isGlobalVarCaptured(VD)), 273 VD->getType().getNonReferenceType(), VK_LValue, 274 C.getLocation()); 275 InlinedShareds.addPrivate(VD, CGF.EmitLValue(&DRE).getAddress(CGF)); 276 } 277 } 278 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 279 } 280 (void)InlinedShareds.Privatize(); 281 } 282 }; 283 284 } // namespace 285 286 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 287 const OMPExecutableDirective &S, 288 const RegionCodeGenTy &CodeGen); 289 290 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 291 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 292 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 293 OrigVD = OrigVD->getCanonicalDecl(); 294 bool IsCaptured = 295 LambdaCaptureFields.lookup(OrigVD) || 296 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 297 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 298 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured, 299 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 300 return EmitLValue(&DRE); 301 } 302 } 303 return EmitLValue(E); 304 } 305 306 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 307 ASTContext &C = getContext(); 308 llvm::Value *Size = nullptr; 309 auto SizeInChars = C.getTypeSizeInChars(Ty); 310 if (SizeInChars.isZero()) { 311 // getTypeSizeInChars() returns 0 for a VLA. 312 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 313 VlaSizePair VlaSize = getVLASize(VAT); 314 Ty = VlaSize.Type; 315 Size = 316 Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) : VlaSize.NumElts; 317 } 318 SizeInChars = C.getTypeSizeInChars(Ty); 319 if (SizeInChars.isZero()) 320 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 321 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 322 } 323 return CGM.getSize(SizeInChars); 324 } 325 326 void CodeGenFunction::GenerateOpenMPCapturedVars( 327 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 328 const RecordDecl *RD = S.getCapturedRecordDecl(); 329 auto CurField = RD->field_begin(); 330 auto CurCap = S.captures().begin(); 331 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 332 E = S.capture_init_end(); 333 I != E; ++I, ++CurField, ++CurCap) { 334 if (CurField->hasCapturedVLAType()) { 335 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 336 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 337 CapturedVars.push_back(Val); 338 } else if (CurCap->capturesThis()) { 339 CapturedVars.push_back(CXXThisValue); 340 } else if (CurCap->capturesVariableByCopy()) { 341 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 342 343 // If the field is not a pointer, we need to save the actual value 344 // and load it as a void pointer. 345 if (!CurField->getType()->isAnyPointerType()) { 346 ASTContext &Ctx = getContext(); 347 Address DstAddr = CreateMemTemp( 348 Ctx.getUIntPtrType(), 349 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 350 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 351 352 llvm::Value *SrcAddrVal = EmitScalarConversion( 353 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 354 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 355 LValue SrcLV = 356 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 357 358 // Store the value using the source type pointer. 359 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 360 361 // Load the value using the destination type pointer. 362 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 363 } 364 CapturedVars.push_back(CV); 365 } else { 366 assert(CurCap->capturesVariable() && "Expected capture by reference."); 367 CapturedVars.push_back(EmitLValue(*I).getAddress(*this).getPointer()); 368 } 369 } 370 } 371 372 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 373 QualType DstType, StringRef Name, 374 LValue AddrLV) { 375 ASTContext &Ctx = CGF.getContext(); 376 377 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 378 AddrLV.getAddress(CGF).getPointer(), Ctx.getUIntPtrType(), 379 Ctx.getPointerType(DstType), Loc); 380 Address TmpAddr = 381 CGF.MakeNaturalAlignAddrLValue(CastedPtr, DstType).getAddress(CGF); 382 return TmpAddr; 383 } 384 385 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 386 if (T->isLValueReferenceType()) 387 return C.getLValueReferenceType( 388 getCanonicalParamType(C, T.getNonReferenceType()), 389 /*SpelledAsLValue=*/false); 390 if (T->isPointerType()) 391 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 392 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 393 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 394 return getCanonicalParamType(C, VLA->getElementType()); 395 if (!A->isVariablyModifiedType()) 396 return C.getCanonicalType(T); 397 } 398 return C.getCanonicalParamType(T); 399 } 400 401 namespace { 402 /// Contains required data for proper outlined function codegen. 403 struct FunctionOptions { 404 /// Captured statement for which the function is generated. 405 const CapturedStmt *S = nullptr; 406 /// true if cast to/from UIntPtr is required for variables captured by 407 /// value. 408 const bool UIntPtrCastRequired = true; 409 /// true if only casted arguments must be registered as local args or VLA 410 /// sizes. 411 const bool RegisterCastedArgsOnly = false; 412 /// Name of the generated function. 413 const StringRef FunctionName; 414 /// Location of the non-debug version of the outlined function. 415 SourceLocation Loc; 416 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 417 bool RegisterCastedArgsOnly, StringRef FunctionName, 418 SourceLocation Loc) 419 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 420 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 421 FunctionName(FunctionName), Loc(Loc) {} 422 }; 423 } // namespace 424 425 static llvm::Function *emitOutlinedFunctionPrologue( 426 CodeGenFunction &CGF, FunctionArgList &Args, 427 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 428 &LocalAddrs, 429 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 430 &VLASizes, 431 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 432 const CapturedDecl *CD = FO.S->getCapturedDecl(); 433 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 434 assert(CD->hasBody() && "missing CapturedDecl body"); 435 436 CXXThisValue = nullptr; 437 // Build the argument list. 438 CodeGenModule &CGM = CGF.CGM; 439 ASTContext &Ctx = CGM.getContext(); 440 FunctionArgList TargetArgs; 441 Args.append(CD->param_begin(), 442 std::next(CD->param_begin(), CD->getContextParamPosition())); 443 TargetArgs.append( 444 CD->param_begin(), 445 std::next(CD->param_begin(), CD->getContextParamPosition())); 446 auto I = FO.S->captures().begin(); 447 FunctionDecl *DebugFunctionDecl = nullptr; 448 if (!FO.UIntPtrCastRequired) { 449 FunctionProtoType::ExtProtoInfo EPI; 450 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, std::nullopt, EPI); 451 DebugFunctionDecl = FunctionDecl::Create( 452 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 453 SourceLocation(), DeclarationName(), FunctionTy, 454 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 455 /*UsesFPIntrin=*/false, /*isInlineSpecified=*/false, 456 /*hasWrittenPrototype=*/false); 457 } 458 for (const FieldDecl *FD : RD->fields()) { 459 QualType ArgType = FD->getType(); 460 IdentifierInfo *II = nullptr; 461 VarDecl *CapVar = nullptr; 462 463 // If this is a capture by copy and the type is not a pointer, the outlined 464 // function argument type should be uintptr and the value properly casted to 465 // uintptr. This is necessary given that the runtime library is only able to 466 // deal with pointers. We can pass in the same way the VLA type sizes to the 467 // outlined function. 468 if (FO.UIntPtrCastRequired && 469 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 470 I->capturesVariableArrayType())) 471 ArgType = Ctx.getUIntPtrType(); 472 473 if (I->capturesVariable() || I->capturesVariableByCopy()) { 474 CapVar = I->getCapturedVar(); 475 II = CapVar->getIdentifier(); 476 } else if (I->capturesThis()) { 477 II = &Ctx.Idents.get("this"); 478 } else { 479 assert(I->capturesVariableArrayType()); 480 II = &Ctx.Idents.get("vla"); 481 } 482 if (ArgType->isVariablyModifiedType()) 483 ArgType = getCanonicalParamType(Ctx, ArgType); 484 VarDecl *Arg; 485 if (CapVar && (CapVar->getTLSKind() != clang::VarDecl::TLS_None)) { 486 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 487 II, ArgType, 488 ImplicitParamDecl::ThreadPrivateVar); 489 } else if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 490 Arg = ParmVarDecl::Create( 491 Ctx, DebugFunctionDecl, 492 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 493 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 494 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 495 } else { 496 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 497 II, ArgType, ImplicitParamDecl::Other); 498 } 499 Args.emplace_back(Arg); 500 // Do not cast arguments if we emit function with non-original types. 501 TargetArgs.emplace_back( 502 FO.UIntPtrCastRequired 503 ? Arg 504 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 505 ++I; 506 } 507 Args.append(std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 508 CD->param_end()); 509 TargetArgs.append( 510 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 511 CD->param_end()); 512 513 // Create the function declaration. 514 const CGFunctionInfo &FuncInfo = 515 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 516 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 517 518 auto *F = 519 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 520 FO.FunctionName, &CGM.getModule()); 521 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 522 if (CD->isNothrow()) 523 F->setDoesNotThrow(); 524 F->setDoesNotRecurse(); 525 526 // Always inline the outlined function if optimizations are enabled. 527 if (CGM.getCodeGenOpts().OptimizationLevel != 0) { 528 F->removeFnAttr(llvm::Attribute::NoInline); 529 F->addFnAttr(llvm::Attribute::AlwaysInline); 530 } 531 532 // Generate the function. 533 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 534 FO.UIntPtrCastRequired ? FO.Loc : FO.S->getBeginLoc(), 535 FO.UIntPtrCastRequired ? FO.Loc 536 : CD->getBody()->getBeginLoc()); 537 unsigned Cnt = CD->getContextParamPosition(); 538 I = FO.S->captures().begin(); 539 for (const FieldDecl *FD : RD->fields()) { 540 // Do not map arguments if we emit function with non-original types. 541 Address LocalAddr(Address::invalid()); 542 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 543 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 544 TargetArgs[Cnt]); 545 } else { 546 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 547 } 548 // If we are capturing a pointer by copy we don't need to do anything, just 549 // use the value that we get from the arguments. 550 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 551 const VarDecl *CurVD = I->getCapturedVar(); 552 if (!FO.RegisterCastedArgsOnly) 553 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 554 ++Cnt; 555 ++I; 556 continue; 557 } 558 559 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 560 AlignmentSource::Decl); 561 if (FD->hasCapturedVLAType()) { 562 if (FO.UIntPtrCastRequired) { 563 ArgLVal = CGF.MakeAddrLValue( 564 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 565 Args[Cnt]->getName(), ArgLVal), 566 FD->getType(), AlignmentSource::Decl); 567 } 568 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 569 const VariableArrayType *VAT = FD->getCapturedVLAType(); 570 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 571 } else if (I->capturesVariable()) { 572 const VarDecl *Var = I->getCapturedVar(); 573 QualType VarTy = Var->getType(); 574 Address ArgAddr = ArgLVal.getAddress(CGF); 575 if (ArgLVal.getType()->isLValueReferenceType()) { 576 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 577 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 578 assert(ArgLVal.getType()->isPointerType()); 579 ArgAddr = CGF.EmitLoadOfPointer( 580 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 581 } 582 if (!FO.RegisterCastedArgsOnly) { 583 LocalAddrs.insert( 584 {Args[Cnt], {Var, ArgAddr.withAlignment(Ctx.getDeclAlign(Var))}}); 585 } 586 } else if (I->capturesVariableByCopy()) { 587 assert(!FD->getType()->isAnyPointerType() && 588 "Not expecting a captured pointer."); 589 const VarDecl *Var = I->getCapturedVar(); 590 LocalAddrs.insert({Args[Cnt], 591 {Var, FO.UIntPtrCastRequired 592 ? castValueFromUintptr( 593 CGF, I->getLocation(), FD->getType(), 594 Args[Cnt]->getName(), ArgLVal) 595 : ArgLVal.getAddress(CGF)}}); 596 } else { 597 // If 'this' is captured, load it into CXXThisValue. 598 assert(I->capturesThis()); 599 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 600 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress(CGF)}}); 601 } 602 ++Cnt; 603 ++I; 604 } 605 606 return F; 607 } 608 609 llvm::Function * 610 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 611 SourceLocation Loc) { 612 assert( 613 CapturedStmtInfo && 614 "CapturedStmtInfo should be set when generating the captured function"); 615 const CapturedDecl *CD = S.getCapturedDecl(); 616 // Build the argument list. 617 bool NeedWrapperFunction = 618 getDebugInfo() && CGM.getCodeGenOpts().hasReducedDebugInfo(); 619 FunctionArgList Args; 620 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 621 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 622 SmallString<256> Buffer; 623 llvm::raw_svector_ostream Out(Buffer); 624 Out << CapturedStmtInfo->getHelperName(); 625 if (NeedWrapperFunction) 626 Out << "_debug__"; 627 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 628 Out.str(), Loc); 629 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 630 VLASizes, CXXThisValue, FO); 631 CodeGenFunction::OMPPrivateScope LocalScope(*this); 632 for (const auto &LocalAddrPair : LocalAddrs) { 633 if (LocalAddrPair.second.first) { 634 LocalScope.addPrivate(LocalAddrPair.second.first, 635 LocalAddrPair.second.second); 636 } 637 } 638 (void)LocalScope.Privatize(); 639 for (const auto &VLASizePair : VLASizes) 640 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 641 PGO.assignRegionCounters(GlobalDecl(CD), F); 642 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 643 (void)LocalScope.ForceCleanup(); 644 FinishFunction(CD->getBodyRBrace()); 645 if (!NeedWrapperFunction) 646 return F; 647 648 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 649 /*RegisterCastedArgsOnly=*/true, 650 CapturedStmtInfo->getHelperName(), Loc); 651 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 652 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 653 Args.clear(); 654 LocalAddrs.clear(); 655 VLASizes.clear(); 656 llvm::Function *WrapperF = 657 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 658 WrapperCGF.CXXThisValue, WrapperFO); 659 llvm::SmallVector<llvm::Value *, 4> CallArgs; 660 auto *PI = F->arg_begin(); 661 for (const auto *Arg : Args) { 662 llvm::Value *CallArg; 663 auto I = LocalAddrs.find(Arg); 664 if (I != LocalAddrs.end()) { 665 LValue LV = WrapperCGF.MakeAddrLValue( 666 I->second.second, 667 I->second.first ? I->second.first->getType() : Arg->getType(), 668 AlignmentSource::Decl); 669 if (LV.getType()->isAnyComplexType()) 670 LV.setAddress(WrapperCGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 671 LV.getAddress(WrapperCGF), 672 PI->getType()->getPointerTo( 673 LV.getAddress(WrapperCGF).getAddressSpace()), 674 PI->getType())); 675 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 676 } else { 677 auto EI = VLASizes.find(Arg); 678 if (EI != VLASizes.end()) { 679 CallArg = EI->second.second; 680 } else { 681 LValue LV = 682 WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 683 Arg->getType(), AlignmentSource::Decl); 684 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 685 } 686 } 687 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 688 ++PI; 689 } 690 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, Loc, F, CallArgs); 691 WrapperCGF.FinishFunction(); 692 return WrapperF; 693 } 694 695 //===----------------------------------------------------------------------===// 696 // OpenMP Directive Emission 697 //===----------------------------------------------------------------------===// 698 void CodeGenFunction::EmitOMPAggregateAssign( 699 Address DestAddr, Address SrcAddr, QualType OriginalType, 700 const llvm::function_ref<void(Address, Address)> CopyGen) { 701 // Perform element-by-element initialization. 702 QualType ElementTy; 703 704 // Drill down to the base element type on both arrays. 705 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 706 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 707 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 708 709 llvm::Value *SrcBegin = SrcAddr.getPointer(); 710 llvm::Value *DestBegin = DestAddr.getPointer(); 711 // Cast from pointer to array type to pointer to single element. 712 llvm::Value *DestEnd = Builder.CreateInBoundsGEP(DestAddr.getElementType(), 713 DestBegin, NumElements); 714 715 // The basic structure here is a while-do loop. 716 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 717 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 718 llvm::Value *IsEmpty = 719 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 720 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 721 722 // Enter the loop body, making that address the current address. 723 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 724 EmitBlock(BodyBB); 725 726 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 727 728 llvm::PHINode *SrcElementPHI = 729 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 730 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 731 Address SrcElementCurrent = 732 Address(SrcElementPHI, SrcAddr.getElementType(), 733 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 734 735 llvm::PHINode *DestElementPHI = Builder.CreatePHI( 736 DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 737 DestElementPHI->addIncoming(DestBegin, EntryBB); 738 Address DestElementCurrent = 739 Address(DestElementPHI, DestAddr.getElementType(), 740 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 741 742 // Emit copy. 743 CopyGen(DestElementCurrent, SrcElementCurrent); 744 745 // Shift the address forward by one element. 746 llvm::Value *DestElementNext = 747 Builder.CreateConstGEP1_32(DestAddr.getElementType(), DestElementPHI, 748 /*Idx0=*/1, "omp.arraycpy.dest.element"); 749 llvm::Value *SrcElementNext = 750 Builder.CreateConstGEP1_32(SrcAddr.getElementType(), SrcElementPHI, 751 /*Idx0=*/1, "omp.arraycpy.src.element"); 752 // Check whether we've reached the end. 753 llvm::Value *Done = 754 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 755 Builder.CreateCondBr(Done, DoneBB, BodyBB); 756 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 757 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 758 759 // Done. 760 EmitBlock(DoneBB, /*IsFinished=*/true); 761 } 762 763 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 764 Address SrcAddr, const VarDecl *DestVD, 765 const VarDecl *SrcVD, const Expr *Copy) { 766 if (OriginalType->isArrayType()) { 767 const auto *BO = dyn_cast<BinaryOperator>(Copy); 768 if (BO && BO->getOpcode() == BO_Assign) { 769 // Perform simple memcpy for simple copying. 770 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 771 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 772 EmitAggregateAssign(Dest, Src, OriginalType); 773 } else { 774 // For arrays with complex element types perform element by element 775 // copying. 776 EmitOMPAggregateAssign( 777 DestAddr, SrcAddr, OriginalType, 778 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 779 // Working with the single array element, so have to remap 780 // destination and source variables to corresponding array 781 // elements. 782 CodeGenFunction::OMPPrivateScope Remap(*this); 783 Remap.addPrivate(DestVD, DestElement); 784 Remap.addPrivate(SrcVD, SrcElement); 785 (void)Remap.Privatize(); 786 EmitIgnoredExpr(Copy); 787 }); 788 } 789 } else { 790 // Remap pseudo source variable to private copy. 791 CodeGenFunction::OMPPrivateScope Remap(*this); 792 Remap.addPrivate(SrcVD, SrcAddr); 793 Remap.addPrivate(DestVD, DestAddr); 794 (void)Remap.Privatize(); 795 // Emit copying of the whole variable. 796 EmitIgnoredExpr(Copy); 797 } 798 } 799 800 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 801 OMPPrivateScope &PrivateScope) { 802 if (!HaveInsertPoint()) 803 return false; 804 bool DeviceConstTarget = 805 getLangOpts().OpenMPIsDevice && 806 isOpenMPTargetExecutionDirective(D.getDirectiveKind()); 807 bool FirstprivateIsLastprivate = false; 808 llvm::DenseMap<const VarDecl *, OpenMPLastprivateModifier> Lastprivates; 809 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 810 for (const auto *D : C->varlists()) 811 Lastprivates.try_emplace( 812 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl(), 813 C->getKind()); 814 } 815 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 816 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 817 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 818 // Force emission of the firstprivate copy if the directive does not emit 819 // outlined function, like omp for, omp simd, omp distribute etc. 820 bool MustEmitFirstprivateCopy = 821 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 822 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 823 const auto *IRef = C->varlist_begin(); 824 const auto *InitsRef = C->inits().begin(); 825 for (const Expr *IInit : C->private_copies()) { 826 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 827 bool ThisFirstprivateIsLastprivate = 828 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 829 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 830 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 831 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 832 !FD->getType()->isReferenceType() && 833 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 834 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 835 ++IRef; 836 ++InitsRef; 837 continue; 838 } 839 // Do not emit copy for firstprivate constant variables in target regions, 840 // captured by reference. 841 if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) && 842 FD && FD->getType()->isReferenceType() && 843 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 844 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 845 ++IRef; 846 ++InitsRef; 847 continue; 848 } 849 FirstprivateIsLastprivate = 850 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 851 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 852 const auto *VDInit = 853 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 854 bool IsRegistered; 855 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 856 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 857 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 858 LValue OriginalLVal; 859 if (!FD) { 860 // Check if the firstprivate variable is just a constant value. 861 ConstantEmission CE = tryEmitAsConstant(&DRE); 862 if (CE && !CE.isReference()) { 863 // Constant value, no need to create a copy. 864 ++IRef; 865 ++InitsRef; 866 continue; 867 } 868 if (CE && CE.isReference()) { 869 OriginalLVal = CE.getReferenceLValue(*this, &DRE); 870 } else { 871 assert(!CE && "Expected non-constant firstprivate."); 872 OriginalLVal = EmitLValue(&DRE); 873 } 874 } else { 875 OriginalLVal = EmitLValue(&DRE); 876 } 877 QualType Type = VD->getType(); 878 if (Type->isArrayType()) { 879 // Emit VarDecl with copy init for arrays. 880 // Get the address of the original variable captured in current 881 // captured region. 882 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 883 const Expr *Init = VD->getInit(); 884 if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) { 885 // Perform simple memcpy. 886 LValue Dest = MakeAddrLValue(Emission.getAllocatedAddress(), Type); 887 EmitAggregateAssign(Dest, OriginalLVal, Type); 888 } else { 889 EmitOMPAggregateAssign( 890 Emission.getAllocatedAddress(), OriginalLVal.getAddress(*this), 891 Type, 892 [this, VDInit, Init](Address DestElement, Address SrcElement) { 893 // Clean up any temporaries needed by the 894 // initialization. 895 RunCleanupsScope InitScope(*this); 896 // Emit initialization for single element. 897 setAddrOfLocalVar(VDInit, SrcElement); 898 EmitAnyExprToMem(Init, DestElement, 899 Init->getType().getQualifiers(), 900 /*IsInitializer*/ false); 901 LocalDeclMap.erase(VDInit); 902 }); 903 } 904 EmitAutoVarCleanups(Emission); 905 IsRegistered = 906 PrivateScope.addPrivate(OrigVD, Emission.getAllocatedAddress()); 907 } else { 908 Address OriginalAddr = OriginalLVal.getAddress(*this); 909 // Emit private VarDecl with copy init. 910 // Remap temp VDInit variable to the address of the original 911 // variable (for proper handling of captured global variables). 912 setAddrOfLocalVar(VDInit, OriginalAddr); 913 EmitDecl(*VD); 914 LocalDeclMap.erase(VDInit); 915 Address VDAddr = GetAddrOfLocalVar(VD); 916 if (ThisFirstprivateIsLastprivate && 917 Lastprivates[OrigVD->getCanonicalDecl()] == 918 OMPC_LASTPRIVATE_conditional) { 919 // Create/init special variable for lastprivate conditionals. 920 llvm::Value *V = 921 EmitLoadOfScalar(MakeAddrLValue(VDAddr, (*IRef)->getType(), 922 AlignmentSource::Decl), 923 (*IRef)->getExprLoc()); 924 VDAddr = CGM.getOpenMPRuntime().emitLastprivateConditionalInit( 925 *this, OrigVD); 926 EmitStoreOfScalar(V, MakeAddrLValue(VDAddr, (*IRef)->getType(), 927 AlignmentSource::Decl)); 928 LocalDeclMap.erase(VD); 929 setAddrOfLocalVar(VD, VDAddr); 930 } 931 IsRegistered = PrivateScope.addPrivate(OrigVD, VDAddr); 932 } 933 assert(IsRegistered && 934 "firstprivate var already registered as private"); 935 // Silence the warning about unused variable. 936 (void)IsRegistered; 937 } 938 ++IRef; 939 ++InitsRef; 940 } 941 } 942 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 943 } 944 945 void CodeGenFunction::EmitOMPPrivateClause( 946 const OMPExecutableDirective &D, 947 CodeGenFunction::OMPPrivateScope &PrivateScope) { 948 if (!HaveInsertPoint()) 949 return; 950 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 951 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 952 auto IRef = C->varlist_begin(); 953 for (const Expr *IInit : C->private_copies()) { 954 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 955 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 956 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 957 EmitDecl(*VD); 958 // Emit private VarDecl with copy init. 959 bool IsRegistered = 960 PrivateScope.addPrivate(OrigVD, GetAddrOfLocalVar(VD)); 961 assert(IsRegistered && "private var already registered as private"); 962 // Silence the warning about unused variable. 963 (void)IsRegistered; 964 } 965 ++IRef; 966 } 967 } 968 } 969 970 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 971 if (!HaveInsertPoint()) 972 return false; 973 // threadprivate_var1 = master_threadprivate_var1; 974 // operator=(threadprivate_var2, master_threadprivate_var2); 975 // ... 976 // __kmpc_barrier(&loc, global_tid); 977 llvm::DenseSet<const VarDecl *> CopiedVars; 978 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 979 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 980 auto IRef = C->varlist_begin(); 981 auto ISrcRef = C->source_exprs().begin(); 982 auto IDestRef = C->destination_exprs().begin(); 983 for (const Expr *AssignOp : C->assignment_ops()) { 984 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 985 QualType Type = VD->getType(); 986 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 987 // Get the address of the master variable. If we are emitting code with 988 // TLS support, the address is passed from the master as field in the 989 // captured declaration. 990 Address MasterAddr = Address::invalid(); 991 if (getLangOpts().OpenMPUseTLS && 992 getContext().getTargetInfo().isTLSSupported()) { 993 assert(CapturedStmtInfo->lookup(VD) && 994 "Copyin threadprivates should have been captured!"); 995 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true, 996 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 997 MasterAddr = EmitLValue(&DRE).getAddress(*this); 998 LocalDeclMap.erase(VD); 999 } else { 1000 MasterAddr = 1001 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 1002 : CGM.GetAddrOfGlobal(VD), 1003 CGM.getTypes().ConvertTypeForMem(VD->getType()), 1004 getContext().getDeclAlign(VD)); 1005 } 1006 // Get the address of the threadprivate variable. 1007 Address PrivateAddr = EmitLValue(*IRef).getAddress(*this); 1008 if (CopiedVars.size() == 1) { 1009 // At first check if current thread is a master thread. If it is, no 1010 // need to copy data. 1011 CopyBegin = createBasicBlock("copyin.not.master"); 1012 CopyEnd = createBasicBlock("copyin.not.master.end"); 1013 // TODO: Avoid ptrtoint conversion. 1014 auto *MasterAddrInt = 1015 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy); 1016 auto *PrivateAddrInt = 1017 Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy); 1018 Builder.CreateCondBr( 1019 Builder.CreateICmpNE(MasterAddrInt, PrivateAddrInt), CopyBegin, 1020 CopyEnd); 1021 EmitBlock(CopyBegin); 1022 } 1023 const auto *SrcVD = 1024 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1025 const auto *DestVD = 1026 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1027 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 1028 } 1029 ++IRef; 1030 ++ISrcRef; 1031 ++IDestRef; 1032 } 1033 } 1034 if (CopyEnd) { 1035 // Exit out of copying procedure for non-master thread. 1036 EmitBlock(CopyEnd, /*IsFinished=*/true); 1037 return true; 1038 } 1039 return false; 1040 } 1041 1042 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 1043 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 1044 if (!HaveInsertPoint()) 1045 return false; 1046 bool HasAtLeastOneLastprivate = false; 1047 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1048 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1049 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1050 for (const Expr *C : LoopDirective->counters()) { 1051 SIMDLCVs.insert( 1052 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1053 } 1054 } 1055 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1056 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1057 HasAtLeastOneLastprivate = true; 1058 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 1059 !getLangOpts().OpenMPSimd) 1060 break; 1061 const auto *IRef = C->varlist_begin(); 1062 const auto *IDestRef = C->destination_exprs().begin(); 1063 for (const Expr *IInit : C->private_copies()) { 1064 // Keep the address of the original variable for future update at the end 1065 // of the loop. 1066 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1067 // Taskloops do not require additional initialization, it is done in 1068 // runtime support library. 1069 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 1070 const auto *DestVD = 1071 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1072 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1073 /*RefersToEnclosingVariableOrCapture=*/ 1074 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1075 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1076 PrivateScope.addPrivate(DestVD, EmitLValue(&DRE).getAddress(*this)); 1077 // Check if the variable is also a firstprivate: in this case IInit is 1078 // not generated. Initialization of this variable will happen in codegen 1079 // for 'firstprivate' clause. 1080 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 1081 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 1082 Address VDAddr = Address::invalid(); 1083 if (C->getKind() == OMPC_LASTPRIVATE_conditional) { 1084 VDAddr = CGM.getOpenMPRuntime().emitLastprivateConditionalInit( 1085 *this, OrigVD); 1086 setAddrOfLocalVar(VD, VDAddr); 1087 } else { 1088 // Emit private VarDecl with copy init. 1089 EmitDecl(*VD); 1090 VDAddr = GetAddrOfLocalVar(VD); 1091 } 1092 bool IsRegistered = PrivateScope.addPrivate(OrigVD, VDAddr); 1093 assert(IsRegistered && 1094 "lastprivate var already registered as private"); 1095 (void)IsRegistered; 1096 } 1097 } 1098 ++IRef; 1099 ++IDestRef; 1100 } 1101 } 1102 return HasAtLeastOneLastprivate; 1103 } 1104 1105 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 1106 const OMPExecutableDirective &D, bool NoFinals, 1107 llvm::Value *IsLastIterCond) { 1108 if (!HaveInsertPoint()) 1109 return; 1110 // Emit following code: 1111 // if (<IsLastIterCond>) { 1112 // orig_var1 = private_orig_var1; 1113 // ... 1114 // orig_varn = private_orig_varn; 1115 // } 1116 llvm::BasicBlock *ThenBB = nullptr; 1117 llvm::BasicBlock *DoneBB = nullptr; 1118 if (IsLastIterCond) { 1119 // Emit implicit barrier if at least one lastprivate conditional is found 1120 // and this is not a simd mode. 1121 if (!getLangOpts().OpenMPSimd && 1122 llvm::any_of(D.getClausesOfKind<OMPLastprivateClause>(), 1123 [](const OMPLastprivateClause *C) { 1124 return C->getKind() == OMPC_LASTPRIVATE_conditional; 1125 })) { 1126 CGM.getOpenMPRuntime().emitBarrierCall(*this, D.getBeginLoc(), 1127 OMPD_unknown, 1128 /*EmitChecks=*/false, 1129 /*ForceSimpleCall=*/true); 1130 } 1131 ThenBB = createBasicBlock(".omp.lastprivate.then"); 1132 DoneBB = createBasicBlock(".omp.lastprivate.done"); 1133 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1134 EmitBlock(ThenBB); 1135 } 1136 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1137 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1138 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1139 auto IC = LoopDirective->counters().begin(); 1140 for (const Expr *F : LoopDirective->finals()) { 1141 const auto *D = 1142 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1143 if (NoFinals) 1144 AlreadyEmittedVars.insert(D); 1145 else 1146 LoopCountersAndUpdates[D] = F; 1147 ++IC; 1148 } 1149 } 1150 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1151 auto IRef = C->varlist_begin(); 1152 auto ISrcRef = C->source_exprs().begin(); 1153 auto IDestRef = C->destination_exprs().begin(); 1154 for (const Expr *AssignOp : C->assignment_ops()) { 1155 const auto *PrivateVD = 1156 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1157 QualType Type = PrivateVD->getType(); 1158 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1159 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1160 // If lastprivate variable is a loop control variable for loop-based 1161 // directive, update its value before copyin back to original 1162 // variable. 1163 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1164 EmitIgnoredExpr(FinalExpr); 1165 const auto *SrcVD = 1166 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1167 const auto *DestVD = 1168 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1169 // Get the address of the private variable. 1170 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1171 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1172 PrivateAddr = Address( 1173 Builder.CreateLoad(PrivateAddr), 1174 CGM.getTypes().ConvertTypeForMem(RefTy->getPointeeType()), 1175 CGM.getNaturalTypeAlignment(RefTy->getPointeeType())); 1176 // Store the last value to the private copy in the last iteration. 1177 if (C->getKind() == OMPC_LASTPRIVATE_conditional) 1178 CGM.getOpenMPRuntime().emitLastprivateConditionalFinalUpdate( 1179 *this, MakeAddrLValue(PrivateAddr, (*IRef)->getType()), PrivateVD, 1180 (*IRef)->getExprLoc()); 1181 // Get the address of the original variable. 1182 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1183 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1184 } 1185 ++IRef; 1186 ++ISrcRef; 1187 ++IDestRef; 1188 } 1189 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1190 EmitIgnoredExpr(PostUpdate); 1191 } 1192 if (IsLastIterCond) 1193 EmitBlock(DoneBB, /*IsFinished=*/true); 1194 } 1195 1196 void CodeGenFunction::EmitOMPReductionClauseInit( 1197 const OMPExecutableDirective &D, 1198 CodeGenFunction::OMPPrivateScope &PrivateScope, bool ForInscan) { 1199 if (!HaveInsertPoint()) 1200 return; 1201 SmallVector<const Expr *, 4> Shareds; 1202 SmallVector<const Expr *, 4> Privates; 1203 SmallVector<const Expr *, 4> ReductionOps; 1204 SmallVector<const Expr *, 4> LHSs; 1205 SmallVector<const Expr *, 4> RHSs; 1206 OMPTaskDataTy Data; 1207 SmallVector<const Expr *, 4> TaskLHSs; 1208 SmallVector<const Expr *, 4> TaskRHSs; 1209 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1210 if (ForInscan != (C->getModifier() == OMPC_REDUCTION_inscan)) 1211 continue; 1212 Shareds.append(C->varlist_begin(), C->varlist_end()); 1213 Privates.append(C->privates().begin(), C->privates().end()); 1214 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1215 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1216 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1217 if (C->getModifier() == OMPC_REDUCTION_task) { 1218 Data.ReductionVars.append(C->privates().begin(), C->privates().end()); 1219 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 1220 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 1221 Data.ReductionOps.append(C->reduction_ops().begin(), 1222 C->reduction_ops().end()); 1223 TaskLHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1224 TaskRHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1225 } 1226 } 1227 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 1228 unsigned Count = 0; 1229 auto *ILHS = LHSs.begin(); 1230 auto *IRHS = RHSs.begin(); 1231 auto *IPriv = Privates.begin(); 1232 for (const Expr *IRef : Shareds) { 1233 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1234 // Emit private VarDecl with reduction init. 1235 RedCG.emitSharedOrigLValue(*this, Count); 1236 RedCG.emitAggregateType(*this, Count); 1237 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1238 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1239 RedCG.getSharedLValue(Count).getAddress(*this), 1240 [&Emission](CodeGenFunction &CGF) { 1241 CGF.EmitAutoVarInit(Emission); 1242 return true; 1243 }); 1244 EmitAutoVarCleanups(Emission); 1245 Address BaseAddr = RedCG.adjustPrivateAddress( 1246 *this, Count, Emission.getAllocatedAddress()); 1247 bool IsRegistered = 1248 PrivateScope.addPrivate(RedCG.getBaseDecl(Count), BaseAddr); 1249 assert(IsRegistered && "private var already registered as private"); 1250 // Silence the warning about unused variable. 1251 (void)IsRegistered; 1252 1253 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1254 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1255 QualType Type = PrivateVD->getType(); 1256 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1257 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1258 // Store the address of the original variable associated with the LHS 1259 // implicit variable. 1260 PrivateScope.addPrivate(LHSVD, 1261 RedCG.getSharedLValue(Count).getAddress(*this)); 1262 PrivateScope.addPrivate(RHSVD, GetAddrOfLocalVar(PrivateVD)); 1263 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1264 isa<ArraySubscriptExpr>(IRef)) { 1265 // Store the address of the original variable associated with the LHS 1266 // implicit variable. 1267 PrivateScope.addPrivate(LHSVD, 1268 RedCG.getSharedLValue(Count).getAddress(*this)); 1269 PrivateScope.addPrivate(RHSVD, Builder.CreateElementBitCast( 1270 GetAddrOfLocalVar(PrivateVD), 1271 ConvertTypeForMem(RHSVD->getType()), 1272 "rhs.begin")); 1273 } else { 1274 QualType Type = PrivateVD->getType(); 1275 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1276 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(*this); 1277 // Store the address of the original variable associated with the LHS 1278 // implicit variable. 1279 if (IsArray) { 1280 OriginalAddr = Builder.CreateElementBitCast( 1281 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1282 } 1283 PrivateScope.addPrivate(LHSVD, OriginalAddr); 1284 PrivateScope.addPrivate( 1285 RHSVD, IsArray ? Builder.CreateElementBitCast( 1286 GetAddrOfLocalVar(PrivateVD), 1287 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1288 : GetAddrOfLocalVar(PrivateVD)); 1289 } 1290 ++ILHS; 1291 ++IRHS; 1292 ++IPriv; 1293 ++Count; 1294 } 1295 if (!Data.ReductionVars.empty()) { 1296 Data.IsReductionWithTaskMod = true; 1297 Data.IsWorksharingReduction = 1298 isOpenMPWorksharingDirective(D.getDirectiveKind()); 1299 llvm::Value *ReductionDesc = CGM.getOpenMPRuntime().emitTaskReductionInit( 1300 *this, D.getBeginLoc(), TaskLHSs, TaskRHSs, Data); 1301 const Expr *TaskRedRef = nullptr; 1302 switch (D.getDirectiveKind()) { 1303 case OMPD_parallel: 1304 TaskRedRef = cast<OMPParallelDirective>(D).getTaskReductionRefExpr(); 1305 break; 1306 case OMPD_for: 1307 TaskRedRef = cast<OMPForDirective>(D).getTaskReductionRefExpr(); 1308 break; 1309 case OMPD_sections: 1310 TaskRedRef = cast<OMPSectionsDirective>(D).getTaskReductionRefExpr(); 1311 break; 1312 case OMPD_parallel_for: 1313 TaskRedRef = cast<OMPParallelForDirective>(D).getTaskReductionRefExpr(); 1314 break; 1315 case OMPD_parallel_master: 1316 TaskRedRef = 1317 cast<OMPParallelMasterDirective>(D).getTaskReductionRefExpr(); 1318 break; 1319 case OMPD_parallel_sections: 1320 TaskRedRef = 1321 cast<OMPParallelSectionsDirective>(D).getTaskReductionRefExpr(); 1322 break; 1323 case OMPD_target_parallel: 1324 TaskRedRef = 1325 cast<OMPTargetParallelDirective>(D).getTaskReductionRefExpr(); 1326 break; 1327 case OMPD_target_parallel_for: 1328 TaskRedRef = 1329 cast<OMPTargetParallelForDirective>(D).getTaskReductionRefExpr(); 1330 break; 1331 case OMPD_distribute_parallel_for: 1332 TaskRedRef = 1333 cast<OMPDistributeParallelForDirective>(D).getTaskReductionRefExpr(); 1334 break; 1335 case OMPD_teams_distribute_parallel_for: 1336 TaskRedRef = cast<OMPTeamsDistributeParallelForDirective>(D) 1337 .getTaskReductionRefExpr(); 1338 break; 1339 case OMPD_target_teams_distribute_parallel_for: 1340 TaskRedRef = cast<OMPTargetTeamsDistributeParallelForDirective>(D) 1341 .getTaskReductionRefExpr(); 1342 break; 1343 case OMPD_simd: 1344 case OMPD_for_simd: 1345 case OMPD_section: 1346 case OMPD_single: 1347 case OMPD_master: 1348 case OMPD_critical: 1349 case OMPD_parallel_for_simd: 1350 case OMPD_task: 1351 case OMPD_taskyield: 1352 case OMPD_error: 1353 case OMPD_barrier: 1354 case OMPD_taskwait: 1355 case OMPD_taskgroup: 1356 case OMPD_flush: 1357 case OMPD_depobj: 1358 case OMPD_scan: 1359 case OMPD_ordered: 1360 case OMPD_atomic: 1361 case OMPD_teams: 1362 case OMPD_target: 1363 case OMPD_cancellation_point: 1364 case OMPD_cancel: 1365 case OMPD_target_data: 1366 case OMPD_target_enter_data: 1367 case OMPD_target_exit_data: 1368 case OMPD_taskloop: 1369 case OMPD_taskloop_simd: 1370 case OMPD_master_taskloop: 1371 case OMPD_master_taskloop_simd: 1372 case OMPD_parallel_master_taskloop: 1373 case OMPD_parallel_master_taskloop_simd: 1374 case OMPD_distribute: 1375 case OMPD_target_update: 1376 case OMPD_distribute_parallel_for_simd: 1377 case OMPD_distribute_simd: 1378 case OMPD_target_parallel_for_simd: 1379 case OMPD_target_simd: 1380 case OMPD_teams_distribute: 1381 case OMPD_teams_distribute_simd: 1382 case OMPD_teams_distribute_parallel_for_simd: 1383 case OMPD_target_teams: 1384 case OMPD_target_teams_distribute: 1385 case OMPD_target_teams_distribute_parallel_for_simd: 1386 case OMPD_target_teams_distribute_simd: 1387 case OMPD_declare_target: 1388 case OMPD_end_declare_target: 1389 case OMPD_threadprivate: 1390 case OMPD_allocate: 1391 case OMPD_declare_reduction: 1392 case OMPD_declare_mapper: 1393 case OMPD_declare_simd: 1394 case OMPD_requires: 1395 case OMPD_declare_variant: 1396 case OMPD_begin_declare_variant: 1397 case OMPD_end_declare_variant: 1398 case OMPD_unknown: 1399 default: 1400 llvm_unreachable("Enexpected directive with task reductions."); 1401 } 1402 1403 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(TaskRedRef)->getDecl()); 1404 EmitVarDecl(*VD); 1405 EmitStoreOfScalar(ReductionDesc, GetAddrOfLocalVar(VD), 1406 /*Volatile=*/false, TaskRedRef->getType()); 1407 } 1408 } 1409 1410 void CodeGenFunction::EmitOMPReductionClauseFinal( 1411 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1412 if (!HaveInsertPoint()) 1413 return; 1414 llvm::SmallVector<const Expr *, 8> Privates; 1415 llvm::SmallVector<const Expr *, 8> LHSExprs; 1416 llvm::SmallVector<const Expr *, 8> RHSExprs; 1417 llvm::SmallVector<const Expr *, 8> ReductionOps; 1418 bool HasAtLeastOneReduction = false; 1419 bool IsReductionWithTaskMod = false; 1420 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1421 // Do not emit for inscan reductions. 1422 if (C->getModifier() == OMPC_REDUCTION_inscan) 1423 continue; 1424 HasAtLeastOneReduction = true; 1425 Privates.append(C->privates().begin(), C->privates().end()); 1426 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1427 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1428 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1429 IsReductionWithTaskMod = 1430 IsReductionWithTaskMod || C->getModifier() == OMPC_REDUCTION_task; 1431 } 1432 if (HasAtLeastOneReduction) { 1433 if (IsReductionWithTaskMod) { 1434 CGM.getOpenMPRuntime().emitTaskReductionFini( 1435 *this, D.getBeginLoc(), 1436 isOpenMPWorksharingDirective(D.getDirectiveKind())); 1437 } 1438 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1439 isOpenMPParallelDirective(D.getDirectiveKind()) || 1440 ReductionKind == OMPD_simd; 1441 bool SimpleReduction = ReductionKind == OMPD_simd; 1442 // Emit nowait reduction if nowait clause is present or directive is a 1443 // parallel directive (it always has implicit barrier). 1444 CGM.getOpenMPRuntime().emitReduction( 1445 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1446 {WithNowait, SimpleReduction, ReductionKind}); 1447 } 1448 } 1449 1450 static void emitPostUpdateForReductionClause( 1451 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1452 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1453 if (!CGF.HaveInsertPoint()) 1454 return; 1455 llvm::BasicBlock *DoneBB = nullptr; 1456 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1457 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1458 if (!DoneBB) { 1459 if (llvm::Value *Cond = CondGen(CGF)) { 1460 // If the first post-update expression is found, emit conditional 1461 // block if it was requested. 1462 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1463 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1464 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1465 CGF.EmitBlock(ThenBB); 1466 } 1467 } 1468 CGF.EmitIgnoredExpr(PostUpdate); 1469 } 1470 } 1471 if (DoneBB) 1472 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1473 } 1474 1475 namespace { 1476 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1477 /// parallel function. This is necessary for combined constructs such as 1478 /// 'distribute parallel for' 1479 typedef llvm::function_ref<void(CodeGenFunction &, 1480 const OMPExecutableDirective &, 1481 llvm::SmallVectorImpl<llvm::Value *> &)> 1482 CodeGenBoundParametersTy; 1483 } // anonymous namespace 1484 1485 static void 1486 checkForLastprivateConditionalUpdate(CodeGenFunction &CGF, 1487 const OMPExecutableDirective &S) { 1488 if (CGF.getLangOpts().OpenMP < 50) 1489 return; 1490 llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> PrivateDecls; 1491 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 1492 for (const Expr *Ref : C->varlists()) { 1493 if (!Ref->getType()->isScalarType()) 1494 continue; 1495 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1496 if (!DRE) 1497 continue; 1498 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1499 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1500 } 1501 } 1502 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 1503 for (const Expr *Ref : C->varlists()) { 1504 if (!Ref->getType()->isScalarType()) 1505 continue; 1506 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1507 if (!DRE) 1508 continue; 1509 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1510 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1511 } 1512 } 1513 for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) { 1514 for (const Expr *Ref : C->varlists()) { 1515 if (!Ref->getType()->isScalarType()) 1516 continue; 1517 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1518 if (!DRE) 1519 continue; 1520 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1521 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1522 } 1523 } 1524 // Privates should ne analyzed since they are not captured at all. 1525 // Task reductions may be skipped - tasks are ignored. 1526 // Firstprivates do not return value but may be passed by reference - no need 1527 // to check for updated lastprivate conditional. 1528 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 1529 for (const Expr *Ref : C->varlists()) { 1530 if (!Ref->getType()->isScalarType()) 1531 continue; 1532 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1533 if (!DRE) 1534 continue; 1535 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1536 } 1537 } 1538 CGF.CGM.getOpenMPRuntime().checkAndEmitSharedLastprivateConditional( 1539 CGF, S, PrivateDecls); 1540 } 1541 1542 static void emitCommonOMPParallelDirective( 1543 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1544 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1545 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1546 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1547 llvm::Value *NumThreads = nullptr; 1548 llvm::Function *OutlinedFn = 1549 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1550 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1551 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1552 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1553 NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1554 /*IgnoreResultAssign=*/true); 1555 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1556 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1557 } 1558 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1559 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1560 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1561 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1562 } 1563 const Expr *IfCond = nullptr; 1564 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1565 if (C->getNameModifier() == OMPD_unknown || 1566 C->getNameModifier() == OMPD_parallel) { 1567 IfCond = C->getCondition(); 1568 break; 1569 } 1570 } 1571 1572 OMPParallelScope Scope(CGF, S); 1573 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1574 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1575 // lower and upper bounds with the pragma 'for' chunking mechanism. 1576 // The following lambda takes care of appending the lower and upper bound 1577 // parameters when necessary 1578 CodeGenBoundParameters(CGF, S, CapturedVars); 1579 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1580 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1581 CapturedVars, IfCond, NumThreads); 1582 } 1583 1584 static bool isAllocatableDecl(const VarDecl *VD) { 1585 const VarDecl *CVD = VD->getCanonicalDecl(); 1586 if (!CVD->hasAttr<OMPAllocateDeclAttr>()) 1587 return false; 1588 const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); 1589 // Use the default allocation. 1590 return !((AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc || 1591 AA->getAllocatorType() == OMPAllocateDeclAttr::OMPNullMemAlloc) && 1592 !AA->getAllocator()); 1593 } 1594 1595 static void emitEmptyBoundParameters(CodeGenFunction &, 1596 const OMPExecutableDirective &, 1597 llvm::SmallVectorImpl<llvm::Value *> &) {} 1598 1599 static void emitOMPCopyinClause(CodeGenFunction &CGF, 1600 const OMPExecutableDirective &S) { 1601 bool Copyins = CGF.EmitOMPCopyinClause(S); 1602 if (Copyins) { 1603 // Emit implicit barrier to synchronize threads and avoid data races on 1604 // propagation master's thread values of threadprivate variables to local 1605 // instances of that variables of all other implicit threads. 1606 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1607 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1608 /*ForceSimpleCall=*/true); 1609 } 1610 } 1611 1612 Address CodeGenFunction::OMPBuilderCBHelpers::getAddressOfLocalVariable( 1613 CodeGenFunction &CGF, const VarDecl *VD) { 1614 CodeGenModule &CGM = CGF.CGM; 1615 auto &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1616 1617 if (!VD) 1618 return Address::invalid(); 1619 const VarDecl *CVD = VD->getCanonicalDecl(); 1620 if (!isAllocatableDecl(CVD)) 1621 return Address::invalid(); 1622 llvm::Value *Size; 1623 CharUnits Align = CGM.getContext().getDeclAlign(CVD); 1624 if (CVD->getType()->isVariablyModifiedType()) { 1625 Size = CGF.getTypeSize(CVD->getType()); 1626 // Align the size: ((size + align - 1) / align) * align 1627 Size = CGF.Builder.CreateNUWAdd( 1628 Size, CGM.getSize(Align - CharUnits::fromQuantity(1))); 1629 Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align)); 1630 Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align)); 1631 } else { 1632 CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType()); 1633 Size = CGM.getSize(Sz.alignTo(Align)); 1634 } 1635 1636 const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); 1637 assert(AA->getAllocator() && 1638 "Expected allocator expression for non-default allocator."); 1639 llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator()); 1640 // According to the standard, the original allocator type is a enum (integer). 1641 // Convert to pointer type, if required. 1642 if (Allocator->getType()->isIntegerTy()) 1643 Allocator = CGF.Builder.CreateIntToPtr(Allocator, CGM.VoidPtrTy); 1644 else if (Allocator->getType()->isPointerTy()) 1645 Allocator = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Allocator, 1646 CGM.VoidPtrTy); 1647 1648 llvm::Value *Addr = OMPBuilder.createOMPAlloc( 1649 CGF.Builder, Size, Allocator, 1650 getNameWithSeparators({CVD->getName(), ".void.addr"}, ".", ".")); 1651 llvm::CallInst *FreeCI = 1652 OMPBuilder.createOMPFree(CGF.Builder, Addr, Allocator); 1653 1654 CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(NormalAndEHCleanup, FreeCI); 1655 Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 1656 Addr, 1657 CGF.ConvertTypeForMem(CGM.getContext().getPointerType(CVD->getType())), 1658 getNameWithSeparators({CVD->getName(), ".addr"}, ".", ".")); 1659 return Address(Addr, CGF.ConvertTypeForMem(CVD->getType()), Align); 1660 } 1661 1662 Address CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate( 1663 CodeGenFunction &CGF, const VarDecl *VD, Address VDAddr, 1664 SourceLocation Loc) { 1665 CodeGenModule &CGM = CGF.CGM; 1666 if (CGM.getLangOpts().OpenMPUseTLS && 1667 CGM.getContext().getTargetInfo().isTLSSupported()) 1668 return VDAddr; 1669 1670 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1671 1672 llvm::Type *VarTy = VDAddr.getElementType(); 1673 llvm::Value *Data = 1674 CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.Int8PtrTy); 1675 llvm::ConstantInt *Size = CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)); 1676 std::string Suffix = getNameWithSeparators({"cache", ""}); 1677 llvm::Twine CacheName = Twine(CGM.getMangledName(VD)).concat(Suffix); 1678 1679 llvm::CallInst *ThreadPrivateCacheCall = 1680 OMPBuilder.createCachedThreadPrivate(CGF.Builder, Data, Size, CacheName); 1681 1682 return Address(ThreadPrivateCacheCall, CGM.Int8Ty, VDAddr.getAlignment()); 1683 } 1684 1685 std::string CodeGenFunction::OMPBuilderCBHelpers::getNameWithSeparators( 1686 ArrayRef<StringRef> Parts, StringRef FirstSeparator, StringRef Separator) { 1687 SmallString<128> Buffer; 1688 llvm::raw_svector_ostream OS(Buffer); 1689 StringRef Sep = FirstSeparator; 1690 for (StringRef Part : Parts) { 1691 OS << Sep << Part; 1692 Sep = Separator; 1693 } 1694 return OS.str().str(); 1695 } 1696 1697 void CodeGenFunction::OMPBuilderCBHelpers::EmitOMPInlinedRegionBody( 1698 CodeGenFunction &CGF, const Stmt *RegionBodyStmt, InsertPointTy AllocaIP, 1699 InsertPointTy CodeGenIP, Twine RegionName) { 1700 CGBuilderTy &Builder = CGF.Builder; 1701 Builder.restoreIP(CodeGenIP); 1702 llvm::BasicBlock *FiniBB = splitBBWithSuffix(Builder, /*CreateBranch=*/false, 1703 "." + RegionName + ".after"); 1704 1705 { 1706 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(CGF, AllocaIP, *FiniBB); 1707 CGF.EmitStmt(RegionBodyStmt); 1708 } 1709 1710 if (Builder.saveIP().isSet()) 1711 Builder.CreateBr(FiniBB); 1712 } 1713 1714 void CodeGenFunction::OMPBuilderCBHelpers::EmitOMPOutlinedRegionBody( 1715 CodeGenFunction &CGF, const Stmt *RegionBodyStmt, InsertPointTy AllocaIP, 1716 InsertPointTy CodeGenIP, Twine RegionName) { 1717 CGBuilderTy &Builder = CGF.Builder; 1718 Builder.restoreIP(CodeGenIP); 1719 llvm::BasicBlock *FiniBB = splitBBWithSuffix(Builder, /*CreateBranch=*/false, 1720 "." + RegionName + ".after"); 1721 1722 { 1723 OMPBuilderCBHelpers::OutlinedRegionBodyRAII IRB(CGF, AllocaIP, *FiniBB); 1724 CGF.EmitStmt(RegionBodyStmt); 1725 } 1726 1727 if (Builder.saveIP().isSet()) 1728 Builder.CreateBr(FiniBB); 1729 } 1730 1731 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1732 if (CGM.getLangOpts().OpenMPIRBuilder) { 1733 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1734 // Check if we have any if clause associated with the directive. 1735 llvm::Value *IfCond = nullptr; 1736 if (const auto *C = S.getSingleClause<OMPIfClause>()) 1737 IfCond = EmitScalarExpr(C->getCondition(), 1738 /*IgnoreResultAssign=*/true); 1739 1740 llvm::Value *NumThreads = nullptr; 1741 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) 1742 NumThreads = EmitScalarExpr(NumThreadsClause->getNumThreads(), 1743 /*IgnoreResultAssign=*/true); 1744 1745 ProcBindKind ProcBind = OMP_PROC_BIND_default; 1746 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) 1747 ProcBind = ProcBindClause->getProcBindKind(); 1748 1749 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1750 1751 // The cleanup callback that finalizes all variabels at the given location, 1752 // thus calls destructors etc. 1753 auto FiniCB = [this](InsertPointTy IP) { 1754 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 1755 }; 1756 1757 // Privatization callback that performs appropriate action for 1758 // shared/private/firstprivate/lastprivate/copyin/... variables. 1759 // 1760 // TODO: This defaults to shared right now. 1761 auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1762 llvm::Value &, llvm::Value &Val, llvm::Value *&ReplVal) { 1763 // The next line is appropriate only for variables (Val) with the 1764 // data-sharing attribute "shared". 1765 ReplVal = &Val; 1766 1767 return CodeGenIP; 1768 }; 1769 1770 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1771 const Stmt *ParallelRegionBodyStmt = CS->getCapturedStmt(); 1772 1773 auto BodyGenCB = [&, this](InsertPointTy AllocaIP, 1774 InsertPointTy CodeGenIP) { 1775 OMPBuilderCBHelpers::EmitOMPOutlinedRegionBody( 1776 *this, ParallelRegionBodyStmt, AllocaIP, CodeGenIP, "parallel"); 1777 }; 1778 1779 CGCapturedStmtInfo CGSI(*CS, CR_OpenMP); 1780 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 1781 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 1782 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 1783 Builder.restoreIP( 1784 OMPBuilder.createParallel(Builder, AllocaIP, BodyGenCB, PrivCB, FiniCB, 1785 IfCond, NumThreads, ProcBind, S.hasCancel())); 1786 return; 1787 } 1788 1789 // Emit parallel region as a standalone region. 1790 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1791 Action.Enter(CGF); 1792 OMPPrivateScope PrivateScope(CGF); 1793 emitOMPCopyinClause(CGF, S); 1794 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1795 CGF.EmitOMPPrivateClause(S, PrivateScope); 1796 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1797 (void)PrivateScope.Privatize(); 1798 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1799 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1800 }; 1801 { 1802 auto LPCRegion = 1803 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 1804 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1805 emitEmptyBoundParameters); 1806 emitPostUpdateForReductionClause(*this, S, 1807 [](CodeGenFunction &) { return nullptr; }); 1808 } 1809 // Check for outer lastprivate conditional update. 1810 checkForLastprivateConditionalUpdate(*this, S); 1811 } 1812 1813 void CodeGenFunction::EmitOMPMetaDirective(const OMPMetaDirective &S) { 1814 EmitStmt(S.getIfStmt()); 1815 } 1816 1817 namespace { 1818 /// RAII to handle scopes for loop transformation directives. 1819 class OMPTransformDirectiveScopeRAII { 1820 OMPLoopScope *Scope = nullptr; 1821 CodeGenFunction::CGCapturedStmtInfo *CGSI = nullptr; 1822 CodeGenFunction::CGCapturedStmtRAII *CapInfoRAII = nullptr; 1823 1824 public: 1825 OMPTransformDirectiveScopeRAII(CodeGenFunction &CGF, const Stmt *S) { 1826 if (const auto *Dir = dyn_cast<OMPLoopBasedDirective>(S)) { 1827 Scope = new OMPLoopScope(CGF, *Dir); 1828 CGSI = new CodeGenFunction::CGCapturedStmtInfo(CR_OpenMP); 1829 CapInfoRAII = new CodeGenFunction::CGCapturedStmtRAII(CGF, CGSI); 1830 } 1831 } 1832 ~OMPTransformDirectiveScopeRAII() { 1833 if (!Scope) 1834 return; 1835 delete CapInfoRAII; 1836 delete CGSI; 1837 delete Scope; 1838 } 1839 }; 1840 } // namespace 1841 1842 static void emitBody(CodeGenFunction &CGF, const Stmt *S, const Stmt *NextLoop, 1843 int MaxLevel, int Level = 0) { 1844 assert(Level < MaxLevel && "Too deep lookup during loop body codegen."); 1845 const Stmt *SimplifiedS = S->IgnoreContainers(); 1846 if (const auto *CS = dyn_cast<CompoundStmt>(SimplifiedS)) { 1847 PrettyStackTraceLoc CrashInfo( 1848 CGF.getContext().getSourceManager(), CS->getLBracLoc(), 1849 "LLVM IR generation of compound statement ('{}')"); 1850 1851 // Keep track of the current cleanup stack depth, including debug scopes. 1852 CodeGenFunction::LexicalScope Scope(CGF, S->getSourceRange()); 1853 for (const Stmt *CurStmt : CS->body()) 1854 emitBody(CGF, CurStmt, NextLoop, MaxLevel, Level); 1855 return; 1856 } 1857 if (SimplifiedS == NextLoop) { 1858 if (auto *Dir = dyn_cast<OMPLoopTransformationDirective>(SimplifiedS)) 1859 SimplifiedS = Dir->getTransformedStmt(); 1860 if (const auto *CanonLoop = dyn_cast<OMPCanonicalLoop>(SimplifiedS)) 1861 SimplifiedS = CanonLoop->getLoopStmt(); 1862 if (const auto *For = dyn_cast<ForStmt>(SimplifiedS)) { 1863 S = For->getBody(); 1864 } else { 1865 assert(isa<CXXForRangeStmt>(SimplifiedS) && 1866 "Expected canonical for loop or range-based for loop."); 1867 const auto *CXXFor = cast<CXXForRangeStmt>(SimplifiedS); 1868 CGF.EmitStmt(CXXFor->getLoopVarStmt()); 1869 S = CXXFor->getBody(); 1870 } 1871 if (Level + 1 < MaxLevel) { 1872 NextLoop = OMPLoopDirective::tryToFindNextInnerLoop( 1873 S, /*TryImperfectlyNestedLoops=*/true); 1874 emitBody(CGF, S, NextLoop, MaxLevel, Level + 1); 1875 return; 1876 } 1877 } 1878 CGF.EmitStmt(S); 1879 } 1880 1881 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1882 JumpDest LoopExit) { 1883 RunCleanupsScope BodyScope(*this); 1884 // Update counters values on current iteration. 1885 for (const Expr *UE : D.updates()) 1886 EmitIgnoredExpr(UE); 1887 // Update the linear variables. 1888 // In distribute directives only loop counters may be marked as linear, no 1889 // need to generate the code for them. 1890 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1891 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1892 for (const Expr *UE : C->updates()) 1893 EmitIgnoredExpr(UE); 1894 } 1895 } 1896 1897 // On a continue in the body, jump to the end. 1898 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1899 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1900 for (const Expr *E : D.finals_conditions()) { 1901 if (!E) 1902 continue; 1903 // Check that loop counter in non-rectangular nest fits into the iteration 1904 // space. 1905 llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next"); 1906 EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(), 1907 getProfileCount(D.getBody())); 1908 EmitBlock(NextBB); 1909 } 1910 1911 OMPPrivateScope InscanScope(*this); 1912 EmitOMPReductionClauseInit(D, InscanScope, /*ForInscan=*/true); 1913 bool IsInscanRegion = InscanScope.Privatize(); 1914 if (IsInscanRegion) { 1915 // Need to remember the block before and after scan directive 1916 // to dispatch them correctly depending on the clause used in 1917 // this directive, inclusive or exclusive. For inclusive scan the natural 1918 // order of the blocks is used, for exclusive clause the blocks must be 1919 // executed in reverse order. 1920 OMPBeforeScanBlock = createBasicBlock("omp.before.scan.bb"); 1921 OMPAfterScanBlock = createBasicBlock("omp.after.scan.bb"); 1922 // No need to allocate inscan exit block, in simd mode it is selected in the 1923 // codegen for the scan directive. 1924 if (D.getDirectiveKind() != OMPD_simd && !getLangOpts().OpenMPSimd) 1925 OMPScanExitBlock = createBasicBlock("omp.exit.inscan.bb"); 1926 OMPScanDispatch = createBasicBlock("omp.inscan.dispatch"); 1927 EmitBranch(OMPScanDispatch); 1928 EmitBlock(OMPBeforeScanBlock); 1929 } 1930 1931 // Emit loop variables for C++ range loops. 1932 const Stmt *Body = 1933 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 1934 // Emit loop body. 1935 emitBody(*this, Body, 1936 OMPLoopBasedDirective::tryToFindNextInnerLoop( 1937 Body, /*TryImperfectlyNestedLoops=*/true), 1938 D.getLoopsNumber()); 1939 1940 // Jump to the dispatcher at the end of the loop body. 1941 if (IsInscanRegion) 1942 EmitBranch(OMPScanExitBlock); 1943 1944 // The end (updates/cleanups). 1945 EmitBlock(Continue.getBlock()); 1946 BreakContinueStack.pop_back(); 1947 } 1948 1949 using EmittedClosureTy = std::pair<llvm::Function *, llvm::Value *>; 1950 1951 /// Emit a captured statement and return the function as well as its captured 1952 /// closure context. 1953 static EmittedClosureTy emitCapturedStmtFunc(CodeGenFunction &ParentCGF, 1954 const CapturedStmt *S) { 1955 LValue CapStruct = ParentCGF.InitCapturedStruct(*S); 1956 CodeGenFunction CGF(ParentCGF.CGM, /*suppressNewContext=*/true); 1957 std::unique_ptr<CodeGenFunction::CGCapturedStmtInfo> CSI = 1958 std::make_unique<CodeGenFunction::CGCapturedStmtInfo>(*S); 1959 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, CSI.get()); 1960 llvm::Function *F = CGF.GenerateCapturedStmtFunction(*S); 1961 1962 return {F, CapStruct.getPointer(ParentCGF)}; 1963 } 1964 1965 /// Emit a call to a previously captured closure. 1966 static llvm::CallInst * 1967 emitCapturedStmtCall(CodeGenFunction &ParentCGF, EmittedClosureTy Cap, 1968 llvm::ArrayRef<llvm::Value *> Args) { 1969 // Append the closure context to the argument. 1970 SmallVector<llvm::Value *> EffectiveArgs; 1971 EffectiveArgs.reserve(Args.size() + 1); 1972 llvm::append_range(EffectiveArgs, Args); 1973 EffectiveArgs.push_back(Cap.second); 1974 1975 return ParentCGF.Builder.CreateCall(Cap.first, EffectiveArgs); 1976 } 1977 1978 llvm::CanonicalLoopInfo * 1979 CodeGenFunction::EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, int Depth) { 1980 assert(Depth == 1 && "Nested loops with OpenMPIRBuilder not yet implemented"); 1981 1982 // The caller is processing the loop-associated directive processing the \p 1983 // Depth loops nested in \p S. Put the previous pending loop-associated 1984 // directive to the stack. If the current loop-associated directive is a loop 1985 // transformation directive, it will push its generated loops onto the stack 1986 // such that together with the loops left here they form the combined loop 1987 // nest for the parent loop-associated directive. 1988 int ParentExpectedOMPLoopDepth = ExpectedOMPLoopDepth; 1989 ExpectedOMPLoopDepth = Depth; 1990 1991 EmitStmt(S); 1992 assert(OMPLoopNestStack.size() >= (size_t)Depth && "Found too few loops"); 1993 1994 // The last added loop is the outermost one. 1995 llvm::CanonicalLoopInfo *Result = OMPLoopNestStack.back(); 1996 1997 // Pop the \p Depth loops requested by the call from that stack and restore 1998 // the previous context. 1999 OMPLoopNestStack.pop_back_n(Depth); 2000 ExpectedOMPLoopDepth = ParentExpectedOMPLoopDepth; 2001 2002 return Result; 2003 } 2004 2005 void CodeGenFunction::EmitOMPCanonicalLoop(const OMPCanonicalLoop *S) { 2006 const Stmt *SyntacticalLoop = S->getLoopStmt(); 2007 if (!getLangOpts().OpenMPIRBuilder) { 2008 // Ignore if OpenMPIRBuilder is not enabled. 2009 EmitStmt(SyntacticalLoop); 2010 return; 2011 } 2012 2013 LexicalScope ForScope(*this, S->getSourceRange()); 2014 2015 // Emit init statements. The Distance/LoopVar funcs may reference variable 2016 // declarations they contain. 2017 const Stmt *BodyStmt; 2018 if (const auto *For = dyn_cast<ForStmt>(SyntacticalLoop)) { 2019 if (const Stmt *InitStmt = For->getInit()) 2020 EmitStmt(InitStmt); 2021 BodyStmt = For->getBody(); 2022 } else if (const auto *RangeFor = 2023 dyn_cast<CXXForRangeStmt>(SyntacticalLoop)) { 2024 if (const DeclStmt *RangeStmt = RangeFor->getRangeStmt()) 2025 EmitStmt(RangeStmt); 2026 if (const DeclStmt *BeginStmt = RangeFor->getBeginStmt()) 2027 EmitStmt(BeginStmt); 2028 if (const DeclStmt *EndStmt = RangeFor->getEndStmt()) 2029 EmitStmt(EndStmt); 2030 if (const DeclStmt *LoopVarStmt = RangeFor->getLoopVarStmt()) 2031 EmitStmt(LoopVarStmt); 2032 BodyStmt = RangeFor->getBody(); 2033 } else 2034 llvm_unreachable("Expected for-stmt or range-based for-stmt"); 2035 2036 // Emit closure for later use. By-value captures will be captured here. 2037 const CapturedStmt *DistanceFunc = S->getDistanceFunc(); 2038 EmittedClosureTy DistanceClosure = emitCapturedStmtFunc(*this, DistanceFunc); 2039 const CapturedStmt *LoopVarFunc = S->getLoopVarFunc(); 2040 EmittedClosureTy LoopVarClosure = emitCapturedStmtFunc(*this, LoopVarFunc); 2041 2042 // Call the distance function to get the number of iterations of the loop to 2043 // come. 2044 QualType LogicalTy = DistanceFunc->getCapturedDecl() 2045 ->getParam(0) 2046 ->getType() 2047 .getNonReferenceType(); 2048 Address CountAddr = CreateMemTemp(LogicalTy, ".count.addr"); 2049 emitCapturedStmtCall(*this, DistanceClosure, {CountAddr.getPointer()}); 2050 llvm::Value *DistVal = Builder.CreateLoad(CountAddr, ".count"); 2051 2052 // Emit the loop structure. 2053 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 2054 auto BodyGen = [&, this](llvm::OpenMPIRBuilder::InsertPointTy CodeGenIP, 2055 llvm::Value *IndVar) { 2056 Builder.restoreIP(CodeGenIP); 2057 2058 // Emit the loop body: Convert the logical iteration number to the loop 2059 // variable and emit the body. 2060 const DeclRefExpr *LoopVarRef = S->getLoopVarRef(); 2061 LValue LCVal = EmitLValue(LoopVarRef); 2062 Address LoopVarAddress = LCVal.getAddress(*this); 2063 emitCapturedStmtCall(*this, LoopVarClosure, 2064 {LoopVarAddress.getPointer(), IndVar}); 2065 2066 RunCleanupsScope BodyScope(*this); 2067 EmitStmt(BodyStmt); 2068 }; 2069 llvm::CanonicalLoopInfo *CL = 2070 OMPBuilder.createCanonicalLoop(Builder, BodyGen, DistVal); 2071 2072 // Finish up the loop. 2073 Builder.restoreIP(CL->getAfterIP()); 2074 ForScope.ForceCleanup(); 2075 2076 // Remember the CanonicalLoopInfo for parent AST nodes consuming it. 2077 OMPLoopNestStack.push_back(CL); 2078 } 2079 2080 void CodeGenFunction::EmitOMPInnerLoop( 2081 const OMPExecutableDirective &S, bool RequiresCleanup, const Expr *LoopCond, 2082 const Expr *IncExpr, 2083 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 2084 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 2085 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 2086 2087 // Start the loop with a block that tests the condition. 2088 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 2089 EmitBlock(CondBlock); 2090 const SourceRange R = S.getSourceRange(); 2091 2092 // If attributes are attached, push to the basic block with them. 2093 const auto &OMPED = cast<OMPExecutableDirective>(S); 2094 const CapturedStmt *ICS = OMPED.getInnermostCapturedStmt(); 2095 const Stmt *SS = ICS->getCapturedStmt(); 2096 const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(SS); 2097 OMPLoopNestStack.clear(); 2098 if (AS) 2099 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), 2100 AS->getAttrs(), SourceLocToDebugLoc(R.getBegin()), 2101 SourceLocToDebugLoc(R.getEnd())); 2102 else 2103 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 2104 SourceLocToDebugLoc(R.getEnd())); 2105 2106 // If there are any cleanups between here and the loop-exit scope, 2107 // create a block to stage a loop exit along. 2108 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 2109 if (RequiresCleanup) 2110 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 2111 2112 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 2113 2114 // Emit condition. 2115 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 2116 if (ExitBlock != LoopExit.getBlock()) { 2117 EmitBlock(ExitBlock); 2118 EmitBranchThroughCleanup(LoopExit); 2119 } 2120 2121 EmitBlock(LoopBody); 2122 incrementProfileCounter(&S); 2123 2124 // Create a block for the increment. 2125 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 2126 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 2127 2128 BodyGen(*this); 2129 2130 // Emit "IV = IV + 1" and a back-edge to the condition block. 2131 EmitBlock(Continue.getBlock()); 2132 EmitIgnoredExpr(IncExpr); 2133 PostIncGen(*this); 2134 BreakContinueStack.pop_back(); 2135 EmitBranch(CondBlock); 2136 LoopStack.pop(); 2137 // Emit the fall-through block. 2138 EmitBlock(LoopExit.getBlock()); 2139 } 2140 2141 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 2142 if (!HaveInsertPoint()) 2143 return false; 2144 // Emit inits for the linear variables. 2145 bool HasLinears = false; 2146 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2147 for (const Expr *Init : C->inits()) { 2148 HasLinears = true; 2149 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 2150 if (const auto *Ref = 2151 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 2152 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 2153 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 2154 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 2155 CapturedStmtInfo->lookup(OrigVD) != nullptr, 2156 VD->getInit()->getType(), VK_LValue, 2157 VD->getInit()->getExprLoc()); 2158 EmitExprAsInit( 2159 &DRE, VD, 2160 MakeAddrLValue(Emission.getAllocatedAddress(), VD->getType()), 2161 /*capturedByInit=*/false); 2162 EmitAutoVarCleanups(Emission); 2163 } else { 2164 EmitVarDecl(*VD); 2165 } 2166 } 2167 // Emit the linear steps for the linear clauses. 2168 // If a step is not constant, it is pre-calculated before the loop. 2169 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 2170 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 2171 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 2172 // Emit calculation of the linear step. 2173 EmitIgnoredExpr(CS); 2174 } 2175 } 2176 return HasLinears; 2177 } 2178 2179 void CodeGenFunction::EmitOMPLinearClauseFinal( 2180 const OMPLoopDirective &D, 2181 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 2182 if (!HaveInsertPoint()) 2183 return; 2184 llvm::BasicBlock *DoneBB = nullptr; 2185 // Emit the final values of the linear variables. 2186 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2187 auto IC = C->varlist_begin(); 2188 for (const Expr *F : C->finals()) { 2189 if (!DoneBB) { 2190 if (llvm::Value *Cond = CondGen(*this)) { 2191 // If the first post-update expression is found, emit conditional 2192 // block if it was requested. 2193 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 2194 DoneBB = createBasicBlock(".omp.linear.pu.done"); 2195 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 2196 EmitBlock(ThenBB); 2197 } 2198 } 2199 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 2200 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 2201 CapturedStmtInfo->lookup(OrigVD) != nullptr, 2202 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 2203 Address OrigAddr = EmitLValue(&DRE).getAddress(*this); 2204 CodeGenFunction::OMPPrivateScope VarScope(*this); 2205 VarScope.addPrivate(OrigVD, OrigAddr); 2206 (void)VarScope.Privatize(); 2207 EmitIgnoredExpr(F); 2208 ++IC; 2209 } 2210 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 2211 EmitIgnoredExpr(PostUpdate); 2212 } 2213 if (DoneBB) 2214 EmitBlock(DoneBB, /*IsFinished=*/true); 2215 } 2216 2217 static void emitAlignedClause(CodeGenFunction &CGF, 2218 const OMPExecutableDirective &D) { 2219 if (!CGF.HaveInsertPoint()) 2220 return; 2221 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 2222 llvm::APInt ClauseAlignment(64, 0); 2223 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 2224 auto *AlignmentCI = 2225 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 2226 ClauseAlignment = AlignmentCI->getValue(); 2227 } 2228 for (const Expr *E : Clause->varlists()) { 2229 llvm::APInt Alignment(ClauseAlignment); 2230 if (Alignment == 0) { 2231 // OpenMP [2.8.1, Description] 2232 // If no optional parameter is specified, implementation-defined default 2233 // alignments for SIMD instructions on the target platforms are assumed. 2234 Alignment = 2235 CGF.getContext() 2236 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2237 E->getType()->getPointeeType())) 2238 .getQuantity(); 2239 } 2240 assert((Alignment == 0 || Alignment.isPowerOf2()) && 2241 "alignment is not power of 2"); 2242 if (Alignment != 0) { 2243 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 2244 CGF.emitAlignmentAssumption( 2245 PtrValue, E, /*No second loc needed*/ SourceLocation(), 2246 llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment)); 2247 } 2248 } 2249 } 2250 } 2251 2252 void CodeGenFunction::EmitOMPPrivateLoopCounters( 2253 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 2254 if (!HaveInsertPoint()) 2255 return; 2256 auto I = S.private_counters().begin(); 2257 for (const Expr *E : S.counters()) { 2258 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2259 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 2260 // Emit var without initialization. 2261 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 2262 EmitAutoVarCleanups(VarEmission); 2263 LocalDeclMap.erase(PrivateVD); 2264 (void)LoopScope.addPrivate(VD, VarEmission.getAllocatedAddress()); 2265 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 2266 VD->hasGlobalStorage()) { 2267 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), 2268 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 2269 E->getType(), VK_LValue, E->getExprLoc()); 2270 (void)LoopScope.addPrivate(PrivateVD, EmitLValue(&DRE).getAddress(*this)); 2271 } else { 2272 (void)LoopScope.addPrivate(PrivateVD, VarEmission.getAllocatedAddress()); 2273 } 2274 ++I; 2275 } 2276 // Privatize extra loop counters used in loops for ordered(n) clauses. 2277 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 2278 if (!C->getNumForLoops()) 2279 continue; 2280 for (unsigned I = S.getLoopsNumber(), E = C->getLoopNumIterations().size(); 2281 I < E; ++I) { 2282 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 2283 const auto *VD = cast<VarDecl>(DRE->getDecl()); 2284 // Override only those variables that can be captured to avoid re-emission 2285 // of the variables declared within the loops. 2286 if (DRE->refersToEnclosingVariableOrCapture()) { 2287 (void)LoopScope.addPrivate( 2288 VD, CreateMemTemp(DRE->getType(), VD->getName())); 2289 } 2290 } 2291 } 2292 } 2293 2294 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 2295 const Expr *Cond, llvm::BasicBlock *TrueBlock, 2296 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 2297 if (!CGF.HaveInsertPoint()) 2298 return; 2299 { 2300 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 2301 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 2302 (void)PreCondScope.Privatize(); 2303 // Get initial values of real counters. 2304 for (const Expr *I : S.inits()) { 2305 CGF.EmitIgnoredExpr(I); 2306 } 2307 } 2308 // Create temp loop control variables with their init values to support 2309 // non-rectangular loops. 2310 CodeGenFunction::OMPMapVars PreCondVars; 2311 for (const Expr *E : S.dependent_counters()) { 2312 if (!E) 2313 continue; 2314 assert(!E->getType().getNonReferenceType()->isRecordType() && 2315 "dependent counter must not be an iterator."); 2316 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2317 Address CounterAddr = 2318 CGF.CreateMemTemp(VD->getType().getNonReferenceType()); 2319 (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr); 2320 } 2321 (void)PreCondVars.apply(CGF); 2322 for (const Expr *E : S.dependent_inits()) { 2323 if (!E) 2324 continue; 2325 CGF.EmitIgnoredExpr(E); 2326 } 2327 // Check that loop is executed at least one time. 2328 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 2329 PreCondVars.restore(CGF); 2330 } 2331 2332 void CodeGenFunction::EmitOMPLinearClause( 2333 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 2334 if (!HaveInsertPoint()) 2335 return; 2336 llvm::DenseSet<const VarDecl *> SIMDLCVs; 2337 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 2338 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 2339 for (const Expr *C : LoopDirective->counters()) { 2340 SIMDLCVs.insert( 2341 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 2342 } 2343 } 2344 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2345 auto CurPrivate = C->privates().begin(); 2346 for (const Expr *E : C->varlists()) { 2347 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2348 const auto *PrivateVD = 2349 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 2350 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 2351 // Emit private VarDecl with copy init. 2352 EmitVarDecl(*PrivateVD); 2353 bool IsRegistered = 2354 PrivateScope.addPrivate(VD, GetAddrOfLocalVar(PrivateVD)); 2355 assert(IsRegistered && "linear var already registered as private"); 2356 // Silence the warning about unused variable. 2357 (void)IsRegistered; 2358 } else { 2359 EmitVarDecl(*PrivateVD); 2360 } 2361 ++CurPrivate; 2362 } 2363 } 2364 } 2365 2366 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 2367 const OMPExecutableDirective &D) { 2368 if (!CGF.HaveInsertPoint()) 2369 return; 2370 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 2371 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 2372 /*ignoreResult=*/true); 2373 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2374 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2375 // In presence of finite 'safelen', it may be unsafe to mark all 2376 // the memory instructions parallel, because loop-carried 2377 // dependences of 'safelen' iterations are possible. 2378 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 2379 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 2380 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 2381 /*ignoreResult=*/true); 2382 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2383 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2384 // In presence of finite 'safelen', it may be unsafe to mark all 2385 // the memory instructions parallel, because loop-carried 2386 // dependences of 'safelen' iterations are possible. 2387 CGF.LoopStack.setParallel(/*Enable=*/false); 2388 } 2389 } 2390 2391 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D) { 2392 // Walk clauses and process safelen/lastprivate. 2393 LoopStack.setParallel(/*Enable=*/true); 2394 LoopStack.setVectorizeEnable(); 2395 emitSimdlenSafelenClause(*this, D); 2396 if (const auto *C = D.getSingleClause<OMPOrderClause>()) 2397 if (C->getKind() == OMPC_ORDER_concurrent) 2398 LoopStack.setParallel(/*Enable=*/true); 2399 if ((D.getDirectiveKind() == OMPD_simd || 2400 (getLangOpts().OpenMPSimd && 2401 isOpenMPSimdDirective(D.getDirectiveKind()))) && 2402 llvm::any_of(D.getClausesOfKind<OMPReductionClause>(), 2403 [](const OMPReductionClause *C) { 2404 return C->getModifier() == OMPC_REDUCTION_inscan; 2405 })) 2406 // Disable parallel access in case of prefix sum. 2407 LoopStack.setParallel(/*Enable=*/false); 2408 } 2409 2410 void CodeGenFunction::EmitOMPSimdFinal( 2411 const OMPLoopDirective &D, 2412 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 2413 if (!HaveInsertPoint()) 2414 return; 2415 llvm::BasicBlock *DoneBB = nullptr; 2416 auto IC = D.counters().begin(); 2417 auto IPC = D.private_counters().begin(); 2418 for (const Expr *F : D.finals()) { 2419 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 2420 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 2421 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 2422 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 2423 OrigVD->hasGlobalStorage() || CED) { 2424 if (!DoneBB) { 2425 if (llvm::Value *Cond = CondGen(*this)) { 2426 // If the first post-update expression is found, emit conditional 2427 // block if it was requested. 2428 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 2429 DoneBB = createBasicBlock(".omp.final.done"); 2430 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 2431 EmitBlock(ThenBB); 2432 } 2433 } 2434 Address OrigAddr = Address::invalid(); 2435 if (CED) { 2436 OrigAddr = 2437 EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(*this); 2438 } else { 2439 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD), 2440 /*RefersToEnclosingVariableOrCapture=*/false, 2441 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 2442 OrigAddr = EmitLValue(&DRE).getAddress(*this); 2443 } 2444 OMPPrivateScope VarScope(*this); 2445 VarScope.addPrivate(OrigVD, OrigAddr); 2446 (void)VarScope.Privatize(); 2447 EmitIgnoredExpr(F); 2448 } 2449 ++IC; 2450 ++IPC; 2451 } 2452 if (DoneBB) 2453 EmitBlock(DoneBB, /*IsFinished=*/true); 2454 } 2455 2456 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 2457 const OMPLoopDirective &S, 2458 CodeGenFunction::JumpDest LoopExit) { 2459 CGF.EmitOMPLoopBody(S, LoopExit); 2460 CGF.EmitStopPoint(&S); 2461 } 2462 2463 /// Emit a helper variable and return corresponding lvalue. 2464 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 2465 const DeclRefExpr *Helper) { 2466 auto VDecl = cast<VarDecl>(Helper->getDecl()); 2467 CGF.EmitVarDecl(*VDecl); 2468 return CGF.EmitLValue(Helper); 2469 } 2470 2471 static void emitCommonSimdLoop(CodeGenFunction &CGF, const OMPLoopDirective &S, 2472 const RegionCodeGenTy &SimdInitGen, 2473 const RegionCodeGenTy &BodyCodeGen) { 2474 auto &&ThenGen = [&S, &SimdInitGen, &BodyCodeGen](CodeGenFunction &CGF, 2475 PrePostActionTy &) { 2476 CGOpenMPRuntime::NontemporalDeclsRAII NontemporalsRegion(CGF.CGM, S); 2477 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2478 SimdInitGen(CGF); 2479 2480 BodyCodeGen(CGF); 2481 }; 2482 auto &&ElseGen = [&BodyCodeGen](CodeGenFunction &CGF, PrePostActionTy &) { 2483 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2484 CGF.LoopStack.setVectorizeEnable(/*Enable=*/false); 2485 2486 BodyCodeGen(CGF); 2487 }; 2488 const Expr *IfCond = nullptr; 2489 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2490 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 2491 if (CGF.getLangOpts().OpenMP >= 50 && 2492 (C->getNameModifier() == OMPD_unknown || 2493 C->getNameModifier() == OMPD_simd)) { 2494 IfCond = C->getCondition(); 2495 break; 2496 } 2497 } 2498 } 2499 if (IfCond) { 2500 CGF.CGM.getOpenMPRuntime().emitIfClause(CGF, IfCond, ThenGen, ElseGen); 2501 } else { 2502 RegionCodeGenTy ThenRCG(ThenGen); 2503 ThenRCG(CGF); 2504 } 2505 } 2506 2507 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 2508 PrePostActionTy &Action) { 2509 Action.Enter(CGF); 2510 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 2511 "Expected simd directive"); 2512 OMPLoopScope PreInitScope(CGF, S); 2513 // if (PreCond) { 2514 // for (IV in 0..LastIteration) BODY; 2515 // <Final counter/linear vars updates>; 2516 // } 2517 // 2518 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 2519 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 2520 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 2521 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 2522 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 2523 } 2524 2525 // Emit: if (PreCond) - begin. 2526 // If the condition constant folds and can be elided, avoid emitting the 2527 // whole loop. 2528 bool CondConstant; 2529 llvm::BasicBlock *ContBlock = nullptr; 2530 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2531 if (!CondConstant) 2532 return; 2533 } else { 2534 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 2535 ContBlock = CGF.createBasicBlock("simd.if.end"); 2536 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 2537 CGF.getProfileCount(&S)); 2538 CGF.EmitBlock(ThenBlock); 2539 CGF.incrementProfileCounter(&S); 2540 } 2541 2542 // Emit the loop iteration variable. 2543 const Expr *IVExpr = S.getIterationVariable(); 2544 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 2545 CGF.EmitVarDecl(*IVDecl); 2546 CGF.EmitIgnoredExpr(S.getInit()); 2547 2548 // Emit the iterations count variable. 2549 // If it is not a variable, Sema decided to calculate iterations count on 2550 // each iteration (e.g., it is foldable into a constant). 2551 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2552 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2553 // Emit calculation of the iterations count. 2554 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 2555 } 2556 2557 emitAlignedClause(CGF, S); 2558 (void)CGF.EmitOMPLinearClauseInit(S); 2559 { 2560 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2561 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 2562 CGF.EmitOMPLinearClause(S, LoopScope); 2563 CGF.EmitOMPPrivateClause(S, LoopScope); 2564 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2565 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 2566 CGF, S, CGF.EmitLValue(S.getIterationVariable())); 2567 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2568 (void)LoopScope.Privatize(); 2569 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2570 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2571 2572 emitCommonSimdLoop( 2573 CGF, S, 2574 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2575 CGF.EmitOMPSimdInit(S); 2576 }, 2577 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2578 CGF.EmitOMPInnerLoop( 2579 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 2580 [&S](CodeGenFunction &CGF) { 2581 emitOMPLoopBodyWithStopPoint(CGF, S, 2582 CodeGenFunction::JumpDest()); 2583 }, 2584 [](CodeGenFunction &) {}); 2585 }); 2586 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 2587 // Emit final copy of the lastprivate variables at the end of loops. 2588 if (HasLastprivateClause) 2589 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 2590 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 2591 emitPostUpdateForReductionClause(CGF, S, 2592 [](CodeGenFunction &) { return nullptr; }); 2593 LoopScope.restoreMap(); 2594 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 2595 } 2596 // Emit: if (PreCond) - end. 2597 if (ContBlock) { 2598 CGF.EmitBranch(ContBlock); 2599 CGF.EmitBlock(ContBlock, true); 2600 } 2601 } 2602 2603 static bool isSupportedByOpenMPIRBuilder(const OMPSimdDirective &S) { 2604 // Check for unsupported clauses 2605 for (OMPClause *C : S.clauses()) { 2606 // Currently only order, simdlen and safelen clauses are supported 2607 if (!(isa<OMPSimdlenClause>(C) || isa<OMPSafelenClause>(C) || 2608 isa<OMPOrderClause>(C) || isa<OMPAlignedClause>(C))) 2609 return false; 2610 } 2611 2612 // Check if we have a statement with the ordered directive. 2613 // Visit the statement hierarchy to find a compound statement 2614 // with a ordered directive in it. 2615 if (const auto *CanonLoop = dyn_cast<OMPCanonicalLoop>(S.getRawStmt())) { 2616 if (const Stmt *SyntacticalLoop = CanonLoop->getLoopStmt()) { 2617 for (const Stmt *SubStmt : SyntacticalLoop->children()) { 2618 if (!SubStmt) 2619 continue; 2620 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(SubStmt)) { 2621 for (const Stmt *CSSubStmt : CS->children()) { 2622 if (!CSSubStmt) 2623 continue; 2624 if (isa<OMPOrderedDirective>(CSSubStmt)) { 2625 return false; 2626 } 2627 } 2628 } 2629 } 2630 } 2631 } 2632 return true; 2633 } 2634 static llvm::MapVector<llvm::Value *, llvm::Value *> 2635 GetAlignedMapping(const OMPSimdDirective &S, CodeGenFunction &CGF) { 2636 llvm::MapVector<llvm::Value *, llvm::Value *> AlignedVars; 2637 for (const auto *Clause : S.getClausesOfKind<OMPAlignedClause>()) { 2638 llvm::APInt ClauseAlignment(64, 0); 2639 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 2640 auto *AlignmentCI = 2641 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 2642 ClauseAlignment = AlignmentCI->getValue(); 2643 } 2644 for (const Expr *E : Clause->varlists()) { 2645 llvm::APInt Alignment(ClauseAlignment); 2646 if (Alignment == 0) { 2647 // OpenMP [2.8.1, Description] 2648 // If no optional parameter is specified, implementation-defined default 2649 // alignments for SIMD instructions on the target platforms are assumed. 2650 Alignment = 2651 CGF.getContext() 2652 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2653 E->getType()->getPointeeType())) 2654 .getQuantity(); 2655 } 2656 assert((Alignment == 0 || Alignment.isPowerOf2()) && 2657 "alignment is not power of 2"); 2658 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 2659 AlignedVars[PtrValue] = CGF.Builder.getInt64(Alignment.getSExtValue()); 2660 } 2661 } 2662 return AlignedVars; 2663 } 2664 2665 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 2666 bool UseOMPIRBuilder = 2667 CGM.getLangOpts().OpenMPIRBuilder && isSupportedByOpenMPIRBuilder(S); 2668 if (UseOMPIRBuilder) { 2669 auto &&CodeGenIRBuilder = [this, &S, UseOMPIRBuilder](CodeGenFunction &CGF, 2670 PrePostActionTy &) { 2671 // Use the OpenMPIRBuilder if enabled. 2672 if (UseOMPIRBuilder) { 2673 llvm::MapVector<llvm::Value *, llvm::Value *> AlignedVars = 2674 GetAlignedMapping(S, CGF); 2675 // Emit the associated statement and get its loop representation. 2676 const Stmt *Inner = S.getRawStmt(); 2677 llvm::CanonicalLoopInfo *CLI = 2678 EmitOMPCollapsedCanonicalLoopNest(Inner, 1); 2679 2680 llvm::OpenMPIRBuilder &OMPBuilder = 2681 CGM.getOpenMPRuntime().getOMPBuilder(); 2682 // Add SIMD specific metadata 2683 llvm::ConstantInt *Simdlen = nullptr; 2684 if (const auto *C = S.getSingleClause<OMPSimdlenClause>()) { 2685 RValue Len = 2686 this->EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 2687 /*ignoreResult=*/true); 2688 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2689 Simdlen = Val; 2690 } 2691 llvm::ConstantInt *Safelen = nullptr; 2692 if (const auto *C = S.getSingleClause<OMPSafelenClause>()) { 2693 RValue Len = 2694 this->EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 2695 /*ignoreResult=*/true); 2696 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2697 Safelen = Val; 2698 } 2699 llvm::omp::OrderKind Order = llvm::omp::OrderKind::OMP_ORDER_unknown; 2700 if (const auto *C = S.getSingleClause<OMPOrderClause>()) { 2701 if (C->getKind() == OpenMPOrderClauseKind ::OMPC_ORDER_concurrent) { 2702 Order = llvm::omp::OrderKind::OMP_ORDER_concurrent; 2703 } 2704 } 2705 // Add simd metadata to the collapsed loop. Do not generate 2706 // another loop for if clause. Support for if clause is done earlier. 2707 OMPBuilder.applySimd(CLI, AlignedVars, 2708 /*IfCond*/ nullptr, Order, Simdlen, Safelen); 2709 return; 2710 } 2711 }; 2712 { 2713 auto LPCRegion = 2714 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 2715 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2716 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, 2717 CodeGenIRBuilder); 2718 } 2719 return; 2720 } 2721 2722 ParentLoopDirectiveForScanRegion ScanRegion(*this, S); 2723 OMPFirstScanLoop = true; 2724 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2725 emitOMPSimdRegion(CGF, S, Action); 2726 }; 2727 { 2728 auto LPCRegion = 2729 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 2730 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2731 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2732 } 2733 // Check for outer lastprivate conditional update. 2734 checkForLastprivateConditionalUpdate(*this, S); 2735 } 2736 2737 void CodeGenFunction::EmitOMPTileDirective(const OMPTileDirective &S) { 2738 // Emit the de-sugared statement. 2739 OMPTransformDirectiveScopeRAII TileScope(*this, &S); 2740 EmitStmt(S.getTransformedStmt()); 2741 } 2742 2743 void CodeGenFunction::EmitOMPUnrollDirective(const OMPUnrollDirective &S) { 2744 bool UseOMPIRBuilder = CGM.getLangOpts().OpenMPIRBuilder; 2745 2746 if (UseOMPIRBuilder) { 2747 auto DL = SourceLocToDebugLoc(S.getBeginLoc()); 2748 const Stmt *Inner = S.getRawStmt(); 2749 2750 // Consume nested loop. Clear the entire remaining loop stack because a 2751 // fully unrolled loop is non-transformable. For partial unrolling the 2752 // generated outer loop is pushed back to the stack. 2753 llvm::CanonicalLoopInfo *CLI = EmitOMPCollapsedCanonicalLoopNest(Inner, 1); 2754 OMPLoopNestStack.clear(); 2755 2756 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 2757 2758 bool NeedsUnrolledCLI = ExpectedOMPLoopDepth >= 1; 2759 llvm::CanonicalLoopInfo *UnrolledCLI = nullptr; 2760 2761 if (S.hasClausesOfKind<OMPFullClause>()) { 2762 assert(ExpectedOMPLoopDepth == 0); 2763 OMPBuilder.unrollLoopFull(DL, CLI); 2764 } else if (auto *PartialClause = S.getSingleClause<OMPPartialClause>()) { 2765 uint64_t Factor = 0; 2766 if (Expr *FactorExpr = PartialClause->getFactor()) { 2767 Factor = FactorExpr->EvaluateKnownConstInt(getContext()).getZExtValue(); 2768 assert(Factor >= 1 && "Only positive factors are valid"); 2769 } 2770 OMPBuilder.unrollLoopPartial(DL, CLI, Factor, 2771 NeedsUnrolledCLI ? &UnrolledCLI : nullptr); 2772 } else { 2773 OMPBuilder.unrollLoopHeuristic(DL, CLI); 2774 } 2775 2776 assert((!NeedsUnrolledCLI || UnrolledCLI) && 2777 "NeedsUnrolledCLI implies UnrolledCLI to be set"); 2778 if (UnrolledCLI) 2779 OMPLoopNestStack.push_back(UnrolledCLI); 2780 2781 return; 2782 } 2783 2784 // This function is only called if the unrolled loop is not consumed by any 2785 // other loop-associated construct. Such a loop-associated construct will have 2786 // used the transformed AST. 2787 2788 // Set the unroll metadata for the next emitted loop. 2789 LoopStack.setUnrollState(LoopAttributes::Enable); 2790 2791 if (S.hasClausesOfKind<OMPFullClause>()) { 2792 LoopStack.setUnrollState(LoopAttributes::Full); 2793 } else if (auto *PartialClause = S.getSingleClause<OMPPartialClause>()) { 2794 if (Expr *FactorExpr = PartialClause->getFactor()) { 2795 uint64_t Factor = 2796 FactorExpr->EvaluateKnownConstInt(getContext()).getZExtValue(); 2797 assert(Factor >= 1 && "Only positive factors are valid"); 2798 LoopStack.setUnrollCount(Factor); 2799 } 2800 } 2801 2802 EmitStmt(S.getAssociatedStmt()); 2803 } 2804 2805 void CodeGenFunction::EmitOMPOuterLoop( 2806 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 2807 CodeGenFunction::OMPPrivateScope &LoopScope, 2808 const CodeGenFunction::OMPLoopArguments &LoopArgs, 2809 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 2810 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 2811 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2812 2813 const Expr *IVExpr = S.getIterationVariable(); 2814 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2815 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2816 2817 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 2818 2819 // Start the loop with a block that tests the condition. 2820 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 2821 EmitBlock(CondBlock); 2822 const SourceRange R = S.getSourceRange(); 2823 OMPLoopNestStack.clear(); 2824 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 2825 SourceLocToDebugLoc(R.getEnd())); 2826 2827 llvm::Value *BoolCondVal = nullptr; 2828 if (!DynamicOrOrdered) { 2829 // UB = min(UB, GlobalUB) or 2830 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 2831 // 'distribute parallel for') 2832 EmitIgnoredExpr(LoopArgs.EUB); 2833 // IV = LB 2834 EmitIgnoredExpr(LoopArgs.Init); 2835 // IV < UB 2836 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 2837 } else { 2838 BoolCondVal = 2839 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 2840 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 2841 } 2842 2843 // If there are any cleanups between here and the loop-exit scope, 2844 // create a block to stage a loop exit along. 2845 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 2846 if (LoopScope.requiresCleanups()) 2847 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 2848 2849 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 2850 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 2851 if (ExitBlock != LoopExit.getBlock()) { 2852 EmitBlock(ExitBlock); 2853 EmitBranchThroughCleanup(LoopExit); 2854 } 2855 EmitBlock(LoopBody); 2856 2857 // Emit "IV = LB" (in case of static schedule, we have already calculated new 2858 // LB for loop condition and emitted it above). 2859 if (DynamicOrOrdered) 2860 EmitIgnoredExpr(LoopArgs.Init); 2861 2862 // Create a block for the increment. 2863 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 2864 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 2865 2866 emitCommonSimdLoop( 2867 *this, S, 2868 [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) { 2869 // Generate !llvm.loop.parallel metadata for loads and stores for loops 2870 // with dynamic/guided scheduling and without ordered clause. 2871 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2872 CGF.LoopStack.setParallel(!IsMonotonic); 2873 if (const auto *C = S.getSingleClause<OMPOrderClause>()) 2874 if (C->getKind() == OMPC_ORDER_concurrent) 2875 CGF.LoopStack.setParallel(/*Enable=*/true); 2876 } else { 2877 CGF.EmitOMPSimdInit(S); 2878 } 2879 }, 2880 [&S, &LoopArgs, LoopExit, &CodeGenLoop, IVSize, IVSigned, &CodeGenOrdered, 2881 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2882 SourceLocation Loc = S.getBeginLoc(); 2883 // when 'distribute' is not combined with a 'for': 2884 // while (idx <= UB) { BODY; ++idx; } 2885 // when 'distribute' is combined with a 'for' 2886 // (e.g. 'distribute parallel for') 2887 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 2888 CGF.EmitOMPInnerLoop( 2889 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 2890 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 2891 CodeGenLoop(CGF, S, LoopExit); 2892 }, 2893 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 2894 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 2895 }); 2896 }); 2897 2898 EmitBlock(Continue.getBlock()); 2899 BreakContinueStack.pop_back(); 2900 if (!DynamicOrOrdered) { 2901 // Emit "LB = LB + Stride", "UB = UB + Stride". 2902 EmitIgnoredExpr(LoopArgs.NextLB); 2903 EmitIgnoredExpr(LoopArgs.NextUB); 2904 } 2905 2906 EmitBranch(CondBlock); 2907 OMPLoopNestStack.clear(); 2908 LoopStack.pop(); 2909 // Emit the fall-through block. 2910 EmitBlock(LoopExit.getBlock()); 2911 2912 // Tell the runtime we are done. 2913 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 2914 if (!DynamicOrOrdered) 2915 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2916 S.getDirectiveKind()); 2917 }; 2918 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2919 } 2920 2921 void CodeGenFunction::EmitOMPForOuterLoop( 2922 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 2923 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 2924 const OMPLoopArguments &LoopArgs, 2925 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2926 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2927 2928 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 2929 const bool DynamicOrOrdered = Ordered || RT.isDynamic(ScheduleKind.Schedule); 2930 2931 assert((Ordered || !RT.isStaticNonchunked(ScheduleKind.Schedule, 2932 LoopArgs.Chunk != nullptr)) && 2933 "static non-chunked schedule does not need outer loop"); 2934 2935 // Emit outer loop. 2936 // 2937 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2938 // When schedule(dynamic,chunk_size) is specified, the iterations are 2939 // distributed to threads in the team in chunks as the threads request them. 2940 // Each thread executes a chunk of iterations, then requests another chunk, 2941 // until no chunks remain to be distributed. Each chunk contains chunk_size 2942 // iterations, except for the last chunk to be distributed, which may have 2943 // fewer iterations. When no chunk_size is specified, it defaults to 1. 2944 // 2945 // When schedule(guided,chunk_size) is specified, the iterations are assigned 2946 // to threads in the team in chunks as the executing threads request them. 2947 // Each thread executes a chunk of iterations, then requests another chunk, 2948 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 2949 // each chunk is proportional to the number of unassigned iterations divided 2950 // by the number of threads in the team, decreasing to 1. For a chunk_size 2951 // with value k (greater than 1), the size of each chunk is determined in the 2952 // same way, with the restriction that the chunks do not contain fewer than k 2953 // iterations (except for the last chunk to be assigned, which may have fewer 2954 // than k iterations). 2955 // 2956 // When schedule(auto) is specified, the decision regarding scheduling is 2957 // delegated to the compiler and/or runtime system. The programmer gives the 2958 // implementation the freedom to choose any possible mapping of iterations to 2959 // threads in the team. 2960 // 2961 // When schedule(runtime) is specified, the decision regarding scheduling is 2962 // deferred until run time, and the schedule and chunk size are taken from the 2963 // run-sched-var ICV. If the ICV is set to auto, the schedule is 2964 // implementation defined 2965 // 2966 // while(__kmpc_dispatch_next(&LB, &UB)) { 2967 // idx = LB; 2968 // while (idx <= UB) { BODY; ++idx; 2969 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 2970 // } // inner loop 2971 // } 2972 // 2973 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2974 // When schedule(static, chunk_size) is specified, iterations are divided into 2975 // chunks of size chunk_size, and the chunks are assigned to the threads in 2976 // the team in a round-robin fashion in the order of the thread number. 2977 // 2978 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 2979 // while (idx <= UB) { BODY; ++idx; } // inner loop 2980 // LB = LB + ST; 2981 // UB = UB + ST; 2982 // } 2983 // 2984 2985 const Expr *IVExpr = S.getIterationVariable(); 2986 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2987 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2988 2989 if (DynamicOrOrdered) { 2990 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 2991 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 2992 llvm::Value *LBVal = DispatchBounds.first; 2993 llvm::Value *UBVal = DispatchBounds.second; 2994 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 2995 LoopArgs.Chunk}; 2996 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 2997 IVSigned, Ordered, DipatchRTInputValues); 2998 } else { 2999 CGOpenMPRuntime::StaticRTInput StaticInit( 3000 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 3001 LoopArgs.ST, LoopArgs.Chunk); 3002 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 3003 ScheduleKind, StaticInit); 3004 } 3005 3006 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 3007 const unsigned IVSize, 3008 const bool IVSigned) { 3009 if (Ordered) { 3010 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 3011 IVSigned); 3012 } 3013 }; 3014 3015 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 3016 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 3017 OuterLoopArgs.IncExpr = S.getInc(); 3018 OuterLoopArgs.Init = S.getInit(); 3019 OuterLoopArgs.Cond = S.getCond(); 3020 OuterLoopArgs.NextLB = S.getNextLowerBound(); 3021 OuterLoopArgs.NextUB = S.getNextUpperBound(); 3022 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 3023 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 3024 } 3025 3026 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 3027 const unsigned IVSize, const bool IVSigned) {} 3028 3029 void CodeGenFunction::EmitOMPDistributeOuterLoop( 3030 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 3031 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 3032 const CodeGenLoopTy &CodeGenLoopContent) { 3033 3034 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 3035 3036 // Emit outer loop. 3037 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 3038 // dynamic 3039 // 3040 3041 const Expr *IVExpr = S.getIterationVariable(); 3042 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3043 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3044 3045 CGOpenMPRuntime::StaticRTInput StaticInit( 3046 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 3047 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 3048 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 3049 3050 // for combined 'distribute' and 'for' the increment expression of distribute 3051 // is stored in DistInc. For 'distribute' alone, it is in Inc. 3052 Expr *IncExpr; 3053 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 3054 IncExpr = S.getDistInc(); 3055 else 3056 IncExpr = S.getInc(); 3057 3058 // this routine is shared by 'omp distribute parallel for' and 3059 // 'omp distribute': select the right EUB expression depending on the 3060 // directive 3061 OMPLoopArguments OuterLoopArgs; 3062 OuterLoopArgs.LB = LoopArgs.LB; 3063 OuterLoopArgs.UB = LoopArgs.UB; 3064 OuterLoopArgs.ST = LoopArgs.ST; 3065 OuterLoopArgs.IL = LoopArgs.IL; 3066 OuterLoopArgs.Chunk = LoopArgs.Chunk; 3067 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3068 ? S.getCombinedEnsureUpperBound() 3069 : S.getEnsureUpperBound(); 3070 OuterLoopArgs.IncExpr = IncExpr; 3071 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3072 ? S.getCombinedInit() 3073 : S.getInit(); 3074 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3075 ? S.getCombinedCond() 3076 : S.getCond(); 3077 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3078 ? S.getCombinedNextLowerBound() 3079 : S.getNextLowerBound(); 3080 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3081 ? S.getCombinedNextUpperBound() 3082 : S.getNextUpperBound(); 3083 3084 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 3085 LoopScope, OuterLoopArgs, CodeGenLoopContent, 3086 emitEmptyOrdered); 3087 } 3088 3089 static std::pair<LValue, LValue> 3090 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 3091 const OMPExecutableDirective &S) { 3092 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 3093 LValue LB = 3094 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 3095 LValue UB = 3096 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 3097 3098 // When composing 'distribute' with 'for' (e.g. as in 'distribute 3099 // parallel for') we need to use the 'distribute' 3100 // chunk lower and upper bounds rather than the whole loop iteration 3101 // space. These are parameters to the outlined function for 'parallel' 3102 // and we copy the bounds of the previous schedule into the 3103 // the current ones. 3104 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 3105 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 3106 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 3107 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 3108 PrevLBVal = CGF.EmitScalarConversion( 3109 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 3110 LS.getIterationVariable()->getType(), 3111 LS.getPrevLowerBoundVariable()->getExprLoc()); 3112 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 3113 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 3114 PrevUBVal = CGF.EmitScalarConversion( 3115 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 3116 LS.getIterationVariable()->getType(), 3117 LS.getPrevUpperBoundVariable()->getExprLoc()); 3118 3119 CGF.EmitStoreOfScalar(PrevLBVal, LB); 3120 CGF.EmitStoreOfScalar(PrevUBVal, UB); 3121 3122 return {LB, UB}; 3123 } 3124 3125 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 3126 /// we need to use the LB and UB expressions generated by the worksharing 3127 /// code generation support, whereas in non combined situations we would 3128 /// just emit 0 and the LastIteration expression 3129 /// This function is necessary due to the difference of the LB and UB 3130 /// types for the RT emission routines for 'for_static_init' and 3131 /// 'for_dispatch_init' 3132 static std::pair<llvm::Value *, llvm::Value *> 3133 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 3134 const OMPExecutableDirective &S, 3135 Address LB, Address UB) { 3136 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 3137 const Expr *IVExpr = LS.getIterationVariable(); 3138 // when implementing a dynamic schedule for a 'for' combined with a 3139 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 3140 // is not normalized as each team only executes its own assigned 3141 // distribute chunk 3142 QualType IteratorTy = IVExpr->getType(); 3143 llvm::Value *LBVal = 3144 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 3145 llvm::Value *UBVal = 3146 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 3147 return {LBVal, UBVal}; 3148 } 3149 3150 static void emitDistributeParallelForDistributeInnerBoundParams( 3151 CodeGenFunction &CGF, const OMPExecutableDirective &S, 3152 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 3153 const auto &Dir = cast<OMPLoopDirective>(S); 3154 LValue LB = 3155 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 3156 llvm::Value *LBCast = 3157 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(LB.getAddress(CGF)), 3158 CGF.SizeTy, /*isSigned=*/false); 3159 CapturedVars.push_back(LBCast); 3160 LValue UB = 3161 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 3162 3163 llvm::Value *UBCast = 3164 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(UB.getAddress(CGF)), 3165 CGF.SizeTy, /*isSigned=*/false); 3166 CapturedVars.push_back(UBCast); 3167 } 3168 3169 static void 3170 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 3171 const OMPLoopDirective &S, 3172 CodeGenFunction::JumpDest LoopExit) { 3173 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 3174 PrePostActionTy &Action) { 3175 Action.Enter(CGF); 3176 bool HasCancel = false; 3177 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 3178 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 3179 HasCancel = D->hasCancel(); 3180 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 3181 HasCancel = D->hasCancel(); 3182 else if (const auto *D = 3183 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 3184 HasCancel = D->hasCancel(); 3185 } 3186 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 3187 HasCancel); 3188 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 3189 emitDistributeParallelForInnerBounds, 3190 emitDistributeParallelForDispatchBounds); 3191 }; 3192 3193 emitCommonOMPParallelDirective( 3194 CGF, S, 3195 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 3196 CGInlinedWorksharingLoop, 3197 emitDistributeParallelForDistributeInnerBoundParams); 3198 } 3199 3200 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 3201 const OMPDistributeParallelForDirective &S) { 3202 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3203 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 3204 S.getDistInc()); 3205 }; 3206 OMPLexicalScope Scope(*this, S, OMPD_parallel); 3207 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3208 } 3209 3210 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 3211 const OMPDistributeParallelForSimdDirective &S) { 3212 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3213 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 3214 S.getDistInc()); 3215 }; 3216 OMPLexicalScope Scope(*this, S, OMPD_parallel); 3217 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3218 } 3219 3220 void CodeGenFunction::EmitOMPDistributeSimdDirective( 3221 const OMPDistributeSimdDirective &S) { 3222 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3223 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3224 }; 3225 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3226 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 3227 } 3228 3229 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 3230 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 3231 // Emit SPMD target parallel for region as a standalone region. 3232 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3233 emitOMPSimdRegion(CGF, S, Action); 3234 }; 3235 llvm::Function *Fn; 3236 llvm::Constant *Addr; 3237 // Emit target region as a standalone region. 3238 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 3239 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 3240 assert(Fn && Addr && "Target device function emission failed."); 3241 } 3242 3243 void CodeGenFunction::EmitOMPTargetSimdDirective( 3244 const OMPTargetSimdDirective &S) { 3245 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3246 emitOMPSimdRegion(CGF, S, Action); 3247 }; 3248 emitCommonOMPTargetDirective(*this, S, CodeGen); 3249 } 3250 3251 namespace { 3252 struct ScheduleKindModifiersTy { 3253 OpenMPScheduleClauseKind Kind; 3254 OpenMPScheduleClauseModifier M1; 3255 OpenMPScheduleClauseModifier M2; 3256 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 3257 OpenMPScheduleClauseModifier M1, 3258 OpenMPScheduleClauseModifier M2) 3259 : Kind(Kind), M1(M1), M2(M2) {} 3260 }; 3261 } // namespace 3262 3263 bool CodeGenFunction::EmitOMPWorksharingLoop( 3264 const OMPLoopDirective &S, Expr *EUB, 3265 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3266 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 3267 // Emit the loop iteration variable. 3268 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3269 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3270 EmitVarDecl(*IVDecl); 3271 3272 // Emit the iterations count variable. 3273 // If it is not a variable, Sema decided to calculate iterations count on each 3274 // iteration (e.g., it is foldable into a constant). 3275 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3276 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3277 // Emit calculation of the iterations count. 3278 EmitIgnoredExpr(S.getCalcLastIteration()); 3279 } 3280 3281 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 3282 3283 bool HasLastprivateClause; 3284 // Check pre-condition. 3285 { 3286 OMPLoopScope PreInitScope(*this, S); 3287 // Skip the entire loop if we don't meet the precondition. 3288 // If the condition constant folds and can be elided, avoid emitting the 3289 // whole loop. 3290 bool CondConstant; 3291 llvm::BasicBlock *ContBlock = nullptr; 3292 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3293 if (!CondConstant) 3294 return false; 3295 } else { 3296 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 3297 ContBlock = createBasicBlock("omp.precond.end"); 3298 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3299 getProfileCount(&S)); 3300 EmitBlock(ThenBlock); 3301 incrementProfileCounter(&S); 3302 } 3303 3304 RunCleanupsScope DoacrossCleanupScope(*this); 3305 bool Ordered = false; 3306 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 3307 if (OrderedClause->getNumForLoops()) 3308 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 3309 else 3310 Ordered = true; 3311 } 3312 3313 llvm::DenseSet<const Expr *> EmittedFinals; 3314 emitAlignedClause(*this, S); 3315 bool HasLinears = EmitOMPLinearClauseInit(S); 3316 // Emit helper vars inits. 3317 3318 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 3319 LValue LB = Bounds.first; 3320 LValue UB = Bounds.second; 3321 LValue ST = 3322 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3323 LValue IL = 3324 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3325 3326 // Emit 'then' code. 3327 { 3328 OMPPrivateScope LoopScope(*this); 3329 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 3330 // Emit implicit barrier to synchronize threads and avoid data races on 3331 // initialization of firstprivate variables and post-update of 3332 // lastprivate variables. 3333 CGM.getOpenMPRuntime().emitBarrierCall( 3334 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3335 /*ForceSimpleCall=*/true); 3336 } 3337 EmitOMPPrivateClause(S, LoopScope); 3338 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 3339 *this, S, EmitLValue(S.getIterationVariable())); 3340 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3341 EmitOMPReductionClauseInit(S, LoopScope); 3342 EmitOMPPrivateLoopCounters(S, LoopScope); 3343 EmitOMPLinearClause(S, LoopScope); 3344 (void)LoopScope.Privatize(); 3345 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3346 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 3347 3348 // Detect the loop schedule kind and chunk. 3349 const Expr *ChunkExpr = nullptr; 3350 OpenMPScheduleTy ScheduleKind; 3351 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 3352 ScheduleKind.Schedule = C->getScheduleKind(); 3353 ScheduleKind.M1 = C->getFirstScheduleModifier(); 3354 ScheduleKind.M2 = C->getSecondScheduleModifier(); 3355 ChunkExpr = C->getChunkSize(); 3356 } else { 3357 // Default behaviour for schedule clause. 3358 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 3359 *this, S, ScheduleKind.Schedule, ChunkExpr); 3360 } 3361 bool HasChunkSizeOne = false; 3362 llvm::Value *Chunk = nullptr; 3363 if (ChunkExpr) { 3364 Chunk = EmitScalarExpr(ChunkExpr); 3365 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 3366 S.getIterationVariable()->getType(), 3367 S.getBeginLoc()); 3368 Expr::EvalResult Result; 3369 if (ChunkExpr->EvaluateAsInt(Result, getContext())) { 3370 llvm::APSInt EvaluatedChunk = Result.Val.getInt(); 3371 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 3372 } 3373 } 3374 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3375 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3376 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 3377 // If the static schedule kind is specified or if the ordered clause is 3378 // specified, and if no monotonic modifier is specified, the effect will 3379 // be as if the monotonic modifier was specified. 3380 bool StaticChunkedOne = 3381 RT.isStaticChunked(ScheduleKind.Schedule, 3382 /* Chunked */ Chunk != nullptr) && 3383 HasChunkSizeOne && 3384 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 3385 bool IsMonotonic = 3386 Ordered || 3387 (ScheduleKind.Schedule == OMPC_SCHEDULE_static && 3388 !(ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_nonmonotonic || 3389 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_nonmonotonic)) || 3390 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 3391 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 3392 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 3393 /* Chunked */ Chunk != nullptr) || 3394 StaticChunkedOne) && 3395 !Ordered) { 3396 JumpDest LoopExit = 3397 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3398 emitCommonSimdLoop( 3399 *this, S, 3400 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3401 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3402 CGF.EmitOMPSimdInit(S); 3403 } else if (const auto *C = S.getSingleClause<OMPOrderClause>()) { 3404 if (C->getKind() == OMPC_ORDER_concurrent) 3405 CGF.LoopStack.setParallel(/*Enable=*/true); 3406 } 3407 }, 3408 [IVSize, IVSigned, Ordered, IL, LB, UB, ST, StaticChunkedOne, Chunk, 3409 &S, ScheduleKind, LoopExit, 3410 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 3411 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 3412 // When no chunk_size is specified, the iteration space is divided 3413 // into chunks that are approximately equal in size, and at most 3414 // one chunk is distributed to each thread. Note that the size of 3415 // the chunks is unspecified in this case. 3416 CGOpenMPRuntime::StaticRTInput StaticInit( 3417 IVSize, IVSigned, Ordered, IL.getAddress(CGF), 3418 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF), 3419 StaticChunkedOne ? Chunk : nullptr); 3420 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 3421 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, 3422 StaticInit); 3423 // UB = min(UB, GlobalUB); 3424 if (!StaticChunkedOne) 3425 CGF.EmitIgnoredExpr(S.getEnsureUpperBound()); 3426 // IV = LB; 3427 CGF.EmitIgnoredExpr(S.getInit()); 3428 // For unchunked static schedule generate: 3429 // 3430 // while (idx <= UB) { 3431 // BODY; 3432 // ++idx; 3433 // } 3434 // 3435 // For static schedule with chunk one: 3436 // 3437 // while (IV <= PrevUB) { 3438 // BODY; 3439 // IV += ST; 3440 // } 3441 CGF.EmitOMPInnerLoop( 3442 S, LoopScope.requiresCleanups(), 3443 StaticChunkedOne ? S.getCombinedParForInDistCond() 3444 : S.getCond(), 3445 StaticChunkedOne ? S.getDistInc() : S.getInc(), 3446 [&S, LoopExit](CodeGenFunction &CGF) { 3447 emitOMPLoopBodyWithStopPoint(CGF, S, LoopExit); 3448 }, 3449 [](CodeGenFunction &) {}); 3450 }); 3451 EmitBlock(LoopExit.getBlock()); 3452 // Tell the runtime we are done. 3453 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 3454 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 3455 S.getDirectiveKind()); 3456 }; 3457 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 3458 } else { 3459 // Emit the outer loop, which requests its work chunk [LB..UB] from 3460 // runtime and runs the inner loop to process it. 3461 const OMPLoopArguments LoopArguments( 3462 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 3463 IL.getAddress(*this), Chunk, EUB); 3464 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 3465 LoopArguments, CGDispatchBounds); 3466 } 3467 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3468 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3469 return CGF.Builder.CreateIsNotNull( 3470 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3471 }); 3472 } 3473 EmitOMPReductionClauseFinal( 3474 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 3475 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 3476 : /*Parallel only*/ OMPD_parallel); 3477 // Emit post-update of the reduction variables if IsLastIter != 0. 3478 emitPostUpdateForReductionClause( 3479 *this, S, [IL, &S](CodeGenFunction &CGF) { 3480 return CGF.Builder.CreateIsNotNull( 3481 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3482 }); 3483 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3484 if (HasLastprivateClause) 3485 EmitOMPLastprivateClauseFinal( 3486 S, isOpenMPSimdDirective(S.getDirectiveKind()), 3487 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3488 LoopScope.restoreMap(); 3489 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 3490 return CGF.Builder.CreateIsNotNull( 3491 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3492 }); 3493 } 3494 DoacrossCleanupScope.ForceCleanup(); 3495 // We're now done with the loop, so jump to the continuation block. 3496 if (ContBlock) { 3497 EmitBranch(ContBlock); 3498 EmitBlock(ContBlock, /*IsFinished=*/true); 3499 } 3500 } 3501 return HasLastprivateClause; 3502 } 3503 3504 /// The following two functions generate expressions for the loop lower 3505 /// and upper bounds in case of static and dynamic (dispatch) schedule 3506 /// of the associated 'for' or 'distribute' loop. 3507 static std::pair<LValue, LValue> 3508 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 3509 const auto &LS = cast<OMPLoopDirective>(S); 3510 LValue LB = 3511 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 3512 LValue UB = 3513 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 3514 return {LB, UB}; 3515 } 3516 3517 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 3518 /// consider the lower and upper bound expressions generated by the 3519 /// worksharing loop support, but we use 0 and the iteration space size as 3520 /// constants 3521 static std::pair<llvm::Value *, llvm::Value *> 3522 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 3523 Address LB, Address UB) { 3524 const auto &LS = cast<OMPLoopDirective>(S); 3525 const Expr *IVExpr = LS.getIterationVariable(); 3526 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 3527 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 3528 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 3529 return {LBVal, UBVal}; 3530 } 3531 3532 /// Emits internal temp array declarations for the directive with inscan 3533 /// reductions. 3534 /// The code is the following: 3535 /// \code 3536 /// size num_iters = <num_iters>; 3537 /// <type> buffer[num_iters]; 3538 /// \endcode 3539 static void emitScanBasedDirectiveDecls( 3540 CodeGenFunction &CGF, const OMPLoopDirective &S, 3541 llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen) { 3542 llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast( 3543 NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false); 3544 SmallVector<const Expr *, 4> Shareds; 3545 SmallVector<const Expr *, 4> Privates; 3546 SmallVector<const Expr *, 4> ReductionOps; 3547 SmallVector<const Expr *, 4> CopyArrayTemps; 3548 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3549 assert(C->getModifier() == OMPC_REDUCTION_inscan && 3550 "Only inscan reductions are expected."); 3551 Shareds.append(C->varlist_begin(), C->varlist_end()); 3552 Privates.append(C->privates().begin(), C->privates().end()); 3553 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 3554 CopyArrayTemps.append(C->copy_array_temps().begin(), 3555 C->copy_array_temps().end()); 3556 } 3557 { 3558 // Emit buffers for each reduction variables. 3559 // ReductionCodeGen is required to emit correctly the code for array 3560 // reductions. 3561 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 3562 unsigned Count = 0; 3563 auto *ITA = CopyArrayTemps.begin(); 3564 for (const Expr *IRef : Privates) { 3565 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 3566 // Emit variably modified arrays, used for arrays/array sections 3567 // reductions. 3568 if (PrivateVD->getType()->isVariablyModifiedType()) { 3569 RedCG.emitSharedOrigLValue(CGF, Count); 3570 RedCG.emitAggregateType(CGF, Count); 3571 } 3572 CodeGenFunction::OpaqueValueMapping DimMapping( 3573 CGF, 3574 cast<OpaqueValueExpr>( 3575 cast<VariableArrayType>((*ITA)->getType()->getAsArrayTypeUnsafe()) 3576 ->getSizeExpr()), 3577 RValue::get(OMPScanNumIterations)); 3578 // Emit temp buffer. 3579 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(*ITA)->getDecl())); 3580 ++ITA; 3581 ++Count; 3582 } 3583 } 3584 } 3585 3586 /// Copies final inscan reductions values to the original variables. 3587 /// The code is the following: 3588 /// \code 3589 /// <orig_var> = buffer[num_iters-1]; 3590 /// \endcode 3591 static void emitScanBasedDirectiveFinals( 3592 CodeGenFunction &CGF, const OMPLoopDirective &S, 3593 llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen) { 3594 llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast( 3595 NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false); 3596 SmallVector<const Expr *, 4> Shareds; 3597 SmallVector<const Expr *, 4> LHSs; 3598 SmallVector<const Expr *, 4> RHSs; 3599 SmallVector<const Expr *, 4> Privates; 3600 SmallVector<const Expr *, 4> CopyOps; 3601 SmallVector<const Expr *, 4> CopyArrayElems; 3602 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3603 assert(C->getModifier() == OMPC_REDUCTION_inscan && 3604 "Only inscan reductions are expected."); 3605 Shareds.append(C->varlist_begin(), C->varlist_end()); 3606 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 3607 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 3608 Privates.append(C->privates().begin(), C->privates().end()); 3609 CopyOps.append(C->copy_ops().begin(), C->copy_ops().end()); 3610 CopyArrayElems.append(C->copy_array_elems().begin(), 3611 C->copy_array_elems().end()); 3612 } 3613 // Create temp var and copy LHS value to this temp value. 3614 // LHS = TMP[LastIter]; 3615 llvm::Value *OMPLast = CGF.Builder.CreateNSWSub( 3616 OMPScanNumIterations, 3617 llvm::ConstantInt::get(CGF.SizeTy, 1, /*isSigned=*/false)); 3618 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 3619 const Expr *PrivateExpr = Privates[I]; 3620 const Expr *OrigExpr = Shareds[I]; 3621 const Expr *CopyArrayElem = CopyArrayElems[I]; 3622 CodeGenFunction::OpaqueValueMapping IdxMapping( 3623 CGF, 3624 cast<OpaqueValueExpr>( 3625 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3626 RValue::get(OMPLast)); 3627 LValue DestLVal = CGF.EmitLValue(OrigExpr); 3628 LValue SrcLVal = CGF.EmitLValue(CopyArrayElem); 3629 CGF.EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(CGF), 3630 SrcLVal.getAddress(CGF), 3631 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 3632 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 3633 CopyOps[I]); 3634 } 3635 } 3636 3637 /// Emits the code for the directive with inscan reductions. 3638 /// The code is the following: 3639 /// \code 3640 /// #pragma omp ... 3641 /// for (i: 0..<num_iters>) { 3642 /// <input phase>; 3643 /// buffer[i] = red; 3644 /// } 3645 /// #pragma omp master // in parallel region 3646 /// for (int k = 0; k != ceil(log2(num_iters)); ++k) 3647 /// for (size cnt = last_iter; cnt >= pow(2, k); --k) 3648 /// buffer[i] op= buffer[i-pow(2,k)]; 3649 /// #pragma omp barrier // in parallel region 3650 /// #pragma omp ... 3651 /// for (0..<num_iters>) { 3652 /// red = InclusiveScan ? buffer[i] : buffer[i-1]; 3653 /// <scan phase>; 3654 /// } 3655 /// \endcode 3656 static void emitScanBasedDirective( 3657 CodeGenFunction &CGF, const OMPLoopDirective &S, 3658 llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen, 3659 llvm::function_ref<void(CodeGenFunction &)> FirstGen, 3660 llvm::function_ref<void(CodeGenFunction &)> SecondGen) { 3661 llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast( 3662 NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false); 3663 SmallVector<const Expr *, 4> Privates; 3664 SmallVector<const Expr *, 4> ReductionOps; 3665 SmallVector<const Expr *, 4> LHSs; 3666 SmallVector<const Expr *, 4> RHSs; 3667 SmallVector<const Expr *, 4> CopyArrayElems; 3668 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3669 assert(C->getModifier() == OMPC_REDUCTION_inscan && 3670 "Only inscan reductions are expected."); 3671 Privates.append(C->privates().begin(), C->privates().end()); 3672 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 3673 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 3674 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 3675 CopyArrayElems.append(C->copy_array_elems().begin(), 3676 C->copy_array_elems().end()); 3677 } 3678 CodeGenFunction::ParentLoopDirectiveForScanRegion ScanRegion(CGF, S); 3679 { 3680 // Emit loop with input phase: 3681 // #pragma omp ... 3682 // for (i: 0..<num_iters>) { 3683 // <input phase>; 3684 // buffer[i] = red; 3685 // } 3686 CGF.OMPFirstScanLoop = true; 3687 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 3688 FirstGen(CGF); 3689 } 3690 // #pragma omp barrier // in parallel region 3691 auto &&CodeGen = [&S, OMPScanNumIterations, &LHSs, &RHSs, &CopyArrayElems, 3692 &ReductionOps, 3693 &Privates](CodeGenFunction &CGF, PrePostActionTy &Action) { 3694 Action.Enter(CGF); 3695 // Emit prefix reduction: 3696 // #pragma omp master // in parallel region 3697 // for (int k = 0; k <= ceil(log2(n)); ++k) 3698 llvm::BasicBlock *InputBB = CGF.Builder.GetInsertBlock(); 3699 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.outer.log.scan.body"); 3700 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.outer.log.scan.exit"); 3701 llvm::Function *F = 3702 CGF.CGM.getIntrinsic(llvm::Intrinsic::log2, CGF.DoubleTy); 3703 llvm::Value *Arg = 3704 CGF.Builder.CreateUIToFP(OMPScanNumIterations, CGF.DoubleTy); 3705 llvm::Value *LogVal = CGF.EmitNounwindRuntimeCall(F, Arg); 3706 F = CGF.CGM.getIntrinsic(llvm::Intrinsic::ceil, CGF.DoubleTy); 3707 LogVal = CGF.EmitNounwindRuntimeCall(F, LogVal); 3708 LogVal = CGF.Builder.CreateFPToUI(LogVal, CGF.IntTy); 3709 llvm::Value *NMin1 = CGF.Builder.CreateNUWSub( 3710 OMPScanNumIterations, llvm::ConstantInt::get(CGF.SizeTy, 1)); 3711 auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getBeginLoc()); 3712 CGF.EmitBlock(LoopBB); 3713 auto *Counter = CGF.Builder.CreatePHI(CGF.IntTy, 2); 3714 // size pow2k = 1; 3715 auto *Pow2K = CGF.Builder.CreatePHI(CGF.SizeTy, 2); 3716 Counter->addIncoming(llvm::ConstantInt::get(CGF.IntTy, 0), InputBB); 3717 Pow2K->addIncoming(llvm::ConstantInt::get(CGF.SizeTy, 1), InputBB); 3718 // for (size i = n - 1; i >= 2 ^ k; --i) 3719 // tmp[i] op= tmp[i-pow2k]; 3720 llvm::BasicBlock *InnerLoopBB = 3721 CGF.createBasicBlock("omp.inner.log.scan.body"); 3722 llvm::BasicBlock *InnerExitBB = 3723 CGF.createBasicBlock("omp.inner.log.scan.exit"); 3724 llvm::Value *CmpI = CGF.Builder.CreateICmpUGE(NMin1, Pow2K); 3725 CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB); 3726 CGF.EmitBlock(InnerLoopBB); 3727 auto *IVal = CGF.Builder.CreatePHI(CGF.SizeTy, 2); 3728 IVal->addIncoming(NMin1, LoopBB); 3729 { 3730 CodeGenFunction::OMPPrivateScope PrivScope(CGF); 3731 auto *ILHS = LHSs.begin(); 3732 auto *IRHS = RHSs.begin(); 3733 for (const Expr *CopyArrayElem : CopyArrayElems) { 3734 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 3735 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 3736 Address LHSAddr = Address::invalid(); 3737 { 3738 CodeGenFunction::OpaqueValueMapping IdxMapping( 3739 CGF, 3740 cast<OpaqueValueExpr>( 3741 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3742 RValue::get(IVal)); 3743 LHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF); 3744 } 3745 PrivScope.addPrivate(LHSVD, LHSAddr); 3746 Address RHSAddr = Address::invalid(); 3747 { 3748 llvm::Value *OffsetIVal = CGF.Builder.CreateNUWSub(IVal, Pow2K); 3749 CodeGenFunction::OpaqueValueMapping IdxMapping( 3750 CGF, 3751 cast<OpaqueValueExpr>( 3752 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3753 RValue::get(OffsetIVal)); 3754 RHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF); 3755 } 3756 PrivScope.addPrivate(RHSVD, RHSAddr); 3757 ++ILHS; 3758 ++IRHS; 3759 } 3760 PrivScope.Privatize(); 3761 CGF.CGM.getOpenMPRuntime().emitReduction( 3762 CGF, S.getEndLoc(), Privates, LHSs, RHSs, ReductionOps, 3763 {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_unknown}); 3764 } 3765 llvm::Value *NextIVal = 3766 CGF.Builder.CreateNUWSub(IVal, llvm::ConstantInt::get(CGF.SizeTy, 1)); 3767 IVal->addIncoming(NextIVal, CGF.Builder.GetInsertBlock()); 3768 CmpI = CGF.Builder.CreateICmpUGE(NextIVal, Pow2K); 3769 CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB); 3770 CGF.EmitBlock(InnerExitBB); 3771 llvm::Value *Next = 3772 CGF.Builder.CreateNUWAdd(Counter, llvm::ConstantInt::get(CGF.IntTy, 1)); 3773 Counter->addIncoming(Next, CGF.Builder.GetInsertBlock()); 3774 // pow2k <<= 1; 3775 llvm::Value *NextPow2K = 3776 CGF.Builder.CreateShl(Pow2K, 1, "", /*HasNUW=*/true); 3777 Pow2K->addIncoming(NextPow2K, CGF.Builder.GetInsertBlock()); 3778 llvm::Value *Cmp = CGF.Builder.CreateICmpNE(Next, LogVal); 3779 CGF.Builder.CreateCondBr(Cmp, LoopBB, ExitBB); 3780 auto DL1 = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getEndLoc()); 3781 CGF.EmitBlock(ExitBB); 3782 }; 3783 if (isOpenMPParallelDirective(S.getDirectiveKind())) { 3784 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 3785 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3786 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3787 /*ForceSimpleCall=*/true); 3788 } else { 3789 RegionCodeGenTy RCG(CodeGen); 3790 RCG(CGF); 3791 } 3792 3793 CGF.OMPFirstScanLoop = false; 3794 SecondGen(CGF); 3795 } 3796 3797 static bool emitWorksharingDirective(CodeGenFunction &CGF, 3798 const OMPLoopDirective &S, 3799 bool HasCancel) { 3800 bool HasLastprivates; 3801 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 3802 [](const OMPReductionClause *C) { 3803 return C->getModifier() == OMPC_REDUCTION_inscan; 3804 })) { 3805 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 3806 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 3807 OMPLoopScope LoopScope(CGF, S); 3808 return CGF.EmitScalarExpr(S.getNumIterations()); 3809 }; 3810 const auto &&FirstGen = [&S, HasCancel](CodeGenFunction &CGF) { 3811 CodeGenFunction::OMPCancelStackRAII CancelRegion( 3812 CGF, S.getDirectiveKind(), HasCancel); 3813 (void)CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3814 emitForLoopBounds, 3815 emitDispatchForLoopBounds); 3816 // Emit an implicit barrier at the end. 3817 CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getBeginLoc(), 3818 OMPD_for); 3819 }; 3820 const auto &&SecondGen = [&S, HasCancel, 3821 &HasLastprivates](CodeGenFunction &CGF) { 3822 CodeGenFunction::OMPCancelStackRAII CancelRegion( 3823 CGF, S.getDirectiveKind(), HasCancel); 3824 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3825 emitForLoopBounds, 3826 emitDispatchForLoopBounds); 3827 }; 3828 if (!isOpenMPParallelDirective(S.getDirectiveKind())) 3829 emitScanBasedDirectiveDecls(CGF, S, NumIteratorsGen); 3830 emitScanBasedDirective(CGF, S, NumIteratorsGen, FirstGen, SecondGen); 3831 if (!isOpenMPParallelDirective(S.getDirectiveKind())) 3832 emitScanBasedDirectiveFinals(CGF, S, NumIteratorsGen); 3833 } else { 3834 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 3835 HasCancel); 3836 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3837 emitForLoopBounds, 3838 emitDispatchForLoopBounds); 3839 } 3840 return HasLastprivates; 3841 } 3842 3843 static bool isSupportedByOpenMPIRBuilder(const OMPForDirective &S) { 3844 if (S.hasCancel()) 3845 return false; 3846 for (OMPClause *C : S.clauses()) { 3847 if (isa<OMPNowaitClause>(C)) 3848 continue; 3849 3850 if (auto *SC = dyn_cast<OMPScheduleClause>(C)) { 3851 if (SC->getFirstScheduleModifier() != OMPC_SCHEDULE_MODIFIER_unknown) 3852 return false; 3853 if (SC->getSecondScheduleModifier() != OMPC_SCHEDULE_MODIFIER_unknown) 3854 return false; 3855 switch (SC->getScheduleKind()) { 3856 case OMPC_SCHEDULE_auto: 3857 case OMPC_SCHEDULE_dynamic: 3858 case OMPC_SCHEDULE_runtime: 3859 case OMPC_SCHEDULE_guided: 3860 case OMPC_SCHEDULE_static: 3861 continue; 3862 case OMPC_SCHEDULE_unknown: 3863 return false; 3864 } 3865 } 3866 3867 return false; 3868 } 3869 3870 return true; 3871 } 3872 3873 static llvm::omp::ScheduleKind 3874 convertClauseKindToSchedKind(OpenMPScheduleClauseKind ScheduleClauseKind) { 3875 switch (ScheduleClauseKind) { 3876 case OMPC_SCHEDULE_unknown: 3877 return llvm::omp::OMP_SCHEDULE_Default; 3878 case OMPC_SCHEDULE_auto: 3879 return llvm::omp::OMP_SCHEDULE_Auto; 3880 case OMPC_SCHEDULE_dynamic: 3881 return llvm::omp::OMP_SCHEDULE_Dynamic; 3882 case OMPC_SCHEDULE_guided: 3883 return llvm::omp::OMP_SCHEDULE_Guided; 3884 case OMPC_SCHEDULE_runtime: 3885 return llvm::omp::OMP_SCHEDULE_Runtime; 3886 case OMPC_SCHEDULE_static: 3887 return llvm::omp::OMP_SCHEDULE_Static; 3888 } 3889 llvm_unreachable("Unhandled schedule kind"); 3890 } 3891 3892 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 3893 bool HasLastprivates = false; 3894 bool UseOMPIRBuilder = 3895 CGM.getLangOpts().OpenMPIRBuilder && isSupportedByOpenMPIRBuilder(S); 3896 auto &&CodeGen = [this, &S, &HasLastprivates, 3897 UseOMPIRBuilder](CodeGenFunction &CGF, PrePostActionTy &) { 3898 // Use the OpenMPIRBuilder if enabled. 3899 if (UseOMPIRBuilder) { 3900 bool NeedsBarrier = !S.getSingleClause<OMPNowaitClause>(); 3901 3902 llvm::omp::ScheduleKind SchedKind = llvm::omp::OMP_SCHEDULE_Default; 3903 llvm::Value *ChunkSize = nullptr; 3904 if (auto *SchedClause = S.getSingleClause<OMPScheduleClause>()) { 3905 SchedKind = 3906 convertClauseKindToSchedKind(SchedClause->getScheduleKind()); 3907 if (const Expr *ChunkSizeExpr = SchedClause->getChunkSize()) 3908 ChunkSize = EmitScalarExpr(ChunkSizeExpr); 3909 } 3910 3911 // Emit the associated statement and get its loop representation. 3912 const Stmt *Inner = S.getRawStmt(); 3913 llvm::CanonicalLoopInfo *CLI = 3914 EmitOMPCollapsedCanonicalLoopNest(Inner, 1); 3915 3916 llvm::OpenMPIRBuilder &OMPBuilder = 3917 CGM.getOpenMPRuntime().getOMPBuilder(); 3918 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 3919 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 3920 OMPBuilder.applyWorkshareLoop( 3921 Builder.getCurrentDebugLocation(), CLI, AllocaIP, NeedsBarrier, 3922 SchedKind, ChunkSize, /*HasSimdModifier=*/false, 3923 /*HasMonotonicModifier=*/false, /*HasNonmonotonicModifier=*/false, 3924 /*HasOrderedClause=*/false); 3925 return; 3926 } 3927 3928 HasLastprivates = emitWorksharingDirective(CGF, S, S.hasCancel()); 3929 }; 3930 { 3931 auto LPCRegion = 3932 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3933 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3934 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 3935 S.hasCancel()); 3936 } 3937 3938 if (!UseOMPIRBuilder) { 3939 // Emit an implicit barrier at the end. 3940 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3941 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3942 } 3943 // Check for outer lastprivate conditional update. 3944 checkForLastprivateConditionalUpdate(*this, S); 3945 } 3946 3947 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 3948 bool HasLastprivates = false; 3949 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 3950 PrePostActionTy &) { 3951 HasLastprivates = emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 3952 }; 3953 { 3954 auto LPCRegion = 3955 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3956 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3957 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 3958 } 3959 3960 // Emit an implicit barrier at the end. 3961 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3962 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3963 // Check for outer lastprivate conditional update. 3964 checkForLastprivateConditionalUpdate(*this, S); 3965 } 3966 3967 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 3968 const Twine &Name, 3969 llvm::Value *Init = nullptr) { 3970 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 3971 if (Init) 3972 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 3973 return LVal; 3974 } 3975 3976 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 3977 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 3978 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 3979 bool HasLastprivates = false; 3980 auto &&CodeGen = [&S, CapturedStmt, CS, 3981 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 3982 const ASTContext &C = CGF.getContext(); 3983 QualType KmpInt32Ty = 3984 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 3985 // Emit helper vars inits. 3986 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 3987 CGF.Builder.getInt32(0)); 3988 llvm::ConstantInt *GlobalUBVal = CS != nullptr 3989 ? CGF.Builder.getInt32(CS->size() - 1) 3990 : CGF.Builder.getInt32(0); 3991 LValue UB = 3992 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 3993 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 3994 CGF.Builder.getInt32(1)); 3995 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 3996 CGF.Builder.getInt32(0)); 3997 // Loop counter. 3998 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 3999 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 4000 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 4001 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 4002 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 4003 // Generate condition for loop. 4004 BinaryOperator *Cond = BinaryOperator::Create( 4005 C, &IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_PRValue, OK_Ordinary, 4006 S.getBeginLoc(), FPOptionsOverride()); 4007 // Increment for loop counter. 4008 UnaryOperator *Inc = UnaryOperator::Create( 4009 C, &IVRefExpr, UO_PreInc, KmpInt32Ty, VK_PRValue, OK_Ordinary, 4010 S.getBeginLoc(), true, FPOptionsOverride()); 4011 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 4012 // Iterate through all sections and emit a switch construct: 4013 // switch (IV) { 4014 // case 0: 4015 // <SectionStmt[0]>; 4016 // break; 4017 // ... 4018 // case <NumSection> - 1: 4019 // <SectionStmt[<NumSection> - 1]>; 4020 // break; 4021 // } 4022 // .omp.sections.exit: 4023 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 4024 llvm::SwitchInst *SwitchStmt = 4025 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 4026 ExitBB, CS == nullptr ? 1 : CS->size()); 4027 if (CS) { 4028 unsigned CaseNumber = 0; 4029 for (const Stmt *SubStmt : CS->children()) { 4030 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 4031 CGF.EmitBlock(CaseBB); 4032 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 4033 CGF.EmitStmt(SubStmt); 4034 CGF.EmitBranch(ExitBB); 4035 ++CaseNumber; 4036 } 4037 } else { 4038 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 4039 CGF.EmitBlock(CaseBB); 4040 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 4041 CGF.EmitStmt(CapturedStmt); 4042 CGF.EmitBranch(ExitBB); 4043 } 4044 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 4045 }; 4046 4047 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 4048 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 4049 // Emit implicit barrier to synchronize threads and avoid data races on 4050 // initialization of firstprivate variables and post-update of lastprivate 4051 // variables. 4052 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 4053 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 4054 /*ForceSimpleCall=*/true); 4055 } 4056 CGF.EmitOMPPrivateClause(S, LoopScope); 4057 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(CGF, S, IV); 4058 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 4059 CGF.EmitOMPReductionClauseInit(S, LoopScope); 4060 (void)LoopScope.Privatize(); 4061 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4062 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4063 4064 // Emit static non-chunked loop. 4065 OpenMPScheduleTy ScheduleKind; 4066 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 4067 CGOpenMPRuntime::StaticRTInput StaticInit( 4068 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(CGF), 4069 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF)); 4070 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 4071 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 4072 // UB = min(UB, GlobalUB); 4073 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 4074 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 4075 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 4076 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 4077 // IV = LB; 4078 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 4079 // while (idx <= UB) { BODY; ++idx; } 4080 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, Cond, Inc, BodyGen, 4081 [](CodeGenFunction &) {}); 4082 // Tell the runtime we are done. 4083 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 4084 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 4085 S.getDirectiveKind()); 4086 }; 4087 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 4088 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4089 // Emit post-update of the reduction variables if IsLastIter != 0. 4090 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 4091 return CGF.Builder.CreateIsNotNull( 4092 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 4093 }); 4094 4095 // Emit final copy of the lastprivate variables if IsLastIter != 0. 4096 if (HasLastprivates) 4097 CGF.EmitOMPLastprivateClauseFinal( 4098 S, /*NoFinals=*/false, 4099 CGF.Builder.CreateIsNotNull( 4100 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 4101 }; 4102 4103 bool HasCancel = false; 4104 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 4105 HasCancel = OSD->hasCancel(); 4106 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 4107 HasCancel = OPSD->hasCancel(); 4108 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 4109 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 4110 HasCancel); 4111 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 4112 // clause. Otherwise the barrier will be generated by the codegen for the 4113 // directive. 4114 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 4115 // Emit implicit barrier to synchronize threads and avoid data races on 4116 // initialization of firstprivate variables. 4117 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 4118 OMPD_unknown); 4119 } 4120 } 4121 4122 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 4123 if (CGM.getLangOpts().OpenMPIRBuilder) { 4124 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4125 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4126 using BodyGenCallbackTy = llvm::OpenMPIRBuilder::StorableBodyGenCallbackTy; 4127 4128 auto FiniCB = [this](InsertPointTy IP) { 4129 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4130 }; 4131 4132 const CapturedStmt *ICS = S.getInnermostCapturedStmt(); 4133 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 4134 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 4135 llvm::SmallVector<BodyGenCallbackTy, 4> SectionCBVector; 4136 if (CS) { 4137 for (const Stmt *SubStmt : CS->children()) { 4138 auto SectionCB = [this, SubStmt](InsertPointTy AllocaIP, 4139 InsertPointTy CodeGenIP) { 4140 OMPBuilderCBHelpers::EmitOMPInlinedRegionBody( 4141 *this, SubStmt, AllocaIP, CodeGenIP, "section"); 4142 }; 4143 SectionCBVector.push_back(SectionCB); 4144 } 4145 } else { 4146 auto SectionCB = [this, CapturedStmt](InsertPointTy AllocaIP, 4147 InsertPointTy CodeGenIP) { 4148 OMPBuilderCBHelpers::EmitOMPInlinedRegionBody( 4149 *this, CapturedStmt, AllocaIP, CodeGenIP, "section"); 4150 }; 4151 SectionCBVector.push_back(SectionCB); 4152 } 4153 4154 // Privatization callback that performs appropriate action for 4155 // shared/private/firstprivate/lastprivate/copyin/... variables. 4156 // 4157 // TODO: This defaults to shared right now. 4158 auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 4159 llvm::Value &, llvm::Value &Val, llvm::Value *&ReplVal) { 4160 // The next line is appropriate only for variables (Val) with the 4161 // data-sharing attribute "shared". 4162 ReplVal = &Val; 4163 4164 return CodeGenIP; 4165 }; 4166 4167 CGCapturedStmtInfo CGSI(*ICS, CR_OpenMP); 4168 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 4169 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 4170 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 4171 Builder.restoreIP(OMPBuilder.createSections( 4172 Builder, AllocaIP, SectionCBVector, PrivCB, FiniCB, S.hasCancel(), 4173 S.getSingleClause<OMPNowaitClause>())); 4174 return; 4175 } 4176 { 4177 auto LPCRegion = 4178 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4179 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4180 EmitSections(S); 4181 } 4182 // Emit an implicit barrier at the end. 4183 if (!S.getSingleClause<OMPNowaitClause>()) { 4184 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 4185 OMPD_sections); 4186 } 4187 // Check for outer lastprivate conditional update. 4188 checkForLastprivateConditionalUpdate(*this, S); 4189 } 4190 4191 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 4192 if (CGM.getLangOpts().OpenMPIRBuilder) { 4193 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4194 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4195 4196 const Stmt *SectionRegionBodyStmt = S.getAssociatedStmt(); 4197 auto FiniCB = [this](InsertPointTy IP) { 4198 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4199 }; 4200 4201 auto BodyGenCB = [SectionRegionBodyStmt, this](InsertPointTy AllocaIP, 4202 InsertPointTy CodeGenIP) { 4203 OMPBuilderCBHelpers::EmitOMPInlinedRegionBody( 4204 *this, SectionRegionBodyStmt, AllocaIP, CodeGenIP, "section"); 4205 }; 4206 4207 LexicalScope Scope(*this, S.getSourceRange()); 4208 EmitStopPoint(&S); 4209 Builder.restoreIP(OMPBuilder.createSection(Builder, BodyGenCB, FiniCB)); 4210 4211 return; 4212 } 4213 LexicalScope Scope(*this, S.getSourceRange()); 4214 EmitStopPoint(&S); 4215 EmitStmt(S.getAssociatedStmt()); 4216 } 4217 4218 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 4219 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 4220 llvm::SmallVector<const Expr *, 8> DestExprs; 4221 llvm::SmallVector<const Expr *, 8> SrcExprs; 4222 llvm::SmallVector<const Expr *, 8> AssignmentOps; 4223 // Check if there are any 'copyprivate' clauses associated with this 4224 // 'single' construct. 4225 // Build a list of copyprivate variables along with helper expressions 4226 // (<source>, <destination>, <destination>=<source> expressions) 4227 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 4228 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 4229 DestExprs.append(C->destination_exprs().begin(), 4230 C->destination_exprs().end()); 4231 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 4232 AssignmentOps.append(C->assignment_ops().begin(), 4233 C->assignment_ops().end()); 4234 } 4235 // Emit code for 'single' region along with 'copyprivate' clauses 4236 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4237 Action.Enter(CGF); 4238 OMPPrivateScope SingleScope(CGF); 4239 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 4240 CGF.EmitOMPPrivateClause(S, SingleScope); 4241 (void)SingleScope.Privatize(); 4242 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4243 }; 4244 { 4245 auto LPCRegion = 4246 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4247 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4248 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 4249 CopyprivateVars, DestExprs, 4250 SrcExprs, AssignmentOps); 4251 } 4252 // Emit an implicit barrier at the end (to avoid data race on firstprivate 4253 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 4254 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 4255 CGM.getOpenMPRuntime().emitBarrierCall( 4256 *this, S.getBeginLoc(), 4257 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 4258 } 4259 // Check for outer lastprivate conditional update. 4260 checkForLastprivateConditionalUpdate(*this, S); 4261 } 4262 4263 static void emitMaster(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 4264 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4265 Action.Enter(CGF); 4266 CGF.EmitStmt(S.getRawStmt()); 4267 }; 4268 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 4269 } 4270 4271 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 4272 if (CGM.getLangOpts().OpenMPIRBuilder) { 4273 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4274 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4275 4276 const Stmt *MasterRegionBodyStmt = S.getAssociatedStmt(); 4277 4278 auto FiniCB = [this](InsertPointTy IP) { 4279 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4280 }; 4281 4282 auto BodyGenCB = [MasterRegionBodyStmt, this](InsertPointTy AllocaIP, 4283 InsertPointTy CodeGenIP) { 4284 OMPBuilderCBHelpers::EmitOMPInlinedRegionBody( 4285 *this, MasterRegionBodyStmt, AllocaIP, CodeGenIP, "master"); 4286 }; 4287 4288 LexicalScope Scope(*this, S.getSourceRange()); 4289 EmitStopPoint(&S); 4290 Builder.restoreIP(OMPBuilder.createMaster(Builder, BodyGenCB, FiniCB)); 4291 4292 return; 4293 } 4294 LexicalScope Scope(*this, S.getSourceRange()); 4295 EmitStopPoint(&S); 4296 emitMaster(*this, S); 4297 } 4298 4299 static void emitMasked(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 4300 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4301 Action.Enter(CGF); 4302 CGF.EmitStmt(S.getRawStmt()); 4303 }; 4304 Expr *Filter = nullptr; 4305 if (const auto *FilterClause = S.getSingleClause<OMPFilterClause>()) 4306 Filter = FilterClause->getThreadID(); 4307 CGF.CGM.getOpenMPRuntime().emitMaskedRegion(CGF, CodeGen, S.getBeginLoc(), 4308 Filter); 4309 } 4310 4311 void CodeGenFunction::EmitOMPMaskedDirective(const OMPMaskedDirective &S) { 4312 if (CGM.getLangOpts().OpenMPIRBuilder) { 4313 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4314 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4315 4316 const Stmt *MaskedRegionBodyStmt = S.getAssociatedStmt(); 4317 const Expr *Filter = nullptr; 4318 if (const auto *FilterClause = S.getSingleClause<OMPFilterClause>()) 4319 Filter = FilterClause->getThreadID(); 4320 llvm::Value *FilterVal = Filter 4321 ? EmitScalarExpr(Filter, CGM.Int32Ty) 4322 : llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/0); 4323 4324 auto FiniCB = [this](InsertPointTy IP) { 4325 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4326 }; 4327 4328 auto BodyGenCB = [MaskedRegionBodyStmt, this](InsertPointTy AllocaIP, 4329 InsertPointTy CodeGenIP) { 4330 OMPBuilderCBHelpers::EmitOMPInlinedRegionBody( 4331 *this, MaskedRegionBodyStmt, AllocaIP, CodeGenIP, "masked"); 4332 }; 4333 4334 LexicalScope Scope(*this, S.getSourceRange()); 4335 EmitStopPoint(&S); 4336 Builder.restoreIP( 4337 OMPBuilder.createMasked(Builder, BodyGenCB, FiniCB, FilterVal)); 4338 4339 return; 4340 } 4341 LexicalScope Scope(*this, S.getSourceRange()); 4342 EmitStopPoint(&S); 4343 emitMasked(*this, S); 4344 } 4345 4346 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 4347 if (CGM.getLangOpts().OpenMPIRBuilder) { 4348 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4349 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4350 4351 const Stmt *CriticalRegionBodyStmt = S.getAssociatedStmt(); 4352 const Expr *Hint = nullptr; 4353 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 4354 Hint = HintClause->getHint(); 4355 4356 // TODO: This is slightly different from what's currently being done in 4357 // clang. Fix the Int32Ty to IntPtrTy (pointer width size) when everything 4358 // about typing is final. 4359 llvm::Value *HintInst = nullptr; 4360 if (Hint) 4361 HintInst = 4362 Builder.CreateIntCast(EmitScalarExpr(Hint), CGM.Int32Ty, false); 4363 4364 auto FiniCB = [this](InsertPointTy IP) { 4365 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4366 }; 4367 4368 auto BodyGenCB = [CriticalRegionBodyStmt, this](InsertPointTy AllocaIP, 4369 InsertPointTy CodeGenIP) { 4370 OMPBuilderCBHelpers::EmitOMPInlinedRegionBody( 4371 *this, CriticalRegionBodyStmt, AllocaIP, CodeGenIP, "critical"); 4372 }; 4373 4374 LexicalScope Scope(*this, S.getSourceRange()); 4375 EmitStopPoint(&S); 4376 Builder.restoreIP(OMPBuilder.createCritical( 4377 Builder, BodyGenCB, FiniCB, S.getDirectiveName().getAsString(), 4378 HintInst)); 4379 4380 return; 4381 } 4382 4383 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4384 Action.Enter(CGF); 4385 CGF.EmitStmt(S.getAssociatedStmt()); 4386 }; 4387 const Expr *Hint = nullptr; 4388 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 4389 Hint = HintClause->getHint(); 4390 LexicalScope Scope(*this, S.getSourceRange()); 4391 EmitStopPoint(&S); 4392 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 4393 S.getDirectiveName().getAsString(), 4394 CodeGen, S.getBeginLoc(), Hint); 4395 } 4396 4397 void CodeGenFunction::EmitOMPParallelForDirective( 4398 const OMPParallelForDirective &S) { 4399 // Emit directive as a combined directive that consists of two implicit 4400 // directives: 'parallel' with 'for' directive. 4401 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4402 Action.Enter(CGF); 4403 emitOMPCopyinClause(CGF, S); 4404 (void)emitWorksharingDirective(CGF, S, S.hasCancel()); 4405 }; 4406 { 4407 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 4408 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 4409 CGCapturedStmtInfo CGSI(CR_OpenMP); 4410 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGSI); 4411 OMPLoopScope LoopScope(CGF, S); 4412 return CGF.EmitScalarExpr(S.getNumIterations()); 4413 }; 4414 bool IsInscan = llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 4415 [](const OMPReductionClause *C) { 4416 return C->getModifier() == OMPC_REDUCTION_inscan; 4417 }); 4418 if (IsInscan) 4419 emitScanBasedDirectiveDecls(*this, S, NumIteratorsGen); 4420 auto LPCRegion = 4421 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4422 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 4423 emitEmptyBoundParameters); 4424 if (IsInscan) 4425 emitScanBasedDirectiveFinals(*this, S, NumIteratorsGen); 4426 } 4427 // Check for outer lastprivate conditional update. 4428 checkForLastprivateConditionalUpdate(*this, S); 4429 } 4430 4431 void CodeGenFunction::EmitOMPParallelForSimdDirective( 4432 const OMPParallelForSimdDirective &S) { 4433 // Emit directive as a combined directive that consists of two implicit 4434 // directives: 'parallel' with 'for' directive. 4435 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4436 Action.Enter(CGF); 4437 emitOMPCopyinClause(CGF, S); 4438 (void)emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 4439 }; 4440 { 4441 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 4442 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 4443 CGCapturedStmtInfo CGSI(CR_OpenMP); 4444 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGSI); 4445 OMPLoopScope LoopScope(CGF, S); 4446 return CGF.EmitScalarExpr(S.getNumIterations()); 4447 }; 4448 bool IsInscan = llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 4449 [](const OMPReductionClause *C) { 4450 return C->getModifier() == OMPC_REDUCTION_inscan; 4451 }); 4452 if (IsInscan) 4453 emitScanBasedDirectiveDecls(*this, S, NumIteratorsGen); 4454 auto LPCRegion = 4455 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4456 emitCommonOMPParallelDirective(*this, S, OMPD_for_simd, CodeGen, 4457 emitEmptyBoundParameters); 4458 if (IsInscan) 4459 emitScanBasedDirectiveFinals(*this, S, NumIteratorsGen); 4460 } 4461 // Check for outer lastprivate conditional update. 4462 checkForLastprivateConditionalUpdate(*this, S); 4463 } 4464 4465 void CodeGenFunction::EmitOMPParallelMasterDirective( 4466 const OMPParallelMasterDirective &S) { 4467 // Emit directive as a combined directive that consists of two implicit 4468 // directives: 'parallel' with 'master' directive. 4469 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4470 Action.Enter(CGF); 4471 OMPPrivateScope PrivateScope(CGF); 4472 emitOMPCopyinClause(CGF, S); 4473 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4474 CGF.EmitOMPPrivateClause(S, PrivateScope); 4475 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4476 (void)PrivateScope.Privatize(); 4477 emitMaster(CGF, S); 4478 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4479 }; 4480 { 4481 auto LPCRegion = 4482 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4483 emitCommonOMPParallelDirective(*this, S, OMPD_master, CodeGen, 4484 emitEmptyBoundParameters); 4485 emitPostUpdateForReductionClause(*this, S, 4486 [](CodeGenFunction &) { return nullptr; }); 4487 } 4488 // Check for outer lastprivate conditional update. 4489 checkForLastprivateConditionalUpdate(*this, S); 4490 } 4491 4492 void CodeGenFunction::EmitOMPParallelSectionsDirective( 4493 const OMPParallelSectionsDirective &S) { 4494 // Emit directive as a combined directive that consists of two implicit 4495 // directives: 'parallel' with 'sections' directive. 4496 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4497 Action.Enter(CGF); 4498 emitOMPCopyinClause(CGF, S); 4499 CGF.EmitSections(S); 4500 }; 4501 { 4502 auto LPCRegion = 4503 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4504 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 4505 emitEmptyBoundParameters); 4506 } 4507 // Check for outer lastprivate conditional update. 4508 checkForLastprivateConditionalUpdate(*this, S); 4509 } 4510 4511 namespace { 4512 /// Get the list of variables declared in the context of the untied tasks. 4513 class CheckVarsEscapingUntiedTaskDeclContext final 4514 : public ConstStmtVisitor<CheckVarsEscapingUntiedTaskDeclContext> { 4515 llvm::SmallVector<const VarDecl *, 4> PrivateDecls; 4516 4517 public: 4518 explicit CheckVarsEscapingUntiedTaskDeclContext() = default; 4519 virtual ~CheckVarsEscapingUntiedTaskDeclContext() = default; 4520 void VisitDeclStmt(const DeclStmt *S) { 4521 if (!S) 4522 return; 4523 // Need to privatize only local vars, static locals can be processed as is. 4524 for (const Decl *D : S->decls()) { 4525 if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) 4526 if (VD->hasLocalStorage()) 4527 PrivateDecls.push_back(VD); 4528 } 4529 } 4530 void VisitOMPExecutableDirective(const OMPExecutableDirective *) {} 4531 void VisitCapturedStmt(const CapturedStmt *) {} 4532 void VisitLambdaExpr(const LambdaExpr *) {} 4533 void VisitBlockExpr(const BlockExpr *) {} 4534 void VisitStmt(const Stmt *S) { 4535 if (!S) 4536 return; 4537 for (const Stmt *Child : S->children()) 4538 if (Child) 4539 Visit(Child); 4540 } 4541 4542 /// Swaps list of vars with the provided one. 4543 ArrayRef<const VarDecl *> getPrivateDecls() const { return PrivateDecls; } 4544 }; 4545 } // anonymous namespace 4546 4547 static void buildDependences(const OMPExecutableDirective &S, 4548 OMPTaskDataTy &Data) { 4549 4550 // First look for 'omp_all_memory' and add this first. 4551 bool OmpAllMemory = false; 4552 if (llvm::any_of( 4553 S.getClausesOfKind<OMPDependClause>(), [](const OMPDependClause *C) { 4554 return C->getDependencyKind() == OMPC_DEPEND_outallmemory || 4555 C->getDependencyKind() == OMPC_DEPEND_inoutallmemory; 4556 })) { 4557 OmpAllMemory = true; 4558 // Since both OMPC_DEPEND_outallmemory and OMPC_DEPEND_inoutallmemory are 4559 // equivalent to the runtime, always use OMPC_DEPEND_outallmemory to 4560 // simplify. 4561 OMPTaskDataTy::DependData &DD = 4562 Data.Dependences.emplace_back(OMPC_DEPEND_outallmemory, 4563 /*IteratorExpr=*/nullptr); 4564 // Add a nullptr Expr to simplify the codegen in emitDependData. 4565 DD.DepExprs.push_back(nullptr); 4566 } 4567 // Add remaining dependences skipping any 'out' or 'inout' if they are 4568 // overridden by 'omp_all_memory'. 4569 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 4570 OpenMPDependClauseKind Kind = C->getDependencyKind(); 4571 if (Kind == OMPC_DEPEND_outallmemory || Kind == OMPC_DEPEND_inoutallmemory) 4572 continue; 4573 if (OmpAllMemory && (Kind == OMPC_DEPEND_out || Kind == OMPC_DEPEND_inout)) 4574 continue; 4575 OMPTaskDataTy::DependData &DD = 4576 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 4577 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 4578 } 4579 } 4580 4581 void CodeGenFunction::EmitOMPTaskBasedDirective( 4582 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 4583 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 4584 OMPTaskDataTy &Data) { 4585 // Emit outlined function for task construct. 4586 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 4587 auto I = CS->getCapturedDecl()->param_begin(); 4588 auto PartId = std::next(I); 4589 auto TaskT = std::next(I, 4); 4590 // Check if the task is final 4591 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 4592 // If the condition constant folds and can be elided, try to avoid emitting 4593 // the condition and the dead arm of the if/else. 4594 const Expr *Cond = Clause->getCondition(); 4595 bool CondConstant; 4596 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 4597 Data.Final.setInt(CondConstant); 4598 else 4599 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 4600 } else { 4601 // By default the task is not final. 4602 Data.Final.setInt(/*IntVal=*/false); 4603 } 4604 // Check if the task has 'priority' clause. 4605 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 4606 const Expr *Prio = Clause->getPriority(); 4607 Data.Priority.setInt(/*IntVal=*/true); 4608 Data.Priority.setPointer(EmitScalarConversion( 4609 EmitScalarExpr(Prio), Prio->getType(), 4610 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 4611 Prio->getExprLoc())); 4612 } 4613 // The first function argument for tasks is a thread id, the second one is a 4614 // part id (0 for tied tasks, >=0 for untied task). 4615 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 4616 // Get list of private variables. 4617 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 4618 auto IRef = C->varlist_begin(); 4619 for (const Expr *IInit : C->private_copies()) { 4620 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4621 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4622 Data.PrivateVars.push_back(*IRef); 4623 Data.PrivateCopies.push_back(IInit); 4624 } 4625 ++IRef; 4626 } 4627 } 4628 EmittedAsPrivate.clear(); 4629 // Get list of firstprivate variables. 4630 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 4631 auto IRef = C->varlist_begin(); 4632 auto IElemInitRef = C->inits().begin(); 4633 for (const Expr *IInit : C->private_copies()) { 4634 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4635 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4636 Data.FirstprivateVars.push_back(*IRef); 4637 Data.FirstprivateCopies.push_back(IInit); 4638 Data.FirstprivateInits.push_back(*IElemInitRef); 4639 } 4640 ++IRef; 4641 ++IElemInitRef; 4642 } 4643 } 4644 // Get list of lastprivate variables (for taskloops). 4645 llvm::MapVector<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 4646 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 4647 auto IRef = C->varlist_begin(); 4648 auto ID = C->destination_exprs().begin(); 4649 for (const Expr *IInit : C->private_copies()) { 4650 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4651 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4652 Data.LastprivateVars.push_back(*IRef); 4653 Data.LastprivateCopies.push_back(IInit); 4654 } 4655 LastprivateDstsOrigs.insert( 4656 std::make_pair(cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 4657 cast<DeclRefExpr>(*IRef))); 4658 ++IRef; 4659 ++ID; 4660 } 4661 } 4662 SmallVector<const Expr *, 4> LHSs; 4663 SmallVector<const Expr *, 4> RHSs; 4664 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 4665 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 4666 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 4667 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 4668 Data.ReductionOps.append(C->reduction_ops().begin(), 4669 C->reduction_ops().end()); 4670 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4671 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4672 } 4673 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 4674 *this, S.getBeginLoc(), LHSs, RHSs, Data); 4675 // Build list of dependences. 4676 buildDependences(S, Data); 4677 // Get list of local vars for untied tasks. 4678 if (!Data.Tied) { 4679 CheckVarsEscapingUntiedTaskDeclContext Checker; 4680 Checker.Visit(S.getInnermostCapturedStmt()->getCapturedStmt()); 4681 Data.PrivateLocals.append(Checker.getPrivateDecls().begin(), 4682 Checker.getPrivateDecls().end()); 4683 } 4684 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 4685 CapturedRegion](CodeGenFunction &CGF, 4686 PrePostActionTy &Action) { 4687 llvm::MapVector<CanonicalDeclPtr<const VarDecl>, 4688 std::pair<Address, Address>> 4689 UntiedLocalVars; 4690 // Set proper addresses for generated private copies. 4691 OMPPrivateScope Scope(CGF); 4692 // Generate debug info for variables present in shared clause. 4693 if (auto *DI = CGF.getDebugInfo()) { 4694 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields = 4695 CGF.CapturedStmtInfo->getCaptureFields(); 4696 llvm::Value *ContextValue = CGF.CapturedStmtInfo->getContextValue(); 4697 if (CaptureFields.size() && ContextValue) { 4698 unsigned CharWidth = CGF.getContext().getCharWidth(); 4699 // The shared variables are packed together as members of structure. 4700 // So the address of each shared variable can be computed by adding 4701 // offset of it (within record) to the base address of record. For each 4702 // shared variable, debug intrinsic llvm.dbg.declare is generated with 4703 // appropriate expressions (DIExpression). 4704 // Ex: 4705 // %12 = load %struct.anon*, %struct.anon** %__context.addr.i 4706 // call void @llvm.dbg.declare(metadata %struct.anon* %12, 4707 // metadata !svar1, 4708 // metadata !DIExpression(DW_OP_deref)) 4709 // call void @llvm.dbg.declare(metadata %struct.anon* %12, 4710 // metadata !svar2, 4711 // metadata !DIExpression(DW_OP_plus_uconst, 8, DW_OP_deref)) 4712 for (auto It = CaptureFields.begin(); It != CaptureFields.end(); ++It) { 4713 const VarDecl *SharedVar = It->first; 4714 RecordDecl *CaptureRecord = It->second->getParent(); 4715 const ASTRecordLayout &Layout = 4716 CGF.getContext().getASTRecordLayout(CaptureRecord); 4717 unsigned Offset = 4718 Layout.getFieldOffset(It->second->getFieldIndex()) / CharWidth; 4719 if (CGF.CGM.getCodeGenOpts().hasReducedDebugInfo()) 4720 (void)DI->EmitDeclareOfAutoVariable(SharedVar, ContextValue, 4721 CGF.Builder, false); 4722 llvm::Instruction &Last = CGF.Builder.GetInsertBlock()->back(); 4723 // Get the call dbg.declare instruction we just created and update 4724 // its DIExpression to add offset to base address. 4725 if (auto DDI = dyn_cast<llvm::DbgVariableIntrinsic>(&Last)) { 4726 SmallVector<uint64_t, 8> Ops; 4727 // Add offset to the base address if non zero. 4728 if (Offset) { 4729 Ops.push_back(llvm::dwarf::DW_OP_plus_uconst); 4730 Ops.push_back(Offset); 4731 } 4732 Ops.push_back(llvm::dwarf::DW_OP_deref); 4733 auto &Ctx = DDI->getContext(); 4734 llvm::DIExpression *DIExpr = llvm::DIExpression::get(Ctx, Ops); 4735 Last.setOperand(2, llvm::MetadataAsValue::get(Ctx, DIExpr)); 4736 } 4737 } 4738 } 4739 } 4740 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> FirstprivatePtrs; 4741 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 4742 !Data.LastprivateVars.empty() || !Data.PrivateLocals.empty()) { 4743 enum { PrivatesParam = 2, CopyFnParam = 3 }; 4744 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 4745 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 4746 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 4747 CS->getCapturedDecl()->getParam(PrivatesParam))); 4748 // Map privates. 4749 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 4750 llvm::SmallVector<llvm::Value *, 16> CallArgs; 4751 llvm::SmallVector<llvm::Type *, 4> ParamTypes; 4752 CallArgs.push_back(PrivatesPtr); 4753 ParamTypes.push_back(PrivatesPtr->getType()); 4754 for (const Expr *E : Data.PrivateVars) { 4755 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4756 Address PrivatePtr = CGF.CreateMemTemp( 4757 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 4758 PrivatePtrs.emplace_back(VD, PrivatePtr); 4759 CallArgs.push_back(PrivatePtr.getPointer()); 4760 ParamTypes.push_back(PrivatePtr.getType()); 4761 } 4762 for (const Expr *E : Data.FirstprivateVars) { 4763 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4764 Address PrivatePtr = 4765 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4766 ".firstpriv.ptr.addr"); 4767 PrivatePtrs.emplace_back(VD, PrivatePtr); 4768 FirstprivatePtrs.emplace_back(VD, PrivatePtr); 4769 CallArgs.push_back(PrivatePtr.getPointer()); 4770 ParamTypes.push_back(PrivatePtr.getType()); 4771 } 4772 for (const Expr *E : Data.LastprivateVars) { 4773 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4774 Address PrivatePtr = 4775 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4776 ".lastpriv.ptr.addr"); 4777 PrivatePtrs.emplace_back(VD, PrivatePtr); 4778 CallArgs.push_back(PrivatePtr.getPointer()); 4779 ParamTypes.push_back(PrivatePtr.getType()); 4780 } 4781 for (const VarDecl *VD : Data.PrivateLocals) { 4782 QualType Ty = VD->getType().getNonReferenceType(); 4783 if (VD->getType()->isLValueReferenceType()) 4784 Ty = CGF.getContext().getPointerType(Ty); 4785 if (isAllocatableDecl(VD)) 4786 Ty = CGF.getContext().getPointerType(Ty); 4787 Address PrivatePtr = CGF.CreateMemTemp( 4788 CGF.getContext().getPointerType(Ty), ".local.ptr.addr"); 4789 auto Result = UntiedLocalVars.insert( 4790 std::make_pair(VD, std::make_pair(PrivatePtr, Address::invalid()))); 4791 // If key exists update in place. 4792 if (Result.second == false) 4793 *Result.first = std::make_pair( 4794 VD, std::make_pair(PrivatePtr, Address::invalid())); 4795 CallArgs.push_back(PrivatePtr.getPointer()); 4796 ParamTypes.push_back(PrivatePtr.getType()); 4797 } 4798 auto *CopyFnTy = llvm::FunctionType::get(CGF.Builder.getVoidTy(), 4799 ParamTypes, /*isVarArg=*/false); 4800 CopyFn = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 4801 CopyFn, CopyFnTy->getPointerTo()); 4802 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 4803 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 4804 for (const auto &Pair : LastprivateDstsOrigs) { 4805 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 4806 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD), 4807 /*RefersToEnclosingVariableOrCapture=*/ 4808 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 4809 Pair.second->getType(), VK_LValue, 4810 Pair.second->getExprLoc()); 4811 Scope.addPrivate(Pair.first, CGF.EmitLValue(&DRE).getAddress(CGF)); 4812 } 4813 for (const auto &Pair : PrivatePtrs) { 4814 Address Replacement = Address( 4815 CGF.Builder.CreateLoad(Pair.second), 4816 CGF.ConvertTypeForMem(Pair.first->getType().getNonReferenceType()), 4817 CGF.getContext().getDeclAlign(Pair.first)); 4818 Scope.addPrivate(Pair.first, Replacement); 4819 if (auto *DI = CGF.getDebugInfo()) 4820 if (CGF.CGM.getCodeGenOpts().hasReducedDebugInfo()) 4821 (void)DI->EmitDeclareOfAutoVariable( 4822 Pair.first, Pair.second.getPointer(), CGF.Builder, 4823 /*UsePointerValue*/ true); 4824 } 4825 // Adjust mapping for internal locals by mapping actual memory instead of 4826 // a pointer to this memory. 4827 for (auto &Pair : UntiedLocalVars) { 4828 QualType VDType = Pair.first->getType().getNonReferenceType(); 4829 if (isAllocatableDecl(Pair.first)) { 4830 llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first); 4831 Address Replacement( 4832 Ptr, 4833 CGF.ConvertTypeForMem(CGF.getContext().getPointerType(VDType)), 4834 CGF.getPointerAlign()); 4835 Pair.second.first = Replacement; 4836 Ptr = CGF.Builder.CreateLoad(Replacement); 4837 Replacement = Address(Ptr, CGF.ConvertTypeForMem(VDType), 4838 CGF.getContext().getDeclAlign(Pair.first)); 4839 Pair.second.second = Replacement; 4840 } else { 4841 llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first); 4842 Address Replacement(Ptr, CGF.ConvertTypeForMem(VDType), 4843 CGF.getContext().getDeclAlign(Pair.first)); 4844 Pair.second.first = Replacement; 4845 } 4846 } 4847 } 4848 if (Data.Reductions) { 4849 OMPPrivateScope FirstprivateScope(CGF); 4850 for (const auto &Pair : FirstprivatePtrs) { 4851 Address Replacement( 4852 CGF.Builder.CreateLoad(Pair.second), 4853 CGF.ConvertTypeForMem(Pair.first->getType().getNonReferenceType()), 4854 CGF.getContext().getDeclAlign(Pair.first)); 4855 FirstprivateScope.addPrivate(Pair.first, Replacement); 4856 } 4857 (void)FirstprivateScope.Privatize(); 4858 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 4859 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionVars, 4860 Data.ReductionCopies, Data.ReductionOps); 4861 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 4862 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 4863 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 4864 RedCG.emitSharedOrigLValue(CGF, Cnt); 4865 RedCG.emitAggregateType(CGF, Cnt); 4866 // FIXME: This must removed once the runtime library is fixed. 4867 // Emit required threadprivate variables for 4868 // initializer/combiner/finalizer. 4869 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 4870 RedCG, Cnt); 4871 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 4872 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 4873 Replacement = 4874 Address(CGF.EmitScalarConversion( 4875 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 4876 CGF.getContext().getPointerType( 4877 Data.ReductionCopies[Cnt]->getType()), 4878 Data.ReductionCopies[Cnt]->getExprLoc()), 4879 CGF.ConvertTypeForMem(Data.ReductionCopies[Cnt]->getType()), 4880 Replacement.getAlignment()); 4881 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 4882 Scope.addPrivate(RedCG.getBaseDecl(Cnt), Replacement); 4883 } 4884 } 4885 // Privatize all private variables except for in_reduction items. 4886 (void)Scope.Privatize(); 4887 SmallVector<const Expr *, 4> InRedVars; 4888 SmallVector<const Expr *, 4> InRedPrivs; 4889 SmallVector<const Expr *, 4> InRedOps; 4890 SmallVector<const Expr *, 4> TaskgroupDescriptors; 4891 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 4892 auto IPriv = C->privates().begin(); 4893 auto IRed = C->reduction_ops().begin(); 4894 auto ITD = C->taskgroup_descriptors().begin(); 4895 for (const Expr *Ref : C->varlists()) { 4896 InRedVars.emplace_back(Ref); 4897 InRedPrivs.emplace_back(*IPriv); 4898 InRedOps.emplace_back(*IRed); 4899 TaskgroupDescriptors.emplace_back(*ITD); 4900 std::advance(IPriv, 1); 4901 std::advance(IRed, 1); 4902 std::advance(ITD, 1); 4903 } 4904 } 4905 // Privatize in_reduction items here, because taskgroup descriptors must be 4906 // privatized earlier. 4907 OMPPrivateScope InRedScope(CGF); 4908 if (!InRedVars.empty()) { 4909 ReductionCodeGen RedCG(InRedVars, InRedVars, InRedPrivs, InRedOps); 4910 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 4911 RedCG.emitSharedOrigLValue(CGF, Cnt); 4912 RedCG.emitAggregateType(CGF, Cnt); 4913 // The taskgroup descriptor variable is always implicit firstprivate and 4914 // privatized already during processing of the firstprivates. 4915 // FIXME: This must removed once the runtime library is fixed. 4916 // Emit required threadprivate variables for 4917 // initializer/combiner/finalizer. 4918 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 4919 RedCG, Cnt); 4920 llvm::Value *ReductionsPtr; 4921 if (const Expr *TRExpr = TaskgroupDescriptors[Cnt]) { 4922 ReductionsPtr = CGF.EmitLoadOfScalar(CGF.EmitLValue(TRExpr), 4923 TRExpr->getExprLoc()); 4924 } else { 4925 ReductionsPtr = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); 4926 } 4927 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 4928 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 4929 Replacement = Address( 4930 CGF.EmitScalarConversion( 4931 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 4932 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 4933 InRedPrivs[Cnt]->getExprLoc()), 4934 CGF.ConvertTypeForMem(InRedPrivs[Cnt]->getType()), 4935 Replacement.getAlignment()); 4936 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 4937 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), Replacement); 4938 } 4939 } 4940 (void)InRedScope.Privatize(); 4941 4942 CGOpenMPRuntime::UntiedTaskLocalDeclsRAII LocalVarsScope(CGF, 4943 UntiedLocalVars); 4944 Action.Enter(CGF); 4945 BodyGen(CGF); 4946 }; 4947 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 4948 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 4949 Data.NumberOfParts); 4950 OMPLexicalScope Scope(*this, S, std::nullopt, 4951 !isOpenMPParallelDirective(S.getDirectiveKind()) && 4952 !isOpenMPSimdDirective(S.getDirectiveKind())); 4953 TaskGen(*this, OutlinedFn, Data); 4954 } 4955 4956 static ImplicitParamDecl * 4957 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 4958 QualType Ty, CapturedDecl *CD, 4959 SourceLocation Loc) { 4960 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 4961 ImplicitParamDecl::Other); 4962 auto *OrigRef = DeclRefExpr::Create( 4963 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 4964 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 4965 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 4966 ImplicitParamDecl::Other); 4967 auto *PrivateRef = DeclRefExpr::Create( 4968 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 4969 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 4970 QualType ElemType = C.getBaseElementType(Ty); 4971 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 4972 ImplicitParamDecl::Other); 4973 auto *InitRef = DeclRefExpr::Create( 4974 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 4975 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 4976 PrivateVD->setInitStyle(VarDecl::CInit); 4977 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 4978 InitRef, /*BasePath=*/nullptr, 4979 VK_PRValue, FPOptionsOverride())); 4980 Data.FirstprivateVars.emplace_back(OrigRef); 4981 Data.FirstprivateCopies.emplace_back(PrivateRef); 4982 Data.FirstprivateInits.emplace_back(InitRef); 4983 return OrigVD; 4984 } 4985 4986 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 4987 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 4988 OMPTargetDataInfo &InputInfo) { 4989 // Emit outlined function for task construct. 4990 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 4991 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4992 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4993 auto I = CS->getCapturedDecl()->param_begin(); 4994 auto PartId = std::next(I); 4995 auto TaskT = std::next(I, 4); 4996 OMPTaskDataTy Data; 4997 // The task is not final. 4998 Data.Final.setInt(/*IntVal=*/false); 4999 // Get list of firstprivate variables. 5000 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 5001 auto IRef = C->varlist_begin(); 5002 auto IElemInitRef = C->inits().begin(); 5003 for (auto *IInit : C->private_copies()) { 5004 Data.FirstprivateVars.push_back(*IRef); 5005 Data.FirstprivateCopies.push_back(IInit); 5006 Data.FirstprivateInits.push_back(*IElemInitRef); 5007 ++IRef; 5008 ++IElemInitRef; 5009 } 5010 } 5011 SmallVector<const Expr *, 4> LHSs; 5012 SmallVector<const Expr *, 4> RHSs; 5013 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 5014 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 5015 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 5016 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 5017 Data.ReductionOps.append(C->reduction_ops().begin(), 5018 C->reduction_ops().end()); 5019 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 5020 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 5021 } 5022 OMPPrivateScope TargetScope(*this); 5023 VarDecl *BPVD = nullptr; 5024 VarDecl *PVD = nullptr; 5025 VarDecl *SVD = nullptr; 5026 VarDecl *MVD = nullptr; 5027 if (InputInfo.NumberOfTargetItems > 0) { 5028 auto *CD = CapturedDecl::Create( 5029 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 5030 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 5031 QualType BaseAndPointerAndMapperType = getContext().getConstantArrayType( 5032 getContext().VoidPtrTy, ArrSize, nullptr, ArrayType::Normal, 5033 /*IndexTypeQuals=*/0); 5034 BPVD = createImplicitFirstprivateForType( 5035 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 5036 PVD = createImplicitFirstprivateForType( 5037 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 5038 QualType SizesType = getContext().getConstantArrayType( 5039 getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1), 5040 ArrSize, nullptr, ArrayType::Normal, 5041 /*IndexTypeQuals=*/0); 5042 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 5043 S.getBeginLoc()); 5044 TargetScope.addPrivate(BPVD, InputInfo.BasePointersArray); 5045 TargetScope.addPrivate(PVD, InputInfo.PointersArray); 5046 TargetScope.addPrivate(SVD, InputInfo.SizesArray); 5047 // If there is no user-defined mapper, the mapper array will be nullptr. In 5048 // this case, we don't need to privatize it. 5049 if (!isa_and_nonnull<llvm::ConstantPointerNull>( 5050 InputInfo.MappersArray.getPointer())) { 5051 MVD = createImplicitFirstprivateForType( 5052 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 5053 TargetScope.addPrivate(MVD, InputInfo.MappersArray); 5054 } 5055 } 5056 (void)TargetScope.Privatize(); 5057 buildDependences(S, Data); 5058 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, MVD, 5059 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 5060 // Set proper addresses for generated private copies. 5061 OMPPrivateScope Scope(CGF); 5062 if (!Data.FirstprivateVars.empty()) { 5063 enum { PrivatesParam = 2, CopyFnParam = 3 }; 5064 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 5065 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 5066 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 5067 CS->getCapturedDecl()->getParam(PrivatesParam))); 5068 // Map privates. 5069 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 5070 llvm::SmallVector<llvm::Value *, 16> CallArgs; 5071 llvm::SmallVector<llvm::Type *, 4> ParamTypes; 5072 CallArgs.push_back(PrivatesPtr); 5073 ParamTypes.push_back(PrivatesPtr->getType()); 5074 for (const Expr *E : Data.FirstprivateVars) { 5075 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 5076 Address PrivatePtr = 5077 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 5078 ".firstpriv.ptr.addr"); 5079 PrivatePtrs.emplace_back(VD, PrivatePtr); 5080 CallArgs.push_back(PrivatePtr.getPointer()); 5081 ParamTypes.push_back(PrivatePtr.getType()); 5082 } 5083 auto *CopyFnTy = llvm::FunctionType::get(CGF.Builder.getVoidTy(), 5084 ParamTypes, /*isVarArg=*/false); 5085 CopyFn = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 5086 CopyFn, CopyFnTy->getPointerTo()); 5087 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 5088 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 5089 for (const auto &Pair : PrivatePtrs) { 5090 Address Replacement( 5091 CGF.Builder.CreateLoad(Pair.second), 5092 CGF.ConvertTypeForMem(Pair.first->getType().getNonReferenceType()), 5093 CGF.getContext().getDeclAlign(Pair.first)); 5094 Scope.addPrivate(Pair.first, Replacement); 5095 } 5096 } 5097 CGF.processInReduction(S, Data, CGF, CS, Scope); 5098 if (InputInfo.NumberOfTargetItems > 0) { 5099 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 5100 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0); 5101 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 5102 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0); 5103 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 5104 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0); 5105 // If MVD is nullptr, the mapper array is not privatized 5106 if (MVD) 5107 InputInfo.MappersArray = CGF.Builder.CreateConstArrayGEP( 5108 CGF.GetAddrOfLocalVar(MVD), /*Index=*/0); 5109 } 5110 5111 Action.Enter(CGF); 5112 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 5113 BodyGen(CGF); 5114 }; 5115 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 5116 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 5117 Data.NumberOfParts); 5118 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 5119 IntegerLiteral IfCond(getContext(), TrueOrFalse, 5120 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 5121 SourceLocation()); 5122 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 5123 SharedsTy, CapturedStruct, &IfCond, Data); 5124 } 5125 5126 void CodeGenFunction::processInReduction(const OMPExecutableDirective &S, 5127 OMPTaskDataTy &Data, 5128 CodeGenFunction &CGF, 5129 const CapturedStmt *CS, 5130 OMPPrivateScope &Scope) { 5131 if (Data.Reductions) { 5132 OpenMPDirectiveKind CapturedRegion = S.getDirectiveKind(); 5133 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 5134 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionVars, 5135 Data.ReductionCopies, Data.ReductionOps); 5136 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 5137 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(4))); 5138 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 5139 RedCG.emitSharedOrigLValue(CGF, Cnt); 5140 RedCG.emitAggregateType(CGF, Cnt); 5141 // FIXME: This must removed once the runtime library is fixed. 5142 // Emit required threadprivate variables for 5143 // initializer/combiner/finalizer. 5144 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 5145 RedCG, Cnt); 5146 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 5147 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 5148 Replacement = 5149 Address(CGF.EmitScalarConversion( 5150 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 5151 CGF.getContext().getPointerType( 5152 Data.ReductionCopies[Cnt]->getType()), 5153 Data.ReductionCopies[Cnt]->getExprLoc()), 5154 CGF.ConvertTypeForMem(Data.ReductionCopies[Cnt]->getType()), 5155 Replacement.getAlignment()); 5156 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 5157 Scope.addPrivate(RedCG.getBaseDecl(Cnt), Replacement); 5158 } 5159 } 5160 (void)Scope.Privatize(); 5161 SmallVector<const Expr *, 4> InRedVars; 5162 SmallVector<const Expr *, 4> InRedPrivs; 5163 SmallVector<const Expr *, 4> InRedOps; 5164 SmallVector<const Expr *, 4> TaskgroupDescriptors; 5165 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 5166 auto IPriv = C->privates().begin(); 5167 auto IRed = C->reduction_ops().begin(); 5168 auto ITD = C->taskgroup_descriptors().begin(); 5169 for (const Expr *Ref : C->varlists()) { 5170 InRedVars.emplace_back(Ref); 5171 InRedPrivs.emplace_back(*IPriv); 5172 InRedOps.emplace_back(*IRed); 5173 TaskgroupDescriptors.emplace_back(*ITD); 5174 std::advance(IPriv, 1); 5175 std::advance(IRed, 1); 5176 std::advance(ITD, 1); 5177 } 5178 } 5179 OMPPrivateScope InRedScope(CGF); 5180 if (!InRedVars.empty()) { 5181 ReductionCodeGen RedCG(InRedVars, InRedVars, InRedPrivs, InRedOps); 5182 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 5183 RedCG.emitSharedOrigLValue(CGF, Cnt); 5184 RedCG.emitAggregateType(CGF, Cnt); 5185 // FIXME: This must removed once the runtime library is fixed. 5186 // Emit required threadprivate variables for 5187 // initializer/combiner/finalizer. 5188 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 5189 RedCG, Cnt); 5190 llvm::Value *ReductionsPtr; 5191 if (const Expr *TRExpr = TaskgroupDescriptors[Cnt]) { 5192 ReductionsPtr = 5193 CGF.EmitLoadOfScalar(CGF.EmitLValue(TRExpr), TRExpr->getExprLoc()); 5194 } else { 5195 ReductionsPtr = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); 5196 } 5197 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 5198 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 5199 Replacement = Address( 5200 CGF.EmitScalarConversion( 5201 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 5202 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 5203 InRedPrivs[Cnt]->getExprLoc()), 5204 CGF.ConvertTypeForMem(InRedPrivs[Cnt]->getType()), 5205 Replacement.getAlignment()); 5206 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 5207 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), Replacement); 5208 } 5209 } 5210 (void)InRedScope.Privatize(); 5211 } 5212 5213 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 5214 // Emit outlined function for task construct. 5215 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 5216 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 5217 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 5218 const Expr *IfCond = nullptr; 5219 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 5220 if (C->getNameModifier() == OMPD_unknown || 5221 C->getNameModifier() == OMPD_task) { 5222 IfCond = C->getCondition(); 5223 break; 5224 } 5225 } 5226 5227 OMPTaskDataTy Data; 5228 // Check if we should emit tied or untied task. 5229 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 5230 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 5231 CGF.EmitStmt(CS->getCapturedStmt()); 5232 }; 5233 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 5234 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 5235 const OMPTaskDataTy &Data) { 5236 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 5237 SharedsTy, CapturedStruct, IfCond, 5238 Data); 5239 }; 5240 auto LPCRegion = 5241 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 5242 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 5243 } 5244 5245 void CodeGenFunction::EmitOMPTaskyieldDirective( 5246 const OMPTaskyieldDirective &S) { 5247 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 5248 } 5249 5250 void CodeGenFunction::EmitOMPErrorDirective(const OMPErrorDirective &S) { 5251 const OMPMessageClause *MC = S.getSingleClause<OMPMessageClause>(); 5252 Expr *ME = MC ? MC->getMessageString() : nullptr; 5253 const OMPSeverityClause *SC = S.getSingleClause<OMPSeverityClause>(); 5254 bool IsFatal = false; 5255 if (!SC || SC->getSeverityKind() == OMPC_SEVERITY_fatal) 5256 IsFatal = true; 5257 CGM.getOpenMPRuntime().emitErrorCall(*this, S.getBeginLoc(), ME, IsFatal); 5258 } 5259 5260 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 5261 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 5262 } 5263 5264 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 5265 OMPTaskDataTy Data; 5266 // Build list of dependences 5267 buildDependences(S, Data); 5268 Data.HasNowaitClause = S.hasClausesOfKind<OMPNowaitClause>(); 5269 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc(), Data); 5270 } 5271 5272 bool isSupportedByOpenMPIRBuilder(const OMPTaskgroupDirective &T) { 5273 return T.clauses().empty(); 5274 } 5275 5276 void CodeGenFunction::EmitOMPTaskgroupDirective( 5277 const OMPTaskgroupDirective &S) { 5278 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5279 if (CGM.getLangOpts().OpenMPIRBuilder && isSupportedByOpenMPIRBuilder(S)) { 5280 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 5281 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 5282 InsertPointTy AllocaIP(AllocaInsertPt->getParent(), 5283 AllocaInsertPt->getIterator()); 5284 5285 auto BodyGenCB = [&, this](InsertPointTy AllocaIP, 5286 InsertPointTy CodeGenIP) { 5287 Builder.restoreIP(CodeGenIP); 5288 EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 5289 }; 5290 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 5291 if (!CapturedStmtInfo) 5292 CapturedStmtInfo = &CapStmtInfo; 5293 Builder.restoreIP(OMPBuilder.createTaskgroup(Builder, AllocaIP, BodyGenCB)); 5294 return; 5295 } 5296 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5297 Action.Enter(CGF); 5298 if (const Expr *E = S.getReductionRef()) { 5299 SmallVector<const Expr *, 4> LHSs; 5300 SmallVector<const Expr *, 4> RHSs; 5301 OMPTaskDataTy Data; 5302 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 5303 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 5304 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 5305 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 5306 Data.ReductionOps.append(C->reduction_ops().begin(), 5307 C->reduction_ops().end()); 5308 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 5309 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 5310 } 5311 llvm::Value *ReductionDesc = 5312 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 5313 LHSs, RHSs, Data); 5314 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 5315 CGF.EmitVarDecl(*VD); 5316 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 5317 /*Volatile=*/false, E->getType()); 5318 } 5319 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 5320 }; 5321 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 5322 } 5323 5324 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 5325 llvm::AtomicOrdering AO = S.getSingleClause<OMPFlushClause>() 5326 ? llvm::AtomicOrdering::NotAtomic 5327 : llvm::AtomicOrdering::AcquireRelease; 5328 CGM.getOpenMPRuntime().emitFlush( 5329 *this, 5330 [&S]() -> ArrayRef<const Expr *> { 5331 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 5332 return llvm::ArrayRef(FlushClause->varlist_begin(), 5333 FlushClause->varlist_end()); 5334 return std::nullopt; 5335 }(), 5336 S.getBeginLoc(), AO); 5337 } 5338 5339 void CodeGenFunction::EmitOMPDepobjDirective(const OMPDepobjDirective &S) { 5340 const auto *DO = S.getSingleClause<OMPDepobjClause>(); 5341 LValue DOLVal = EmitLValue(DO->getDepobj()); 5342 if (const auto *DC = S.getSingleClause<OMPDependClause>()) { 5343 OMPTaskDataTy::DependData Dependencies(DC->getDependencyKind(), 5344 DC->getModifier()); 5345 Dependencies.DepExprs.append(DC->varlist_begin(), DC->varlist_end()); 5346 Address DepAddr = CGM.getOpenMPRuntime().emitDepobjDependClause( 5347 *this, Dependencies, DC->getBeginLoc()); 5348 EmitStoreOfScalar(DepAddr.getPointer(), DOLVal); 5349 return; 5350 } 5351 if (const auto *DC = S.getSingleClause<OMPDestroyClause>()) { 5352 CGM.getOpenMPRuntime().emitDestroyClause(*this, DOLVal, DC->getBeginLoc()); 5353 return; 5354 } 5355 if (const auto *UC = S.getSingleClause<OMPUpdateClause>()) { 5356 CGM.getOpenMPRuntime().emitUpdateClause( 5357 *this, DOLVal, UC->getDependencyKind(), UC->getBeginLoc()); 5358 return; 5359 } 5360 } 5361 5362 void CodeGenFunction::EmitOMPScanDirective(const OMPScanDirective &S) { 5363 if (!OMPParentLoopDirectiveForScan) 5364 return; 5365 const OMPExecutableDirective &ParentDir = *OMPParentLoopDirectiveForScan; 5366 bool IsInclusive = S.hasClausesOfKind<OMPInclusiveClause>(); 5367 SmallVector<const Expr *, 4> Shareds; 5368 SmallVector<const Expr *, 4> Privates; 5369 SmallVector<const Expr *, 4> LHSs; 5370 SmallVector<const Expr *, 4> RHSs; 5371 SmallVector<const Expr *, 4> ReductionOps; 5372 SmallVector<const Expr *, 4> CopyOps; 5373 SmallVector<const Expr *, 4> CopyArrayTemps; 5374 SmallVector<const Expr *, 4> CopyArrayElems; 5375 for (const auto *C : ParentDir.getClausesOfKind<OMPReductionClause>()) { 5376 if (C->getModifier() != OMPC_REDUCTION_inscan) 5377 continue; 5378 Shareds.append(C->varlist_begin(), C->varlist_end()); 5379 Privates.append(C->privates().begin(), C->privates().end()); 5380 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 5381 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 5382 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 5383 CopyOps.append(C->copy_ops().begin(), C->copy_ops().end()); 5384 CopyArrayTemps.append(C->copy_array_temps().begin(), 5385 C->copy_array_temps().end()); 5386 CopyArrayElems.append(C->copy_array_elems().begin(), 5387 C->copy_array_elems().end()); 5388 } 5389 if (ParentDir.getDirectiveKind() == OMPD_simd || 5390 (getLangOpts().OpenMPSimd && 5391 isOpenMPSimdDirective(ParentDir.getDirectiveKind()))) { 5392 // For simd directive and simd-based directives in simd only mode, use the 5393 // following codegen: 5394 // int x = 0; 5395 // #pragma omp simd reduction(inscan, +: x) 5396 // for (..) { 5397 // <first part> 5398 // #pragma omp scan inclusive(x) 5399 // <second part> 5400 // } 5401 // is transformed to: 5402 // int x = 0; 5403 // for (..) { 5404 // int x_priv = 0; 5405 // <first part> 5406 // x = x_priv + x; 5407 // x_priv = x; 5408 // <second part> 5409 // } 5410 // and 5411 // int x = 0; 5412 // #pragma omp simd reduction(inscan, +: x) 5413 // for (..) { 5414 // <first part> 5415 // #pragma omp scan exclusive(x) 5416 // <second part> 5417 // } 5418 // to 5419 // int x = 0; 5420 // for (..) { 5421 // int x_priv = 0; 5422 // <second part> 5423 // int temp = x; 5424 // x = x_priv + x; 5425 // x_priv = temp; 5426 // <first part> 5427 // } 5428 llvm::BasicBlock *OMPScanReduce = createBasicBlock("omp.inscan.reduce"); 5429 EmitBranch(IsInclusive 5430 ? OMPScanReduce 5431 : BreakContinueStack.back().ContinueBlock.getBlock()); 5432 EmitBlock(OMPScanDispatch); 5433 { 5434 // New scope for correct construction/destruction of temp variables for 5435 // exclusive scan. 5436 LexicalScope Scope(*this, S.getSourceRange()); 5437 EmitBranch(IsInclusive ? OMPBeforeScanBlock : OMPAfterScanBlock); 5438 EmitBlock(OMPScanReduce); 5439 if (!IsInclusive) { 5440 // Create temp var and copy LHS value to this temp value. 5441 // TMP = LHS; 5442 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5443 const Expr *PrivateExpr = Privates[I]; 5444 const Expr *TempExpr = CopyArrayTemps[I]; 5445 EmitAutoVarDecl( 5446 *cast<VarDecl>(cast<DeclRefExpr>(TempExpr)->getDecl())); 5447 LValue DestLVal = EmitLValue(TempExpr); 5448 LValue SrcLVal = EmitLValue(LHSs[I]); 5449 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5450 SrcLVal.getAddress(*this), 5451 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5452 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5453 CopyOps[I]); 5454 } 5455 } 5456 CGM.getOpenMPRuntime().emitReduction( 5457 *this, ParentDir.getEndLoc(), Privates, LHSs, RHSs, ReductionOps, 5458 {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_simd}); 5459 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5460 const Expr *PrivateExpr = Privates[I]; 5461 LValue DestLVal; 5462 LValue SrcLVal; 5463 if (IsInclusive) { 5464 DestLVal = EmitLValue(RHSs[I]); 5465 SrcLVal = EmitLValue(LHSs[I]); 5466 } else { 5467 const Expr *TempExpr = CopyArrayTemps[I]; 5468 DestLVal = EmitLValue(RHSs[I]); 5469 SrcLVal = EmitLValue(TempExpr); 5470 } 5471 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5472 SrcLVal.getAddress(*this), 5473 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5474 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5475 CopyOps[I]); 5476 } 5477 } 5478 EmitBranch(IsInclusive ? OMPAfterScanBlock : OMPBeforeScanBlock); 5479 OMPScanExitBlock = IsInclusive 5480 ? BreakContinueStack.back().ContinueBlock.getBlock() 5481 : OMPScanReduce; 5482 EmitBlock(OMPAfterScanBlock); 5483 return; 5484 } 5485 if (!IsInclusive) { 5486 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 5487 EmitBlock(OMPScanExitBlock); 5488 } 5489 if (OMPFirstScanLoop) { 5490 // Emit buffer[i] = red; at the end of the input phase. 5491 const auto *IVExpr = cast<OMPLoopDirective>(ParentDir) 5492 .getIterationVariable() 5493 ->IgnoreParenImpCasts(); 5494 LValue IdxLVal = EmitLValue(IVExpr); 5495 llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc()); 5496 IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false); 5497 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5498 const Expr *PrivateExpr = Privates[I]; 5499 const Expr *OrigExpr = Shareds[I]; 5500 const Expr *CopyArrayElem = CopyArrayElems[I]; 5501 OpaqueValueMapping IdxMapping( 5502 *this, 5503 cast<OpaqueValueExpr>( 5504 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 5505 RValue::get(IdxVal)); 5506 LValue DestLVal = EmitLValue(CopyArrayElem); 5507 LValue SrcLVal = EmitLValue(OrigExpr); 5508 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5509 SrcLVal.getAddress(*this), 5510 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5511 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5512 CopyOps[I]); 5513 } 5514 } 5515 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 5516 if (IsInclusive) { 5517 EmitBlock(OMPScanExitBlock); 5518 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 5519 } 5520 EmitBlock(OMPScanDispatch); 5521 if (!OMPFirstScanLoop) { 5522 // Emit red = buffer[i]; at the entrance to the scan phase. 5523 const auto *IVExpr = cast<OMPLoopDirective>(ParentDir) 5524 .getIterationVariable() 5525 ->IgnoreParenImpCasts(); 5526 LValue IdxLVal = EmitLValue(IVExpr); 5527 llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc()); 5528 IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false); 5529 llvm::BasicBlock *ExclusiveExitBB = nullptr; 5530 if (!IsInclusive) { 5531 llvm::BasicBlock *ContBB = createBasicBlock("omp.exclusive.dec"); 5532 ExclusiveExitBB = createBasicBlock("omp.exclusive.copy.exit"); 5533 llvm::Value *Cmp = Builder.CreateIsNull(IdxVal); 5534 Builder.CreateCondBr(Cmp, ExclusiveExitBB, ContBB); 5535 EmitBlock(ContBB); 5536 // Use idx - 1 iteration for exclusive scan. 5537 IdxVal = Builder.CreateNUWSub(IdxVal, llvm::ConstantInt::get(SizeTy, 1)); 5538 } 5539 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5540 const Expr *PrivateExpr = Privates[I]; 5541 const Expr *OrigExpr = Shareds[I]; 5542 const Expr *CopyArrayElem = CopyArrayElems[I]; 5543 OpaqueValueMapping IdxMapping( 5544 *this, 5545 cast<OpaqueValueExpr>( 5546 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 5547 RValue::get(IdxVal)); 5548 LValue SrcLVal = EmitLValue(CopyArrayElem); 5549 LValue DestLVal = EmitLValue(OrigExpr); 5550 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5551 SrcLVal.getAddress(*this), 5552 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5553 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5554 CopyOps[I]); 5555 } 5556 if (!IsInclusive) { 5557 EmitBlock(ExclusiveExitBB); 5558 } 5559 } 5560 EmitBranch((OMPFirstScanLoop == IsInclusive) ? OMPBeforeScanBlock 5561 : OMPAfterScanBlock); 5562 EmitBlock(OMPAfterScanBlock); 5563 } 5564 5565 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 5566 const CodeGenLoopTy &CodeGenLoop, 5567 Expr *IncExpr) { 5568 // Emit the loop iteration variable. 5569 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 5570 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 5571 EmitVarDecl(*IVDecl); 5572 5573 // Emit the iterations count variable. 5574 // If it is not a variable, Sema decided to calculate iterations count on each 5575 // iteration (e.g., it is foldable into a constant). 5576 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 5577 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 5578 // Emit calculation of the iterations count. 5579 EmitIgnoredExpr(S.getCalcLastIteration()); 5580 } 5581 5582 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 5583 5584 bool HasLastprivateClause = false; 5585 // Check pre-condition. 5586 { 5587 OMPLoopScope PreInitScope(*this, S); 5588 // Skip the entire loop if we don't meet the precondition. 5589 // If the condition constant folds and can be elided, avoid emitting the 5590 // whole loop. 5591 bool CondConstant; 5592 llvm::BasicBlock *ContBlock = nullptr; 5593 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 5594 if (!CondConstant) 5595 return; 5596 } else { 5597 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 5598 ContBlock = createBasicBlock("omp.precond.end"); 5599 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 5600 getProfileCount(&S)); 5601 EmitBlock(ThenBlock); 5602 incrementProfileCounter(&S); 5603 } 5604 5605 emitAlignedClause(*this, S); 5606 // Emit 'then' code. 5607 { 5608 // Emit helper vars inits. 5609 5610 LValue LB = EmitOMPHelperVar( 5611 *this, cast<DeclRefExpr>( 5612 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5613 ? S.getCombinedLowerBoundVariable() 5614 : S.getLowerBoundVariable()))); 5615 LValue UB = EmitOMPHelperVar( 5616 *this, cast<DeclRefExpr>( 5617 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5618 ? S.getCombinedUpperBoundVariable() 5619 : S.getUpperBoundVariable()))); 5620 LValue ST = 5621 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 5622 LValue IL = 5623 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 5624 5625 OMPPrivateScope LoopScope(*this); 5626 if (EmitOMPFirstprivateClause(S, LoopScope)) { 5627 // Emit implicit barrier to synchronize threads and avoid data races 5628 // on initialization of firstprivate variables and post-update of 5629 // lastprivate variables. 5630 CGM.getOpenMPRuntime().emitBarrierCall( 5631 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 5632 /*ForceSimpleCall=*/true); 5633 } 5634 EmitOMPPrivateClause(S, LoopScope); 5635 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 5636 !isOpenMPParallelDirective(S.getDirectiveKind()) && 5637 !isOpenMPTeamsDirective(S.getDirectiveKind())) 5638 EmitOMPReductionClauseInit(S, LoopScope); 5639 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 5640 EmitOMPPrivateLoopCounters(S, LoopScope); 5641 (void)LoopScope.Privatize(); 5642 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 5643 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 5644 5645 // Detect the distribute schedule kind and chunk. 5646 llvm::Value *Chunk = nullptr; 5647 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 5648 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 5649 ScheduleKind = C->getDistScheduleKind(); 5650 if (const Expr *Ch = C->getChunkSize()) { 5651 Chunk = EmitScalarExpr(Ch); 5652 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 5653 S.getIterationVariable()->getType(), 5654 S.getBeginLoc()); 5655 } 5656 } else { 5657 // Default behaviour for dist_schedule clause. 5658 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 5659 *this, S, ScheduleKind, Chunk); 5660 } 5661 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 5662 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 5663 5664 // OpenMP [2.10.8, distribute Construct, Description] 5665 // If dist_schedule is specified, kind must be static. If specified, 5666 // iterations are divided into chunks of size chunk_size, chunks are 5667 // assigned to the teams of the league in a round-robin fashion in the 5668 // order of the team number. When no chunk_size is specified, the 5669 // iteration space is divided into chunks that are approximately equal 5670 // in size, and at most one chunk is distributed to each team of the 5671 // league. The size of the chunks is unspecified in this case. 5672 bool StaticChunked = 5673 RT.isStaticChunked(ScheduleKind, /* Chunked */ Chunk != nullptr) && 5674 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 5675 if (RT.isStaticNonchunked(ScheduleKind, 5676 /* Chunked */ Chunk != nullptr) || 5677 StaticChunked) { 5678 CGOpenMPRuntime::StaticRTInput StaticInit( 5679 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(*this), 5680 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 5681 StaticChunked ? Chunk : nullptr); 5682 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 5683 StaticInit); 5684 JumpDest LoopExit = 5685 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 5686 // UB = min(UB, GlobalUB); 5687 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5688 ? S.getCombinedEnsureUpperBound() 5689 : S.getEnsureUpperBound()); 5690 // IV = LB; 5691 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5692 ? S.getCombinedInit() 5693 : S.getInit()); 5694 5695 const Expr *Cond = 5696 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5697 ? S.getCombinedCond() 5698 : S.getCond(); 5699 5700 if (StaticChunked) 5701 Cond = S.getCombinedDistCond(); 5702 5703 // For static unchunked schedules generate: 5704 // 5705 // 1. For distribute alone, codegen 5706 // while (idx <= UB) { 5707 // BODY; 5708 // ++idx; 5709 // } 5710 // 5711 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 5712 // while (idx <= UB) { 5713 // <CodeGen rest of pragma>(LB, UB); 5714 // idx += ST; 5715 // } 5716 // 5717 // For static chunk one schedule generate: 5718 // 5719 // while (IV <= GlobalUB) { 5720 // <CodeGen rest of pragma>(LB, UB); 5721 // LB += ST; 5722 // UB += ST; 5723 // UB = min(UB, GlobalUB); 5724 // IV = LB; 5725 // } 5726 // 5727 emitCommonSimdLoop( 5728 *this, S, 5729 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5730 if (isOpenMPSimdDirective(S.getDirectiveKind())) 5731 CGF.EmitOMPSimdInit(S); 5732 }, 5733 [&S, &LoopScope, Cond, IncExpr, LoopExit, &CodeGenLoop, 5734 StaticChunked](CodeGenFunction &CGF, PrePostActionTy &) { 5735 CGF.EmitOMPInnerLoop( 5736 S, LoopScope.requiresCleanups(), Cond, IncExpr, 5737 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 5738 CodeGenLoop(CGF, S, LoopExit); 5739 }, 5740 [&S, StaticChunked](CodeGenFunction &CGF) { 5741 if (StaticChunked) { 5742 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 5743 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 5744 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 5745 CGF.EmitIgnoredExpr(S.getCombinedInit()); 5746 } 5747 }); 5748 }); 5749 EmitBlock(LoopExit.getBlock()); 5750 // Tell the runtime we are done. 5751 RT.emitForStaticFinish(*this, S.getEndLoc(), S.getDirectiveKind()); 5752 } else { 5753 // Emit the outer loop, which requests its work chunk [LB..UB] from 5754 // runtime and runs the inner loop to process it. 5755 const OMPLoopArguments LoopArguments = { 5756 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 5757 IL.getAddress(*this), Chunk}; 5758 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 5759 CodeGenLoop); 5760 } 5761 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 5762 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 5763 return CGF.Builder.CreateIsNotNull( 5764 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 5765 }); 5766 } 5767 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 5768 !isOpenMPParallelDirective(S.getDirectiveKind()) && 5769 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 5770 EmitOMPReductionClauseFinal(S, OMPD_simd); 5771 // Emit post-update of the reduction variables if IsLastIter != 0. 5772 emitPostUpdateForReductionClause( 5773 *this, S, [IL, &S](CodeGenFunction &CGF) { 5774 return CGF.Builder.CreateIsNotNull( 5775 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 5776 }); 5777 } 5778 // Emit final copy of the lastprivate variables if IsLastIter != 0. 5779 if (HasLastprivateClause) { 5780 EmitOMPLastprivateClauseFinal( 5781 S, /*NoFinals=*/false, 5782 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 5783 } 5784 } 5785 5786 // We're now done with the loop, so jump to the continuation block. 5787 if (ContBlock) { 5788 EmitBranch(ContBlock); 5789 EmitBlock(ContBlock, true); 5790 } 5791 } 5792 } 5793 5794 void CodeGenFunction::EmitOMPDistributeDirective( 5795 const OMPDistributeDirective &S) { 5796 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5797 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5798 }; 5799 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5800 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 5801 } 5802 5803 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 5804 const CapturedStmt *S, 5805 SourceLocation Loc) { 5806 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 5807 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 5808 CGF.CapturedStmtInfo = &CapStmtInfo; 5809 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S, Loc); 5810 Fn->setDoesNotRecurse(); 5811 return Fn; 5812 } 5813 5814 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 5815 if (CGM.getLangOpts().OpenMPIRBuilder) { 5816 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 5817 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 5818 5819 if (S.hasClausesOfKind<OMPDependClause>()) { 5820 // The ordered directive with depend clause. 5821 assert(!S.hasAssociatedStmt() && 5822 "No associated statement must be in ordered depend construct."); 5823 InsertPointTy AllocaIP(AllocaInsertPt->getParent(), 5824 AllocaInsertPt->getIterator()); 5825 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) { 5826 unsigned NumLoops = DC->getNumLoops(); 5827 QualType Int64Ty = CGM.getContext().getIntTypeForBitwidth( 5828 /*DestWidth=*/64, /*Signed=*/1); 5829 llvm::SmallVector<llvm::Value *> StoreValues; 5830 for (unsigned I = 0; I < NumLoops; I++) { 5831 const Expr *CounterVal = DC->getLoopData(I); 5832 assert(CounterVal); 5833 llvm::Value *StoreValue = EmitScalarConversion( 5834 EmitScalarExpr(CounterVal), CounterVal->getType(), Int64Ty, 5835 CounterVal->getExprLoc()); 5836 StoreValues.emplace_back(StoreValue); 5837 } 5838 bool IsDependSource = false; 5839 if (DC->getDependencyKind() == OMPC_DEPEND_source) 5840 IsDependSource = true; 5841 Builder.restoreIP(OMPBuilder.createOrderedDepend( 5842 Builder, AllocaIP, NumLoops, StoreValues, ".cnt.addr", 5843 IsDependSource)); 5844 } 5845 } else { 5846 // The ordered directive with threads or simd clause, or without clause. 5847 // Without clause, it behaves as if the threads clause is specified. 5848 const auto *C = S.getSingleClause<OMPSIMDClause>(); 5849 5850 auto FiniCB = [this](InsertPointTy IP) { 5851 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 5852 }; 5853 5854 auto BodyGenCB = [&S, C, this](InsertPointTy AllocaIP, 5855 InsertPointTy CodeGenIP) { 5856 Builder.restoreIP(CodeGenIP); 5857 5858 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 5859 if (C) { 5860 llvm::BasicBlock *FiniBB = splitBBWithSuffix( 5861 Builder, /*CreateBranch=*/false, ".ordered.after"); 5862 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 5863 GenerateOpenMPCapturedVars(*CS, CapturedVars); 5864 llvm::Function *OutlinedFn = 5865 emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc()); 5866 assert(S.getBeginLoc().isValid() && 5867 "Outlined function call location must be valid."); 5868 ApplyDebugLocation::CreateDefaultArtificial(*this, S.getBeginLoc()); 5869 OMPBuilderCBHelpers::EmitCaptureStmt(*this, CodeGenIP, *FiniBB, 5870 OutlinedFn, CapturedVars); 5871 } else { 5872 OMPBuilderCBHelpers::EmitOMPInlinedRegionBody( 5873 *this, CS->getCapturedStmt(), AllocaIP, CodeGenIP, "ordered"); 5874 } 5875 }; 5876 5877 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5878 Builder.restoreIP( 5879 OMPBuilder.createOrderedThreadsSimd(Builder, BodyGenCB, FiniCB, !C)); 5880 } 5881 return; 5882 } 5883 5884 if (S.hasClausesOfKind<OMPDependClause>()) { 5885 assert(!S.hasAssociatedStmt() && 5886 "No associated statement must be in ordered depend construct."); 5887 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 5888 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 5889 return; 5890 } 5891 const auto *C = S.getSingleClause<OMPSIMDClause>(); 5892 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 5893 PrePostActionTy &Action) { 5894 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 5895 if (C) { 5896 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 5897 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 5898 llvm::Function *OutlinedFn = 5899 emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc()); 5900 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 5901 OutlinedFn, CapturedVars); 5902 } else { 5903 Action.Enter(CGF); 5904 CGF.EmitStmt(CS->getCapturedStmt()); 5905 } 5906 }; 5907 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5908 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 5909 } 5910 5911 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 5912 QualType SrcType, QualType DestType, 5913 SourceLocation Loc) { 5914 assert(CGF.hasScalarEvaluationKind(DestType) && 5915 "DestType must have scalar evaluation kind."); 5916 assert(!Val.isAggregate() && "Must be a scalar or complex."); 5917 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 5918 DestType, Loc) 5919 : CGF.EmitComplexToScalarConversion( 5920 Val.getComplexVal(), SrcType, DestType, Loc); 5921 } 5922 5923 static CodeGenFunction::ComplexPairTy 5924 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 5925 QualType DestType, SourceLocation Loc) { 5926 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 5927 "DestType must have complex evaluation kind."); 5928 CodeGenFunction::ComplexPairTy ComplexVal; 5929 if (Val.isScalar()) { 5930 // Convert the input element to the element type of the complex. 5931 QualType DestElementType = 5932 DestType->castAs<ComplexType>()->getElementType(); 5933 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 5934 Val.getScalarVal(), SrcType, DestElementType, Loc); 5935 ComplexVal = CodeGenFunction::ComplexPairTy( 5936 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 5937 } else { 5938 assert(Val.isComplex() && "Must be a scalar or complex."); 5939 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 5940 QualType DestElementType = 5941 DestType->castAs<ComplexType>()->getElementType(); 5942 ComplexVal.first = CGF.EmitScalarConversion( 5943 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 5944 ComplexVal.second = CGF.EmitScalarConversion( 5945 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 5946 } 5947 return ComplexVal; 5948 } 5949 5950 static void emitSimpleAtomicStore(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 5951 LValue LVal, RValue RVal) { 5952 if (LVal.isGlobalReg()) 5953 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 5954 else 5955 CGF.EmitAtomicStore(RVal, LVal, AO, LVal.isVolatile(), /*isInit=*/false); 5956 } 5957 5958 static RValue emitSimpleAtomicLoad(CodeGenFunction &CGF, 5959 llvm::AtomicOrdering AO, LValue LVal, 5960 SourceLocation Loc) { 5961 if (LVal.isGlobalReg()) 5962 return CGF.EmitLoadOfLValue(LVal, Loc); 5963 return CGF.EmitAtomicLoad( 5964 LVal, Loc, llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO), 5965 LVal.isVolatile()); 5966 } 5967 5968 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 5969 QualType RValTy, SourceLocation Loc) { 5970 switch (getEvaluationKind(LVal.getType())) { 5971 case TEK_Scalar: 5972 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 5973 *this, RVal, RValTy, LVal.getType(), Loc)), 5974 LVal); 5975 break; 5976 case TEK_Complex: 5977 EmitStoreOfComplex( 5978 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 5979 /*isInit=*/false); 5980 break; 5981 case TEK_Aggregate: 5982 llvm_unreachable("Must be a scalar or complex."); 5983 } 5984 } 5985 5986 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 5987 const Expr *X, const Expr *V, 5988 SourceLocation Loc) { 5989 // v = x; 5990 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 5991 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 5992 LValue XLValue = CGF.EmitLValue(X); 5993 LValue VLValue = CGF.EmitLValue(V); 5994 RValue Res = emitSimpleAtomicLoad(CGF, AO, XLValue, Loc); 5995 // OpenMP, 2.17.7, atomic Construct 5996 // If the read or capture clause is specified and the acquire, acq_rel, or 5997 // seq_cst clause is specified then the strong flush on exit from the atomic 5998 // operation is also an acquire flush. 5999 switch (AO) { 6000 case llvm::AtomicOrdering::Acquire: 6001 case llvm::AtomicOrdering::AcquireRelease: 6002 case llvm::AtomicOrdering::SequentiallyConsistent: 6003 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, std::nullopt, Loc, 6004 llvm::AtomicOrdering::Acquire); 6005 break; 6006 case llvm::AtomicOrdering::Monotonic: 6007 case llvm::AtomicOrdering::Release: 6008 break; 6009 case llvm::AtomicOrdering::NotAtomic: 6010 case llvm::AtomicOrdering::Unordered: 6011 llvm_unreachable("Unexpected ordering."); 6012 } 6013 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 6014 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 6015 } 6016 6017 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, 6018 llvm::AtomicOrdering AO, const Expr *X, 6019 const Expr *E, SourceLocation Loc) { 6020 // x = expr; 6021 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 6022 emitSimpleAtomicStore(CGF, AO, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 6023 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 6024 // OpenMP, 2.17.7, atomic Construct 6025 // If the write, update, or capture clause is specified and the release, 6026 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 6027 // the atomic operation is also a release flush. 6028 switch (AO) { 6029 case llvm::AtomicOrdering::Release: 6030 case llvm::AtomicOrdering::AcquireRelease: 6031 case llvm::AtomicOrdering::SequentiallyConsistent: 6032 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, std::nullopt, Loc, 6033 llvm::AtomicOrdering::Release); 6034 break; 6035 case llvm::AtomicOrdering::Acquire: 6036 case llvm::AtomicOrdering::Monotonic: 6037 break; 6038 case llvm::AtomicOrdering::NotAtomic: 6039 case llvm::AtomicOrdering::Unordered: 6040 llvm_unreachable("Unexpected ordering."); 6041 } 6042 } 6043 6044 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 6045 RValue Update, 6046 BinaryOperatorKind BO, 6047 llvm::AtomicOrdering AO, 6048 bool IsXLHSInRHSPart) { 6049 ASTContext &Context = CGF.getContext(); 6050 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 6051 // expression is simple and atomic is allowed for the given type for the 6052 // target platform. 6053 if (BO == BO_Comma || !Update.isScalar() || !X.isSimple() || 6054 (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 6055 (Update.getScalarVal()->getType() != 6056 X.getAddress(CGF).getElementType())) || 6057 !Context.getTargetInfo().hasBuiltinAtomic( 6058 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 6059 return std::make_pair(false, RValue::get(nullptr)); 6060 6061 auto &&CheckAtomicSupport = [&CGF](llvm::Type *T, BinaryOperatorKind BO) { 6062 if (T->isIntegerTy()) 6063 return true; 6064 6065 if (T->isFloatingPointTy() && (BO == BO_Add || BO == BO_Sub)) 6066 return llvm::isPowerOf2_64(CGF.CGM.getDataLayout().getTypeStoreSize(T)); 6067 6068 return false; 6069 }; 6070 6071 if (!CheckAtomicSupport(Update.getScalarVal()->getType(), BO) || 6072 !CheckAtomicSupport(X.getAddress(CGF).getElementType(), BO)) 6073 return std::make_pair(false, RValue::get(nullptr)); 6074 6075 bool IsInteger = X.getAddress(CGF).getElementType()->isIntegerTy(); 6076 llvm::AtomicRMWInst::BinOp RMWOp; 6077 switch (BO) { 6078 case BO_Add: 6079 RMWOp = IsInteger ? llvm::AtomicRMWInst::Add : llvm::AtomicRMWInst::FAdd; 6080 break; 6081 case BO_Sub: 6082 if (!IsXLHSInRHSPart) 6083 return std::make_pair(false, RValue::get(nullptr)); 6084 RMWOp = IsInteger ? llvm::AtomicRMWInst::Sub : llvm::AtomicRMWInst::FSub; 6085 break; 6086 case BO_And: 6087 RMWOp = llvm::AtomicRMWInst::And; 6088 break; 6089 case BO_Or: 6090 RMWOp = llvm::AtomicRMWInst::Or; 6091 break; 6092 case BO_Xor: 6093 RMWOp = llvm::AtomicRMWInst::Xor; 6094 break; 6095 case BO_LT: 6096 if (IsInteger) 6097 RMWOp = X.getType()->hasSignedIntegerRepresentation() 6098 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 6099 : llvm::AtomicRMWInst::Max) 6100 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 6101 : llvm::AtomicRMWInst::UMax); 6102 else 6103 RMWOp = IsXLHSInRHSPart ? llvm::AtomicRMWInst::FMin 6104 : llvm::AtomicRMWInst::FMax; 6105 break; 6106 case BO_GT: 6107 if (IsInteger) 6108 RMWOp = X.getType()->hasSignedIntegerRepresentation() 6109 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 6110 : llvm::AtomicRMWInst::Min) 6111 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 6112 : llvm::AtomicRMWInst::UMin); 6113 else 6114 RMWOp = IsXLHSInRHSPart ? llvm::AtomicRMWInst::FMax 6115 : llvm::AtomicRMWInst::FMin; 6116 break; 6117 case BO_Assign: 6118 RMWOp = llvm::AtomicRMWInst::Xchg; 6119 break; 6120 case BO_Mul: 6121 case BO_Div: 6122 case BO_Rem: 6123 case BO_Shl: 6124 case BO_Shr: 6125 case BO_LAnd: 6126 case BO_LOr: 6127 return std::make_pair(false, RValue::get(nullptr)); 6128 case BO_PtrMemD: 6129 case BO_PtrMemI: 6130 case BO_LE: 6131 case BO_GE: 6132 case BO_EQ: 6133 case BO_NE: 6134 case BO_Cmp: 6135 case BO_AddAssign: 6136 case BO_SubAssign: 6137 case BO_AndAssign: 6138 case BO_OrAssign: 6139 case BO_XorAssign: 6140 case BO_MulAssign: 6141 case BO_DivAssign: 6142 case BO_RemAssign: 6143 case BO_ShlAssign: 6144 case BO_ShrAssign: 6145 case BO_Comma: 6146 llvm_unreachable("Unsupported atomic update operation"); 6147 } 6148 llvm::Value *UpdateVal = Update.getScalarVal(); 6149 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 6150 if (IsInteger) 6151 UpdateVal = CGF.Builder.CreateIntCast( 6152 IC, X.getAddress(CGF).getElementType(), 6153 X.getType()->hasSignedIntegerRepresentation()); 6154 else 6155 UpdateVal = CGF.Builder.CreateCast(llvm::Instruction::CastOps::UIToFP, IC, 6156 X.getAddress(CGF).getElementType()); 6157 } 6158 llvm::Value *Res = 6159 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(CGF), UpdateVal, AO); 6160 return std::make_pair(true, RValue::get(Res)); 6161 } 6162 6163 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 6164 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 6165 llvm::AtomicOrdering AO, SourceLocation Loc, 6166 const llvm::function_ref<RValue(RValue)> CommonGen) { 6167 // Update expressions are allowed to have the following forms: 6168 // x binop= expr; -> xrval + expr; 6169 // x++, ++x -> xrval + 1; 6170 // x--, --x -> xrval - 1; 6171 // x = x binop expr; -> xrval binop expr 6172 // x = expr Op x; - > expr binop xrval; 6173 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 6174 if (!Res.first) { 6175 if (X.isGlobalReg()) { 6176 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 6177 // 'xrval'. 6178 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 6179 } else { 6180 // Perform compare-and-swap procedure. 6181 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 6182 } 6183 } 6184 return Res; 6185 } 6186 6187 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, 6188 llvm::AtomicOrdering AO, const Expr *X, 6189 const Expr *E, const Expr *UE, 6190 bool IsXLHSInRHSPart, SourceLocation Loc) { 6191 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 6192 "Update expr in 'atomic update' must be a binary operator."); 6193 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 6194 // Update expressions are allowed to have the following forms: 6195 // x binop= expr; -> xrval + expr; 6196 // x++, ++x -> xrval + 1; 6197 // x--, --x -> xrval - 1; 6198 // x = x binop expr; -> xrval binop expr 6199 // x = expr Op x; - > expr binop xrval; 6200 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 6201 LValue XLValue = CGF.EmitLValue(X); 6202 RValue ExprRValue = CGF.EmitAnyExpr(E); 6203 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 6204 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 6205 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 6206 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 6207 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 6208 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 6209 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 6210 return CGF.EmitAnyExpr(UE); 6211 }; 6212 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 6213 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 6214 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 6215 // OpenMP, 2.17.7, atomic Construct 6216 // If the write, update, or capture clause is specified and the release, 6217 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 6218 // the atomic operation is also a release flush. 6219 switch (AO) { 6220 case llvm::AtomicOrdering::Release: 6221 case llvm::AtomicOrdering::AcquireRelease: 6222 case llvm::AtomicOrdering::SequentiallyConsistent: 6223 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, std::nullopt, Loc, 6224 llvm::AtomicOrdering::Release); 6225 break; 6226 case llvm::AtomicOrdering::Acquire: 6227 case llvm::AtomicOrdering::Monotonic: 6228 break; 6229 case llvm::AtomicOrdering::NotAtomic: 6230 case llvm::AtomicOrdering::Unordered: 6231 llvm_unreachable("Unexpected ordering."); 6232 } 6233 } 6234 6235 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 6236 QualType SourceType, QualType ResType, 6237 SourceLocation Loc) { 6238 switch (CGF.getEvaluationKind(ResType)) { 6239 case TEK_Scalar: 6240 return RValue::get( 6241 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 6242 case TEK_Complex: { 6243 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 6244 return RValue::getComplex(Res.first, Res.second); 6245 } 6246 case TEK_Aggregate: 6247 break; 6248 } 6249 llvm_unreachable("Must be a scalar or complex."); 6250 } 6251 6252 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, 6253 llvm::AtomicOrdering AO, 6254 bool IsPostfixUpdate, const Expr *V, 6255 const Expr *X, const Expr *E, 6256 const Expr *UE, bool IsXLHSInRHSPart, 6257 SourceLocation Loc) { 6258 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 6259 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 6260 RValue NewVVal; 6261 LValue VLValue = CGF.EmitLValue(V); 6262 LValue XLValue = CGF.EmitLValue(X); 6263 RValue ExprRValue = CGF.EmitAnyExpr(E); 6264 QualType NewVValType; 6265 if (UE) { 6266 // 'x' is updated with some additional value. 6267 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 6268 "Update expr in 'atomic capture' must be a binary operator."); 6269 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 6270 // Update expressions are allowed to have the following forms: 6271 // x binop= expr; -> xrval + expr; 6272 // x++, ++x -> xrval + 1; 6273 // x--, --x -> xrval - 1; 6274 // x = x binop expr; -> xrval binop expr 6275 // x = expr Op x; - > expr binop xrval; 6276 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 6277 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 6278 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 6279 NewVValType = XRValExpr->getType(); 6280 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 6281 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 6282 IsPostfixUpdate](RValue XRValue) { 6283 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 6284 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 6285 RValue Res = CGF.EmitAnyExpr(UE); 6286 NewVVal = IsPostfixUpdate ? XRValue : Res; 6287 return Res; 6288 }; 6289 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 6290 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 6291 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 6292 if (Res.first) { 6293 // 'atomicrmw' instruction was generated. 6294 if (IsPostfixUpdate) { 6295 // Use old value from 'atomicrmw'. 6296 NewVVal = Res.second; 6297 } else { 6298 // 'atomicrmw' does not provide new value, so evaluate it using old 6299 // value of 'x'. 6300 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 6301 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 6302 NewVVal = CGF.EmitAnyExpr(UE); 6303 } 6304 } 6305 } else { 6306 // 'x' is simply rewritten with some 'expr'. 6307 NewVValType = X->getType().getNonReferenceType(); 6308 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 6309 X->getType().getNonReferenceType(), Loc); 6310 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 6311 NewVVal = XRValue; 6312 return ExprRValue; 6313 }; 6314 // Try to perform atomicrmw xchg, otherwise simple exchange. 6315 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 6316 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 6317 Loc, Gen); 6318 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 6319 if (Res.first) { 6320 // 'atomicrmw' instruction was generated. 6321 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 6322 } 6323 } 6324 // Emit post-update store to 'v' of old/new 'x' value. 6325 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 6326 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 6327 // OpenMP 5.1 removes the required flush for capture clause. 6328 if (CGF.CGM.getLangOpts().OpenMP < 51) { 6329 // OpenMP, 2.17.7, atomic Construct 6330 // If the write, update, or capture clause is specified and the release, 6331 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 6332 // the atomic operation is also a release flush. 6333 // If the read or capture clause is specified and the acquire, acq_rel, or 6334 // seq_cst clause is specified then the strong flush on exit from the atomic 6335 // operation is also an acquire flush. 6336 switch (AO) { 6337 case llvm::AtomicOrdering::Release: 6338 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, std::nullopt, Loc, 6339 llvm::AtomicOrdering::Release); 6340 break; 6341 case llvm::AtomicOrdering::Acquire: 6342 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, std::nullopt, Loc, 6343 llvm::AtomicOrdering::Acquire); 6344 break; 6345 case llvm::AtomicOrdering::AcquireRelease: 6346 case llvm::AtomicOrdering::SequentiallyConsistent: 6347 CGF.CGM.getOpenMPRuntime().emitFlush( 6348 CGF, std::nullopt, Loc, llvm::AtomicOrdering::AcquireRelease); 6349 break; 6350 case llvm::AtomicOrdering::Monotonic: 6351 break; 6352 case llvm::AtomicOrdering::NotAtomic: 6353 case llvm::AtomicOrdering::Unordered: 6354 llvm_unreachable("Unexpected ordering."); 6355 } 6356 } 6357 } 6358 6359 static void emitOMPAtomicCompareExpr(CodeGenFunction &CGF, 6360 llvm::AtomicOrdering AO, const Expr *X, 6361 const Expr *V, const Expr *R, 6362 const Expr *E, const Expr *D, 6363 const Expr *CE, bool IsXBinopExpr, 6364 bool IsPostfixUpdate, bool IsFailOnly, 6365 SourceLocation Loc) { 6366 llvm::OpenMPIRBuilder &OMPBuilder = 6367 CGF.CGM.getOpenMPRuntime().getOMPBuilder(); 6368 6369 OMPAtomicCompareOp Op; 6370 assert(isa<BinaryOperator>(CE) && "CE is not a BinaryOperator"); 6371 switch (cast<BinaryOperator>(CE)->getOpcode()) { 6372 case BO_EQ: 6373 Op = OMPAtomicCompareOp::EQ; 6374 break; 6375 case BO_LT: 6376 Op = OMPAtomicCompareOp::MIN; 6377 break; 6378 case BO_GT: 6379 Op = OMPAtomicCompareOp::MAX; 6380 break; 6381 default: 6382 llvm_unreachable("unsupported atomic compare binary operator"); 6383 } 6384 6385 LValue XLVal = CGF.EmitLValue(X); 6386 Address XAddr = XLVal.getAddress(CGF); 6387 6388 auto EmitRValueWithCastIfNeeded = [&CGF, Loc](const Expr *X, const Expr *E) { 6389 if (X->getType() == E->getType()) 6390 return CGF.EmitScalarExpr(E); 6391 const Expr *NewE = E->IgnoreImplicitAsWritten(); 6392 llvm::Value *V = CGF.EmitScalarExpr(NewE); 6393 if (NewE->getType() == X->getType()) 6394 return V; 6395 return CGF.EmitScalarConversion(V, NewE->getType(), X->getType(), Loc); 6396 }; 6397 6398 llvm::Value *EVal = EmitRValueWithCastIfNeeded(X, E); 6399 llvm::Value *DVal = D ? EmitRValueWithCastIfNeeded(X, D) : nullptr; 6400 if (auto *CI = dyn_cast<llvm::ConstantInt>(EVal)) 6401 EVal = CGF.Builder.CreateIntCast( 6402 CI, XLVal.getAddress(CGF).getElementType(), 6403 E->getType()->hasSignedIntegerRepresentation()); 6404 if (DVal) 6405 if (auto *CI = dyn_cast<llvm::ConstantInt>(DVal)) 6406 DVal = CGF.Builder.CreateIntCast( 6407 CI, XLVal.getAddress(CGF).getElementType(), 6408 D->getType()->hasSignedIntegerRepresentation()); 6409 6410 llvm::OpenMPIRBuilder::AtomicOpValue XOpVal{ 6411 XAddr.getPointer(), XAddr.getElementType(), 6412 X->getType()->hasSignedIntegerRepresentation(), 6413 X->getType().isVolatileQualified()}; 6414 llvm::OpenMPIRBuilder::AtomicOpValue VOpVal, ROpVal; 6415 if (V) { 6416 LValue LV = CGF.EmitLValue(V); 6417 Address Addr = LV.getAddress(CGF); 6418 VOpVal = {Addr.getPointer(), Addr.getElementType(), 6419 V->getType()->hasSignedIntegerRepresentation(), 6420 V->getType().isVolatileQualified()}; 6421 } 6422 if (R) { 6423 LValue LV = CGF.EmitLValue(R); 6424 Address Addr = LV.getAddress(CGF); 6425 ROpVal = {Addr.getPointer(), Addr.getElementType(), 6426 R->getType()->hasSignedIntegerRepresentation(), 6427 R->getType().isVolatileQualified()}; 6428 } 6429 6430 CGF.Builder.restoreIP(OMPBuilder.createAtomicCompare( 6431 CGF.Builder, XOpVal, VOpVal, ROpVal, EVal, DVal, AO, Op, IsXBinopExpr, 6432 IsPostfixUpdate, IsFailOnly)); 6433 } 6434 6435 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 6436 llvm::AtomicOrdering AO, bool IsPostfixUpdate, 6437 const Expr *X, const Expr *V, const Expr *R, 6438 const Expr *E, const Expr *UE, const Expr *D, 6439 const Expr *CE, bool IsXLHSInRHSPart, 6440 bool IsFailOnly, SourceLocation Loc) { 6441 switch (Kind) { 6442 case OMPC_read: 6443 emitOMPAtomicReadExpr(CGF, AO, X, V, Loc); 6444 break; 6445 case OMPC_write: 6446 emitOMPAtomicWriteExpr(CGF, AO, X, E, Loc); 6447 break; 6448 case OMPC_unknown: 6449 case OMPC_update: 6450 emitOMPAtomicUpdateExpr(CGF, AO, X, E, UE, IsXLHSInRHSPart, Loc); 6451 break; 6452 case OMPC_capture: 6453 emitOMPAtomicCaptureExpr(CGF, AO, IsPostfixUpdate, V, X, E, UE, 6454 IsXLHSInRHSPart, Loc); 6455 break; 6456 case OMPC_compare: { 6457 emitOMPAtomicCompareExpr(CGF, AO, X, V, R, E, D, CE, IsXLHSInRHSPart, 6458 IsPostfixUpdate, IsFailOnly, Loc); 6459 break; 6460 } 6461 default: 6462 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 6463 } 6464 } 6465 6466 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 6467 llvm::AtomicOrdering AO = llvm::AtomicOrdering::Monotonic; 6468 bool MemOrderingSpecified = false; 6469 if (S.getSingleClause<OMPSeqCstClause>()) { 6470 AO = llvm::AtomicOrdering::SequentiallyConsistent; 6471 MemOrderingSpecified = true; 6472 } else if (S.getSingleClause<OMPAcqRelClause>()) { 6473 AO = llvm::AtomicOrdering::AcquireRelease; 6474 MemOrderingSpecified = true; 6475 } else if (S.getSingleClause<OMPAcquireClause>()) { 6476 AO = llvm::AtomicOrdering::Acquire; 6477 MemOrderingSpecified = true; 6478 } else if (S.getSingleClause<OMPReleaseClause>()) { 6479 AO = llvm::AtomicOrdering::Release; 6480 MemOrderingSpecified = true; 6481 } else if (S.getSingleClause<OMPRelaxedClause>()) { 6482 AO = llvm::AtomicOrdering::Monotonic; 6483 MemOrderingSpecified = true; 6484 } 6485 llvm::SmallSet<OpenMPClauseKind, 2> KindsEncountered; 6486 OpenMPClauseKind Kind = OMPC_unknown; 6487 for (const OMPClause *C : S.clauses()) { 6488 // Find first clause (skip seq_cst|acq_rel|aqcuire|release|relaxed clause, 6489 // if it is first). 6490 OpenMPClauseKind K = C->getClauseKind(); 6491 if (K == OMPC_seq_cst || K == OMPC_acq_rel || K == OMPC_acquire || 6492 K == OMPC_release || K == OMPC_relaxed || K == OMPC_hint) 6493 continue; 6494 Kind = K; 6495 KindsEncountered.insert(K); 6496 } 6497 // We just need to correct Kind here. No need to set a bool saying it is 6498 // actually compare capture because we can tell from whether V and R are 6499 // nullptr. 6500 if (KindsEncountered.contains(OMPC_compare) && 6501 KindsEncountered.contains(OMPC_capture)) 6502 Kind = OMPC_compare; 6503 if (!MemOrderingSpecified) { 6504 llvm::AtomicOrdering DefaultOrder = 6505 CGM.getOpenMPRuntime().getDefaultMemoryOrdering(); 6506 if (DefaultOrder == llvm::AtomicOrdering::Monotonic || 6507 DefaultOrder == llvm::AtomicOrdering::SequentiallyConsistent || 6508 (DefaultOrder == llvm::AtomicOrdering::AcquireRelease && 6509 Kind == OMPC_capture)) { 6510 AO = DefaultOrder; 6511 } else if (DefaultOrder == llvm::AtomicOrdering::AcquireRelease) { 6512 if (Kind == OMPC_unknown || Kind == OMPC_update || Kind == OMPC_write) { 6513 AO = llvm::AtomicOrdering::Release; 6514 } else if (Kind == OMPC_read) { 6515 assert(Kind == OMPC_read && "Unexpected atomic kind."); 6516 AO = llvm::AtomicOrdering::Acquire; 6517 } 6518 } 6519 } 6520 6521 LexicalScope Scope(*this, S.getSourceRange()); 6522 EmitStopPoint(S.getAssociatedStmt()); 6523 emitOMPAtomicExpr(*this, Kind, AO, S.isPostfixUpdate(), S.getX(), S.getV(), 6524 S.getR(), S.getExpr(), S.getUpdateExpr(), S.getD(), 6525 S.getCondExpr(), S.isXLHSInRHSPart(), S.isFailOnly(), 6526 S.getBeginLoc()); 6527 } 6528 6529 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 6530 const OMPExecutableDirective &S, 6531 const RegionCodeGenTy &CodeGen) { 6532 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 6533 CodeGenModule &CGM = CGF.CGM; 6534 6535 // On device emit this construct as inlined code. 6536 if (CGM.getLangOpts().OpenMPIsDevice) { 6537 OMPLexicalScope Scope(CGF, S, OMPD_target); 6538 CGM.getOpenMPRuntime().emitInlinedDirective( 6539 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6540 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 6541 }); 6542 return; 6543 } 6544 6545 auto LPCRegion = CGOpenMPRuntime::LastprivateConditionalRAII::disable(CGF, S); 6546 llvm::Function *Fn = nullptr; 6547 llvm::Constant *FnID = nullptr; 6548 6549 const Expr *IfCond = nullptr; 6550 // Check for the at most one if clause associated with the target region. 6551 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 6552 if (C->getNameModifier() == OMPD_unknown || 6553 C->getNameModifier() == OMPD_target) { 6554 IfCond = C->getCondition(); 6555 break; 6556 } 6557 } 6558 6559 // Check if we have any device clause associated with the directive. 6560 llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device( 6561 nullptr, OMPC_DEVICE_unknown); 6562 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 6563 Device.setPointerAndInt(C->getDevice(), C->getModifier()); 6564 6565 // Check if we have an if clause whose conditional always evaluates to false 6566 // or if we do not have any targets specified. If so the target region is not 6567 // an offload entry point. 6568 bool IsOffloadEntry = true; 6569 if (IfCond) { 6570 bool Val; 6571 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 6572 IsOffloadEntry = false; 6573 } 6574 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6575 IsOffloadEntry = false; 6576 6577 if (CGM.getLangOpts().OpenMPOffloadMandatory && !IsOffloadEntry) { 6578 unsigned DiagID = CGM.getDiags().getCustomDiagID( 6579 DiagnosticsEngine::Error, 6580 "No offloading entry generated while offloading is mandatory."); 6581 CGM.getDiags().Report(DiagID); 6582 } 6583 6584 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 6585 StringRef ParentName; 6586 // In case we have Ctors/Dtors we use the complete type variant to produce 6587 // the mangling of the device outlined kernel. 6588 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 6589 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 6590 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 6591 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 6592 else 6593 ParentName = 6594 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 6595 6596 // Emit target region as a standalone region. 6597 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 6598 IsOffloadEntry, CodeGen); 6599 OMPLexicalScope Scope(CGF, S, OMPD_task); 6600 auto &&SizeEmitter = 6601 [IsOffloadEntry](CodeGenFunction &CGF, 6602 const OMPLoopDirective &D) -> llvm::Value * { 6603 if (IsOffloadEntry) { 6604 OMPLoopScope(CGF, D); 6605 // Emit calculation of the iterations count. 6606 llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations()); 6607 NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty, 6608 /*isSigned=*/false); 6609 return NumIterations; 6610 } 6611 return nullptr; 6612 }; 6613 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device, 6614 SizeEmitter); 6615 } 6616 6617 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 6618 PrePostActionTy &Action) { 6619 Action.Enter(CGF); 6620 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6621 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6622 CGF.EmitOMPPrivateClause(S, PrivateScope); 6623 (void)PrivateScope.Privatize(); 6624 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6625 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6626 6627 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 6628 CGF.EnsureInsertPoint(); 6629 } 6630 6631 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 6632 StringRef ParentName, 6633 const OMPTargetDirective &S) { 6634 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6635 emitTargetRegion(CGF, S, Action); 6636 }; 6637 llvm::Function *Fn; 6638 llvm::Constant *Addr; 6639 // Emit target region as a standalone region. 6640 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6641 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6642 assert(Fn && Addr && "Target device function emission failed."); 6643 } 6644 6645 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 6646 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6647 emitTargetRegion(CGF, S, Action); 6648 }; 6649 emitCommonOMPTargetDirective(*this, S, CodeGen); 6650 } 6651 6652 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 6653 const OMPExecutableDirective &S, 6654 OpenMPDirectiveKind InnermostKind, 6655 const RegionCodeGenTy &CodeGen) { 6656 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 6657 llvm::Function *OutlinedFn = 6658 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 6659 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 6660 6661 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 6662 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 6663 if (NT || TL) { 6664 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 6665 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 6666 6667 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 6668 S.getBeginLoc()); 6669 } 6670 6671 OMPTeamsScope Scope(CGF, S); 6672 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 6673 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 6674 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 6675 CapturedVars); 6676 } 6677 6678 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 6679 // Emit teams region as a standalone region. 6680 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6681 Action.Enter(CGF); 6682 OMPPrivateScope PrivateScope(CGF); 6683 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6684 CGF.EmitOMPPrivateClause(S, PrivateScope); 6685 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6686 (void)PrivateScope.Privatize(); 6687 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 6688 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6689 }; 6690 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 6691 emitPostUpdateForReductionClause(*this, S, 6692 [](CodeGenFunction &) { return nullptr; }); 6693 } 6694 6695 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 6696 const OMPTargetTeamsDirective &S) { 6697 auto *CS = S.getCapturedStmt(OMPD_teams); 6698 Action.Enter(CGF); 6699 // Emit teams region as a standalone region. 6700 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 6701 Action.Enter(CGF); 6702 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6703 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6704 CGF.EmitOMPPrivateClause(S, PrivateScope); 6705 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6706 (void)PrivateScope.Privatize(); 6707 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6708 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6709 CGF.EmitStmt(CS->getCapturedStmt()); 6710 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6711 }; 6712 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 6713 emitPostUpdateForReductionClause(CGF, S, 6714 [](CodeGenFunction &) { return nullptr; }); 6715 } 6716 6717 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 6718 CodeGenModule &CGM, StringRef ParentName, 6719 const OMPTargetTeamsDirective &S) { 6720 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6721 emitTargetTeamsRegion(CGF, Action, S); 6722 }; 6723 llvm::Function *Fn; 6724 llvm::Constant *Addr; 6725 // Emit target region as a standalone region. 6726 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6727 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6728 assert(Fn && Addr && "Target device function emission failed."); 6729 } 6730 6731 void CodeGenFunction::EmitOMPTargetTeamsDirective( 6732 const OMPTargetTeamsDirective &S) { 6733 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6734 emitTargetTeamsRegion(CGF, Action, S); 6735 }; 6736 emitCommonOMPTargetDirective(*this, S, CodeGen); 6737 } 6738 6739 static void 6740 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 6741 const OMPTargetTeamsDistributeDirective &S) { 6742 Action.Enter(CGF); 6743 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6744 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6745 }; 6746 6747 // Emit teams region as a standalone region. 6748 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6749 PrePostActionTy &Action) { 6750 Action.Enter(CGF); 6751 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6752 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6753 (void)PrivateScope.Privatize(); 6754 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6755 CodeGenDistribute); 6756 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6757 }; 6758 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 6759 emitPostUpdateForReductionClause(CGF, S, 6760 [](CodeGenFunction &) { return nullptr; }); 6761 } 6762 6763 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 6764 CodeGenModule &CGM, StringRef ParentName, 6765 const OMPTargetTeamsDistributeDirective &S) { 6766 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6767 emitTargetTeamsDistributeRegion(CGF, Action, S); 6768 }; 6769 llvm::Function *Fn; 6770 llvm::Constant *Addr; 6771 // Emit target region as a standalone region. 6772 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6773 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6774 assert(Fn && Addr && "Target device function emission failed."); 6775 } 6776 6777 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 6778 const OMPTargetTeamsDistributeDirective &S) { 6779 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6780 emitTargetTeamsDistributeRegion(CGF, Action, S); 6781 }; 6782 emitCommonOMPTargetDirective(*this, S, CodeGen); 6783 } 6784 6785 static void emitTargetTeamsDistributeSimdRegion( 6786 CodeGenFunction &CGF, PrePostActionTy &Action, 6787 const OMPTargetTeamsDistributeSimdDirective &S) { 6788 Action.Enter(CGF); 6789 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6790 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6791 }; 6792 6793 // Emit teams region as a standalone region. 6794 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6795 PrePostActionTy &Action) { 6796 Action.Enter(CGF); 6797 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6798 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6799 (void)PrivateScope.Privatize(); 6800 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6801 CodeGenDistribute); 6802 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6803 }; 6804 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 6805 emitPostUpdateForReductionClause(CGF, S, 6806 [](CodeGenFunction &) { return nullptr; }); 6807 } 6808 6809 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 6810 CodeGenModule &CGM, StringRef ParentName, 6811 const OMPTargetTeamsDistributeSimdDirective &S) { 6812 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6813 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 6814 }; 6815 llvm::Function *Fn; 6816 llvm::Constant *Addr; 6817 // Emit target region as a standalone region. 6818 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6819 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6820 assert(Fn && Addr && "Target device function emission failed."); 6821 } 6822 6823 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 6824 const OMPTargetTeamsDistributeSimdDirective &S) { 6825 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6826 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 6827 }; 6828 emitCommonOMPTargetDirective(*this, S, CodeGen); 6829 } 6830 6831 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 6832 const OMPTeamsDistributeDirective &S) { 6833 6834 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6835 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6836 }; 6837 6838 // Emit teams region as a standalone region. 6839 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6840 PrePostActionTy &Action) { 6841 Action.Enter(CGF); 6842 OMPPrivateScope PrivateScope(CGF); 6843 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6844 (void)PrivateScope.Privatize(); 6845 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6846 CodeGenDistribute); 6847 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6848 }; 6849 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 6850 emitPostUpdateForReductionClause(*this, S, 6851 [](CodeGenFunction &) { return nullptr; }); 6852 } 6853 6854 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 6855 const OMPTeamsDistributeSimdDirective &S) { 6856 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6857 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6858 }; 6859 6860 // Emit teams region as a standalone region. 6861 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6862 PrePostActionTy &Action) { 6863 Action.Enter(CGF); 6864 OMPPrivateScope PrivateScope(CGF); 6865 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6866 (void)PrivateScope.Privatize(); 6867 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 6868 CodeGenDistribute); 6869 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6870 }; 6871 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 6872 emitPostUpdateForReductionClause(*this, S, 6873 [](CodeGenFunction &) { return nullptr; }); 6874 } 6875 6876 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 6877 const OMPTeamsDistributeParallelForDirective &S) { 6878 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6879 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6880 S.getDistInc()); 6881 }; 6882 6883 // Emit teams region as a standalone region. 6884 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6885 PrePostActionTy &Action) { 6886 Action.Enter(CGF); 6887 OMPPrivateScope PrivateScope(CGF); 6888 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6889 (void)PrivateScope.Privatize(); 6890 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6891 CodeGenDistribute); 6892 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6893 }; 6894 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 6895 emitPostUpdateForReductionClause(*this, S, 6896 [](CodeGenFunction &) { return nullptr; }); 6897 } 6898 6899 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 6900 const OMPTeamsDistributeParallelForSimdDirective &S) { 6901 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6902 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6903 S.getDistInc()); 6904 }; 6905 6906 // Emit teams region as a standalone region. 6907 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6908 PrePostActionTy &Action) { 6909 Action.Enter(CGF); 6910 OMPPrivateScope PrivateScope(CGF); 6911 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6912 (void)PrivateScope.Privatize(); 6913 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 6914 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 6915 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6916 }; 6917 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for_simd, 6918 CodeGen); 6919 emitPostUpdateForReductionClause(*this, S, 6920 [](CodeGenFunction &) { return nullptr; }); 6921 } 6922 6923 void CodeGenFunction::EmitOMPInteropDirective(const OMPInteropDirective &S) { 6924 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 6925 llvm::Value *Device = nullptr; 6926 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6927 Device = EmitScalarExpr(C->getDevice()); 6928 6929 llvm::Value *NumDependences = nullptr; 6930 llvm::Value *DependenceAddress = nullptr; 6931 if (const auto *DC = S.getSingleClause<OMPDependClause>()) { 6932 OMPTaskDataTy::DependData Dependencies(DC->getDependencyKind(), 6933 DC->getModifier()); 6934 Dependencies.DepExprs.append(DC->varlist_begin(), DC->varlist_end()); 6935 std::pair<llvm::Value *, Address> DependencePair = 6936 CGM.getOpenMPRuntime().emitDependClause(*this, Dependencies, 6937 DC->getBeginLoc()); 6938 NumDependences = DependencePair.first; 6939 DependenceAddress = Builder.CreatePointerCast( 6940 DependencePair.second.getPointer(), CGM.Int8PtrTy); 6941 } 6942 6943 assert(!(S.hasClausesOfKind<OMPNowaitClause>() && 6944 !(S.getSingleClause<OMPInitClause>() || 6945 S.getSingleClause<OMPDestroyClause>() || 6946 S.getSingleClause<OMPUseClause>())) && 6947 "OMPNowaitClause clause is used separately in OMPInteropDirective."); 6948 6949 if (const auto *C = S.getSingleClause<OMPInitClause>()) { 6950 llvm::Value *InteropvarPtr = 6951 EmitLValue(C->getInteropVar()).getPointer(*this); 6952 llvm::omp::OMPInteropType InteropType = llvm::omp::OMPInteropType::Unknown; 6953 if (C->getIsTarget()) { 6954 InteropType = llvm::omp::OMPInteropType::Target; 6955 } else { 6956 assert(C->getIsTargetSync() && "Expected interop-type target/targetsync"); 6957 InteropType = llvm::omp::OMPInteropType::TargetSync; 6958 } 6959 OMPBuilder.createOMPInteropInit(Builder, InteropvarPtr, InteropType, Device, 6960 NumDependences, DependenceAddress, 6961 S.hasClausesOfKind<OMPNowaitClause>()); 6962 } else if (const auto *C = S.getSingleClause<OMPDestroyClause>()) { 6963 llvm::Value *InteropvarPtr = 6964 EmitLValue(C->getInteropVar()).getPointer(*this); 6965 OMPBuilder.createOMPInteropDestroy(Builder, InteropvarPtr, Device, 6966 NumDependences, DependenceAddress, 6967 S.hasClausesOfKind<OMPNowaitClause>()); 6968 } else if (const auto *C = S.getSingleClause<OMPUseClause>()) { 6969 llvm::Value *InteropvarPtr = 6970 EmitLValue(C->getInteropVar()).getPointer(*this); 6971 OMPBuilder.createOMPInteropUse(Builder, InteropvarPtr, Device, 6972 NumDependences, DependenceAddress, 6973 S.hasClausesOfKind<OMPNowaitClause>()); 6974 } 6975 } 6976 6977 static void emitTargetTeamsDistributeParallelForRegion( 6978 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 6979 PrePostActionTy &Action) { 6980 Action.Enter(CGF); 6981 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6982 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6983 S.getDistInc()); 6984 }; 6985 6986 // Emit teams region as a standalone region. 6987 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6988 PrePostActionTy &Action) { 6989 Action.Enter(CGF); 6990 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6991 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6992 (void)PrivateScope.Privatize(); 6993 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 6994 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 6995 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6996 }; 6997 6998 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 6999 CodeGenTeams); 7000 emitPostUpdateForReductionClause(CGF, S, 7001 [](CodeGenFunction &) { return nullptr; }); 7002 } 7003 7004 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 7005 CodeGenModule &CGM, StringRef ParentName, 7006 const OMPTargetTeamsDistributeParallelForDirective &S) { 7007 // Emit SPMD target teams distribute parallel for region as a standalone 7008 // region. 7009 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7010 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 7011 }; 7012 llvm::Function *Fn; 7013 llvm::Constant *Addr; 7014 // Emit target region as a standalone region. 7015 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 7016 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 7017 assert(Fn && Addr && "Target device function emission failed."); 7018 } 7019 7020 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 7021 const OMPTargetTeamsDistributeParallelForDirective &S) { 7022 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7023 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 7024 }; 7025 emitCommonOMPTargetDirective(*this, S, CodeGen); 7026 } 7027 7028 static void emitTargetTeamsDistributeParallelForSimdRegion( 7029 CodeGenFunction &CGF, 7030 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 7031 PrePostActionTy &Action) { 7032 Action.Enter(CGF); 7033 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 7034 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 7035 S.getDistInc()); 7036 }; 7037 7038 // Emit teams region as a standalone region. 7039 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 7040 PrePostActionTy &Action) { 7041 Action.Enter(CGF); 7042 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 7043 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 7044 (void)PrivateScope.Privatize(); 7045 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 7046 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 7047 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 7048 }; 7049 7050 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 7051 CodeGenTeams); 7052 emitPostUpdateForReductionClause(CGF, S, 7053 [](CodeGenFunction &) { return nullptr; }); 7054 } 7055 7056 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 7057 CodeGenModule &CGM, StringRef ParentName, 7058 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 7059 // Emit SPMD target teams distribute parallel for simd region as a standalone 7060 // region. 7061 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7062 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 7063 }; 7064 llvm::Function *Fn; 7065 llvm::Constant *Addr; 7066 // Emit target region as a standalone region. 7067 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 7068 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 7069 assert(Fn && Addr && "Target device function emission failed."); 7070 } 7071 7072 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 7073 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 7074 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7075 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 7076 }; 7077 emitCommonOMPTargetDirective(*this, S, CodeGen); 7078 } 7079 7080 void CodeGenFunction::EmitOMPCancellationPointDirective( 7081 const OMPCancellationPointDirective &S) { 7082 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 7083 S.getCancelRegion()); 7084 } 7085 7086 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 7087 const Expr *IfCond = nullptr; 7088 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 7089 if (C->getNameModifier() == OMPD_unknown || 7090 C->getNameModifier() == OMPD_cancel) { 7091 IfCond = C->getCondition(); 7092 break; 7093 } 7094 } 7095 if (CGM.getLangOpts().OpenMPIRBuilder) { 7096 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 7097 // TODO: This check is necessary as we only generate `omp parallel` through 7098 // the OpenMPIRBuilder for now. 7099 if (S.getCancelRegion() == OMPD_parallel || 7100 S.getCancelRegion() == OMPD_sections || 7101 S.getCancelRegion() == OMPD_section) { 7102 llvm::Value *IfCondition = nullptr; 7103 if (IfCond) 7104 IfCondition = EmitScalarExpr(IfCond, 7105 /*IgnoreResultAssign=*/true); 7106 return Builder.restoreIP( 7107 OMPBuilder.createCancel(Builder, IfCondition, S.getCancelRegion())); 7108 } 7109 } 7110 7111 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 7112 S.getCancelRegion()); 7113 } 7114 7115 CodeGenFunction::JumpDest 7116 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 7117 if (Kind == OMPD_parallel || Kind == OMPD_task || 7118 Kind == OMPD_target_parallel || Kind == OMPD_taskloop || 7119 Kind == OMPD_master_taskloop || Kind == OMPD_parallel_master_taskloop) 7120 return ReturnBlock; 7121 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 7122 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 7123 Kind == OMPD_distribute_parallel_for || 7124 Kind == OMPD_target_parallel_for || 7125 Kind == OMPD_teams_distribute_parallel_for || 7126 Kind == OMPD_target_teams_distribute_parallel_for); 7127 return OMPCancelStack.getExitBlock(); 7128 } 7129 7130 void CodeGenFunction::EmitOMPUseDevicePtrClause( 7131 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 7132 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 7133 auto OrigVarIt = C.varlist_begin(); 7134 auto InitIt = C.inits().begin(); 7135 for (const Expr *PvtVarIt : C.private_copies()) { 7136 const auto *OrigVD = 7137 cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 7138 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 7139 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 7140 7141 // In order to identify the right initializer we need to match the 7142 // declaration used by the mapping logic. In some cases we may get 7143 // OMPCapturedExprDecl that refers to the original declaration. 7144 const ValueDecl *MatchingVD = OrigVD; 7145 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 7146 // OMPCapturedExprDecl are used to privative fields of the current 7147 // structure. 7148 const auto *ME = cast<MemberExpr>(OED->getInit()); 7149 assert(isa<CXXThisExpr>(ME->getBase()) && 7150 "Base should be the current struct!"); 7151 MatchingVD = ME->getMemberDecl(); 7152 } 7153 7154 // If we don't have information about the current list item, move on to 7155 // the next one. 7156 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 7157 if (InitAddrIt == CaptureDeviceAddrMap.end()) 7158 continue; 7159 7160 // Initialize the temporary initialization variable with the address 7161 // we get from the runtime library. We have to cast the source address 7162 // because it is always a void *. References are materialized in the 7163 // privatization scope, so the initialization here disregards the fact 7164 // the original variable is a reference. 7165 llvm::Type *Ty = ConvertTypeForMem(OrigVD->getType().getNonReferenceType()); 7166 Address InitAddr = Builder.CreateElementBitCast(InitAddrIt->second, Ty); 7167 setAddrOfLocalVar(InitVD, InitAddr); 7168 7169 // Emit private declaration, it will be initialized by the value we 7170 // declaration we just added to the local declarations map. 7171 EmitDecl(*PvtVD); 7172 7173 // The initialization variables reached its purpose in the emission 7174 // of the previous declaration, so we don't need it anymore. 7175 LocalDeclMap.erase(InitVD); 7176 7177 // Return the address of the private variable. 7178 bool IsRegistered = 7179 PrivateScope.addPrivate(OrigVD, GetAddrOfLocalVar(PvtVD)); 7180 assert(IsRegistered && "firstprivate var already registered as private"); 7181 // Silence the warning about unused variable. 7182 (void)IsRegistered; 7183 7184 ++OrigVarIt; 7185 ++InitIt; 7186 } 7187 } 7188 7189 static const VarDecl *getBaseDecl(const Expr *Ref) { 7190 const Expr *Base = Ref->IgnoreParenImpCasts(); 7191 while (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Base)) 7192 Base = OASE->getBase()->IgnoreParenImpCasts(); 7193 while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Base)) 7194 Base = ASE->getBase()->IgnoreParenImpCasts(); 7195 return cast<VarDecl>(cast<DeclRefExpr>(Base)->getDecl()); 7196 } 7197 7198 void CodeGenFunction::EmitOMPUseDeviceAddrClause( 7199 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 7200 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 7201 llvm::SmallDenseSet<CanonicalDeclPtr<const Decl>, 4> Processed; 7202 for (const Expr *Ref : C.varlists()) { 7203 const VarDecl *OrigVD = getBaseDecl(Ref); 7204 if (!Processed.insert(OrigVD).second) 7205 continue; 7206 // In order to identify the right initializer we need to match the 7207 // declaration used by the mapping logic. In some cases we may get 7208 // OMPCapturedExprDecl that refers to the original declaration. 7209 const ValueDecl *MatchingVD = OrigVD; 7210 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 7211 // OMPCapturedExprDecl are used to privative fields of the current 7212 // structure. 7213 const auto *ME = cast<MemberExpr>(OED->getInit()); 7214 assert(isa<CXXThisExpr>(ME->getBase()) && 7215 "Base should be the current struct!"); 7216 MatchingVD = ME->getMemberDecl(); 7217 } 7218 7219 // If we don't have information about the current list item, move on to 7220 // the next one. 7221 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 7222 if (InitAddrIt == CaptureDeviceAddrMap.end()) 7223 continue; 7224 7225 Address PrivAddr = InitAddrIt->getSecond(); 7226 // For declrefs and variable length array need to load the pointer for 7227 // correct mapping, since the pointer to the data was passed to the runtime. 7228 if (isa<DeclRefExpr>(Ref->IgnoreParenImpCasts()) || 7229 MatchingVD->getType()->isArrayType()) { 7230 QualType PtrTy = getContext().getPointerType( 7231 OrigVD->getType().getNonReferenceType()); 7232 PrivAddr = EmitLoadOfPointer( 7233 Builder.CreateElementBitCast(PrivAddr, ConvertTypeForMem(PtrTy)), 7234 PtrTy->castAs<PointerType>()); 7235 } 7236 7237 (void)PrivateScope.addPrivate(OrigVD, PrivAddr); 7238 } 7239 } 7240 7241 // Generate the instructions for '#pragma omp target data' directive. 7242 void CodeGenFunction::EmitOMPTargetDataDirective( 7243 const OMPTargetDataDirective &S) { 7244 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true, 7245 /*SeparateBeginEndCalls=*/true); 7246 7247 // Create a pre/post action to signal the privatization of the device pointer. 7248 // This action can be replaced by the OpenMP runtime code generation to 7249 // deactivate privatization. 7250 bool PrivatizeDevicePointers = false; 7251 class DevicePointerPrivActionTy : public PrePostActionTy { 7252 bool &PrivatizeDevicePointers; 7253 7254 public: 7255 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 7256 : PrivatizeDevicePointers(PrivatizeDevicePointers) {} 7257 void Enter(CodeGenFunction &CGF) override { 7258 PrivatizeDevicePointers = true; 7259 } 7260 }; 7261 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 7262 7263 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 7264 CodeGenFunction &CGF, PrePostActionTy &Action) { 7265 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 7266 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 7267 }; 7268 7269 // Codegen that selects whether to generate the privatization code or not. 7270 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 7271 &InnermostCodeGen](CodeGenFunction &CGF, 7272 PrePostActionTy &Action) { 7273 RegionCodeGenTy RCG(InnermostCodeGen); 7274 PrivatizeDevicePointers = false; 7275 7276 // Call the pre-action to change the status of PrivatizeDevicePointers if 7277 // needed. 7278 Action.Enter(CGF); 7279 7280 if (PrivatizeDevicePointers) { 7281 OMPPrivateScope PrivateScope(CGF); 7282 // Emit all instances of the use_device_ptr clause. 7283 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 7284 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 7285 Info.CaptureDeviceAddrMap); 7286 for (const auto *C : S.getClausesOfKind<OMPUseDeviceAddrClause>()) 7287 CGF.EmitOMPUseDeviceAddrClause(*C, PrivateScope, 7288 Info.CaptureDeviceAddrMap); 7289 (void)PrivateScope.Privatize(); 7290 RCG(CGF); 7291 } else { 7292 OMPLexicalScope Scope(CGF, S, OMPD_unknown); 7293 RCG(CGF); 7294 } 7295 }; 7296 7297 // Forward the provided action to the privatization codegen. 7298 RegionCodeGenTy PrivRCG(PrivCodeGen); 7299 PrivRCG.setAction(Action); 7300 7301 // Notwithstanding the body of the region is emitted as inlined directive, 7302 // we don't use an inline scope as changes in the references inside the 7303 // region are expected to be visible outside, so we do not privative them. 7304 OMPLexicalScope Scope(CGF, S); 7305 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 7306 PrivRCG); 7307 }; 7308 7309 RegionCodeGenTy RCG(CodeGen); 7310 7311 // If we don't have target devices, don't bother emitting the data mapping 7312 // code. 7313 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 7314 RCG(*this); 7315 return; 7316 } 7317 7318 // Check if we have any if clause associated with the directive. 7319 const Expr *IfCond = nullptr; 7320 if (const auto *C = S.getSingleClause<OMPIfClause>()) 7321 IfCond = C->getCondition(); 7322 7323 // Check if we have any device clause associated with the directive. 7324 const Expr *Device = nullptr; 7325 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 7326 Device = C->getDevice(); 7327 7328 // Set the action to signal privatization of device pointers. 7329 RCG.setAction(PrivAction); 7330 7331 // Emit region code. 7332 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 7333 Info); 7334 } 7335 7336 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 7337 const OMPTargetEnterDataDirective &S) { 7338 // If we don't have target devices, don't bother emitting the data mapping 7339 // code. 7340 if (CGM.getLangOpts().OMPTargetTriples.empty()) 7341 return; 7342 7343 // Check if we have any if clause associated with the directive. 7344 const Expr *IfCond = nullptr; 7345 if (const auto *C = S.getSingleClause<OMPIfClause>()) 7346 IfCond = C->getCondition(); 7347 7348 // Check if we have any device clause associated with the directive. 7349 const Expr *Device = nullptr; 7350 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 7351 Device = C->getDevice(); 7352 7353 OMPLexicalScope Scope(*this, S, OMPD_task); 7354 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 7355 } 7356 7357 void CodeGenFunction::EmitOMPTargetExitDataDirective( 7358 const OMPTargetExitDataDirective &S) { 7359 // If we don't have target devices, don't bother emitting the data mapping 7360 // code. 7361 if (CGM.getLangOpts().OMPTargetTriples.empty()) 7362 return; 7363 7364 // Check if we have any if clause associated with the directive. 7365 const Expr *IfCond = nullptr; 7366 if (const auto *C = S.getSingleClause<OMPIfClause>()) 7367 IfCond = C->getCondition(); 7368 7369 // Check if we have any device clause associated with the directive. 7370 const Expr *Device = nullptr; 7371 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 7372 Device = C->getDevice(); 7373 7374 OMPLexicalScope Scope(*this, S, OMPD_task); 7375 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 7376 } 7377 7378 static void emitTargetParallelRegion(CodeGenFunction &CGF, 7379 const OMPTargetParallelDirective &S, 7380 PrePostActionTy &Action) { 7381 // Get the captured statement associated with the 'parallel' region. 7382 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 7383 Action.Enter(CGF); 7384 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 7385 Action.Enter(CGF); 7386 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 7387 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 7388 CGF.EmitOMPPrivateClause(S, PrivateScope); 7389 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 7390 (void)PrivateScope.Privatize(); 7391 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 7392 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 7393 // TODO: Add support for clauses. 7394 CGF.EmitStmt(CS->getCapturedStmt()); 7395 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 7396 }; 7397 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 7398 emitEmptyBoundParameters); 7399 emitPostUpdateForReductionClause(CGF, S, 7400 [](CodeGenFunction &) { return nullptr; }); 7401 } 7402 7403 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 7404 CodeGenModule &CGM, StringRef ParentName, 7405 const OMPTargetParallelDirective &S) { 7406 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7407 emitTargetParallelRegion(CGF, S, Action); 7408 }; 7409 llvm::Function *Fn; 7410 llvm::Constant *Addr; 7411 // Emit target region as a standalone region. 7412 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 7413 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 7414 assert(Fn && Addr && "Target device function emission failed."); 7415 } 7416 7417 void CodeGenFunction::EmitOMPTargetParallelDirective( 7418 const OMPTargetParallelDirective &S) { 7419 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7420 emitTargetParallelRegion(CGF, S, Action); 7421 }; 7422 emitCommonOMPTargetDirective(*this, S, CodeGen); 7423 } 7424 7425 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 7426 const OMPTargetParallelForDirective &S, 7427 PrePostActionTy &Action) { 7428 Action.Enter(CGF); 7429 // Emit directive as a combined directive that consists of two implicit 7430 // directives: 'parallel' with 'for' directive. 7431 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7432 Action.Enter(CGF); 7433 CodeGenFunction::OMPCancelStackRAII CancelRegion( 7434 CGF, OMPD_target_parallel_for, S.hasCancel()); 7435 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 7436 emitDispatchForLoopBounds); 7437 }; 7438 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 7439 emitEmptyBoundParameters); 7440 } 7441 7442 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 7443 CodeGenModule &CGM, StringRef ParentName, 7444 const OMPTargetParallelForDirective &S) { 7445 // Emit SPMD target parallel for region as a standalone region. 7446 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7447 emitTargetParallelForRegion(CGF, S, Action); 7448 }; 7449 llvm::Function *Fn; 7450 llvm::Constant *Addr; 7451 // Emit target region as a standalone region. 7452 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 7453 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 7454 assert(Fn && Addr && "Target device function emission failed."); 7455 } 7456 7457 void CodeGenFunction::EmitOMPTargetParallelForDirective( 7458 const OMPTargetParallelForDirective &S) { 7459 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7460 emitTargetParallelForRegion(CGF, S, Action); 7461 }; 7462 emitCommonOMPTargetDirective(*this, S, CodeGen); 7463 } 7464 7465 static void 7466 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 7467 const OMPTargetParallelForSimdDirective &S, 7468 PrePostActionTy &Action) { 7469 Action.Enter(CGF); 7470 // Emit directive as a combined directive that consists of two implicit 7471 // directives: 'parallel' with 'for' directive. 7472 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7473 Action.Enter(CGF); 7474 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 7475 emitDispatchForLoopBounds); 7476 }; 7477 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 7478 emitEmptyBoundParameters); 7479 } 7480 7481 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 7482 CodeGenModule &CGM, StringRef ParentName, 7483 const OMPTargetParallelForSimdDirective &S) { 7484 // Emit SPMD target parallel for region as a standalone region. 7485 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7486 emitTargetParallelForSimdRegion(CGF, S, Action); 7487 }; 7488 llvm::Function *Fn; 7489 llvm::Constant *Addr; 7490 // Emit target region as a standalone region. 7491 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 7492 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 7493 assert(Fn && Addr && "Target device function emission failed."); 7494 } 7495 7496 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 7497 const OMPTargetParallelForSimdDirective &S) { 7498 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7499 emitTargetParallelForSimdRegion(CGF, S, Action); 7500 }; 7501 emitCommonOMPTargetDirective(*this, S, CodeGen); 7502 } 7503 7504 /// Emit a helper variable and return corresponding lvalue. 7505 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 7506 const ImplicitParamDecl *PVD, 7507 CodeGenFunction::OMPPrivateScope &Privates) { 7508 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 7509 Privates.addPrivate(VDecl, CGF.GetAddrOfLocalVar(PVD)); 7510 } 7511 7512 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 7513 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 7514 // Emit outlined function for task construct. 7515 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 7516 Address CapturedStruct = Address::invalid(); 7517 { 7518 OMPLexicalScope Scope(*this, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 7519 CapturedStruct = GenerateCapturedStmtArgument(*CS); 7520 } 7521 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 7522 const Expr *IfCond = nullptr; 7523 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 7524 if (C->getNameModifier() == OMPD_unknown || 7525 C->getNameModifier() == OMPD_taskloop) { 7526 IfCond = C->getCondition(); 7527 break; 7528 } 7529 } 7530 7531 OMPTaskDataTy Data; 7532 // Check if taskloop must be emitted without taskgroup. 7533 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 7534 // TODO: Check if we should emit tied or untied task. 7535 Data.Tied = true; 7536 // Set scheduling for taskloop 7537 if (const auto *Clause = S.getSingleClause<OMPGrainsizeClause>()) { 7538 // grainsize clause 7539 Data.Schedule.setInt(/*IntVal=*/false); 7540 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 7541 } else if (const auto *Clause = S.getSingleClause<OMPNumTasksClause>()) { 7542 // num_tasks clause 7543 Data.Schedule.setInt(/*IntVal=*/true); 7544 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 7545 } 7546 7547 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 7548 // if (PreCond) { 7549 // for (IV in 0..LastIteration) BODY; 7550 // <Final counter/linear vars updates>; 7551 // } 7552 // 7553 7554 // Emit: if (PreCond) - begin. 7555 // If the condition constant folds and can be elided, avoid emitting the 7556 // whole loop. 7557 bool CondConstant; 7558 llvm::BasicBlock *ContBlock = nullptr; 7559 OMPLoopScope PreInitScope(CGF, S); 7560 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 7561 if (!CondConstant) 7562 return; 7563 } else { 7564 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 7565 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 7566 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 7567 CGF.getProfileCount(&S)); 7568 CGF.EmitBlock(ThenBlock); 7569 CGF.incrementProfileCounter(&S); 7570 } 7571 7572 (void)CGF.EmitOMPLinearClauseInit(S); 7573 7574 OMPPrivateScope LoopScope(CGF); 7575 // Emit helper vars inits. 7576 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 7577 auto *I = CS->getCapturedDecl()->param_begin(); 7578 auto *LBP = std::next(I, LowerBound); 7579 auto *UBP = std::next(I, UpperBound); 7580 auto *STP = std::next(I, Stride); 7581 auto *LIP = std::next(I, LastIter); 7582 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 7583 LoopScope); 7584 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 7585 LoopScope); 7586 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 7587 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 7588 LoopScope); 7589 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 7590 CGF.EmitOMPLinearClause(S, LoopScope); 7591 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 7592 (void)LoopScope.Privatize(); 7593 // Emit the loop iteration variable. 7594 const Expr *IVExpr = S.getIterationVariable(); 7595 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 7596 CGF.EmitVarDecl(*IVDecl); 7597 CGF.EmitIgnoredExpr(S.getInit()); 7598 7599 // Emit the iterations count variable. 7600 // If it is not a variable, Sema decided to calculate iterations count on 7601 // each iteration (e.g., it is foldable into a constant). 7602 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 7603 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 7604 // Emit calculation of the iterations count. 7605 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 7606 } 7607 7608 { 7609 OMPLexicalScope Scope(CGF, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 7610 emitCommonSimdLoop( 7611 CGF, S, 7612 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 7613 if (isOpenMPSimdDirective(S.getDirectiveKind())) 7614 CGF.EmitOMPSimdInit(S); 7615 }, 7616 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 7617 CGF.EmitOMPInnerLoop( 7618 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 7619 [&S](CodeGenFunction &CGF) { 7620 emitOMPLoopBodyWithStopPoint(CGF, S, 7621 CodeGenFunction::JumpDest()); 7622 }, 7623 [](CodeGenFunction &) {}); 7624 }); 7625 } 7626 // Emit: if (PreCond) - end. 7627 if (ContBlock) { 7628 CGF.EmitBranch(ContBlock); 7629 CGF.EmitBlock(ContBlock, true); 7630 } 7631 // Emit final copy of the lastprivate variables if IsLastIter != 0. 7632 if (HasLastprivateClause) { 7633 CGF.EmitOMPLastprivateClauseFinal( 7634 S, isOpenMPSimdDirective(S.getDirectiveKind()), 7635 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 7636 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 7637 (*LIP)->getType(), S.getBeginLoc()))); 7638 } 7639 LoopScope.restoreMap(); 7640 CGF.EmitOMPLinearClauseFinal(S, [LIP, &S](CodeGenFunction &CGF) { 7641 return CGF.Builder.CreateIsNotNull( 7642 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 7643 (*LIP)->getType(), S.getBeginLoc())); 7644 }); 7645 }; 7646 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 7647 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 7648 const OMPTaskDataTy &Data) { 7649 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 7650 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 7651 OMPLoopScope PreInitScope(CGF, S); 7652 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 7653 OutlinedFn, SharedsTy, 7654 CapturedStruct, IfCond, Data); 7655 }; 7656 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 7657 CodeGen); 7658 }; 7659 if (Data.Nogroup) { 7660 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 7661 } else { 7662 CGM.getOpenMPRuntime().emitTaskgroupRegion( 7663 *this, 7664 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 7665 PrePostActionTy &Action) { 7666 Action.Enter(CGF); 7667 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 7668 Data); 7669 }, 7670 S.getBeginLoc()); 7671 } 7672 } 7673 7674 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 7675 auto LPCRegion = 7676 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7677 EmitOMPTaskLoopBasedDirective(S); 7678 } 7679 7680 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 7681 const OMPTaskLoopSimdDirective &S) { 7682 auto LPCRegion = 7683 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7684 OMPLexicalScope Scope(*this, S); 7685 EmitOMPTaskLoopBasedDirective(S); 7686 } 7687 7688 void CodeGenFunction::EmitOMPMasterTaskLoopDirective( 7689 const OMPMasterTaskLoopDirective &S) { 7690 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7691 Action.Enter(CGF); 7692 EmitOMPTaskLoopBasedDirective(S); 7693 }; 7694 auto LPCRegion = 7695 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7696 OMPLexicalScope Scope(*this, S, std::nullopt, /*EmitPreInitStmt=*/false); 7697 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 7698 } 7699 7700 void CodeGenFunction::EmitOMPMasterTaskLoopSimdDirective( 7701 const OMPMasterTaskLoopSimdDirective &S) { 7702 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7703 Action.Enter(CGF); 7704 EmitOMPTaskLoopBasedDirective(S); 7705 }; 7706 auto LPCRegion = 7707 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7708 OMPLexicalScope Scope(*this, S); 7709 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 7710 } 7711 7712 void CodeGenFunction::EmitOMPParallelMasterTaskLoopDirective( 7713 const OMPParallelMasterTaskLoopDirective &S) { 7714 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7715 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 7716 PrePostActionTy &Action) { 7717 Action.Enter(CGF); 7718 CGF.EmitOMPTaskLoopBasedDirective(S); 7719 }; 7720 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 7721 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 7722 S.getBeginLoc()); 7723 }; 7724 auto LPCRegion = 7725 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7726 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop, CodeGen, 7727 emitEmptyBoundParameters); 7728 } 7729 7730 void CodeGenFunction::EmitOMPParallelMasterTaskLoopSimdDirective( 7731 const OMPParallelMasterTaskLoopSimdDirective &S) { 7732 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7733 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 7734 PrePostActionTy &Action) { 7735 Action.Enter(CGF); 7736 CGF.EmitOMPTaskLoopBasedDirective(S); 7737 }; 7738 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 7739 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 7740 S.getBeginLoc()); 7741 }; 7742 auto LPCRegion = 7743 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7744 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop_simd, CodeGen, 7745 emitEmptyBoundParameters); 7746 } 7747 7748 // Generate the instructions for '#pragma omp target update' directive. 7749 void CodeGenFunction::EmitOMPTargetUpdateDirective( 7750 const OMPTargetUpdateDirective &S) { 7751 // If we don't have target devices, don't bother emitting the data mapping 7752 // code. 7753 if (CGM.getLangOpts().OMPTargetTriples.empty()) 7754 return; 7755 7756 // Check if we have any if clause associated with the directive. 7757 const Expr *IfCond = nullptr; 7758 if (const auto *C = S.getSingleClause<OMPIfClause>()) 7759 IfCond = C->getCondition(); 7760 7761 // Check if we have any device clause associated with the directive. 7762 const Expr *Device = nullptr; 7763 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 7764 Device = C->getDevice(); 7765 7766 OMPLexicalScope Scope(*this, S, OMPD_task); 7767 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 7768 } 7769 7770 void CodeGenFunction::EmitOMPGenericLoopDirective( 7771 const OMPGenericLoopDirective &S) { 7772 // Unimplemented, just inline the underlying statement for now. 7773 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7774 // Emit the loop iteration variable. 7775 const Stmt *CS = 7776 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt(); 7777 const auto *ForS = dyn_cast<ForStmt>(CS); 7778 if (ForS && !isa<DeclStmt>(ForS->getInit())) { 7779 OMPPrivateScope LoopScope(CGF); 7780 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 7781 (void)LoopScope.Privatize(); 7782 CGF.EmitStmt(CS); 7783 LoopScope.restoreMap(); 7784 } else { 7785 CGF.EmitStmt(CS); 7786 } 7787 }; 7788 OMPLexicalScope Scope(*this, S, OMPD_unknown); 7789 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_loop, CodeGen); 7790 } 7791 7792 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 7793 const OMPExecutableDirective &D) { 7794 if (const auto *SD = dyn_cast<OMPScanDirective>(&D)) { 7795 EmitOMPScanDirective(*SD); 7796 return; 7797 } 7798 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 7799 return; 7800 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 7801 OMPPrivateScope GlobalsScope(CGF); 7802 if (isOpenMPTaskingDirective(D.getDirectiveKind())) { 7803 // Capture global firstprivates to avoid crash. 7804 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 7805 for (const Expr *Ref : C->varlists()) { 7806 const auto *DRE = cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 7807 if (!DRE) 7808 continue; 7809 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7810 if (!VD || VD->hasLocalStorage()) 7811 continue; 7812 if (!CGF.LocalDeclMap.count(VD)) { 7813 LValue GlobLVal = CGF.EmitLValue(Ref); 7814 GlobalsScope.addPrivate(VD, GlobLVal.getAddress(CGF)); 7815 } 7816 } 7817 } 7818 } 7819 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 7820 (void)GlobalsScope.Privatize(); 7821 ParentLoopDirectiveForScanRegion ScanRegion(CGF, D); 7822 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 7823 } else { 7824 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 7825 for (const Expr *E : LD->counters()) { 7826 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 7827 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 7828 LValue GlobLVal = CGF.EmitLValue(E); 7829 GlobalsScope.addPrivate(VD, GlobLVal.getAddress(CGF)); 7830 } 7831 if (isa<OMPCapturedExprDecl>(VD)) { 7832 // Emit only those that were not explicitly referenced in clauses. 7833 if (!CGF.LocalDeclMap.count(VD)) 7834 CGF.EmitVarDecl(*VD); 7835 } 7836 } 7837 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 7838 if (!C->getNumForLoops()) 7839 continue; 7840 for (unsigned I = LD->getLoopsNumber(), 7841 E = C->getLoopNumIterations().size(); 7842 I < E; ++I) { 7843 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 7844 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 7845 // Emit only those that were not explicitly referenced in clauses. 7846 if (!CGF.LocalDeclMap.count(VD)) 7847 CGF.EmitVarDecl(*VD); 7848 } 7849 } 7850 } 7851 } 7852 (void)GlobalsScope.Privatize(); 7853 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 7854 } 7855 }; 7856 if (D.getDirectiveKind() == OMPD_atomic || 7857 D.getDirectiveKind() == OMPD_critical || 7858 D.getDirectiveKind() == OMPD_section || 7859 D.getDirectiveKind() == OMPD_master || 7860 D.getDirectiveKind() == OMPD_masked) { 7861 EmitStmt(D.getAssociatedStmt()); 7862 } else { 7863 auto LPCRegion = 7864 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, D); 7865 OMPSimdLexicalScope Scope(*this, D); 7866 CGM.getOpenMPRuntime().emitInlinedDirective( 7867 *this, 7868 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 7869 : D.getDirectiveKind(), 7870 CodeGen); 7871 } 7872 // Check for outer lastprivate conditional update. 7873 checkForLastprivateConditionalUpdate(*this, D); 7874 } 7875