1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit OpenMP nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCleanup.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/DeclOpenMP.h" 21 #include "clang/AST/OpenMPClause.h" 22 #include "clang/AST/Stmt.h" 23 #include "clang/AST/StmtOpenMP.h" 24 #include "clang/Basic/OpenMPKinds.h" 25 #include "clang/Basic/PrettyStackTrace.h" 26 #include "llvm/Frontend/OpenMP/OMPConstants.h" 27 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/Support/AtomicOrdering.h" 31 using namespace clang; 32 using namespace CodeGen; 33 using namespace llvm::omp; 34 35 static const VarDecl *getBaseDecl(const Expr *Ref); 36 37 namespace { 38 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 39 /// for captured expressions. 40 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 41 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 42 for (const auto *C : S.clauses()) { 43 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 44 if (const auto *PreInit = 45 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 46 for (const auto *I : PreInit->decls()) { 47 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 48 CGF.EmitVarDecl(cast<VarDecl>(*I)); 49 } else { 50 CodeGenFunction::AutoVarEmission Emission = 51 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 52 CGF.EmitAutoVarCleanups(Emission); 53 } 54 } 55 } 56 } 57 } 58 } 59 CodeGenFunction::OMPPrivateScope InlinedShareds; 60 61 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 62 return CGF.LambdaCaptureFields.lookup(VD) || 63 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 64 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 65 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 66 } 67 68 public: 69 OMPLexicalScope( 70 CodeGenFunction &CGF, const OMPExecutableDirective &S, 71 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 72 const bool EmitPreInitStmt = true) 73 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 74 InlinedShareds(CGF) { 75 if (EmitPreInitStmt) 76 emitPreInitStmt(CGF, S); 77 if (!CapturedRegion.hasValue()) 78 return; 79 assert(S.hasAssociatedStmt() && 80 "Expected associated statement for inlined directive."); 81 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 82 for (const auto &C : CS->captures()) { 83 if (C.capturesVariable() || C.capturesVariableByCopy()) { 84 auto *VD = C.getCapturedVar(); 85 assert(VD == VD->getCanonicalDecl() && 86 "Canonical decl must be captured."); 87 DeclRefExpr DRE( 88 CGF.getContext(), const_cast<VarDecl *>(VD), 89 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 90 InlinedShareds.isGlobalVarCaptured(VD)), 91 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 92 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 93 return CGF.EmitLValue(&DRE).getAddress(CGF); 94 }); 95 } 96 } 97 (void)InlinedShareds.Privatize(); 98 } 99 }; 100 101 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 102 /// for captured expressions. 103 class OMPParallelScope final : public OMPLexicalScope { 104 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 105 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 106 return !(isOpenMPTargetExecutionDirective(Kind) || 107 isOpenMPLoopBoundSharingDirective(Kind)) && 108 isOpenMPParallelDirective(Kind); 109 } 110 111 public: 112 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 113 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 114 EmitPreInitStmt(S)) {} 115 }; 116 117 /// Lexical scope for OpenMP teams construct, that handles correct codegen 118 /// for captured expressions. 119 class OMPTeamsScope final : public OMPLexicalScope { 120 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 121 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 122 return !isOpenMPTargetExecutionDirective(Kind) && 123 isOpenMPTeamsDirective(Kind); 124 } 125 126 public: 127 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 128 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 129 EmitPreInitStmt(S)) {} 130 }; 131 132 /// Private scope for OpenMP loop-based directives, that supports capturing 133 /// of used expression from loop statement. 134 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 135 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 136 CodeGenFunction::OMPMapVars PreCondVars; 137 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 138 for (const auto *E : S.counters()) { 139 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 140 EmittedAsPrivate.insert(VD->getCanonicalDecl()); 141 (void)PreCondVars.setVarAddr( 142 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 143 } 144 // Mark private vars as undefs. 145 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 146 for (const Expr *IRef : C->varlists()) { 147 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 148 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 149 (void)PreCondVars.setVarAddr( 150 CGF, OrigVD, 151 Address(llvm::UndefValue::get( 152 CGF.ConvertTypeForMem(CGF.getContext().getPointerType( 153 OrigVD->getType().getNonReferenceType()))), 154 CGF.getContext().getDeclAlign(OrigVD))); 155 } 156 } 157 } 158 (void)PreCondVars.apply(CGF); 159 // Emit init, __range and __end variables for C++ range loops. 160 const Stmt *Body = 161 S.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 162 for (unsigned Cnt = 0; Cnt < S.getCollapsedNumber(); ++Cnt) { 163 Body = OMPLoopDirective::tryToFindNextInnerLoop( 164 Body, /*TryImperfectlyNestedLoops=*/true); 165 if (auto *For = dyn_cast<ForStmt>(Body)) { 166 Body = For->getBody(); 167 } else { 168 assert(isa<CXXForRangeStmt>(Body) && 169 "Expected canonical for loop or range-based for loop."); 170 auto *CXXFor = cast<CXXForRangeStmt>(Body); 171 if (const Stmt *Init = CXXFor->getInit()) 172 CGF.EmitStmt(Init); 173 CGF.EmitStmt(CXXFor->getRangeStmt()); 174 CGF.EmitStmt(CXXFor->getEndStmt()); 175 Body = CXXFor->getBody(); 176 } 177 } 178 if (const auto *PreInits = cast_or_null<DeclStmt>(S.getPreInits())) { 179 for (const auto *I : PreInits->decls()) 180 CGF.EmitVarDecl(cast<VarDecl>(*I)); 181 } 182 PreCondVars.restore(CGF); 183 } 184 185 public: 186 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 187 : CodeGenFunction::RunCleanupsScope(CGF) { 188 emitPreInitStmt(CGF, S); 189 } 190 }; 191 192 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 193 CodeGenFunction::OMPPrivateScope InlinedShareds; 194 195 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 196 return CGF.LambdaCaptureFields.lookup(VD) || 197 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 198 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 199 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 200 } 201 202 public: 203 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 204 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 205 InlinedShareds(CGF) { 206 for (const auto *C : S.clauses()) { 207 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 208 if (const auto *PreInit = 209 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 210 for (const auto *I : PreInit->decls()) { 211 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 212 CGF.EmitVarDecl(cast<VarDecl>(*I)); 213 } else { 214 CodeGenFunction::AutoVarEmission Emission = 215 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 216 CGF.EmitAutoVarCleanups(Emission); 217 } 218 } 219 } 220 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 221 for (const Expr *E : UDP->varlists()) { 222 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 223 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 224 CGF.EmitVarDecl(*OED); 225 } 226 } else if (const auto *UDP = dyn_cast<OMPUseDeviceAddrClause>(C)) { 227 for (const Expr *E : UDP->varlists()) { 228 const Decl *D = getBaseDecl(E); 229 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 230 CGF.EmitVarDecl(*OED); 231 } 232 } 233 } 234 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 235 CGF.EmitOMPPrivateClause(S, InlinedShareds); 236 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 237 if (const Expr *E = TG->getReductionRef()) 238 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 239 } 240 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 241 while (CS) { 242 for (auto &C : CS->captures()) { 243 if (C.capturesVariable() || C.capturesVariableByCopy()) { 244 auto *VD = C.getCapturedVar(); 245 assert(VD == VD->getCanonicalDecl() && 246 "Canonical decl must be captured."); 247 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), 248 isCapturedVar(CGF, VD) || 249 (CGF.CapturedStmtInfo && 250 InlinedShareds.isGlobalVarCaptured(VD)), 251 VD->getType().getNonReferenceType(), VK_LValue, 252 C.getLocation()); 253 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 254 return CGF.EmitLValue(&DRE).getAddress(CGF); 255 }); 256 } 257 } 258 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 259 } 260 (void)InlinedShareds.Privatize(); 261 } 262 }; 263 264 } // namespace 265 266 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 267 const OMPExecutableDirective &S, 268 const RegionCodeGenTy &CodeGen); 269 270 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 271 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 272 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 273 OrigVD = OrigVD->getCanonicalDecl(); 274 bool IsCaptured = 275 LambdaCaptureFields.lookup(OrigVD) || 276 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 277 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 278 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured, 279 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 280 return EmitLValue(&DRE); 281 } 282 } 283 return EmitLValue(E); 284 } 285 286 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 287 ASTContext &C = getContext(); 288 llvm::Value *Size = nullptr; 289 auto SizeInChars = C.getTypeSizeInChars(Ty); 290 if (SizeInChars.isZero()) { 291 // getTypeSizeInChars() returns 0 for a VLA. 292 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 293 VlaSizePair VlaSize = getVLASize(VAT); 294 Ty = VlaSize.Type; 295 Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) 296 : VlaSize.NumElts; 297 } 298 SizeInChars = C.getTypeSizeInChars(Ty); 299 if (SizeInChars.isZero()) 300 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 301 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 302 } 303 return CGM.getSize(SizeInChars); 304 } 305 306 void CodeGenFunction::GenerateOpenMPCapturedVars( 307 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 308 const RecordDecl *RD = S.getCapturedRecordDecl(); 309 auto CurField = RD->field_begin(); 310 auto CurCap = S.captures().begin(); 311 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 312 E = S.capture_init_end(); 313 I != E; ++I, ++CurField, ++CurCap) { 314 if (CurField->hasCapturedVLAType()) { 315 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 316 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 317 CapturedVars.push_back(Val); 318 } else if (CurCap->capturesThis()) { 319 CapturedVars.push_back(CXXThisValue); 320 } else if (CurCap->capturesVariableByCopy()) { 321 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 322 323 // If the field is not a pointer, we need to save the actual value 324 // and load it as a void pointer. 325 if (!CurField->getType()->isAnyPointerType()) { 326 ASTContext &Ctx = getContext(); 327 Address DstAddr = CreateMemTemp( 328 Ctx.getUIntPtrType(), 329 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 330 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 331 332 llvm::Value *SrcAddrVal = EmitScalarConversion( 333 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 334 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 335 LValue SrcLV = 336 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 337 338 // Store the value using the source type pointer. 339 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 340 341 // Load the value using the destination type pointer. 342 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 343 } 344 CapturedVars.push_back(CV); 345 } else { 346 assert(CurCap->capturesVariable() && "Expected capture by reference."); 347 CapturedVars.push_back(EmitLValue(*I).getAddress(*this).getPointer()); 348 } 349 } 350 } 351 352 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 353 QualType DstType, StringRef Name, 354 LValue AddrLV) { 355 ASTContext &Ctx = CGF.getContext(); 356 357 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 358 AddrLV.getAddress(CGF).getPointer(), Ctx.getUIntPtrType(), 359 Ctx.getPointerType(DstType), Loc); 360 Address TmpAddr = 361 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 362 .getAddress(CGF); 363 return TmpAddr; 364 } 365 366 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 367 if (T->isLValueReferenceType()) 368 return C.getLValueReferenceType( 369 getCanonicalParamType(C, T.getNonReferenceType()), 370 /*SpelledAsLValue=*/false); 371 if (T->isPointerType()) 372 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 373 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 374 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 375 return getCanonicalParamType(C, VLA->getElementType()); 376 if (!A->isVariablyModifiedType()) 377 return C.getCanonicalType(T); 378 } 379 return C.getCanonicalParamType(T); 380 } 381 382 namespace { 383 /// Contains required data for proper outlined function codegen. 384 struct FunctionOptions { 385 /// Captured statement for which the function is generated. 386 const CapturedStmt *S = nullptr; 387 /// true if cast to/from UIntPtr is required for variables captured by 388 /// value. 389 const bool UIntPtrCastRequired = true; 390 /// true if only casted arguments must be registered as local args or VLA 391 /// sizes. 392 const bool RegisterCastedArgsOnly = false; 393 /// Name of the generated function. 394 const StringRef FunctionName; 395 /// Location of the non-debug version of the outlined function. 396 SourceLocation Loc; 397 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 398 bool RegisterCastedArgsOnly, StringRef FunctionName, 399 SourceLocation Loc) 400 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 401 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 402 FunctionName(FunctionName), Loc(Loc) {} 403 }; 404 } // namespace 405 406 static llvm::Function *emitOutlinedFunctionPrologue( 407 CodeGenFunction &CGF, FunctionArgList &Args, 408 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 409 &LocalAddrs, 410 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 411 &VLASizes, 412 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 413 const CapturedDecl *CD = FO.S->getCapturedDecl(); 414 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 415 assert(CD->hasBody() && "missing CapturedDecl body"); 416 417 CXXThisValue = nullptr; 418 // Build the argument list. 419 CodeGenModule &CGM = CGF.CGM; 420 ASTContext &Ctx = CGM.getContext(); 421 FunctionArgList TargetArgs; 422 Args.append(CD->param_begin(), 423 std::next(CD->param_begin(), CD->getContextParamPosition())); 424 TargetArgs.append( 425 CD->param_begin(), 426 std::next(CD->param_begin(), CD->getContextParamPosition())); 427 auto I = FO.S->captures().begin(); 428 FunctionDecl *DebugFunctionDecl = nullptr; 429 if (!FO.UIntPtrCastRequired) { 430 FunctionProtoType::ExtProtoInfo EPI; 431 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI); 432 DebugFunctionDecl = FunctionDecl::Create( 433 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 434 SourceLocation(), DeclarationName(), FunctionTy, 435 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 436 /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false); 437 } 438 for (const FieldDecl *FD : RD->fields()) { 439 QualType ArgType = FD->getType(); 440 IdentifierInfo *II = nullptr; 441 VarDecl *CapVar = nullptr; 442 443 // If this is a capture by copy and the type is not a pointer, the outlined 444 // function argument type should be uintptr and the value properly casted to 445 // uintptr. This is necessary given that the runtime library is only able to 446 // deal with pointers. We can pass in the same way the VLA type sizes to the 447 // outlined function. 448 if (FO.UIntPtrCastRequired && 449 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 450 I->capturesVariableArrayType())) 451 ArgType = Ctx.getUIntPtrType(); 452 453 if (I->capturesVariable() || I->capturesVariableByCopy()) { 454 CapVar = I->getCapturedVar(); 455 II = CapVar->getIdentifier(); 456 } else if (I->capturesThis()) { 457 II = &Ctx.Idents.get("this"); 458 } else { 459 assert(I->capturesVariableArrayType()); 460 II = &Ctx.Idents.get("vla"); 461 } 462 if (ArgType->isVariablyModifiedType()) 463 ArgType = getCanonicalParamType(Ctx, ArgType); 464 VarDecl *Arg; 465 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 466 Arg = ParmVarDecl::Create( 467 Ctx, DebugFunctionDecl, 468 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 469 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 470 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 471 } else { 472 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 473 II, ArgType, ImplicitParamDecl::Other); 474 } 475 Args.emplace_back(Arg); 476 // Do not cast arguments if we emit function with non-original types. 477 TargetArgs.emplace_back( 478 FO.UIntPtrCastRequired 479 ? Arg 480 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 481 ++I; 482 } 483 Args.append( 484 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 485 CD->param_end()); 486 TargetArgs.append( 487 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 488 CD->param_end()); 489 490 // Create the function declaration. 491 const CGFunctionInfo &FuncInfo = 492 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 493 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 494 495 auto *F = 496 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 497 FO.FunctionName, &CGM.getModule()); 498 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 499 if (CD->isNothrow()) 500 F->setDoesNotThrow(); 501 F->setDoesNotRecurse(); 502 503 // Generate the function. 504 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 505 FO.UIntPtrCastRequired ? FO.Loc : FO.S->getBeginLoc(), 506 FO.UIntPtrCastRequired ? FO.Loc 507 : CD->getBody()->getBeginLoc()); 508 unsigned Cnt = CD->getContextParamPosition(); 509 I = FO.S->captures().begin(); 510 for (const FieldDecl *FD : RD->fields()) { 511 // Do not map arguments if we emit function with non-original types. 512 Address LocalAddr(Address::invalid()); 513 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 514 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 515 TargetArgs[Cnt]); 516 } else { 517 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 518 } 519 // If we are capturing a pointer by copy we don't need to do anything, just 520 // use the value that we get from the arguments. 521 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 522 const VarDecl *CurVD = I->getCapturedVar(); 523 if (!FO.RegisterCastedArgsOnly) 524 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 525 ++Cnt; 526 ++I; 527 continue; 528 } 529 530 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 531 AlignmentSource::Decl); 532 if (FD->hasCapturedVLAType()) { 533 if (FO.UIntPtrCastRequired) { 534 ArgLVal = CGF.MakeAddrLValue( 535 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 536 Args[Cnt]->getName(), ArgLVal), 537 FD->getType(), AlignmentSource::Decl); 538 } 539 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 540 const VariableArrayType *VAT = FD->getCapturedVLAType(); 541 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 542 } else if (I->capturesVariable()) { 543 const VarDecl *Var = I->getCapturedVar(); 544 QualType VarTy = Var->getType(); 545 Address ArgAddr = ArgLVal.getAddress(CGF); 546 if (ArgLVal.getType()->isLValueReferenceType()) { 547 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 548 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 549 assert(ArgLVal.getType()->isPointerType()); 550 ArgAddr = CGF.EmitLoadOfPointer( 551 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 552 } 553 if (!FO.RegisterCastedArgsOnly) { 554 LocalAddrs.insert( 555 {Args[Cnt], 556 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 557 } 558 } else if (I->capturesVariableByCopy()) { 559 assert(!FD->getType()->isAnyPointerType() && 560 "Not expecting a captured pointer."); 561 const VarDecl *Var = I->getCapturedVar(); 562 LocalAddrs.insert({Args[Cnt], 563 {Var, FO.UIntPtrCastRequired 564 ? castValueFromUintptr( 565 CGF, I->getLocation(), FD->getType(), 566 Args[Cnt]->getName(), ArgLVal) 567 : ArgLVal.getAddress(CGF)}}); 568 } else { 569 // If 'this' is captured, load it into CXXThisValue. 570 assert(I->capturesThis()); 571 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 572 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress(CGF)}}); 573 } 574 ++Cnt; 575 ++I; 576 } 577 578 return F; 579 } 580 581 llvm::Function * 582 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 583 SourceLocation Loc) { 584 assert( 585 CapturedStmtInfo && 586 "CapturedStmtInfo should be set when generating the captured function"); 587 const CapturedDecl *CD = S.getCapturedDecl(); 588 // Build the argument list. 589 bool NeedWrapperFunction = 590 getDebugInfo() && CGM.getCodeGenOpts().hasReducedDebugInfo(); 591 FunctionArgList Args; 592 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 593 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 594 SmallString<256> Buffer; 595 llvm::raw_svector_ostream Out(Buffer); 596 Out << CapturedStmtInfo->getHelperName(); 597 if (NeedWrapperFunction) 598 Out << "_debug__"; 599 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 600 Out.str(), Loc); 601 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 602 VLASizes, CXXThisValue, FO); 603 CodeGenFunction::OMPPrivateScope LocalScope(*this); 604 for (const auto &LocalAddrPair : LocalAddrs) { 605 if (LocalAddrPair.second.first) { 606 LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() { 607 return LocalAddrPair.second.second; 608 }); 609 } 610 } 611 (void)LocalScope.Privatize(); 612 for (const auto &VLASizePair : VLASizes) 613 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 614 PGO.assignRegionCounters(GlobalDecl(CD), F); 615 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 616 (void)LocalScope.ForceCleanup(); 617 FinishFunction(CD->getBodyRBrace()); 618 if (!NeedWrapperFunction) 619 return F; 620 621 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 622 /*RegisterCastedArgsOnly=*/true, 623 CapturedStmtInfo->getHelperName(), Loc); 624 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 625 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 626 Args.clear(); 627 LocalAddrs.clear(); 628 VLASizes.clear(); 629 llvm::Function *WrapperF = 630 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 631 WrapperCGF.CXXThisValue, WrapperFO); 632 llvm::SmallVector<llvm::Value *, 4> CallArgs; 633 for (const auto *Arg : Args) { 634 llvm::Value *CallArg; 635 auto I = LocalAddrs.find(Arg); 636 if (I != LocalAddrs.end()) { 637 LValue LV = WrapperCGF.MakeAddrLValue( 638 I->second.second, 639 I->second.first ? I->second.first->getType() : Arg->getType(), 640 AlignmentSource::Decl); 641 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 642 } else { 643 auto EI = VLASizes.find(Arg); 644 if (EI != VLASizes.end()) { 645 CallArg = EI->second.second; 646 } else { 647 LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 648 Arg->getType(), 649 AlignmentSource::Decl); 650 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 651 } 652 } 653 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 654 } 655 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, Loc, F, CallArgs); 656 WrapperCGF.FinishFunction(); 657 return WrapperF; 658 } 659 660 //===----------------------------------------------------------------------===// 661 // OpenMP Directive Emission 662 //===----------------------------------------------------------------------===// 663 void CodeGenFunction::EmitOMPAggregateAssign( 664 Address DestAddr, Address SrcAddr, QualType OriginalType, 665 const llvm::function_ref<void(Address, Address)> CopyGen) { 666 // Perform element-by-element initialization. 667 QualType ElementTy; 668 669 // Drill down to the base element type on both arrays. 670 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 671 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 672 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 673 674 llvm::Value *SrcBegin = SrcAddr.getPointer(); 675 llvm::Value *DestBegin = DestAddr.getPointer(); 676 // Cast from pointer to array type to pointer to single element. 677 llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements); 678 // The basic structure here is a while-do loop. 679 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 680 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 681 llvm::Value *IsEmpty = 682 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 683 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 684 685 // Enter the loop body, making that address the current address. 686 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 687 EmitBlock(BodyBB); 688 689 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 690 691 llvm::PHINode *SrcElementPHI = 692 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 693 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 694 Address SrcElementCurrent = 695 Address(SrcElementPHI, 696 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 697 698 llvm::PHINode *DestElementPHI = 699 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 700 DestElementPHI->addIncoming(DestBegin, EntryBB); 701 Address DestElementCurrent = 702 Address(DestElementPHI, 703 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 704 705 // Emit copy. 706 CopyGen(DestElementCurrent, SrcElementCurrent); 707 708 // Shift the address forward by one element. 709 llvm::Value *DestElementNext = Builder.CreateConstGEP1_32( 710 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 711 llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32( 712 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 713 // Check whether we've reached the end. 714 llvm::Value *Done = 715 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 716 Builder.CreateCondBr(Done, DoneBB, BodyBB); 717 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 718 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 719 720 // Done. 721 EmitBlock(DoneBB, /*IsFinished=*/true); 722 } 723 724 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 725 Address SrcAddr, const VarDecl *DestVD, 726 const VarDecl *SrcVD, const Expr *Copy) { 727 if (OriginalType->isArrayType()) { 728 const auto *BO = dyn_cast<BinaryOperator>(Copy); 729 if (BO && BO->getOpcode() == BO_Assign) { 730 // Perform simple memcpy for simple copying. 731 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 732 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 733 EmitAggregateAssign(Dest, Src, OriginalType); 734 } else { 735 // For arrays with complex element types perform element by element 736 // copying. 737 EmitOMPAggregateAssign( 738 DestAddr, SrcAddr, OriginalType, 739 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 740 // Working with the single array element, so have to remap 741 // destination and source variables to corresponding array 742 // elements. 743 CodeGenFunction::OMPPrivateScope Remap(*this); 744 Remap.addPrivate(DestVD, [DestElement]() { return DestElement; }); 745 Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; }); 746 (void)Remap.Privatize(); 747 EmitIgnoredExpr(Copy); 748 }); 749 } 750 } else { 751 // Remap pseudo source variable to private copy. 752 CodeGenFunction::OMPPrivateScope Remap(*this); 753 Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; }); 754 Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; }); 755 (void)Remap.Privatize(); 756 // Emit copying of the whole variable. 757 EmitIgnoredExpr(Copy); 758 } 759 } 760 761 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 762 OMPPrivateScope &PrivateScope) { 763 if (!HaveInsertPoint()) 764 return false; 765 bool DeviceConstTarget = 766 getLangOpts().OpenMPIsDevice && 767 isOpenMPTargetExecutionDirective(D.getDirectiveKind()); 768 bool FirstprivateIsLastprivate = false; 769 llvm::DenseMap<const VarDecl *, OpenMPLastprivateModifier> Lastprivates; 770 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 771 for (const auto *D : C->varlists()) 772 Lastprivates.try_emplace( 773 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl(), 774 C->getKind()); 775 } 776 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 777 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 778 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 779 // Force emission of the firstprivate copy if the directive does not emit 780 // outlined function, like omp for, omp simd, omp distribute etc. 781 bool MustEmitFirstprivateCopy = 782 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 783 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 784 const auto *IRef = C->varlist_begin(); 785 const auto *InitsRef = C->inits().begin(); 786 for (const Expr *IInit : C->private_copies()) { 787 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 788 bool ThisFirstprivateIsLastprivate = 789 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 790 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 791 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 792 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 793 !FD->getType()->isReferenceType() && 794 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 795 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 796 ++IRef; 797 ++InitsRef; 798 continue; 799 } 800 // Do not emit copy for firstprivate constant variables in target regions, 801 // captured by reference. 802 if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) && 803 FD && FD->getType()->isReferenceType() && 804 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 805 (void)CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(*this, 806 OrigVD); 807 ++IRef; 808 ++InitsRef; 809 continue; 810 } 811 FirstprivateIsLastprivate = 812 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 813 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 814 const auto *VDInit = 815 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 816 bool IsRegistered; 817 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 818 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 819 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 820 LValue OriginalLVal; 821 if (!FD) { 822 // Check if the firstprivate variable is just a constant value. 823 ConstantEmission CE = tryEmitAsConstant(&DRE); 824 if (CE && !CE.isReference()) { 825 // Constant value, no need to create a copy. 826 ++IRef; 827 ++InitsRef; 828 continue; 829 } 830 if (CE && CE.isReference()) { 831 OriginalLVal = CE.getReferenceLValue(*this, &DRE); 832 } else { 833 assert(!CE && "Expected non-constant firstprivate."); 834 OriginalLVal = EmitLValue(&DRE); 835 } 836 } else { 837 OriginalLVal = EmitLValue(&DRE); 838 } 839 QualType Type = VD->getType(); 840 if (Type->isArrayType()) { 841 // Emit VarDecl with copy init for arrays. 842 // Get the address of the original variable captured in current 843 // captured region. 844 IsRegistered = PrivateScope.addPrivate( 845 OrigVD, [this, VD, Type, OriginalLVal, VDInit]() { 846 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 847 const Expr *Init = VD->getInit(); 848 if (!isa<CXXConstructExpr>(Init) || 849 isTrivialInitializer(Init)) { 850 // Perform simple memcpy. 851 LValue Dest = 852 MakeAddrLValue(Emission.getAllocatedAddress(), Type); 853 EmitAggregateAssign(Dest, OriginalLVal, Type); 854 } else { 855 EmitOMPAggregateAssign( 856 Emission.getAllocatedAddress(), 857 OriginalLVal.getAddress(*this), Type, 858 [this, VDInit, Init](Address DestElement, 859 Address SrcElement) { 860 // Clean up any temporaries needed by the 861 // initialization. 862 RunCleanupsScope InitScope(*this); 863 // Emit initialization for single element. 864 setAddrOfLocalVar(VDInit, SrcElement); 865 EmitAnyExprToMem(Init, DestElement, 866 Init->getType().getQualifiers(), 867 /*IsInitializer*/ false); 868 LocalDeclMap.erase(VDInit); 869 }); 870 } 871 EmitAutoVarCleanups(Emission); 872 return Emission.getAllocatedAddress(); 873 }); 874 } else { 875 Address OriginalAddr = OriginalLVal.getAddress(*this); 876 IsRegistered = 877 PrivateScope.addPrivate(OrigVD, [this, VDInit, OriginalAddr, VD, 878 ThisFirstprivateIsLastprivate, 879 OrigVD, &Lastprivates, IRef]() { 880 // Emit private VarDecl with copy init. 881 // Remap temp VDInit variable to the address of the original 882 // variable (for proper handling of captured global variables). 883 setAddrOfLocalVar(VDInit, OriginalAddr); 884 EmitDecl(*VD); 885 LocalDeclMap.erase(VDInit); 886 if (ThisFirstprivateIsLastprivate && 887 Lastprivates[OrigVD->getCanonicalDecl()] == 888 OMPC_LASTPRIVATE_conditional) { 889 // Create/init special variable for lastprivate conditionals. 890 Address VDAddr = 891 CGM.getOpenMPRuntime().emitLastprivateConditionalInit( 892 *this, OrigVD); 893 llvm::Value *V = EmitLoadOfScalar( 894 MakeAddrLValue(GetAddrOfLocalVar(VD), (*IRef)->getType(), 895 AlignmentSource::Decl), 896 (*IRef)->getExprLoc()); 897 EmitStoreOfScalar(V, 898 MakeAddrLValue(VDAddr, (*IRef)->getType(), 899 AlignmentSource::Decl)); 900 LocalDeclMap.erase(VD); 901 setAddrOfLocalVar(VD, VDAddr); 902 return VDAddr; 903 } 904 return GetAddrOfLocalVar(VD); 905 }); 906 } 907 assert(IsRegistered && 908 "firstprivate var already registered as private"); 909 // Silence the warning about unused variable. 910 (void)IsRegistered; 911 } 912 ++IRef; 913 ++InitsRef; 914 } 915 } 916 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 917 } 918 919 void CodeGenFunction::EmitOMPPrivateClause( 920 const OMPExecutableDirective &D, 921 CodeGenFunction::OMPPrivateScope &PrivateScope) { 922 if (!HaveInsertPoint()) 923 return; 924 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 925 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 926 auto IRef = C->varlist_begin(); 927 for (const Expr *IInit : C->private_copies()) { 928 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 929 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 930 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 931 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 932 // Emit private VarDecl with copy init. 933 EmitDecl(*VD); 934 return GetAddrOfLocalVar(VD); 935 }); 936 assert(IsRegistered && "private var already registered as private"); 937 // Silence the warning about unused variable. 938 (void)IsRegistered; 939 } 940 ++IRef; 941 } 942 } 943 } 944 945 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 946 if (!HaveInsertPoint()) 947 return false; 948 // threadprivate_var1 = master_threadprivate_var1; 949 // operator=(threadprivate_var2, master_threadprivate_var2); 950 // ... 951 // __kmpc_barrier(&loc, global_tid); 952 llvm::DenseSet<const VarDecl *> CopiedVars; 953 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 954 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 955 auto IRef = C->varlist_begin(); 956 auto ISrcRef = C->source_exprs().begin(); 957 auto IDestRef = C->destination_exprs().begin(); 958 for (const Expr *AssignOp : C->assignment_ops()) { 959 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 960 QualType Type = VD->getType(); 961 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 962 // Get the address of the master variable. If we are emitting code with 963 // TLS support, the address is passed from the master as field in the 964 // captured declaration. 965 Address MasterAddr = Address::invalid(); 966 if (getLangOpts().OpenMPUseTLS && 967 getContext().getTargetInfo().isTLSSupported()) { 968 assert(CapturedStmtInfo->lookup(VD) && 969 "Copyin threadprivates should have been captured!"); 970 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true, 971 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 972 MasterAddr = EmitLValue(&DRE).getAddress(*this); 973 LocalDeclMap.erase(VD); 974 } else { 975 MasterAddr = 976 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 977 : CGM.GetAddrOfGlobal(VD), 978 getContext().getDeclAlign(VD)); 979 } 980 // Get the address of the threadprivate variable. 981 Address PrivateAddr = EmitLValue(*IRef).getAddress(*this); 982 if (CopiedVars.size() == 1) { 983 // At first check if current thread is a master thread. If it is, no 984 // need to copy data. 985 CopyBegin = createBasicBlock("copyin.not.master"); 986 CopyEnd = createBasicBlock("copyin.not.master.end"); 987 Builder.CreateCondBr( 988 Builder.CreateICmpNE( 989 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 990 Builder.CreatePtrToInt(PrivateAddr.getPointer(), 991 CGM.IntPtrTy)), 992 CopyBegin, CopyEnd); 993 EmitBlock(CopyBegin); 994 } 995 const auto *SrcVD = 996 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 997 const auto *DestVD = 998 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 999 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 1000 } 1001 ++IRef; 1002 ++ISrcRef; 1003 ++IDestRef; 1004 } 1005 } 1006 if (CopyEnd) { 1007 // Exit out of copying procedure for non-master thread. 1008 EmitBlock(CopyEnd, /*IsFinished=*/true); 1009 return true; 1010 } 1011 return false; 1012 } 1013 1014 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 1015 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 1016 if (!HaveInsertPoint()) 1017 return false; 1018 bool HasAtLeastOneLastprivate = false; 1019 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1020 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1021 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1022 for (const Expr *C : LoopDirective->counters()) { 1023 SIMDLCVs.insert( 1024 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1025 } 1026 } 1027 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1028 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1029 HasAtLeastOneLastprivate = true; 1030 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 1031 !getLangOpts().OpenMPSimd) 1032 break; 1033 const auto *IRef = C->varlist_begin(); 1034 const auto *IDestRef = C->destination_exprs().begin(); 1035 for (const Expr *IInit : C->private_copies()) { 1036 // Keep the address of the original variable for future update at the end 1037 // of the loop. 1038 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1039 // Taskloops do not require additional initialization, it is done in 1040 // runtime support library. 1041 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 1042 const auto *DestVD = 1043 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1044 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() { 1045 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1046 /*RefersToEnclosingVariableOrCapture=*/ 1047 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1048 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1049 return EmitLValue(&DRE).getAddress(*this); 1050 }); 1051 // Check if the variable is also a firstprivate: in this case IInit is 1052 // not generated. Initialization of this variable will happen in codegen 1053 // for 'firstprivate' clause. 1054 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 1055 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 1056 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD, C, 1057 OrigVD]() { 1058 if (C->getKind() == OMPC_LASTPRIVATE_conditional) { 1059 Address VDAddr = 1060 CGM.getOpenMPRuntime().emitLastprivateConditionalInit(*this, 1061 OrigVD); 1062 setAddrOfLocalVar(VD, VDAddr); 1063 return VDAddr; 1064 } 1065 // Emit private VarDecl with copy init. 1066 EmitDecl(*VD); 1067 return GetAddrOfLocalVar(VD); 1068 }); 1069 assert(IsRegistered && 1070 "lastprivate var already registered as private"); 1071 (void)IsRegistered; 1072 } 1073 } 1074 ++IRef; 1075 ++IDestRef; 1076 } 1077 } 1078 return HasAtLeastOneLastprivate; 1079 } 1080 1081 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 1082 const OMPExecutableDirective &D, bool NoFinals, 1083 llvm::Value *IsLastIterCond) { 1084 if (!HaveInsertPoint()) 1085 return; 1086 // Emit following code: 1087 // if (<IsLastIterCond>) { 1088 // orig_var1 = private_orig_var1; 1089 // ... 1090 // orig_varn = private_orig_varn; 1091 // } 1092 llvm::BasicBlock *ThenBB = nullptr; 1093 llvm::BasicBlock *DoneBB = nullptr; 1094 if (IsLastIterCond) { 1095 // Emit implicit barrier if at least one lastprivate conditional is found 1096 // and this is not a simd mode. 1097 if (!getLangOpts().OpenMPSimd && 1098 llvm::any_of(D.getClausesOfKind<OMPLastprivateClause>(), 1099 [](const OMPLastprivateClause *C) { 1100 return C->getKind() == OMPC_LASTPRIVATE_conditional; 1101 })) { 1102 CGM.getOpenMPRuntime().emitBarrierCall(*this, D.getBeginLoc(), 1103 OMPD_unknown, 1104 /*EmitChecks=*/false, 1105 /*ForceSimpleCall=*/true); 1106 } 1107 ThenBB = createBasicBlock(".omp.lastprivate.then"); 1108 DoneBB = createBasicBlock(".omp.lastprivate.done"); 1109 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1110 EmitBlock(ThenBB); 1111 } 1112 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1113 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1114 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1115 auto IC = LoopDirective->counters().begin(); 1116 for (const Expr *F : LoopDirective->finals()) { 1117 const auto *D = 1118 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1119 if (NoFinals) 1120 AlreadyEmittedVars.insert(D); 1121 else 1122 LoopCountersAndUpdates[D] = F; 1123 ++IC; 1124 } 1125 } 1126 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1127 auto IRef = C->varlist_begin(); 1128 auto ISrcRef = C->source_exprs().begin(); 1129 auto IDestRef = C->destination_exprs().begin(); 1130 for (const Expr *AssignOp : C->assignment_ops()) { 1131 const auto *PrivateVD = 1132 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1133 QualType Type = PrivateVD->getType(); 1134 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1135 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1136 // If lastprivate variable is a loop control variable for loop-based 1137 // directive, update its value before copyin back to original 1138 // variable. 1139 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1140 EmitIgnoredExpr(FinalExpr); 1141 const auto *SrcVD = 1142 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1143 const auto *DestVD = 1144 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1145 // Get the address of the private variable. 1146 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1147 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1148 PrivateAddr = 1149 Address(Builder.CreateLoad(PrivateAddr), 1150 CGM.getNaturalTypeAlignment(RefTy->getPointeeType())); 1151 // Store the last value to the private copy in the last iteration. 1152 if (C->getKind() == OMPC_LASTPRIVATE_conditional) 1153 CGM.getOpenMPRuntime().emitLastprivateConditionalFinalUpdate( 1154 *this, MakeAddrLValue(PrivateAddr, (*IRef)->getType()), PrivateVD, 1155 (*IRef)->getExprLoc()); 1156 // Get the address of the original variable. 1157 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1158 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1159 } 1160 ++IRef; 1161 ++ISrcRef; 1162 ++IDestRef; 1163 } 1164 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1165 EmitIgnoredExpr(PostUpdate); 1166 } 1167 if (IsLastIterCond) 1168 EmitBlock(DoneBB, /*IsFinished=*/true); 1169 } 1170 1171 void CodeGenFunction::EmitOMPReductionClauseInit( 1172 const OMPExecutableDirective &D, 1173 CodeGenFunction::OMPPrivateScope &PrivateScope, bool ForInscan) { 1174 if (!HaveInsertPoint()) 1175 return; 1176 SmallVector<const Expr *, 4> Shareds; 1177 SmallVector<const Expr *, 4> Privates; 1178 SmallVector<const Expr *, 4> ReductionOps; 1179 SmallVector<const Expr *, 4> LHSs; 1180 SmallVector<const Expr *, 4> RHSs; 1181 OMPTaskDataTy Data; 1182 SmallVector<const Expr *, 4> TaskLHSs; 1183 SmallVector<const Expr *, 4> TaskRHSs; 1184 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1185 if (ForInscan != (C->getModifier() == OMPC_REDUCTION_inscan)) 1186 continue; 1187 Shareds.append(C->varlist_begin(), C->varlist_end()); 1188 Privates.append(C->privates().begin(), C->privates().end()); 1189 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1190 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1191 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1192 if (C->getModifier() == OMPC_REDUCTION_task) { 1193 Data.ReductionVars.append(C->privates().begin(), C->privates().end()); 1194 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 1195 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 1196 Data.ReductionOps.append(C->reduction_ops().begin(), 1197 C->reduction_ops().end()); 1198 TaskLHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1199 TaskRHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1200 } 1201 } 1202 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 1203 unsigned Count = 0; 1204 auto *ILHS = LHSs.begin(); 1205 auto *IRHS = RHSs.begin(); 1206 auto *IPriv = Privates.begin(); 1207 for (const Expr *IRef : Shareds) { 1208 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1209 // Emit private VarDecl with reduction init. 1210 RedCG.emitSharedOrigLValue(*this, Count); 1211 RedCG.emitAggregateType(*this, Count); 1212 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1213 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1214 RedCG.getSharedLValue(Count), 1215 [&Emission](CodeGenFunction &CGF) { 1216 CGF.EmitAutoVarInit(Emission); 1217 return true; 1218 }); 1219 EmitAutoVarCleanups(Emission); 1220 Address BaseAddr = RedCG.adjustPrivateAddress( 1221 *this, Count, Emission.getAllocatedAddress()); 1222 bool IsRegistered = PrivateScope.addPrivate( 1223 RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; }); 1224 assert(IsRegistered && "private var already registered as private"); 1225 // Silence the warning about unused variable. 1226 (void)IsRegistered; 1227 1228 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1229 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1230 QualType Type = PrivateVD->getType(); 1231 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1232 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1233 // Store the address of the original variable associated with the LHS 1234 // implicit variable. 1235 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1236 return RedCG.getSharedLValue(Count).getAddress(*this); 1237 }); 1238 PrivateScope.addPrivate( 1239 RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); }); 1240 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1241 isa<ArraySubscriptExpr>(IRef)) { 1242 // Store the address of the original variable associated with the LHS 1243 // implicit variable. 1244 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1245 return RedCG.getSharedLValue(Count).getAddress(*this); 1246 }); 1247 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() { 1248 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1249 ConvertTypeForMem(RHSVD->getType()), 1250 "rhs.begin"); 1251 }); 1252 } else { 1253 QualType Type = PrivateVD->getType(); 1254 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1255 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(*this); 1256 // Store the address of the original variable associated with the LHS 1257 // implicit variable. 1258 if (IsArray) { 1259 OriginalAddr = Builder.CreateElementBitCast( 1260 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1261 } 1262 PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; }); 1263 PrivateScope.addPrivate( 1264 RHSVD, [this, PrivateVD, RHSVD, IsArray]() { 1265 return IsArray 1266 ? Builder.CreateElementBitCast( 1267 GetAddrOfLocalVar(PrivateVD), 1268 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1269 : GetAddrOfLocalVar(PrivateVD); 1270 }); 1271 } 1272 ++ILHS; 1273 ++IRHS; 1274 ++IPriv; 1275 ++Count; 1276 } 1277 if (!Data.ReductionVars.empty()) { 1278 Data.IsReductionWithTaskMod = true; 1279 Data.IsWorksharingReduction = 1280 isOpenMPWorksharingDirective(D.getDirectiveKind()); 1281 llvm::Value *ReductionDesc = CGM.getOpenMPRuntime().emitTaskReductionInit( 1282 *this, D.getBeginLoc(), TaskLHSs, TaskRHSs, Data); 1283 const Expr *TaskRedRef = nullptr; 1284 switch (D.getDirectiveKind()) { 1285 case OMPD_parallel: 1286 TaskRedRef = cast<OMPParallelDirective>(D).getTaskReductionRefExpr(); 1287 break; 1288 case OMPD_for: 1289 TaskRedRef = cast<OMPForDirective>(D).getTaskReductionRefExpr(); 1290 break; 1291 case OMPD_sections: 1292 TaskRedRef = cast<OMPSectionsDirective>(D).getTaskReductionRefExpr(); 1293 break; 1294 case OMPD_parallel_for: 1295 TaskRedRef = cast<OMPParallelForDirective>(D).getTaskReductionRefExpr(); 1296 break; 1297 case OMPD_parallel_master: 1298 TaskRedRef = 1299 cast<OMPParallelMasterDirective>(D).getTaskReductionRefExpr(); 1300 break; 1301 case OMPD_parallel_sections: 1302 TaskRedRef = 1303 cast<OMPParallelSectionsDirective>(D).getTaskReductionRefExpr(); 1304 break; 1305 case OMPD_target_parallel: 1306 TaskRedRef = 1307 cast<OMPTargetParallelDirective>(D).getTaskReductionRefExpr(); 1308 break; 1309 case OMPD_target_parallel_for: 1310 TaskRedRef = 1311 cast<OMPTargetParallelForDirective>(D).getTaskReductionRefExpr(); 1312 break; 1313 case OMPD_distribute_parallel_for: 1314 TaskRedRef = 1315 cast<OMPDistributeParallelForDirective>(D).getTaskReductionRefExpr(); 1316 break; 1317 case OMPD_teams_distribute_parallel_for: 1318 TaskRedRef = cast<OMPTeamsDistributeParallelForDirective>(D) 1319 .getTaskReductionRefExpr(); 1320 break; 1321 case OMPD_target_teams_distribute_parallel_for: 1322 TaskRedRef = cast<OMPTargetTeamsDistributeParallelForDirective>(D) 1323 .getTaskReductionRefExpr(); 1324 break; 1325 case OMPD_simd: 1326 case OMPD_for_simd: 1327 case OMPD_section: 1328 case OMPD_single: 1329 case OMPD_master: 1330 case OMPD_critical: 1331 case OMPD_parallel_for_simd: 1332 case OMPD_task: 1333 case OMPD_taskyield: 1334 case OMPD_barrier: 1335 case OMPD_taskwait: 1336 case OMPD_taskgroup: 1337 case OMPD_flush: 1338 case OMPD_depobj: 1339 case OMPD_scan: 1340 case OMPD_ordered: 1341 case OMPD_atomic: 1342 case OMPD_teams: 1343 case OMPD_target: 1344 case OMPD_cancellation_point: 1345 case OMPD_cancel: 1346 case OMPD_target_data: 1347 case OMPD_target_enter_data: 1348 case OMPD_target_exit_data: 1349 case OMPD_taskloop: 1350 case OMPD_taskloop_simd: 1351 case OMPD_master_taskloop: 1352 case OMPD_master_taskloop_simd: 1353 case OMPD_parallel_master_taskloop: 1354 case OMPD_parallel_master_taskloop_simd: 1355 case OMPD_distribute: 1356 case OMPD_target_update: 1357 case OMPD_distribute_parallel_for_simd: 1358 case OMPD_distribute_simd: 1359 case OMPD_target_parallel_for_simd: 1360 case OMPD_target_simd: 1361 case OMPD_teams_distribute: 1362 case OMPD_teams_distribute_simd: 1363 case OMPD_teams_distribute_parallel_for_simd: 1364 case OMPD_target_teams: 1365 case OMPD_target_teams_distribute: 1366 case OMPD_target_teams_distribute_parallel_for_simd: 1367 case OMPD_target_teams_distribute_simd: 1368 case OMPD_declare_target: 1369 case OMPD_end_declare_target: 1370 case OMPD_threadprivate: 1371 case OMPD_allocate: 1372 case OMPD_declare_reduction: 1373 case OMPD_declare_mapper: 1374 case OMPD_declare_simd: 1375 case OMPD_requires: 1376 case OMPD_declare_variant: 1377 case OMPD_begin_declare_variant: 1378 case OMPD_end_declare_variant: 1379 case OMPD_unknown: 1380 default: 1381 llvm_unreachable("Enexpected directive with task reductions."); 1382 } 1383 1384 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(TaskRedRef)->getDecl()); 1385 EmitVarDecl(*VD); 1386 EmitStoreOfScalar(ReductionDesc, GetAddrOfLocalVar(VD), 1387 /*Volatile=*/false, TaskRedRef->getType()); 1388 } 1389 } 1390 1391 void CodeGenFunction::EmitOMPReductionClauseFinal( 1392 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1393 if (!HaveInsertPoint()) 1394 return; 1395 llvm::SmallVector<const Expr *, 8> Privates; 1396 llvm::SmallVector<const Expr *, 8> LHSExprs; 1397 llvm::SmallVector<const Expr *, 8> RHSExprs; 1398 llvm::SmallVector<const Expr *, 8> ReductionOps; 1399 bool HasAtLeastOneReduction = false; 1400 bool IsReductionWithTaskMod = false; 1401 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1402 // Do not emit for inscan reductions. 1403 if (C->getModifier() == OMPC_REDUCTION_inscan) 1404 continue; 1405 HasAtLeastOneReduction = true; 1406 Privates.append(C->privates().begin(), C->privates().end()); 1407 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1408 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1409 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1410 IsReductionWithTaskMod = 1411 IsReductionWithTaskMod || C->getModifier() == OMPC_REDUCTION_task; 1412 } 1413 if (HasAtLeastOneReduction) { 1414 if (IsReductionWithTaskMod) { 1415 CGM.getOpenMPRuntime().emitTaskReductionFini( 1416 *this, D.getBeginLoc(), 1417 isOpenMPWorksharingDirective(D.getDirectiveKind())); 1418 } 1419 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1420 isOpenMPParallelDirective(D.getDirectiveKind()) || 1421 ReductionKind == OMPD_simd; 1422 bool SimpleReduction = ReductionKind == OMPD_simd; 1423 // Emit nowait reduction if nowait clause is present or directive is a 1424 // parallel directive (it always has implicit barrier). 1425 CGM.getOpenMPRuntime().emitReduction( 1426 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1427 {WithNowait, SimpleReduction, ReductionKind}); 1428 } 1429 } 1430 1431 static void emitPostUpdateForReductionClause( 1432 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1433 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1434 if (!CGF.HaveInsertPoint()) 1435 return; 1436 llvm::BasicBlock *DoneBB = nullptr; 1437 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1438 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1439 if (!DoneBB) { 1440 if (llvm::Value *Cond = CondGen(CGF)) { 1441 // If the first post-update expression is found, emit conditional 1442 // block if it was requested. 1443 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1444 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1445 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1446 CGF.EmitBlock(ThenBB); 1447 } 1448 } 1449 CGF.EmitIgnoredExpr(PostUpdate); 1450 } 1451 } 1452 if (DoneBB) 1453 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1454 } 1455 1456 namespace { 1457 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1458 /// parallel function. This is necessary for combined constructs such as 1459 /// 'distribute parallel for' 1460 typedef llvm::function_ref<void(CodeGenFunction &, 1461 const OMPExecutableDirective &, 1462 llvm::SmallVectorImpl<llvm::Value *> &)> 1463 CodeGenBoundParametersTy; 1464 } // anonymous namespace 1465 1466 static void 1467 checkForLastprivateConditionalUpdate(CodeGenFunction &CGF, 1468 const OMPExecutableDirective &S) { 1469 if (CGF.getLangOpts().OpenMP < 50) 1470 return; 1471 llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> PrivateDecls; 1472 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 1473 for (const Expr *Ref : C->varlists()) { 1474 if (!Ref->getType()->isScalarType()) 1475 continue; 1476 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1477 if (!DRE) 1478 continue; 1479 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1480 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1481 } 1482 } 1483 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 1484 for (const Expr *Ref : C->varlists()) { 1485 if (!Ref->getType()->isScalarType()) 1486 continue; 1487 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1488 if (!DRE) 1489 continue; 1490 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1491 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1492 } 1493 } 1494 for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) { 1495 for (const Expr *Ref : C->varlists()) { 1496 if (!Ref->getType()->isScalarType()) 1497 continue; 1498 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1499 if (!DRE) 1500 continue; 1501 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1502 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1503 } 1504 } 1505 // Privates should ne analyzed since they are not captured at all. 1506 // Task reductions may be skipped - tasks are ignored. 1507 // Firstprivates do not return value but may be passed by reference - no need 1508 // to check for updated lastprivate conditional. 1509 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 1510 for (const Expr *Ref : C->varlists()) { 1511 if (!Ref->getType()->isScalarType()) 1512 continue; 1513 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1514 if (!DRE) 1515 continue; 1516 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1517 } 1518 } 1519 CGF.CGM.getOpenMPRuntime().checkAndEmitSharedLastprivateConditional( 1520 CGF, S, PrivateDecls); 1521 } 1522 1523 static void emitCommonOMPParallelDirective( 1524 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1525 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1526 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1527 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1528 llvm::Function *OutlinedFn = 1529 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1530 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1531 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1532 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1533 llvm::Value *NumThreads = 1534 CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1535 /*IgnoreResultAssign=*/true); 1536 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1537 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1538 } 1539 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1540 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1541 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1542 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1543 } 1544 const Expr *IfCond = nullptr; 1545 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1546 if (C->getNameModifier() == OMPD_unknown || 1547 C->getNameModifier() == OMPD_parallel) { 1548 IfCond = C->getCondition(); 1549 break; 1550 } 1551 } 1552 1553 OMPParallelScope Scope(CGF, S); 1554 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1555 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1556 // lower and upper bounds with the pragma 'for' chunking mechanism. 1557 // The following lambda takes care of appending the lower and upper bound 1558 // parameters when necessary 1559 CodeGenBoundParameters(CGF, S, CapturedVars); 1560 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1561 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1562 CapturedVars, IfCond); 1563 } 1564 1565 static void emitEmptyBoundParameters(CodeGenFunction &, 1566 const OMPExecutableDirective &, 1567 llvm::SmallVectorImpl<llvm::Value *> &) {} 1568 1569 Address CodeGenFunction::OMPBuilderCBHelpers::getAddressOfLocalVariable( 1570 CodeGenFunction &CGF, const VarDecl *VD) { 1571 CodeGenModule &CGM = CGF.CGM; 1572 auto &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1573 1574 if (!VD) 1575 return Address::invalid(); 1576 const VarDecl *CVD = VD->getCanonicalDecl(); 1577 if (!CVD->hasAttr<OMPAllocateDeclAttr>()) 1578 return Address::invalid(); 1579 const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); 1580 // Use the default allocation. 1581 if (AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc && 1582 !AA->getAllocator()) 1583 return Address::invalid(); 1584 llvm::Value *Size; 1585 CharUnits Align = CGM.getContext().getDeclAlign(CVD); 1586 if (CVD->getType()->isVariablyModifiedType()) { 1587 Size = CGF.getTypeSize(CVD->getType()); 1588 // Align the size: ((size + align - 1) / align) * align 1589 Size = CGF.Builder.CreateNUWAdd( 1590 Size, CGM.getSize(Align - CharUnits::fromQuantity(1))); 1591 Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align)); 1592 Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align)); 1593 } else { 1594 CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType()); 1595 Size = CGM.getSize(Sz.alignTo(Align)); 1596 } 1597 1598 assert(AA->getAllocator() && 1599 "Expected allocator expression for non-default allocator."); 1600 llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator()); 1601 // According to the standard, the original allocator type is a enum (integer). 1602 // Convert to pointer type, if required. 1603 if (Allocator->getType()->isIntegerTy()) 1604 Allocator = CGF.Builder.CreateIntToPtr(Allocator, CGM.VoidPtrTy); 1605 else if (Allocator->getType()->isPointerTy()) 1606 Allocator = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Allocator, 1607 CGM.VoidPtrTy); 1608 1609 llvm::Value *Addr = OMPBuilder.CreateOMPAlloc( 1610 CGF.Builder, Size, Allocator, 1611 getNameWithSeparators({CVD->getName(), ".void.addr"}, ".", ".")); 1612 llvm::CallInst *FreeCI = 1613 OMPBuilder.CreateOMPFree(CGF.Builder, Addr, Allocator); 1614 1615 CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(NormalAndEHCleanup, FreeCI); 1616 Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 1617 Addr, 1618 CGF.ConvertTypeForMem(CGM.getContext().getPointerType(CVD->getType())), 1619 getNameWithSeparators({CVD->getName(), ".addr"}, ".", ".")); 1620 return Address(Addr, Align); 1621 } 1622 1623 Address CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate( 1624 CodeGenFunction &CGF, const VarDecl *VD, Address VDAddr, 1625 SourceLocation Loc) { 1626 CodeGenModule &CGM = CGF.CGM; 1627 if (CGM.getLangOpts().OpenMPUseTLS && 1628 CGM.getContext().getTargetInfo().isTLSSupported()) 1629 return VDAddr; 1630 1631 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1632 1633 llvm::Type *VarTy = VDAddr.getElementType(); 1634 llvm::Value *Data = 1635 CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.Int8PtrTy); 1636 llvm::ConstantInt *Size = CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)); 1637 std::string Suffix = getNameWithSeparators({"cache", ""}); 1638 llvm::Twine CacheName = Twine(CGM.getMangledName(VD)).concat(Suffix); 1639 1640 llvm::CallInst *ThreadPrivateCacheCall = 1641 OMPBuilder.CreateCachedThreadPrivate(CGF.Builder, Data, Size, CacheName); 1642 1643 return Address(ThreadPrivateCacheCall, VDAddr.getAlignment()); 1644 } 1645 1646 std::string CodeGenFunction::OMPBuilderCBHelpers::getNameWithSeparators( 1647 ArrayRef<StringRef> Parts, StringRef FirstSeparator, StringRef Separator) { 1648 SmallString<128> Buffer; 1649 llvm::raw_svector_ostream OS(Buffer); 1650 StringRef Sep = FirstSeparator; 1651 for (StringRef Part : Parts) { 1652 OS << Sep << Part; 1653 Sep = Separator; 1654 } 1655 return OS.str().str(); 1656 } 1657 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1658 if (CGM.getLangOpts().OpenMPIRBuilder) { 1659 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1660 // Check if we have any if clause associated with the directive. 1661 llvm::Value *IfCond = nullptr; 1662 if (const auto *C = S.getSingleClause<OMPIfClause>()) 1663 IfCond = EmitScalarExpr(C->getCondition(), 1664 /*IgnoreResultAssign=*/true); 1665 1666 llvm::Value *NumThreads = nullptr; 1667 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) 1668 NumThreads = EmitScalarExpr(NumThreadsClause->getNumThreads(), 1669 /*IgnoreResultAssign=*/true); 1670 1671 ProcBindKind ProcBind = OMP_PROC_BIND_default; 1672 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) 1673 ProcBind = ProcBindClause->getProcBindKind(); 1674 1675 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1676 1677 // The cleanup callback that finalizes all variabels at the given location, 1678 // thus calls destructors etc. 1679 auto FiniCB = [this](InsertPointTy IP) { 1680 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 1681 }; 1682 1683 // Privatization callback that performs appropriate action for 1684 // shared/private/firstprivate/lastprivate/copyin/... variables. 1685 // 1686 // TODO: This defaults to shared right now. 1687 auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1688 llvm::Value &Val, llvm::Value *&ReplVal) { 1689 // The next line is appropriate only for variables (Val) with the 1690 // data-sharing attribute "shared". 1691 ReplVal = &Val; 1692 1693 return CodeGenIP; 1694 }; 1695 1696 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1697 const Stmt *ParallelRegionBodyStmt = CS->getCapturedStmt(); 1698 1699 auto BodyGenCB = [ParallelRegionBodyStmt, 1700 this](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1701 llvm::BasicBlock &ContinuationBB) { 1702 OMPBuilderCBHelpers::OutlinedRegionBodyRAII ORB(*this, AllocaIP, 1703 ContinuationBB); 1704 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, ParallelRegionBodyStmt, 1705 CodeGenIP, ContinuationBB); 1706 }; 1707 1708 CGCapturedStmtInfo CGSI(*CS, CR_OpenMP); 1709 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 1710 Builder.restoreIP(OMPBuilder.CreateParallel(Builder, BodyGenCB, PrivCB, 1711 FiniCB, IfCond, NumThreads, 1712 ProcBind, S.hasCancel())); 1713 return; 1714 } 1715 1716 // Emit parallel region as a standalone region. 1717 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1718 Action.Enter(CGF); 1719 OMPPrivateScope PrivateScope(CGF); 1720 bool Copyins = CGF.EmitOMPCopyinClause(S); 1721 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1722 if (Copyins) { 1723 // Emit implicit barrier to synchronize threads and avoid data races on 1724 // propagation master's thread values of threadprivate variables to local 1725 // instances of that variables of all other implicit threads. 1726 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1727 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1728 /*ForceSimpleCall=*/true); 1729 } 1730 CGF.EmitOMPPrivateClause(S, PrivateScope); 1731 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1732 (void)PrivateScope.Privatize(); 1733 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1734 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1735 }; 1736 { 1737 auto LPCRegion = 1738 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 1739 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1740 emitEmptyBoundParameters); 1741 emitPostUpdateForReductionClause(*this, S, 1742 [](CodeGenFunction &) { return nullptr; }); 1743 } 1744 // Check for outer lastprivate conditional update. 1745 checkForLastprivateConditionalUpdate(*this, S); 1746 } 1747 1748 static void emitBody(CodeGenFunction &CGF, const Stmt *S, const Stmt *NextLoop, 1749 int MaxLevel, int Level = 0) { 1750 assert(Level < MaxLevel && "Too deep lookup during loop body codegen."); 1751 const Stmt *SimplifiedS = S->IgnoreContainers(); 1752 if (const auto *CS = dyn_cast<CompoundStmt>(SimplifiedS)) { 1753 PrettyStackTraceLoc CrashInfo( 1754 CGF.getContext().getSourceManager(), CS->getLBracLoc(), 1755 "LLVM IR generation of compound statement ('{}')"); 1756 1757 // Keep track of the current cleanup stack depth, including debug scopes. 1758 CodeGenFunction::LexicalScope Scope(CGF, S->getSourceRange()); 1759 for (const Stmt *CurStmt : CS->body()) 1760 emitBody(CGF, CurStmt, NextLoop, MaxLevel, Level); 1761 return; 1762 } 1763 if (SimplifiedS == NextLoop) { 1764 if (const auto *For = dyn_cast<ForStmt>(SimplifiedS)) { 1765 S = For->getBody(); 1766 } else { 1767 assert(isa<CXXForRangeStmt>(SimplifiedS) && 1768 "Expected canonical for loop or range-based for loop."); 1769 const auto *CXXFor = cast<CXXForRangeStmt>(SimplifiedS); 1770 CGF.EmitStmt(CXXFor->getLoopVarStmt()); 1771 S = CXXFor->getBody(); 1772 } 1773 if (Level + 1 < MaxLevel) { 1774 NextLoop = OMPLoopDirective::tryToFindNextInnerLoop( 1775 S, /*TryImperfectlyNestedLoops=*/true); 1776 emitBody(CGF, S, NextLoop, MaxLevel, Level + 1); 1777 return; 1778 } 1779 } 1780 CGF.EmitStmt(S); 1781 } 1782 1783 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1784 JumpDest LoopExit) { 1785 RunCleanupsScope BodyScope(*this); 1786 // Update counters values on current iteration. 1787 for (const Expr *UE : D.updates()) 1788 EmitIgnoredExpr(UE); 1789 // Update the linear variables. 1790 // In distribute directives only loop counters may be marked as linear, no 1791 // need to generate the code for them. 1792 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1793 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1794 for (const Expr *UE : C->updates()) 1795 EmitIgnoredExpr(UE); 1796 } 1797 } 1798 1799 // On a continue in the body, jump to the end. 1800 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1801 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1802 for (const Expr *E : D.finals_conditions()) { 1803 if (!E) 1804 continue; 1805 // Check that loop counter in non-rectangular nest fits into the iteration 1806 // space. 1807 llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next"); 1808 EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(), 1809 getProfileCount(D.getBody())); 1810 EmitBlock(NextBB); 1811 } 1812 1813 OMPPrivateScope InscanScope(*this); 1814 EmitOMPReductionClauseInit(D, InscanScope, /*ForInscan=*/true); 1815 bool IsInscanRegion = InscanScope.Privatize(); 1816 if (IsInscanRegion) { 1817 // Need to remember the block before and after scan directive 1818 // to dispatch them correctly depending on the clause used in 1819 // this directive, inclusive or exclusive. For inclusive scan the natural 1820 // order of the blocks is used, for exclusive clause the blocks must be 1821 // executed in reverse order. 1822 OMPBeforeScanBlock = createBasicBlock("omp.before.scan.bb"); 1823 OMPAfterScanBlock = createBasicBlock("omp.after.scan.bb"); 1824 // No need to allocate inscan exit block, in simd mode it is selected in the 1825 // codegen for the scan directive. 1826 if (D.getDirectiveKind() != OMPD_simd && !getLangOpts().OpenMPSimd) 1827 OMPScanExitBlock = createBasicBlock("omp.exit.inscan.bb"); 1828 OMPScanDispatch = createBasicBlock("omp.inscan.dispatch"); 1829 EmitBranch(OMPScanDispatch); 1830 EmitBlock(OMPBeforeScanBlock); 1831 } 1832 1833 // Emit loop variables for C++ range loops. 1834 const Stmt *Body = 1835 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 1836 // Emit loop body. 1837 emitBody(*this, Body, 1838 OMPLoopDirective::tryToFindNextInnerLoop( 1839 Body, /*TryImperfectlyNestedLoops=*/true), 1840 D.getCollapsedNumber()); 1841 1842 // Jump to the dispatcher at the end of the loop body. 1843 if (IsInscanRegion) 1844 EmitBranch(OMPScanExitBlock); 1845 1846 // The end (updates/cleanups). 1847 EmitBlock(Continue.getBlock()); 1848 BreakContinueStack.pop_back(); 1849 } 1850 1851 void CodeGenFunction::EmitOMPInnerLoop( 1852 const OMPExecutableDirective &S, bool RequiresCleanup, const Expr *LoopCond, 1853 const Expr *IncExpr, 1854 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 1855 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 1856 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1857 1858 // Start the loop with a block that tests the condition. 1859 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1860 EmitBlock(CondBlock); 1861 const SourceRange R = S.getSourceRange(); 1862 1863 // If attributes are attached, push to the basic block with them. 1864 const auto &OMPED = cast<OMPExecutableDirective>(S); 1865 const CapturedStmt *ICS = OMPED.getInnermostCapturedStmt(); 1866 const Stmt *SS = ICS->getCapturedStmt(); 1867 const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(SS); 1868 if (AS) 1869 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), 1870 AS->getAttrs(), SourceLocToDebugLoc(R.getBegin()), 1871 SourceLocToDebugLoc(R.getEnd())); 1872 else 1873 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1874 SourceLocToDebugLoc(R.getEnd())); 1875 1876 // If there are any cleanups between here and the loop-exit scope, 1877 // create a block to stage a loop exit along. 1878 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1879 if (RequiresCleanup) 1880 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1881 1882 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 1883 1884 // Emit condition. 1885 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1886 if (ExitBlock != LoopExit.getBlock()) { 1887 EmitBlock(ExitBlock); 1888 EmitBranchThroughCleanup(LoopExit); 1889 } 1890 1891 EmitBlock(LoopBody); 1892 incrementProfileCounter(&S); 1893 1894 // Create a block for the increment. 1895 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1896 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1897 1898 BodyGen(*this); 1899 1900 // Emit "IV = IV + 1" and a back-edge to the condition block. 1901 EmitBlock(Continue.getBlock()); 1902 EmitIgnoredExpr(IncExpr); 1903 PostIncGen(*this); 1904 BreakContinueStack.pop_back(); 1905 EmitBranch(CondBlock); 1906 LoopStack.pop(); 1907 // Emit the fall-through block. 1908 EmitBlock(LoopExit.getBlock()); 1909 } 1910 1911 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1912 if (!HaveInsertPoint()) 1913 return false; 1914 // Emit inits for the linear variables. 1915 bool HasLinears = false; 1916 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1917 for (const Expr *Init : C->inits()) { 1918 HasLinears = true; 1919 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1920 if (const auto *Ref = 1921 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1922 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1923 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1924 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1925 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1926 VD->getInit()->getType(), VK_LValue, 1927 VD->getInit()->getExprLoc()); 1928 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1929 VD->getType()), 1930 /*capturedByInit=*/false); 1931 EmitAutoVarCleanups(Emission); 1932 } else { 1933 EmitVarDecl(*VD); 1934 } 1935 } 1936 // Emit the linear steps for the linear clauses. 1937 // If a step is not constant, it is pre-calculated before the loop. 1938 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1939 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1940 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1941 // Emit calculation of the linear step. 1942 EmitIgnoredExpr(CS); 1943 } 1944 } 1945 return HasLinears; 1946 } 1947 1948 void CodeGenFunction::EmitOMPLinearClauseFinal( 1949 const OMPLoopDirective &D, 1950 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1951 if (!HaveInsertPoint()) 1952 return; 1953 llvm::BasicBlock *DoneBB = nullptr; 1954 // Emit the final values of the linear variables. 1955 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1956 auto IC = C->varlist_begin(); 1957 for (const Expr *F : C->finals()) { 1958 if (!DoneBB) { 1959 if (llvm::Value *Cond = CondGen(*this)) { 1960 // If the first post-update expression is found, emit conditional 1961 // block if it was requested. 1962 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 1963 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1964 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1965 EmitBlock(ThenBB); 1966 } 1967 } 1968 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1969 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1970 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1971 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1972 Address OrigAddr = EmitLValue(&DRE).getAddress(*this); 1973 CodeGenFunction::OMPPrivateScope VarScope(*this); 1974 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1975 (void)VarScope.Privatize(); 1976 EmitIgnoredExpr(F); 1977 ++IC; 1978 } 1979 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1980 EmitIgnoredExpr(PostUpdate); 1981 } 1982 if (DoneBB) 1983 EmitBlock(DoneBB, /*IsFinished=*/true); 1984 } 1985 1986 static void emitAlignedClause(CodeGenFunction &CGF, 1987 const OMPExecutableDirective &D) { 1988 if (!CGF.HaveInsertPoint()) 1989 return; 1990 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1991 llvm::APInt ClauseAlignment(64, 0); 1992 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 1993 auto *AlignmentCI = 1994 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1995 ClauseAlignment = AlignmentCI->getValue(); 1996 } 1997 for (const Expr *E : Clause->varlists()) { 1998 llvm::APInt Alignment(ClauseAlignment); 1999 if (Alignment == 0) { 2000 // OpenMP [2.8.1, Description] 2001 // If no optional parameter is specified, implementation-defined default 2002 // alignments for SIMD instructions on the target platforms are assumed. 2003 Alignment = 2004 CGF.getContext() 2005 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2006 E->getType()->getPointeeType())) 2007 .getQuantity(); 2008 } 2009 assert((Alignment == 0 || Alignment.isPowerOf2()) && 2010 "alignment is not power of 2"); 2011 if (Alignment != 0) { 2012 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 2013 CGF.emitAlignmentAssumption( 2014 PtrValue, E, /*No second loc needed*/ SourceLocation(), 2015 llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment)); 2016 } 2017 } 2018 } 2019 } 2020 2021 void CodeGenFunction::EmitOMPPrivateLoopCounters( 2022 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 2023 if (!HaveInsertPoint()) 2024 return; 2025 auto I = S.private_counters().begin(); 2026 for (const Expr *E : S.counters()) { 2027 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2028 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 2029 // Emit var without initialization. 2030 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 2031 EmitAutoVarCleanups(VarEmission); 2032 LocalDeclMap.erase(PrivateVD); 2033 (void)LoopScope.addPrivate(VD, [&VarEmission]() { 2034 return VarEmission.getAllocatedAddress(); 2035 }); 2036 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 2037 VD->hasGlobalStorage()) { 2038 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 2039 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), 2040 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 2041 E->getType(), VK_LValue, E->getExprLoc()); 2042 return EmitLValue(&DRE).getAddress(*this); 2043 }); 2044 } else { 2045 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 2046 return VarEmission.getAllocatedAddress(); 2047 }); 2048 } 2049 ++I; 2050 } 2051 // Privatize extra loop counters used in loops for ordered(n) clauses. 2052 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 2053 if (!C->getNumForLoops()) 2054 continue; 2055 for (unsigned I = S.getCollapsedNumber(), 2056 E = C->getLoopNumIterations().size(); 2057 I < E; ++I) { 2058 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 2059 const auto *VD = cast<VarDecl>(DRE->getDecl()); 2060 // Override only those variables that can be captured to avoid re-emission 2061 // of the variables declared within the loops. 2062 if (DRE->refersToEnclosingVariableOrCapture()) { 2063 (void)LoopScope.addPrivate(VD, [this, DRE, VD]() { 2064 return CreateMemTemp(DRE->getType(), VD->getName()); 2065 }); 2066 } 2067 } 2068 } 2069 } 2070 2071 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 2072 const Expr *Cond, llvm::BasicBlock *TrueBlock, 2073 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 2074 if (!CGF.HaveInsertPoint()) 2075 return; 2076 { 2077 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 2078 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 2079 (void)PreCondScope.Privatize(); 2080 // Get initial values of real counters. 2081 for (const Expr *I : S.inits()) { 2082 CGF.EmitIgnoredExpr(I); 2083 } 2084 } 2085 // Create temp loop control variables with their init values to support 2086 // non-rectangular loops. 2087 CodeGenFunction::OMPMapVars PreCondVars; 2088 for (const Expr * E: S.dependent_counters()) { 2089 if (!E) 2090 continue; 2091 assert(!E->getType().getNonReferenceType()->isRecordType() && 2092 "dependent counter must not be an iterator."); 2093 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2094 Address CounterAddr = 2095 CGF.CreateMemTemp(VD->getType().getNonReferenceType()); 2096 (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr); 2097 } 2098 (void)PreCondVars.apply(CGF); 2099 for (const Expr *E : S.dependent_inits()) { 2100 if (!E) 2101 continue; 2102 CGF.EmitIgnoredExpr(E); 2103 } 2104 // Check that loop is executed at least one time. 2105 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 2106 PreCondVars.restore(CGF); 2107 } 2108 2109 void CodeGenFunction::EmitOMPLinearClause( 2110 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 2111 if (!HaveInsertPoint()) 2112 return; 2113 llvm::DenseSet<const VarDecl *> SIMDLCVs; 2114 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 2115 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 2116 for (const Expr *C : LoopDirective->counters()) { 2117 SIMDLCVs.insert( 2118 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 2119 } 2120 } 2121 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2122 auto CurPrivate = C->privates().begin(); 2123 for (const Expr *E : C->varlists()) { 2124 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2125 const auto *PrivateVD = 2126 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 2127 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 2128 bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() { 2129 // Emit private VarDecl with copy init. 2130 EmitVarDecl(*PrivateVD); 2131 return GetAddrOfLocalVar(PrivateVD); 2132 }); 2133 assert(IsRegistered && "linear var already registered as private"); 2134 // Silence the warning about unused variable. 2135 (void)IsRegistered; 2136 } else { 2137 EmitVarDecl(*PrivateVD); 2138 } 2139 ++CurPrivate; 2140 } 2141 } 2142 } 2143 2144 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 2145 const OMPExecutableDirective &D, 2146 bool IsMonotonic) { 2147 if (!CGF.HaveInsertPoint()) 2148 return; 2149 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 2150 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 2151 /*ignoreResult=*/true); 2152 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2153 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2154 // In presence of finite 'safelen', it may be unsafe to mark all 2155 // the memory instructions parallel, because loop-carried 2156 // dependences of 'safelen' iterations are possible. 2157 if (!IsMonotonic) 2158 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 2159 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 2160 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 2161 /*ignoreResult=*/true); 2162 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2163 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2164 // In presence of finite 'safelen', it may be unsafe to mark all 2165 // the memory instructions parallel, because loop-carried 2166 // dependences of 'safelen' iterations are possible. 2167 CGF.LoopStack.setParallel(/*Enable=*/false); 2168 } 2169 } 2170 2171 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 2172 bool IsMonotonic) { 2173 // Walk clauses and process safelen/lastprivate. 2174 LoopStack.setParallel(!IsMonotonic); 2175 LoopStack.setVectorizeEnable(); 2176 emitSimdlenSafelenClause(*this, D, IsMonotonic); 2177 if (const auto *C = D.getSingleClause<OMPOrderClause>()) 2178 if (C->getKind() == OMPC_ORDER_concurrent) 2179 LoopStack.setParallel(/*Enable=*/true); 2180 if ((D.getDirectiveKind() == OMPD_simd || 2181 (getLangOpts().OpenMPSimd && 2182 isOpenMPSimdDirective(D.getDirectiveKind()))) && 2183 llvm::any_of(D.getClausesOfKind<OMPReductionClause>(), 2184 [](const OMPReductionClause *C) { 2185 return C->getModifier() == OMPC_REDUCTION_inscan; 2186 })) 2187 // Disable parallel access in case of prefix sum. 2188 LoopStack.setParallel(/*Enable=*/false); 2189 } 2190 2191 void CodeGenFunction::EmitOMPSimdFinal( 2192 const OMPLoopDirective &D, 2193 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 2194 if (!HaveInsertPoint()) 2195 return; 2196 llvm::BasicBlock *DoneBB = nullptr; 2197 auto IC = D.counters().begin(); 2198 auto IPC = D.private_counters().begin(); 2199 for (const Expr *F : D.finals()) { 2200 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 2201 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 2202 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 2203 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 2204 OrigVD->hasGlobalStorage() || CED) { 2205 if (!DoneBB) { 2206 if (llvm::Value *Cond = CondGen(*this)) { 2207 // If the first post-update expression is found, emit conditional 2208 // block if it was requested. 2209 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 2210 DoneBB = createBasicBlock(".omp.final.done"); 2211 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 2212 EmitBlock(ThenBB); 2213 } 2214 } 2215 Address OrigAddr = Address::invalid(); 2216 if (CED) { 2217 OrigAddr = 2218 EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(*this); 2219 } else { 2220 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD), 2221 /*RefersToEnclosingVariableOrCapture=*/false, 2222 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 2223 OrigAddr = EmitLValue(&DRE).getAddress(*this); 2224 } 2225 OMPPrivateScope VarScope(*this); 2226 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 2227 (void)VarScope.Privatize(); 2228 EmitIgnoredExpr(F); 2229 } 2230 ++IC; 2231 ++IPC; 2232 } 2233 if (DoneBB) 2234 EmitBlock(DoneBB, /*IsFinished=*/true); 2235 } 2236 2237 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 2238 const OMPLoopDirective &S, 2239 CodeGenFunction::JumpDest LoopExit) { 2240 CGF.EmitOMPLoopBody(S, LoopExit); 2241 CGF.EmitStopPoint(&S); 2242 } 2243 2244 /// Emit a helper variable and return corresponding lvalue. 2245 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 2246 const DeclRefExpr *Helper) { 2247 auto VDecl = cast<VarDecl>(Helper->getDecl()); 2248 CGF.EmitVarDecl(*VDecl); 2249 return CGF.EmitLValue(Helper); 2250 } 2251 2252 static void emitCommonSimdLoop(CodeGenFunction &CGF, const OMPLoopDirective &S, 2253 const RegionCodeGenTy &SimdInitGen, 2254 const RegionCodeGenTy &BodyCodeGen) { 2255 auto &&ThenGen = [&S, &SimdInitGen, &BodyCodeGen](CodeGenFunction &CGF, 2256 PrePostActionTy &) { 2257 CGOpenMPRuntime::NontemporalDeclsRAII NontemporalsRegion(CGF.CGM, S); 2258 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2259 SimdInitGen(CGF); 2260 2261 BodyCodeGen(CGF); 2262 }; 2263 auto &&ElseGen = [&BodyCodeGen](CodeGenFunction &CGF, PrePostActionTy &) { 2264 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2265 CGF.LoopStack.setVectorizeEnable(/*Enable=*/false); 2266 2267 BodyCodeGen(CGF); 2268 }; 2269 const Expr *IfCond = nullptr; 2270 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2271 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 2272 if (CGF.getLangOpts().OpenMP >= 50 && 2273 (C->getNameModifier() == OMPD_unknown || 2274 C->getNameModifier() == OMPD_simd)) { 2275 IfCond = C->getCondition(); 2276 break; 2277 } 2278 } 2279 } 2280 if (IfCond) { 2281 CGF.CGM.getOpenMPRuntime().emitIfClause(CGF, IfCond, ThenGen, ElseGen); 2282 } else { 2283 RegionCodeGenTy ThenRCG(ThenGen); 2284 ThenRCG(CGF); 2285 } 2286 } 2287 2288 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 2289 PrePostActionTy &Action) { 2290 Action.Enter(CGF); 2291 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 2292 "Expected simd directive"); 2293 OMPLoopScope PreInitScope(CGF, S); 2294 // if (PreCond) { 2295 // for (IV in 0..LastIteration) BODY; 2296 // <Final counter/linear vars updates>; 2297 // } 2298 // 2299 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 2300 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 2301 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 2302 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 2303 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 2304 } 2305 2306 // Emit: if (PreCond) - begin. 2307 // If the condition constant folds and can be elided, avoid emitting the 2308 // whole loop. 2309 bool CondConstant; 2310 llvm::BasicBlock *ContBlock = nullptr; 2311 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2312 if (!CondConstant) 2313 return; 2314 } else { 2315 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 2316 ContBlock = CGF.createBasicBlock("simd.if.end"); 2317 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 2318 CGF.getProfileCount(&S)); 2319 CGF.EmitBlock(ThenBlock); 2320 CGF.incrementProfileCounter(&S); 2321 } 2322 2323 // Emit the loop iteration variable. 2324 const Expr *IVExpr = S.getIterationVariable(); 2325 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 2326 CGF.EmitVarDecl(*IVDecl); 2327 CGF.EmitIgnoredExpr(S.getInit()); 2328 2329 // Emit the iterations count variable. 2330 // If it is not a variable, Sema decided to calculate iterations count on 2331 // each iteration (e.g., it is foldable into a constant). 2332 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2333 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2334 // Emit calculation of the iterations count. 2335 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 2336 } 2337 2338 emitAlignedClause(CGF, S); 2339 (void)CGF.EmitOMPLinearClauseInit(S); 2340 { 2341 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2342 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 2343 CGF.EmitOMPLinearClause(S, LoopScope); 2344 CGF.EmitOMPPrivateClause(S, LoopScope); 2345 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2346 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 2347 CGF, S, CGF.EmitLValue(S.getIterationVariable())); 2348 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2349 (void)LoopScope.Privatize(); 2350 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2351 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2352 2353 emitCommonSimdLoop( 2354 CGF, S, 2355 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2356 CGF.EmitOMPSimdInit(S); 2357 }, 2358 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2359 CGF.EmitOMPInnerLoop( 2360 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 2361 [&S](CodeGenFunction &CGF) { 2362 emitOMPLoopBodyWithStopPoint(CGF, S, 2363 CodeGenFunction::JumpDest()); 2364 }, 2365 [](CodeGenFunction &) {}); 2366 }); 2367 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 2368 // Emit final copy of the lastprivate variables at the end of loops. 2369 if (HasLastprivateClause) 2370 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 2371 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 2372 emitPostUpdateForReductionClause(CGF, S, 2373 [](CodeGenFunction &) { return nullptr; }); 2374 } 2375 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 2376 // Emit: if (PreCond) - end. 2377 if (ContBlock) { 2378 CGF.EmitBranch(ContBlock); 2379 CGF.EmitBlock(ContBlock, true); 2380 } 2381 } 2382 2383 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 2384 ParentLoopDirectiveForScanRegion ScanRegion(*this, S); 2385 OMPFirstScanLoop = true; 2386 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2387 emitOMPSimdRegion(CGF, S, Action); 2388 }; 2389 { 2390 auto LPCRegion = 2391 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 2392 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2393 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2394 } 2395 // Check for outer lastprivate conditional update. 2396 checkForLastprivateConditionalUpdate(*this, S); 2397 } 2398 2399 void CodeGenFunction::EmitOMPOuterLoop( 2400 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 2401 CodeGenFunction::OMPPrivateScope &LoopScope, 2402 const CodeGenFunction::OMPLoopArguments &LoopArgs, 2403 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 2404 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 2405 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2406 2407 const Expr *IVExpr = S.getIterationVariable(); 2408 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2409 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2410 2411 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 2412 2413 // Start the loop with a block that tests the condition. 2414 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 2415 EmitBlock(CondBlock); 2416 const SourceRange R = S.getSourceRange(); 2417 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 2418 SourceLocToDebugLoc(R.getEnd())); 2419 2420 llvm::Value *BoolCondVal = nullptr; 2421 if (!DynamicOrOrdered) { 2422 // UB = min(UB, GlobalUB) or 2423 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 2424 // 'distribute parallel for') 2425 EmitIgnoredExpr(LoopArgs.EUB); 2426 // IV = LB 2427 EmitIgnoredExpr(LoopArgs.Init); 2428 // IV < UB 2429 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 2430 } else { 2431 BoolCondVal = 2432 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 2433 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 2434 } 2435 2436 // If there are any cleanups between here and the loop-exit scope, 2437 // create a block to stage a loop exit along. 2438 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 2439 if (LoopScope.requiresCleanups()) 2440 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 2441 2442 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 2443 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 2444 if (ExitBlock != LoopExit.getBlock()) { 2445 EmitBlock(ExitBlock); 2446 EmitBranchThroughCleanup(LoopExit); 2447 } 2448 EmitBlock(LoopBody); 2449 2450 // Emit "IV = LB" (in case of static schedule, we have already calculated new 2451 // LB for loop condition and emitted it above). 2452 if (DynamicOrOrdered) 2453 EmitIgnoredExpr(LoopArgs.Init); 2454 2455 // Create a block for the increment. 2456 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 2457 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 2458 2459 emitCommonSimdLoop( 2460 *this, S, 2461 [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) { 2462 // Generate !llvm.loop.parallel metadata for loads and stores for loops 2463 // with dynamic/guided scheduling and without ordered clause. 2464 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2465 CGF.LoopStack.setParallel(!IsMonotonic); 2466 if (const auto *C = S.getSingleClause<OMPOrderClause>()) 2467 if (C->getKind() == OMPC_ORDER_concurrent) 2468 CGF.LoopStack.setParallel(/*Enable=*/true); 2469 } else { 2470 CGF.EmitOMPSimdInit(S, IsMonotonic); 2471 } 2472 }, 2473 [&S, &LoopArgs, LoopExit, &CodeGenLoop, IVSize, IVSigned, &CodeGenOrdered, 2474 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2475 SourceLocation Loc = S.getBeginLoc(); 2476 // when 'distribute' is not combined with a 'for': 2477 // while (idx <= UB) { BODY; ++idx; } 2478 // when 'distribute' is combined with a 'for' 2479 // (e.g. 'distribute parallel for') 2480 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 2481 CGF.EmitOMPInnerLoop( 2482 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 2483 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 2484 CodeGenLoop(CGF, S, LoopExit); 2485 }, 2486 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 2487 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 2488 }); 2489 }); 2490 2491 EmitBlock(Continue.getBlock()); 2492 BreakContinueStack.pop_back(); 2493 if (!DynamicOrOrdered) { 2494 // Emit "LB = LB + Stride", "UB = UB + Stride". 2495 EmitIgnoredExpr(LoopArgs.NextLB); 2496 EmitIgnoredExpr(LoopArgs.NextUB); 2497 } 2498 2499 EmitBranch(CondBlock); 2500 LoopStack.pop(); 2501 // Emit the fall-through block. 2502 EmitBlock(LoopExit.getBlock()); 2503 2504 // Tell the runtime we are done. 2505 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 2506 if (!DynamicOrOrdered) 2507 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2508 S.getDirectiveKind()); 2509 }; 2510 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2511 } 2512 2513 void CodeGenFunction::EmitOMPForOuterLoop( 2514 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 2515 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 2516 const OMPLoopArguments &LoopArgs, 2517 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2518 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2519 2520 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 2521 const bool DynamicOrOrdered = 2522 Ordered || RT.isDynamic(ScheduleKind.Schedule); 2523 2524 assert((Ordered || 2525 !RT.isStaticNonchunked(ScheduleKind.Schedule, 2526 LoopArgs.Chunk != nullptr)) && 2527 "static non-chunked schedule does not need outer loop"); 2528 2529 // Emit outer loop. 2530 // 2531 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2532 // When schedule(dynamic,chunk_size) is specified, the iterations are 2533 // distributed to threads in the team in chunks as the threads request them. 2534 // Each thread executes a chunk of iterations, then requests another chunk, 2535 // until no chunks remain to be distributed. Each chunk contains chunk_size 2536 // iterations, except for the last chunk to be distributed, which may have 2537 // fewer iterations. When no chunk_size is specified, it defaults to 1. 2538 // 2539 // When schedule(guided,chunk_size) is specified, the iterations are assigned 2540 // to threads in the team in chunks as the executing threads request them. 2541 // Each thread executes a chunk of iterations, then requests another chunk, 2542 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 2543 // each chunk is proportional to the number of unassigned iterations divided 2544 // by the number of threads in the team, decreasing to 1. For a chunk_size 2545 // with value k (greater than 1), the size of each chunk is determined in the 2546 // same way, with the restriction that the chunks do not contain fewer than k 2547 // iterations (except for the last chunk to be assigned, which may have fewer 2548 // than k iterations). 2549 // 2550 // When schedule(auto) is specified, the decision regarding scheduling is 2551 // delegated to the compiler and/or runtime system. The programmer gives the 2552 // implementation the freedom to choose any possible mapping of iterations to 2553 // threads in the team. 2554 // 2555 // When schedule(runtime) is specified, the decision regarding scheduling is 2556 // deferred until run time, and the schedule and chunk size are taken from the 2557 // run-sched-var ICV. If the ICV is set to auto, the schedule is 2558 // implementation defined 2559 // 2560 // while(__kmpc_dispatch_next(&LB, &UB)) { 2561 // idx = LB; 2562 // while (idx <= UB) { BODY; ++idx; 2563 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 2564 // } // inner loop 2565 // } 2566 // 2567 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2568 // When schedule(static, chunk_size) is specified, iterations are divided into 2569 // chunks of size chunk_size, and the chunks are assigned to the threads in 2570 // the team in a round-robin fashion in the order of the thread number. 2571 // 2572 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 2573 // while (idx <= UB) { BODY; ++idx; } // inner loop 2574 // LB = LB + ST; 2575 // UB = UB + ST; 2576 // } 2577 // 2578 2579 const Expr *IVExpr = S.getIterationVariable(); 2580 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2581 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2582 2583 if (DynamicOrOrdered) { 2584 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 2585 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 2586 llvm::Value *LBVal = DispatchBounds.first; 2587 llvm::Value *UBVal = DispatchBounds.second; 2588 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 2589 LoopArgs.Chunk}; 2590 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 2591 IVSigned, Ordered, DipatchRTInputValues); 2592 } else { 2593 CGOpenMPRuntime::StaticRTInput StaticInit( 2594 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 2595 LoopArgs.ST, LoopArgs.Chunk); 2596 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2597 ScheduleKind, StaticInit); 2598 } 2599 2600 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 2601 const unsigned IVSize, 2602 const bool IVSigned) { 2603 if (Ordered) { 2604 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 2605 IVSigned); 2606 } 2607 }; 2608 2609 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 2610 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 2611 OuterLoopArgs.IncExpr = S.getInc(); 2612 OuterLoopArgs.Init = S.getInit(); 2613 OuterLoopArgs.Cond = S.getCond(); 2614 OuterLoopArgs.NextLB = S.getNextLowerBound(); 2615 OuterLoopArgs.NextUB = S.getNextUpperBound(); 2616 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 2617 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 2618 } 2619 2620 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 2621 const unsigned IVSize, const bool IVSigned) {} 2622 2623 void CodeGenFunction::EmitOMPDistributeOuterLoop( 2624 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 2625 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 2626 const CodeGenLoopTy &CodeGenLoopContent) { 2627 2628 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2629 2630 // Emit outer loop. 2631 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 2632 // dynamic 2633 // 2634 2635 const Expr *IVExpr = S.getIterationVariable(); 2636 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2637 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2638 2639 CGOpenMPRuntime::StaticRTInput StaticInit( 2640 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 2641 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 2642 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 2643 2644 // for combined 'distribute' and 'for' the increment expression of distribute 2645 // is stored in DistInc. For 'distribute' alone, it is in Inc. 2646 Expr *IncExpr; 2647 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 2648 IncExpr = S.getDistInc(); 2649 else 2650 IncExpr = S.getInc(); 2651 2652 // this routine is shared by 'omp distribute parallel for' and 2653 // 'omp distribute': select the right EUB expression depending on the 2654 // directive 2655 OMPLoopArguments OuterLoopArgs; 2656 OuterLoopArgs.LB = LoopArgs.LB; 2657 OuterLoopArgs.UB = LoopArgs.UB; 2658 OuterLoopArgs.ST = LoopArgs.ST; 2659 OuterLoopArgs.IL = LoopArgs.IL; 2660 OuterLoopArgs.Chunk = LoopArgs.Chunk; 2661 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2662 ? S.getCombinedEnsureUpperBound() 2663 : S.getEnsureUpperBound(); 2664 OuterLoopArgs.IncExpr = IncExpr; 2665 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2666 ? S.getCombinedInit() 2667 : S.getInit(); 2668 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2669 ? S.getCombinedCond() 2670 : S.getCond(); 2671 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2672 ? S.getCombinedNextLowerBound() 2673 : S.getNextLowerBound(); 2674 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2675 ? S.getCombinedNextUpperBound() 2676 : S.getNextUpperBound(); 2677 2678 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 2679 LoopScope, OuterLoopArgs, CodeGenLoopContent, 2680 emitEmptyOrdered); 2681 } 2682 2683 static std::pair<LValue, LValue> 2684 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 2685 const OMPExecutableDirective &S) { 2686 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2687 LValue LB = 2688 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2689 LValue UB = 2690 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2691 2692 // When composing 'distribute' with 'for' (e.g. as in 'distribute 2693 // parallel for') we need to use the 'distribute' 2694 // chunk lower and upper bounds rather than the whole loop iteration 2695 // space. These are parameters to the outlined function for 'parallel' 2696 // and we copy the bounds of the previous schedule into the 2697 // the current ones. 2698 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 2699 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 2700 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 2701 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 2702 PrevLBVal = CGF.EmitScalarConversion( 2703 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 2704 LS.getIterationVariable()->getType(), 2705 LS.getPrevLowerBoundVariable()->getExprLoc()); 2706 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 2707 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 2708 PrevUBVal = CGF.EmitScalarConversion( 2709 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 2710 LS.getIterationVariable()->getType(), 2711 LS.getPrevUpperBoundVariable()->getExprLoc()); 2712 2713 CGF.EmitStoreOfScalar(PrevLBVal, LB); 2714 CGF.EmitStoreOfScalar(PrevUBVal, UB); 2715 2716 return {LB, UB}; 2717 } 2718 2719 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 2720 /// we need to use the LB and UB expressions generated by the worksharing 2721 /// code generation support, whereas in non combined situations we would 2722 /// just emit 0 and the LastIteration expression 2723 /// This function is necessary due to the difference of the LB and UB 2724 /// types for the RT emission routines for 'for_static_init' and 2725 /// 'for_dispatch_init' 2726 static std::pair<llvm::Value *, llvm::Value *> 2727 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 2728 const OMPExecutableDirective &S, 2729 Address LB, Address UB) { 2730 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2731 const Expr *IVExpr = LS.getIterationVariable(); 2732 // when implementing a dynamic schedule for a 'for' combined with a 2733 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 2734 // is not normalized as each team only executes its own assigned 2735 // distribute chunk 2736 QualType IteratorTy = IVExpr->getType(); 2737 llvm::Value *LBVal = 2738 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2739 llvm::Value *UBVal = 2740 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2741 return {LBVal, UBVal}; 2742 } 2743 2744 static void emitDistributeParallelForDistributeInnerBoundParams( 2745 CodeGenFunction &CGF, const OMPExecutableDirective &S, 2746 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 2747 const auto &Dir = cast<OMPLoopDirective>(S); 2748 LValue LB = 2749 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 2750 llvm::Value *LBCast = 2751 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(LB.getAddress(CGF)), 2752 CGF.SizeTy, /*isSigned=*/false); 2753 CapturedVars.push_back(LBCast); 2754 LValue UB = 2755 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 2756 2757 llvm::Value *UBCast = 2758 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(UB.getAddress(CGF)), 2759 CGF.SizeTy, /*isSigned=*/false); 2760 CapturedVars.push_back(UBCast); 2761 } 2762 2763 static void 2764 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 2765 const OMPLoopDirective &S, 2766 CodeGenFunction::JumpDest LoopExit) { 2767 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 2768 PrePostActionTy &Action) { 2769 Action.Enter(CGF); 2770 bool HasCancel = false; 2771 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2772 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 2773 HasCancel = D->hasCancel(); 2774 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 2775 HasCancel = D->hasCancel(); 2776 else if (const auto *D = 2777 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 2778 HasCancel = D->hasCancel(); 2779 } 2780 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 2781 HasCancel); 2782 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 2783 emitDistributeParallelForInnerBounds, 2784 emitDistributeParallelForDispatchBounds); 2785 }; 2786 2787 emitCommonOMPParallelDirective( 2788 CGF, S, 2789 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 2790 CGInlinedWorksharingLoop, 2791 emitDistributeParallelForDistributeInnerBoundParams); 2792 } 2793 2794 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 2795 const OMPDistributeParallelForDirective &S) { 2796 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2797 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2798 S.getDistInc()); 2799 }; 2800 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2801 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2802 } 2803 2804 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 2805 const OMPDistributeParallelForSimdDirective &S) { 2806 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2807 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2808 S.getDistInc()); 2809 }; 2810 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2811 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2812 } 2813 2814 void CodeGenFunction::EmitOMPDistributeSimdDirective( 2815 const OMPDistributeSimdDirective &S) { 2816 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2817 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 2818 }; 2819 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2820 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2821 } 2822 2823 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 2824 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 2825 // Emit SPMD target parallel for region as a standalone region. 2826 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2827 emitOMPSimdRegion(CGF, S, Action); 2828 }; 2829 llvm::Function *Fn; 2830 llvm::Constant *Addr; 2831 // Emit target region as a standalone region. 2832 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 2833 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 2834 assert(Fn && Addr && "Target device function emission failed."); 2835 } 2836 2837 void CodeGenFunction::EmitOMPTargetSimdDirective( 2838 const OMPTargetSimdDirective &S) { 2839 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2840 emitOMPSimdRegion(CGF, S, Action); 2841 }; 2842 emitCommonOMPTargetDirective(*this, S, CodeGen); 2843 } 2844 2845 namespace { 2846 struct ScheduleKindModifiersTy { 2847 OpenMPScheduleClauseKind Kind; 2848 OpenMPScheduleClauseModifier M1; 2849 OpenMPScheduleClauseModifier M2; 2850 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 2851 OpenMPScheduleClauseModifier M1, 2852 OpenMPScheduleClauseModifier M2) 2853 : Kind(Kind), M1(M1), M2(M2) {} 2854 }; 2855 } // namespace 2856 2857 bool CodeGenFunction::EmitOMPWorksharingLoop( 2858 const OMPLoopDirective &S, Expr *EUB, 2859 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2860 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2861 // Emit the loop iteration variable. 2862 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2863 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2864 EmitVarDecl(*IVDecl); 2865 2866 // Emit the iterations count variable. 2867 // If it is not a variable, Sema decided to calculate iterations count on each 2868 // iteration (e.g., it is foldable into a constant). 2869 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2870 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2871 // Emit calculation of the iterations count. 2872 EmitIgnoredExpr(S.getCalcLastIteration()); 2873 } 2874 2875 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2876 2877 bool HasLastprivateClause; 2878 // Check pre-condition. 2879 { 2880 OMPLoopScope PreInitScope(*this, S); 2881 // Skip the entire loop if we don't meet the precondition. 2882 // If the condition constant folds and can be elided, avoid emitting the 2883 // whole loop. 2884 bool CondConstant; 2885 llvm::BasicBlock *ContBlock = nullptr; 2886 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2887 if (!CondConstant) 2888 return false; 2889 } else { 2890 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 2891 ContBlock = createBasicBlock("omp.precond.end"); 2892 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2893 getProfileCount(&S)); 2894 EmitBlock(ThenBlock); 2895 incrementProfileCounter(&S); 2896 } 2897 2898 RunCleanupsScope DoacrossCleanupScope(*this); 2899 bool Ordered = false; 2900 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2901 if (OrderedClause->getNumForLoops()) 2902 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 2903 else 2904 Ordered = true; 2905 } 2906 2907 llvm::DenseSet<const Expr *> EmittedFinals; 2908 emitAlignedClause(*this, S); 2909 bool HasLinears = EmitOMPLinearClauseInit(S); 2910 // Emit helper vars inits. 2911 2912 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 2913 LValue LB = Bounds.first; 2914 LValue UB = Bounds.second; 2915 LValue ST = 2916 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2917 LValue IL = 2918 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2919 2920 // Emit 'then' code. 2921 { 2922 OMPPrivateScope LoopScope(*this); 2923 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 2924 // Emit implicit barrier to synchronize threads and avoid data races on 2925 // initialization of firstprivate variables and post-update of 2926 // lastprivate variables. 2927 CGM.getOpenMPRuntime().emitBarrierCall( 2928 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2929 /*ForceSimpleCall=*/true); 2930 } 2931 EmitOMPPrivateClause(S, LoopScope); 2932 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 2933 *this, S, EmitLValue(S.getIterationVariable())); 2934 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2935 EmitOMPReductionClauseInit(S, LoopScope); 2936 EmitOMPPrivateLoopCounters(S, LoopScope); 2937 EmitOMPLinearClause(S, LoopScope); 2938 (void)LoopScope.Privatize(); 2939 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2940 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 2941 2942 // Detect the loop schedule kind and chunk. 2943 const Expr *ChunkExpr = nullptr; 2944 OpenMPScheduleTy ScheduleKind; 2945 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 2946 ScheduleKind.Schedule = C->getScheduleKind(); 2947 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2948 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2949 ChunkExpr = C->getChunkSize(); 2950 } else { 2951 // Default behaviour for schedule clause. 2952 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 2953 *this, S, ScheduleKind.Schedule, ChunkExpr); 2954 } 2955 bool HasChunkSizeOne = false; 2956 llvm::Value *Chunk = nullptr; 2957 if (ChunkExpr) { 2958 Chunk = EmitScalarExpr(ChunkExpr); 2959 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 2960 S.getIterationVariable()->getType(), 2961 S.getBeginLoc()); 2962 Expr::EvalResult Result; 2963 if (ChunkExpr->EvaluateAsInt(Result, getContext())) { 2964 llvm::APSInt EvaluatedChunk = Result.Val.getInt(); 2965 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 2966 } 2967 } 2968 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2969 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2970 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2971 // If the static schedule kind is specified or if the ordered clause is 2972 // specified, and if no monotonic modifier is specified, the effect will 2973 // be as if the monotonic modifier was specified. 2974 bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule, 2975 /* Chunked */ Chunk != nullptr) && HasChunkSizeOne && 2976 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 2977 bool IsMonotonic = 2978 Ordered || 2979 ((ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2980 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown) && 2981 !(ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_nonmonotonic || 2982 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_nonmonotonic)) || 2983 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2984 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2985 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 2986 /* Chunked */ Chunk != nullptr) || 2987 StaticChunkedOne) && 2988 !Ordered) { 2989 JumpDest LoopExit = 2990 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2991 emitCommonSimdLoop( 2992 *this, S, 2993 [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) { 2994 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2995 CGF.EmitOMPSimdInit(S, IsMonotonic); 2996 } else if (const auto *C = S.getSingleClause<OMPOrderClause>()) { 2997 if (C->getKind() == OMPC_ORDER_concurrent) 2998 CGF.LoopStack.setParallel(/*Enable=*/true); 2999 } 3000 }, 3001 [IVSize, IVSigned, Ordered, IL, LB, UB, ST, StaticChunkedOne, Chunk, 3002 &S, ScheduleKind, LoopExit, 3003 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 3004 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 3005 // When no chunk_size is specified, the iteration space is divided 3006 // into chunks that are approximately equal in size, and at most 3007 // one chunk is distributed to each thread. Note that the size of 3008 // the chunks is unspecified in this case. 3009 CGOpenMPRuntime::StaticRTInput StaticInit( 3010 IVSize, IVSigned, Ordered, IL.getAddress(CGF), 3011 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF), 3012 StaticChunkedOne ? Chunk : nullptr); 3013 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 3014 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, 3015 StaticInit); 3016 // UB = min(UB, GlobalUB); 3017 if (!StaticChunkedOne) 3018 CGF.EmitIgnoredExpr(S.getEnsureUpperBound()); 3019 // IV = LB; 3020 CGF.EmitIgnoredExpr(S.getInit()); 3021 // For unchunked static schedule generate: 3022 // 3023 // while (idx <= UB) { 3024 // BODY; 3025 // ++idx; 3026 // } 3027 // 3028 // For static schedule with chunk one: 3029 // 3030 // while (IV <= PrevUB) { 3031 // BODY; 3032 // IV += ST; 3033 // } 3034 CGF.EmitOMPInnerLoop( 3035 S, LoopScope.requiresCleanups(), 3036 StaticChunkedOne ? S.getCombinedParForInDistCond() 3037 : S.getCond(), 3038 StaticChunkedOne ? S.getDistInc() : S.getInc(), 3039 [&S, LoopExit](CodeGenFunction &CGF) { 3040 emitOMPLoopBodyWithStopPoint(CGF, S, LoopExit); 3041 }, 3042 [](CodeGenFunction &) {}); 3043 }); 3044 EmitBlock(LoopExit.getBlock()); 3045 // Tell the runtime we are done. 3046 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 3047 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 3048 S.getDirectiveKind()); 3049 }; 3050 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 3051 } else { 3052 // Emit the outer loop, which requests its work chunk [LB..UB] from 3053 // runtime and runs the inner loop to process it. 3054 const OMPLoopArguments LoopArguments( 3055 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 3056 IL.getAddress(*this), Chunk, EUB); 3057 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 3058 LoopArguments, CGDispatchBounds); 3059 } 3060 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3061 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3062 return CGF.Builder.CreateIsNotNull( 3063 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3064 }); 3065 } 3066 EmitOMPReductionClauseFinal( 3067 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 3068 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 3069 : /*Parallel only*/ OMPD_parallel); 3070 // Emit post-update of the reduction variables if IsLastIter != 0. 3071 emitPostUpdateForReductionClause( 3072 *this, S, [IL, &S](CodeGenFunction &CGF) { 3073 return CGF.Builder.CreateIsNotNull( 3074 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3075 }); 3076 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3077 if (HasLastprivateClause) 3078 EmitOMPLastprivateClauseFinal( 3079 S, isOpenMPSimdDirective(S.getDirectiveKind()), 3080 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3081 } 3082 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 3083 return CGF.Builder.CreateIsNotNull( 3084 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3085 }); 3086 DoacrossCleanupScope.ForceCleanup(); 3087 // We're now done with the loop, so jump to the continuation block. 3088 if (ContBlock) { 3089 EmitBranch(ContBlock); 3090 EmitBlock(ContBlock, /*IsFinished=*/true); 3091 } 3092 } 3093 return HasLastprivateClause; 3094 } 3095 3096 /// The following two functions generate expressions for the loop lower 3097 /// and upper bounds in case of static and dynamic (dispatch) schedule 3098 /// of the associated 'for' or 'distribute' loop. 3099 static std::pair<LValue, LValue> 3100 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 3101 const auto &LS = cast<OMPLoopDirective>(S); 3102 LValue LB = 3103 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 3104 LValue UB = 3105 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 3106 return {LB, UB}; 3107 } 3108 3109 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 3110 /// consider the lower and upper bound expressions generated by the 3111 /// worksharing loop support, but we use 0 and the iteration space size as 3112 /// constants 3113 static std::pair<llvm::Value *, llvm::Value *> 3114 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 3115 Address LB, Address UB) { 3116 const auto &LS = cast<OMPLoopDirective>(S); 3117 const Expr *IVExpr = LS.getIterationVariable(); 3118 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 3119 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 3120 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 3121 return {LBVal, UBVal}; 3122 } 3123 3124 /// Emits the code for the directive with inscan reductions. 3125 /// The code is the following: 3126 /// \code 3127 /// size num_iters = <num_iters>; 3128 /// <type> buffer[num_iters]; 3129 /// #pragma omp ... 3130 /// for (i: 0..<num_iters>) { 3131 /// <input phase>; 3132 /// buffer[i] = red; 3133 /// } 3134 /// for (int k = 0; k != ceil(log2(num_iters)); ++k) 3135 /// for (size cnt = last_iter; cnt >= pow(2, k); --k) 3136 /// buffer[i] op= buffer[i-pow(2,k)]; 3137 /// #pragma omp ... 3138 /// for (0..<num_iters>) { 3139 /// red = InclusiveScan ? buffer[i] : buffer[i-1]; 3140 /// <scan phase>; 3141 /// } 3142 /// \endcode 3143 static void emitScanBasedDirective( 3144 CodeGenFunction &CGF, const OMPLoopDirective &S, 3145 llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen, 3146 llvm::function_ref<void(CodeGenFunction &)> FirstGen, 3147 llvm::function_ref<void(CodeGenFunction &)> SecondGen) { 3148 llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast( 3149 NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false); 3150 SmallVector<const Expr *, 4> Shareds; 3151 SmallVector<const Expr *, 4> Privates; 3152 SmallVector<const Expr *, 4> ReductionOps; 3153 SmallVector<const Expr *, 4> LHSs; 3154 SmallVector<const Expr *, 4> RHSs; 3155 SmallVector<const Expr *, 4> CopyOps; 3156 SmallVector<const Expr *, 4> CopyArrayTemps; 3157 SmallVector<const Expr *, 4> CopyArrayElems; 3158 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3159 assert(C->getModifier() == OMPC_REDUCTION_inscan && 3160 "Only inscan reductions are expected."); 3161 Shareds.append(C->varlist_begin(), C->varlist_end()); 3162 Privates.append(C->privates().begin(), C->privates().end()); 3163 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 3164 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 3165 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 3166 CopyOps.append(C->copy_ops().begin(), C->copy_ops().end()); 3167 CopyArrayTemps.append(C->copy_array_temps().begin(), 3168 C->copy_array_temps().end()); 3169 CopyArrayElems.append(C->copy_array_elems().begin(), 3170 C->copy_array_elems().end()); 3171 } 3172 { 3173 // Emit buffers for each reduction variables. 3174 // ReductionCodeGen is required to emit correctly the code for array 3175 // reductions. 3176 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 3177 unsigned Count = 0; 3178 auto *ITA = CopyArrayTemps.begin(); 3179 for (const Expr *IRef : Privates) { 3180 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 3181 // Emit variably modified arrays, used for arrays/array sections 3182 // reductions. 3183 if (PrivateVD->getType()->isVariablyModifiedType()) { 3184 RedCG.emitSharedOrigLValue(CGF, Count); 3185 RedCG.emitAggregateType(CGF, Count); 3186 } 3187 CodeGenFunction::OpaqueValueMapping DimMapping( 3188 CGF, 3189 cast<OpaqueValueExpr>( 3190 cast<VariableArrayType>((*ITA)->getType()->getAsArrayTypeUnsafe()) 3191 ->getSizeExpr()), 3192 RValue::get(OMPScanNumIterations)); 3193 // Emit temp buffer. 3194 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(*ITA)->getDecl())); 3195 ++ITA; 3196 ++Count; 3197 } 3198 } 3199 CodeGenFunction::ParentLoopDirectiveForScanRegion ScanRegion(CGF, S); 3200 { 3201 // Emit loop with input phase: 3202 // #pragma omp ... 3203 // for (i: 0..<num_iters>) { 3204 // <input phase>; 3205 // buffer[i] = red; 3206 // } 3207 CGF.OMPFirstScanLoop = true; 3208 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 3209 FirstGen(CGF); 3210 } 3211 // Emit prefix reduction: 3212 // for (int k = 0; k <= ceil(log2(n)); ++k) 3213 llvm::BasicBlock *InputBB = CGF.Builder.GetInsertBlock(); 3214 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.outer.log.scan.body"); 3215 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.outer.log.scan.exit"); 3216 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::log2, CGF.DoubleTy); 3217 llvm::Value *Arg = 3218 CGF.Builder.CreateUIToFP(OMPScanNumIterations, CGF.DoubleTy); 3219 llvm::Value *LogVal = CGF.EmitNounwindRuntimeCall(F, Arg); 3220 F = CGF.CGM.getIntrinsic(llvm::Intrinsic::ceil, CGF.DoubleTy); 3221 LogVal = CGF.EmitNounwindRuntimeCall(F, LogVal); 3222 LogVal = CGF.Builder.CreateFPToUI(LogVal, CGF.IntTy); 3223 llvm::Value *NMin1 = CGF.Builder.CreateNUWSub( 3224 OMPScanNumIterations, llvm::ConstantInt::get(CGF.SizeTy, 1)); 3225 auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getBeginLoc()); 3226 CGF.EmitBlock(LoopBB); 3227 auto *Counter = CGF.Builder.CreatePHI(CGF.IntTy, 2); 3228 // size pow2k = 1; 3229 auto *Pow2K = CGF.Builder.CreatePHI(CGF.SizeTy, 2); 3230 Counter->addIncoming(llvm::ConstantInt::get(CGF.IntTy, 0), InputBB); 3231 Pow2K->addIncoming(llvm::ConstantInt::get(CGF.SizeTy, 1), InputBB); 3232 // for (size i = n - 1; i >= 2 ^ k; --i) 3233 // tmp[i] op= tmp[i-pow2k]; 3234 llvm::BasicBlock *InnerLoopBB = 3235 CGF.createBasicBlock("omp.inner.log.scan.body"); 3236 llvm::BasicBlock *InnerExitBB = 3237 CGF.createBasicBlock("omp.inner.log.scan.exit"); 3238 llvm::Value *CmpI = CGF.Builder.CreateICmpUGE(NMin1, Pow2K); 3239 CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB); 3240 CGF.EmitBlock(InnerLoopBB); 3241 auto *IVal = CGF.Builder.CreatePHI(CGF.SizeTy, 2); 3242 IVal->addIncoming(NMin1, LoopBB); 3243 { 3244 CodeGenFunction::OMPPrivateScope PrivScope(CGF); 3245 auto *ILHS = LHSs.begin(); 3246 auto *IRHS = RHSs.begin(); 3247 for (const Expr *CopyArrayElem : CopyArrayElems) { 3248 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 3249 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 3250 Address LHSAddr = Address::invalid(); 3251 { 3252 CodeGenFunction::OpaqueValueMapping IdxMapping( 3253 CGF, 3254 cast<OpaqueValueExpr>( 3255 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3256 RValue::get(IVal)); 3257 LHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF); 3258 } 3259 PrivScope.addPrivate(LHSVD, [LHSAddr]() { return LHSAddr; }); 3260 Address RHSAddr = Address::invalid(); 3261 { 3262 llvm::Value *OffsetIVal = CGF.Builder.CreateNUWSub(IVal, Pow2K); 3263 CodeGenFunction::OpaqueValueMapping IdxMapping( 3264 CGF, 3265 cast<OpaqueValueExpr>( 3266 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3267 RValue::get(OffsetIVal)); 3268 RHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF); 3269 } 3270 PrivScope.addPrivate(RHSVD, [RHSAddr]() { return RHSAddr; }); 3271 ++ILHS; 3272 ++IRHS; 3273 } 3274 PrivScope.Privatize(); 3275 CGF.CGM.getOpenMPRuntime().emitReduction( 3276 CGF, S.getEndLoc(), Privates, LHSs, RHSs, ReductionOps, 3277 {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_unknown}); 3278 } 3279 llvm::Value *NextIVal = 3280 CGF.Builder.CreateNUWSub(IVal, llvm::ConstantInt::get(CGF.SizeTy, 1)); 3281 IVal->addIncoming(NextIVal, CGF.Builder.GetInsertBlock()); 3282 CmpI = CGF.Builder.CreateICmpUGE(NextIVal, Pow2K); 3283 CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB); 3284 CGF.EmitBlock(InnerExitBB); 3285 llvm::Value *Next = 3286 CGF.Builder.CreateNUWAdd(Counter, llvm::ConstantInt::get(CGF.IntTy, 1)); 3287 Counter->addIncoming(Next, CGF.Builder.GetInsertBlock()); 3288 // pow2k <<= 1; 3289 llvm::Value *NextPow2K = CGF.Builder.CreateShl(Pow2K, 1, "", /*HasNUW=*/true); 3290 Pow2K->addIncoming(NextPow2K, CGF.Builder.GetInsertBlock()); 3291 llvm::Value *Cmp = CGF.Builder.CreateICmpNE(Next, LogVal); 3292 CGF.Builder.CreateCondBr(Cmp, LoopBB, ExitBB); 3293 auto DL1 = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getEndLoc()); 3294 CGF.EmitBlock(ExitBB); 3295 3296 CGF.OMPFirstScanLoop = false; 3297 SecondGen(CGF); 3298 } 3299 3300 static bool emitWorksharingDirective(CodeGenFunction &CGF, 3301 const OMPLoopDirective &S, 3302 bool HasCancel) { 3303 bool HasLastprivates; 3304 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 3305 [](const OMPReductionClause *C) { 3306 return C->getModifier() == OMPC_REDUCTION_inscan; 3307 })) { 3308 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 3309 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 3310 OMPLoopScope LoopScope(CGF, S); 3311 return CGF.EmitScalarExpr(S.getNumIterations()); 3312 }; 3313 const auto &&FirstGen = [&S, HasCancel](CodeGenFunction &CGF) { 3314 CodeGenFunction::OMPCancelStackRAII CancelRegion( 3315 CGF, S.getDirectiveKind(), HasCancel); 3316 (void)CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3317 emitForLoopBounds, 3318 emitDispatchForLoopBounds); 3319 // Emit an implicit barrier at the end. 3320 CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getBeginLoc(), 3321 OMPD_for); 3322 }; 3323 const auto &&SecondGen = [&S, HasCancel, 3324 &HasLastprivates](CodeGenFunction &CGF) { 3325 CodeGenFunction::OMPCancelStackRAII CancelRegion( 3326 CGF, S.getDirectiveKind(), HasCancel); 3327 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3328 emitForLoopBounds, 3329 emitDispatchForLoopBounds); 3330 }; 3331 emitScanBasedDirective(CGF, S, NumIteratorsGen, FirstGen, SecondGen); 3332 } else { 3333 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 3334 HasCancel); 3335 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3336 emitForLoopBounds, 3337 emitDispatchForLoopBounds); 3338 } 3339 return HasLastprivates; 3340 } 3341 3342 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 3343 bool HasLastprivates = false; 3344 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 3345 PrePostActionTy &) { 3346 HasLastprivates = emitWorksharingDirective(CGF, S, S.hasCancel()); 3347 }; 3348 { 3349 auto LPCRegion = 3350 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3351 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3352 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 3353 S.hasCancel()); 3354 } 3355 3356 // Emit an implicit barrier at the end. 3357 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3358 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3359 // Check for outer lastprivate conditional update. 3360 checkForLastprivateConditionalUpdate(*this, S); 3361 } 3362 3363 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 3364 bool HasLastprivates = false; 3365 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 3366 PrePostActionTy &) { 3367 HasLastprivates = emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 3368 }; 3369 { 3370 auto LPCRegion = 3371 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3372 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3373 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 3374 } 3375 3376 // Emit an implicit barrier at the end. 3377 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3378 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3379 // Check for outer lastprivate conditional update. 3380 checkForLastprivateConditionalUpdate(*this, S); 3381 } 3382 3383 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 3384 const Twine &Name, 3385 llvm::Value *Init = nullptr) { 3386 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 3387 if (Init) 3388 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 3389 return LVal; 3390 } 3391 3392 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 3393 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 3394 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 3395 bool HasLastprivates = false; 3396 auto &&CodeGen = [&S, CapturedStmt, CS, 3397 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 3398 const ASTContext &C = CGF.getContext(); 3399 QualType KmpInt32Ty = 3400 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 3401 // Emit helper vars inits. 3402 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 3403 CGF.Builder.getInt32(0)); 3404 llvm::ConstantInt *GlobalUBVal = CS != nullptr 3405 ? CGF.Builder.getInt32(CS->size() - 1) 3406 : CGF.Builder.getInt32(0); 3407 LValue UB = 3408 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 3409 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 3410 CGF.Builder.getInt32(1)); 3411 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 3412 CGF.Builder.getInt32(0)); 3413 // Loop counter. 3414 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 3415 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 3416 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 3417 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 3418 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 3419 // Generate condition for loop. 3420 BinaryOperator *Cond = BinaryOperator::Create( 3421 C, &IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, OK_Ordinary, 3422 S.getBeginLoc(), FPOptionsOverride()); 3423 // Increment for loop counter. 3424 UnaryOperator *Inc = UnaryOperator::Create( 3425 C, &IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 3426 S.getBeginLoc(), true, FPOptionsOverride()); 3427 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 3428 // Iterate through all sections and emit a switch construct: 3429 // switch (IV) { 3430 // case 0: 3431 // <SectionStmt[0]>; 3432 // break; 3433 // ... 3434 // case <NumSection> - 1: 3435 // <SectionStmt[<NumSection> - 1]>; 3436 // break; 3437 // } 3438 // .omp.sections.exit: 3439 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 3440 llvm::SwitchInst *SwitchStmt = 3441 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 3442 ExitBB, CS == nullptr ? 1 : CS->size()); 3443 if (CS) { 3444 unsigned CaseNumber = 0; 3445 for (const Stmt *SubStmt : CS->children()) { 3446 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 3447 CGF.EmitBlock(CaseBB); 3448 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 3449 CGF.EmitStmt(SubStmt); 3450 CGF.EmitBranch(ExitBB); 3451 ++CaseNumber; 3452 } 3453 } else { 3454 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 3455 CGF.EmitBlock(CaseBB); 3456 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 3457 CGF.EmitStmt(CapturedStmt); 3458 CGF.EmitBranch(ExitBB); 3459 } 3460 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 3461 }; 3462 3463 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 3464 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 3465 // Emit implicit barrier to synchronize threads and avoid data races on 3466 // initialization of firstprivate variables and post-update of lastprivate 3467 // variables. 3468 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3469 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3470 /*ForceSimpleCall=*/true); 3471 } 3472 CGF.EmitOMPPrivateClause(S, LoopScope); 3473 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(CGF, S, IV); 3474 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 3475 CGF.EmitOMPReductionClauseInit(S, LoopScope); 3476 (void)LoopScope.Privatize(); 3477 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3478 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 3479 3480 // Emit static non-chunked loop. 3481 OpenMPScheduleTy ScheduleKind; 3482 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 3483 CGOpenMPRuntime::StaticRTInput StaticInit( 3484 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(CGF), 3485 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF)); 3486 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 3487 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 3488 // UB = min(UB, GlobalUB); 3489 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 3490 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 3491 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 3492 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 3493 // IV = LB; 3494 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 3495 // while (idx <= UB) { BODY; ++idx; } 3496 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, Cond, Inc, BodyGen, 3497 [](CodeGenFunction &) {}); 3498 // Tell the runtime we are done. 3499 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 3500 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 3501 S.getDirectiveKind()); 3502 }; 3503 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 3504 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 3505 // Emit post-update of the reduction variables if IsLastIter != 0. 3506 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 3507 return CGF.Builder.CreateIsNotNull( 3508 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3509 }); 3510 3511 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3512 if (HasLastprivates) 3513 CGF.EmitOMPLastprivateClauseFinal( 3514 S, /*NoFinals=*/false, 3515 CGF.Builder.CreateIsNotNull( 3516 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 3517 }; 3518 3519 bool HasCancel = false; 3520 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 3521 HasCancel = OSD->hasCancel(); 3522 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 3523 HasCancel = OPSD->hasCancel(); 3524 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 3525 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 3526 HasCancel); 3527 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 3528 // clause. Otherwise the barrier will be generated by the codegen for the 3529 // directive. 3530 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 3531 // Emit implicit barrier to synchronize threads and avoid data races on 3532 // initialization of firstprivate variables. 3533 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 3534 OMPD_unknown); 3535 } 3536 } 3537 3538 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 3539 { 3540 auto LPCRegion = 3541 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3542 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3543 EmitSections(S); 3544 } 3545 // Emit an implicit barrier at the end. 3546 if (!S.getSingleClause<OMPNowaitClause>()) { 3547 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 3548 OMPD_sections); 3549 } 3550 // Check for outer lastprivate conditional update. 3551 checkForLastprivateConditionalUpdate(*this, S); 3552 } 3553 3554 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 3555 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3556 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3557 }; 3558 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3559 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 3560 S.hasCancel()); 3561 } 3562 3563 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 3564 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 3565 llvm::SmallVector<const Expr *, 8> DestExprs; 3566 llvm::SmallVector<const Expr *, 8> SrcExprs; 3567 llvm::SmallVector<const Expr *, 8> AssignmentOps; 3568 // Check if there are any 'copyprivate' clauses associated with this 3569 // 'single' construct. 3570 // Build a list of copyprivate variables along with helper expressions 3571 // (<source>, <destination>, <destination>=<source> expressions) 3572 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 3573 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 3574 DestExprs.append(C->destination_exprs().begin(), 3575 C->destination_exprs().end()); 3576 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 3577 AssignmentOps.append(C->assignment_ops().begin(), 3578 C->assignment_ops().end()); 3579 } 3580 // Emit code for 'single' region along with 'copyprivate' clauses 3581 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3582 Action.Enter(CGF); 3583 OMPPrivateScope SingleScope(CGF); 3584 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 3585 CGF.EmitOMPPrivateClause(S, SingleScope); 3586 (void)SingleScope.Privatize(); 3587 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3588 }; 3589 { 3590 auto LPCRegion = 3591 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3592 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3593 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 3594 CopyprivateVars, DestExprs, 3595 SrcExprs, AssignmentOps); 3596 } 3597 // Emit an implicit barrier at the end (to avoid data race on firstprivate 3598 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 3599 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 3600 CGM.getOpenMPRuntime().emitBarrierCall( 3601 *this, S.getBeginLoc(), 3602 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 3603 } 3604 // Check for outer lastprivate conditional update. 3605 checkForLastprivateConditionalUpdate(*this, S); 3606 } 3607 3608 static void emitMaster(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 3609 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3610 Action.Enter(CGF); 3611 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3612 }; 3613 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 3614 } 3615 3616 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 3617 if (CGM.getLangOpts().OpenMPIRBuilder) { 3618 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 3619 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 3620 3621 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 3622 const Stmt *MasterRegionBodyStmt = CS->getCapturedStmt(); 3623 3624 auto FiniCB = [this](InsertPointTy IP) { 3625 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 3626 }; 3627 3628 auto BodyGenCB = [MasterRegionBodyStmt, this](InsertPointTy AllocaIP, 3629 InsertPointTy CodeGenIP, 3630 llvm::BasicBlock &FiniBB) { 3631 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 3632 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, MasterRegionBodyStmt, 3633 CodeGenIP, FiniBB); 3634 }; 3635 3636 CGCapturedStmtInfo CGSI(*CS, CR_OpenMP); 3637 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 3638 Builder.restoreIP(OMPBuilder.CreateMaster(Builder, BodyGenCB, FiniCB)); 3639 3640 return; 3641 } 3642 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3643 emitMaster(*this, S); 3644 } 3645 3646 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 3647 if (CGM.getLangOpts().OpenMPIRBuilder) { 3648 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 3649 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 3650 3651 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 3652 const Stmt *CriticalRegionBodyStmt = CS->getCapturedStmt(); 3653 const Expr *Hint = nullptr; 3654 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 3655 Hint = HintClause->getHint(); 3656 3657 // TODO: This is slightly different from what's currently being done in 3658 // clang. Fix the Int32Ty to IntPtrTy (pointer width size) when everything 3659 // about typing is final. 3660 llvm::Value *HintInst = nullptr; 3661 if (Hint) 3662 HintInst = 3663 Builder.CreateIntCast(EmitScalarExpr(Hint), CGM.Int32Ty, false); 3664 3665 auto FiniCB = [this](InsertPointTy IP) { 3666 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 3667 }; 3668 3669 auto BodyGenCB = [CriticalRegionBodyStmt, this](InsertPointTy AllocaIP, 3670 InsertPointTy CodeGenIP, 3671 llvm::BasicBlock &FiniBB) { 3672 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 3673 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CriticalRegionBodyStmt, 3674 CodeGenIP, FiniBB); 3675 }; 3676 3677 CGCapturedStmtInfo CGSI(*CS, CR_OpenMP); 3678 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 3679 Builder.restoreIP(OMPBuilder.CreateCritical( 3680 Builder, BodyGenCB, FiniCB, S.getDirectiveName().getAsString(), 3681 HintInst)); 3682 3683 return; 3684 } 3685 3686 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3687 Action.Enter(CGF); 3688 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3689 }; 3690 const Expr *Hint = nullptr; 3691 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 3692 Hint = HintClause->getHint(); 3693 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3694 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 3695 S.getDirectiveName().getAsString(), 3696 CodeGen, S.getBeginLoc(), Hint); 3697 } 3698 3699 void CodeGenFunction::EmitOMPParallelForDirective( 3700 const OMPParallelForDirective &S) { 3701 // Emit directive as a combined directive that consists of two implicit 3702 // directives: 'parallel' with 'for' directive. 3703 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3704 Action.Enter(CGF); 3705 (void)emitWorksharingDirective(CGF, S, S.hasCancel()); 3706 }; 3707 { 3708 auto LPCRegion = 3709 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3710 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 3711 emitEmptyBoundParameters); 3712 } 3713 // Check for outer lastprivate conditional update. 3714 checkForLastprivateConditionalUpdate(*this, S); 3715 } 3716 3717 void CodeGenFunction::EmitOMPParallelForSimdDirective( 3718 const OMPParallelForSimdDirective &S) { 3719 // Emit directive as a combined directive that consists of two implicit 3720 // directives: 'parallel' with 'for' directive. 3721 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3722 Action.Enter(CGF); 3723 (void)emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 3724 }; 3725 { 3726 auto LPCRegion = 3727 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3728 emitCommonOMPParallelDirective(*this, S, OMPD_for_simd, CodeGen, 3729 emitEmptyBoundParameters); 3730 } 3731 // Check for outer lastprivate conditional update. 3732 checkForLastprivateConditionalUpdate(*this, S); 3733 } 3734 3735 void CodeGenFunction::EmitOMPParallelMasterDirective( 3736 const OMPParallelMasterDirective &S) { 3737 // Emit directive as a combined directive that consists of two implicit 3738 // directives: 'parallel' with 'master' directive. 3739 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3740 Action.Enter(CGF); 3741 OMPPrivateScope PrivateScope(CGF); 3742 bool Copyins = CGF.EmitOMPCopyinClause(S); 3743 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3744 if (Copyins) { 3745 // Emit implicit barrier to synchronize threads and avoid data races on 3746 // propagation master's thread values of threadprivate variables to local 3747 // instances of that variables of all other implicit threads. 3748 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3749 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3750 /*ForceSimpleCall=*/true); 3751 } 3752 CGF.EmitOMPPrivateClause(S, PrivateScope); 3753 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 3754 (void)PrivateScope.Privatize(); 3755 emitMaster(CGF, S); 3756 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 3757 }; 3758 { 3759 auto LPCRegion = 3760 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3761 emitCommonOMPParallelDirective(*this, S, OMPD_master, CodeGen, 3762 emitEmptyBoundParameters); 3763 emitPostUpdateForReductionClause(*this, S, 3764 [](CodeGenFunction &) { return nullptr; }); 3765 } 3766 // Check for outer lastprivate conditional update. 3767 checkForLastprivateConditionalUpdate(*this, S); 3768 } 3769 3770 void CodeGenFunction::EmitOMPParallelSectionsDirective( 3771 const OMPParallelSectionsDirective &S) { 3772 // Emit directive as a combined directive that consists of two implicit 3773 // directives: 'parallel' with 'sections' directive. 3774 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3775 Action.Enter(CGF); 3776 CGF.EmitSections(S); 3777 }; 3778 { 3779 auto LPCRegion = 3780 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3781 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 3782 emitEmptyBoundParameters); 3783 } 3784 // Check for outer lastprivate conditional update. 3785 checkForLastprivateConditionalUpdate(*this, S); 3786 } 3787 3788 void CodeGenFunction::EmitOMPTaskBasedDirective( 3789 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 3790 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 3791 OMPTaskDataTy &Data) { 3792 // Emit outlined function for task construct. 3793 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 3794 auto I = CS->getCapturedDecl()->param_begin(); 3795 auto PartId = std::next(I); 3796 auto TaskT = std::next(I, 4); 3797 // Check if the task is final 3798 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 3799 // If the condition constant folds and can be elided, try to avoid emitting 3800 // the condition and the dead arm of the if/else. 3801 const Expr *Cond = Clause->getCondition(); 3802 bool CondConstant; 3803 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 3804 Data.Final.setInt(CondConstant); 3805 else 3806 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 3807 } else { 3808 // By default the task is not final. 3809 Data.Final.setInt(/*IntVal=*/false); 3810 } 3811 // Check if the task has 'priority' clause. 3812 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 3813 const Expr *Prio = Clause->getPriority(); 3814 Data.Priority.setInt(/*IntVal=*/true); 3815 Data.Priority.setPointer(EmitScalarConversion( 3816 EmitScalarExpr(Prio), Prio->getType(), 3817 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 3818 Prio->getExprLoc())); 3819 } 3820 // The first function argument for tasks is a thread id, the second one is a 3821 // part id (0 for tied tasks, >=0 for untied task). 3822 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 3823 // Get list of private variables. 3824 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 3825 auto IRef = C->varlist_begin(); 3826 for (const Expr *IInit : C->private_copies()) { 3827 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3828 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3829 Data.PrivateVars.push_back(*IRef); 3830 Data.PrivateCopies.push_back(IInit); 3831 } 3832 ++IRef; 3833 } 3834 } 3835 EmittedAsPrivate.clear(); 3836 // Get list of firstprivate variables. 3837 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3838 auto IRef = C->varlist_begin(); 3839 auto IElemInitRef = C->inits().begin(); 3840 for (const Expr *IInit : C->private_copies()) { 3841 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3842 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3843 Data.FirstprivateVars.push_back(*IRef); 3844 Data.FirstprivateCopies.push_back(IInit); 3845 Data.FirstprivateInits.push_back(*IElemInitRef); 3846 } 3847 ++IRef; 3848 ++IElemInitRef; 3849 } 3850 } 3851 // Get list of lastprivate variables (for taskloops). 3852 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 3853 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 3854 auto IRef = C->varlist_begin(); 3855 auto ID = C->destination_exprs().begin(); 3856 for (const Expr *IInit : C->private_copies()) { 3857 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3858 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3859 Data.LastprivateVars.push_back(*IRef); 3860 Data.LastprivateCopies.push_back(IInit); 3861 } 3862 LastprivateDstsOrigs.insert( 3863 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 3864 cast<DeclRefExpr>(*IRef)}); 3865 ++IRef; 3866 ++ID; 3867 } 3868 } 3869 SmallVector<const Expr *, 4> LHSs; 3870 SmallVector<const Expr *, 4> RHSs; 3871 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3872 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 3873 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 3874 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 3875 Data.ReductionOps.append(C->reduction_ops().begin(), 3876 C->reduction_ops().end()); 3877 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 3878 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 3879 } 3880 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 3881 *this, S.getBeginLoc(), LHSs, RHSs, Data); 3882 // Build list of dependences. 3883 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 3884 OMPTaskDataTy::DependData &DD = 3885 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 3886 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 3887 } 3888 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 3889 CapturedRegion](CodeGenFunction &CGF, 3890 PrePostActionTy &Action) { 3891 // Set proper addresses for generated private copies. 3892 OMPPrivateScope Scope(CGF); 3893 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> FirstprivatePtrs; 3894 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 3895 !Data.LastprivateVars.empty()) { 3896 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 3897 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 3898 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3899 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 3900 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 3901 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 3902 CS->getCapturedDecl()->getParam(PrivatesParam))); 3903 // Map privates. 3904 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3905 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3906 CallArgs.push_back(PrivatesPtr); 3907 for (const Expr *E : Data.PrivateVars) { 3908 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3909 Address PrivatePtr = CGF.CreateMemTemp( 3910 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 3911 PrivatePtrs.emplace_back(VD, PrivatePtr); 3912 CallArgs.push_back(PrivatePtr.getPointer()); 3913 } 3914 for (const Expr *E : Data.FirstprivateVars) { 3915 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3916 Address PrivatePtr = 3917 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3918 ".firstpriv.ptr.addr"); 3919 PrivatePtrs.emplace_back(VD, PrivatePtr); 3920 FirstprivatePtrs.emplace_back(VD, PrivatePtr); 3921 CallArgs.push_back(PrivatePtr.getPointer()); 3922 } 3923 for (const Expr *E : Data.LastprivateVars) { 3924 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3925 Address PrivatePtr = 3926 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3927 ".lastpriv.ptr.addr"); 3928 PrivatePtrs.emplace_back(VD, PrivatePtr); 3929 CallArgs.push_back(PrivatePtr.getPointer()); 3930 } 3931 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3932 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 3933 for (const auto &Pair : LastprivateDstsOrigs) { 3934 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 3935 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD), 3936 /*RefersToEnclosingVariableOrCapture=*/ 3937 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 3938 Pair.second->getType(), VK_LValue, 3939 Pair.second->getExprLoc()); 3940 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 3941 return CGF.EmitLValue(&DRE).getAddress(CGF); 3942 }); 3943 } 3944 for (const auto &Pair : PrivatePtrs) { 3945 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3946 CGF.getContext().getDeclAlign(Pair.first)); 3947 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3948 } 3949 } 3950 if (Data.Reductions) { 3951 OMPPrivateScope FirstprivateScope(CGF); 3952 for (const auto &Pair : FirstprivatePtrs) { 3953 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3954 CGF.getContext().getDeclAlign(Pair.first)); 3955 FirstprivateScope.addPrivate(Pair.first, 3956 [Replacement]() { return Replacement; }); 3957 } 3958 (void)FirstprivateScope.Privatize(); 3959 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 3960 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionVars, 3961 Data.ReductionCopies, Data.ReductionOps); 3962 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 3963 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 3964 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 3965 RedCG.emitSharedOrigLValue(CGF, Cnt); 3966 RedCG.emitAggregateType(CGF, Cnt); 3967 // FIXME: This must removed once the runtime library is fixed. 3968 // Emit required threadprivate variables for 3969 // initializer/combiner/finalizer. 3970 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 3971 RedCG, Cnt); 3972 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 3973 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 3974 Replacement = 3975 Address(CGF.EmitScalarConversion( 3976 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 3977 CGF.getContext().getPointerType( 3978 Data.ReductionCopies[Cnt]->getType()), 3979 Data.ReductionCopies[Cnt]->getExprLoc()), 3980 Replacement.getAlignment()); 3981 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 3982 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 3983 [Replacement]() { return Replacement; }); 3984 } 3985 } 3986 // Privatize all private variables except for in_reduction items. 3987 (void)Scope.Privatize(); 3988 SmallVector<const Expr *, 4> InRedVars; 3989 SmallVector<const Expr *, 4> InRedPrivs; 3990 SmallVector<const Expr *, 4> InRedOps; 3991 SmallVector<const Expr *, 4> TaskgroupDescriptors; 3992 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 3993 auto IPriv = C->privates().begin(); 3994 auto IRed = C->reduction_ops().begin(); 3995 auto ITD = C->taskgroup_descriptors().begin(); 3996 for (const Expr *Ref : C->varlists()) { 3997 InRedVars.emplace_back(Ref); 3998 InRedPrivs.emplace_back(*IPriv); 3999 InRedOps.emplace_back(*IRed); 4000 TaskgroupDescriptors.emplace_back(*ITD); 4001 std::advance(IPriv, 1); 4002 std::advance(IRed, 1); 4003 std::advance(ITD, 1); 4004 } 4005 } 4006 // Privatize in_reduction items here, because taskgroup descriptors must be 4007 // privatized earlier. 4008 OMPPrivateScope InRedScope(CGF); 4009 if (!InRedVars.empty()) { 4010 ReductionCodeGen RedCG(InRedVars, InRedVars, InRedPrivs, InRedOps); 4011 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 4012 RedCG.emitSharedOrigLValue(CGF, Cnt); 4013 RedCG.emitAggregateType(CGF, Cnt); 4014 // The taskgroup descriptor variable is always implicit firstprivate and 4015 // privatized already during processing of the firstprivates. 4016 // FIXME: This must removed once the runtime library is fixed. 4017 // Emit required threadprivate variables for 4018 // initializer/combiner/finalizer. 4019 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 4020 RedCG, Cnt); 4021 llvm::Value *ReductionsPtr; 4022 if (const Expr *TRExpr = TaskgroupDescriptors[Cnt]) { 4023 ReductionsPtr = CGF.EmitLoadOfScalar(CGF.EmitLValue(TRExpr), 4024 TRExpr->getExprLoc()); 4025 } else { 4026 ReductionsPtr = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); 4027 } 4028 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 4029 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 4030 Replacement = Address( 4031 CGF.EmitScalarConversion( 4032 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 4033 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 4034 InRedPrivs[Cnt]->getExprLoc()), 4035 Replacement.getAlignment()); 4036 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 4037 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 4038 [Replacement]() { return Replacement; }); 4039 } 4040 } 4041 (void)InRedScope.Privatize(); 4042 4043 Action.Enter(CGF); 4044 BodyGen(CGF); 4045 }; 4046 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 4047 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 4048 Data.NumberOfParts); 4049 OMPLexicalScope Scope(*this, S, llvm::None, 4050 !isOpenMPParallelDirective(S.getDirectiveKind()) && 4051 !isOpenMPSimdDirective(S.getDirectiveKind())); 4052 TaskGen(*this, OutlinedFn, Data); 4053 } 4054 4055 static ImplicitParamDecl * 4056 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 4057 QualType Ty, CapturedDecl *CD, 4058 SourceLocation Loc) { 4059 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 4060 ImplicitParamDecl::Other); 4061 auto *OrigRef = DeclRefExpr::Create( 4062 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 4063 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 4064 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 4065 ImplicitParamDecl::Other); 4066 auto *PrivateRef = DeclRefExpr::Create( 4067 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 4068 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 4069 QualType ElemType = C.getBaseElementType(Ty); 4070 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 4071 ImplicitParamDecl::Other); 4072 auto *InitRef = DeclRefExpr::Create( 4073 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 4074 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 4075 PrivateVD->setInitStyle(VarDecl::CInit); 4076 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 4077 InitRef, /*BasePath=*/nullptr, 4078 VK_RValue)); 4079 Data.FirstprivateVars.emplace_back(OrigRef); 4080 Data.FirstprivateCopies.emplace_back(PrivateRef); 4081 Data.FirstprivateInits.emplace_back(InitRef); 4082 return OrigVD; 4083 } 4084 4085 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 4086 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 4087 OMPTargetDataInfo &InputInfo) { 4088 // Emit outlined function for task construct. 4089 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 4090 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4091 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4092 auto I = CS->getCapturedDecl()->param_begin(); 4093 auto PartId = std::next(I); 4094 auto TaskT = std::next(I, 4); 4095 OMPTaskDataTy Data; 4096 // The task is not final. 4097 Data.Final.setInt(/*IntVal=*/false); 4098 // Get list of firstprivate variables. 4099 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 4100 auto IRef = C->varlist_begin(); 4101 auto IElemInitRef = C->inits().begin(); 4102 for (auto *IInit : C->private_copies()) { 4103 Data.FirstprivateVars.push_back(*IRef); 4104 Data.FirstprivateCopies.push_back(IInit); 4105 Data.FirstprivateInits.push_back(*IElemInitRef); 4106 ++IRef; 4107 ++IElemInitRef; 4108 } 4109 } 4110 OMPPrivateScope TargetScope(*this); 4111 VarDecl *BPVD = nullptr; 4112 VarDecl *PVD = nullptr; 4113 VarDecl *SVD = nullptr; 4114 if (InputInfo.NumberOfTargetItems > 0) { 4115 auto *CD = CapturedDecl::Create( 4116 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 4117 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 4118 QualType BaseAndPointersType = getContext().getConstantArrayType( 4119 getContext().VoidPtrTy, ArrSize, nullptr, ArrayType::Normal, 4120 /*IndexTypeQuals=*/0); 4121 BPVD = createImplicitFirstprivateForType( 4122 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 4123 PVD = createImplicitFirstprivateForType( 4124 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 4125 QualType SizesType = getContext().getConstantArrayType( 4126 getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1), 4127 ArrSize, nullptr, ArrayType::Normal, 4128 /*IndexTypeQuals=*/0); 4129 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 4130 S.getBeginLoc()); 4131 TargetScope.addPrivate( 4132 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 4133 TargetScope.addPrivate(PVD, 4134 [&InputInfo]() { return InputInfo.PointersArray; }); 4135 TargetScope.addPrivate(SVD, 4136 [&InputInfo]() { return InputInfo.SizesArray; }); 4137 } 4138 (void)TargetScope.Privatize(); 4139 // Build list of dependences. 4140 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 4141 OMPTaskDataTy::DependData &DD = 4142 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 4143 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 4144 } 4145 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, 4146 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 4147 // Set proper addresses for generated private copies. 4148 OMPPrivateScope Scope(CGF); 4149 if (!Data.FirstprivateVars.empty()) { 4150 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 4151 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 4152 enum { PrivatesParam = 2, CopyFnParam = 3 }; 4153 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 4154 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 4155 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 4156 CS->getCapturedDecl()->getParam(PrivatesParam))); 4157 // Map privates. 4158 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 4159 llvm::SmallVector<llvm::Value *, 16> CallArgs; 4160 CallArgs.push_back(PrivatesPtr); 4161 for (const Expr *E : Data.FirstprivateVars) { 4162 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4163 Address PrivatePtr = 4164 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4165 ".firstpriv.ptr.addr"); 4166 PrivatePtrs.emplace_back(VD, PrivatePtr); 4167 CallArgs.push_back(PrivatePtr.getPointer()); 4168 } 4169 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 4170 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 4171 for (const auto &Pair : PrivatePtrs) { 4172 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 4173 CGF.getContext().getDeclAlign(Pair.first)); 4174 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 4175 } 4176 } 4177 // Privatize all private variables except for in_reduction items. 4178 (void)Scope.Privatize(); 4179 if (InputInfo.NumberOfTargetItems > 0) { 4180 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 4181 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0); 4182 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 4183 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0); 4184 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 4185 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0); 4186 } 4187 4188 Action.Enter(CGF); 4189 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 4190 BodyGen(CGF); 4191 }; 4192 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 4193 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 4194 Data.NumberOfParts); 4195 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 4196 IntegerLiteral IfCond(getContext(), TrueOrFalse, 4197 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 4198 SourceLocation()); 4199 4200 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 4201 SharedsTy, CapturedStruct, &IfCond, Data); 4202 } 4203 4204 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 4205 // Emit outlined function for task construct. 4206 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 4207 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4208 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4209 const Expr *IfCond = nullptr; 4210 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4211 if (C->getNameModifier() == OMPD_unknown || 4212 C->getNameModifier() == OMPD_task) { 4213 IfCond = C->getCondition(); 4214 break; 4215 } 4216 } 4217 4218 OMPTaskDataTy Data; 4219 // Check if we should emit tied or untied task. 4220 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 4221 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 4222 CGF.EmitStmt(CS->getCapturedStmt()); 4223 }; 4224 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 4225 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 4226 const OMPTaskDataTy &Data) { 4227 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 4228 SharedsTy, CapturedStruct, IfCond, 4229 Data); 4230 }; 4231 auto LPCRegion = 4232 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4233 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 4234 } 4235 4236 void CodeGenFunction::EmitOMPTaskyieldDirective( 4237 const OMPTaskyieldDirective &S) { 4238 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 4239 } 4240 4241 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 4242 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 4243 } 4244 4245 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 4246 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc()); 4247 } 4248 4249 void CodeGenFunction::EmitOMPTaskgroupDirective( 4250 const OMPTaskgroupDirective &S) { 4251 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4252 Action.Enter(CGF); 4253 if (const Expr *E = S.getReductionRef()) { 4254 SmallVector<const Expr *, 4> LHSs; 4255 SmallVector<const Expr *, 4> RHSs; 4256 OMPTaskDataTy Data; 4257 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 4258 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 4259 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 4260 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 4261 Data.ReductionOps.append(C->reduction_ops().begin(), 4262 C->reduction_ops().end()); 4263 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4264 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4265 } 4266 llvm::Value *ReductionDesc = 4267 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 4268 LHSs, RHSs, Data); 4269 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4270 CGF.EmitVarDecl(*VD); 4271 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 4272 /*Volatile=*/false, E->getType()); 4273 } 4274 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4275 }; 4276 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4277 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 4278 } 4279 4280 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 4281 llvm::AtomicOrdering AO = S.getSingleClause<OMPFlushClause>() 4282 ? llvm::AtomicOrdering::NotAtomic 4283 : llvm::AtomicOrdering::AcquireRelease; 4284 CGM.getOpenMPRuntime().emitFlush( 4285 *this, 4286 [&S]() -> ArrayRef<const Expr *> { 4287 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 4288 return llvm::makeArrayRef(FlushClause->varlist_begin(), 4289 FlushClause->varlist_end()); 4290 return llvm::None; 4291 }(), 4292 S.getBeginLoc(), AO); 4293 } 4294 4295 void CodeGenFunction::EmitOMPDepobjDirective(const OMPDepobjDirective &S) { 4296 const auto *DO = S.getSingleClause<OMPDepobjClause>(); 4297 LValue DOLVal = EmitLValue(DO->getDepobj()); 4298 if (const auto *DC = S.getSingleClause<OMPDependClause>()) { 4299 OMPTaskDataTy::DependData Dependencies(DC->getDependencyKind(), 4300 DC->getModifier()); 4301 Dependencies.DepExprs.append(DC->varlist_begin(), DC->varlist_end()); 4302 Address DepAddr = CGM.getOpenMPRuntime().emitDepobjDependClause( 4303 *this, Dependencies, DC->getBeginLoc()); 4304 EmitStoreOfScalar(DepAddr.getPointer(), DOLVal); 4305 return; 4306 } 4307 if (const auto *DC = S.getSingleClause<OMPDestroyClause>()) { 4308 CGM.getOpenMPRuntime().emitDestroyClause(*this, DOLVal, DC->getBeginLoc()); 4309 return; 4310 } 4311 if (const auto *UC = S.getSingleClause<OMPUpdateClause>()) { 4312 CGM.getOpenMPRuntime().emitUpdateClause( 4313 *this, DOLVal, UC->getDependencyKind(), UC->getBeginLoc()); 4314 return; 4315 } 4316 } 4317 4318 void CodeGenFunction::EmitOMPScanDirective(const OMPScanDirective &S) { 4319 if (!OMPParentLoopDirectiveForScan) 4320 return; 4321 const OMPExecutableDirective &ParentDir = *OMPParentLoopDirectiveForScan; 4322 bool IsInclusive = S.hasClausesOfKind<OMPInclusiveClause>(); 4323 SmallVector<const Expr *, 4> Shareds; 4324 SmallVector<const Expr *, 4> Privates; 4325 SmallVector<const Expr *, 4> LHSs; 4326 SmallVector<const Expr *, 4> RHSs; 4327 SmallVector<const Expr *, 4> ReductionOps; 4328 SmallVector<const Expr *, 4> CopyOps; 4329 SmallVector<const Expr *, 4> CopyArrayTemps; 4330 SmallVector<const Expr *, 4> CopyArrayElems; 4331 for (const auto *C : ParentDir.getClausesOfKind<OMPReductionClause>()) { 4332 if (C->getModifier() != OMPC_REDUCTION_inscan) 4333 continue; 4334 Shareds.append(C->varlist_begin(), C->varlist_end()); 4335 Privates.append(C->privates().begin(), C->privates().end()); 4336 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4337 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4338 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 4339 CopyOps.append(C->copy_ops().begin(), C->copy_ops().end()); 4340 CopyArrayTemps.append(C->copy_array_temps().begin(), 4341 C->copy_array_temps().end()); 4342 CopyArrayElems.append(C->copy_array_elems().begin(), 4343 C->copy_array_elems().end()); 4344 } 4345 if (ParentDir.getDirectiveKind() == OMPD_simd || 4346 (getLangOpts().OpenMPSimd && 4347 isOpenMPSimdDirective(ParentDir.getDirectiveKind()))) { 4348 // For simd directive and simd-based directives in simd only mode, use the 4349 // following codegen: 4350 // int x = 0; 4351 // #pragma omp simd reduction(inscan, +: x) 4352 // for (..) { 4353 // <first part> 4354 // #pragma omp scan inclusive(x) 4355 // <second part> 4356 // } 4357 // is transformed to: 4358 // int x = 0; 4359 // for (..) { 4360 // int x_priv = 0; 4361 // <first part> 4362 // x = x_priv + x; 4363 // x_priv = x; 4364 // <second part> 4365 // } 4366 // and 4367 // int x = 0; 4368 // #pragma omp simd reduction(inscan, +: x) 4369 // for (..) { 4370 // <first part> 4371 // #pragma omp scan exclusive(x) 4372 // <second part> 4373 // } 4374 // to 4375 // int x = 0; 4376 // for (..) { 4377 // int x_priv = 0; 4378 // <second part> 4379 // int temp = x; 4380 // x = x_priv + x; 4381 // x_priv = temp; 4382 // <first part> 4383 // } 4384 llvm::BasicBlock *OMPScanReduce = createBasicBlock("omp.inscan.reduce"); 4385 EmitBranch(IsInclusive 4386 ? OMPScanReduce 4387 : BreakContinueStack.back().ContinueBlock.getBlock()); 4388 EmitBlock(OMPScanDispatch); 4389 { 4390 // New scope for correct construction/destruction of temp variables for 4391 // exclusive scan. 4392 LexicalScope Scope(*this, S.getSourceRange()); 4393 EmitBranch(IsInclusive ? OMPBeforeScanBlock : OMPAfterScanBlock); 4394 EmitBlock(OMPScanReduce); 4395 if (!IsInclusive) { 4396 // Create temp var and copy LHS value to this temp value. 4397 // TMP = LHS; 4398 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 4399 const Expr *PrivateExpr = Privates[I]; 4400 const Expr *TempExpr = CopyArrayTemps[I]; 4401 EmitAutoVarDecl( 4402 *cast<VarDecl>(cast<DeclRefExpr>(TempExpr)->getDecl())); 4403 LValue DestLVal = EmitLValue(TempExpr); 4404 LValue SrcLVal = EmitLValue(LHSs[I]); 4405 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 4406 SrcLVal.getAddress(*this), 4407 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 4408 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 4409 CopyOps[I]); 4410 } 4411 } 4412 CGM.getOpenMPRuntime().emitReduction( 4413 *this, ParentDir.getEndLoc(), Privates, LHSs, RHSs, ReductionOps, 4414 {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_simd}); 4415 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 4416 const Expr *PrivateExpr = Privates[I]; 4417 LValue DestLVal; 4418 LValue SrcLVal; 4419 if (IsInclusive) { 4420 DestLVal = EmitLValue(RHSs[I]); 4421 SrcLVal = EmitLValue(LHSs[I]); 4422 } else { 4423 const Expr *TempExpr = CopyArrayTemps[I]; 4424 DestLVal = EmitLValue(RHSs[I]); 4425 SrcLVal = EmitLValue(TempExpr); 4426 } 4427 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 4428 SrcLVal.getAddress(*this), 4429 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 4430 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 4431 CopyOps[I]); 4432 } 4433 } 4434 EmitBranch(IsInclusive ? OMPAfterScanBlock : OMPBeforeScanBlock); 4435 OMPScanExitBlock = IsInclusive 4436 ? BreakContinueStack.back().ContinueBlock.getBlock() 4437 : OMPScanReduce; 4438 EmitBlock(OMPAfterScanBlock); 4439 return; 4440 } 4441 if (!IsInclusive) { 4442 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 4443 EmitBlock(OMPScanExitBlock); 4444 } 4445 if (OMPFirstScanLoop) { 4446 // Emit buffer[i] = red; at the end of the input phase. 4447 const auto *IVExpr = cast<OMPLoopDirective>(ParentDir) 4448 .getIterationVariable() 4449 ->IgnoreParenImpCasts(); 4450 LValue IdxLVal = EmitLValue(IVExpr); 4451 llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc()); 4452 IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false); 4453 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 4454 const Expr *PrivateExpr = Privates[I]; 4455 const Expr *OrigExpr = Shareds[I]; 4456 const Expr *CopyArrayElem = CopyArrayElems[I]; 4457 OpaqueValueMapping IdxMapping( 4458 *this, 4459 cast<OpaqueValueExpr>( 4460 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 4461 RValue::get(IdxVal)); 4462 LValue DestLVal = EmitLValue(CopyArrayElem); 4463 LValue SrcLVal = EmitLValue(OrigExpr); 4464 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 4465 SrcLVal.getAddress(*this), 4466 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 4467 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 4468 CopyOps[I]); 4469 } 4470 } 4471 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 4472 if (IsInclusive) { 4473 EmitBlock(OMPScanExitBlock); 4474 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 4475 } 4476 EmitBlock(OMPScanDispatch); 4477 if (!OMPFirstScanLoop) { 4478 // Emit red = buffer[i]; at the entrance to the scan phase. 4479 const auto *IVExpr = cast<OMPLoopDirective>(ParentDir) 4480 .getIterationVariable() 4481 ->IgnoreParenImpCasts(); 4482 LValue IdxLVal = EmitLValue(IVExpr); 4483 llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc()); 4484 IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false); 4485 llvm::BasicBlock *ExclusiveExitBB = nullptr; 4486 if (!IsInclusive) { 4487 llvm::BasicBlock *ContBB = createBasicBlock("omp.exclusive.dec"); 4488 ExclusiveExitBB = createBasicBlock("omp.exclusive.copy.exit"); 4489 llvm::Value *Cmp = Builder.CreateIsNull(IdxVal); 4490 Builder.CreateCondBr(Cmp, ExclusiveExitBB, ContBB); 4491 EmitBlock(ContBB); 4492 // Use idx - 1 iteration for exclusive scan. 4493 IdxVal = Builder.CreateNUWSub(IdxVal, llvm::ConstantInt::get(SizeTy, 1)); 4494 } 4495 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 4496 const Expr *PrivateExpr = Privates[I]; 4497 const Expr *OrigExpr = Shareds[I]; 4498 const Expr *CopyArrayElem = CopyArrayElems[I]; 4499 OpaqueValueMapping IdxMapping( 4500 *this, 4501 cast<OpaqueValueExpr>( 4502 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 4503 RValue::get(IdxVal)); 4504 LValue SrcLVal = EmitLValue(CopyArrayElem); 4505 LValue DestLVal = EmitLValue(OrigExpr); 4506 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 4507 SrcLVal.getAddress(*this), 4508 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 4509 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 4510 CopyOps[I]); 4511 } 4512 if (!IsInclusive) { 4513 EmitBlock(ExclusiveExitBB); 4514 } 4515 } 4516 EmitBranch((OMPFirstScanLoop == IsInclusive) ? OMPBeforeScanBlock 4517 : OMPAfterScanBlock); 4518 EmitBlock(OMPAfterScanBlock); 4519 } 4520 4521 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 4522 const CodeGenLoopTy &CodeGenLoop, 4523 Expr *IncExpr) { 4524 // Emit the loop iteration variable. 4525 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 4526 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 4527 EmitVarDecl(*IVDecl); 4528 4529 // Emit the iterations count variable. 4530 // If it is not a variable, Sema decided to calculate iterations count on each 4531 // iteration (e.g., it is foldable into a constant). 4532 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 4533 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 4534 // Emit calculation of the iterations count. 4535 EmitIgnoredExpr(S.getCalcLastIteration()); 4536 } 4537 4538 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 4539 4540 bool HasLastprivateClause = false; 4541 // Check pre-condition. 4542 { 4543 OMPLoopScope PreInitScope(*this, S); 4544 // Skip the entire loop if we don't meet the precondition. 4545 // If the condition constant folds and can be elided, avoid emitting the 4546 // whole loop. 4547 bool CondConstant; 4548 llvm::BasicBlock *ContBlock = nullptr; 4549 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 4550 if (!CondConstant) 4551 return; 4552 } else { 4553 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 4554 ContBlock = createBasicBlock("omp.precond.end"); 4555 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 4556 getProfileCount(&S)); 4557 EmitBlock(ThenBlock); 4558 incrementProfileCounter(&S); 4559 } 4560 4561 emitAlignedClause(*this, S); 4562 // Emit 'then' code. 4563 { 4564 // Emit helper vars inits. 4565 4566 LValue LB = EmitOMPHelperVar( 4567 *this, cast<DeclRefExpr>( 4568 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 4569 ? S.getCombinedLowerBoundVariable() 4570 : S.getLowerBoundVariable()))); 4571 LValue UB = EmitOMPHelperVar( 4572 *this, cast<DeclRefExpr>( 4573 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 4574 ? S.getCombinedUpperBoundVariable() 4575 : S.getUpperBoundVariable()))); 4576 LValue ST = 4577 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 4578 LValue IL = 4579 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 4580 4581 OMPPrivateScope LoopScope(*this); 4582 if (EmitOMPFirstprivateClause(S, LoopScope)) { 4583 // Emit implicit barrier to synchronize threads and avoid data races 4584 // on initialization of firstprivate variables and post-update of 4585 // lastprivate variables. 4586 CGM.getOpenMPRuntime().emitBarrierCall( 4587 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 4588 /*ForceSimpleCall=*/true); 4589 } 4590 EmitOMPPrivateClause(S, LoopScope); 4591 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 4592 !isOpenMPParallelDirective(S.getDirectiveKind()) && 4593 !isOpenMPTeamsDirective(S.getDirectiveKind())) 4594 EmitOMPReductionClauseInit(S, LoopScope); 4595 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 4596 EmitOMPPrivateLoopCounters(S, LoopScope); 4597 (void)LoopScope.Privatize(); 4598 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4599 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 4600 4601 // Detect the distribute schedule kind and chunk. 4602 llvm::Value *Chunk = nullptr; 4603 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 4604 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 4605 ScheduleKind = C->getDistScheduleKind(); 4606 if (const Expr *Ch = C->getChunkSize()) { 4607 Chunk = EmitScalarExpr(Ch); 4608 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 4609 S.getIterationVariable()->getType(), 4610 S.getBeginLoc()); 4611 } 4612 } else { 4613 // Default behaviour for dist_schedule clause. 4614 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 4615 *this, S, ScheduleKind, Chunk); 4616 } 4617 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 4618 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 4619 4620 // OpenMP [2.10.8, distribute Construct, Description] 4621 // If dist_schedule is specified, kind must be static. If specified, 4622 // iterations are divided into chunks of size chunk_size, chunks are 4623 // assigned to the teams of the league in a round-robin fashion in the 4624 // order of the team number. When no chunk_size is specified, the 4625 // iteration space is divided into chunks that are approximately equal 4626 // in size, and at most one chunk is distributed to each team of the 4627 // league. The size of the chunks is unspecified in this case. 4628 bool StaticChunked = RT.isStaticChunked( 4629 ScheduleKind, /* Chunked */ Chunk != nullptr) && 4630 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 4631 if (RT.isStaticNonchunked(ScheduleKind, 4632 /* Chunked */ Chunk != nullptr) || 4633 StaticChunked) { 4634 CGOpenMPRuntime::StaticRTInput StaticInit( 4635 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(*this), 4636 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 4637 StaticChunked ? Chunk : nullptr); 4638 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 4639 StaticInit); 4640 JumpDest LoopExit = 4641 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 4642 // UB = min(UB, GlobalUB); 4643 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 4644 ? S.getCombinedEnsureUpperBound() 4645 : S.getEnsureUpperBound()); 4646 // IV = LB; 4647 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 4648 ? S.getCombinedInit() 4649 : S.getInit()); 4650 4651 const Expr *Cond = 4652 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 4653 ? S.getCombinedCond() 4654 : S.getCond(); 4655 4656 if (StaticChunked) 4657 Cond = S.getCombinedDistCond(); 4658 4659 // For static unchunked schedules generate: 4660 // 4661 // 1. For distribute alone, codegen 4662 // while (idx <= UB) { 4663 // BODY; 4664 // ++idx; 4665 // } 4666 // 4667 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 4668 // while (idx <= UB) { 4669 // <CodeGen rest of pragma>(LB, UB); 4670 // idx += ST; 4671 // } 4672 // 4673 // For static chunk one schedule generate: 4674 // 4675 // while (IV <= GlobalUB) { 4676 // <CodeGen rest of pragma>(LB, UB); 4677 // LB += ST; 4678 // UB += ST; 4679 // UB = min(UB, GlobalUB); 4680 // IV = LB; 4681 // } 4682 // 4683 emitCommonSimdLoop( 4684 *this, S, 4685 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4686 if (isOpenMPSimdDirective(S.getDirectiveKind())) 4687 CGF.EmitOMPSimdInit(S, /*IsMonotonic=*/true); 4688 }, 4689 [&S, &LoopScope, Cond, IncExpr, LoopExit, &CodeGenLoop, 4690 StaticChunked](CodeGenFunction &CGF, PrePostActionTy &) { 4691 CGF.EmitOMPInnerLoop( 4692 S, LoopScope.requiresCleanups(), Cond, IncExpr, 4693 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 4694 CodeGenLoop(CGF, S, LoopExit); 4695 }, 4696 [&S, StaticChunked](CodeGenFunction &CGF) { 4697 if (StaticChunked) { 4698 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 4699 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 4700 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 4701 CGF.EmitIgnoredExpr(S.getCombinedInit()); 4702 } 4703 }); 4704 }); 4705 EmitBlock(LoopExit.getBlock()); 4706 // Tell the runtime we are done. 4707 RT.emitForStaticFinish(*this, S.getEndLoc(), S.getDirectiveKind()); 4708 } else { 4709 // Emit the outer loop, which requests its work chunk [LB..UB] from 4710 // runtime and runs the inner loop to process it. 4711 const OMPLoopArguments LoopArguments = { 4712 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 4713 IL.getAddress(*this), Chunk}; 4714 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 4715 CodeGenLoop); 4716 } 4717 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 4718 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 4719 return CGF.Builder.CreateIsNotNull( 4720 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 4721 }); 4722 } 4723 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 4724 !isOpenMPParallelDirective(S.getDirectiveKind()) && 4725 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 4726 EmitOMPReductionClauseFinal(S, OMPD_simd); 4727 // Emit post-update of the reduction variables if IsLastIter != 0. 4728 emitPostUpdateForReductionClause( 4729 *this, S, [IL, &S](CodeGenFunction &CGF) { 4730 return CGF.Builder.CreateIsNotNull( 4731 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 4732 }); 4733 } 4734 // Emit final copy of the lastprivate variables if IsLastIter != 0. 4735 if (HasLastprivateClause) { 4736 EmitOMPLastprivateClauseFinal( 4737 S, /*NoFinals=*/false, 4738 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 4739 } 4740 } 4741 4742 // We're now done with the loop, so jump to the continuation block. 4743 if (ContBlock) { 4744 EmitBranch(ContBlock); 4745 EmitBlock(ContBlock, true); 4746 } 4747 } 4748 } 4749 4750 void CodeGenFunction::EmitOMPDistributeDirective( 4751 const OMPDistributeDirective &S) { 4752 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4753 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4754 }; 4755 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4756 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 4757 } 4758 4759 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 4760 const CapturedStmt *S, 4761 SourceLocation Loc) { 4762 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 4763 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 4764 CGF.CapturedStmtInfo = &CapStmtInfo; 4765 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S, Loc); 4766 Fn->setDoesNotRecurse(); 4767 return Fn; 4768 } 4769 4770 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 4771 if (S.hasClausesOfKind<OMPDependClause>()) { 4772 assert(!S.getAssociatedStmt() && 4773 "No associated statement must be in ordered depend construct."); 4774 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 4775 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 4776 return; 4777 } 4778 const auto *C = S.getSingleClause<OMPSIMDClause>(); 4779 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 4780 PrePostActionTy &Action) { 4781 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 4782 if (C) { 4783 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 4784 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 4785 llvm::Function *OutlinedFn = 4786 emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc()); 4787 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 4788 OutlinedFn, CapturedVars); 4789 } else { 4790 Action.Enter(CGF); 4791 CGF.EmitStmt(CS->getCapturedStmt()); 4792 } 4793 }; 4794 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4795 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 4796 } 4797 4798 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 4799 QualType SrcType, QualType DestType, 4800 SourceLocation Loc) { 4801 assert(CGF.hasScalarEvaluationKind(DestType) && 4802 "DestType must have scalar evaluation kind."); 4803 assert(!Val.isAggregate() && "Must be a scalar or complex."); 4804 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 4805 DestType, Loc) 4806 : CGF.EmitComplexToScalarConversion( 4807 Val.getComplexVal(), SrcType, DestType, Loc); 4808 } 4809 4810 static CodeGenFunction::ComplexPairTy 4811 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 4812 QualType DestType, SourceLocation Loc) { 4813 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 4814 "DestType must have complex evaluation kind."); 4815 CodeGenFunction::ComplexPairTy ComplexVal; 4816 if (Val.isScalar()) { 4817 // Convert the input element to the element type of the complex. 4818 QualType DestElementType = 4819 DestType->castAs<ComplexType>()->getElementType(); 4820 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 4821 Val.getScalarVal(), SrcType, DestElementType, Loc); 4822 ComplexVal = CodeGenFunction::ComplexPairTy( 4823 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 4824 } else { 4825 assert(Val.isComplex() && "Must be a scalar or complex."); 4826 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 4827 QualType DestElementType = 4828 DestType->castAs<ComplexType>()->getElementType(); 4829 ComplexVal.first = CGF.EmitScalarConversion( 4830 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 4831 ComplexVal.second = CGF.EmitScalarConversion( 4832 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 4833 } 4834 return ComplexVal; 4835 } 4836 4837 static void emitSimpleAtomicStore(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 4838 LValue LVal, RValue RVal) { 4839 if (LVal.isGlobalReg()) 4840 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 4841 else 4842 CGF.EmitAtomicStore(RVal, LVal, AO, LVal.isVolatile(), /*isInit=*/false); 4843 } 4844 4845 static RValue emitSimpleAtomicLoad(CodeGenFunction &CGF, 4846 llvm::AtomicOrdering AO, LValue LVal, 4847 SourceLocation Loc) { 4848 if (LVal.isGlobalReg()) 4849 return CGF.EmitLoadOfLValue(LVal, Loc); 4850 return CGF.EmitAtomicLoad( 4851 LVal, Loc, llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO), 4852 LVal.isVolatile()); 4853 } 4854 4855 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 4856 QualType RValTy, SourceLocation Loc) { 4857 switch (getEvaluationKind(LVal.getType())) { 4858 case TEK_Scalar: 4859 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 4860 *this, RVal, RValTy, LVal.getType(), Loc)), 4861 LVal); 4862 break; 4863 case TEK_Complex: 4864 EmitStoreOfComplex( 4865 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 4866 /*isInit=*/false); 4867 break; 4868 case TEK_Aggregate: 4869 llvm_unreachable("Must be a scalar or complex."); 4870 } 4871 } 4872 4873 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 4874 const Expr *X, const Expr *V, 4875 SourceLocation Loc) { 4876 // v = x; 4877 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 4878 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 4879 LValue XLValue = CGF.EmitLValue(X); 4880 LValue VLValue = CGF.EmitLValue(V); 4881 RValue Res = emitSimpleAtomicLoad(CGF, AO, XLValue, Loc); 4882 // OpenMP, 2.17.7, atomic Construct 4883 // If the read or capture clause is specified and the acquire, acq_rel, or 4884 // seq_cst clause is specified then the strong flush on exit from the atomic 4885 // operation is also an acquire flush. 4886 switch (AO) { 4887 case llvm::AtomicOrdering::Acquire: 4888 case llvm::AtomicOrdering::AcquireRelease: 4889 case llvm::AtomicOrdering::SequentiallyConsistent: 4890 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 4891 llvm::AtomicOrdering::Acquire); 4892 break; 4893 case llvm::AtomicOrdering::Monotonic: 4894 case llvm::AtomicOrdering::Release: 4895 break; 4896 case llvm::AtomicOrdering::NotAtomic: 4897 case llvm::AtomicOrdering::Unordered: 4898 llvm_unreachable("Unexpected ordering."); 4899 } 4900 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 4901 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 4902 } 4903 4904 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, 4905 llvm::AtomicOrdering AO, const Expr *X, 4906 const Expr *E, SourceLocation Loc) { 4907 // x = expr; 4908 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 4909 emitSimpleAtomicStore(CGF, AO, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 4910 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 4911 // OpenMP, 2.17.7, atomic Construct 4912 // If the write, update, or capture clause is specified and the release, 4913 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 4914 // the atomic operation is also a release flush. 4915 switch (AO) { 4916 case llvm::AtomicOrdering::Release: 4917 case llvm::AtomicOrdering::AcquireRelease: 4918 case llvm::AtomicOrdering::SequentiallyConsistent: 4919 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 4920 llvm::AtomicOrdering::Release); 4921 break; 4922 case llvm::AtomicOrdering::Acquire: 4923 case llvm::AtomicOrdering::Monotonic: 4924 break; 4925 case llvm::AtomicOrdering::NotAtomic: 4926 case llvm::AtomicOrdering::Unordered: 4927 llvm_unreachable("Unexpected ordering."); 4928 } 4929 } 4930 4931 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 4932 RValue Update, 4933 BinaryOperatorKind BO, 4934 llvm::AtomicOrdering AO, 4935 bool IsXLHSInRHSPart) { 4936 ASTContext &Context = CGF.getContext(); 4937 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 4938 // expression is simple and atomic is allowed for the given type for the 4939 // target platform. 4940 if (BO == BO_Comma || !Update.isScalar() || 4941 !Update.getScalarVal()->getType()->isIntegerTy() || !X.isSimple() || 4942 (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 4943 (Update.getScalarVal()->getType() != 4944 X.getAddress(CGF).getElementType())) || 4945 !X.getAddress(CGF).getElementType()->isIntegerTy() || 4946 !Context.getTargetInfo().hasBuiltinAtomic( 4947 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 4948 return std::make_pair(false, RValue::get(nullptr)); 4949 4950 llvm::AtomicRMWInst::BinOp RMWOp; 4951 switch (BO) { 4952 case BO_Add: 4953 RMWOp = llvm::AtomicRMWInst::Add; 4954 break; 4955 case BO_Sub: 4956 if (!IsXLHSInRHSPart) 4957 return std::make_pair(false, RValue::get(nullptr)); 4958 RMWOp = llvm::AtomicRMWInst::Sub; 4959 break; 4960 case BO_And: 4961 RMWOp = llvm::AtomicRMWInst::And; 4962 break; 4963 case BO_Or: 4964 RMWOp = llvm::AtomicRMWInst::Or; 4965 break; 4966 case BO_Xor: 4967 RMWOp = llvm::AtomicRMWInst::Xor; 4968 break; 4969 case BO_LT: 4970 RMWOp = X.getType()->hasSignedIntegerRepresentation() 4971 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 4972 : llvm::AtomicRMWInst::Max) 4973 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 4974 : llvm::AtomicRMWInst::UMax); 4975 break; 4976 case BO_GT: 4977 RMWOp = X.getType()->hasSignedIntegerRepresentation() 4978 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 4979 : llvm::AtomicRMWInst::Min) 4980 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 4981 : llvm::AtomicRMWInst::UMin); 4982 break; 4983 case BO_Assign: 4984 RMWOp = llvm::AtomicRMWInst::Xchg; 4985 break; 4986 case BO_Mul: 4987 case BO_Div: 4988 case BO_Rem: 4989 case BO_Shl: 4990 case BO_Shr: 4991 case BO_LAnd: 4992 case BO_LOr: 4993 return std::make_pair(false, RValue::get(nullptr)); 4994 case BO_PtrMemD: 4995 case BO_PtrMemI: 4996 case BO_LE: 4997 case BO_GE: 4998 case BO_EQ: 4999 case BO_NE: 5000 case BO_Cmp: 5001 case BO_AddAssign: 5002 case BO_SubAssign: 5003 case BO_AndAssign: 5004 case BO_OrAssign: 5005 case BO_XorAssign: 5006 case BO_MulAssign: 5007 case BO_DivAssign: 5008 case BO_RemAssign: 5009 case BO_ShlAssign: 5010 case BO_ShrAssign: 5011 case BO_Comma: 5012 llvm_unreachable("Unsupported atomic update operation"); 5013 } 5014 llvm::Value *UpdateVal = Update.getScalarVal(); 5015 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 5016 UpdateVal = CGF.Builder.CreateIntCast( 5017 IC, X.getAddress(CGF).getElementType(), 5018 X.getType()->hasSignedIntegerRepresentation()); 5019 } 5020 llvm::Value *Res = 5021 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(CGF), UpdateVal, AO); 5022 return std::make_pair(true, RValue::get(Res)); 5023 } 5024 5025 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 5026 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 5027 llvm::AtomicOrdering AO, SourceLocation Loc, 5028 const llvm::function_ref<RValue(RValue)> CommonGen) { 5029 // Update expressions are allowed to have the following forms: 5030 // x binop= expr; -> xrval + expr; 5031 // x++, ++x -> xrval + 1; 5032 // x--, --x -> xrval - 1; 5033 // x = x binop expr; -> xrval binop expr 5034 // x = expr Op x; - > expr binop xrval; 5035 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 5036 if (!Res.first) { 5037 if (X.isGlobalReg()) { 5038 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 5039 // 'xrval'. 5040 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 5041 } else { 5042 // Perform compare-and-swap procedure. 5043 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 5044 } 5045 } 5046 return Res; 5047 } 5048 5049 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, 5050 llvm::AtomicOrdering AO, const Expr *X, 5051 const Expr *E, const Expr *UE, 5052 bool IsXLHSInRHSPart, SourceLocation Loc) { 5053 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 5054 "Update expr in 'atomic update' must be a binary operator."); 5055 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 5056 // Update expressions are allowed to have the following forms: 5057 // x binop= expr; -> xrval + expr; 5058 // x++, ++x -> xrval + 1; 5059 // x--, --x -> xrval - 1; 5060 // x = x binop expr; -> xrval binop expr 5061 // x = expr Op x; - > expr binop xrval; 5062 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 5063 LValue XLValue = CGF.EmitLValue(X); 5064 RValue ExprRValue = CGF.EmitAnyExpr(E); 5065 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 5066 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 5067 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 5068 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 5069 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 5070 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5071 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 5072 return CGF.EmitAnyExpr(UE); 5073 }; 5074 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 5075 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 5076 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5077 // OpenMP, 2.17.7, atomic Construct 5078 // If the write, update, or capture clause is specified and the release, 5079 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5080 // the atomic operation is also a release flush. 5081 switch (AO) { 5082 case llvm::AtomicOrdering::Release: 5083 case llvm::AtomicOrdering::AcquireRelease: 5084 case llvm::AtomicOrdering::SequentiallyConsistent: 5085 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5086 llvm::AtomicOrdering::Release); 5087 break; 5088 case llvm::AtomicOrdering::Acquire: 5089 case llvm::AtomicOrdering::Monotonic: 5090 break; 5091 case llvm::AtomicOrdering::NotAtomic: 5092 case llvm::AtomicOrdering::Unordered: 5093 llvm_unreachable("Unexpected ordering."); 5094 } 5095 } 5096 5097 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 5098 QualType SourceType, QualType ResType, 5099 SourceLocation Loc) { 5100 switch (CGF.getEvaluationKind(ResType)) { 5101 case TEK_Scalar: 5102 return RValue::get( 5103 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 5104 case TEK_Complex: { 5105 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 5106 return RValue::getComplex(Res.first, Res.second); 5107 } 5108 case TEK_Aggregate: 5109 break; 5110 } 5111 llvm_unreachable("Must be a scalar or complex."); 5112 } 5113 5114 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, 5115 llvm::AtomicOrdering AO, 5116 bool IsPostfixUpdate, const Expr *V, 5117 const Expr *X, const Expr *E, 5118 const Expr *UE, bool IsXLHSInRHSPart, 5119 SourceLocation Loc) { 5120 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 5121 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 5122 RValue NewVVal; 5123 LValue VLValue = CGF.EmitLValue(V); 5124 LValue XLValue = CGF.EmitLValue(X); 5125 RValue ExprRValue = CGF.EmitAnyExpr(E); 5126 QualType NewVValType; 5127 if (UE) { 5128 // 'x' is updated with some additional value. 5129 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 5130 "Update expr in 'atomic capture' must be a binary operator."); 5131 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 5132 // Update expressions are allowed to have the following forms: 5133 // x binop= expr; -> xrval + expr; 5134 // x++, ++x -> xrval + 1; 5135 // x--, --x -> xrval - 1; 5136 // x = x binop expr; -> xrval binop expr 5137 // x = expr Op x; - > expr binop xrval; 5138 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 5139 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 5140 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 5141 NewVValType = XRValExpr->getType(); 5142 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 5143 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 5144 IsPostfixUpdate](RValue XRValue) { 5145 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5146 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 5147 RValue Res = CGF.EmitAnyExpr(UE); 5148 NewVVal = IsPostfixUpdate ? XRValue : Res; 5149 return Res; 5150 }; 5151 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 5152 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 5153 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5154 if (Res.first) { 5155 // 'atomicrmw' instruction was generated. 5156 if (IsPostfixUpdate) { 5157 // Use old value from 'atomicrmw'. 5158 NewVVal = Res.second; 5159 } else { 5160 // 'atomicrmw' does not provide new value, so evaluate it using old 5161 // value of 'x'. 5162 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5163 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 5164 NewVVal = CGF.EmitAnyExpr(UE); 5165 } 5166 } 5167 } else { 5168 // 'x' is simply rewritten with some 'expr'. 5169 NewVValType = X->getType().getNonReferenceType(); 5170 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 5171 X->getType().getNonReferenceType(), Loc); 5172 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 5173 NewVVal = XRValue; 5174 return ExprRValue; 5175 }; 5176 // Try to perform atomicrmw xchg, otherwise simple exchange. 5177 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 5178 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 5179 Loc, Gen); 5180 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5181 if (Res.first) { 5182 // 'atomicrmw' instruction was generated. 5183 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 5184 } 5185 } 5186 // Emit post-update store to 'v' of old/new 'x' value. 5187 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 5188 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 5189 // OpenMP, 2.17.7, atomic Construct 5190 // If the write, update, or capture clause is specified and the release, 5191 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5192 // the atomic operation is also a release flush. 5193 // If the read or capture clause is specified and the acquire, acq_rel, or 5194 // seq_cst clause is specified then the strong flush on exit from the atomic 5195 // operation is also an acquire flush. 5196 switch (AO) { 5197 case llvm::AtomicOrdering::Release: 5198 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5199 llvm::AtomicOrdering::Release); 5200 break; 5201 case llvm::AtomicOrdering::Acquire: 5202 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5203 llvm::AtomicOrdering::Acquire); 5204 break; 5205 case llvm::AtomicOrdering::AcquireRelease: 5206 case llvm::AtomicOrdering::SequentiallyConsistent: 5207 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5208 llvm::AtomicOrdering::AcquireRelease); 5209 break; 5210 case llvm::AtomicOrdering::Monotonic: 5211 break; 5212 case llvm::AtomicOrdering::NotAtomic: 5213 case llvm::AtomicOrdering::Unordered: 5214 llvm_unreachable("Unexpected ordering."); 5215 } 5216 } 5217 5218 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 5219 llvm::AtomicOrdering AO, bool IsPostfixUpdate, 5220 const Expr *X, const Expr *V, const Expr *E, 5221 const Expr *UE, bool IsXLHSInRHSPart, 5222 SourceLocation Loc) { 5223 switch (Kind) { 5224 case OMPC_read: 5225 emitOMPAtomicReadExpr(CGF, AO, X, V, Loc); 5226 break; 5227 case OMPC_write: 5228 emitOMPAtomicWriteExpr(CGF, AO, X, E, Loc); 5229 break; 5230 case OMPC_unknown: 5231 case OMPC_update: 5232 emitOMPAtomicUpdateExpr(CGF, AO, X, E, UE, IsXLHSInRHSPart, Loc); 5233 break; 5234 case OMPC_capture: 5235 emitOMPAtomicCaptureExpr(CGF, AO, IsPostfixUpdate, V, X, E, UE, 5236 IsXLHSInRHSPart, Loc); 5237 break; 5238 case OMPC_if: 5239 case OMPC_final: 5240 case OMPC_num_threads: 5241 case OMPC_private: 5242 case OMPC_firstprivate: 5243 case OMPC_lastprivate: 5244 case OMPC_reduction: 5245 case OMPC_task_reduction: 5246 case OMPC_in_reduction: 5247 case OMPC_safelen: 5248 case OMPC_simdlen: 5249 case OMPC_allocator: 5250 case OMPC_allocate: 5251 case OMPC_collapse: 5252 case OMPC_default: 5253 case OMPC_seq_cst: 5254 case OMPC_acq_rel: 5255 case OMPC_acquire: 5256 case OMPC_release: 5257 case OMPC_relaxed: 5258 case OMPC_shared: 5259 case OMPC_linear: 5260 case OMPC_aligned: 5261 case OMPC_copyin: 5262 case OMPC_copyprivate: 5263 case OMPC_flush: 5264 case OMPC_depobj: 5265 case OMPC_proc_bind: 5266 case OMPC_schedule: 5267 case OMPC_ordered: 5268 case OMPC_nowait: 5269 case OMPC_untied: 5270 case OMPC_threadprivate: 5271 case OMPC_depend: 5272 case OMPC_mergeable: 5273 case OMPC_device: 5274 case OMPC_threads: 5275 case OMPC_simd: 5276 case OMPC_map: 5277 case OMPC_num_teams: 5278 case OMPC_thread_limit: 5279 case OMPC_priority: 5280 case OMPC_grainsize: 5281 case OMPC_nogroup: 5282 case OMPC_num_tasks: 5283 case OMPC_hint: 5284 case OMPC_dist_schedule: 5285 case OMPC_defaultmap: 5286 case OMPC_uniform: 5287 case OMPC_to: 5288 case OMPC_from: 5289 case OMPC_use_device_ptr: 5290 case OMPC_use_device_addr: 5291 case OMPC_is_device_ptr: 5292 case OMPC_unified_address: 5293 case OMPC_unified_shared_memory: 5294 case OMPC_reverse_offload: 5295 case OMPC_dynamic_allocators: 5296 case OMPC_atomic_default_mem_order: 5297 case OMPC_device_type: 5298 case OMPC_match: 5299 case OMPC_nontemporal: 5300 case OMPC_order: 5301 case OMPC_destroy: 5302 case OMPC_detach: 5303 case OMPC_inclusive: 5304 case OMPC_exclusive: 5305 case OMPC_uses_allocators: 5306 case OMPC_affinity: 5307 default: 5308 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 5309 } 5310 } 5311 5312 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 5313 llvm::AtomicOrdering AO = llvm::AtomicOrdering::Monotonic; 5314 bool MemOrderingSpecified = false; 5315 if (S.getSingleClause<OMPSeqCstClause>()) { 5316 AO = llvm::AtomicOrdering::SequentiallyConsistent; 5317 MemOrderingSpecified = true; 5318 } else if (S.getSingleClause<OMPAcqRelClause>()) { 5319 AO = llvm::AtomicOrdering::AcquireRelease; 5320 MemOrderingSpecified = true; 5321 } else if (S.getSingleClause<OMPAcquireClause>()) { 5322 AO = llvm::AtomicOrdering::Acquire; 5323 MemOrderingSpecified = true; 5324 } else if (S.getSingleClause<OMPReleaseClause>()) { 5325 AO = llvm::AtomicOrdering::Release; 5326 MemOrderingSpecified = true; 5327 } else if (S.getSingleClause<OMPRelaxedClause>()) { 5328 AO = llvm::AtomicOrdering::Monotonic; 5329 MemOrderingSpecified = true; 5330 } 5331 OpenMPClauseKind Kind = OMPC_unknown; 5332 for (const OMPClause *C : S.clauses()) { 5333 // Find first clause (skip seq_cst|acq_rel|aqcuire|release|relaxed clause, 5334 // if it is first). 5335 if (C->getClauseKind() != OMPC_seq_cst && 5336 C->getClauseKind() != OMPC_acq_rel && 5337 C->getClauseKind() != OMPC_acquire && 5338 C->getClauseKind() != OMPC_release && 5339 C->getClauseKind() != OMPC_relaxed) { 5340 Kind = C->getClauseKind(); 5341 break; 5342 } 5343 } 5344 if (!MemOrderingSpecified) { 5345 llvm::AtomicOrdering DefaultOrder = 5346 CGM.getOpenMPRuntime().getDefaultMemoryOrdering(); 5347 if (DefaultOrder == llvm::AtomicOrdering::Monotonic || 5348 DefaultOrder == llvm::AtomicOrdering::SequentiallyConsistent || 5349 (DefaultOrder == llvm::AtomicOrdering::AcquireRelease && 5350 Kind == OMPC_capture)) { 5351 AO = DefaultOrder; 5352 } else if (DefaultOrder == llvm::AtomicOrdering::AcquireRelease) { 5353 if (Kind == OMPC_unknown || Kind == OMPC_update || Kind == OMPC_write) { 5354 AO = llvm::AtomicOrdering::Release; 5355 } else if (Kind == OMPC_read) { 5356 assert(Kind == OMPC_read && "Unexpected atomic kind."); 5357 AO = llvm::AtomicOrdering::Acquire; 5358 } 5359 } 5360 } 5361 5362 const Stmt *CS = S.getInnermostCapturedStmt()->IgnoreContainers(); 5363 5364 auto &&CodeGen = [&S, Kind, AO, CS](CodeGenFunction &CGF, 5365 PrePostActionTy &) { 5366 CGF.EmitStopPoint(CS); 5367 emitOMPAtomicExpr(CGF, Kind, AO, S.isPostfixUpdate(), S.getX(), S.getV(), 5368 S.getExpr(), S.getUpdateExpr(), S.isXLHSInRHSPart(), 5369 S.getBeginLoc()); 5370 }; 5371 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5372 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 5373 } 5374 5375 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 5376 const OMPExecutableDirective &S, 5377 const RegionCodeGenTy &CodeGen) { 5378 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 5379 CodeGenModule &CGM = CGF.CGM; 5380 5381 // On device emit this construct as inlined code. 5382 if (CGM.getLangOpts().OpenMPIsDevice) { 5383 OMPLexicalScope Scope(CGF, S, OMPD_target); 5384 CGM.getOpenMPRuntime().emitInlinedDirective( 5385 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5386 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 5387 }); 5388 return; 5389 } 5390 5391 auto LPCRegion = 5392 CGOpenMPRuntime::LastprivateConditionalRAII::disable(CGF, S); 5393 llvm::Function *Fn = nullptr; 5394 llvm::Constant *FnID = nullptr; 5395 5396 const Expr *IfCond = nullptr; 5397 // Check for the at most one if clause associated with the target region. 5398 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 5399 if (C->getNameModifier() == OMPD_unknown || 5400 C->getNameModifier() == OMPD_target) { 5401 IfCond = C->getCondition(); 5402 break; 5403 } 5404 } 5405 5406 // Check if we have any device clause associated with the directive. 5407 llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device( 5408 nullptr, OMPC_DEVICE_unknown); 5409 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 5410 Device.setPointerAndInt(C->getDevice(), C->getModifier()); 5411 5412 // Check if we have an if clause whose conditional always evaluates to false 5413 // or if we do not have any targets specified. If so the target region is not 5414 // an offload entry point. 5415 bool IsOffloadEntry = true; 5416 if (IfCond) { 5417 bool Val; 5418 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 5419 IsOffloadEntry = false; 5420 } 5421 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5422 IsOffloadEntry = false; 5423 5424 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 5425 StringRef ParentName; 5426 // In case we have Ctors/Dtors we use the complete type variant to produce 5427 // the mangling of the device outlined kernel. 5428 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 5429 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 5430 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 5431 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 5432 else 5433 ParentName = 5434 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 5435 5436 // Emit target region as a standalone region. 5437 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 5438 IsOffloadEntry, CodeGen); 5439 OMPLexicalScope Scope(CGF, S, OMPD_task); 5440 auto &&SizeEmitter = 5441 [IsOffloadEntry](CodeGenFunction &CGF, 5442 const OMPLoopDirective &D) -> llvm::Value * { 5443 if (IsOffloadEntry) { 5444 OMPLoopScope(CGF, D); 5445 // Emit calculation of the iterations count. 5446 llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations()); 5447 NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty, 5448 /*isSigned=*/false); 5449 return NumIterations; 5450 } 5451 return nullptr; 5452 }; 5453 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device, 5454 SizeEmitter); 5455 } 5456 5457 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 5458 PrePostActionTy &Action) { 5459 Action.Enter(CGF); 5460 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5461 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 5462 CGF.EmitOMPPrivateClause(S, PrivateScope); 5463 (void)PrivateScope.Privatize(); 5464 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 5465 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 5466 5467 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 5468 } 5469 5470 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 5471 StringRef ParentName, 5472 const OMPTargetDirective &S) { 5473 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5474 emitTargetRegion(CGF, S, Action); 5475 }; 5476 llvm::Function *Fn; 5477 llvm::Constant *Addr; 5478 // Emit target region as a standalone region. 5479 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5480 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5481 assert(Fn && Addr && "Target device function emission failed."); 5482 } 5483 5484 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 5485 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5486 emitTargetRegion(CGF, S, Action); 5487 }; 5488 emitCommonOMPTargetDirective(*this, S, CodeGen); 5489 } 5490 5491 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 5492 const OMPExecutableDirective &S, 5493 OpenMPDirectiveKind InnermostKind, 5494 const RegionCodeGenTy &CodeGen) { 5495 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 5496 llvm::Function *OutlinedFn = 5497 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 5498 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 5499 5500 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 5501 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 5502 if (NT || TL) { 5503 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 5504 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 5505 5506 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 5507 S.getBeginLoc()); 5508 } 5509 5510 OMPTeamsScope Scope(CGF, S); 5511 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 5512 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 5513 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 5514 CapturedVars); 5515 } 5516 5517 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 5518 // Emit teams region as a standalone region. 5519 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5520 Action.Enter(CGF); 5521 OMPPrivateScope PrivateScope(CGF); 5522 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 5523 CGF.EmitOMPPrivateClause(S, PrivateScope); 5524 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5525 (void)PrivateScope.Privatize(); 5526 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 5527 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5528 }; 5529 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 5530 emitPostUpdateForReductionClause(*this, S, 5531 [](CodeGenFunction &) { return nullptr; }); 5532 } 5533 5534 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 5535 const OMPTargetTeamsDirective &S) { 5536 auto *CS = S.getCapturedStmt(OMPD_teams); 5537 Action.Enter(CGF); 5538 // Emit teams region as a standalone region. 5539 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 5540 Action.Enter(CGF); 5541 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5542 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 5543 CGF.EmitOMPPrivateClause(S, PrivateScope); 5544 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5545 (void)PrivateScope.Privatize(); 5546 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 5547 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 5548 CGF.EmitStmt(CS->getCapturedStmt()); 5549 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5550 }; 5551 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 5552 emitPostUpdateForReductionClause(CGF, S, 5553 [](CodeGenFunction &) { return nullptr; }); 5554 } 5555 5556 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 5557 CodeGenModule &CGM, StringRef ParentName, 5558 const OMPTargetTeamsDirective &S) { 5559 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5560 emitTargetTeamsRegion(CGF, Action, S); 5561 }; 5562 llvm::Function *Fn; 5563 llvm::Constant *Addr; 5564 // Emit target region as a standalone region. 5565 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5566 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5567 assert(Fn && Addr && "Target device function emission failed."); 5568 } 5569 5570 void CodeGenFunction::EmitOMPTargetTeamsDirective( 5571 const OMPTargetTeamsDirective &S) { 5572 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5573 emitTargetTeamsRegion(CGF, Action, S); 5574 }; 5575 emitCommonOMPTargetDirective(*this, S, CodeGen); 5576 } 5577 5578 static void 5579 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 5580 const OMPTargetTeamsDistributeDirective &S) { 5581 Action.Enter(CGF); 5582 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5583 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5584 }; 5585 5586 // Emit teams region as a standalone region. 5587 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5588 PrePostActionTy &Action) { 5589 Action.Enter(CGF); 5590 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5591 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5592 (void)PrivateScope.Privatize(); 5593 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 5594 CodeGenDistribute); 5595 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5596 }; 5597 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 5598 emitPostUpdateForReductionClause(CGF, S, 5599 [](CodeGenFunction &) { return nullptr; }); 5600 } 5601 5602 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 5603 CodeGenModule &CGM, StringRef ParentName, 5604 const OMPTargetTeamsDistributeDirective &S) { 5605 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5606 emitTargetTeamsDistributeRegion(CGF, Action, S); 5607 }; 5608 llvm::Function *Fn; 5609 llvm::Constant *Addr; 5610 // Emit target region as a standalone region. 5611 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5612 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5613 assert(Fn && Addr && "Target device function emission failed."); 5614 } 5615 5616 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 5617 const OMPTargetTeamsDistributeDirective &S) { 5618 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5619 emitTargetTeamsDistributeRegion(CGF, Action, S); 5620 }; 5621 emitCommonOMPTargetDirective(*this, S, CodeGen); 5622 } 5623 5624 static void emitTargetTeamsDistributeSimdRegion( 5625 CodeGenFunction &CGF, PrePostActionTy &Action, 5626 const OMPTargetTeamsDistributeSimdDirective &S) { 5627 Action.Enter(CGF); 5628 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5629 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5630 }; 5631 5632 // Emit teams region as a standalone region. 5633 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5634 PrePostActionTy &Action) { 5635 Action.Enter(CGF); 5636 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5637 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5638 (void)PrivateScope.Privatize(); 5639 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 5640 CodeGenDistribute); 5641 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5642 }; 5643 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 5644 emitPostUpdateForReductionClause(CGF, S, 5645 [](CodeGenFunction &) { return nullptr; }); 5646 } 5647 5648 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 5649 CodeGenModule &CGM, StringRef ParentName, 5650 const OMPTargetTeamsDistributeSimdDirective &S) { 5651 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5652 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 5653 }; 5654 llvm::Function *Fn; 5655 llvm::Constant *Addr; 5656 // Emit target region as a standalone region. 5657 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5658 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5659 assert(Fn && Addr && "Target device function emission failed."); 5660 } 5661 5662 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 5663 const OMPTargetTeamsDistributeSimdDirective &S) { 5664 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5665 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 5666 }; 5667 emitCommonOMPTargetDirective(*this, S, CodeGen); 5668 } 5669 5670 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 5671 const OMPTeamsDistributeDirective &S) { 5672 5673 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5674 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5675 }; 5676 5677 // Emit teams region as a standalone region. 5678 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5679 PrePostActionTy &Action) { 5680 Action.Enter(CGF); 5681 OMPPrivateScope PrivateScope(CGF); 5682 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5683 (void)PrivateScope.Privatize(); 5684 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 5685 CodeGenDistribute); 5686 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5687 }; 5688 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 5689 emitPostUpdateForReductionClause(*this, S, 5690 [](CodeGenFunction &) { return nullptr; }); 5691 } 5692 5693 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 5694 const OMPTeamsDistributeSimdDirective &S) { 5695 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5696 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5697 }; 5698 5699 // Emit teams region as a standalone region. 5700 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5701 PrePostActionTy &Action) { 5702 Action.Enter(CGF); 5703 OMPPrivateScope PrivateScope(CGF); 5704 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5705 (void)PrivateScope.Privatize(); 5706 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 5707 CodeGenDistribute); 5708 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5709 }; 5710 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 5711 emitPostUpdateForReductionClause(*this, S, 5712 [](CodeGenFunction &) { return nullptr; }); 5713 } 5714 5715 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 5716 const OMPTeamsDistributeParallelForDirective &S) { 5717 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5718 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 5719 S.getDistInc()); 5720 }; 5721 5722 // Emit teams region as a standalone region. 5723 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5724 PrePostActionTy &Action) { 5725 Action.Enter(CGF); 5726 OMPPrivateScope PrivateScope(CGF); 5727 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5728 (void)PrivateScope.Privatize(); 5729 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 5730 CodeGenDistribute); 5731 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5732 }; 5733 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 5734 emitPostUpdateForReductionClause(*this, S, 5735 [](CodeGenFunction &) { return nullptr; }); 5736 } 5737 5738 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 5739 const OMPTeamsDistributeParallelForSimdDirective &S) { 5740 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5741 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 5742 S.getDistInc()); 5743 }; 5744 5745 // Emit teams region as a standalone region. 5746 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5747 PrePostActionTy &Action) { 5748 Action.Enter(CGF); 5749 OMPPrivateScope PrivateScope(CGF); 5750 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5751 (void)PrivateScope.Privatize(); 5752 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 5753 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 5754 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5755 }; 5756 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for_simd, 5757 CodeGen); 5758 emitPostUpdateForReductionClause(*this, S, 5759 [](CodeGenFunction &) { return nullptr; }); 5760 } 5761 5762 static void emitTargetTeamsDistributeParallelForRegion( 5763 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 5764 PrePostActionTy &Action) { 5765 Action.Enter(CGF); 5766 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5767 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 5768 S.getDistInc()); 5769 }; 5770 5771 // Emit teams region as a standalone region. 5772 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5773 PrePostActionTy &Action) { 5774 Action.Enter(CGF); 5775 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5776 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5777 (void)PrivateScope.Privatize(); 5778 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 5779 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 5780 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5781 }; 5782 5783 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 5784 CodeGenTeams); 5785 emitPostUpdateForReductionClause(CGF, S, 5786 [](CodeGenFunction &) { return nullptr; }); 5787 } 5788 5789 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 5790 CodeGenModule &CGM, StringRef ParentName, 5791 const OMPTargetTeamsDistributeParallelForDirective &S) { 5792 // Emit SPMD target teams distribute parallel for region as a standalone 5793 // region. 5794 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5795 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 5796 }; 5797 llvm::Function *Fn; 5798 llvm::Constant *Addr; 5799 // Emit target region as a standalone region. 5800 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5801 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5802 assert(Fn && Addr && "Target device function emission failed."); 5803 } 5804 5805 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 5806 const OMPTargetTeamsDistributeParallelForDirective &S) { 5807 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5808 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 5809 }; 5810 emitCommonOMPTargetDirective(*this, S, CodeGen); 5811 } 5812 5813 static void emitTargetTeamsDistributeParallelForSimdRegion( 5814 CodeGenFunction &CGF, 5815 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 5816 PrePostActionTy &Action) { 5817 Action.Enter(CGF); 5818 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5819 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 5820 S.getDistInc()); 5821 }; 5822 5823 // Emit teams region as a standalone region. 5824 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 5825 PrePostActionTy &Action) { 5826 Action.Enter(CGF); 5827 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5828 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5829 (void)PrivateScope.Privatize(); 5830 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 5831 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 5832 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 5833 }; 5834 5835 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 5836 CodeGenTeams); 5837 emitPostUpdateForReductionClause(CGF, S, 5838 [](CodeGenFunction &) { return nullptr; }); 5839 } 5840 5841 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 5842 CodeGenModule &CGM, StringRef ParentName, 5843 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 5844 // Emit SPMD target teams distribute parallel for simd region as a standalone 5845 // region. 5846 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5847 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 5848 }; 5849 llvm::Function *Fn; 5850 llvm::Constant *Addr; 5851 // Emit target region as a standalone region. 5852 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5853 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5854 assert(Fn && Addr && "Target device function emission failed."); 5855 } 5856 5857 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 5858 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 5859 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5860 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 5861 }; 5862 emitCommonOMPTargetDirective(*this, S, CodeGen); 5863 } 5864 5865 void CodeGenFunction::EmitOMPCancellationPointDirective( 5866 const OMPCancellationPointDirective &S) { 5867 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 5868 S.getCancelRegion()); 5869 } 5870 5871 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 5872 const Expr *IfCond = nullptr; 5873 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 5874 if (C->getNameModifier() == OMPD_unknown || 5875 C->getNameModifier() == OMPD_cancel) { 5876 IfCond = C->getCondition(); 5877 break; 5878 } 5879 } 5880 if (CGM.getLangOpts().OpenMPIRBuilder) { 5881 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 5882 // TODO: This check is necessary as we only generate `omp parallel` through 5883 // the OpenMPIRBuilder for now. 5884 if (S.getCancelRegion() == OMPD_parallel) { 5885 llvm::Value *IfCondition = nullptr; 5886 if (IfCond) 5887 IfCondition = EmitScalarExpr(IfCond, 5888 /*IgnoreResultAssign=*/true); 5889 return Builder.restoreIP( 5890 OMPBuilder.CreateCancel(Builder, IfCondition, S.getCancelRegion())); 5891 } 5892 } 5893 5894 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 5895 S.getCancelRegion()); 5896 } 5897 5898 CodeGenFunction::JumpDest 5899 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 5900 if (Kind == OMPD_parallel || Kind == OMPD_task || 5901 Kind == OMPD_target_parallel || Kind == OMPD_taskloop || 5902 Kind == OMPD_master_taskloop || Kind == OMPD_parallel_master_taskloop) 5903 return ReturnBlock; 5904 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 5905 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 5906 Kind == OMPD_distribute_parallel_for || 5907 Kind == OMPD_target_parallel_for || 5908 Kind == OMPD_teams_distribute_parallel_for || 5909 Kind == OMPD_target_teams_distribute_parallel_for); 5910 return OMPCancelStack.getExitBlock(); 5911 } 5912 5913 void CodeGenFunction::EmitOMPUseDevicePtrClause( 5914 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 5915 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 5916 auto OrigVarIt = C.varlist_begin(); 5917 auto InitIt = C.inits().begin(); 5918 for (const Expr *PvtVarIt : C.private_copies()) { 5919 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 5920 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 5921 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 5922 5923 // In order to identify the right initializer we need to match the 5924 // declaration used by the mapping logic. In some cases we may get 5925 // OMPCapturedExprDecl that refers to the original declaration. 5926 const ValueDecl *MatchingVD = OrigVD; 5927 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 5928 // OMPCapturedExprDecl are used to privative fields of the current 5929 // structure. 5930 const auto *ME = cast<MemberExpr>(OED->getInit()); 5931 assert(isa<CXXThisExpr>(ME->getBase()) && 5932 "Base should be the current struct!"); 5933 MatchingVD = ME->getMemberDecl(); 5934 } 5935 5936 // If we don't have information about the current list item, move on to 5937 // the next one. 5938 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 5939 if (InitAddrIt == CaptureDeviceAddrMap.end()) 5940 continue; 5941 5942 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD, 5943 InitAddrIt, InitVD, 5944 PvtVD]() { 5945 // Initialize the temporary initialization variable with the address we 5946 // get from the runtime library. We have to cast the source address 5947 // because it is always a void *. References are materialized in the 5948 // privatization scope, so the initialization here disregards the fact 5949 // the original variable is a reference. 5950 QualType AddrQTy = 5951 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 5952 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 5953 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 5954 setAddrOfLocalVar(InitVD, InitAddr); 5955 5956 // Emit private declaration, it will be initialized by the value we 5957 // declaration we just added to the local declarations map. 5958 EmitDecl(*PvtVD); 5959 5960 // The initialization variables reached its purpose in the emission 5961 // of the previous declaration, so we don't need it anymore. 5962 LocalDeclMap.erase(InitVD); 5963 5964 // Return the address of the private variable. 5965 return GetAddrOfLocalVar(PvtVD); 5966 }); 5967 assert(IsRegistered && "firstprivate var already registered as private"); 5968 // Silence the warning about unused variable. 5969 (void)IsRegistered; 5970 5971 ++OrigVarIt; 5972 ++InitIt; 5973 } 5974 } 5975 5976 static const VarDecl *getBaseDecl(const Expr *Ref) { 5977 const Expr *Base = Ref->IgnoreParenImpCasts(); 5978 while (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Base)) 5979 Base = OASE->getBase()->IgnoreParenImpCasts(); 5980 while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Base)) 5981 Base = ASE->getBase()->IgnoreParenImpCasts(); 5982 return cast<VarDecl>(cast<DeclRefExpr>(Base)->getDecl()); 5983 } 5984 5985 void CodeGenFunction::EmitOMPUseDeviceAddrClause( 5986 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 5987 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 5988 llvm::SmallDenseSet<CanonicalDeclPtr<const Decl>, 4> Processed; 5989 for (const Expr *Ref : C.varlists()) { 5990 const VarDecl *OrigVD = getBaseDecl(Ref); 5991 if (!Processed.insert(OrigVD).second) 5992 continue; 5993 // In order to identify the right initializer we need to match the 5994 // declaration used by the mapping logic. In some cases we may get 5995 // OMPCapturedExprDecl that refers to the original declaration. 5996 const ValueDecl *MatchingVD = OrigVD; 5997 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 5998 // OMPCapturedExprDecl are used to privative fields of the current 5999 // structure. 6000 const auto *ME = cast<MemberExpr>(OED->getInit()); 6001 assert(isa<CXXThisExpr>(ME->getBase()) && 6002 "Base should be the current struct!"); 6003 MatchingVD = ME->getMemberDecl(); 6004 } 6005 6006 // If we don't have information about the current list item, move on to 6007 // the next one. 6008 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 6009 if (InitAddrIt == CaptureDeviceAddrMap.end()) 6010 continue; 6011 6012 Address PrivAddr = InitAddrIt->getSecond(); 6013 // For declrefs and variable length array need to load the pointer for 6014 // correct mapping, since the pointer to the data was passed to the runtime. 6015 if (isa<DeclRefExpr>(Ref->IgnoreParenImpCasts()) || 6016 MatchingVD->getType()->isArrayType()) 6017 PrivAddr = 6018 EmitLoadOfPointer(PrivAddr, getContext() 6019 .getPointerType(OrigVD->getType()) 6020 ->castAs<PointerType>()); 6021 llvm::Type *RealTy = 6022 ConvertTypeForMem(OrigVD->getType().getNonReferenceType()) 6023 ->getPointerTo(); 6024 PrivAddr = Builder.CreatePointerBitCastOrAddrSpaceCast(PrivAddr, RealTy); 6025 6026 (void)PrivateScope.addPrivate(OrigVD, [PrivAddr]() { return PrivAddr; }); 6027 } 6028 } 6029 6030 // Generate the instructions for '#pragma omp target data' directive. 6031 void CodeGenFunction::EmitOMPTargetDataDirective( 6032 const OMPTargetDataDirective &S) { 6033 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true); 6034 6035 // Create a pre/post action to signal the privatization of the device pointer. 6036 // This action can be replaced by the OpenMP runtime code generation to 6037 // deactivate privatization. 6038 bool PrivatizeDevicePointers = false; 6039 class DevicePointerPrivActionTy : public PrePostActionTy { 6040 bool &PrivatizeDevicePointers; 6041 6042 public: 6043 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 6044 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 6045 void Enter(CodeGenFunction &CGF) override { 6046 PrivatizeDevicePointers = true; 6047 } 6048 }; 6049 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 6050 6051 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 6052 CodeGenFunction &CGF, PrePostActionTy &Action) { 6053 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6054 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 6055 }; 6056 6057 // Codegen that selects whether to generate the privatization code or not. 6058 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 6059 &InnermostCodeGen](CodeGenFunction &CGF, 6060 PrePostActionTy &Action) { 6061 RegionCodeGenTy RCG(InnermostCodeGen); 6062 PrivatizeDevicePointers = false; 6063 6064 // Call the pre-action to change the status of PrivatizeDevicePointers if 6065 // needed. 6066 Action.Enter(CGF); 6067 6068 if (PrivatizeDevicePointers) { 6069 OMPPrivateScope PrivateScope(CGF); 6070 // Emit all instances of the use_device_ptr clause. 6071 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 6072 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 6073 Info.CaptureDeviceAddrMap); 6074 for (const auto *C : S.getClausesOfKind<OMPUseDeviceAddrClause>()) 6075 CGF.EmitOMPUseDeviceAddrClause(*C, PrivateScope, 6076 Info.CaptureDeviceAddrMap); 6077 (void)PrivateScope.Privatize(); 6078 RCG(CGF); 6079 } else { 6080 OMPLexicalScope Scope(CGF, S, OMPD_unknown); 6081 RCG(CGF); 6082 } 6083 }; 6084 6085 // Forward the provided action to the privatization codegen. 6086 RegionCodeGenTy PrivRCG(PrivCodeGen); 6087 PrivRCG.setAction(Action); 6088 6089 // Notwithstanding the body of the region is emitted as inlined directive, 6090 // we don't use an inline scope as changes in the references inside the 6091 // region are expected to be visible outside, so we do not privative them. 6092 OMPLexicalScope Scope(CGF, S); 6093 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 6094 PrivRCG); 6095 }; 6096 6097 RegionCodeGenTy RCG(CodeGen); 6098 6099 // If we don't have target devices, don't bother emitting the data mapping 6100 // code. 6101 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 6102 RCG(*this); 6103 return; 6104 } 6105 6106 // Check if we have any if clause associated with the directive. 6107 const Expr *IfCond = nullptr; 6108 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6109 IfCond = C->getCondition(); 6110 6111 // Check if we have any device clause associated with the directive. 6112 const Expr *Device = nullptr; 6113 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6114 Device = C->getDevice(); 6115 6116 // Set the action to signal privatization of device pointers. 6117 RCG.setAction(PrivAction); 6118 6119 // Emit region code. 6120 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 6121 Info); 6122 } 6123 6124 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 6125 const OMPTargetEnterDataDirective &S) { 6126 // If we don't have target devices, don't bother emitting the data mapping 6127 // code. 6128 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6129 return; 6130 6131 // Check if we have any if clause associated with the directive. 6132 const Expr *IfCond = nullptr; 6133 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6134 IfCond = C->getCondition(); 6135 6136 // Check if we have any device clause associated with the directive. 6137 const Expr *Device = nullptr; 6138 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6139 Device = C->getDevice(); 6140 6141 OMPLexicalScope Scope(*this, S, OMPD_task); 6142 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 6143 } 6144 6145 void CodeGenFunction::EmitOMPTargetExitDataDirective( 6146 const OMPTargetExitDataDirective &S) { 6147 // If we don't have target devices, don't bother emitting the data mapping 6148 // code. 6149 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6150 return; 6151 6152 // Check if we have any if clause associated with the directive. 6153 const Expr *IfCond = nullptr; 6154 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6155 IfCond = C->getCondition(); 6156 6157 // Check if we have any device clause associated with the directive. 6158 const Expr *Device = nullptr; 6159 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6160 Device = C->getDevice(); 6161 6162 OMPLexicalScope Scope(*this, S, OMPD_task); 6163 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 6164 } 6165 6166 static void emitTargetParallelRegion(CodeGenFunction &CGF, 6167 const OMPTargetParallelDirective &S, 6168 PrePostActionTy &Action) { 6169 // Get the captured statement associated with the 'parallel' region. 6170 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 6171 Action.Enter(CGF); 6172 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 6173 Action.Enter(CGF); 6174 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6175 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6176 CGF.EmitOMPPrivateClause(S, PrivateScope); 6177 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6178 (void)PrivateScope.Privatize(); 6179 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6180 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6181 // TODO: Add support for clauses. 6182 CGF.EmitStmt(CS->getCapturedStmt()); 6183 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 6184 }; 6185 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 6186 emitEmptyBoundParameters); 6187 emitPostUpdateForReductionClause(CGF, S, 6188 [](CodeGenFunction &) { return nullptr; }); 6189 } 6190 6191 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 6192 CodeGenModule &CGM, StringRef ParentName, 6193 const OMPTargetParallelDirective &S) { 6194 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6195 emitTargetParallelRegion(CGF, S, Action); 6196 }; 6197 llvm::Function *Fn; 6198 llvm::Constant *Addr; 6199 // Emit target region as a standalone region. 6200 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6201 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6202 assert(Fn && Addr && "Target device function emission failed."); 6203 } 6204 6205 void CodeGenFunction::EmitOMPTargetParallelDirective( 6206 const OMPTargetParallelDirective &S) { 6207 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6208 emitTargetParallelRegion(CGF, S, Action); 6209 }; 6210 emitCommonOMPTargetDirective(*this, S, CodeGen); 6211 } 6212 6213 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 6214 const OMPTargetParallelForDirective &S, 6215 PrePostActionTy &Action) { 6216 Action.Enter(CGF); 6217 // Emit directive as a combined directive that consists of two implicit 6218 // directives: 'parallel' with 'for' directive. 6219 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6220 Action.Enter(CGF); 6221 CodeGenFunction::OMPCancelStackRAII CancelRegion( 6222 CGF, OMPD_target_parallel_for, S.hasCancel()); 6223 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 6224 emitDispatchForLoopBounds); 6225 }; 6226 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 6227 emitEmptyBoundParameters); 6228 } 6229 6230 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 6231 CodeGenModule &CGM, StringRef ParentName, 6232 const OMPTargetParallelForDirective &S) { 6233 // Emit SPMD target parallel for region as a standalone region. 6234 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6235 emitTargetParallelForRegion(CGF, S, Action); 6236 }; 6237 llvm::Function *Fn; 6238 llvm::Constant *Addr; 6239 // Emit target region as a standalone region. 6240 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6241 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6242 assert(Fn && Addr && "Target device function emission failed."); 6243 } 6244 6245 void CodeGenFunction::EmitOMPTargetParallelForDirective( 6246 const OMPTargetParallelForDirective &S) { 6247 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6248 emitTargetParallelForRegion(CGF, S, Action); 6249 }; 6250 emitCommonOMPTargetDirective(*this, S, CodeGen); 6251 } 6252 6253 static void 6254 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 6255 const OMPTargetParallelForSimdDirective &S, 6256 PrePostActionTy &Action) { 6257 Action.Enter(CGF); 6258 // Emit directive as a combined directive that consists of two implicit 6259 // directives: 'parallel' with 'for' directive. 6260 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6261 Action.Enter(CGF); 6262 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 6263 emitDispatchForLoopBounds); 6264 }; 6265 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 6266 emitEmptyBoundParameters); 6267 } 6268 6269 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 6270 CodeGenModule &CGM, StringRef ParentName, 6271 const OMPTargetParallelForSimdDirective &S) { 6272 // Emit SPMD target parallel for region as a standalone region. 6273 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6274 emitTargetParallelForSimdRegion(CGF, S, Action); 6275 }; 6276 llvm::Function *Fn; 6277 llvm::Constant *Addr; 6278 // Emit target region as a standalone region. 6279 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6280 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6281 assert(Fn && Addr && "Target device function emission failed."); 6282 } 6283 6284 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 6285 const OMPTargetParallelForSimdDirective &S) { 6286 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6287 emitTargetParallelForSimdRegion(CGF, S, Action); 6288 }; 6289 emitCommonOMPTargetDirective(*this, S, CodeGen); 6290 } 6291 6292 /// Emit a helper variable and return corresponding lvalue. 6293 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 6294 const ImplicitParamDecl *PVD, 6295 CodeGenFunction::OMPPrivateScope &Privates) { 6296 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 6297 Privates.addPrivate(VDecl, 6298 [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); }); 6299 } 6300 6301 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 6302 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 6303 // Emit outlined function for task construct. 6304 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 6305 Address CapturedStruct = Address::invalid(); 6306 { 6307 OMPLexicalScope Scope(*this, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 6308 CapturedStruct = GenerateCapturedStmtArgument(*CS); 6309 } 6310 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 6311 const Expr *IfCond = nullptr; 6312 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 6313 if (C->getNameModifier() == OMPD_unknown || 6314 C->getNameModifier() == OMPD_taskloop) { 6315 IfCond = C->getCondition(); 6316 break; 6317 } 6318 } 6319 6320 OMPTaskDataTy Data; 6321 // Check if taskloop must be emitted without taskgroup. 6322 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 6323 // TODO: Check if we should emit tied or untied task. 6324 Data.Tied = true; 6325 // Set scheduling for taskloop 6326 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 6327 // grainsize clause 6328 Data.Schedule.setInt(/*IntVal=*/false); 6329 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 6330 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 6331 // num_tasks clause 6332 Data.Schedule.setInt(/*IntVal=*/true); 6333 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 6334 } 6335 6336 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 6337 // if (PreCond) { 6338 // for (IV in 0..LastIteration) BODY; 6339 // <Final counter/linear vars updates>; 6340 // } 6341 // 6342 6343 // Emit: if (PreCond) - begin. 6344 // If the condition constant folds and can be elided, avoid emitting the 6345 // whole loop. 6346 bool CondConstant; 6347 llvm::BasicBlock *ContBlock = nullptr; 6348 OMPLoopScope PreInitScope(CGF, S); 6349 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 6350 if (!CondConstant) 6351 return; 6352 } else { 6353 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 6354 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 6355 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 6356 CGF.getProfileCount(&S)); 6357 CGF.EmitBlock(ThenBlock); 6358 CGF.incrementProfileCounter(&S); 6359 } 6360 6361 (void)CGF.EmitOMPLinearClauseInit(S); 6362 6363 OMPPrivateScope LoopScope(CGF); 6364 // Emit helper vars inits. 6365 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 6366 auto *I = CS->getCapturedDecl()->param_begin(); 6367 auto *LBP = std::next(I, LowerBound); 6368 auto *UBP = std::next(I, UpperBound); 6369 auto *STP = std::next(I, Stride); 6370 auto *LIP = std::next(I, LastIter); 6371 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 6372 LoopScope); 6373 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 6374 LoopScope); 6375 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 6376 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 6377 LoopScope); 6378 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 6379 CGF.EmitOMPLinearClause(S, LoopScope); 6380 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 6381 (void)LoopScope.Privatize(); 6382 // Emit the loop iteration variable. 6383 const Expr *IVExpr = S.getIterationVariable(); 6384 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 6385 CGF.EmitVarDecl(*IVDecl); 6386 CGF.EmitIgnoredExpr(S.getInit()); 6387 6388 // Emit the iterations count variable. 6389 // If it is not a variable, Sema decided to calculate iterations count on 6390 // each iteration (e.g., it is foldable into a constant). 6391 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 6392 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 6393 // Emit calculation of the iterations count. 6394 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 6395 } 6396 6397 { 6398 OMPLexicalScope Scope(CGF, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 6399 emitCommonSimdLoop( 6400 CGF, S, 6401 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6402 if (isOpenMPSimdDirective(S.getDirectiveKind())) 6403 CGF.EmitOMPSimdInit(S); 6404 }, 6405 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 6406 CGF.EmitOMPInnerLoop( 6407 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 6408 [&S](CodeGenFunction &CGF) { 6409 emitOMPLoopBodyWithStopPoint(CGF, S, 6410 CodeGenFunction::JumpDest()); 6411 }, 6412 [](CodeGenFunction &) {}); 6413 }); 6414 } 6415 // Emit: if (PreCond) - end. 6416 if (ContBlock) { 6417 CGF.EmitBranch(ContBlock); 6418 CGF.EmitBlock(ContBlock, true); 6419 } 6420 // Emit final copy of the lastprivate variables if IsLastIter != 0. 6421 if (HasLastprivateClause) { 6422 CGF.EmitOMPLastprivateClauseFinal( 6423 S, isOpenMPSimdDirective(S.getDirectiveKind()), 6424 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 6425 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 6426 (*LIP)->getType(), S.getBeginLoc()))); 6427 } 6428 CGF.EmitOMPLinearClauseFinal(S, [LIP, &S](CodeGenFunction &CGF) { 6429 return CGF.Builder.CreateIsNotNull( 6430 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 6431 (*LIP)->getType(), S.getBeginLoc())); 6432 }); 6433 }; 6434 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 6435 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 6436 const OMPTaskDataTy &Data) { 6437 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 6438 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 6439 OMPLoopScope PreInitScope(CGF, S); 6440 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 6441 OutlinedFn, SharedsTy, 6442 CapturedStruct, IfCond, Data); 6443 }; 6444 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 6445 CodeGen); 6446 }; 6447 if (Data.Nogroup) { 6448 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 6449 } else { 6450 CGM.getOpenMPRuntime().emitTaskgroupRegion( 6451 *this, 6452 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 6453 PrePostActionTy &Action) { 6454 Action.Enter(CGF); 6455 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 6456 Data); 6457 }, 6458 S.getBeginLoc()); 6459 } 6460 } 6461 6462 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 6463 auto LPCRegion = 6464 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 6465 EmitOMPTaskLoopBasedDirective(S); 6466 } 6467 6468 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 6469 const OMPTaskLoopSimdDirective &S) { 6470 auto LPCRegion = 6471 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 6472 OMPLexicalScope Scope(*this, S); 6473 EmitOMPTaskLoopBasedDirective(S); 6474 } 6475 6476 void CodeGenFunction::EmitOMPMasterTaskLoopDirective( 6477 const OMPMasterTaskLoopDirective &S) { 6478 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6479 Action.Enter(CGF); 6480 EmitOMPTaskLoopBasedDirective(S); 6481 }; 6482 auto LPCRegion = 6483 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 6484 OMPLexicalScope Scope(*this, S, llvm::None, /*EmitPreInitStmt=*/false); 6485 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 6486 } 6487 6488 void CodeGenFunction::EmitOMPMasterTaskLoopSimdDirective( 6489 const OMPMasterTaskLoopSimdDirective &S) { 6490 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6491 Action.Enter(CGF); 6492 EmitOMPTaskLoopBasedDirective(S); 6493 }; 6494 auto LPCRegion = 6495 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 6496 OMPLexicalScope Scope(*this, S); 6497 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 6498 } 6499 6500 void CodeGenFunction::EmitOMPParallelMasterTaskLoopDirective( 6501 const OMPParallelMasterTaskLoopDirective &S) { 6502 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6503 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 6504 PrePostActionTy &Action) { 6505 Action.Enter(CGF); 6506 CGF.EmitOMPTaskLoopBasedDirective(S); 6507 }; 6508 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 6509 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 6510 S.getBeginLoc()); 6511 }; 6512 auto LPCRegion = 6513 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 6514 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop, CodeGen, 6515 emitEmptyBoundParameters); 6516 } 6517 6518 void CodeGenFunction::EmitOMPParallelMasterTaskLoopSimdDirective( 6519 const OMPParallelMasterTaskLoopSimdDirective &S) { 6520 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6521 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 6522 PrePostActionTy &Action) { 6523 Action.Enter(CGF); 6524 CGF.EmitOMPTaskLoopBasedDirective(S); 6525 }; 6526 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 6527 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 6528 S.getBeginLoc()); 6529 }; 6530 auto LPCRegion = 6531 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 6532 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop_simd, CodeGen, 6533 emitEmptyBoundParameters); 6534 } 6535 6536 // Generate the instructions for '#pragma omp target update' directive. 6537 void CodeGenFunction::EmitOMPTargetUpdateDirective( 6538 const OMPTargetUpdateDirective &S) { 6539 // If we don't have target devices, don't bother emitting the data mapping 6540 // code. 6541 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6542 return; 6543 6544 // Check if we have any if clause associated with the directive. 6545 const Expr *IfCond = nullptr; 6546 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6547 IfCond = C->getCondition(); 6548 6549 // Check if we have any device clause associated with the directive. 6550 const Expr *Device = nullptr; 6551 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6552 Device = C->getDevice(); 6553 6554 OMPLexicalScope Scope(*this, S, OMPD_task); 6555 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 6556 } 6557 6558 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 6559 const OMPExecutableDirective &D) { 6560 if (const auto *SD = dyn_cast<OMPScanDirective>(&D)) { 6561 EmitOMPScanDirective(*SD); 6562 return; 6563 } 6564 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 6565 return; 6566 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 6567 OMPPrivateScope GlobalsScope(CGF); 6568 if (isOpenMPTaskingDirective(D.getDirectiveKind())) { 6569 // Capture global firstprivates to avoid crash. 6570 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 6571 for (const Expr *Ref : C->varlists()) { 6572 const auto *DRE = cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 6573 if (!DRE) 6574 continue; 6575 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 6576 if (!VD || VD->hasLocalStorage()) 6577 continue; 6578 if (!CGF.LocalDeclMap.count(VD)) { 6579 LValue GlobLVal = CGF.EmitLValue(Ref); 6580 GlobalsScope.addPrivate( 6581 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 6582 } 6583 } 6584 } 6585 } 6586 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 6587 (void)GlobalsScope.Privatize(); 6588 ParentLoopDirectiveForScanRegion ScanRegion(CGF, D); 6589 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 6590 } else { 6591 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 6592 for (const Expr *E : LD->counters()) { 6593 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 6594 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 6595 LValue GlobLVal = CGF.EmitLValue(E); 6596 GlobalsScope.addPrivate( 6597 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 6598 } 6599 if (isa<OMPCapturedExprDecl>(VD)) { 6600 // Emit only those that were not explicitly referenced in clauses. 6601 if (!CGF.LocalDeclMap.count(VD)) 6602 CGF.EmitVarDecl(*VD); 6603 } 6604 } 6605 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 6606 if (!C->getNumForLoops()) 6607 continue; 6608 for (unsigned I = LD->getCollapsedNumber(), 6609 E = C->getLoopNumIterations().size(); 6610 I < E; ++I) { 6611 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 6612 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 6613 // Emit only those that were not explicitly referenced in clauses. 6614 if (!CGF.LocalDeclMap.count(VD)) 6615 CGF.EmitVarDecl(*VD); 6616 } 6617 } 6618 } 6619 } 6620 (void)GlobalsScope.Privatize(); 6621 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 6622 } 6623 }; 6624 { 6625 auto LPCRegion = 6626 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, D); 6627 OMPSimdLexicalScope Scope(*this, D); 6628 CGM.getOpenMPRuntime().emitInlinedDirective( 6629 *this, 6630 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 6631 : D.getDirectiveKind(), 6632 CodeGen); 6633 } 6634 // Check for outer lastprivate conditional update. 6635 checkForLastprivateConditionalUpdate(*this, D); 6636 } 6637