1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit OpenMP nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCleanup.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/DeclOpenMP.h" 21 #include "clang/AST/Stmt.h" 22 #include "clang/AST/StmtOpenMP.h" 23 #include "clang/Basic/PrettyStackTrace.h" 24 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 25 using namespace clang; 26 using namespace CodeGen; 27 using namespace llvm::omp; 28 29 namespace { 30 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 31 /// for captured expressions. 32 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 33 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 34 for (const auto *C : S.clauses()) { 35 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 36 if (const auto *PreInit = 37 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 38 for (const auto *I : PreInit->decls()) { 39 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 40 CGF.EmitVarDecl(cast<VarDecl>(*I)); 41 } else { 42 CodeGenFunction::AutoVarEmission Emission = 43 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 44 CGF.EmitAutoVarCleanups(Emission); 45 } 46 } 47 } 48 } 49 } 50 } 51 CodeGenFunction::OMPPrivateScope InlinedShareds; 52 53 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 54 return CGF.LambdaCaptureFields.lookup(VD) || 55 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 56 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl)); 57 } 58 59 public: 60 OMPLexicalScope( 61 CodeGenFunction &CGF, const OMPExecutableDirective &S, 62 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 63 const bool EmitPreInitStmt = true) 64 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 65 InlinedShareds(CGF) { 66 if (EmitPreInitStmt) 67 emitPreInitStmt(CGF, S); 68 if (!CapturedRegion.hasValue()) 69 return; 70 assert(S.hasAssociatedStmt() && 71 "Expected associated statement for inlined directive."); 72 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 73 for (const auto &C : CS->captures()) { 74 if (C.capturesVariable() || C.capturesVariableByCopy()) { 75 auto *VD = C.getCapturedVar(); 76 assert(VD == VD->getCanonicalDecl() && 77 "Canonical decl must be captured."); 78 DeclRefExpr DRE( 79 CGF.getContext(), const_cast<VarDecl *>(VD), 80 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 81 InlinedShareds.isGlobalVarCaptured(VD)), 82 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 83 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 84 return CGF.EmitLValue(&DRE).getAddress(CGF); 85 }); 86 } 87 } 88 (void)InlinedShareds.Privatize(); 89 } 90 }; 91 92 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 93 /// for captured expressions. 94 class OMPParallelScope final : public OMPLexicalScope { 95 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 96 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 97 return !(isOpenMPTargetExecutionDirective(Kind) || 98 isOpenMPLoopBoundSharingDirective(Kind)) && 99 isOpenMPParallelDirective(Kind); 100 } 101 102 public: 103 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 104 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 105 EmitPreInitStmt(S)) {} 106 }; 107 108 /// Lexical scope for OpenMP teams construct, that handles correct codegen 109 /// for captured expressions. 110 class OMPTeamsScope final : public OMPLexicalScope { 111 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 112 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 113 return !isOpenMPTargetExecutionDirective(Kind) && 114 isOpenMPTeamsDirective(Kind); 115 } 116 117 public: 118 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 119 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 120 EmitPreInitStmt(S)) {} 121 }; 122 123 /// Private scope for OpenMP loop-based directives, that supports capturing 124 /// of used expression from loop statement. 125 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 126 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 127 CodeGenFunction::OMPMapVars PreCondVars; 128 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 129 for (const auto *E : S.counters()) { 130 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 131 EmittedAsPrivate.insert(VD->getCanonicalDecl()); 132 (void)PreCondVars.setVarAddr( 133 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 134 } 135 // Mark private vars as undefs. 136 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 137 for (const Expr *IRef : C->varlists()) { 138 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 139 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 140 (void)PreCondVars.setVarAddr( 141 CGF, OrigVD, 142 Address(llvm::UndefValue::get( 143 CGF.ConvertTypeForMem(CGF.getContext().getPointerType( 144 OrigVD->getType().getNonReferenceType()))), 145 CGF.getContext().getDeclAlign(OrigVD))); 146 } 147 } 148 } 149 (void)PreCondVars.apply(CGF); 150 // Emit init, __range and __end variables for C++ range loops. 151 const Stmt *Body = 152 S.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 153 for (unsigned Cnt = 0; Cnt < S.getCollapsedNumber(); ++Cnt) { 154 Body = OMPLoopDirective::tryToFindNextInnerLoop( 155 Body, /*TryImperfectlyNestedLoops=*/true); 156 if (auto *For = dyn_cast<ForStmt>(Body)) { 157 Body = For->getBody(); 158 } else { 159 assert(isa<CXXForRangeStmt>(Body) && 160 "Expected canonical for loop or range-based for loop."); 161 auto *CXXFor = cast<CXXForRangeStmt>(Body); 162 if (const Stmt *Init = CXXFor->getInit()) 163 CGF.EmitStmt(Init); 164 CGF.EmitStmt(CXXFor->getRangeStmt()); 165 CGF.EmitStmt(CXXFor->getEndStmt()); 166 Body = CXXFor->getBody(); 167 } 168 } 169 if (const auto *PreInits = cast_or_null<DeclStmt>(S.getPreInits())) { 170 for (const auto *I : PreInits->decls()) 171 CGF.EmitVarDecl(cast<VarDecl>(*I)); 172 } 173 PreCondVars.restore(CGF); 174 } 175 176 public: 177 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 178 : CodeGenFunction::RunCleanupsScope(CGF) { 179 emitPreInitStmt(CGF, S); 180 } 181 }; 182 183 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 184 CodeGenFunction::OMPPrivateScope InlinedShareds; 185 186 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 187 return CGF.LambdaCaptureFields.lookup(VD) || 188 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 189 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 190 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 191 } 192 193 public: 194 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 195 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 196 InlinedShareds(CGF) { 197 for (const auto *C : S.clauses()) { 198 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 199 if (const auto *PreInit = 200 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 201 for (const auto *I : PreInit->decls()) { 202 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 203 CGF.EmitVarDecl(cast<VarDecl>(*I)); 204 } else { 205 CodeGenFunction::AutoVarEmission Emission = 206 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 207 CGF.EmitAutoVarCleanups(Emission); 208 } 209 } 210 } 211 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 212 for (const Expr *E : UDP->varlists()) { 213 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 214 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 215 CGF.EmitVarDecl(*OED); 216 } 217 } 218 } 219 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 220 CGF.EmitOMPPrivateClause(S, InlinedShareds); 221 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 222 if (const Expr *E = TG->getReductionRef()) 223 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 224 } 225 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 226 while (CS) { 227 for (auto &C : CS->captures()) { 228 if (C.capturesVariable() || C.capturesVariableByCopy()) { 229 auto *VD = C.getCapturedVar(); 230 assert(VD == VD->getCanonicalDecl() && 231 "Canonical decl must be captured."); 232 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), 233 isCapturedVar(CGF, VD) || 234 (CGF.CapturedStmtInfo && 235 InlinedShareds.isGlobalVarCaptured(VD)), 236 VD->getType().getNonReferenceType(), VK_LValue, 237 C.getLocation()); 238 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 239 return CGF.EmitLValue(&DRE).getAddress(CGF); 240 }); 241 } 242 } 243 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 244 } 245 (void)InlinedShareds.Privatize(); 246 } 247 }; 248 249 } // namespace 250 251 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 252 const OMPExecutableDirective &S, 253 const RegionCodeGenTy &CodeGen); 254 255 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 256 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 257 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 258 OrigVD = OrigVD->getCanonicalDecl(); 259 bool IsCaptured = 260 LambdaCaptureFields.lookup(OrigVD) || 261 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 262 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 263 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured, 264 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 265 return EmitLValue(&DRE); 266 } 267 } 268 return EmitLValue(E); 269 } 270 271 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 272 ASTContext &C = getContext(); 273 llvm::Value *Size = nullptr; 274 auto SizeInChars = C.getTypeSizeInChars(Ty); 275 if (SizeInChars.isZero()) { 276 // getTypeSizeInChars() returns 0 for a VLA. 277 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 278 VlaSizePair VlaSize = getVLASize(VAT); 279 Ty = VlaSize.Type; 280 Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) 281 : VlaSize.NumElts; 282 } 283 SizeInChars = C.getTypeSizeInChars(Ty); 284 if (SizeInChars.isZero()) 285 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 286 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 287 } 288 return CGM.getSize(SizeInChars); 289 } 290 291 void CodeGenFunction::GenerateOpenMPCapturedVars( 292 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 293 const RecordDecl *RD = S.getCapturedRecordDecl(); 294 auto CurField = RD->field_begin(); 295 auto CurCap = S.captures().begin(); 296 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 297 E = S.capture_init_end(); 298 I != E; ++I, ++CurField, ++CurCap) { 299 if (CurField->hasCapturedVLAType()) { 300 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 301 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 302 CapturedVars.push_back(Val); 303 } else if (CurCap->capturesThis()) { 304 CapturedVars.push_back(CXXThisValue); 305 } else if (CurCap->capturesVariableByCopy()) { 306 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 307 308 // If the field is not a pointer, we need to save the actual value 309 // and load it as a void pointer. 310 if (!CurField->getType()->isAnyPointerType()) { 311 ASTContext &Ctx = getContext(); 312 Address DstAddr = CreateMemTemp( 313 Ctx.getUIntPtrType(), 314 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 315 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 316 317 llvm::Value *SrcAddrVal = EmitScalarConversion( 318 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 319 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 320 LValue SrcLV = 321 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 322 323 // Store the value using the source type pointer. 324 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 325 326 // Load the value using the destination type pointer. 327 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 328 } 329 CapturedVars.push_back(CV); 330 } else { 331 assert(CurCap->capturesVariable() && "Expected capture by reference."); 332 CapturedVars.push_back(EmitLValue(*I).getAddress(*this).getPointer()); 333 } 334 } 335 } 336 337 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 338 QualType DstType, StringRef Name, 339 LValue AddrLV) { 340 ASTContext &Ctx = CGF.getContext(); 341 342 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 343 AddrLV.getAddress(CGF).getPointer(), Ctx.getUIntPtrType(), 344 Ctx.getPointerType(DstType), Loc); 345 Address TmpAddr = 346 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 347 .getAddress(CGF); 348 return TmpAddr; 349 } 350 351 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 352 if (T->isLValueReferenceType()) 353 return C.getLValueReferenceType( 354 getCanonicalParamType(C, T.getNonReferenceType()), 355 /*SpelledAsLValue=*/false); 356 if (T->isPointerType()) 357 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 358 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 359 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 360 return getCanonicalParamType(C, VLA->getElementType()); 361 if (!A->isVariablyModifiedType()) 362 return C.getCanonicalType(T); 363 } 364 return C.getCanonicalParamType(T); 365 } 366 367 namespace { 368 /// Contains required data for proper outlined function codegen. 369 struct FunctionOptions { 370 /// Captured statement for which the function is generated. 371 const CapturedStmt *S = nullptr; 372 /// true if cast to/from UIntPtr is required for variables captured by 373 /// value. 374 const bool UIntPtrCastRequired = true; 375 /// true if only casted arguments must be registered as local args or VLA 376 /// sizes. 377 const bool RegisterCastedArgsOnly = false; 378 /// Name of the generated function. 379 const StringRef FunctionName; 380 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 381 bool RegisterCastedArgsOnly, 382 StringRef FunctionName) 383 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 384 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 385 FunctionName(FunctionName) {} 386 }; 387 } 388 389 static llvm::Function *emitOutlinedFunctionPrologue( 390 CodeGenFunction &CGF, FunctionArgList &Args, 391 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 392 &LocalAddrs, 393 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 394 &VLASizes, 395 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 396 const CapturedDecl *CD = FO.S->getCapturedDecl(); 397 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 398 assert(CD->hasBody() && "missing CapturedDecl body"); 399 400 CXXThisValue = nullptr; 401 // Build the argument list. 402 CodeGenModule &CGM = CGF.CGM; 403 ASTContext &Ctx = CGM.getContext(); 404 FunctionArgList TargetArgs; 405 Args.append(CD->param_begin(), 406 std::next(CD->param_begin(), CD->getContextParamPosition())); 407 TargetArgs.append( 408 CD->param_begin(), 409 std::next(CD->param_begin(), CD->getContextParamPosition())); 410 auto I = FO.S->captures().begin(); 411 FunctionDecl *DebugFunctionDecl = nullptr; 412 if (!FO.UIntPtrCastRequired) { 413 FunctionProtoType::ExtProtoInfo EPI; 414 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI); 415 DebugFunctionDecl = FunctionDecl::Create( 416 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 417 SourceLocation(), DeclarationName(), FunctionTy, 418 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 419 /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false); 420 } 421 for (const FieldDecl *FD : RD->fields()) { 422 QualType ArgType = FD->getType(); 423 IdentifierInfo *II = nullptr; 424 VarDecl *CapVar = nullptr; 425 426 // If this is a capture by copy and the type is not a pointer, the outlined 427 // function argument type should be uintptr and the value properly casted to 428 // uintptr. This is necessary given that the runtime library is only able to 429 // deal with pointers. We can pass in the same way the VLA type sizes to the 430 // outlined function. 431 if (FO.UIntPtrCastRequired && 432 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 433 I->capturesVariableArrayType())) 434 ArgType = Ctx.getUIntPtrType(); 435 436 if (I->capturesVariable() || I->capturesVariableByCopy()) { 437 CapVar = I->getCapturedVar(); 438 II = CapVar->getIdentifier(); 439 } else if (I->capturesThis()) { 440 II = &Ctx.Idents.get("this"); 441 } else { 442 assert(I->capturesVariableArrayType()); 443 II = &Ctx.Idents.get("vla"); 444 } 445 if (ArgType->isVariablyModifiedType()) 446 ArgType = getCanonicalParamType(Ctx, ArgType); 447 VarDecl *Arg; 448 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 449 Arg = ParmVarDecl::Create( 450 Ctx, DebugFunctionDecl, 451 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 452 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 453 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 454 } else { 455 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 456 II, ArgType, ImplicitParamDecl::Other); 457 } 458 Args.emplace_back(Arg); 459 // Do not cast arguments if we emit function with non-original types. 460 TargetArgs.emplace_back( 461 FO.UIntPtrCastRequired 462 ? Arg 463 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 464 ++I; 465 } 466 Args.append( 467 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 468 CD->param_end()); 469 TargetArgs.append( 470 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 471 CD->param_end()); 472 473 // Create the function declaration. 474 const CGFunctionInfo &FuncInfo = 475 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 476 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 477 478 auto *F = 479 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 480 FO.FunctionName, &CGM.getModule()); 481 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 482 if (CD->isNothrow()) 483 F->setDoesNotThrow(); 484 F->setDoesNotRecurse(); 485 486 // Generate the function. 487 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 488 FO.S->getBeginLoc(), CD->getBody()->getBeginLoc()); 489 unsigned Cnt = CD->getContextParamPosition(); 490 I = FO.S->captures().begin(); 491 for (const FieldDecl *FD : RD->fields()) { 492 // Do not map arguments if we emit function with non-original types. 493 Address LocalAddr(Address::invalid()); 494 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 495 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 496 TargetArgs[Cnt]); 497 } else { 498 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 499 } 500 // If we are capturing a pointer by copy we don't need to do anything, just 501 // use the value that we get from the arguments. 502 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 503 const VarDecl *CurVD = I->getCapturedVar(); 504 if (!FO.RegisterCastedArgsOnly) 505 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 506 ++Cnt; 507 ++I; 508 continue; 509 } 510 511 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 512 AlignmentSource::Decl); 513 if (FD->hasCapturedVLAType()) { 514 if (FO.UIntPtrCastRequired) { 515 ArgLVal = CGF.MakeAddrLValue( 516 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 517 Args[Cnt]->getName(), ArgLVal), 518 FD->getType(), AlignmentSource::Decl); 519 } 520 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 521 const VariableArrayType *VAT = FD->getCapturedVLAType(); 522 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 523 } else if (I->capturesVariable()) { 524 const VarDecl *Var = I->getCapturedVar(); 525 QualType VarTy = Var->getType(); 526 Address ArgAddr = ArgLVal.getAddress(CGF); 527 if (ArgLVal.getType()->isLValueReferenceType()) { 528 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 529 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 530 assert(ArgLVal.getType()->isPointerType()); 531 ArgAddr = CGF.EmitLoadOfPointer( 532 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 533 } 534 if (!FO.RegisterCastedArgsOnly) { 535 LocalAddrs.insert( 536 {Args[Cnt], 537 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 538 } 539 } else if (I->capturesVariableByCopy()) { 540 assert(!FD->getType()->isAnyPointerType() && 541 "Not expecting a captured pointer."); 542 const VarDecl *Var = I->getCapturedVar(); 543 LocalAddrs.insert({Args[Cnt], 544 {Var, FO.UIntPtrCastRequired 545 ? castValueFromUintptr( 546 CGF, I->getLocation(), FD->getType(), 547 Args[Cnt]->getName(), ArgLVal) 548 : ArgLVal.getAddress(CGF)}}); 549 } else { 550 // If 'this' is captured, load it into CXXThisValue. 551 assert(I->capturesThis()); 552 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 553 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress(CGF)}}); 554 } 555 ++Cnt; 556 ++I; 557 } 558 559 return F; 560 } 561 562 llvm::Function * 563 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) { 564 assert( 565 CapturedStmtInfo && 566 "CapturedStmtInfo should be set when generating the captured function"); 567 const CapturedDecl *CD = S.getCapturedDecl(); 568 // Build the argument list. 569 bool NeedWrapperFunction = 570 getDebugInfo() && CGM.getCodeGenOpts().hasReducedDebugInfo(); 571 FunctionArgList Args; 572 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 573 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 574 SmallString<256> Buffer; 575 llvm::raw_svector_ostream Out(Buffer); 576 Out << CapturedStmtInfo->getHelperName(); 577 if (NeedWrapperFunction) 578 Out << "_debug__"; 579 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 580 Out.str()); 581 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 582 VLASizes, CXXThisValue, FO); 583 CodeGenFunction::OMPPrivateScope LocalScope(*this); 584 for (const auto &LocalAddrPair : LocalAddrs) { 585 if (LocalAddrPair.second.first) { 586 LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() { 587 return LocalAddrPair.second.second; 588 }); 589 } 590 } 591 (void)LocalScope.Privatize(); 592 for (const auto &VLASizePair : VLASizes) 593 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 594 PGO.assignRegionCounters(GlobalDecl(CD), F); 595 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 596 (void)LocalScope.ForceCleanup(); 597 FinishFunction(CD->getBodyRBrace()); 598 if (!NeedWrapperFunction) 599 return F; 600 601 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 602 /*RegisterCastedArgsOnly=*/true, 603 CapturedStmtInfo->getHelperName()); 604 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 605 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 606 Args.clear(); 607 LocalAddrs.clear(); 608 VLASizes.clear(); 609 llvm::Function *WrapperF = 610 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 611 WrapperCGF.CXXThisValue, WrapperFO); 612 llvm::SmallVector<llvm::Value *, 4> CallArgs; 613 for (const auto *Arg : Args) { 614 llvm::Value *CallArg; 615 auto I = LocalAddrs.find(Arg); 616 if (I != LocalAddrs.end()) { 617 LValue LV = WrapperCGF.MakeAddrLValue( 618 I->second.second, 619 I->second.first ? I->second.first->getType() : Arg->getType(), 620 AlignmentSource::Decl); 621 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 622 } else { 623 auto EI = VLASizes.find(Arg); 624 if (EI != VLASizes.end()) { 625 CallArg = EI->second.second; 626 } else { 627 LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 628 Arg->getType(), 629 AlignmentSource::Decl); 630 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 631 } 632 } 633 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 634 } 635 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, S.getBeginLoc(), 636 F, CallArgs); 637 WrapperCGF.FinishFunction(); 638 return WrapperF; 639 } 640 641 //===----------------------------------------------------------------------===// 642 // OpenMP Directive Emission 643 //===----------------------------------------------------------------------===// 644 void CodeGenFunction::EmitOMPAggregateAssign( 645 Address DestAddr, Address SrcAddr, QualType OriginalType, 646 const llvm::function_ref<void(Address, Address)> CopyGen) { 647 // Perform element-by-element initialization. 648 QualType ElementTy; 649 650 // Drill down to the base element type on both arrays. 651 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 652 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 653 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 654 655 llvm::Value *SrcBegin = SrcAddr.getPointer(); 656 llvm::Value *DestBegin = DestAddr.getPointer(); 657 // Cast from pointer to array type to pointer to single element. 658 llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements); 659 // The basic structure here is a while-do loop. 660 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 661 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 662 llvm::Value *IsEmpty = 663 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 664 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 665 666 // Enter the loop body, making that address the current address. 667 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 668 EmitBlock(BodyBB); 669 670 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 671 672 llvm::PHINode *SrcElementPHI = 673 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 674 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 675 Address SrcElementCurrent = 676 Address(SrcElementPHI, 677 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 678 679 llvm::PHINode *DestElementPHI = 680 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 681 DestElementPHI->addIncoming(DestBegin, EntryBB); 682 Address DestElementCurrent = 683 Address(DestElementPHI, 684 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 685 686 // Emit copy. 687 CopyGen(DestElementCurrent, SrcElementCurrent); 688 689 // Shift the address forward by one element. 690 llvm::Value *DestElementNext = Builder.CreateConstGEP1_32( 691 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 692 llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32( 693 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 694 // Check whether we've reached the end. 695 llvm::Value *Done = 696 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 697 Builder.CreateCondBr(Done, DoneBB, BodyBB); 698 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 699 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 700 701 // Done. 702 EmitBlock(DoneBB, /*IsFinished=*/true); 703 } 704 705 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 706 Address SrcAddr, const VarDecl *DestVD, 707 const VarDecl *SrcVD, const Expr *Copy) { 708 if (OriginalType->isArrayType()) { 709 const auto *BO = dyn_cast<BinaryOperator>(Copy); 710 if (BO && BO->getOpcode() == BO_Assign) { 711 // Perform simple memcpy for simple copying. 712 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 713 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 714 EmitAggregateAssign(Dest, Src, OriginalType); 715 } else { 716 // For arrays with complex element types perform element by element 717 // copying. 718 EmitOMPAggregateAssign( 719 DestAddr, SrcAddr, OriginalType, 720 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 721 // Working with the single array element, so have to remap 722 // destination and source variables to corresponding array 723 // elements. 724 CodeGenFunction::OMPPrivateScope Remap(*this); 725 Remap.addPrivate(DestVD, [DestElement]() { return DestElement; }); 726 Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; }); 727 (void)Remap.Privatize(); 728 EmitIgnoredExpr(Copy); 729 }); 730 } 731 } else { 732 // Remap pseudo source variable to private copy. 733 CodeGenFunction::OMPPrivateScope Remap(*this); 734 Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; }); 735 Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; }); 736 (void)Remap.Privatize(); 737 // Emit copying of the whole variable. 738 EmitIgnoredExpr(Copy); 739 } 740 } 741 742 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 743 OMPPrivateScope &PrivateScope) { 744 if (!HaveInsertPoint()) 745 return false; 746 bool DeviceConstTarget = 747 getLangOpts().OpenMPIsDevice && 748 isOpenMPTargetExecutionDirective(D.getDirectiveKind()); 749 bool FirstprivateIsLastprivate = false; 750 llvm::DenseSet<const VarDecl *> Lastprivates; 751 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 752 for (const auto *D : C->varlists()) 753 Lastprivates.insert( 754 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl()); 755 } 756 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 757 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 758 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 759 // Force emission of the firstprivate copy if the directive does not emit 760 // outlined function, like omp for, omp simd, omp distribute etc. 761 bool MustEmitFirstprivateCopy = 762 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 763 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 764 auto IRef = C->varlist_begin(); 765 auto InitsRef = C->inits().begin(); 766 for (const Expr *IInit : C->private_copies()) { 767 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 768 bool ThisFirstprivateIsLastprivate = 769 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 770 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 771 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 772 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 773 !FD->getType()->isReferenceType() && 774 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 775 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 776 ++IRef; 777 ++InitsRef; 778 continue; 779 } 780 // Do not emit copy for firstprivate constant variables in target regions, 781 // captured by reference. 782 if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) && 783 FD && FD->getType()->isReferenceType() && 784 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 785 (void)CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(*this, 786 OrigVD); 787 ++IRef; 788 ++InitsRef; 789 continue; 790 } 791 FirstprivateIsLastprivate = 792 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 793 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 794 const auto *VDInit = 795 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 796 bool IsRegistered; 797 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 798 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 799 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 800 LValue OriginalLVal; 801 if (!FD) { 802 // Check if the firstprivate variable is just a constant value. 803 ConstantEmission CE = tryEmitAsConstant(&DRE); 804 if (CE && !CE.isReference()) { 805 // Constant value, no need to create a copy. 806 ++IRef; 807 ++InitsRef; 808 continue; 809 } 810 if (CE && CE.isReference()) { 811 OriginalLVal = CE.getReferenceLValue(*this, &DRE); 812 } else { 813 assert(!CE && "Expected non-constant firstprivate."); 814 OriginalLVal = EmitLValue(&DRE); 815 } 816 } else { 817 OriginalLVal = EmitLValue(&DRE); 818 } 819 QualType Type = VD->getType(); 820 if (Type->isArrayType()) { 821 // Emit VarDecl with copy init for arrays. 822 // Get the address of the original variable captured in current 823 // captured region. 824 IsRegistered = PrivateScope.addPrivate( 825 OrigVD, [this, VD, Type, OriginalLVal, VDInit]() { 826 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 827 const Expr *Init = VD->getInit(); 828 if (!isa<CXXConstructExpr>(Init) || 829 isTrivialInitializer(Init)) { 830 // Perform simple memcpy. 831 LValue Dest = 832 MakeAddrLValue(Emission.getAllocatedAddress(), Type); 833 EmitAggregateAssign(Dest, OriginalLVal, Type); 834 } else { 835 EmitOMPAggregateAssign( 836 Emission.getAllocatedAddress(), 837 OriginalLVal.getAddress(*this), Type, 838 [this, VDInit, Init](Address DestElement, 839 Address SrcElement) { 840 // Clean up any temporaries needed by the 841 // initialization. 842 RunCleanupsScope InitScope(*this); 843 // Emit initialization for single element. 844 setAddrOfLocalVar(VDInit, SrcElement); 845 EmitAnyExprToMem(Init, DestElement, 846 Init->getType().getQualifiers(), 847 /*IsInitializer*/ false); 848 LocalDeclMap.erase(VDInit); 849 }); 850 } 851 EmitAutoVarCleanups(Emission); 852 return Emission.getAllocatedAddress(); 853 }); 854 } else { 855 Address OriginalAddr = OriginalLVal.getAddress(*this); 856 IsRegistered = PrivateScope.addPrivate( 857 OrigVD, [this, VDInit, OriginalAddr, VD]() { 858 // Emit private VarDecl with copy init. 859 // Remap temp VDInit variable to the address of the original 860 // variable (for proper handling of captured global variables). 861 setAddrOfLocalVar(VDInit, OriginalAddr); 862 EmitDecl(*VD); 863 LocalDeclMap.erase(VDInit); 864 return GetAddrOfLocalVar(VD); 865 }); 866 } 867 assert(IsRegistered && 868 "firstprivate var already registered as private"); 869 // Silence the warning about unused variable. 870 (void)IsRegistered; 871 } 872 ++IRef; 873 ++InitsRef; 874 } 875 } 876 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 877 } 878 879 void CodeGenFunction::EmitOMPPrivateClause( 880 const OMPExecutableDirective &D, 881 CodeGenFunction::OMPPrivateScope &PrivateScope) { 882 if (!HaveInsertPoint()) 883 return; 884 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 885 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 886 auto IRef = C->varlist_begin(); 887 for (const Expr *IInit : C->private_copies()) { 888 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 889 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 890 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 891 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 892 // Emit private VarDecl with copy init. 893 EmitDecl(*VD); 894 return GetAddrOfLocalVar(VD); 895 }); 896 assert(IsRegistered && "private var already registered as private"); 897 // Silence the warning about unused variable. 898 (void)IsRegistered; 899 } 900 ++IRef; 901 } 902 } 903 } 904 905 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 906 if (!HaveInsertPoint()) 907 return false; 908 // threadprivate_var1 = master_threadprivate_var1; 909 // operator=(threadprivate_var2, master_threadprivate_var2); 910 // ... 911 // __kmpc_barrier(&loc, global_tid); 912 llvm::DenseSet<const VarDecl *> CopiedVars; 913 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 914 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 915 auto IRef = C->varlist_begin(); 916 auto ISrcRef = C->source_exprs().begin(); 917 auto IDestRef = C->destination_exprs().begin(); 918 for (const Expr *AssignOp : C->assignment_ops()) { 919 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 920 QualType Type = VD->getType(); 921 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 922 // Get the address of the master variable. If we are emitting code with 923 // TLS support, the address is passed from the master as field in the 924 // captured declaration. 925 Address MasterAddr = Address::invalid(); 926 if (getLangOpts().OpenMPUseTLS && 927 getContext().getTargetInfo().isTLSSupported()) { 928 assert(CapturedStmtInfo->lookup(VD) && 929 "Copyin threadprivates should have been captured!"); 930 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true, 931 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 932 MasterAddr = EmitLValue(&DRE).getAddress(*this); 933 LocalDeclMap.erase(VD); 934 } else { 935 MasterAddr = 936 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 937 : CGM.GetAddrOfGlobal(VD), 938 getContext().getDeclAlign(VD)); 939 } 940 // Get the address of the threadprivate variable. 941 Address PrivateAddr = EmitLValue(*IRef).getAddress(*this); 942 if (CopiedVars.size() == 1) { 943 // At first check if current thread is a master thread. If it is, no 944 // need to copy data. 945 CopyBegin = createBasicBlock("copyin.not.master"); 946 CopyEnd = createBasicBlock("copyin.not.master.end"); 947 Builder.CreateCondBr( 948 Builder.CreateICmpNE( 949 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 950 Builder.CreatePtrToInt(PrivateAddr.getPointer(), 951 CGM.IntPtrTy)), 952 CopyBegin, CopyEnd); 953 EmitBlock(CopyBegin); 954 } 955 const auto *SrcVD = 956 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 957 const auto *DestVD = 958 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 959 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 960 } 961 ++IRef; 962 ++ISrcRef; 963 ++IDestRef; 964 } 965 } 966 if (CopyEnd) { 967 // Exit out of copying procedure for non-master thread. 968 EmitBlock(CopyEnd, /*IsFinished=*/true); 969 return true; 970 } 971 return false; 972 } 973 974 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 975 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 976 if (!HaveInsertPoint()) 977 return false; 978 bool HasAtLeastOneLastprivate = false; 979 llvm::DenseSet<const VarDecl *> SIMDLCVs; 980 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 981 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 982 for (const Expr *C : LoopDirective->counters()) { 983 SIMDLCVs.insert( 984 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 985 } 986 } 987 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 988 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 989 HasAtLeastOneLastprivate = true; 990 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 991 !getLangOpts().OpenMPSimd) 992 break; 993 auto IRef = C->varlist_begin(); 994 auto IDestRef = C->destination_exprs().begin(); 995 for (const Expr *IInit : C->private_copies()) { 996 // Keep the address of the original variable for future update at the end 997 // of the loop. 998 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 999 // Taskloops do not require additional initialization, it is done in 1000 // runtime support library. 1001 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 1002 const auto *DestVD = 1003 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1004 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() { 1005 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1006 /*RefersToEnclosingVariableOrCapture=*/ 1007 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1008 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1009 return EmitLValue(&DRE).getAddress(*this); 1010 }); 1011 // Check if the variable is also a firstprivate: in this case IInit is 1012 // not generated. Initialization of this variable will happen in codegen 1013 // for 'firstprivate' clause. 1014 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 1015 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 1016 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 1017 // Emit private VarDecl with copy init. 1018 EmitDecl(*VD); 1019 return GetAddrOfLocalVar(VD); 1020 }); 1021 assert(IsRegistered && 1022 "lastprivate var already registered as private"); 1023 (void)IsRegistered; 1024 } 1025 } 1026 ++IRef; 1027 ++IDestRef; 1028 } 1029 } 1030 return HasAtLeastOneLastprivate; 1031 } 1032 1033 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 1034 const OMPExecutableDirective &D, bool NoFinals, 1035 llvm::Value *IsLastIterCond) { 1036 if (!HaveInsertPoint()) 1037 return; 1038 // Emit following code: 1039 // if (<IsLastIterCond>) { 1040 // orig_var1 = private_orig_var1; 1041 // ... 1042 // orig_varn = private_orig_varn; 1043 // } 1044 llvm::BasicBlock *ThenBB = nullptr; 1045 llvm::BasicBlock *DoneBB = nullptr; 1046 if (IsLastIterCond) { 1047 // Emit implicit barrier if at least one lastprivate conditional is found 1048 // and this is not a simd mode. 1049 if (!getLangOpts().OpenMPSimd && 1050 llvm::any_of(D.getClausesOfKind<OMPLastprivateClause>(), 1051 [](const OMPLastprivateClause *C) { 1052 return C->getKind() == OMPC_LASTPRIVATE_conditional; 1053 })) { 1054 CGM.getOpenMPRuntime().emitBarrierCall(*this, D.getBeginLoc(), 1055 OMPD_unknown, 1056 /*EmitChecks=*/false, 1057 /*ForceSimpleCall=*/true); 1058 } 1059 ThenBB = createBasicBlock(".omp.lastprivate.then"); 1060 DoneBB = createBasicBlock(".omp.lastprivate.done"); 1061 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1062 EmitBlock(ThenBB); 1063 } 1064 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1065 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1066 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1067 auto IC = LoopDirective->counters().begin(); 1068 for (const Expr *F : LoopDirective->finals()) { 1069 const auto *D = 1070 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1071 if (NoFinals) 1072 AlreadyEmittedVars.insert(D); 1073 else 1074 LoopCountersAndUpdates[D] = F; 1075 ++IC; 1076 } 1077 } 1078 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1079 auto IRef = C->varlist_begin(); 1080 auto ISrcRef = C->source_exprs().begin(); 1081 auto IDestRef = C->destination_exprs().begin(); 1082 for (const Expr *AssignOp : C->assignment_ops()) { 1083 const auto *PrivateVD = 1084 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1085 QualType Type = PrivateVD->getType(); 1086 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1087 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1088 // If lastprivate variable is a loop control variable for loop-based 1089 // directive, update its value before copyin back to original 1090 // variable. 1091 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1092 EmitIgnoredExpr(FinalExpr); 1093 const auto *SrcVD = 1094 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1095 const auto *DestVD = 1096 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1097 // Get the address of the private variable. 1098 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1099 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1100 PrivateAddr = 1101 Address(Builder.CreateLoad(PrivateAddr), 1102 getNaturalTypeAlignment(RefTy->getPointeeType())); 1103 // Store the last value to the private copy in the last iteration. 1104 if (C->getKind() == OMPC_LASTPRIVATE_conditional) 1105 CGM.getOpenMPRuntime().emitLastprivateConditionalFinalUpdate( 1106 *this, MakeAddrLValue(PrivateAddr, (*IRef)->getType()), PrivateVD, 1107 (*IRef)->getExprLoc()); 1108 // Get the address of the original variable. 1109 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1110 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1111 } 1112 ++IRef; 1113 ++ISrcRef; 1114 ++IDestRef; 1115 } 1116 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1117 EmitIgnoredExpr(PostUpdate); 1118 } 1119 if (IsLastIterCond) 1120 EmitBlock(DoneBB, /*IsFinished=*/true); 1121 } 1122 1123 void CodeGenFunction::EmitOMPReductionClauseInit( 1124 const OMPExecutableDirective &D, 1125 CodeGenFunction::OMPPrivateScope &PrivateScope) { 1126 if (!HaveInsertPoint()) 1127 return; 1128 SmallVector<const Expr *, 4> Shareds; 1129 SmallVector<const Expr *, 4> Privates; 1130 SmallVector<const Expr *, 4> ReductionOps; 1131 SmallVector<const Expr *, 4> LHSs; 1132 SmallVector<const Expr *, 4> RHSs; 1133 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1134 auto IPriv = C->privates().begin(); 1135 auto IRed = C->reduction_ops().begin(); 1136 auto ILHS = C->lhs_exprs().begin(); 1137 auto IRHS = C->rhs_exprs().begin(); 1138 for (const Expr *Ref : C->varlists()) { 1139 Shareds.emplace_back(Ref); 1140 Privates.emplace_back(*IPriv); 1141 ReductionOps.emplace_back(*IRed); 1142 LHSs.emplace_back(*ILHS); 1143 RHSs.emplace_back(*IRHS); 1144 std::advance(IPriv, 1); 1145 std::advance(IRed, 1); 1146 std::advance(ILHS, 1); 1147 std::advance(IRHS, 1); 1148 } 1149 } 1150 ReductionCodeGen RedCG(Shareds, Privates, ReductionOps); 1151 unsigned Count = 0; 1152 auto ILHS = LHSs.begin(); 1153 auto IRHS = RHSs.begin(); 1154 auto IPriv = Privates.begin(); 1155 for (const Expr *IRef : Shareds) { 1156 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1157 // Emit private VarDecl with reduction init. 1158 RedCG.emitSharedLValue(*this, Count); 1159 RedCG.emitAggregateType(*this, Count); 1160 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1161 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1162 RedCG.getSharedLValue(Count), 1163 [&Emission](CodeGenFunction &CGF) { 1164 CGF.EmitAutoVarInit(Emission); 1165 return true; 1166 }); 1167 EmitAutoVarCleanups(Emission); 1168 Address BaseAddr = RedCG.adjustPrivateAddress( 1169 *this, Count, Emission.getAllocatedAddress()); 1170 bool IsRegistered = PrivateScope.addPrivate( 1171 RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; }); 1172 assert(IsRegistered && "private var already registered as private"); 1173 // Silence the warning about unused variable. 1174 (void)IsRegistered; 1175 1176 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1177 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1178 QualType Type = PrivateVD->getType(); 1179 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1180 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1181 // Store the address of the original variable associated with the LHS 1182 // implicit variable. 1183 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1184 return RedCG.getSharedLValue(Count).getAddress(*this); 1185 }); 1186 PrivateScope.addPrivate( 1187 RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); }); 1188 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1189 isa<ArraySubscriptExpr>(IRef)) { 1190 // Store the address of the original variable associated with the LHS 1191 // implicit variable. 1192 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1193 return RedCG.getSharedLValue(Count).getAddress(*this); 1194 }); 1195 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() { 1196 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1197 ConvertTypeForMem(RHSVD->getType()), 1198 "rhs.begin"); 1199 }); 1200 } else { 1201 QualType Type = PrivateVD->getType(); 1202 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1203 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(*this); 1204 // Store the address of the original variable associated with the LHS 1205 // implicit variable. 1206 if (IsArray) { 1207 OriginalAddr = Builder.CreateElementBitCast( 1208 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1209 } 1210 PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; }); 1211 PrivateScope.addPrivate( 1212 RHSVD, [this, PrivateVD, RHSVD, IsArray]() { 1213 return IsArray 1214 ? Builder.CreateElementBitCast( 1215 GetAddrOfLocalVar(PrivateVD), 1216 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1217 : GetAddrOfLocalVar(PrivateVD); 1218 }); 1219 } 1220 ++ILHS; 1221 ++IRHS; 1222 ++IPriv; 1223 ++Count; 1224 } 1225 } 1226 1227 void CodeGenFunction::EmitOMPReductionClauseFinal( 1228 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1229 if (!HaveInsertPoint()) 1230 return; 1231 llvm::SmallVector<const Expr *, 8> Privates; 1232 llvm::SmallVector<const Expr *, 8> LHSExprs; 1233 llvm::SmallVector<const Expr *, 8> RHSExprs; 1234 llvm::SmallVector<const Expr *, 8> ReductionOps; 1235 bool HasAtLeastOneReduction = false; 1236 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1237 HasAtLeastOneReduction = true; 1238 Privates.append(C->privates().begin(), C->privates().end()); 1239 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1240 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1241 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1242 } 1243 if (HasAtLeastOneReduction) { 1244 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1245 isOpenMPParallelDirective(D.getDirectiveKind()) || 1246 ReductionKind == OMPD_simd; 1247 bool SimpleReduction = ReductionKind == OMPD_simd; 1248 // Emit nowait reduction if nowait clause is present or directive is a 1249 // parallel directive (it always has implicit barrier). 1250 CGM.getOpenMPRuntime().emitReduction( 1251 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1252 {WithNowait, SimpleReduction, ReductionKind}); 1253 } 1254 } 1255 1256 static void emitPostUpdateForReductionClause( 1257 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1258 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1259 if (!CGF.HaveInsertPoint()) 1260 return; 1261 llvm::BasicBlock *DoneBB = nullptr; 1262 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1263 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1264 if (!DoneBB) { 1265 if (llvm::Value *Cond = CondGen(CGF)) { 1266 // If the first post-update expression is found, emit conditional 1267 // block if it was requested. 1268 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1269 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1270 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1271 CGF.EmitBlock(ThenBB); 1272 } 1273 } 1274 CGF.EmitIgnoredExpr(PostUpdate); 1275 } 1276 } 1277 if (DoneBB) 1278 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1279 } 1280 1281 namespace { 1282 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1283 /// parallel function. This is necessary for combined constructs such as 1284 /// 'distribute parallel for' 1285 typedef llvm::function_ref<void(CodeGenFunction &, 1286 const OMPExecutableDirective &, 1287 llvm::SmallVectorImpl<llvm::Value *> &)> 1288 CodeGenBoundParametersTy; 1289 } // anonymous namespace 1290 1291 static void emitCommonOMPParallelDirective( 1292 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1293 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1294 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1295 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1296 llvm::Function *OutlinedFn = 1297 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1298 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1299 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1300 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1301 llvm::Value *NumThreads = 1302 CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1303 /*IgnoreResultAssign=*/true); 1304 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1305 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1306 } 1307 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1308 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1309 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1310 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1311 } 1312 const Expr *IfCond = nullptr; 1313 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1314 if (C->getNameModifier() == OMPD_unknown || 1315 C->getNameModifier() == OMPD_parallel) { 1316 IfCond = C->getCondition(); 1317 break; 1318 } 1319 } 1320 1321 OMPParallelScope Scope(CGF, S); 1322 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1323 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1324 // lower and upper bounds with the pragma 'for' chunking mechanism. 1325 // The following lambda takes care of appending the lower and upper bound 1326 // parameters when necessary 1327 CodeGenBoundParameters(CGF, S, CapturedVars); 1328 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1329 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1330 CapturedVars, IfCond); 1331 } 1332 1333 static void emitEmptyBoundParameters(CodeGenFunction &, 1334 const OMPExecutableDirective &, 1335 llvm::SmallVectorImpl<llvm::Value *> &) {} 1336 1337 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1338 1339 if (llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder()) { 1340 // Check if we have any if clause associated with the directive. 1341 llvm::Value *IfCond = nullptr; 1342 if (const auto *C = S.getSingleClause<OMPIfClause>()) 1343 IfCond = EmitScalarExpr(C->getCondition(), 1344 /*IgnoreResultAssign=*/true); 1345 1346 llvm::Value *NumThreads = nullptr; 1347 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) 1348 NumThreads = EmitScalarExpr(NumThreadsClause->getNumThreads(), 1349 /*IgnoreResultAssign=*/true); 1350 1351 ProcBindKind ProcBind = OMP_PROC_BIND_default; 1352 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) 1353 ProcBind = ProcBindClause->getProcBindKind(); 1354 1355 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1356 1357 // The cleanup callback that finalizes all variabels at the given location, 1358 // thus calls destructors etc. 1359 auto FiniCB = [this](InsertPointTy IP) { 1360 CGBuilderTy::InsertPointGuard IPG(Builder); 1361 assert(IP.getBlock()->end() != IP.getPoint() && 1362 "OpenMP IR Builder should cause terminated block!"); 1363 llvm::BasicBlock *IPBB = IP.getBlock(); 1364 llvm::BasicBlock *DestBB = IPBB->splitBasicBlock(IP.getPoint()); 1365 IPBB->getTerminator()->eraseFromParent(); 1366 Builder.SetInsertPoint(IPBB); 1367 CodeGenFunction::JumpDest Dest = getJumpDestInCurrentScope(DestBB); 1368 EmitBranchThroughCleanup(Dest); 1369 }; 1370 1371 // Privatization callback that performs appropriate action for 1372 // shared/private/firstprivate/lastprivate/copyin/... variables. 1373 // 1374 // TODO: This defaults to shared right now. 1375 auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1376 llvm::Value &Val, llvm::Value *&ReplVal) { 1377 // The next line is appropriate only for variables (Val) with the 1378 // data-sharing attribute "shared". 1379 ReplVal = &Val; 1380 1381 return CodeGenIP; 1382 }; 1383 1384 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1385 const Stmt *ParallelRegionBodyStmt = CS->getCapturedStmt(); 1386 1387 auto BodyGenCB = [ParallelRegionBodyStmt, 1388 this](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1389 llvm::BasicBlock &ContinuationBB) { 1390 auto OldAllocaIP = AllocaInsertPt; 1391 AllocaInsertPt = &*AllocaIP.getPoint(); 1392 1393 auto OldReturnBlock = ReturnBlock; 1394 ReturnBlock = getJumpDestInCurrentScope(&ContinuationBB); 1395 1396 llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); 1397 CodeGenIPBB->splitBasicBlock(CodeGenIP.getPoint()); 1398 llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator(); 1399 CodeGenIPBBTI->removeFromParent(); 1400 1401 Builder.SetInsertPoint(CodeGenIPBB); 1402 1403 EmitStmt(ParallelRegionBodyStmt); 1404 1405 Builder.Insert(CodeGenIPBBTI); 1406 1407 AllocaInsertPt = OldAllocaIP; 1408 ReturnBlock = OldReturnBlock; 1409 }; 1410 1411 CGCapturedStmtInfo CGSI(*CS, CR_OpenMP); 1412 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 1413 Builder.restoreIP(OMPBuilder->CreateParallel(Builder, BodyGenCB, PrivCB, 1414 FiniCB, IfCond, NumThreads, 1415 ProcBind, S.hasCancel())); 1416 return; 1417 } 1418 1419 // Emit parallel region as a standalone region. 1420 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1421 Action.Enter(CGF); 1422 OMPPrivateScope PrivateScope(CGF); 1423 bool Copyins = CGF.EmitOMPCopyinClause(S); 1424 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1425 if (Copyins) { 1426 // Emit implicit barrier to synchronize threads and avoid data races on 1427 // propagation master's thread values of threadprivate variables to local 1428 // instances of that variables of all other implicit threads. 1429 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1430 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1431 /*ForceSimpleCall=*/true); 1432 } 1433 CGF.EmitOMPPrivateClause(S, PrivateScope); 1434 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1435 (void)PrivateScope.Privatize(); 1436 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1437 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1438 }; 1439 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1440 emitEmptyBoundParameters); 1441 emitPostUpdateForReductionClause(*this, S, 1442 [](CodeGenFunction &) { return nullptr; }); 1443 } 1444 1445 static void emitBody(CodeGenFunction &CGF, const Stmt *S, const Stmt *NextLoop, 1446 int MaxLevel, int Level = 0) { 1447 assert(Level < MaxLevel && "Too deep lookup during loop body codegen."); 1448 const Stmt *SimplifiedS = S->IgnoreContainers(); 1449 if (const auto *CS = dyn_cast<CompoundStmt>(SimplifiedS)) { 1450 PrettyStackTraceLoc CrashInfo( 1451 CGF.getContext().getSourceManager(), CS->getLBracLoc(), 1452 "LLVM IR generation of compound statement ('{}')"); 1453 1454 // Keep track of the current cleanup stack depth, including debug scopes. 1455 CodeGenFunction::LexicalScope Scope(CGF, S->getSourceRange()); 1456 for (const Stmt *CurStmt : CS->body()) 1457 emitBody(CGF, CurStmt, NextLoop, MaxLevel, Level); 1458 return; 1459 } 1460 if (SimplifiedS == NextLoop) { 1461 if (const auto *For = dyn_cast<ForStmt>(SimplifiedS)) { 1462 S = For->getBody(); 1463 } else { 1464 assert(isa<CXXForRangeStmt>(SimplifiedS) && 1465 "Expected canonical for loop or range-based for loop."); 1466 const auto *CXXFor = cast<CXXForRangeStmt>(SimplifiedS); 1467 CGF.EmitStmt(CXXFor->getLoopVarStmt()); 1468 S = CXXFor->getBody(); 1469 } 1470 if (Level + 1 < MaxLevel) { 1471 NextLoop = OMPLoopDirective::tryToFindNextInnerLoop( 1472 S, /*TryImperfectlyNestedLoops=*/true); 1473 emitBody(CGF, S, NextLoop, MaxLevel, Level + 1); 1474 return; 1475 } 1476 } 1477 CGF.EmitStmt(S); 1478 } 1479 1480 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1481 JumpDest LoopExit) { 1482 RunCleanupsScope BodyScope(*this); 1483 // Update counters values on current iteration. 1484 for (const Expr *UE : D.updates()) 1485 EmitIgnoredExpr(UE); 1486 // Update the linear variables. 1487 // In distribute directives only loop counters may be marked as linear, no 1488 // need to generate the code for them. 1489 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1490 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1491 for (const Expr *UE : C->updates()) 1492 EmitIgnoredExpr(UE); 1493 } 1494 } 1495 1496 // On a continue in the body, jump to the end. 1497 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1498 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1499 for (const Expr *E : D.finals_conditions()) { 1500 if (!E) 1501 continue; 1502 // Check that loop counter in non-rectangular nest fits into the iteration 1503 // space. 1504 llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next"); 1505 EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(), 1506 getProfileCount(D.getBody())); 1507 EmitBlock(NextBB); 1508 } 1509 // Emit loop variables for C++ range loops. 1510 const Stmt *Body = 1511 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 1512 // Emit loop body. 1513 emitBody(*this, Body, 1514 OMPLoopDirective::tryToFindNextInnerLoop( 1515 Body, /*TryImperfectlyNestedLoops=*/true), 1516 D.getCollapsedNumber()); 1517 1518 // The end (updates/cleanups). 1519 EmitBlock(Continue.getBlock()); 1520 BreakContinueStack.pop_back(); 1521 } 1522 1523 void CodeGenFunction::EmitOMPInnerLoop( 1524 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 1525 const Expr *IncExpr, 1526 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 1527 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 1528 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1529 1530 // Start the loop with a block that tests the condition. 1531 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1532 EmitBlock(CondBlock); 1533 const SourceRange R = S.getSourceRange(); 1534 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1535 SourceLocToDebugLoc(R.getEnd())); 1536 1537 // If there are any cleanups between here and the loop-exit scope, 1538 // create a block to stage a loop exit along. 1539 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1540 if (RequiresCleanup) 1541 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1542 1543 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 1544 1545 // Emit condition. 1546 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1547 if (ExitBlock != LoopExit.getBlock()) { 1548 EmitBlock(ExitBlock); 1549 EmitBranchThroughCleanup(LoopExit); 1550 } 1551 1552 EmitBlock(LoopBody); 1553 incrementProfileCounter(&S); 1554 1555 // Create a block for the increment. 1556 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1557 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1558 1559 BodyGen(*this); 1560 1561 // Emit "IV = IV + 1" and a back-edge to the condition block. 1562 EmitBlock(Continue.getBlock()); 1563 EmitIgnoredExpr(IncExpr); 1564 PostIncGen(*this); 1565 BreakContinueStack.pop_back(); 1566 EmitBranch(CondBlock); 1567 LoopStack.pop(); 1568 // Emit the fall-through block. 1569 EmitBlock(LoopExit.getBlock()); 1570 } 1571 1572 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1573 if (!HaveInsertPoint()) 1574 return false; 1575 // Emit inits for the linear variables. 1576 bool HasLinears = false; 1577 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1578 for (const Expr *Init : C->inits()) { 1579 HasLinears = true; 1580 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1581 if (const auto *Ref = 1582 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1583 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1584 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1585 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1586 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1587 VD->getInit()->getType(), VK_LValue, 1588 VD->getInit()->getExprLoc()); 1589 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1590 VD->getType()), 1591 /*capturedByInit=*/false); 1592 EmitAutoVarCleanups(Emission); 1593 } else { 1594 EmitVarDecl(*VD); 1595 } 1596 } 1597 // Emit the linear steps for the linear clauses. 1598 // If a step is not constant, it is pre-calculated before the loop. 1599 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1600 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1601 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1602 // Emit calculation of the linear step. 1603 EmitIgnoredExpr(CS); 1604 } 1605 } 1606 return HasLinears; 1607 } 1608 1609 void CodeGenFunction::EmitOMPLinearClauseFinal( 1610 const OMPLoopDirective &D, 1611 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1612 if (!HaveInsertPoint()) 1613 return; 1614 llvm::BasicBlock *DoneBB = nullptr; 1615 // Emit the final values of the linear variables. 1616 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1617 auto IC = C->varlist_begin(); 1618 for (const Expr *F : C->finals()) { 1619 if (!DoneBB) { 1620 if (llvm::Value *Cond = CondGen(*this)) { 1621 // If the first post-update expression is found, emit conditional 1622 // block if it was requested. 1623 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 1624 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1625 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1626 EmitBlock(ThenBB); 1627 } 1628 } 1629 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1630 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1631 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1632 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1633 Address OrigAddr = EmitLValue(&DRE).getAddress(*this); 1634 CodeGenFunction::OMPPrivateScope VarScope(*this); 1635 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1636 (void)VarScope.Privatize(); 1637 EmitIgnoredExpr(F); 1638 ++IC; 1639 } 1640 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1641 EmitIgnoredExpr(PostUpdate); 1642 } 1643 if (DoneBB) 1644 EmitBlock(DoneBB, /*IsFinished=*/true); 1645 } 1646 1647 static void emitAlignedClause(CodeGenFunction &CGF, 1648 const OMPExecutableDirective &D) { 1649 if (!CGF.HaveInsertPoint()) 1650 return; 1651 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1652 llvm::APInt ClauseAlignment(64, 0); 1653 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 1654 auto *AlignmentCI = 1655 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1656 ClauseAlignment = AlignmentCI->getValue(); 1657 } 1658 for (const Expr *E : Clause->varlists()) { 1659 llvm::APInt Alignment(ClauseAlignment); 1660 if (Alignment == 0) { 1661 // OpenMP [2.8.1, Description] 1662 // If no optional parameter is specified, implementation-defined default 1663 // alignments for SIMD instructions on the target platforms are assumed. 1664 Alignment = 1665 CGF.getContext() 1666 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 1667 E->getType()->getPointeeType())) 1668 .getQuantity(); 1669 } 1670 assert((Alignment == 0 || Alignment.isPowerOf2()) && 1671 "alignment is not power of 2"); 1672 if (Alignment != 0) { 1673 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 1674 CGF.EmitAlignmentAssumption( 1675 PtrValue, E, /*No second loc needed*/ SourceLocation(), 1676 llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment)); 1677 } 1678 } 1679 } 1680 } 1681 1682 void CodeGenFunction::EmitOMPPrivateLoopCounters( 1683 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 1684 if (!HaveInsertPoint()) 1685 return; 1686 auto I = S.private_counters().begin(); 1687 for (const Expr *E : S.counters()) { 1688 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1689 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 1690 // Emit var without initialization. 1691 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 1692 EmitAutoVarCleanups(VarEmission); 1693 LocalDeclMap.erase(PrivateVD); 1694 (void)LoopScope.addPrivate(VD, [&VarEmission]() { 1695 return VarEmission.getAllocatedAddress(); 1696 }); 1697 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 1698 VD->hasGlobalStorage()) { 1699 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 1700 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), 1701 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 1702 E->getType(), VK_LValue, E->getExprLoc()); 1703 return EmitLValue(&DRE).getAddress(*this); 1704 }); 1705 } else { 1706 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 1707 return VarEmission.getAllocatedAddress(); 1708 }); 1709 } 1710 ++I; 1711 } 1712 // Privatize extra loop counters used in loops for ordered(n) clauses. 1713 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 1714 if (!C->getNumForLoops()) 1715 continue; 1716 for (unsigned I = S.getCollapsedNumber(), 1717 E = C->getLoopNumIterations().size(); 1718 I < E; ++I) { 1719 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 1720 const auto *VD = cast<VarDecl>(DRE->getDecl()); 1721 // Override only those variables that can be captured to avoid re-emission 1722 // of the variables declared within the loops. 1723 if (DRE->refersToEnclosingVariableOrCapture()) { 1724 (void)LoopScope.addPrivate(VD, [this, DRE, VD]() { 1725 return CreateMemTemp(DRE->getType(), VD->getName()); 1726 }); 1727 } 1728 } 1729 } 1730 } 1731 1732 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 1733 const Expr *Cond, llvm::BasicBlock *TrueBlock, 1734 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 1735 if (!CGF.HaveInsertPoint()) 1736 return; 1737 { 1738 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 1739 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 1740 (void)PreCondScope.Privatize(); 1741 // Get initial values of real counters. 1742 for (const Expr *I : S.inits()) { 1743 CGF.EmitIgnoredExpr(I); 1744 } 1745 } 1746 // Create temp loop control variables with their init values to support 1747 // non-rectangular loops. 1748 CodeGenFunction::OMPMapVars PreCondVars; 1749 for (const Expr * E: S.dependent_counters()) { 1750 if (!E) 1751 continue; 1752 assert(!E->getType().getNonReferenceType()->isRecordType() && 1753 "dependent counter must not be an iterator."); 1754 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1755 Address CounterAddr = 1756 CGF.CreateMemTemp(VD->getType().getNonReferenceType()); 1757 (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr); 1758 } 1759 (void)PreCondVars.apply(CGF); 1760 for (const Expr *E : S.dependent_inits()) { 1761 if (!E) 1762 continue; 1763 CGF.EmitIgnoredExpr(E); 1764 } 1765 // Check that loop is executed at least one time. 1766 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 1767 PreCondVars.restore(CGF); 1768 } 1769 1770 void CodeGenFunction::EmitOMPLinearClause( 1771 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 1772 if (!HaveInsertPoint()) 1773 return; 1774 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1775 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1776 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1777 for (const Expr *C : LoopDirective->counters()) { 1778 SIMDLCVs.insert( 1779 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1780 } 1781 } 1782 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1783 auto CurPrivate = C->privates().begin(); 1784 for (const Expr *E : C->varlists()) { 1785 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1786 const auto *PrivateVD = 1787 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 1788 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 1789 bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() { 1790 // Emit private VarDecl with copy init. 1791 EmitVarDecl(*PrivateVD); 1792 return GetAddrOfLocalVar(PrivateVD); 1793 }); 1794 assert(IsRegistered && "linear var already registered as private"); 1795 // Silence the warning about unused variable. 1796 (void)IsRegistered; 1797 } else { 1798 EmitVarDecl(*PrivateVD); 1799 } 1800 ++CurPrivate; 1801 } 1802 } 1803 } 1804 1805 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 1806 const OMPExecutableDirective &D, 1807 bool IsMonotonic) { 1808 if (!CGF.HaveInsertPoint()) 1809 return; 1810 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 1811 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 1812 /*ignoreResult=*/true); 1813 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1814 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1815 // In presence of finite 'safelen', it may be unsafe to mark all 1816 // the memory instructions parallel, because loop-carried 1817 // dependences of 'safelen' iterations are possible. 1818 if (!IsMonotonic) 1819 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 1820 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 1821 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 1822 /*ignoreResult=*/true); 1823 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1824 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1825 // In presence of finite 'safelen', it may be unsafe to mark all 1826 // the memory instructions parallel, because loop-carried 1827 // dependences of 'safelen' iterations are possible. 1828 CGF.LoopStack.setParallel(/*Enable=*/false); 1829 } 1830 } 1831 1832 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 1833 bool IsMonotonic) { 1834 // Walk clauses and process safelen/lastprivate. 1835 LoopStack.setParallel(!IsMonotonic); 1836 LoopStack.setVectorizeEnable(); 1837 emitSimdlenSafelenClause(*this, D, IsMonotonic); 1838 } 1839 1840 void CodeGenFunction::EmitOMPSimdFinal( 1841 const OMPLoopDirective &D, 1842 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1843 if (!HaveInsertPoint()) 1844 return; 1845 llvm::BasicBlock *DoneBB = nullptr; 1846 auto IC = D.counters().begin(); 1847 auto IPC = D.private_counters().begin(); 1848 for (const Expr *F : D.finals()) { 1849 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 1850 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 1851 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 1852 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 1853 OrigVD->hasGlobalStorage() || CED) { 1854 if (!DoneBB) { 1855 if (llvm::Value *Cond = CondGen(*this)) { 1856 // If the first post-update expression is found, emit conditional 1857 // block if it was requested. 1858 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 1859 DoneBB = createBasicBlock(".omp.final.done"); 1860 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1861 EmitBlock(ThenBB); 1862 } 1863 } 1864 Address OrigAddr = Address::invalid(); 1865 if (CED) { 1866 OrigAddr = 1867 EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(*this); 1868 } else { 1869 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD), 1870 /*RefersToEnclosingVariableOrCapture=*/false, 1871 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 1872 OrigAddr = EmitLValue(&DRE).getAddress(*this); 1873 } 1874 OMPPrivateScope VarScope(*this); 1875 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1876 (void)VarScope.Privatize(); 1877 EmitIgnoredExpr(F); 1878 } 1879 ++IC; 1880 ++IPC; 1881 } 1882 if (DoneBB) 1883 EmitBlock(DoneBB, /*IsFinished=*/true); 1884 } 1885 1886 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 1887 const OMPLoopDirective &S, 1888 CodeGenFunction::JumpDest LoopExit) { 1889 CGF.CGM.getOpenMPRuntime().initLastprivateConditionalCounter(CGF, S); 1890 CGF.EmitOMPLoopBody(S, LoopExit); 1891 CGF.EmitStopPoint(&S); 1892 } 1893 1894 /// Emit a helper variable and return corresponding lvalue. 1895 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 1896 const DeclRefExpr *Helper) { 1897 auto VDecl = cast<VarDecl>(Helper->getDecl()); 1898 CGF.EmitVarDecl(*VDecl); 1899 return CGF.EmitLValue(Helper); 1900 } 1901 1902 static void emitCommonSimdLoop(CodeGenFunction &CGF, const OMPLoopDirective &S, 1903 const RegionCodeGenTy &SimdInitGen, 1904 const RegionCodeGenTy &BodyCodeGen) { 1905 auto &&ThenGen = [&S, &SimdInitGen, &BodyCodeGen](CodeGenFunction &CGF, 1906 PrePostActionTy &) { 1907 CGOpenMPRuntime::NontemporalDeclsRAII NontemporalsRegion(CGF.CGM, S); 1908 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 1909 SimdInitGen(CGF); 1910 1911 BodyCodeGen(CGF); 1912 }; 1913 auto &&ElseGen = [&BodyCodeGen](CodeGenFunction &CGF, PrePostActionTy &) { 1914 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 1915 CGF.LoopStack.setVectorizeEnable(/*Enable=*/false); 1916 1917 BodyCodeGen(CGF); 1918 }; 1919 const Expr *IfCond = nullptr; 1920 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1921 if (CGF.getLangOpts().OpenMP >= 50 && 1922 (C->getNameModifier() == OMPD_unknown || 1923 C->getNameModifier() == OMPD_simd)) { 1924 IfCond = C->getCondition(); 1925 break; 1926 } 1927 } 1928 if (IfCond) { 1929 CGF.CGM.getOpenMPRuntime().emitIfClause(CGF, IfCond, ThenGen, ElseGen); 1930 } else { 1931 RegionCodeGenTy ThenRCG(ThenGen); 1932 ThenRCG(CGF); 1933 } 1934 } 1935 1936 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 1937 PrePostActionTy &Action) { 1938 Action.Enter(CGF); 1939 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 1940 "Expected simd directive"); 1941 OMPLoopScope PreInitScope(CGF, S); 1942 // if (PreCond) { 1943 // for (IV in 0..LastIteration) BODY; 1944 // <Final counter/linear vars updates>; 1945 // } 1946 // 1947 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 1948 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 1949 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 1950 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 1951 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 1952 } 1953 1954 // Emit: if (PreCond) - begin. 1955 // If the condition constant folds and can be elided, avoid emitting the 1956 // whole loop. 1957 bool CondConstant; 1958 llvm::BasicBlock *ContBlock = nullptr; 1959 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1960 if (!CondConstant) 1961 return; 1962 } else { 1963 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 1964 ContBlock = CGF.createBasicBlock("simd.if.end"); 1965 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 1966 CGF.getProfileCount(&S)); 1967 CGF.EmitBlock(ThenBlock); 1968 CGF.incrementProfileCounter(&S); 1969 } 1970 1971 // Emit the loop iteration variable. 1972 const Expr *IVExpr = S.getIterationVariable(); 1973 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 1974 CGF.EmitVarDecl(*IVDecl); 1975 CGF.EmitIgnoredExpr(S.getInit()); 1976 1977 // Emit the iterations count variable. 1978 // If it is not a variable, Sema decided to calculate iterations count on 1979 // each iteration (e.g., it is foldable into a constant). 1980 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1981 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1982 // Emit calculation of the iterations count. 1983 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 1984 } 1985 1986 emitAlignedClause(CGF, S); 1987 (void)CGF.EmitOMPLinearClauseInit(S); 1988 { 1989 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 1990 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 1991 CGF.EmitOMPLinearClause(S, LoopScope); 1992 CGF.EmitOMPPrivateClause(S, LoopScope); 1993 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1994 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 1995 CGF, S, CGF.EmitLValue(S.getIterationVariable())); 1996 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1997 (void)LoopScope.Privatize(); 1998 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 1999 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2000 2001 emitCommonSimdLoop( 2002 CGF, S, 2003 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2004 CGF.EmitOMPSimdInit(S); 2005 }, 2006 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2007 CGF.EmitOMPInnerLoop( 2008 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 2009 [&S](CodeGenFunction &CGF) { 2010 CGF.CGM.getOpenMPRuntime().initLastprivateConditionalCounter( 2011 CGF, S); 2012 CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest()); 2013 CGF.EmitStopPoint(&S); 2014 }, 2015 [](CodeGenFunction &) {}); 2016 }); 2017 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 2018 // Emit final copy of the lastprivate variables at the end of loops. 2019 if (HasLastprivateClause) 2020 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 2021 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 2022 emitPostUpdateForReductionClause(CGF, S, 2023 [](CodeGenFunction &) { return nullptr; }); 2024 } 2025 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 2026 // Emit: if (PreCond) - end. 2027 if (ContBlock) { 2028 CGF.EmitBranch(ContBlock); 2029 CGF.EmitBlock(ContBlock, true); 2030 } 2031 } 2032 2033 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 2034 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2035 emitOMPSimdRegion(CGF, S, Action); 2036 }; 2037 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2038 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2039 } 2040 2041 void CodeGenFunction::EmitOMPOuterLoop( 2042 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 2043 CodeGenFunction::OMPPrivateScope &LoopScope, 2044 const CodeGenFunction::OMPLoopArguments &LoopArgs, 2045 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 2046 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 2047 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2048 2049 const Expr *IVExpr = S.getIterationVariable(); 2050 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2051 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2052 2053 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 2054 2055 // Start the loop with a block that tests the condition. 2056 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 2057 EmitBlock(CondBlock); 2058 const SourceRange R = S.getSourceRange(); 2059 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 2060 SourceLocToDebugLoc(R.getEnd())); 2061 2062 llvm::Value *BoolCondVal = nullptr; 2063 if (!DynamicOrOrdered) { 2064 // UB = min(UB, GlobalUB) or 2065 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 2066 // 'distribute parallel for') 2067 EmitIgnoredExpr(LoopArgs.EUB); 2068 // IV = LB 2069 EmitIgnoredExpr(LoopArgs.Init); 2070 // IV < UB 2071 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 2072 } else { 2073 BoolCondVal = 2074 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 2075 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 2076 } 2077 2078 // If there are any cleanups between here and the loop-exit scope, 2079 // create a block to stage a loop exit along. 2080 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 2081 if (LoopScope.requiresCleanups()) 2082 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 2083 2084 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 2085 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 2086 if (ExitBlock != LoopExit.getBlock()) { 2087 EmitBlock(ExitBlock); 2088 EmitBranchThroughCleanup(LoopExit); 2089 } 2090 EmitBlock(LoopBody); 2091 2092 // Emit "IV = LB" (in case of static schedule, we have already calculated new 2093 // LB for loop condition and emitted it above). 2094 if (DynamicOrOrdered) 2095 EmitIgnoredExpr(LoopArgs.Init); 2096 2097 // Create a block for the increment. 2098 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 2099 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 2100 2101 emitCommonSimdLoop( 2102 *this, S, 2103 [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) { 2104 // Generate !llvm.loop.parallel metadata for loads and stores for loops 2105 // with dynamic/guided scheduling and without ordered clause. 2106 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 2107 CGF.LoopStack.setParallel(!IsMonotonic); 2108 else 2109 CGF.EmitOMPSimdInit(S, IsMonotonic); 2110 }, 2111 [&S, &LoopArgs, LoopExit, &CodeGenLoop, IVSize, IVSigned, &CodeGenOrdered, 2112 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2113 SourceLocation Loc = S.getBeginLoc(); 2114 // when 'distribute' is not combined with a 'for': 2115 // while (idx <= UB) { BODY; ++idx; } 2116 // when 'distribute' is combined with a 'for' 2117 // (e.g. 'distribute parallel for') 2118 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 2119 CGF.EmitOMPInnerLoop( 2120 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 2121 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 2122 CodeGenLoop(CGF, S, LoopExit); 2123 }, 2124 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 2125 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 2126 }); 2127 }); 2128 2129 EmitBlock(Continue.getBlock()); 2130 BreakContinueStack.pop_back(); 2131 if (!DynamicOrOrdered) { 2132 // Emit "LB = LB + Stride", "UB = UB + Stride". 2133 EmitIgnoredExpr(LoopArgs.NextLB); 2134 EmitIgnoredExpr(LoopArgs.NextUB); 2135 } 2136 2137 EmitBranch(CondBlock); 2138 LoopStack.pop(); 2139 // Emit the fall-through block. 2140 EmitBlock(LoopExit.getBlock()); 2141 2142 // Tell the runtime we are done. 2143 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 2144 if (!DynamicOrOrdered) 2145 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2146 S.getDirectiveKind()); 2147 }; 2148 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2149 } 2150 2151 void CodeGenFunction::EmitOMPForOuterLoop( 2152 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 2153 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 2154 const OMPLoopArguments &LoopArgs, 2155 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2156 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2157 2158 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 2159 const bool DynamicOrOrdered = 2160 Ordered || RT.isDynamic(ScheduleKind.Schedule); 2161 2162 assert((Ordered || 2163 !RT.isStaticNonchunked(ScheduleKind.Schedule, 2164 LoopArgs.Chunk != nullptr)) && 2165 "static non-chunked schedule does not need outer loop"); 2166 2167 // Emit outer loop. 2168 // 2169 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2170 // When schedule(dynamic,chunk_size) is specified, the iterations are 2171 // distributed to threads in the team in chunks as the threads request them. 2172 // Each thread executes a chunk of iterations, then requests another chunk, 2173 // until no chunks remain to be distributed. Each chunk contains chunk_size 2174 // iterations, except for the last chunk to be distributed, which may have 2175 // fewer iterations. When no chunk_size is specified, it defaults to 1. 2176 // 2177 // When schedule(guided,chunk_size) is specified, the iterations are assigned 2178 // to threads in the team in chunks as the executing threads request them. 2179 // Each thread executes a chunk of iterations, then requests another chunk, 2180 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 2181 // each chunk is proportional to the number of unassigned iterations divided 2182 // by the number of threads in the team, decreasing to 1. For a chunk_size 2183 // with value k (greater than 1), the size of each chunk is determined in the 2184 // same way, with the restriction that the chunks do not contain fewer than k 2185 // iterations (except for the last chunk to be assigned, which may have fewer 2186 // than k iterations). 2187 // 2188 // When schedule(auto) is specified, the decision regarding scheduling is 2189 // delegated to the compiler and/or runtime system. The programmer gives the 2190 // implementation the freedom to choose any possible mapping of iterations to 2191 // threads in the team. 2192 // 2193 // When schedule(runtime) is specified, the decision regarding scheduling is 2194 // deferred until run time, and the schedule and chunk size are taken from the 2195 // run-sched-var ICV. If the ICV is set to auto, the schedule is 2196 // implementation defined 2197 // 2198 // while(__kmpc_dispatch_next(&LB, &UB)) { 2199 // idx = LB; 2200 // while (idx <= UB) { BODY; ++idx; 2201 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 2202 // } // inner loop 2203 // } 2204 // 2205 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2206 // When schedule(static, chunk_size) is specified, iterations are divided into 2207 // chunks of size chunk_size, and the chunks are assigned to the threads in 2208 // the team in a round-robin fashion in the order of the thread number. 2209 // 2210 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 2211 // while (idx <= UB) { BODY; ++idx; } // inner loop 2212 // LB = LB + ST; 2213 // UB = UB + ST; 2214 // } 2215 // 2216 2217 const Expr *IVExpr = S.getIterationVariable(); 2218 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2219 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2220 2221 if (DynamicOrOrdered) { 2222 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 2223 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 2224 llvm::Value *LBVal = DispatchBounds.first; 2225 llvm::Value *UBVal = DispatchBounds.second; 2226 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 2227 LoopArgs.Chunk}; 2228 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 2229 IVSigned, Ordered, DipatchRTInputValues); 2230 } else { 2231 CGOpenMPRuntime::StaticRTInput StaticInit( 2232 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 2233 LoopArgs.ST, LoopArgs.Chunk); 2234 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2235 ScheduleKind, StaticInit); 2236 } 2237 2238 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 2239 const unsigned IVSize, 2240 const bool IVSigned) { 2241 if (Ordered) { 2242 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 2243 IVSigned); 2244 } 2245 }; 2246 2247 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 2248 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 2249 OuterLoopArgs.IncExpr = S.getInc(); 2250 OuterLoopArgs.Init = S.getInit(); 2251 OuterLoopArgs.Cond = S.getCond(); 2252 OuterLoopArgs.NextLB = S.getNextLowerBound(); 2253 OuterLoopArgs.NextUB = S.getNextUpperBound(); 2254 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 2255 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 2256 } 2257 2258 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 2259 const unsigned IVSize, const bool IVSigned) {} 2260 2261 void CodeGenFunction::EmitOMPDistributeOuterLoop( 2262 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 2263 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 2264 const CodeGenLoopTy &CodeGenLoopContent) { 2265 2266 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2267 2268 // Emit outer loop. 2269 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 2270 // dynamic 2271 // 2272 2273 const Expr *IVExpr = S.getIterationVariable(); 2274 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2275 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2276 2277 CGOpenMPRuntime::StaticRTInput StaticInit( 2278 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 2279 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 2280 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 2281 2282 // for combined 'distribute' and 'for' the increment expression of distribute 2283 // is stored in DistInc. For 'distribute' alone, it is in Inc. 2284 Expr *IncExpr; 2285 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 2286 IncExpr = S.getDistInc(); 2287 else 2288 IncExpr = S.getInc(); 2289 2290 // this routine is shared by 'omp distribute parallel for' and 2291 // 'omp distribute': select the right EUB expression depending on the 2292 // directive 2293 OMPLoopArguments OuterLoopArgs; 2294 OuterLoopArgs.LB = LoopArgs.LB; 2295 OuterLoopArgs.UB = LoopArgs.UB; 2296 OuterLoopArgs.ST = LoopArgs.ST; 2297 OuterLoopArgs.IL = LoopArgs.IL; 2298 OuterLoopArgs.Chunk = LoopArgs.Chunk; 2299 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2300 ? S.getCombinedEnsureUpperBound() 2301 : S.getEnsureUpperBound(); 2302 OuterLoopArgs.IncExpr = IncExpr; 2303 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2304 ? S.getCombinedInit() 2305 : S.getInit(); 2306 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2307 ? S.getCombinedCond() 2308 : S.getCond(); 2309 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2310 ? S.getCombinedNextLowerBound() 2311 : S.getNextLowerBound(); 2312 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2313 ? S.getCombinedNextUpperBound() 2314 : S.getNextUpperBound(); 2315 2316 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 2317 LoopScope, OuterLoopArgs, CodeGenLoopContent, 2318 emitEmptyOrdered); 2319 } 2320 2321 static std::pair<LValue, LValue> 2322 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 2323 const OMPExecutableDirective &S) { 2324 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2325 LValue LB = 2326 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2327 LValue UB = 2328 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2329 2330 // When composing 'distribute' with 'for' (e.g. as in 'distribute 2331 // parallel for') we need to use the 'distribute' 2332 // chunk lower and upper bounds rather than the whole loop iteration 2333 // space. These are parameters to the outlined function for 'parallel' 2334 // and we copy the bounds of the previous schedule into the 2335 // the current ones. 2336 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 2337 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 2338 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 2339 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 2340 PrevLBVal = CGF.EmitScalarConversion( 2341 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 2342 LS.getIterationVariable()->getType(), 2343 LS.getPrevLowerBoundVariable()->getExprLoc()); 2344 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 2345 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 2346 PrevUBVal = CGF.EmitScalarConversion( 2347 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 2348 LS.getIterationVariable()->getType(), 2349 LS.getPrevUpperBoundVariable()->getExprLoc()); 2350 2351 CGF.EmitStoreOfScalar(PrevLBVal, LB); 2352 CGF.EmitStoreOfScalar(PrevUBVal, UB); 2353 2354 return {LB, UB}; 2355 } 2356 2357 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 2358 /// we need to use the LB and UB expressions generated by the worksharing 2359 /// code generation support, whereas in non combined situations we would 2360 /// just emit 0 and the LastIteration expression 2361 /// This function is necessary due to the difference of the LB and UB 2362 /// types for the RT emission routines for 'for_static_init' and 2363 /// 'for_dispatch_init' 2364 static std::pair<llvm::Value *, llvm::Value *> 2365 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 2366 const OMPExecutableDirective &S, 2367 Address LB, Address UB) { 2368 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2369 const Expr *IVExpr = LS.getIterationVariable(); 2370 // when implementing a dynamic schedule for a 'for' combined with a 2371 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 2372 // is not normalized as each team only executes its own assigned 2373 // distribute chunk 2374 QualType IteratorTy = IVExpr->getType(); 2375 llvm::Value *LBVal = 2376 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2377 llvm::Value *UBVal = 2378 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2379 return {LBVal, UBVal}; 2380 } 2381 2382 static void emitDistributeParallelForDistributeInnerBoundParams( 2383 CodeGenFunction &CGF, const OMPExecutableDirective &S, 2384 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 2385 const auto &Dir = cast<OMPLoopDirective>(S); 2386 LValue LB = 2387 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 2388 llvm::Value *LBCast = 2389 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(LB.getAddress(CGF)), 2390 CGF.SizeTy, /*isSigned=*/false); 2391 CapturedVars.push_back(LBCast); 2392 LValue UB = 2393 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 2394 2395 llvm::Value *UBCast = 2396 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(UB.getAddress(CGF)), 2397 CGF.SizeTy, /*isSigned=*/false); 2398 CapturedVars.push_back(UBCast); 2399 } 2400 2401 static void 2402 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 2403 const OMPLoopDirective &S, 2404 CodeGenFunction::JumpDest LoopExit) { 2405 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 2406 PrePostActionTy &Action) { 2407 Action.Enter(CGF); 2408 bool HasCancel = false; 2409 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2410 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 2411 HasCancel = D->hasCancel(); 2412 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 2413 HasCancel = D->hasCancel(); 2414 else if (const auto *D = 2415 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 2416 HasCancel = D->hasCancel(); 2417 } 2418 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 2419 HasCancel); 2420 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 2421 emitDistributeParallelForInnerBounds, 2422 emitDistributeParallelForDispatchBounds); 2423 }; 2424 2425 emitCommonOMPParallelDirective( 2426 CGF, S, 2427 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 2428 CGInlinedWorksharingLoop, 2429 emitDistributeParallelForDistributeInnerBoundParams); 2430 } 2431 2432 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 2433 const OMPDistributeParallelForDirective &S) { 2434 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2435 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2436 S.getDistInc()); 2437 }; 2438 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2439 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2440 } 2441 2442 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 2443 const OMPDistributeParallelForSimdDirective &S) { 2444 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2445 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2446 S.getDistInc()); 2447 }; 2448 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2449 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2450 } 2451 2452 void CodeGenFunction::EmitOMPDistributeSimdDirective( 2453 const OMPDistributeSimdDirective &S) { 2454 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2455 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 2456 }; 2457 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2458 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2459 } 2460 2461 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 2462 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 2463 // Emit SPMD target parallel for region as a standalone region. 2464 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2465 emitOMPSimdRegion(CGF, S, Action); 2466 }; 2467 llvm::Function *Fn; 2468 llvm::Constant *Addr; 2469 // Emit target region as a standalone region. 2470 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 2471 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 2472 assert(Fn && Addr && "Target device function emission failed."); 2473 } 2474 2475 void CodeGenFunction::EmitOMPTargetSimdDirective( 2476 const OMPTargetSimdDirective &S) { 2477 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2478 emitOMPSimdRegion(CGF, S, Action); 2479 }; 2480 emitCommonOMPTargetDirective(*this, S, CodeGen); 2481 } 2482 2483 namespace { 2484 struct ScheduleKindModifiersTy { 2485 OpenMPScheduleClauseKind Kind; 2486 OpenMPScheduleClauseModifier M1; 2487 OpenMPScheduleClauseModifier M2; 2488 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 2489 OpenMPScheduleClauseModifier M1, 2490 OpenMPScheduleClauseModifier M2) 2491 : Kind(Kind), M1(M1), M2(M2) {} 2492 }; 2493 } // namespace 2494 2495 bool CodeGenFunction::EmitOMPWorksharingLoop( 2496 const OMPLoopDirective &S, Expr *EUB, 2497 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2498 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2499 // Emit the loop iteration variable. 2500 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2501 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2502 EmitVarDecl(*IVDecl); 2503 2504 // Emit the iterations count variable. 2505 // If it is not a variable, Sema decided to calculate iterations count on each 2506 // iteration (e.g., it is foldable into a constant). 2507 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2508 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2509 // Emit calculation of the iterations count. 2510 EmitIgnoredExpr(S.getCalcLastIteration()); 2511 } 2512 2513 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2514 2515 bool HasLastprivateClause; 2516 // Check pre-condition. 2517 { 2518 OMPLoopScope PreInitScope(*this, S); 2519 // Skip the entire loop if we don't meet the precondition. 2520 // If the condition constant folds and can be elided, avoid emitting the 2521 // whole loop. 2522 bool CondConstant; 2523 llvm::BasicBlock *ContBlock = nullptr; 2524 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2525 if (!CondConstant) 2526 return false; 2527 } else { 2528 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 2529 ContBlock = createBasicBlock("omp.precond.end"); 2530 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2531 getProfileCount(&S)); 2532 EmitBlock(ThenBlock); 2533 incrementProfileCounter(&S); 2534 } 2535 2536 RunCleanupsScope DoacrossCleanupScope(*this); 2537 bool Ordered = false; 2538 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2539 if (OrderedClause->getNumForLoops()) 2540 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 2541 else 2542 Ordered = true; 2543 } 2544 2545 llvm::DenseSet<const Expr *> EmittedFinals; 2546 emitAlignedClause(*this, S); 2547 bool HasLinears = EmitOMPLinearClauseInit(S); 2548 // Emit helper vars inits. 2549 2550 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 2551 LValue LB = Bounds.first; 2552 LValue UB = Bounds.second; 2553 LValue ST = 2554 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2555 LValue IL = 2556 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2557 2558 // Emit 'then' code. 2559 { 2560 OMPPrivateScope LoopScope(*this); 2561 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 2562 // Emit implicit barrier to synchronize threads and avoid data races on 2563 // initialization of firstprivate variables and post-update of 2564 // lastprivate variables. 2565 CGM.getOpenMPRuntime().emitBarrierCall( 2566 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2567 /*ForceSimpleCall=*/true); 2568 } 2569 EmitOMPPrivateClause(S, LoopScope); 2570 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 2571 *this, S, EmitLValue(S.getIterationVariable())); 2572 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2573 EmitOMPReductionClauseInit(S, LoopScope); 2574 EmitOMPPrivateLoopCounters(S, LoopScope); 2575 EmitOMPLinearClause(S, LoopScope); 2576 (void)LoopScope.Privatize(); 2577 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2578 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 2579 2580 // Detect the loop schedule kind and chunk. 2581 const Expr *ChunkExpr = nullptr; 2582 OpenMPScheduleTy ScheduleKind; 2583 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 2584 ScheduleKind.Schedule = C->getScheduleKind(); 2585 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2586 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2587 ChunkExpr = C->getChunkSize(); 2588 } else { 2589 // Default behaviour for schedule clause. 2590 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 2591 *this, S, ScheduleKind.Schedule, ChunkExpr); 2592 } 2593 bool HasChunkSizeOne = false; 2594 llvm::Value *Chunk = nullptr; 2595 if (ChunkExpr) { 2596 Chunk = EmitScalarExpr(ChunkExpr); 2597 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 2598 S.getIterationVariable()->getType(), 2599 S.getBeginLoc()); 2600 Expr::EvalResult Result; 2601 if (ChunkExpr->EvaluateAsInt(Result, getContext())) { 2602 llvm::APSInt EvaluatedChunk = Result.Val.getInt(); 2603 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 2604 } 2605 } 2606 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2607 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2608 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2609 // If the static schedule kind is specified or if the ordered clause is 2610 // specified, and if no monotonic modifier is specified, the effect will 2611 // be as if the monotonic modifier was specified. 2612 bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule, 2613 /* Chunked */ Chunk != nullptr) && HasChunkSizeOne && 2614 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 2615 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 2616 /* Chunked */ Chunk != nullptr) || 2617 StaticChunkedOne) && 2618 !Ordered) { 2619 JumpDest LoopExit = 2620 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2621 emitCommonSimdLoop( 2622 *this, S, 2623 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2624 if (isOpenMPSimdDirective(S.getDirectiveKind())) 2625 CGF.EmitOMPSimdInit(S, /*IsMonotonic=*/true); 2626 }, 2627 [IVSize, IVSigned, Ordered, IL, LB, UB, ST, StaticChunkedOne, Chunk, 2628 &S, ScheduleKind, LoopExit, 2629 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2630 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2631 // When no chunk_size is specified, the iteration space is divided 2632 // into chunks that are approximately equal in size, and at most 2633 // one chunk is distributed to each thread. Note that the size of 2634 // the chunks is unspecified in this case. 2635 CGOpenMPRuntime::StaticRTInput StaticInit( 2636 IVSize, IVSigned, Ordered, IL.getAddress(CGF), 2637 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF), 2638 StaticChunkedOne ? Chunk : nullptr); 2639 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2640 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, 2641 StaticInit); 2642 // UB = min(UB, GlobalUB); 2643 if (!StaticChunkedOne) 2644 CGF.EmitIgnoredExpr(S.getEnsureUpperBound()); 2645 // IV = LB; 2646 CGF.EmitIgnoredExpr(S.getInit()); 2647 // For unchunked static schedule generate: 2648 // 2649 // while (idx <= UB) { 2650 // BODY; 2651 // ++idx; 2652 // } 2653 // 2654 // For static schedule with chunk one: 2655 // 2656 // while (IV <= PrevUB) { 2657 // BODY; 2658 // IV += ST; 2659 // } 2660 CGF.EmitOMPInnerLoop( 2661 S, LoopScope.requiresCleanups(), 2662 StaticChunkedOne ? S.getCombinedParForInDistCond() 2663 : S.getCond(), 2664 StaticChunkedOne ? S.getDistInc() : S.getInc(), 2665 [&S, LoopExit](CodeGenFunction &CGF) { 2666 CGF.CGM.getOpenMPRuntime() 2667 .initLastprivateConditionalCounter(CGF, S); 2668 CGF.EmitOMPLoopBody(S, LoopExit); 2669 CGF.EmitStopPoint(&S); 2670 }, 2671 [](CodeGenFunction &) {}); 2672 }); 2673 EmitBlock(LoopExit.getBlock()); 2674 // Tell the runtime we are done. 2675 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2676 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2677 S.getDirectiveKind()); 2678 }; 2679 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2680 } else { 2681 const bool IsMonotonic = 2682 Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2683 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown || 2684 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2685 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2686 // Emit the outer loop, which requests its work chunk [LB..UB] from 2687 // runtime and runs the inner loop to process it. 2688 const OMPLoopArguments LoopArguments( 2689 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 2690 IL.getAddress(*this), Chunk, EUB); 2691 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 2692 LoopArguments, CGDispatchBounds); 2693 } 2694 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2695 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 2696 return CGF.Builder.CreateIsNotNull( 2697 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2698 }); 2699 } 2700 EmitOMPReductionClauseFinal( 2701 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 2702 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 2703 : /*Parallel only*/ OMPD_parallel); 2704 // Emit post-update of the reduction variables if IsLastIter != 0. 2705 emitPostUpdateForReductionClause( 2706 *this, S, [IL, &S](CodeGenFunction &CGF) { 2707 return CGF.Builder.CreateIsNotNull( 2708 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2709 }); 2710 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2711 if (HasLastprivateClause) 2712 EmitOMPLastprivateClauseFinal( 2713 S, isOpenMPSimdDirective(S.getDirectiveKind()), 2714 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 2715 } 2716 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 2717 return CGF.Builder.CreateIsNotNull( 2718 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2719 }); 2720 DoacrossCleanupScope.ForceCleanup(); 2721 // We're now done with the loop, so jump to the continuation block. 2722 if (ContBlock) { 2723 EmitBranch(ContBlock); 2724 EmitBlock(ContBlock, /*IsFinished=*/true); 2725 } 2726 } 2727 return HasLastprivateClause; 2728 } 2729 2730 /// The following two functions generate expressions for the loop lower 2731 /// and upper bounds in case of static and dynamic (dispatch) schedule 2732 /// of the associated 'for' or 'distribute' loop. 2733 static std::pair<LValue, LValue> 2734 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 2735 const auto &LS = cast<OMPLoopDirective>(S); 2736 LValue LB = 2737 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2738 LValue UB = 2739 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2740 return {LB, UB}; 2741 } 2742 2743 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 2744 /// consider the lower and upper bound expressions generated by the 2745 /// worksharing loop support, but we use 0 and the iteration space size as 2746 /// constants 2747 static std::pair<llvm::Value *, llvm::Value *> 2748 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 2749 Address LB, Address UB) { 2750 const auto &LS = cast<OMPLoopDirective>(S); 2751 const Expr *IVExpr = LS.getIterationVariable(); 2752 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 2753 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 2754 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 2755 return {LBVal, UBVal}; 2756 } 2757 2758 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 2759 bool HasLastprivates = false; 2760 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2761 PrePostActionTy &) { 2762 OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel()); 2763 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2764 emitForLoopBounds, 2765 emitDispatchForLoopBounds); 2766 }; 2767 { 2768 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2769 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 2770 S.hasCancel()); 2771 } 2772 2773 // Emit an implicit barrier at the end. 2774 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2775 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2776 } 2777 2778 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 2779 bool HasLastprivates = false; 2780 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2781 PrePostActionTy &) { 2782 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2783 emitForLoopBounds, 2784 emitDispatchForLoopBounds); 2785 }; 2786 { 2787 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2788 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2789 } 2790 2791 // Emit an implicit barrier at the end. 2792 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2793 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2794 } 2795 2796 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 2797 const Twine &Name, 2798 llvm::Value *Init = nullptr) { 2799 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 2800 if (Init) 2801 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 2802 return LVal; 2803 } 2804 2805 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 2806 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 2807 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 2808 bool HasLastprivates = false; 2809 auto &&CodeGen = [&S, CapturedStmt, CS, 2810 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 2811 ASTContext &C = CGF.getContext(); 2812 QualType KmpInt32Ty = 2813 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 2814 // Emit helper vars inits. 2815 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 2816 CGF.Builder.getInt32(0)); 2817 llvm::ConstantInt *GlobalUBVal = CS != nullptr 2818 ? CGF.Builder.getInt32(CS->size() - 1) 2819 : CGF.Builder.getInt32(0); 2820 LValue UB = 2821 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 2822 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 2823 CGF.Builder.getInt32(1)); 2824 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 2825 CGF.Builder.getInt32(0)); 2826 // Loop counter. 2827 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 2828 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2829 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 2830 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2831 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 2832 // Generate condition for loop. 2833 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 2834 OK_Ordinary, S.getBeginLoc(), FPOptions()); 2835 // Increment for loop counter. 2836 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 2837 S.getBeginLoc(), true); 2838 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 2839 // Iterate through all sections and emit a switch construct: 2840 // switch (IV) { 2841 // case 0: 2842 // <SectionStmt[0]>; 2843 // break; 2844 // ... 2845 // case <NumSection> - 1: 2846 // <SectionStmt[<NumSection> - 1]>; 2847 // break; 2848 // } 2849 // .omp.sections.exit: 2850 CGF.CGM.getOpenMPRuntime().initLastprivateConditionalCounter(CGF, S); 2851 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 2852 llvm::SwitchInst *SwitchStmt = 2853 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 2854 ExitBB, CS == nullptr ? 1 : CS->size()); 2855 if (CS) { 2856 unsigned CaseNumber = 0; 2857 for (const Stmt *SubStmt : CS->children()) { 2858 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2859 CGF.EmitBlock(CaseBB); 2860 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 2861 CGF.EmitStmt(SubStmt); 2862 CGF.EmitBranch(ExitBB); 2863 ++CaseNumber; 2864 } 2865 } else { 2866 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2867 CGF.EmitBlock(CaseBB); 2868 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 2869 CGF.EmitStmt(CapturedStmt); 2870 CGF.EmitBranch(ExitBB); 2871 } 2872 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2873 }; 2874 2875 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2876 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 2877 // Emit implicit barrier to synchronize threads and avoid data races on 2878 // initialization of firstprivate variables and post-update of lastprivate 2879 // variables. 2880 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 2881 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2882 /*ForceSimpleCall=*/true); 2883 } 2884 CGF.EmitOMPPrivateClause(S, LoopScope); 2885 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(CGF, S, IV); 2886 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2887 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2888 (void)LoopScope.Privatize(); 2889 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2890 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2891 2892 // Emit static non-chunked loop. 2893 OpenMPScheduleTy ScheduleKind; 2894 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 2895 CGOpenMPRuntime::StaticRTInput StaticInit( 2896 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(CGF), 2897 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF)); 2898 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2899 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 2900 // UB = min(UB, GlobalUB); 2901 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 2902 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 2903 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 2904 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 2905 // IV = LB; 2906 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 2907 // while (idx <= UB) { BODY; ++idx; } 2908 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 2909 [](CodeGenFunction &) {}); 2910 // Tell the runtime we are done. 2911 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2912 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2913 S.getDirectiveKind()); 2914 }; 2915 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 2916 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 2917 // Emit post-update of the reduction variables if IsLastIter != 0. 2918 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 2919 return CGF.Builder.CreateIsNotNull( 2920 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2921 }); 2922 2923 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2924 if (HasLastprivates) 2925 CGF.EmitOMPLastprivateClauseFinal( 2926 S, /*NoFinals=*/false, 2927 CGF.Builder.CreateIsNotNull( 2928 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 2929 }; 2930 2931 bool HasCancel = false; 2932 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 2933 HasCancel = OSD->hasCancel(); 2934 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 2935 HasCancel = OPSD->hasCancel(); 2936 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 2937 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 2938 HasCancel); 2939 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 2940 // clause. Otherwise the barrier will be generated by the codegen for the 2941 // directive. 2942 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 2943 // Emit implicit barrier to synchronize threads and avoid data races on 2944 // initialization of firstprivate variables. 2945 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 2946 OMPD_unknown); 2947 } 2948 } 2949 2950 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 2951 { 2952 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2953 EmitSections(S); 2954 } 2955 // Emit an implicit barrier at the end. 2956 if (!S.getSingleClause<OMPNowaitClause>()) { 2957 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 2958 OMPD_sections); 2959 } 2960 } 2961 2962 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 2963 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2964 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2965 }; 2966 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2967 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 2968 S.hasCancel()); 2969 } 2970 2971 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 2972 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 2973 llvm::SmallVector<const Expr *, 8> DestExprs; 2974 llvm::SmallVector<const Expr *, 8> SrcExprs; 2975 llvm::SmallVector<const Expr *, 8> AssignmentOps; 2976 // Check if there are any 'copyprivate' clauses associated with this 2977 // 'single' construct. 2978 // Build a list of copyprivate variables along with helper expressions 2979 // (<source>, <destination>, <destination>=<source> expressions) 2980 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 2981 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 2982 DestExprs.append(C->destination_exprs().begin(), 2983 C->destination_exprs().end()); 2984 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 2985 AssignmentOps.append(C->assignment_ops().begin(), 2986 C->assignment_ops().end()); 2987 } 2988 // Emit code for 'single' region along with 'copyprivate' clauses 2989 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2990 Action.Enter(CGF); 2991 OMPPrivateScope SingleScope(CGF); 2992 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 2993 CGF.EmitOMPPrivateClause(S, SingleScope); 2994 (void)SingleScope.Privatize(); 2995 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2996 }; 2997 { 2998 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2999 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 3000 CopyprivateVars, DestExprs, 3001 SrcExprs, AssignmentOps); 3002 } 3003 // Emit an implicit barrier at the end (to avoid data race on firstprivate 3004 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 3005 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 3006 CGM.getOpenMPRuntime().emitBarrierCall( 3007 *this, S.getBeginLoc(), 3008 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 3009 } 3010 } 3011 3012 static void emitMaster(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 3013 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3014 Action.Enter(CGF); 3015 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3016 }; 3017 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 3018 } 3019 3020 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 3021 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3022 emitMaster(*this, S); 3023 } 3024 3025 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 3026 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3027 Action.Enter(CGF); 3028 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3029 }; 3030 const Expr *Hint = nullptr; 3031 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 3032 Hint = HintClause->getHint(); 3033 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3034 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 3035 S.getDirectiveName().getAsString(), 3036 CodeGen, S.getBeginLoc(), Hint); 3037 } 3038 3039 void CodeGenFunction::EmitOMPParallelForDirective( 3040 const OMPParallelForDirective &S) { 3041 // Emit directive as a combined directive that consists of two implicit 3042 // directives: 'parallel' with 'for' directive. 3043 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3044 Action.Enter(CGF); 3045 OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel()); 3046 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 3047 emitDispatchForLoopBounds); 3048 }; 3049 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 3050 emitEmptyBoundParameters); 3051 } 3052 3053 void CodeGenFunction::EmitOMPParallelForSimdDirective( 3054 const OMPParallelForSimdDirective &S) { 3055 // Emit directive as a combined directive that consists of two implicit 3056 // directives: 'parallel' with 'for' directive. 3057 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3058 Action.Enter(CGF); 3059 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 3060 emitDispatchForLoopBounds); 3061 }; 3062 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen, 3063 emitEmptyBoundParameters); 3064 } 3065 3066 void CodeGenFunction::EmitOMPParallelMasterDirective( 3067 const OMPParallelMasterDirective &S) { 3068 // Emit directive as a combined directive that consists of two implicit 3069 // directives: 'parallel' with 'master' directive. 3070 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3071 Action.Enter(CGF); 3072 OMPPrivateScope PrivateScope(CGF); 3073 bool Copyins = CGF.EmitOMPCopyinClause(S); 3074 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 3075 if (Copyins) { 3076 // Emit implicit barrier to synchronize threads and avoid data races on 3077 // propagation master's thread values of threadprivate variables to local 3078 // instances of that variables of all other implicit threads. 3079 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3080 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3081 /*ForceSimpleCall=*/true); 3082 } 3083 CGF.EmitOMPPrivateClause(S, PrivateScope); 3084 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 3085 (void)PrivateScope.Privatize(); 3086 emitMaster(CGF, S); 3087 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 3088 }; 3089 emitCommonOMPParallelDirective(*this, S, OMPD_master, CodeGen, 3090 emitEmptyBoundParameters); 3091 emitPostUpdateForReductionClause(*this, S, 3092 [](CodeGenFunction &) { return nullptr; }); 3093 } 3094 3095 void CodeGenFunction::EmitOMPParallelSectionsDirective( 3096 const OMPParallelSectionsDirective &S) { 3097 // Emit directive as a combined directive that consists of two implicit 3098 // directives: 'parallel' with 'sections' directive. 3099 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3100 Action.Enter(CGF); 3101 CGF.EmitSections(S); 3102 }; 3103 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 3104 emitEmptyBoundParameters); 3105 } 3106 3107 void CodeGenFunction::EmitOMPTaskBasedDirective( 3108 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 3109 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 3110 OMPTaskDataTy &Data) { 3111 // Emit outlined function for task construct. 3112 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 3113 auto I = CS->getCapturedDecl()->param_begin(); 3114 auto PartId = std::next(I); 3115 auto TaskT = std::next(I, 4); 3116 // Check if the task is final 3117 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 3118 // If the condition constant folds and can be elided, try to avoid emitting 3119 // the condition and the dead arm of the if/else. 3120 const Expr *Cond = Clause->getCondition(); 3121 bool CondConstant; 3122 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 3123 Data.Final.setInt(CondConstant); 3124 else 3125 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 3126 } else { 3127 // By default the task is not final. 3128 Data.Final.setInt(/*IntVal=*/false); 3129 } 3130 // Check if the task has 'priority' clause. 3131 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 3132 const Expr *Prio = Clause->getPriority(); 3133 Data.Priority.setInt(/*IntVal=*/true); 3134 Data.Priority.setPointer(EmitScalarConversion( 3135 EmitScalarExpr(Prio), Prio->getType(), 3136 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 3137 Prio->getExprLoc())); 3138 } 3139 // The first function argument for tasks is a thread id, the second one is a 3140 // part id (0 for tied tasks, >=0 for untied task). 3141 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 3142 // Get list of private variables. 3143 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 3144 auto IRef = C->varlist_begin(); 3145 for (const Expr *IInit : C->private_copies()) { 3146 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3147 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3148 Data.PrivateVars.push_back(*IRef); 3149 Data.PrivateCopies.push_back(IInit); 3150 } 3151 ++IRef; 3152 } 3153 } 3154 EmittedAsPrivate.clear(); 3155 // Get list of firstprivate variables. 3156 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3157 auto IRef = C->varlist_begin(); 3158 auto IElemInitRef = C->inits().begin(); 3159 for (const Expr *IInit : C->private_copies()) { 3160 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3161 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3162 Data.FirstprivateVars.push_back(*IRef); 3163 Data.FirstprivateCopies.push_back(IInit); 3164 Data.FirstprivateInits.push_back(*IElemInitRef); 3165 } 3166 ++IRef; 3167 ++IElemInitRef; 3168 } 3169 } 3170 // Get list of lastprivate variables (for taskloops). 3171 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 3172 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 3173 auto IRef = C->varlist_begin(); 3174 auto ID = C->destination_exprs().begin(); 3175 for (const Expr *IInit : C->private_copies()) { 3176 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 3177 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 3178 Data.LastprivateVars.push_back(*IRef); 3179 Data.LastprivateCopies.push_back(IInit); 3180 } 3181 LastprivateDstsOrigs.insert( 3182 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 3183 cast<DeclRefExpr>(*IRef)}); 3184 ++IRef; 3185 ++ID; 3186 } 3187 } 3188 SmallVector<const Expr *, 4> LHSs; 3189 SmallVector<const Expr *, 4> RHSs; 3190 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3191 auto IPriv = C->privates().begin(); 3192 auto IRed = C->reduction_ops().begin(); 3193 auto ILHS = C->lhs_exprs().begin(); 3194 auto IRHS = C->rhs_exprs().begin(); 3195 for (const Expr *Ref : C->varlists()) { 3196 Data.ReductionVars.emplace_back(Ref); 3197 Data.ReductionCopies.emplace_back(*IPriv); 3198 Data.ReductionOps.emplace_back(*IRed); 3199 LHSs.emplace_back(*ILHS); 3200 RHSs.emplace_back(*IRHS); 3201 std::advance(IPriv, 1); 3202 std::advance(IRed, 1); 3203 std::advance(ILHS, 1); 3204 std::advance(IRHS, 1); 3205 } 3206 } 3207 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 3208 *this, S.getBeginLoc(), LHSs, RHSs, Data); 3209 // Build list of dependences. 3210 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 3211 for (const Expr *IRef : C->varlists()) 3212 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 3213 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 3214 CapturedRegion](CodeGenFunction &CGF, 3215 PrePostActionTy &Action) { 3216 // Set proper addresses for generated private copies. 3217 OMPPrivateScope Scope(CGF); 3218 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 3219 !Data.LastprivateVars.empty()) { 3220 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 3221 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 3222 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3223 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 3224 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 3225 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 3226 CS->getCapturedDecl()->getParam(PrivatesParam))); 3227 // Map privates. 3228 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3229 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3230 CallArgs.push_back(PrivatesPtr); 3231 for (const Expr *E : Data.PrivateVars) { 3232 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3233 Address PrivatePtr = CGF.CreateMemTemp( 3234 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 3235 PrivatePtrs.emplace_back(VD, PrivatePtr); 3236 CallArgs.push_back(PrivatePtr.getPointer()); 3237 } 3238 for (const Expr *E : Data.FirstprivateVars) { 3239 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3240 Address PrivatePtr = 3241 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3242 ".firstpriv.ptr.addr"); 3243 PrivatePtrs.emplace_back(VD, PrivatePtr); 3244 CallArgs.push_back(PrivatePtr.getPointer()); 3245 } 3246 for (const Expr *E : Data.LastprivateVars) { 3247 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3248 Address PrivatePtr = 3249 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3250 ".lastpriv.ptr.addr"); 3251 PrivatePtrs.emplace_back(VD, PrivatePtr); 3252 CallArgs.push_back(PrivatePtr.getPointer()); 3253 } 3254 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3255 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 3256 for (const auto &Pair : LastprivateDstsOrigs) { 3257 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 3258 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD), 3259 /*RefersToEnclosingVariableOrCapture=*/ 3260 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 3261 Pair.second->getType(), VK_LValue, 3262 Pair.second->getExprLoc()); 3263 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 3264 return CGF.EmitLValue(&DRE).getAddress(CGF); 3265 }); 3266 } 3267 for (const auto &Pair : PrivatePtrs) { 3268 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3269 CGF.getContext().getDeclAlign(Pair.first)); 3270 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3271 } 3272 } 3273 if (Data.Reductions) { 3274 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 3275 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionCopies, 3276 Data.ReductionOps); 3277 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 3278 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 3279 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 3280 RedCG.emitSharedLValue(CGF, Cnt); 3281 RedCG.emitAggregateType(CGF, Cnt); 3282 // FIXME: This must removed once the runtime library is fixed. 3283 // Emit required threadprivate variables for 3284 // initializer/combiner/finalizer. 3285 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 3286 RedCG, Cnt); 3287 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 3288 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 3289 Replacement = 3290 Address(CGF.EmitScalarConversion( 3291 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 3292 CGF.getContext().getPointerType( 3293 Data.ReductionCopies[Cnt]->getType()), 3294 Data.ReductionCopies[Cnt]->getExprLoc()), 3295 Replacement.getAlignment()); 3296 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 3297 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 3298 [Replacement]() { return Replacement; }); 3299 } 3300 } 3301 // Privatize all private variables except for in_reduction items. 3302 (void)Scope.Privatize(); 3303 SmallVector<const Expr *, 4> InRedVars; 3304 SmallVector<const Expr *, 4> InRedPrivs; 3305 SmallVector<const Expr *, 4> InRedOps; 3306 SmallVector<const Expr *, 4> TaskgroupDescriptors; 3307 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 3308 auto IPriv = C->privates().begin(); 3309 auto IRed = C->reduction_ops().begin(); 3310 auto ITD = C->taskgroup_descriptors().begin(); 3311 for (const Expr *Ref : C->varlists()) { 3312 InRedVars.emplace_back(Ref); 3313 InRedPrivs.emplace_back(*IPriv); 3314 InRedOps.emplace_back(*IRed); 3315 TaskgroupDescriptors.emplace_back(*ITD); 3316 std::advance(IPriv, 1); 3317 std::advance(IRed, 1); 3318 std::advance(ITD, 1); 3319 } 3320 } 3321 // Privatize in_reduction items here, because taskgroup descriptors must be 3322 // privatized earlier. 3323 OMPPrivateScope InRedScope(CGF); 3324 if (!InRedVars.empty()) { 3325 ReductionCodeGen RedCG(InRedVars, InRedPrivs, InRedOps); 3326 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 3327 RedCG.emitSharedLValue(CGF, Cnt); 3328 RedCG.emitAggregateType(CGF, Cnt); 3329 // The taskgroup descriptor variable is always implicit firstprivate and 3330 // privatized already during processing of the firstprivates. 3331 // FIXME: This must removed once the runtime library is fixed. 3332 // Emit required threadprivate variables for 3333 // initializer/combiner/finalizer. 3334 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 3335 RedCG, Cnt); 3336 llvm::Value *ReductionsPtr = 3337 CGF.EmitLoadOfScalar(CGF.EmitLValue(TaskgroupDescriptors[Cnt]), 3338 TaskgroupDescriptors[Cnt]->getExprLoc()); 3339 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 3340 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 3341 Replacement = Address( 3342 CGF.EmitScalarConversion( 3343 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 3344 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 3345 InRedPrivs[Cnt]->getExprLoc()), 3346 Replacement.getAlignment()); 3347 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 3348 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 3349 [Replacement]() { return Replacement; }); 3350 } 3351 } 3352 (void)InRedScope.Privatize(); 3353 3354 Action.Enter(CGF); 3355 BodyGen(CGF); 3356 }; 3357 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3358 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 3359 Data.NumberOfParts); 3360 OMPLexicalScope Scope(*this, S, llvm::None, 3361 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3362 !isOpenMPSimdDirective(S.getDirectiveKind())); 3363 TaskGen(*this, OutlinedFn, Data); 3364 } 3365 3366 static ImplicitParamDecl * 3367 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 3368 QualType Ty, CapturedDecl *CD, 3369 SourceLocation Loc) { 3370 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3371 ImplicitParamDecl::Other); 3372 auto *OrigRef = DeclRefExpr::Create( 3373 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 3374 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3375 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3376 ImplicitParamDecl::Other); 3377 auto *PrivateRef = DeclRefExpr::Create( 3378 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 3379 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3380 QualType ElemType = C.getBaseElementType(Ty); 3381 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 3382 ImplicitParamDecl::Other); 3383 auto *InitRef = DeclRefExpr::Create( 3384 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 3385 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 3386 PrivateVD->setInitStyle(VarDecl::CInit); 3387 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 3388 InitRef, /*BasePath=*/nullptr, 3389 VK_RValue)); 3390 Data.FirstprivateVars.emplace_back(OrigRef); 3391 Data.FirstprivateCopies.emplace_back(PrivateRef); 3392 Data.FirstprivateInits.emplace_back(InitRef); 3393 return OrigVD; 3394 } 3395 3396 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 3397 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 3398 OMPTargetDataInfo &InputInfo) { 3399 // Emit outlined function for task construct. 3400 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3401 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3402 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3403 auto I = CS->getCapturedDecl()->param_begin(); 3404 auto PartId = std::next(I); 3405 auto TaskT = std::next(I, 4); 3406 OMPTaskDataTy Data; 3407 // The task is not final. 3408 Data.Final.setInt(/*IntVal=*/false); 3409 // Get list of firstprivate variables. 3410 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3411 auto IRef = C->varlist_begin(); 3412 auto IElemInitRef = C->inits().begin(); 3413 for (auto *IInit : C->private_copies()) { 3414 Data.FirstprivateVars.push_back(*IRef); 3415 Data.FirstprivateCopies.push_back(IInit); 3416 Data.FirstprivateInits.push_back(*IElemInitRef); 3417 ++IRef; 3418 ++IElemInitRef; 3419 } 3420 } 3421 OMPPrivateScope TargetScope(*this); 3422 VarDecl *BPVD = nullptr; 3423 VarDecl *PVD = nullptr; 3424 VarDecl *SVD = nullptr; 3425 if (InputInfo.NumberOfTargetItems > 0) { 3426 auto *CD = CapturedDecl::Create( 3427 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 3428 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 3429 QualType BaseAndPointersType = getContext().getConstantArrayType( 3430 getContext().VoidPtrTy, ArrSize, nullptr, ArrayType::Normal, 3431 /*IndexTypeQuals=*/0); 3432 BPVD = createImplicitFirstprivateForType( 3433 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3434 PVD = createImplicitFirstprivateForType( 3435 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3436 QualType SizesType = getContext().getConstantArrayType( 3437 getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1), 3438 ArrSize, nullptr, ArrayType::Normal, 3439 /*IndexTypeQuals=*/0); 3440 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 3441 S.getBeginLoc()); 3442 TargetScope.addPrivate( 3443 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 3444 TargetScope.addPrivate(PVD, 3445 [&InputInfo]() { return InputInfo.PointersArray; }); 3446 TargetScope.addPrivate(SVD, 3447 [&InputInfo]() { return InputInfo.SizesArray; }); 3448 } 3449 (void)TargetScope.Privatize(); 3450 // Build list of dependences. 3451 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 3452 for (const Expr *IRef : C->varlists()) 3453 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 3454 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, 3455 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 3456 // Set proper addresses for generated private copies. 3457 OMPPrivateScope Scope(CGF); 3458 if (!Data.FirstprivateVars.empty()) { 3459 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 3460 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 3461 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3462 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 3463 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 3464 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 3465 CS->getCapturedDecl()->getParam(PrivatesParam))); 3466 // Map privates. 3467 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3468 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3469 CallArgs.push_back(PrivatesPtr); 3470 for (const Expr *E : Data.FirstprivateVars) { 3471 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3472 Address PrivatePtr = 3473 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3474 ".firstpriv.ptr.addr"); 3475 PrivatePtrs.emplace_back(VD, PrivatePtr); 3476 CallArgs.push_back(PrivatePtr.getPointer()); 3477 } 3478 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3479 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 3480 for (const auto &Pair : PrivatePtrs) { 3481 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3482 CGF.getContext().getDeclAlign(Pair.first)); 3483 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3484 } 3485 } 3486 // Privatize all private variables except for in_reduction items. 3487 (void)Scope.Privatize(); 3488 if (InputInfo.NumberOfTargetItems > 0) { 3489 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 3490 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0); 3491 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 3492 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0); 3493 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 3494 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0); 3495 } 3496 3497 Action.Enter(CGF); 3498 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 3499 BodyGen(CGF); 3500 }; 3501 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3502 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 3503 Data.NumberOfParts); 3504 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 3505 IntegerLiteral IfCond(getContext(), TrueOrFalse, 3506 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3507 SourceLocation()); 3508 3509 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 3510 SharedsTy, CapturedStruct, &IfCond, Data); 3511 } 3512 3513 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 3514 // Emit outlined function for task construct. 3515 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3516 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3517 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3518 const Expr *IfCond = nullptr; 3519 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3520 if (C->getNameModifier() == OMPD_unknown || 3521 C->getNameModifier() == OMPD_task) { 3522 IfCond = C->getCondition(); 3523 break; 3524 } 3525 } 3526 3527 OMPTaskDataTy Data; 3528 // Check if we should emit tied or untied task. 3529 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 3530 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 3531 CGF.EmitStmt(CS->getCapturedStmt()); 3532 }; 3533 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 3534 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 3535 const OMPTaskDataTy &Data) { 3536 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 3537 SharedsTy, CapturedStruct, IfCond, 3538 Data); 3539 }; 3540 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 3541 } 3542 3543 void CodeGenFunction::EmitOMPTaskyieldDirective( 3544 const OMPTaskyieldDirective &S) { 3545 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 3546 } 3547 3548 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 3549 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 3550 } 3551 3552 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 3553 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc()); 3554 } 3555 3556 void CodeGenFunction::EmitOMPTaskgroupDirective( 3557 const OMPTaskgroupDirective &S) { 3558 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3559 Action.Enter(CGF); 3560 if (const Expr *E = S.getReductionRef()) { 3561 SmallVector<const Expr *, 4> LHSs; 3562 SmallVector<const Expr *, 4> RHSs; 3563 OMPTaskDataTy Data; 3564 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 3565 auto IPriv = C->privates().begin(); 3566 auto IRed = C->reduction_ops().begin(); 3567 auto ILHS = C->lhs_exprs().begin(); 3568 auto IRHS = C->rhs_exprs().begin(); 3569 for (const Expr *Ref : C->varlists()) { 3570 Data.ReductionVars.emplace_back(Ref); 3571 Data.ReductionCopies.emplace_back(*IPriv); 3572 Data.ReductionOps.emplace_back(*IRed); 3573 LHSs.emplace_back(*ILHS); 3574 RHSs.emplace_back(*IRHS); 3575 std::advance(IPriv, 1); 3576 std::advance(IRed, 1); 3577 std::advance(ILHS, 1); 3578 std::advance(IRHS, 1); 3579 } 3580 } 3581 llvm::Value *ReductionDesc = 3582 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 3583 LHSs, RHSs, Data); 3584 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3585 CGF.EmitVarDecl(*VD); 3586 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 3587 /*Volatile=*/false, E->getType()); 3588 } 3589 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3590 }; 3591 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3592 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 3593 } 3594 3595 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 3596 CGM.getOpenMPRuntime().emitFlush( 3597 *this, 3598 [&S]() -> ArrayRef<const Expr *> { 3599 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 3600 return llvm::makeArrayRef(FlushClause->varlist_begin(), 3601 FlushClause->varlist_end()); 3602 return llvm::None; 3603 }(), 3604 S.getBeginLoc()); 3605 } 3606 3607 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 3608 const CodeGenLoopTy &CodeGenLoop, 3609 Expr *IncExpr) { 3610 // Emit the loop iteration variable. 3611 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3612 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3613 EmitVarDecl(*IVDecl); 3614 3615 // Emit the iterations count variable. 3616 // If it is not a variable, Sema decided to calculate iterations count on each 3617 // iteration (e.g., it is foldable into a constant). 3618 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3619 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3620 // Emit calculation of the iterations count. 3621 EmitIgnoredExpr(S.getCalcLastIteration()); 3622 } 3623 3624 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 3625 3626 bool HasLastprivateClause = false; 3627 // Check pre-condition. 3628 { 3629 OMPLoopScope PreInitScope(*this, S); 3630 // Skip the entire loop if we don't meet the precondition. 3631 // If the condition constant folds and can be elided, avoid emitting the 3632 // whole loop. 3633 bool CondConstant; 3634 llvm::BasicBlock *ContBlock = nullptr; 3635 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3636 if (!CondConstant) 3637 return; 3638 } else { 3639 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 3640 ContBlock = createBasicBlock("omp.precond.end"); 3641 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3642 getProfileCount(&S)); 3643 EmitBlock(ThenBlock); 3644 incrementProfileCounter(&S); 3645 } 3646 3647 emitAlignedClause(*this, S); 3648 // Emit 'then' code. 3649 { 3650 // Emit helper vars inits. 3651 3652 LValue LB = EmitOMPHelperVar( 3653 *this, cast<DeclRefExpr>( 3654 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3655 ? S.getCombinedLowerBoundVariable() 3656 : S.getLowerBoundVariable()))); 3657 LValue UB = EmitOMPHelperVar( 3658 *this, cast<DeclRefExpr>( 3659 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3660 ? S.getCombinedUpperBoundVariable() 3661 : S.getUpperBoundVariable()))); 3662 LValue ST = 3663 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3664 LValue IL = 3665 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3666 3667 OMPPrivateScope LoopScope(*this); 3668 if (EmitOMPFirstprivateClause(S, LoopScope)) { 3669 // Emit implicit barrier to synchronize threads and avoid data races 3670 // on initialization of firstprivate variables and post-update of 3671 // lastprivate variables. 3672 CGM.getOpenMPRuntime().emitBarrierCall( 3673 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3674 /*ForceSimpleCall=*/true); 3675 } 3676 EmitOMPPrivateClause(S, LoopScope); 3677 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3678 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3679 !isOpenMPTeamsDirective(S.getDirectiveKind())) 3680 EmitOMPReductionClauseInit(S, LoopScope); 3681 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3682 EmitOMPPrivateLoopCounters(S, LoopScope); 3683 (void)LoopScope.Privatize(); 3684 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3685 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 3686 3687 // Detect the distribute schedule kind and chunk. 3688 llvm::Value *Chunk = nullptr; 3689 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 3690 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 3691 ScheduleKind = C->getDistScheduleKind(); 3692 if (const Expr *Ch = C->getChunkSize()) { 3693 Chunk = EmitScalarExpr(Ch); 3694 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 3695 S.getIterationVariable()->getType(), 3696 S.getBeginLoc()); 3697 } 3698 } else { 3699 // Default behaviour for dist_schedule clause. 3700 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 3701 *this, S, ScheduleKind, Chunk); 3702 } 3703 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3704 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3705 3706 // OpenMP [2.10.8, distribute Construct, Description] 3707 // If dist_schedule is specified, kind must be static. If specified, 3708 // iterations are divided into chunks of size chunk_size, chunks are 3709 // assigned to the teams of the league in a round-robin fashion in the 3710 // order of the team number. When no chunk_size is specified, the 3711 // iteration space is divided into chunks that are approximately equal 3712 // in size, and at most one chunk is distributed to each team of the 3713 // league. The size of the chunks is unspecified in this case. 3714 bool StaticChunked = RT.isStaticChunked( 3715 ScheduleKind, /* Chunked */ Chunk != nullptr) && 3716 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 3717 if (RT.isStaticNonchunked(ScheduleKind, 3718 /* Chunked */ Chunk != nullptr) || 3719 StaticChunked) { 3720 CGOpenMPRuntime::StaticRTInput StaticInit( 3721 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(*this), 3722 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 3723 StaticChunked ? Chunk : nullptr); 3724 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 3725 StaticInit); 3726 JumpDest LoopExit = 3727 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3728 // UB = min(UB, GlobalUB); 3729 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3730 ? S.getCombinedEnsureUpperBound() 3731 : S.getEnsureUpperBound()); 3732 // IV = LB; 3733 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3734 ? S.getCombinedInit() 3735 : S.getInit()); 3736 3737 const Expr *Cond = 3738 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3739 ? S.getCombinedCond() 3740 : S.getCond(); 3741 3742 if (StaticChunked) 3743 Cond = S.getCombinedDistCond(); 3744 3745 // For static unchunked schedules generate: 3746 // 3747 // 1. For distribute alone, codegen 3748 // while (idx <= UB) { 3749 // BODY; 3750 // ++idx; 3751 // } 3752 // 3753 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 3754 // while (idx <= UB) { 3755 // <CodeGen rest of pragma>(LB, UB); 3756 // idx += ST; 3757 // } 3758 // 3759 // For static chunk one schedule generate: 3760 // 3761 // while (IV <= GlobalUB) { 3762 // <CodeGen rest of pragma>(LB, UB); 3763 // LB += ST; 3764 // UB += ST; 3765 // UB = min(UB, GlobalUB); 3766 // IV = LB; 3767 // } 3768 // 3769 emitCommonSimdLoop( 3770 *this, S, 3771 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3772 if (isOpenMPSimdDirective(S.getDirectiveKind())) 3773 CGF.EmitOMPSimdInit(S, /*IsMonotonic=*/true); 3774 }, 3775 [&S, &LoopScope, Cond, IncExpr, LoopExit, &CodeGenLoop, 3776 StaticChunked](CodeGenFunction &CGF, PrePostActionTy &) { 3777 CGF.EmitOMPInnerLoop( 3778 S, LoopScope.requiresCleanups(), Cond, IncExpr, 3779 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 3780 CodeGenLoop(CGF, S, LoopExit); 3781 }, 3782 [&S, StaticChunked](CodeGenFunction &CGF) { 3783 if (StaticChunked) { 3784 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 3785 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 3786 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 3787 CGF.EmitIgnoredExpr(S.getCombinedInit()); 3788 } 3789 }); 3790 }); 3791 EmitBlock(LoopExit.getBlock()); 3792 // Tell the runtime we are done. 3793 RT.emitForStaticFinish(*this, S.getBeginLoc(), S.getDirectiveKind()); 3794 } else { 3795 // Emit the outer loop, which requests its work chunk [LB..UB] from 3796 // runtime and runs the inner loop to process it. 3797 const OMPLoopArguments LoopArguments = { 3798 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 3799 IL.getAddress(*this), Chunk}; 3800 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 3801 CodeGenLoop); 3802 } 3803 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3804 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3805 return CGF.Builder.CreateIsNotNull( 3806 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3807 }); 3808 } 3809 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3810 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3811 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 3812 EmitOMPReductionClauseFinal(S, OMPD_simd); 3813 // Emit post-update of the reduction variables if IsLastIter != 0. 3814 emitPostUpdateForReductionClause( 3815 *this, S, [IL, &S](CodeGenFunction &CGF) { 3816 return CGF.Builder.CreateIsNotNull( 3817 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3818 }); 3819 } 3820 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3821 if (HasLastprivateClause) { 3822 EmitOMPLastprivateClauseFinal( 3823 S, /*NoFinals=*/false, 3824 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3825 } 3826 } 3827 3828 // We're now done with the loop, so jump to the continuation block. 3829 if (ContBlock) { 3830 EmitBranch(ContBlock); 3831 EmitBlock(ContBlock, true); 3832 } 3833 } 3834 } 3835 3836 void CodeGenFunction::EmitOMPDistributeDirective( 3837 const OMPDistributeDirective &S) { 3838 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3839 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3840 }; 3841 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3842 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3843 } 3844 3845 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 3846 const CapturedStmt *S) { 3847 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3848 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 3849 CGF.CapturedStmtInfo = &CapStmtInfo; 3850 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S); 3851 Fn->setDoesNotRecurse(); 3852 return Fn; 3853 } 3854 3855 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 3856 if (S.hasClausesOfKind<OMPDependClause>()) { 3857 assert(!S.getAssociatedStmt() && 3858 "No associated statement must be in ordered depend construct."); 3859 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 3860 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 3861 return; 3862 } 3863 const auto *C = S.getSingleClause<OMPSIMDClause>(); 3864 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 3865 PrePostActionTy &Action) { 3866 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 3867 if (C) { 3868 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3869 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 3870 llvm::Function *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS); 3871 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 3872 OutlinedFn, CapturedVars); 3873 } else { 3874 Action.Enter(CGF); 3875 CGF.EmitStmt(CS->getCapturedStmt()); 3876 } 3877 }; 3878 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3879 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 3880 } 3881 3882 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 3883 QualType SrcType, QualType DestType, 3884 SourceLocation Loc) { 3885 assert(CGF.hasScalarEvaluationKind(DestType) && 3886 "DestType must have scalar evaluation kind."); 3887 assert(!Val.isAggregate() && "Must be a scalar or complex."); 3888 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 3889 DestType, Loc) 3890 : CGF.EmitComplexToScalarConversion( 3891 Val.getComplexVal(), SrcType, DestType, Loc); 3892 } 3893 3894 static CodeGenFunction::ComplexPairTy 3895 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 3896 QualType DestType, SourceLocation Loc) { 3897 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 3898 "DestType must have complex evaluation kind."); 3899 CodeGenFunction::ComplexPairTy ComplexVal; 3900 if (Val.isScalar()) { 3901 // Convert the input element to the element type of the complex. 3902 QualType DestElementType = 3903 DestType->castAs<ComplexType>()->getElementType(); 3904 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 3905 Val.getScalarVal(), SrcType, DestElementType, Loc); 3906 ComplexVal = CodeGenFunction::ComplexPairTy( 3907 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 3908 } else { 3909 assert(Val.isComplex() && "Must be a scalar or complex."); 3910 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 3911 QualType DestElementType = 3912 DestType->castAs<ComplexType>()->getElementType(); 3913 ComplexVal.first = CGF.EmitScalarConversion( 3914 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 3915 ComplexVal.second = CGF.EmitScalarConversion( 3916 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 3917 } 3918 return ComplexVal; 3919 } 3920 3921 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 3922 LValue LVal, RValue RVal) { 3923 if (LVal.isGlobalReg()) { 3924 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 3925 } else { 3926 CGF.EmitAtomicStore(RVal, LVal, 3927 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3928 : llvm::AtomicOrdering::Monotonic, 3929 LVal.isVolatile(), /*isInit=*/false); 3930 } 3931 } 3932 3933 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 3934 QualType RValTy, SourceLocation Loc) { 3935 switch (getEvaluationKind(LVal.getType())) { 3936 case TEK_Scalar: 3937 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 3938 *this, RVal, RValTy, LVal.getType(), Loc)), 3939 LVal); 3940 break; 3941 case TEK_Complex: 3942 EmitStoreOfComplex( 3943 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 3944 /*isInit=*/false); 3945 break; 3946 case TEK_Aggregate: 3947 llvm_unreachable("Must be a scalar or complex."); 3948 } 3949 } 3950 3951 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 3952 const Expr *X, const Expr *V, 3953 SourceLocation Loc) { 3954 // v = x; 3955 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 3956 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 3957 LValue XLValue = CGF.EmitLValue(X); 3958 LValue VLValue = CGF.EmitLValue(V); 3959 RValue Res = XLValue.isGlobalReg() 3960 ? CGF.EmitLoadOfLValue(XLValue, Loc) 3961 : CGF.EmitAtomicLoad( 3962 XLValue, Loc, 3963 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3964 : llvm::AtomicOrdering::Monotonic, 3965 XLValue.isVolatile()); 3966 // OpenMP, 2.12.6, atomic Construct 3967 // Any atomic construct with a seq_cst clause forces the atomically 3968 // performed operation to include an implicit flush operation without a 3969 // list. 3970 if (IsSeqCst) 3971 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3972 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 3973 } 3974 3975 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 3976 const Expr *X, const Expr *E, 3977 SourceLocation Loc) { 3978 // x = expr; 3979 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 3980 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 3981 // OpenMP, 2.12.6, atomic Construct 3982 // Any atomic construct with a seq_cst clause forces the atomically 3983 // performed operation to include an implicit flush operation without a 3984 // list. 3985 if (IsSeqCst) 3986 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3987 } 3988 3989 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 3990 RValue Update, 3991 BinaryOperatorKind BO, 3992 llvm::AtomicOrdering AO, 3993 bool IsXLHSInRHSPart) { 3994 ASTContext &Context = CGF.getContext(); 3995 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 3996 // expression is simple and atomic is allowed for the given type for the 3997 // target platform. 3998 if (BO == BO_Comma || !Update.isScalar() || 3999 !Update.getScalarVal()->getType()->isIntegerTy() || !X.isSimple() || 4000 (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 4001 (Update.getScalarVal()->getType() != 4002 X.getAddress(CGF).getElementType())) || 4003 !X.getAddress(CGF).getElementType()->isIntegerTy() || 4004 !Context.getTargetInfo().hasBuiltinAtomic( 4005 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 4006 return std::make_pair(false, RValue::get(nullptr)); 4007 4008 llvm::AtomicRMWInst::BinOp RMWOp; 4009 switch (BO) { 4010 case BO_Add: 4011 RMWOp = llvm::AtomicRMWInst::Add; 4012 break; 4013 case BO_Sub: 4014 if (!IsXLHSInRHSPart) 4015 return std::make_pair(false, RValue::get(nullptr)); 4016 RMWOp = llvm::AtomicRMWInst::Sub; 4017 break; 4018 case BO_And: 4019 RMWOp = llvm::AtomicRMWInst::And; 4020 break; 4021 case BO_Or: 4022 RMWOp = llvm::AtomicRMWInst::Or; 4023 break; 4024 case BO_Xor: 4025 RMWOp = llvm::AtomicRMWInst::Xor; 4026 break; 4027 case BO_LT: 4028 RMWOp = X.getType()->hasSignedIntegerRepresentation() 4029 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 4030 : llvm::AtomicRMWInst::Max) 4031 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 4032 : llvm::AtomicRMWInst::UMax); 4033 break; 4034 case BO_GT: 4035 RMWOp = X.getType()->hasSignedIntegerRepresentation() 4036 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 4037 : llvm::AtomicRMWInst::Min) 4038 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 4039 : llvm::AtomicRMWInst::UMin); 4040 break; 4041 case BO_Assign: 4042 RMWOp = llvm::AtomicRMWInst::Xchg; 4043 break; 4044 case BO_Mul: 4045 case BO_Div: 4046 case BO_Rem: 4047 case BO_Shl: 4048 case BO_Shr: 4049 case BO_LAnd: 4050 case BO_LOr: 4051 return std::make_pair(false, RValue::get(nullptr)); 4052 case BO_PtrMemD: 4053 case BO_PtrMemI: 4054 case BO_LE: 4055 case BO_GE: 4056 case BO_EQ: 4057 case BO_NE: 4058 case BO_Cmp: 4059 case BO_AddAssign: 4060 case BO_SubAssign: 4061 case BO_AndAssign: 4062 case BO_OrAssign: 4063 case BO_XorAssign: 4064 case BO_MulAssign: 4065 case BO_DivAssign: 4066 case BO_RemAssign: 4067 case BO_ShlAssign: 4068 case BO_ShrAssign: 4069 case BO_Comma: 4070 llvm_unreachable("Unsupported atomic update operation"); 4071 } 4072 llvm::Value *UpdateVal = Update.getScalarVal(); 4073 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 4074 UpdateVal = CGF.Builder.CreateIntCast( 4075 IC, X.getAddress(CGF).getElementType(), 4076 X.getType()->hasSignedIntegerRepresentation()); 4077 } 4078 llvm::Value *Res = 4079 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(CGF), UpdateVal, AO); 4080 return std::make_pair(true, RValue::get(Res)); 4081 } 4082 4083 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 4084 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 4085 llvm::AtomicOrdering AO, SourceLocation Loc, 4086 const llvm::function_ref<RValue(RValue)> CommonGen) { 4087 // Update expressions are allowed to have the following forms: 4088 // x binop= expr; -> xrval + expr; 4089 // x++, ++x -> xrval + 1; 4090 // x--, --x -> xrval - 1; 4091 // x = x binop expr; -> xrval binop expr 4092 // x = expr Op x; - > expr binop xrval; 4093 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 4094 if (!Res.first) { 4095 if (X.isGlobalReg()) { 4096 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 4097 // 'xrval'. 4098 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 4099 } else { 4100 // Perform compare-and-swap procedure. 4101 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 4102 } 4103 } 4104 return Res; 4105 } 4106 4107 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 4108 const Expr *X, const Expr *E, 4109 const Expr *UE, bool IsXLHSInRHSPart, 4110 SourceLocation Loc) { 4111 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 4112 "Update expr in 'atomic update' must be a binary operator."); 4113 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 4114 // Update expressions are allowed to have the following forms: 4115 // x binop= expr; -> xrval + expr; 4116 // x++, ++x -> xrval + 1; 4117 // x--, --x -> xrval - 1; 4118 // x = x binop expr; -> xrval binop expr 4119 // x = expr Op x; - > expr binop xrval; 4120 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 4121 LValue XLValue = CGF.EmitLValue(X); 4122 RValue ExprRValue = CGF.EmitAnyExpr(E); 4123 llvm::AtomicOrdering AO = IsSeqCst 4124 ? llvm::AtomicOrdering::SequentiallyConsistent 4125 : llvm::AtomicOrdering::Monotonic; 4126 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 4127 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 4128 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 4129 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 4130 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 4131 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 4132 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 4133 return CGF.EmitAnyExpr(UE); 4134 }; 4135 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 4136 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 4137 // OpenMP, 2.12.6, atomic Construct 4138 // Any atomic construct with a seq_cst clause forces the atomically 4139 // performed operation to include an implicit flush operation without a 4140 // list. 4141 if (IsSeqCst) 4142 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 4143 } 4144 4145 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 4146 QualType SourceType, QualType ResType, 4147 SourceLocation Loc) { 4148 switch (CGF.getEvaluationKind(ResType)) { 4149 case TEK_Scalar: 4150 return RValue::get( 4151 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 4152 case TEK_Complex: { 4153 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 4154 return RValue::getComplex(Res.first, Res.second); 4155 } 4156 case TEK_Aggregate: 4157 break; 4158 } 4159 llvm_unreachable("Must be a scalar or complex."); 4160 } 4161 4162 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 4163 bool IsPostfixUpdate, const Expr *V, 4164 const Expr *X, const Expr *E, 4165 const Expr *UE, bool IsXLHSInRHSPart, 4166 SourceLocation Loc) { 4167 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 4168 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 4169 RValue NewVVal; 4170 LValue VLValue = CGF.EmitLValue(V); 4171 LValue XLValue = CGF.EmitLValue(X); 4172 RValue ExprRValue = CGF.EmitAnyExpr(E); 4173 llvm::AtomicOrdering AO = IsSeqCst 4174 ? llvm::AtomicOrdering::SequentiallyConsistent 4175 : llvm::AtomicOrdering::Monotonic; 4176 QualType NewVValType; 4177 if (UE) { 4178 // 'x' is updated with some additional value. 4179 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 4180 "Update expr in 'atomic capture' must be a binary operator."); 4181 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 4182 // Update expressions are allowed to have the following forms: 4183 // x binop= expr; -> xrval + expr; 4184 // x++, ++x -> xrval + 1; 4185 // x--, --x -> xrval - 1; 4186 // x = x binop expr; -> xrval binop expr 4187 // x = expr Op x; - > expr binop xrval; 4188 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 4189 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 4190 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 4191 NewVValType = XRValExpr->getType(); 4192 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 4193 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 4194 IsPostfixUpdate](RValue XRValue) { 4195 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 4196 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 4197 RValue Res = CGF.EmitAnyExpr(UE); 4198 NewVVal = IsPostfixUpdate ? XRValue : Res; 4199 return Res; 4200 }; 4201 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 4202 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 4203 if (Res.first) { 4204 // 'atomicrmw' instruction was generated. 4205 if (IsPostfixUpdate) { 4206 // Use old value from 'atomicrmw'. 4207 NewVVal = Res.second; 4208 } else { 4209 // 'atomicrmw' does not provide new value, so evaluate it using old 4210 // value of 'x'. 4211 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 4212 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 4213 NewVVal = CGF.EmitAnyExpr(UE); 4214 } 4215 } 4216 } else { 4217 // 'x' is simply rewritten with some 'expr'. 4218 NewVValType = X->getType().getNonReferenceType(); 4219 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 4220 X->getType().getNonReferenceType(), Loc); 4221 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 4222 NewVVal = XRValue; 4223 return ExprRValue; 4224 }; 4225 // Try to perform atomicrmw xchg, otherwise simple exchange. 4226 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 4227 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 4228 Loc, Gen); 4229 if (Res.first) { 4230 // 'atomicrmw' instruction was generated. 4231 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 4232 } 4233 } 4234 // Emit post-update store to 'v' of old/new 'x' value. 4235 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 4236 // OpenMP, 2.12.6, atomic Construct 4237 // Any atomic construct with a seq_cst clause forces the atomically 4238 // performed operation to include an implicit flush operation without a 4239 // list. 4240 if (IsSeqCst) 4241 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 4242 } 4243 4244 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 4245 bool IsSeqCst, bool IsPostfixUpdate, 4246 const Expr *X, const Expr *V, const Expr *E, 4247 const Expr *UE, bool IsXLHSInRHSPart, 4248 SourceLocation Loc) { 4249 switch (Kind) { 4250 case OMPC_read: 4251 emitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 4252 break; 4253 case OMPC_write: 4254 emitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 4255 break; 4256 case OMPC_unknown: 4257 case OMPC_update: 4258 emitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 4259 break; 4260 case OMPC_capture: 4261 emitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 4262 IsXLHSInRHSPart, Loc); 4263 break; 4264 case OMPC_if: 4265 case OMPC_final: 4266 case OMPC_num_threads: 4267 case OMPC_private: 4268 case OMPC_firstprivate: 4269 case OMPC_lastprivate: 4270 case OMPC_reduction: 4271 case OMPC_task_reduction: 4272 case OMPC_in_reduction: 4273 case OMPC_safelen: 4274 case OMPC_simdlen: 4275 case OMPC_allocator: 4276 case OMPC_allocate: 4277 case OMPC_collapse: 4278 case OMPC_default: 4279 case OMPC_seq_cst: 4280 case OMPC_shared: 4281 case OMPC_linear: 4282 case OMPC_aligned: 4283 case OMPC_copyin: 4284 case OMPC_copyprivate: 4285 case OMPC_flush: 4286 case OMPC_proc_bind: 4287 case OMPC_schedule: 4288 case OMPC_ordered: 4289 case OMPC_nowait: 4290 case OMPC_untied: 4291 case OMPC_threadprivate: 4292 case OMPC_depend: 4293 case OMPC_mergeable: 4294 case OMPC_device: 4295 case OMPC_threads: 4296 case OMPC_simd: 4297 case OMPC_map: 4298 case OMPC_num_teams: 4299 case OMPC_thread_limit: 4300 case OMPC_priority: 4301 case OMPC_grainsize: 4302 case OMPC_nogroup: 4303 case OMPC_num_tasks: 4304 case OMPC_hint: 4305 case OMPC_dist_schedule: 4306 case OMPC_defaultmap: 4307 case OMPC_uniform: 4308 case OMPC_to: 4309 case OMPC_from: 4310 case OMPC_use_device_ptr: 4311 case OMPC_is_device_ptr: 4312 case OMPC_unified_address: 4313 case OMPC_unified_shared_memory: 4314 case OMPC_reverse_offload: 4315 case OMPC_dynamic_allocators: 4316 case OMPC_atomic_default_mem_order: 4317 case OMPC_device_type: 4318 case OMPC_match: 4319 case OMPC_nontemporal: 4320 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 4321 } 4322 } 4323 4324 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 4325 bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>(); 4326 OpenMPClauseKind Kind = OMPC_unknown; 4327 for (const OMPClause *C : S.clauses()) { 4328 // Find first clause (skip seq_cst clause, if it is first). 4329 if (C->getClauseKind() != OMPC_seq_cst) { 4330 Kind = C->getClauseKind(); 4331 break; 4332 } 4333 } 4334 4335 const Stmt *CS = S.getInnermostCapturedStmt()->IgnoreContainers(); 4336 if (const auto *FE = dyn_cast<FullExpr>(CS)) 4337 enterFullExpression(FE); 4338 // Processing for statements under 'atomic capture'. 4339 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 4340 for (const Stmt *C : Compound->body()) { 4341 if (const auto *FE = dyn_cast<FullExpr>(C)) 4342 enterFullExpression(FE); 4343 } 4344 } 4345 4346 auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF, 4347 PrePostActionTy &) { 4348 CGF.EmitStopPoint(CS); 4349 emitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 4350 S.getV(), S.getExpr(), S.getUpdateExpr(), 4351 S.isXLHSInRHSPart(), S.getBeginLoc()); 4352 }; 4353 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4354 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 4355 } 4356 4357 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 4358 const OMPExecutableDirective &S, 4359 const RegionCodeGenTy &CodeGen) { 4360 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 4361 CodeGenModule &CGM = CGF.CGM; 4362 4363 // On device emit this construct as inlined code. 4364 if (CGM.getLangOpts().OpenMPIsDevice) { 4365 OMPLexicalScope Scope(CGF, S, OMPD_target); 4366 CGM.getOpenMPRuntime().emitInlinedDirective( 4367 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4368 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4369 }); 4370 return; 4371 } 4372 4373 llvm::Function *Fn = nullptr; 4374 llvm::Constant *FnID = nullptr; 4375 4376 const Expr *IfCond = nullptr; 4377 // Check for the at most one if clause associated with the target region. 4378 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4379 if (C->getNameModifier() == OMPD_unknown || 4380 C->getNameModifier() == OMPD_target) { 4381 IfCond = C->getCondition(); 4382 break; 4383 } 4384 } 4385 4386 // Check if we have any device clause associated with the directive. 4387 const Expr *Device = nullptr; 4388 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4389 Device = C->getDevice(); 4390 4391 // Check if we have an if clause whose conditional always evaluates to false 4392 // or if we do not have any targets specified. If so the target region is not 4393 // an offload entry point. 4394 bool IsOffloadEntry = true; 4395 if (IfCond) { 4396 bool Val; 4397 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 4398 IsOffloadEntry = false; 4399 } 4400 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4401 IsOffloadEntry = false; 4402 4403 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 4404 StringRef ParentName; 4405 // In case we have Ctors/Dtors we use the complete type variant to produce 4406 // the mangling of the device outlined kernel. 4407 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 4408 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 4409 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 4410 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 4411 else 4412 ParentName = 4413 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 4414 4415 // Emit target region as a standalone region. 4416 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 4417 IsOffloadEntry, CodeGen); 4418 OMPLexicalScope Scope(CGF, S, OMPD_task); 4419 auto &&SizeEmitter = 4420 [IsOffloadEntry](CodeGenFunction &CGF, 4421 const OMPLoopDirective &D) -> llvm::Value * { 4422 if (IsOffloadEntry) { 4423 OMPLoopScope(CGF, D); 4424 // Emit calculation of the iterations count. 4425 llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations()); 4426 NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty, 4427 /*isSigned=*/false); 4428 return NumIterations; 4429 } 4430 return nullptr; 4431 }; 4432 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device, 4433 SizeEmitter); 4434 } 4435 4436 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 4437 PrePostActionTy &Action) { 4438 Action.Enter(CGF); 4439 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4440 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4441 CGF.EmitOMPPrivateClause(S, PrivateScope); 4442 (void)PrivateScope.Privatize(); 4443 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4444 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4445 4446 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 4447 } 4448 4449 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 4450 StringRef ParentName, 4451 const OMPTargetDirective &S) { 4452 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4453 emitTargetRegion(CGF, S, Action); 4454 }; 4455 llvm::Function *Fn; 4456 llvm::Constant *Addr; 4457 // Emit target region as a standalone region. 4458 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4459 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4460 assert(Fn && Addr && "Target device function emission failed."); 4461 } 4462 4463 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 4464 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4465 emitTargetRegion(CGF, S, Action); 4466 }; 4467 emitCommonOMPTargetDirective(*this, S, CodeGen); 4468 } 4469 4470 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 4471 const OMPExecutableDirective &S, 4472 OpenMPDirectiveKind InnermostKind, 4473 const RegionCodeGenTy &CodeGen) { 4474 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 4475 llvm::Function *OutlinedFn = 4476 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 4477 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 4478 4479 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 4480 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 4481 if (NT || TL) { 4482 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 4483 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 4484 4485 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 4486 S.getBeginLoc()); 4487 } 4488 4489 OMPTeamsScope Scope(CGF, S); 4490 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 4491 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 4492 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 4493 CapturedVars); 4494 } 4495 4496 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 4497 // Emit teams region as a standalone region. 4498 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4499 Action.Enter(CGF); 4500 OMPPrivateScope PrivateScope(CGF); 4501 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4502 CGF.EmitOMPPrivateClause(S, PrivateScope); 4503 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4504 (void)PrivateScope.Privatize(); 4505 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 4506 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4507 }; 4508 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4509 emitPostUpdateForReductionClause(*this, S, 4510 [](CodeGenFunction &) { return nullptr; }); 4511 } 4512 4513 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4514 const OMPTargetTeamsDirective &S) { 4515 auto *CS = S.getCapturedStmt(OMPD_teams); 4516 Action.Enter(CGF); 4517 // Emit teams region as a standalone region. 4518 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4519 Action.Enter(CGF); 4520 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4521 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4522 CGF.EmitOMPPrivateClause(S, PrivateScope); 4523 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4524 (void)PrivateScope.Privatize(); 4525 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4526 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4527 CGF.EmitStmt(CS->getCapturedStmt()); 4528 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4529 }; 4530 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 4531 emitPostUpdateForReductionClause(CGF, S, 4532 [](CodeGenFunction &) { return nullptr; }); 4533 } 4534 4535 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 4536 CodeGenModule &CGM, StringRef ParentName, 4537 const OMPTargetTeamsDirective &S) { 4538 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4539 emitTargetTeamsRegion(CGF, Action, S); 4540 }; 4541 llvm::Function *Fn; 4542 llvm::Constant *Addr; 4543 // Emit target region as a standalone region. 4544 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4545 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4546 assert(Fn && Addr && "Target device function emission failed."); 4547 } 4548 4549 void CodeGenFunction::EmitOMPTargetTeamsDirective( 4550 const OMPTargetTeamsDirective &S) { 4551 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4552 emitTargetTeamsRegion(CGF, Action, S); 4553 }; 4554 emitCommonOMPTargetDirective(*this, S, CodeGen); 4555 } 4556 4557 static void 4558 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4559 const OMPTargetTeamsDistributeDirective &S) { 4560 Action.Enter(CGF); 4561 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4562 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4563 }; 4564 4565 // Emit teams region as a standalone region. 4566 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4567 PrePostActionTy &Action) { 4568 Action.Enter(CGF); 4569 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4570 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4571 (void)PrivateScope.Privatize(); 4572 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4573 CodeGenDistribute); 4574 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4575 }; 4576 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 4577 emitPostUpdateForReductionClause(CGF, S, 4578 [](CodeGenFunction &) { return nullptr; }); 4579 } 4580 4581 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 4582 CodeGenModule &CGM, StringRef ParentName, 4583 const OMPTargetTeamsDistributeDirective &S) { 4584 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4585 emitTargetTeamsDistributeRegion(CGF, Action, S); 4586 }; 4587 llvm::Function *Fn; 4588 llvm::Constant *Addr; 4589 // Emit target region as a standalone region. 4590 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4591 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4592 assert(Fn && Addr && "Target device function emission failed."); 4593 } 4594 4595 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 4596 const OMPTargetTeamsDistributeDirective &S) { 4597 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4598 emitTargetTeamsDistributeRegion(CGF, Action, S); 4599 }; 4600 emitCommonOMPTargetDirective(*this, S, CodeGen); 4601 } 4602 4603 static void emitTargetTeamsDistributeSimdRegion( 4604 CodeGenFunction &CGF, PrePostActionTy &Action, 4605 const OMPTargetTeamsDistributeSimdDirective &S) { 4606 Action.Enter(CGF); 4607 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4608 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4609 }; 4610 4611 // Emit teams region as a standalone region. 4612 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4613 PrePostActionTy &Action) { 4614 Action.Enter(CGF); 4615 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4616 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4617 (void)PrivateScope.Privatize(); 4618 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4619 CodeGenDistribute); 4620 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4621 }; 4622 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 4623 emitPostUpdateForReductionClause(CGF, S, 4624 [](CodeGenFunction &) { return nullptr; }); 4625 } 4626 4627 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 4628 CodeGenModule &CGM, StringRef ParentName, 4629 const OMPTargetTeamsDistributeSimdDirective &S) { 4630 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4631 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4632 }; 4633 llvm::Function *Fn; 4634 llvm::Constant *Addr; 4635 // Emit target region as a standalone region. 4636 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4637 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4638 assert(Fn && Addr && "Target device function emission failed."); 4639 } 4640 4641 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 4642 const OMPTargetTeamsDistributeSimdDirective &S) { 4643 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4644 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4645 }; 4646 emitCommonOMPTargetDirective(*this, S, CodeGen); 4647 } 4648 4649 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 4650 const OMPTeamsDistributeDirective &S) { 4651 4652 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4653 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4654 }; 4655 4656 // Emit teams region as a standalone region. 4657 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4658 PrePostActionTy &Action) { 4659 Action.Enter(CGF); 4660 OMPPrivateScope PrivateScope(CGF); 4661 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4662 (void)PrivateScope.Privatize(); 4663 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4664 CodeGenDistribute); 4665 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4666 }; 4667 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4668 emitPostUpdateForReductionClause(*this, S, 4669 [](CodeGenFunction &) { return nullptr; }); 4670 } 4671 4672 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 4673 const OMPTeamsDistributeSimdDirective &S) { 4674 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4675 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4676 }; 4677 4678 // Emit teams region as a standalone region. 4679 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4680 PrePostActionTy &Action) { 4681 Action.Enter(CGF); 4682 OMPPrivateScope PrivateScope(CGF); 4683 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4684 (void)PrivateScope.Privatize(); 4685 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 4686 CodeGenDistribute); 4687 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4688 }; 4689 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 4690 emitPostUpdateForReductionClause(*this, S, 4691 [](CodeGenFunction &) { return nullptr; }); 4692 } 4693 4694 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 4695 const OMPTeamsDistributeParallelForDirective &S) { 4696 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4697 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4698 S.getDistInc()); 4699 }; 4700 4701 // Emit teams region as a standalone region. 4702 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4703 PrePostActionTy &Action) { 4704 Action.Enter(CGF); 4705 OMPPrivateScope PrivateScope(CGF); 4706 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4707 (void)PrivateScope.Privatize(); 4708 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4709 CodeGenDistribute); 4710 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4711 }; 4712 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4713 emitPostUpdateForReductionClause(*this, S, 4714 [](CodeGenFunction &) { return nullptr; }); 4715 } 4716 4717 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 4718 const OMPTeamsDistributeParallelForSimdDirective &S) { 4719 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4720 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4721 S.getDistInc()); 4722 }; 4723 4724 // Emit teams region as a standalone region. 4725 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4726 PrePostActionTy &Action) { 4727 Action.Enter(CGF); 4728 OMPPrivateScope PrivateScope(CGF); 4729 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4730 (void)PrivateScope.Privatize(); 4731 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4732 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4733 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4734 }; 4735 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for_simd, 4736 CodeGen); 4737 emitPostUpdateForReductionClause(*this, S, 4738 [](CodeGenFunction &) { return nullptr; }); 4739 } 4740 4741 static void emitTargetTeamsDistributeParallelForRegion( 4742 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 4743 PrePostActionTy &Action) { 4744 Action.Enter(CGF); 4745 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4746 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4747 S.getDistInc()); 4748 }; 4749 4750 // Emit teams region as a standalone region. 4751 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4752 PrePostActionTy &Action) { 4753 Action.Enter(CGF); 4754 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4755 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4756 (void)PrivateScope.Privatize(); 4757 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4758 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4759 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4760 }; 4761 4762 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 4763 CodeGenTeams); 4764 emitPostUpdateForReductionClause(CGF, S, 4765 [](CodeGenFunction &) { return nullptr; }); 4766 } 4767 4768 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 4769 CodeGenModule &CGM, StringRef ParentName, 4770 const OMPTargetTeamsDistributeParallelForDirective &S) { 4771 // Emit SPMD target teams distribute parallel for region as a standalone 4772 // region. 4773 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4774 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4775 }; 4776 llvm::Function *Fn; 4777 llvm::Constant *Addr; 4778 // Emit target region as a standalone region. 4779 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4780 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4781 assert(Fn && Addr && "Target device function emission failed."); 4782 } 4783 4784 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 4785 const OMPTargetTeamsDistributeParallelForDirective &S) { 4786 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4787 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4788 }; 4789 emitCommonOMPTargetDirective(*this, S, CodeGen); 4790 } 4791 4792 static void emitTargetTeamsDistributeParallelForSimdRegion( 4793 CodeGenFunction &CGF, 4794 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 4795 PrePostActionTy &Action) { 4796 Action.Enter(CGF); 4797 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4798 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4799 S.getDistInc()); 4800 }; 4801 4802 // Emit teams region as a standalone region. 4803 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4804 PrePostActionTy &Action) { 4805 Action.Enter(CGF); 4806 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4807 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4808 (void)PrivateScope.Privatize(); 4809 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4810 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4811 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4812 }; 4813 4814 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 4815 CodeGenTeams); 4816 emitPostUpdateForReductionClause(CGF, S, 4817 [](CodeGenFunction &) { return nullptr; }); 4818 } 4819 4820 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 4821 CodeGenModule &CGM, StringRef ParentName, 4822 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4823 // Emit SPMD target teams distribute parallel for simd region as a standalone 4824 // region. 4825 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4826 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4827 }; 4828 llvm::Function *Fn; 4829 llvm::Constant *Addr; 4830 // Emit target region as a standalone region. 4831 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4832 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4833 assert(Fn && Addr && "Target device function emission failed."); 4834 } 4835 4836 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 4837 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4838 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4839 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4840 }; 4841 emitCommonOMPTargetDirective(*this, S, CodeGen); 4842 } 4843 4844 void CodeGenFunction::EmitOMPCancellationPointDirective( 4845 const OMPCancellationPointDirective &S) { 4846 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 4847 S.getCancelRegion()); 4848 } 4849 4850 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 4851 const Expr *IfCond = nullptr; 4852 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4853 if (C->getNameModifier() == OMPD_unknown || 4854 C->getNameModifier() == OMPD_cancel) { 4855 IfCond = C->getCondition(); 4856 break; 4857 } 4858 } 4859 if (llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder()) { 4860 // TODO: This check is necessary as we only generate `omp parallel` through 4861 // the OpenMPIRBuilder for now. 4862 if (S.getCancelRegion() == OMPD_parallel) { 4863 llvm::Value *IfCondition = nullptr; 4864 if (IfCond) 4865 IfCondition = EmitScalarExpr(IfCond, 4866 /*IgnoreResultAssign=*/true); 4867 return Builder.restoreIP( 4868 OMPBuilder->CreateCancel(Builder, IfCondition, S.getCancelRegion())); 4869 } 4870 } 4871 4872 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 4873 S.getCancelRegion()); 4874 } 4875 4876 CodeGenFunction::JumpDest 4877 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 4878 if (Kind == OMPD_parallel || Kind == OMPD_task || 4879 Kind == OMPD_target_parallel) 4880 return ReturnBlock; 4881 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 4882 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 4883 Kind == OMPD_distribute_parallel_for || 4884 Kind == OMPD_target_parallel_for || 4885 Kind == OMPD_teams_distribute_parallel_for || 4886 Kind == OMPD_target_teams_distribute_parallel_for); 4887 return OMPCancelStack.getExitBlock(); 4888 } 4889 4890 void CodeGenFunction::EmitOMPUseDevicePtrClause( 4891 const OMPClause &NC, OMPPrivateScope &PrivateScope, 4892 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 4893 const auto &C = cast<OMPUseDevicePtrClause>(NC); 4894 auto OrigVarIt = C.varlist_begin(); 4895 auto InitIt = C.inits().begin(); 4896 for (const Expr *PvtVarIt : C.private_copies()) { 4897 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 4898 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 4899 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 4900 4901 // In order to identify the right initializer we need to match the 4902 // declaration used by the mapping logic. In some cases we may get 4903 // OMPCapturedExprDecl that refers to the original declaration. 4904 const ValueDecl *MatchingVD = OrigVD; 4905 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 4906 // OMPCapturedExprDecl are used to privative fields of the current 4907 // structure. 4908 const auto *ME = cast<MemberExpr>(OED->getInit()); 4909 assert(isa<CXXThisExpr>(ME->getBase()) && 4910 "Base should be the current struct!"); 4911 MatchingVD = ME->getMemberDecl(); 4912 } 4913 4914 // If we don't have information about the current list item, move on to 4915 // the next one. 4916 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 4917 if (InitAddrIt == CaptureDeviceAddrMap.end()) 4918 continue; 4919 4920 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD, 4921 InitAddrIt, InitVD, 4922 PvtVD]() { 4923 // Initialize the temporary initialization variable with the address we 4924 // get from the runtime library. We have to cast the source address 4925 // because it is always a void *. References are materialized in the 4926 // privatization scope, so the initialization here disregards the fact 4927 // the original variable is a reference. 4928 QualType AddrQTy = 4929 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 4930 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 4931 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 4932 setAddrOfLocalVar(InitVD, InitAddr); 4933 4934 // Emit private declaration, it will be initialized by the value we 4935 // declaration we just added to the local declarations map. 4936 EmitDecl(*PvtVD); 4937 4938 // The initialization variables reached its purpose in the emission 4939 // of the previous declaration, so we don't need it anymore. 4940 LocalDeclMap.erase(InitVD); 4941 4942 // Return the address of the private variable. 4943 return GetAddrOfLocalVar(PvtVD); 4944 }); 4945 assert(IsRegistered && "firstprivate var already registered as private"); 4946 // Silence the warning about unused variable. 4947 (void)IsRegistered; 4948 4949 ++OrigVarIt; 4950 ++InitIt; 4951 } 4952 } 4953 4954 // Generate the instructions for '#pragma omp target data' directive. 4955 void CodeGenFunction::EmitOMPTargetDataDirective( 4956 const OMPTargetDataDirective &S) { 4957 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true); 4958 4959 // Create a pre/post action to signal the privatization of the device pointer. 4960 // This action can be replaced by the OpenMP runtime code generation to 4961 // deactivate privatization. 4962 bool PrivatizeDevicePointers = false; 4963 class DevicePointerPrivActionTy : public PrePostActionTy { 4964 bool &PrivatizeDevicePointers; 4965 4966 public: 4967 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 4968 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 4969 void Enter(CodeGenFunction &CGF) override { 4970 PrivatizeDevicePointers = true; 4971 } 4972 }; 4973 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 4974 4975 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 4976 CodeGenFunction &CGF, PrePostActionTy &Action) { 4977 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4978 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4979 }; 4980 4981 // Codegen that selects whether to generate the privatization code or not. 4982 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 4983 &InnermostCodeGen](CodeGenFunction &CGF, 4984 PrePostActionTy &Action) { 4985 RegionCodeGenTy RCG(InnermostCodeGen); 4986 PrivatizeDevicePointers = false; 4987 4988 // Call the pre-action to change the status of PrivatizeDevicePointers if 4989 // needed. 4990 Action.Enter(CGF); 4991 4992 if (PrivatizeDevicePointers) { 4993 OMPPrivateScope PrivateScope(CGF); 4994 // Emit all instances of the use_device_ptr clause. 4995 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 4996 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 4997 Info.CaptureDeviceAddrMap); 4998 (void)PrivateScope.Privatize(); 4999 RCG(CGF); 5000 } else { 5001 RCG(CGF); 5002 } 5003 }; 5004 5005 // Forward the provided action to the privatization codegen. 5006 RegionCodeGenTy PrivRCG(PrivCodeGen); 5007 PrivRCG.setAction(Action); 5008 5009 // Notwithstanding the body of the region is emitted as inlined directive, 5010 // we don't use an inline scope as changes in the references inside the 5011 // region are expected to be visible outside, so we do not privative them. 5012 OMPLexicalScope Scope(CGF, S); 5013 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 5014 PrivRCG); 5015 }; 5016 5017 RegionCodeGenTy RCG(CodeGen); 5018 5019 // If we don't have target devices, don't bother emitting the data mapping 5020 // code. 5021 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 5022 RCG(*this); 5023 return; 5024 } 5025 5026 // Check if we have any if clause associated with the directive. 5027 const Expr *IfCond = nullptr; 5028 if (const auto *C = S.getSingleClause<OMPIfClause>()) 5029 IfCond = C->getCondition(); 5030 5031 // Check if we have any device clause associated with the directive. 5032 const Expr *Device = nullptr; 5033 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 5034 Device = C->getDevice(); 5035 5036 // Set the action to signal privatization of device pointers. 5037 RCG.setAction(PrivAction); 5038 5039 // Emit region code. 5040 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 5041 Info); 5042 } 5043 5044 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 5045 const OMPTargetEnterDataDirective &S) { 5046 // If we don't have target devices, don't bother emitting the data mapping 5047 // code. 5048 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5049 return; 5050 5051 // Check if we have any if clause associated with the directive. 5052 const Expr *IfCond = nullptr; 5053 if (const auto *C = S.getSingleClause<OMPIfClause>()) 5054 IfCond = C->getCondition(); 5055 5056 // Check if we have any device clause associated with the directive. 5057 const Expr *Device = nullptr; 5058 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 5059 Device = C->getDevice(); 5060 5061 OMPLexicalScope Scope(*this, S, OMPD_task); 5062 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 5063 } 5064 5065 void CodeGenFunction::EmitOMPTargetExitDataDirective( 5066 const OMPTargetExitDataDirective &S) { 5067 // If we don't have target devices, don't bother emitting the data mapping 5068 // code. 5069 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5070 return; 5071 5072 // Check if we have any if clause associated with the directive. 5073 const Expr *IfCond = nullptr; 5074 if (const auto *C = S.getSingleClause<OMPIfClause>()) 5075 IfCond = C->getCondition(); 5076 5077 // Check if we have any device clause associated with the directive. 5078 const Expr *Device = nullptr; 5079 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 5080 Device = C->getDevice(); 5081 5082 OMPLexicalScope Scope(*this, S, OMPD_task); 5083 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 5084 } 5085 5086 static void emitTargetParallelRegion(CodeGenFunction &CGF, 5087 const OMPTargetParallelDirective &S, 5088 PrePostActionTy &Action) { 5089 // Get the captured statement associated with the 'parallel' region. 5090 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 5091 Action.Enter(CGF); 5092 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 5093 Action.Enter(CGF); 5094 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 5095 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 5096 CGF.EmitOMPPrivateClause(S, PrivateScope); 5097 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 5098 (void)PrivateScope.Privatize(); 5099 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 5100 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 5101 // TODO: Add support for clauses. 5102 CGF.EmitStmt(CS->getCapturedStmt()); 5103 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 5104 }; 5105 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 5106 emitEmptyBoundParameters); 5107 emitPostUpdateForReductionClause(CGF, S, 5108 [](CodeGenFunction &) { return nullptr; }); 5109 } 5110 5111 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 5112 CodeGenModule &CGM, StringRef ParentName, 5113 const OMPTargetParallelDirective &S) { 5114 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5115 emitTargetParallelRegion(CGF, S, Action); 5116 }; 5117 llvm::Function *Fn; 5118 llvm::Constant *Addr; 5119 // Emit target region as a standalone region. 5120 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5121 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5122 assert(Fn && Addr && "Target device function emission failed."); 5123 } 5124 5125 void CodeGenFunction::EmitOMPTargetParallelDirective( 5126 const OMPTargetParallelDirective &S) { 5127 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5128 emitTargetParallelRegion(CGF, S, Action); 5129 }; 5130 emitCommonOMPTargetDirective(*this, S, CodeGen); 5131 } 5132 5133 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 5134 const OMPTargetParallelForDirective &S, 5135 PrePostActionTy &Action) { 5136 Action.Enter(CGF); 5137 // Emit directive as a combined directive that consists of two implicit 5138 // directives: 'parallel' with 'for' directive. 5139 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5140 Action.Enter(CGF); 5141 CodeGenFunction::OMPCancelStackRAII CancelRegion( 5142 CGF, OMPD_target_parallel_for, S.hasCancel()); 5143 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 5144 emitDispatchForLoopBounds); 5145 }; 5146 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 5147 emitEmptyBoundParameters); 5148 } 5149 5150 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 5151 CodeGenModule &CGM, StringRef ParentName, 5152 const OMPTargetParallelForDirective &S) { 5153 // Emit SPMD target parallel for region as a standalone region. 5154 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5155 emitTargetParallelForRegion(CGF, S, Action); 5156 }; 5157 llvm::Function *Fn; 5158 llvm::Constant *Addr; 5159 // Emit target region as a standalone region. 5160 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5161 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5162 assert(Fn && Addr && "Target device function emission failed."); 5163 } 5164 5165 void CodeGenFunction::EmitOMPTargetParallelForDirective( 5166 const OMPTargetParallelForDirective &S) { 5167 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5168 emitTargetParallelForRegion(CGF, S, Action); 5169 }; 5170 emitCommonOMPTargetDirective(*this, S, CodeGen); 5171 } 5172 5173 static void 5174 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 5175 const OMPTargetParallelForSimdDirective &S, 5176 PrePostActionTy &Action) { 5177 Action.Enter(CGF); 5178 // Emit directive as a combined directive that consists of two implicit 5179 // directives: 'parallel' with 'for' directive. 5180 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5181 Action.Enter(CGF); 5182 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 5183 emitDispatchForLoopBounds); 5184 }; 5185 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 5186 emitEmptyBoundParameters); 5187 } 5188 5189 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 5190 CodeGenModule &CGM, StringRef ParentName, 5191 const OMPTargetParallelForSimdDirective &S) { 5192 // Emit SPMD target parallel for region as a standalone region. 5193 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5194 emitTargetParallelForSimdRegion(CGF, S, Action); 5195 }; 5196 llvm::Function *Fn; 5197 llvm::Constant *Addr; 5198 // Emit target region as a standalone region. 5199 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 5200 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 5201 assert(Fn && Addr && "Target device function emission failed."); 5202 } 5203 5204 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 5205 const OMPTargetParallelForSimdDirective &S) { 5206 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5207 emitTargetParallelForSimdRegion(CGF, S, Action); 5208 }; 5209 emitCommonOMPTargetDirective(*this, S, CodeGen); 5210 } 5211 5212 /// Emit a helper variable and return corresponding lvalue. 5213 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 5214 const ImplicitParamDecl *PVD, 5215 CodeGenFunction::OMPPrivateScope &Privates) { 5216 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 5217 Privates.addPrivate(VDecl, 5218 [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); }); 5219 } 5220 5221 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 5222 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 5223 // Emit outlined function for task construct. 5224 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 5225 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 5226 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 5227 const Expr *IfCond = nullptr; 5228 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 5229 if (C->getNameModifier() == OMPD_unknown || 5230 C->getNameModifier() == OMPD_taskloop) { 5231 IfCond = C->getCondition(); 5232 break; 5233 } 5234 } 5235 5236 OMPTaskDataTy Data; 5237 // Check if taskloop must be emitted without taskgroup. 5238 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 5239 // TODO: Check if we should emit tied or untied task. 5240 Data.Tied = true; 5241 // Set scheduling for taskloop 5242 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 5243 // grainsize clause 5244 Data.Schedule.setInt(/*IntVal=*/false); 5245 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 5246 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 5247 // num_tasks clause 5248 Data.Schedule.setInt(/*IntVal=*/true); 5249 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 5250 } 5251 5252 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 5253 // if (PreCond) { 5254 // for (IV in 0..LastIteration) BODY; 5255 // <Final counter/linear vars updates>; 5256 // } 5257 // 5258 5259 // Emit: if (PreCond) - begin. 5260 // If the condition constant folds and can be elided, avoid emitting the 5261 // whole loop. 5262 bool CondConstant; 5263 llvm::BasicBlock *ContBlock = nullptr; 5264 OMPLoopScope PreInitScope(CGF, S); 5265 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 5266 if (!CondConstant) 5267 return; 5268 } else { 5269 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 5270 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 5271 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 5272 CGF.getProfileCount(&S)); 5273 CGF.EmitBlock(ThenBlock); 5274 CGF.incrementProfileCounter(&S); 5275 } 5276 5277 (void)CGF.EmitOMPLinearClauseInit(S); 5278 5279 OMPPrivateScope LoopScope(CGF); 5280 // Emit helper vars inits. 5281 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 5282 auto *I = CS->getCapturedDecl()->param_begin(); 5283 auto *LBP = std::next(I, LowerBound); 5284 auto *UBP = std::next(I, UpperBound); 5285 auto *STP = std::next(I, Stride); 5286 auto *LIP = std::next(I, LastIter); 5287 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 5288 LoopScope); 5289 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 5290 LoopScope); 5291 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 5292 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 5293 LoopScope); 5294 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 5295 CGF.EmitOMPLinearClause(S, LoopScope); 5296 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 5297 (void)LoopScope.Privatize(); 5298 // Emit the loop iteration variable. 5299 const Expr *IVExpr = S.getIterationVariable(); 5300 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 5301 CGF.EmitVarDecl(*IVDecl); 5302 CGF.EmitIgnoredExpr(S.getInit()); 5303 5304 // Emit the iterations count variable. 5305 // If it is not a variable, Sema decided to calculate iterations count on 5306 // each iteration (e.g., it is foldable into a constant). 5307 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 5308 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 5309 // Emit calculation of the iterations count. 5310 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 5311 } 5312 5313 { 5314 OMPLexicalScope Scope(CGF, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 5315 emitCommonSimdLoop( 5316 CGF, S, 5317 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5318 if (isOpenMPSimdDirective(S.getDirectiveKind())) 5319 CGF.EmitOMPSimdInit(S); 5320 }, 5321 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 5322 CGF.EmitOMPInnerLoop( 5323 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 5324 [&S](CodeGenFunction &CGF) { 5325 CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest()); 5326 CGF.EmitStopPoint(&S); 5327 }, 5328 [](CodeGenFunction &) {}); 5329 }); 5330 } 5331 // Emit: if (PreCond) - end. 5332 if (ContBlock) { 5333 CGF.EmitBranch(ContBlock); 5334 CGF.EmitBlock(ContBlock, true); 5335 } 5336 // Emit final copy of the lastprivate variables if IsLastIter != 0. 5337 if (HasLastprivateClause) { 5338 CGF.EmitOMPLastprivateClauseFinal( 5339 S, isOpenMPSimdDirective(S.getDirectiveKind()), 5340 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 5341 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 5342 (*LIP)->getType(), S.getBeginLoc()))); 5343 } 5344 CGF.EmitOMPLinearClauseFinal(S, [LIP, &S](CodeGenFunction &CGF) { 5345 return CGF.Builder.CreateIsNotNull( 5346 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 5347 (*LIP)->getType(), S.getBeginLoc())); 5348 }); 5349 }; 5350 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 5351 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 5352 const OMPTaskDataTy &Data) { 5353 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 5354 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 5355 OMPLoopScope PreInitScope(CGF, S); 5356 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 5357 OutlinedFn, SharedsTy, 5358 CapturedStruct, IfCond, Data); 5359 }; 5360 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 5361 CodeGen); 5362 }; 5363 if (Data.Nogroup) { 5364 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 5365 } else { 5366 CGM.getOpenMPRuntime().emitTaskgroupRegion( 5367 *this, 5368 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 5369 PrePostActionTy &Action) { 5370 Action.Enter(CGF); 5371 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 5372 Data); 5373 }, 5374 S.getBeginLoc()); 5375 } 5376 } 5377 5378 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 5379 EmitOMPTaskLoopBasedDirective(S); 5380 } 5381 5382 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 5383 const OMPTaskLoopSimdDirective &S) { 5384 OMPLexicalScope Scope(*this, S); 5385 EmitOMPTaskLoopBasedDirective(S); 5386 } 5387 5388 void CodeGenFunction::EmitOMPMasterTaskLoopDirective( 5389 const OMPMasterTaskLoopDirective &S) { 5390 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5391 Action.Enter(CGF); 5392 EmitOMPTaskLoopBasedDirective(S); 5393 }; 5394 OMPLexicalScope Scope(*this, S, llvm::None, /*EmitPreInitStmt=*/false); 5395 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 5396 } 5397 5398 void CodeGenFunction::EmitOMPMasterTaskLoopSimdDirective( 5399 const OMPMasterTaskLoopSimdDirective &S) { 5400 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5401 Action.Enter(CGF); 5402 EmitOMPTaskLoopBasedDirective(S); 5403 }; 5404 OMPLexicalScope Scope(*this, S); 5405 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 5406 } 5407 5408 void CodeGenFunction::EmitOMPParallelMasterTaskLoopDirective( 5409 const OMPParallelMasterTaskLoopDirective &S) { 5410 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5411 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 5412 PrePostActionTy &Action) { 5413 Action.Enter(CGF); 5414 CGF.EmitOMPTaskLoopBasedDirective(S); 5415 }; 5416 OMPLexicalScope Scope(CGF, S, llvm::None, /*EmitPreInitStmt=*/false); 5417 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 5418 S.getBeginLoc()); 5419 }; 5420 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop, CodeGen, 5421 emitEmptyBoundParameters); 5422 } 5423 5424 void CodeGenFunction::EmitOMPParallelMasterTaskLoopSimdDirective( 5425 const OMPParallelMasterTaskLoopSimdDirective &S) { 5426 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5427 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 5428 PrePostActionTy &Action) { 5429 Action.Enter(CGF); 5430 CGF.EmitOMPTaskLoopBasedDirective(S); 5431 }; 5432 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 5433 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 5434 S.getBeginLoc()); 5435 }; 5436 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop_simd, CodeGen, 5437 emitEmptyBoundParameters); 5438 } 5439 5440 // Generate the instructions for '#pragma omp target update' directive. 5441 void CodeGenFunction::EmitOMPTargetUpdateDirective( 5442 const OMPTargetUpdateDirective &S) { 5443 // If we don't have target devices, don't bother emitting the data mapping 5444 // code. 5445 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5446 return; 5447 5448 // Check if we have any if clause associated with the directive. 5449 const Expr *IfCond = nullptr; 5450 if (const auto *C = S.getSingleClause<OMPIfClause>()) 5451 IfCond = C->getCondition(); 5452 5453 // Check if we have any device clause associated with the directive. 5454 const Expr *Device = nullptr; 5455 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 5456 Device = C->getDevice(); 5457 5458 OMPLexicalScope Scope(*this, S, OMPD_task); 5459 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 5460 } 5461 5462 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 5463 const OMPExecutableDirective &D) { 5464 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 5465 return; 5466 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 5467 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 5468 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 5469 } else { 5470 OMPPrivateScope LoopGlobals(CGF); 5471 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 5472 for (const Expr *E : LD->counters()) { 5473 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 5474 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 5475 LValue GlobLVal = CGF.EmitLValue(E); 5476 LoopGlobals.addPrivate( 5477 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 5478 } 5479 if (isa<OMPCapturedExprDecl>(VD)) { 5480 // Emit only those that were not explicitly referenced in clauses. 5481 if (!CGF.LocalDeclMap.count(VD)) 5482 CGF.EmitVarDecl(*VD); 5483 } 5484 } 5485 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 5486 if (!C->getNumForLoops()) 5487 continue; 5488 for (unsigned I = LD->getCollapsedNumber(), 5489 E = C->getLoopNumIterations().size(); 5490 I < E; ++I) { 5491 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 5492 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 5493 // Emit only those that were not explicitly referenced in clauses. 5494 if (!CGF.LocalDeclMap.count(VD)) 5495 CGF.EmitVarDecl(*VD); 5496 } 5497 } 5498 } 5499 } 5500 LoopGlobals.Privatize(); 5501 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 5502 } 5503 }; 5504 OMPSimdLexicalScope Scope(*this, D); 5505 CGM.getOpenMPRuntime().emitInlinedDirective( 5506 *this, 5507 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 5508 : D.getDirectiveKind(), 5509 CodeGen); 5510 } 5511