1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit OpenMP nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCleanup.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/DeclOpenMP.h" 21 #include "clang/AST/OpenMPClause.h" 22 #include "clang/AST/Stmt.h" 23 #include "clang/AST/StmtOpenMP.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/Basic/OpenMPKinds.h" 26 #include "clang/Basic/PrettyStackTrace.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/BinaryFormat/Dwarf.h" 29 #include "llvm/Frontend/OpenMP/OMPConstants.h" 30 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DebugInfoMetadata.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/Support/AtomicOrdering.h" 37 using namespace clang; 38 using namespace CodeGen; 39 using namespace llvm::omp; 40 41 static const VarDecl *getBaseDecl(const Expr *Ref); 42 43 namespace { 44 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 45 /// for captured expressions. 46 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 47 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 48 for (const auto *C : S.clauses()) { 49 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 50 if (const auto *PreInit = 51 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 52 for (const auto *I : PreInit->decls()) { 53 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 54 CGF.EmitVarDecl(cast<VarDecl>(*I)); 55 } else { 56 CodeGenFunction::AutoVarEmission Emission = 57 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 58 CGF.EmitAutoVarCleanups(Emission); 59 } 60 } 61 } 62 } 63 } 64 } 65 CodeGenFunction::OMPPrivateScope InlinedShareds; 66 67 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 68 return CGF.LambdaCaptureFields.lookup(VD) || 69 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 70 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 71 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 72 } 73 74 public: 75 OMPLexicalScope( 76 CodeGenFunction &CGF, const OMPExecutableDirective &S, 77 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 78 const bool EmitPreInitStmt = true) 79 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 80 InlinedShareds(CGF) { 81 if (EmitPreInitStmt) 82 emitPreInitStmt(CGF, S); 83 if (!CapturedRegion) 84 return; 85 assert(S.hasAssociatedStmt() && 86 "Expected associated statement for inlined directive."); 87 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 88 for (const auto &C : CS->captures()) { 89 if (C.capturesVariable() || C.capturesVariableByCopy()) { 90 auto *VD = C.getCapturedVar(); 91 assert(VD == VD->getCanonicalDecl() && 92 "Canonical decl must be captured."); 93 DeclRefExpr DRE( 94 CGF.getContext(), const_cast<VarDecl *>(VD), 95 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 96 InlinedShareds.isGlobalVarCaptured(VD)), 97 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 98 InlinedShareds.addPrivate(VD, CGF.EmitLValue(&DRE).getAddress(CGF)); 99 } 100 } 101 (void)InlinedShareds.Privatize(); 102 } 103 }; 104 105 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 106 /// for captured expressions. 107 class OMPParallelScope final : public OMPLexicalScope { 108 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 109 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 110 return !(isOpenMPTargetExecutionDirective(Kind) || 111 isOpenMPLoopBoundSharingDirective(Kind)) && 112 isOpenMPParallelDirective(Kind); 113 } 114 115 public: 116 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 117 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 118 EmitPreInitStmt(S)) {} 119 }; 120 121 /// Lexical scope for OpenMP teams construct, that handles correct codegen 122 /// for captured expressions. 123 class OMPTeamsScope final : public OMPLexicalScope { 124 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 125 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 126 return !isOpenMPTargetExecutionDirective(Kind) && 127 isOpenMPTeamsDirective(Kind); 128 } 129 130 public: 131 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 132 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 133 EmitPreInitStmt(S)) {} 134 }; 135 136 /// Private scope for OpenMP loop-based directives, that supports capturing 137 /// of used expression from loop statement. 138 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 139 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopBasedDirective &S) { 140 const DeclStmt *PreInits; 141 CodeGenFunction::OMPMapVars PreCondVars; 142 if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) { 143 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 144 for (const auto *E : LD->counters()) { 145 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 146 EmittedAsPrivate.insert(VD->getCanonicalDecl()); 147 (void)PreCondVars.setVarAddr( 148 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 149 } 150 // Mark private vars as undefs. 151 for (const auto *C : LD->getClausesOfKind<OMPPrivateClause>()) { 152 for (const Expr *IRef : C->varlists()) { 153 const auto *OrigVD = 154 cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 155 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 156 QualType OrigVDTy = OrigVD->getType().getNonReferenceType(); 157 (void)PreCondVars.setVarAddr( 158 CGF, OrigVD, 159 Address(llvm::UndefValue::get(CGF.ConvertTypeForMem( 160 CGF.getContext().getPointerType(OrigVDTy))), 161 CGF.ConvertTypeForMem(OrigVDTy), 162 CGF.getContext().getDeclAlign(OrigVD))); 163 } 164 } 165 } 166 (void)PreCondVars.apply(CGF); 167 // Emit init, __range and __end variables for C++ range loops. 168 (void)OMPLoopBasedDirective::doForAllLoops( 169 LD->getInnermostCapturedStmt()->getCapturedStmt(), 170 /*TryImperfectlyNestedLoops=*/true, LD->getLoopsNumber(), 171 [&CGF](unsigned Cnt, const Stmt *CurStmt) { 172 if (const auto *CXXFor = dyn_cast<CXXForRangeStmt>(CurStmt)) { 173 if (const Stmt *Init = CXXFor->getInit()) 174 CGF.EmitStmt(Init); 175 CGF.EmitStmt(CXXFor->getRangeStmt()); 176 CGF.EmitStmt(CXXFor->getEndStmt()); 177 } 178 return false; 179 }); 180 PreInits = cast_or_null<DeclStmt>(LD->getPreInits()); 181 } else if (const auto *Tile = dyn_cast<OMPTileDirective>(&S)) { 182 PreInits = cast_or_null<DeclStmt>(Tile->getPreInits()); 183 } else if (const auto *Unroll = dyn_cast<OMPUnrollDirective>(&S)) { 184 PreInits = cast_or_null<DeclStmt>(Unroll->getPreInits()); 185 } else { 186 llvm_unreachable("Unknown loop-based directive kind."); 187 } 188 if (PreInits) { 189 for (const auto *I : PreInits->decls()) 190 CGF.EmitVarDecl(cast<VarDecl>(*I)); 191 } 192 PreCondVars.restore(CGF); 193 } 194 195 public: 196 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopBasedDirective &S) 197 : CodeGenFunction::RunCleanupsScope(CGF) { 198 emitPreInitStmt(CGF, S); 199 } 200 }; 201 202 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 203 CodeGenFunction::OMPPrivateScope InlinedShareds; 204 205 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 206 return CGF.LambdaCaptureFields.lookup(VD) || 207 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 208 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 209 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 210 } 211 212 public: 213 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 214 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 215 InlinedShareds(CGF) { 216 for (const auto *C : S.clauses()) { 217 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 218 if (const auto *PreInit = 219 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 220 for (const auto *I : PreInit->decls()) { 221 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 222 CGF.EmitVarDecl(cast<VarDecl>(*I)); 223 } else { 224 CodeGenFunction::AutoVarEmission Emission = 225 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 226 CGF.EmitAutoVarCleanups(Emission); 227 } 228 } 229 } 230 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 231 for (const Expr *E : UDP->varlists()) { 232 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 233 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 234 CGF.EmitVarDecl(*OED); 235 } 236 } else if (const auto *UDP = dyn_cast<OMPUseDeviceAddrClause>(C)) { 237 for (const Expr *E : UDP->varlists()) { 238 const Decl *D = getBaseDecl(E); 239 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 240 CGF.EmitVarDecl(*OED); 241 } 242 } 243 } 244 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 245 CGF.EmitOMPPrivateClause(S, InlinedShareds); 246 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 247 if (const Expr *E = TG->getReductionRef()) 248 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 249 } 250 // Temp copy arrays for inscan reductions should not be emitted as they are 251 // not used in simd only mode. 252 llvm::DenseSet<CanonicalDeclPtr<const Decl>> CopyArrayTemps; 253 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 254 if (C->getModifier() != OMPC_REDUCTION_inscan) 255 continue; 256 for (const Expr *E : C->copy_array_temps()) 257 CopyArrayTemps.insert(cast<DeclRefExpr>(E)->getDecl()); 258 } 259 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 260 while (CS) { 261 for (auto &C : CS->captures()) { 262 if (C.capturesVariable() || C.capturesVariableByCopy()) { 263 auto *VD = C.getCapturedVar(); 264 if (CopyArrayTemps.contains(VD)) 265 continue; 266 assert(VD == VD->getCanonicalDecl() && 267 "Canonical decl must be captured."); 268 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), 269 isCapturedVar(CGF, VD) || 270 (CGF.CapturedStmtInfo && 271 InlinedShareds.isGlobalVarCaptured(VD)), 272 VD->getType().getNonReferenceType(), VK_LValue, 273 C.getLocation()); 274 InlinedShareds.addPrivate(VD, CGF.EmitLValue(&DRE).getAddress(CGF)); 275 } 276 } 277 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 278 } 279 (void)InlinedShareds.Privatize(); 280 } 281 }; 282 283 } // namespace 284 285 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 286 const OMPExecutableDirective &S, 287 const RegionCodeGenTy &CodeGen); 288 289 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 290 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 291 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 292 OrigVD = OrigVD->getCanonicalDecl(); 293 bool IsCaptured = 294 LambdaCaptureFields.lookup(OrigVD) || 295 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 296 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 297 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured, 298 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 299 return EmitLValue(&DRE); 300 } 301 } 302 return EmitLValue(E); 303 } 304 305 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 306 ASTContext &C = getContext(); 307 llvm::Value *Size = nullptr; 308 auto SizeInChars = C.getTypeSizeInChars(Ty); 309 if (SizeInChars.isZero()) { 310 // getTypeSizeInChars() returns 0 for a VLA. 311 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 312 VlaSizePair VlaSize = getVLASize(VAT); 313 Ty = VlaSize.Type; 314 Size = 315 Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) : VlaSize.NumElts; 316 } 317 SizeInChars = C.getTypeSizeInChars(Ty); 318 if (SizeInChars.isZero()) 319 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 320 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 321 } 322 return CGM.getSize(SizeInChars); 323 } 324 325 void CodeGenFunction::GenerateOpenMPCapturedVars( 326 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 327 const RecordDecl *RD = S.getCapturedRecordDecl(); 328 auto CurField = RD->field_begin(); 329 auto CurCap = S.captures().begin(); 330 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 331 E = S.capture_init_end(); 332 I != E; ++I, ++CurField, ++CurCap) { 333 if (CurField->hasCapturedVLAType()) { 334 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 335 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 336 CapturedVars.push_back(Val); 337 } else if (CurCap->capturesThis()) { 338 CapturedVars.push_back(CXXThisValue); 339 } else if (CurCap->capturesVariableByCopy()) { 340 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 341 342 // If the field is not a pointer, we need to save the actual value 343 // and load it as a void pointer. 344 if (!CurField->getType()->isAnyPointerType()) { 345 ASTContext &Ctx = getContext(); 346 Address DstAddr = CreateMemTemp( 347 Ctx.getUIntPtrType(), 348 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 349 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 350 351 llvm::Value *SrcAddrVal = EmitScalarConversion( 352 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 353 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 354 LValue SrcLV = 355 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 356 357 // Store the value using the source type pointer. 358 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 359 360 // Load the value using the destination type pointer. 361 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 362 } 363 CapturedVars.push_back(CV); 364 } else { 365 assert(CurCap->capturesVariable() && "Expected capture by reference."); 366 CapturedVars.push_back(EmitLValue(*I).getAddress(*this).getPointer()); 367 } 368 } 369 } 370 371 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 372 QualType DstType, StringRef Name, 373 LValue AddrLV) { 374 ASTContext &Ctx = CGF.getContext(); 375 376 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 377 AddrLV.getAddress(CGF).getPointer(), Ctx.getUIntPtrType(), 378 Ctx.getPointerType(DstType), Loc); 379 Address TmpAddr = 380 CGF.MakeNaturalAlignAddrLValue(CastedPtr, DstType).getAddress(CGF); 381 return TmpAddr; 382 } 383 384 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 385 if (T->isLValueReferenceType()) 386 return C.getLValueReferenceType( 387 getCanonicalParamType(C, T.getNonReferenceType()), 388 /*SpelledAsLValue=*/false); 389 if (T->isPointerType()) 390 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 391 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 392 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 393 return getCanonicalParamType(C, VLA->getElementType()); 394 if (!A->isVariablyModifiedType()) 395 return C.getCanonicalType(T); 396 } 397 return C.getCanonicalParamType(T); 398 } 399 400 namespace { 401 /// Contains required data for proper outlined function codegen. 402 struct FunctionOptions { 403 /// Captured statement for which the function is generated. 404 const CapturedStmt *S = nullptr; 405 /// true if cast to/from UIntPtr is required for variables captured by 406 /// value. 407 const bool UIntPtrCastRequired = true; 408 /// true if only casted arguments must be registered as local args or VLA 409 /// sizes. 410 const bool RegisterCastedArgsOnly = false; 411 /// Name of the generated function. 412 const StringRef FunctionName; 413 /// Location of the non-debug version of the outlined function. 414 SourceLocation Loc; 415 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 416 bool RegisterCastedArgsOnly, StringRef FunctionName, 417 SourceLocation Loc) 418 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 419 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 420 FunctionName(FunctionName), Loc(Loc) {} 421 }; 422 } // namespace 423 424 static llvm::Function *emitOutlinedFunctionPrologue( 425 CodeGenFunction &CGF, FunctionArgList &Args, 426 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 427 &LocalAddrs, 428 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 429 &VLASizes, 430 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 431 const CapturedDecl *CD = FO.S->getCapturedDecl(); 432 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 433 assert(CD->hasBody() && "missing CapturedDecl body"); 434 435 CXXThisValue = nullptr; 436 // Build the argument list. 437 CodeGenModule &CGM = CGF.CGM; 438 ASTContext &Ctx = CGM.getContext(); 439 FunctionArgList TargetArgs; 440 Args.append(CD->param_begin(), 441 std::next(CD->param_begin(), CD->getContextParamPosition())); 442 TargetArgs.append( 443 CD->param_begin(), 444 std::next(CD->param_begin(), CD->getContextParamPosition())); 445 auto I = FO.S->captures().begin(); 446 FunctionDecl *DebugFunctionDecl = nullptr; 447 if (!FO.UIntPtrCastRequired) { 448 FunctionProtoType::ExtProtoInfo EPI; 449 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI); 450 DebugFunctionDecl = FunctionDecl::Create( 451 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 452 SourceLocation(), DeclarationName(), FunctionTy, 453 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 454 /*UsesFPIntrin=*/false, /*isInlineSpecified=*/false, 455 /*hasWrittenPrototype=*/false); 456 } 457 for (const FieldDecl *FD : RD->fields()) { 458 QualType ArgType = FD->getType(); 459 IdentifierInfo *II = nullptr; 460 VarDecl *CapVar = nullptr; 461 462 // If this is a capture by copy and the type is not a pointer, the outlined 463 // function argument type should be uintptr and the value properly casted to 464 // uintptr. This is necessary given that the runtime library is only able to 465 // deal with pointers. We can pass in the same way the VLA type sizes to the 466 // outlined function. 467 if (FO.UIntPtrCastRequired && 468 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 469 I->capturesVariableArrayType())) 470 ArgType = Ctx.getUIntPtrType(); 471 472 if (I->capturesVariable() || I->capturesVariableByCopy()) { 473 CapVar = I->getCapturedVar(); 474 II = CapVar->getIdentifier(); 475 } else if (I->capturesThis()) { 476 II = &Ctx.Idents.get("this"); 477 } else { 478 assert(I->capturesVariableArrayType()); 479 II = &Ctx.Idents.get("vla"); 480 } 481 if (ArgType->isVariablyModifiedType()) 482 ArgType = getCanonicalParamType(Ctx, ArgType); 483 VarDecl *Arg; 484 if (CapVar && (CapVar->getTLSKind() != clang::VarDecl::TLS_None)) { 485 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 486 II, ArgType, 487 ImplicitParamDecl::ThreadPrivateVar); 488 } else if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 489 Arg = ParmVarDecl::Create( 490 Ctx, DebugFunctionDecl, 491 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 492 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 493 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 494 } else { 495 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 496 II, ArgType, ImplicitParamDecl::Other); 497 } 498 Args.emplace_back(Arg); 499 // Do not cast arguments if we emit function with non-original types. 500 TargetArgs.emplace_back( 501 FO.UIntPtrCastRequired 502 ? Arg 503 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 504 ++I; 505 } 506 Args.append(std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 507 CD->param_end()); 508 TargetArgs.append( 509 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 510 CD->param_end()); 511 512 // Create the function declaration. 513 const CGFunctionInfo &FuncInfo = 514 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 515 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 516 517 auto *F = 518 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 519 FO.FunctionName, &CGM.getModule()); 520 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 521 if (CD->isNothrow()) 522 F->setDoesNotThrow(); 523 F->setDoesNotRecurse(); 524 525 // Always inline the outlined function if optimizations are enabled. 526 if (CGM.getCodeGenOpts().OptimizationLevel != 0) { 527 F->removeFnAttr(llvm::Attribute::NoInline); 528 F->addFnAttr(llvm::Attribute::AlwaysInline); 529 } 530 531 // Generate the function. 532 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 533 FO.UIntPtrCastRequired ? FO.Loc : FO.S->getBeginLoc(), 534 FO.UIntPtrCastRequired ? FO.Loc 535 : CD->getBody()->getBeginLoc()); 536 unsigned Cnt = CD->getContextParamPosition(); 537 I = FO.S->captures().begin(); 538 for (const FieldDecl *FD : RD->fields()) { 539 // Do not map arguments if we emit function with non-original types. 540 Address LocalAddr(Address::invalid()); 541 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 542 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 543 TargetArgs[Cnt]); 544 } else { 545 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 546 } 547 // If we are capturing a pointer by copy we don't need to do anything, just 548 // use the value that we get from the arguments. 549 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 550 const VarDecl *CurVD = I->getCapturedVar(); 551 if (!FO.RegisterCastedArgsOnly) 552 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 553 ++Cnt; 554 ++I; 555 continue; 556 } 557 558 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 559 AlignmentSource::Decl); 560 if (FD->hasCapturedVLAType()) { 561 if (FO.UIntPtrCastRequired) { 562 ArgLVal = CGF.MakeAddrLValue( 563 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 564 Args[Cnt]->getName(), ArgLVal), 565 FD->getType(), AlignmentSource::Decl); 566 } 567 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 568 const VariableArrayType *VAT = FD->getCapturedVLAType(); 569 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 570 } else if (I->capturesVariable()) { 571 const VarDecl *Var = I->getCapturedVar(); 572 QualType VarTy = Var->getType(); 573 Address ArgAddr = ArgLVal.getAddress(CGF); 574 if (ArgLVal.getType()->isLValueReferenceType()) { 575 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 576 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 577 assert(ArgLVal.getType()->isPointerType()); 578 ArgAddr = CGF.EmitLoadOfPointer( 579 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 580 } 581 if (!FO.RegisterCastedArgsOnly) { 582 LocalAddrs.insert( 583 {Args[Cnt], {Var, ArgAddr.withAlignment(Ctx.getDeclAlign(Var))}}); 584 } 585 } else if (I->capturesVariableByCopy()) { 586 assert(!FD->getType()->isAnyPointerType() && 587 "Not expecting a captured pointer."); 588 const VarDecl *Var = I->getCapturedVar(); 589 LocalAddrs.insert({Args[Cnt], 590 {Var, FO.UIntPtrCastRequired 591 ? castValueFromUintptr( 592 CGF, I->getLocation(), FD->getType(), 593 Args[Cnt]->getName(), ArgLVal) 594 : ArgLVal.getAddress(CGF)}}); 595 } else { 596 // If 'this' is captured, load it into CXXThisValue. 597 assert(I->capturesThis()); 598 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 599 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress(CGF)}}); 600 } 601 ++Cnt; 602 ++I; 603 } 604 605 return F; 606 } 607 608 llvm::Function * 609 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 610 SourceLocation Loc) { 611 assert( 612 CapturedStmtInfo && 613 "CapturedStmtInfo should be set when generating the captured function"); 614 const CapturedDecl *CD = S.getCapturedDecl(); 615 // Build the argument list. 616 bool NeedWrapperFunction = 617 getDebugInfo() && CGM.getCodeGenOpts().hasReducedDebugInfo(); 618 FunctionArgList Args; 619 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 620 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 621 SmallString<256> Buffer; 622 llvm::raw_svector_ostream Out(Buffer); 623 Out << CapturedStmtInfo->getHelperName(); 624 if (NeedWrapperFunction) 625 Out << "_debug__"; 626 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 627 Out.str(), Loc); 628 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 629 VLASizes, CXXThisValue, FO); 630 CodeGenFunction::OMPPrivateScope LocalScope(*this); 631 for (const auto &LocalAddrPair : LocalAddrs) { 632 if (LocalAddrPair.second.first) { 633 LocalScope.addPrivate(LocalAddrPair.second.first, 634 LocalAddrPair.second.second); 635 } 636 } 637 (void)LocalScope.Privatize(); 638 for (const auto &VLASizePair : VLASizes) 639 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 640 PGO.assignRegionCounters(GlobalDecl(CD), F); 641 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 642 (void)LocalScope.ForceCleanup(); 643 FinishFunction(CD->getBodyRBrace()); 644 if (!NeedWrapperFunction) 645 return F; 646 647 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 648 /*RegisterCastedArgsOnly=*/true, 649 CapturedStmtInfo->getHelperName(), Loc); 650 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 651 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 652 Args.clear(); 653 LocalAddrs.clear(); 654 VLASizes.clear(); 655 llvm::Function *WrapperF = 656 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 657 WrapperCGF.CXXThisValue, WrapperFO); 658 llvm::SmallVector<llvm::Value *, 4> CallArgs; 659 auto *PI = F->arg_begin(); 660 for (const auto *Arg : Args) { 661 llvm::Value *CallArg; 662 auto I = LocalAddrs.find(Arg); 663 if (I != LocalAddrs.end()) { 664 LValue LV = WrapperCGF.MakeAddrLValue( 665 I->second.second, 666 I->second.first ? I->second.first->getType() : Arg->getType(), 667 AlignmentSource::Decl); 668 if (LV.getType()->isAnyComplexType()) 669 LV.setAddress(WrapperCGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 670 LV.getAddress(WrapperCGF), 671 PI->getType()->getPointerTo( 672 LV.getAddress(WrapperCGF).getAddressSpace()), 673 PI->getType())); 674 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 675 } else { 676 auto EI = VLASizes.find(Arg); 677 if (EI != VLASizes.end()) { 678 CallArg = EI->second.second; 679 } else { 680 LValue LV = 681 WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 682 Arg->getType(), AlignmentSource::Decl); 683 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 684 } 685 } 686 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 687 ++PI; 688 } 689 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, Loc, F, CallArgs); 690 WrapperCGF.FinishFunction(); 691 return WrapperF; 692 } 693 694 //===----------------------------------------------------------------------===// 695 // OpenMP Directive Emission 696 //===----------------------------------------------------------------------===// 697 void CodeGenFunction::EmitOMPAggregateAssign( 698 Address DestAddr, Address SrcAddr, QualType OriginalType, 699 const llvm::function_ref<void(Address, Address)> CopyGen) { 700 // Perform element-by-element initialization. 701 QualType ElementTy; 702 703 // Drill down to the base element type on both arrays. 704 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 705 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 706 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 707 708 llvm::Value *SrcBegin = SrcAddr.getPointer(); 709 llvm::Value *DestBegin = DestAddr.getPointer(); 710 // Cast from pointer to array type to pointer to single element. 711 llvm::Value *DestEnd = 712 Builder.CreateGEP(DestAddr.getElementType(), DestBegin, NumElements); 713 // The basic structure here is a while-do loop. 714 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 715 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 716 llvm::Value *IsEmpty = 717 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 718 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 719 720 // Enter the loop body, making that address the current address. 721 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 722 EmitBlock(BodyBB); 723 724 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 725 726 llvm::PHINode *SrcElementPHI = 727 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 728 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 729 Address SrcElementCurrent = 730 Address(SrcElementPHI, SrcAddr.getElementType(), 731 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 732 733 llvm::PHINode *DestElementPHI = Builder.CreatePHI( 734 DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 735 DestElementPHI->addIncoming(DestBegin, EntryBB); 736 Address DestElementCurrent = 737 Address(DestElementPHI, DestAddr.getElementType(), 738 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 739 740 // Emit copy. 741 CopyGen(DestElementCurrent, SrcElementCurrent); 742 743 // Shift the address forward by one element. 744 llvm::Value *DestElementNext = 745 Builder.CreateConstGEP1_32(DestAddr.getElementType(), DestElementPHI, 746 /*Idx0=*/1, "omp.arraycpy.dest.element"); 747 llvm::Value *SrcElementNext = 748 Builder.CreateConstGEP1_32(SrcAddr.getElementType(), SrcElementPHI, 749 /*Idx0=*/1, "omp.arraycpy.src.element"); 750 // Check whether we've reached the end. 751 llvm::Value *Done = 752 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 753 Builder.CreateCondBr(Done, DoneBB, BodyBB); 754 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 755 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 756 757 // Done. 758 EmitBlock(DoneBB, /*IsFinished=*/true); 759 } 760 761 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 762 Address SrcAddr, const VarDecl *DestVD, 763 const VarDecl *SrcVD, const Expr *Copy) { 764 if (OriginalType->isArrayType()) { 765 const auto *BO = dyn_cast<BinaryOperator>(Copy); 766 if (BO && BO->getOpcode() == BO_Assign) { 767 // Perform simple memcpy for simple copying. 768 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 769 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 770 EmitAggregateAssign(Dest, Src, OriginalType); 771 } else { 772 // For arrays with complex element types perform element by element 773 // copying. 774 EmitOMPAggregateAssign( 775 DestAddr, SrcAddr, OriginalType, 776 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 777 // Working with the single array element, so have to remap 778 // destination and source variables to corresponding array 779 // elements. 780 CodeGenFunction::OMPPrivateScope Remap(*this); 781 Remap.addPrivate(DestVD, DestElement); 782 Remap.addPrivate(SrcVD, SrcElement); 783 (void)Remap.Privatize(); 784 EmitIgnoredExpr(Copy); 785 }); 786 } 787 } else { 788 // Remap pseudo source variable to private copy. 789 CodeGenFunction::OMPPrivateScope Remap(*this); 790 Remap.addPrivate(SrcVD, SrcAddr); 791 Remap.addPrivate(DestVD, DestAddr); 792 (void)Remap.Privatize(); 793 // Emit copying of the whole variable. 794 EmitIgnoredExpr(Copy); 795 } 796 } 797 798 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 799 OMPPrivateScope &PrivateScope) { 800 if (!HaveInsertPoint()) 801 return false; 802 bool DeviceConstTarget = 803 getLangOpts().OpenMPIsDevice && 804 isOpenMPTargetExecutionDirective(D.getDirectiveKind()); 805 bool FirstprivateIsLastprivate = false; 806 llvm::DenseMap<const VarDecl *, OpenMPLastprivateModifier> Lastprivates; 807 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 808 for (const auto *D : C->varlists()) 809 Lastprivates.try_emplace( 810 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl(), 811 C->getKind()); 812 } 813 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 814 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 815 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 816 // Force emission of the firstprivate copy if the directive does not emit 817 // outlined function, like omp for, omp simd, omp distribute etc. 818 bool MustEmitFirstprivateCopy = 819 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 820 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 821 const auto *IRef = C->varlist_begin(); 822 const auto *InitsRef = C->inits().begin(); 823 for (const Expr *IInit : C->private_copies()) { 824 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 825 bool ThisFirstprivateIsLastprivate = 826 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 827 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 828 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 829 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 830 !FD->getType()->isReferenceType() && 831 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 832 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 833 ++IRef; 834 ++InitsRef; 835 continue; 836 } 837 // Do not emit copy for firstprivate constant variables in target regions, 838 // captured by reference. 839 if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) && 840 FD && FD->getType()->isReferenceType() && 841 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 842 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 843 ++IRef; 844 ++InitsRef; 845 continue; 846 } 847 FirstprivateIsLastprivate = 848 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 849 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 850 const auto *VDInit = 851 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 852 bool IsRegistered; 853 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 854 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 855 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 856 LValue OriginalLVal; 857 if (!FD) { 858 // Check if the firstprivate variable is just a constant value. 859 ConstantEmission CE = tryEmitAsConstant(&DRE); 860 if (CE && !CE.isReference()) { 861 // Constant value, no need to create a copy. 862 ++IRef; 863 ++InitsRef; 864 continue; 865 } 866 if (CE && CE.isReference()) { 867 OriginalLVal = CE.getReferenceLValue(*this, &DRE); 868 } else { 869 assert(!CE && "Expected non-constant firstprivate."); 870 OriginalLVal = EmitLValue(&DRE); 871 } 872 } else { 873 OriginalLVal = EmitLValue(&DRE); 874 } 875 QualType Type = VD->getType(); 876 if (Type->isArrayType()) { 877 // Emit VarDecl with copy init for arrays. 878 // Get the address of the original variable captured in current 879 // captured region. 880 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 881 const Expr *Init = VD->getInit(); 882 if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) { 883 // Perform simple memcpy. 884 LValue Dest = MakeAddrLValue(Emission.getAllocatedAddress(), Type); 885 EmitAggregateAssign(Dest, OriginalLVal, Type); 886 } else { 887 EmitOMPAggregateAssign( 888 Emission.getAllocatedAddress(), OriginalLVal.getAddress(*this), 889 Type, 890 [this, VDInit, Init](Address DestElement, Address SrcElement) { 891 // Clean up any temporaries needed by the 892 // initialization. 893 RunCleanupsScope InitScope(*this); 894 // Emit initialization for single element. 895 setAddrOfLocalVar(VDInit, SrcElement); 896 EmitAnyExprToMem(Init, DestElement, 897 Init->getType().getQualifiers(), 898 /*IsInitializer*/ false); 899 LocalDeclMap.erase(VDInit); 900 }); 901 } 902 EmitAutoVarCleanups(Emission); 903 IsRegistered = 904 PrivateScope.addPrivate(OrigVD, Emission.getAllocatedAddress()); 905 } else { 906 Address OriginalAddr = OriginalLVal.getAddress(*this); 907 // Emit private VarDecl with copy init. 908 // Remap temp VDInit variable to the address of the original 909 // variable (for proper handling of captured global variables). 910 setAddrOfLocalVar(VDInit, OriginalAddr); 911 EmitDecl(*VD); 912 LocalDeclMap.erase(VDInit); 913 Address VDAddr = GetAddrOfLocalVar(VD); 914 if (ThisFirstprivateIsLastprivate && 915 Lastprivates[OrigVD->getCanonicalDecl()] == 916 OMPC_LASTPRIVATE_conditional) { 917 // Create/init special variable for lastprivate conditionals. 918 llvm::Value *V = 919 EmitLoadOfScalar(MakeAddrLValue(VDAddr, (*IRef)->getType(), 920 AlignmentSource::Decl), 921 (*IRef)->getExprLoc()); 922 VDAddr = CGM.getOpenMPRuntime().emitLastprivateConditionalInit( 923 *this, OrigVD); 924 EmitStoreOfScalar(V, MakeAddrLValue(VDAddr, (*IRef)->getType(), 925 AlignmentSource::Decl)); 926 LocalDeclMap.erase(VD); 927 setAddrOfLocalVar(VD, VDAddr); 928 } 929 IsRegistered = PrivateScope.addPrivate(OrigVD, VDAddr); 930 } 931 assert(IsRegistered && 932 "firstprivate var already registered as private"); 933 // Silence the warning about unused variable. 934 (void)IsRegistered; 935 } 936 ++IRef; 937 ++InitsRef; 938 } 939 } 940 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 941 } 942 943 void CodeGenFunction::EmitOMPPrivateClause( 944 const OMPExecutableDirective &D, 945 CodeGenFunction::OMPPrivateScope &PrivateScope) { 946 if (!HaveInsertPoint()) 947 return; 948 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 949 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 950 auto IRef = C->varlist_begin(); 951 for (const Expr *IInit : C->private_copies()) { 952 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 953 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 954 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 955 EmitDecl(*VD); 956 // Emit private VarDecl with copy init. 957 bool IsRegistered = 958 PrivateScope.addPrivate(OrigVD, GetAddrOfLocalVar(VD)); 959 assert(IsRegistered && "private var already registered as private"); 960 // Silence the warning about unused variable. 961 (void)IsRegistered; 962 } 963 ++IRef; 964 } 965 } 966 } 967 968 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 969 if (!HaveInsertPoint()) 970 return false; 971 // threadprivate_var1 = master_threadprivate_var1; 972 // operator=(threadprivate_var2, master_threadprivate_var2); 973 // ... 974 // __kmpc_barrier(&loc, global_tid); 975 llvm::DenseSet<const VarDecl *> CopiedVars; 976 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 977 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 978 auto IRef = C->varlist_begin(); 979 auto ISrcRef = C->source_exprs().begin(); 980 auto IDestRef = C->destination_exprs().begin(); 981 for (const Expr *AssignOp : C->assignment_ops()) { 982 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 983 QualType Type = VD->getType(); 984 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 985 // Get the address of the master variable. If we are emitting code with 986 // TLS support, the address is passed from the master as field in the 987 // captured declaration. 988 Address MasterAddr = Address::invalid(); 989 if (getLangOpts().OpenMPUseTLS && 990 getContext().getTargetInfo().isTLSSupported()) { 991 assert(CapturedStmtInfo->lookup(VD) && 992 "Copyin threadprivates should have been captured!"); 993 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true, 994 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 995 MasterAddr = EmitLValue(&DRE).getAddress(*this); 996 LocalDeclMap.erase(VD); 997 } else { 998 MasterAddr = 999 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 1000 : CGM.GetAddrOfGlobal(VD), 1001 CGM.getTypes().ConvertTypeForMem(VD->getType()), 1002 getContext().getDeclAlign(VD)); 1003 } 1004 // Get the address of the threadprivate variable. 1005 Address PrivateAddr = EmitLValue(*IRef).getAddress(*this); 1006 if (CopiedVars.size() == 1) { 1007 // At first check if current thread is a master thread. If it is, no 1008 // need to copy data. 1009 CopyBegin = createBasicBlock("copyin.not.master"); 1010 CopyEnd = createBasicBlock("copyin.not.master.end"); 1011 // TODO: Avoid ptrtoint conversion. 1012 auto *MasterAddrInt = 1013 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy); 1014 auto *PrivateAddrInt = 1015 Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy); 1016 Builder.CreateCondBr( 1017 Builder.CreateICmpNE(MasterAddrInt, PrivateAddrInt), CopyBegin, 1018 CopyEnd); 1019 EmitBlock(CopyBegin); 1020 } 1021 const auto *SrcVD = 1022 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1023 const auto *DestVD = 1024 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1025 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 1026 } 1027 ++IRef; 1028 ++ISrcRef; 1029 ++IDestRef; 1030 } 1031 } 1032 if (CopyEnd) { 1033 // Exit out of copying procedure for non-master thread. 1034 EmitBlock(CopyEnd, /*IsFinished=*/true); 1035 return true; 1036 } 1037 return false; 1038 } 1039 1040 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 1041 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 1042 if (!HaveInsertPoint()) 1043 return false; 1044 bool HasAtLeastOneLastprivate = false; 1045 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1046 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1047 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1048 for (const Expr *C : LoopDirective->counters()) { 1049 SIMDLCVs.insert( 1050 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1051 } 1052 } 1053 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1054 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1055 HasAtLeastOneLastprivate = true; 1056 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 1057 !getLangOpts().OpenMPSimd) 1058 break; 1059 const auto *IRef = C->varlist_begin(); 1060 const auto *IDestRef = C->destination_exprs().begin(); 1061 for (const Expr *IInit : C->private_copies()) { 1062 // Keep the address of the original variable for future update at the end 1063 // of the loop. 1064 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1065 // Taskloops do not require additional initialization, it is done in 1066 // runtime support library. 1067 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 1068 const auto *DestVD = 1069 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1070 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1071 /*RefersToEnclosingVariableOrCapture=*/ 1072 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1073 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1074 PrivateScope.addPrivate(DestVD, EmitLValue(&DRE).getAddress(*this)); 1075 // Check if the variable is also a firstprivate: in this case IInit is 1076 // not generated. Initialization of this variable will happen in codegen 1077 // for 'firstprivate' clause. 1078 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 1079 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 1080 Address VDAddr = Address::invalid(); 1081 if (C->getKind() == OMPC_LASTPRIVATE_conditional) { 1082 VDAddr = CGM.getOpenMPRuntime().emitLastprivateConditionalInit( 1083 *this, OrigVD); 1084 setAddrOfLocalVar(VD, VDAddr); 1085 } else { 1086 // Emit private VarDecl with copy init. 1087 EmitDecl(*VD); 1088 VDAddr = GetAddrOfLocalVar(VD); 1089 } 1090 bool IsRegistered = PrivateScope.addPrivate(OrigVD, VDAddr); 1091 assert(IsRegistered && 1092 "lastprivate var already registered as private"); 1093 (void)IsRegistered; 1094 } 1095 } 1096 ++IRef; 1097 ++IDestRef; 1098 } 1099 } 1100 return HasAtLeastOneLastprivate; 1101 } 1102 1103 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 1104 const OMPExecutableDirective &D, bool NoFinals, 1105 llvm::Value *IsLastIterCond) { 1106 if (!HaveInsertPoint()) 1107 return; 1108 // Emit following code: 1109 // if (<IsLastIterCond>) { 1110 // orig_var1 = private_orig_var1; 1111 // ... 1112 // orig_varn = private_orig_varn; 1113 // } 1114 llvm::BasicBlock *ThenBB = nullptr; 1115 llvm::BasicBlock *DoneBB = nullptr; 1116 if (IsLastIterCond) { 1117 // Emit implicit barrier if at least one lastprivate conditional is found 1118 // and this is not a simd mode. 1119 if (!getLangOpts().OpenMPSimd && 1120 llvm::any_of(D.getClausesOfKind<OMPLastprivateClause>(), 1121 [](const OMPLastprivateClause *C) { 1122 return C->getKind() == OMPC_LASTPRIVATE_conditional; 1123 })) { 1124 CGM.getOpenMPRuntime().emitBarrierCall(*this, D.getBeginLoc(), 1125 OMPD_unknown, 1126 /*EmitChecks=*/false, 1127 /*ForceSimpleCall=*/true); 1128 } 1129 ThenBB = createBasicBlock(".omp.lastprivate.then"); 1130 DoneBB = createBasicBlock(".omp.lastprivate.done"); 1131 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1132 EmitBlock(ThenBB); 1133 } 1134 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1135 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1136 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1137 auto IC = LoopDirective->counters().begin(); 1138 for (const Expr *F : LoopDirective->finals()) { 1139 const auto *D = 1140 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1141 if (NoFinals) 1142 AlreadyEmittedVars.insert(D); 1143 else 1144 LoopCountersAndUpdates[D] = F; 1145 ++IC; 1146 } 1147 } 1148 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1149 auto IRef = C->varlist_begin(); 1150 auto ISrcRef = C->source_exprs().begin(); 1151 auto IDestRef = C->destination_exprs().begin(); 1152 for (const Expr *AssignOp : C->assignment_ops()) { 1153 const auto *PrivateVD = 1154 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1155 QualType Type = PrivateVD->getType(); 1156 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1157 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1158 // If lastprivate variable is a loop control variable for loop-based 1159 // directive, update its value before copyin back to original 1160 // variable. 1161 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1162 EmitIgnoredExpr(FinalExpr); 1163 const auto *SrcVD = 1164 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1165 const auto *DestVD = 1166 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1167 // Get the address of the private variable. 1168 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1169 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1170 PrivateAddr = Address( 1171 Builder.CreateLoad(PrivateAddr), 1172 CGM.getTypes().ConvertTypeForMem(RefTy->getPointeeType()), 1173 CGM.getNaturalTypeAlignment(RefTy->getPointeeType())); 1174 // Store the last value to the private copy in the last iteration. 1175 if (C->getKind() == OMPC_LASTPRIVATE_conditional) 1176 CGM.getOpenMPRuntime().emitLastprivateConditionalFinalUpdate( 1177 *this, MakeAddrLValue(PrivateAddr, (*IRef)->getType()), PrivateVD, 1178 (*IRef)->getExprLoc()); 1179 // Get the address of the original variable. 1180 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1181 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1182 } 1183 ++IRef; 1184 ++ISrcRef; 1185 ++IDestRef; 1186 } 1187 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1188 EmitIgnoredExpr(PostUpdate); 1189 } 1190 if (IsLastIterCond) 1191 EmitBlock(DoneBB, /*IsFinished=*/true); 1192 } 1193 1194 void CodeGenFunction::EmitOMPReductionClauseInit( 1195 const OMPExecutableDirective &D, 1196 CodeGenFunction::OMPPrivateScope &PrivateScope, bool ForInscan) { 1197 if (!HaveInsertPoint()) 1198 return; 1199 SmallVector<const Expr *, 4> Shareds; 1200 SmallVector<const Expr *, 4> Privates; 1201 SmallVector<const Expr *, 4> ReductionOps; 1202 SmallVector<const Expr *, 4> LHSs; 1203 SmallVector<const Expr *, 4> RHSs; 1204 OMPTaskDataTy Data; 1205 SmallVector<const Expr *, 4> TaskLHSs; 1206 SmallVector<const Expr *, 4> TaskRHSs; 1207 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1208 if (ForInscan != (C->getModifier() == OMPC_REDUCTION_inscan)) 1209 continue; 1210 Shareds.append(C->varlist_begin(), C->varlist_end()); 1211 Privates.append(C->privates().begin(), C->privates().end()); 1212 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1213 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1214 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1215 if (C->getModifier() == OMPC_REDUCTION_task) { 1216 Data.ReductionVars.append(C->privates().begin(), C->privates().end()); 1217 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 1218 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 1219 Data.ReductionOps.append(C->reduction_ops().begin(), 1220 C->reduction_ops().end()); 1221 TaskLHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1222 TaskRHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1223 } 1224 } 1225 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 1226 unsigned Count = 0; 1227 auto *ILHS = LHSs.begin(); 1228 auto *IRHS = RHSs.begin(); 1229 auto *IPriv = Privates.begin(); 1230 for (const Expr *IRef : Shareds) { 1231 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1232 // Emit private VarDecl with reduction init. 1233 RedCG.emitSharedOrigLValue(*this, Count); 1234 RedCG.emitAggregateType(*this, Count); 1235 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1236 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1237 RedCG.getSharedLValue(Count).getAddress(*this), 1238 [&Emission](CodeGenFunction &CGF) { 1239 CGF.EmitAutoVarInit(Emission); 1240 return true; 1241 }); 1242 EmitAutoVarCleanups(Emission); 1243 Address BaseAddr = RedCG.adjustPrivateAddress( 1244 *this, Count, Emission.getAllocatedAddress()); 1245 bool IsRegistered = 1246 PrivateScope.addPrivate(RedCG.getBaseDecl(Count), BaseAddr); 1247 assert(IsRegistered && "private var already registered as private"); 1248 // Silence the warning about unused variable. 1249 (void)IsRegistered; 1250 1251 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1252 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1253 QualType Type = PrivateVD->getType(); 1254 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1255 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1256 // Store the address of the original variable associated with the LHS 1257 // implicit variable. 1258 PrivateScope.addPrivate(LHSVD, 1259 RedCG.getSharedLValue(Count).getAddress(*this)); 1260 PrivateScope.addPrivate(RHSVD, GetAddrOfLocalVar(PrivateVD)); 1261 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1262 isa<ArraySubscriptExpr>(IRef)) { 1263 // Store the address of the original variable associated with the LHS 1264 // implicit variable. 1265 PrivateScope.addPrivate(LHSVD, 1266 RedCG.getSharedLValue(Count).getAddress(*this)); 1267 PrivateScope.addPrivate(RHSVD, Builder.CreateElementBitCast( 1268 GetAddrOfLocalVar(PrivateVD), 1269 ConvertTypeForMem(RHSVD->getType()), 1270 "rhs.begin")); 1271 } else { 1272 QualType Type = PrivateVD->getType(); 1273 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1274 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(*this); 1275 // Store the address of the original variable associated with the LHS 1276 // implicit variable. 1277 if (IsArray) { 1278 OriginalAddr = Builder.CreateElementBitCast( 1279 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1280 } 1281 PrivateScope.addPrivate(LHSVD, OriginalAddr); 1282 PrivateScope.addPrivate( 1283 RHSVD, IsArray ? Builder.CreateElementBitCast( 1284 GetAddrOfLocalVar(PrivateVD), 1285 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1286 : GetAddrOfLocalVar(PrivateVD)); 1287 } 1288 ++ILHS; 1289 ++IRHS; 1290 ++IPriv; 1291 ++Count; 1292 } 1293 if (!Data.ReductionVars.empty()) { 1294 Data.IsReductionWithTaskMod = true; 1295 Data.IsWorksharingReduction = 1296 isOpenMPWorksharingDirective(D.getDirectiveKind()); 1297 llvm::Value *ReductionDesc = CGM.getOpenMPRuntime().emitTaskReductionInit( 1298 *this, D.getBeginLoc(), TaskLHSs, TaskRHSs, Data); 1299 const Expr *TaskRedRef = nullptr; 1300 switch (D.getDirectiveKind()) { 1301 case OMPD_parallel: 1302 TaskRedRef = cast<OMPParallelDirective>(D).getTaskReductionRefExpr(); 1303 break; 1304 case OMPD_for: 1305 TaskRedRef = cast<OMPForDirective>(D).getTaskReductionRefExpr(); 1306 break; 1307 case OMPD_sections: 1308 TaskRedRef = cast<OMPSectionsDirective>(D).getTaskReductionRefExpr(); 1309 break; 1310 case OMPD_parallel_for: 1311 TaskRedRef = cast<OMPParallelForDirective>(D).getTaskReductionRefExpr(); 1312 break; 1313 case OMPD_parallel_master: 1314 TaskRedRef = 1315 cast<OMPParallelMasterDirective>(D).getTaskReductionRefExpr(); 1316 break; 1317 case OMPD_parallel_sections: 1318 TaskRedRef = 1319 cast<OMPParallelSectionsDirective>(D).getTaskReductionRefExpr(); 1320 break; 1321 case OMPD_target_parallel: 1322 TaskRedRef = 1323 cast<OMPTargetParallelDirective>(D).getTaskReductionRefExpr(); 1324 break; 1325 case OMPD_target_parallel_for: 1326 TaskRedRef = 1327 cast<OMPTargetParallelForDirective>(D).getTaskReductionRefExpr(); 1328 break; 1329 case OMPD_distribute_parallel_for: 1330 TaskRedRef = 1331 cast<OMPDistributeParallelForDirective>(D).getTaskReductionRefExpr(); 1332 break; 1333 case OMPD_teams_distribute_parallel_for: 1334 TaskRedRef = cast<OMPTeamsDistributeParallelForDirective>(D) 1335 .getTaskReductionRefExpr(); 1336 break; 1337 case OMPD_target_teams_distribute_parallel_for: 1338 TaskRedRef = cast<OMPTargetTeamsDistributeParallelForDirective>(D) 1339 .getTaskReductionRefExpr(); 1340 break; 1341 case OMPD_simd: 1342 case OMPD_for_simd: 1343 case OMPD_section: 1344 case OMPD_single: 1345 case OMPD_master: 1346 case OMPD_critical: 1347 case OMPD_parallel_for_simd: 1348 case OMPD_task: 1349 case OMPD_taskyield: 1350 case OMPD_barrier: 1351 case OMPD_taskwait: 1352 case OMPD_taskgroup: 1353 case OMPD_flush: 1354 case OMPD_depobj: 1355 case OMPD_scan: 1356 case OMPD_ordered: 1357 case OMPD_atomic: 1358 case OMPD_teams: 1359 case OMPD_target: 1360 case OMPD_cancellation_point: 1361 case OMPD_cancel: 1362 case OMPD_target_data: 1363 case OMPD_target_enter_data: 1364 case OMPD_target_exit_data: 1365 case OMPD_taskloop: 1366 case OMPD_taskloop_simd: 1367 case OMPD_master_taskloop: 1368 case OMPD_master_taskloop_simd: 1369 case OMPD_parallel_master_taskloop: 1370 case OMPD_parallel_master_taskloop_simd: 1371 case OMPD_distribute: 1372 case OMPD_target_update: 1373 case OMPD_distribute_parallel_for_simd: 1374 case OMPD_distribute_simd: 1375 case OMPD_target_parallel_for_simd: 1376 case OMPD_target_simd: 1377 case OMPD_teams_distribute: 1378 case OMPD_teams_distribute_simd: 1379 case OMPD_teams_distribute_parallel_for_simd: 1380 case OMPD_target_teams: 1381 case OMPD_target_teams_distribute: 1382 case OMPD_target_teams_distribute_parallel_for_simd: 1383 case OMPD_target_teams_distribute_simd: 1384 case OMPD_declare_target: 1385 case OMPD_end_declare_target: 1386 case OMPD_threadprivate: 1387 case OMPD_allocate: 1388 case OMPD_declare_reduction: 1389 case OMPD_declare_mapper: 1390 case OMPD_declare_simd: 1391 case OMPD_requires: 1392 case OMPD_declare_variant: 1393 case OMPD_begin_declare_variant: 1394 case OMPD_end_declare_variant: 1395 case OMPD_unknown: 1396 default: 1397 llvm_unreachable("Enexpected directive with task reductions."); 1398 } 1399 1400 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(TaskRedRef)->getDecl()); 1401 EmitVarDecl(*VD); 1402 EmitStoreOfScalar(ReductionDesc, GetAddrOfLocalVar(VD), 1403 /*Volatile=*/false, TaskRedRef->getType()); 1404 } 1405 } 1406 1407 void CodeGenFunction::EmitOMPReductionClauseFinal( 1408 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1409 if (!HaveInsertPoint()) 1410 return; 1411 llvm::SmallVector<const Expr *, 8> Privates; 1412 llvm::SmallVector<const Expr *, 8> LHSExprs; 1413 llvm::SmallVector<const Expr *, 8> RHSExprs; 1414 llvm::SmallVector<const Expr *, 8> ReductionOps; 1415 bool HasAtLeastOneReduction = false; 1416 bool IsReductionWithTaskMod = false; 1417 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1418 // Do not emit for inscan reductions. 1419 if (C->getModifier() == OMPC_REDUCTION_inscan) 1420 continue; 1421 HasAtLeastOneReduction = true; 1422 Privates.append(C->privates().begin(), C->privates().end()); 1423 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1424 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1425 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1426 IsReductionWithTaskMod = 1427 IsReductionWithTaskMod || C->getModifier() == OMPC_REDUCTION_task; 1428 } 1429 if (HasAtLeastOneReduction) { 1430 if (IsReductionWithTaskMod) { 1431 CGM.getOpenMPRuntime().emitTaskReductionFini( 1432 *this, D.getBeginLoc(), 1433 isOpenMPWorksharingDirective(D.getDirectiveKind())); 1434 } 1435 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1436 isOpenMPParallelDirective(D.getDirectiveKind()) || 1437 ReductionKind == OMPD_simd; 1438 bool SimpleReduction = ReductionKind == OMPD_simd; 1439 // Emit nowait reduction if nowait clause is present or directive is a 1440 // parallel directive (it always has implicit barrier). 1441 CGM.getOpenMPRuntime().emitReduction( 1442 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1443 {WithNowait, SimpleReduction, ReductionKind}); 1444 } 1445 } 1446 1447 static void emitPostUpdateForReductionClause( 1448 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1449 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1450 if (!CGF.HaveInsertPoint()) 1451 return; 1452 llvm::BasicBlock *DoneBB = nullptr; 1453 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1454 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1455 if (!DoneBB) { 1456 if (llvm::Value *Cond = CondGen(CGF)) { 1457 // If the first post-update expression is found, emit conditional 1458 // block if it was requested. 1459 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1460 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1461 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1462 CGF.EmitBlock(ThenBB); 1463 } 1464 } 1465 CGF.EmitIgnoredExpr(PostUpdate); 1466 } 1467 } 1468 if (DoneBB) 1469 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1470 } 1471 1472 namespace { 1473 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1474 /// parallel function. This is necessary for combined constructs such as 1475 /// 'distribute parallel for' 1476 typedef llvm::function_ref<void(CodeGenFunction &, 1477 const OMPExecutableDirective &, 1478 llvm::SmallVectorImpl<llvm::Value *> &)> 1479 CodeGenBoundParametersTy; 1480 } // anonymous namespace 1481 1482 static void 1483 checkForLastprivateConditionalUpdate(CodeGenFunction &CGF, 1484 const OMPExecutableDirective &S) { 1485 if (CGF.getLangOpts().OpenMP < 50) 1486 return; 1487 llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> PrivateDecls; 1488 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 1489 for (const Expr *Ref : C->varlists()) { 1490 if (!Ref->getType()->isScalarType()) 1491 continue; 1492 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1493 if (!DRE) 1494 continue; 1495 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1496 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1497 } 1498 } 1499 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 1500 for (const Expr *Ref : C->varlists()) { 1501 if (!Ref->getType()->isScalarType()) 1502 continue; 1503 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1504 if (!DRE) 1505 continue; 1506 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1507 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1508 } 1509 } 1510 for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) { 1511 for (const Expr *Ref : C->varlists()) { 1512 if (!Ref->getType()->isScalarType()) 1513 continue; 1514 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1515 if (!DRE) 1516 continue; 1517 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1518 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1519 } 1520 } 1521 // Privates should ne analyzed since they are not captured at all. 1522 // Task reductions may be skipped - tasks are ignored. 1523 // Firstprivates do not return value but may be passed by reference - no need 1524 // to check for updated lastprivate conditional. 1525 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 1526 for (const Expr *Ref : C->varlists()) { 1527 if (!Ref->getType()->isScalarType()) 1528 continue; 1529 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1530 if (!DRE) 1531 continue; 1532 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1533 } 1534 } 1535 CGF.CGM.getOpenMPRuntime().checkAndEmitSharedLastprivateConditional( 1536 CGF, S, PrivateDecls); 1537 } 1538 1539 static void emitCommonOMPParallelDirective( 1540 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1541 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1542 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1543 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1544 llvm::Value *NumThreads = nullptr; 1545 llvm::Function *OutlinedFn = 1546 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1547 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1548 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1549 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1550 NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1551 /*IgnoreResultAssign=*/true); 1552 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1553 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1554 } 1555 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1556 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1557 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1558 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1559 } 1560 const Expr *IfCond = nullptr; 1561 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1562 if (C->getNameModifier() == OMPD_unknown || 1563 C->getNameModifier() == OMPD_parallel) { 1564 IfCond = C->getCondition(); 1565 break; 1566 } 1567 } 1568 1569 OMPParallelScope Scope(CGF, S); 1570 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1571 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1572 // lower and upper bounds with the pragma 'for' chunking mechanism. 1573 // The following lambda takes care of appending the lower and upper bound 1574 // parameters when necessary 1575 CodeGenBoundParameters(CGF, S, CapturedVars); 1576 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1577 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1578 CapturedVars, IfCond, NumThreads); 1579 } 1580 1581 static bool isAllocatableDecl(const VarDecl *VD) { 1582 const VarDecl *CVD = VD->getCanonicalDecl(); 1583 if (!CVD->hasAttr<OMPAllocateDeclAttr>()) 1584 return false; 1585 const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); 1586 // Use the default allocation. 1587 return !((AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc || 1588 AA->getAllocatorType() == OMPAllocateDeclAttr::OMPNullMemAlloc) && 1589 !AA->getAllocator()); 1590 } 1591 1592 static void emitEmptyBoundParameters(CodeGenFunction &, 1593 const OMPExecutableDirective &, 1594 llvm::SmallVectorImpl<llvm::Value *> &) {} 1595 1596 Address CodeGenFunction::OMPBuilderCBHelpers::getAddressOfLocalVariable( 1597 CodeGenFunction &CGF, const VarDecl *VD) { 1598 CodeGenModule &CGM = CGF.CGM; 1599 auto &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1600 1601 if (!VD) 1602 return Address::invalid(); 1603 const VarDecl *CVD = VD->getCanonicalDecl(); 1604 if (!isAllocatableDecl(CVD)) 1605 return Address::invalid(); 1606 llvm::Value *Size; 1607 CharUnits Align = CGM.getContext().getDeclAlign(CVD); 1608 if (CVD->getType()->isVariablyModifiedType()) { 1609 Size = CGF.getTypeSize(CVD->getType()); 1610 // Align the size: ((size + align - 1) / align) * align 1611 Size = CGF.Builder.CreateNUWAdd( 1612 Size, CGM.getSize(Align - CharUnits::fromQuantity(1))); 1613 Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align)); 1614 Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align)); 1615 } else { 1616 CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType()); 1617 Size = CGM.getSize(Sz.alignTo(Align)); 1618 } 1619 1620 const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); 1621 assert(AA->getAllocator() && 1622 "Expected allocator expression for non-default allocator."); 1623 llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator()); 1624 // According to the standard, the original allocator type is a enum (integer). 1625 // Convert to pointer type, if required. 1626 if (Allocator->getType()->isIntegerTy()) 1627 Allocator = CGF.Builder.CreateIntToPtr(Allocator, CGM.VoidPtrTy); 1628 else if (Allocator->getType()->isPointerTy()) 1629 Allocator = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Allocator, 1630 CGM.VoidPtrTy); 1631 1632 llvm::Value *Addr = OMPBuilder.createOMPAlloc( 1633 CGF.Builder, Size, Allocator, 1634 getNameWithSeparators({CVD->getName(), ".void.addr"}, ".", ".")); 1635 llvm::CallInst *FreeCI = 1636 OMPBuilder.createOMPFree(CGF.Builder, Addr, Allocator); 1637 1638 CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(NormalAndEHCleanup, FreeCI); 1639 Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 1640 Addr, 1641 CGF.ConvertTypeForMem(CGM.getContext().getPointerType(CVD->getType())), 1642 getNameWithSeparators({CVD->getName(), ".addr"}, ".", ".")); 1643 return Address(Addr, CGF.ConvertTypeForMem(CVD->getType()), Align); 1644 } 1645 1646 Address CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate( 1647 CodeGenFunction &CGF, const VarDecl *VD, Address VDAddr, 1648 SourceLocation Loc) { 1649 CodeGenModule &CGM = CGF.CGM; 1650 if (CGM.getLangOpts().OpenMPUseTLS && 1651 CGM.getContext().getTargetInfo().isTLSSupported()) 1652 return VDAddr; 1653 1654 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1655 1656 llvm::Type *VarTy = VDAddr.getElementType(); 1657 llvm::Value *Data = 1658 CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.Int8PtrTy); 1659 llvm::ConstantInt *Size = CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)); 1660 std::string Suffix = getNameWithSeparators({"cache", ""}); 1661 llvm::Twine CacheName = Twine(CGM.getMangledName(VD)).concat(Suffix); 1662 1663 llvm::CallInst *ThreadPrivateCacheCall = 1664 OMPBuilder.createCachedThreadPrivate(CGF.Builder, Data, Size, CacheName); 1665 1666 return Address(ThreadPrivateCacheCall, CGM.Int8Ty, VDAddr.getAlignment()); 1667 } 1668 1669 std::string CodeGenFunction::OMPBuilderCBHelpers::getNameWithSeparators( 1670 ArrayRef<StringRef> Parts, StringRef FirstSeparator, StringRef Separator) { 1671 SmallString<128> Buffer; 1672 llvm::raw_svector_ostream OS(Buffer); 1673 StringRef Sep = FirstSeparator; 1674 for (StringRef Part : Parts) { 1675 OS << Sep << Part; 1676 Sep = Separator; 1677 } 1678 return OS.str().str(); 1679 } 1680 1681 void CodeGenFunction::OMPBuilderCBHelpers::EmitOMPInlinedRegionBody( 1682 CodeGenFunction &CGF, const Stmt *RegionBodyStmt, InsertPointTy AllocaIP, 1683 InsertPointTy CodeGenIP, Twine RegionName) { 1684 CGBuilderTy &Builder = CGF.Builder; 1685 Builder.restoreIP(CodeGenIP); 1686 llvm::BasicBlock *FiniBB = splitBBWithSuffix(Builder, /*CreateBranch=*/false, 1687 "." + RegionName + ".after"); 1688 1689 { 1690 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(CGF, AllocaIP, *FiniBB); 1691 CGF.EmitStmt(RegionBodyStmt); 1692 } 1693 1694 if (Builder.saveIP().isSet()) 1695 Builder.CreateBr(FiniBB); 1696 } 1697 1698 void CodeGenFunction::OMPBuilderCBHelpers::EmitOMPOutlinedRegionBody( 1699 CodeGenFunction &CGF, const Stmt *RegionBodyStmt, InsertPointTy AllocaIP, 1700 InsertPointTy CodeGenIP, Twine RegionName) { 1701 CGBuilderTy &Builder = CGF.Builder; 1702 Builder.restoreIP(CodeGenIP); 1703 llvm::BasicBlock *FiniBB = splitBBWithSuffix(Builder, /*CreateBranch=*/false, 1704 "." + RegionName + ".after"); 1705 1706 { 1707 OMPBuilderCBHelpers::OutlinedRegionBodyRAII IRB(CGF, AllocaIP, *FiniBB); 1708 CGF.EmitStmt(RegionBodyStmt); 1709 } 1710 1711 if (Builder.saveIP().isSet()) 1712 Builder.CreateBr(FiniBB); 1713 } 1714 1715 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1716 if (CGM.getLangOpts().OpenMPIRBuilder) { 1717 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1718 // Check if we have any if clause associated with the directive. 1719 llvm::Value *IfCond = nullptr; 1720 if (const auto *C = S.getSingleClause<OMPIfClause>()) 1721 IfCond = EmitScalarExpr(C->getCondition(), 1722 /*IgnoreResultAssign=*/true); 1723 1724 llvm::Value *NumThreads = nullptr; 1725 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) 1726 NumThreads = EmitScalarExpr(NumThreadsClause->getNumThreads(), 1727 /*IgnoreResultAssign=*/true); 1728 1729 ProcBindKind ProcBind = OMP_PROC_BIND_default; 1730 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) 1731 ProcBind = ProcBindClause->getProcBindKind(); 1732 1733 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1734 1735 // The cleanup callback that finalizes all variabels at the given location, 1736 // thus calls destructors etc. 1737 auto FiniCB = [this](InsertPointTy IP) { 1738 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 1739 }; 1740 1741 // Privatization callback that performs appropriate action for 1742 // shared/private/firstprivate/lastprivate/copyin/... variables. 1743 // 1744 // TODO: This defaults to shared right now. 1745 auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1746 llvm::Value &, llvm::Value &Val, llvm::Value *&ReplVal) { 1747 // The next line is appropriate only for variables (Val) with the 1748 // data-sharing attribute "shared". 1749 ReplVal = &Val; 1750 1751 return CodeGenIP; 1752 }; 1753 1754 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1755 const Stmt *ParallelRegionBodyStmt = CS->getCapturedStmt(); 1756 1757 auto BodyGenCB = [&, this](InsertPointTy AllocaIP, 1758 InsertPointTy CodeGenIP) { 1759 OMPBuilderCBHelpers::EmitOMPOutlinedRegionBody( 1760 *this, ParallelRegionBodyStmt, AllocaIP, CodeGenIP, "parallel"); 1761 }; 1762 1763 CGCapturedStmtInfo CGSI(*CS, CR_OpenMP); 1764 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 1765 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 1766 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 1767 Builder.restoreIP( 1768 OMPBuilder.createParallel(Builder, AllocaIP, BodyGenCB, PrivCB, FiniCB, 1769 IfCond, NumThreads, ProcBind, S.hasCancel())); 1770 return; 1771 } 1772 1773 // Emit parallel region as a standalone region. 1774 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1775 Action.Enter(CGF); 1776 OMPPrivateScope PrivateScope(CGF); 1777 bool Copyins = CGF.EmitOMPCopyinClause(S); 1778 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1779 if (Copyins) { 1780 // Emit implicit barrier to synchronize threads and avoid data races on 1781 // propagation master's thread values of threadprivate variables to local 1782 // instances of that variables of all other implicit threads. 1783 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1784 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1785 /*ForceSimpleCall=*/true); 1786 } 1787 CGF.EmitOMPPrivateClause(S, PrivateScope); 1788 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1789 (void)PrivateScope.Privatize(); 1790 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1791 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1792 }; 1793 { 1794 auto LPCRegion = 1795 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 1796 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1797 emitEmptyBoundParameters); 1798 emitPostUpdateForReductionClause(*this, S, 1799 [](CodeGenFunction &) { return nullptr; }); 1800 } 1801 // Check for outer lastprivate conditional update. 1802 checkForLastprivateConditionalUpdate(*this, S); 1803 } 1804 1805 void CodeGenFunction::EmitOMPMetaDirective(const OMPMetaDirective &S) { 1806 EmitStmt(S.getIfStmt()); 1807 } 1808 1809 namespace { 1810 /// RAII to handle scopes for loop transformation directives. 1811 class OMPTransformDirectiveScopeRAII { 1812 OMPLoopScope *Scope = nullptr; 1813 CodeGenFunction::CGCapturedStmtInfo *CGSI = nullptr; 1814 CodeGenFunction::CGCapturedStmtRAII *CapInfoRAII = nullptr; 1815 1816 public: 1817 OMPTransformDirectiveScopeRAII(CodeGenFunction &CGF, const Stmt *S) { 1818 if (const auto *Dir = dyn_cast<OMPLoopBasedDirective>(S)) { 1819 Scope = new OMPLoopScope(CGF, *Dir); 1820 CGSI = new CodeGenFunction::CGCapturedStmtInfo(CR_OpenMP); 1821 CapInfoRAII = new CodeGenFunction::CGCapturedStmtRAII(CGF, CGSI); 1822 } 1823 } 1824 ~OMPTransformDirectiveScopeRAII() { 1825 if (!Scope) 1826 return; 1827 delete CapInfoRAII; 1828 delete CGSI; 1829 delete Scope; 1830 } 1831 }; 1832 } // namespace 1833 1834 static void emitBody(CodeGenFunction &CGF, const Stmt *S, const Stmt *NextLoop, 1835 int MaxLevel, int Level = 0) { 1836 assert(Level < MaxLevel && "Too deep lookup during loop body codegen."); 1837 const Stmt *SimplifiedS = S->IgnoreContainers(); 1838 if (const auto *CS = dyn_cast<CompoundStmt>(SimplifiedS)) { 1839 PrettyStackTraceLoc CrashInfo( 1840 CGF.getContext().getSourceManager(), CS->getLBracLoc(), 1841 "LLVM IR generation of compound statement ('{}')"); 1842 1843 // Keep track of the current cleanup stack depth, including debug scopes. 1844 CodeGenFunction::LexicalScope Scope(CGF, S->getSourceRange()); 1845 for (const Stmt *CurStmt : CS->body()) 1846 emitBody(CGF, CurStmt, NextLoop, MaxLevel, Level); 1847 return; 1848 } 1849 if (SimplifiedS == NextLoop) { 1850 if (auto *Dir = dyn_cast<OMPLoopTransformationDirective>(SimplifiedS)) 1851 SimplifiedS = Dir->getTransformedStmt(); 1852 if (const auto *CanonLoop = dyn_cast<OMPCanonicalLoop>(SimplifiedS)) 1853 SimplifiedS = CanonLoop->getLoopStmt(); 1854 if (const auto *For = dyn_cast<ForStmt>(SimplifiedS)) { 1855 S = For->getBody(); 1856 } else { 1857 assert(isa<CXXForRangeStmt>(SimplifiedS) && 1858 "Expected canonical for loop or range-based for loop."); 1859 const auto *CXXFor = cast<CXXForRangeStmt>(SimplifiedS); 1860 CGF.EmitStmt(CXXFor->getLoopVarStmt()); 1861 S = CXXFor->getBody(); 1862 } 1863 if (Level + 1 < MaxLevel) { 1864 NextLoop = OMPLoopDirective::tryToFindNextInnerLoop( 1865 S, /*TryImperfectlyNestedLoops=*/true); 1866 emitBody(CGF, S, NextLoop, MaxLevel, Level + 1); 1867 return; 1868 } 1869 } 1870 CGF.EmitStmt(S); 1871 } 1872 1873 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1874 JumpDest LoopExit) { 1875 RunCleanupsScope BodyScope(*this); 1876 // Update counters values on current iteration. 1877 for (const Expr *UE : D.updates()) 1878 EmitIgnoredExpr(UE); 1879 // Update the linear variables. 1880 // In distribute directives only loop counters may be marked as linear, no 1881 // need to generate the code for them. 1882 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1883 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1884 for (const Expr *UE : C->updates()) 1885 EmitIgnoredExpr(UE); 1886 } 1887 } 1888 1889 // On a continue in the body, jump to the end. 1890 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1891 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1892 for (const Expr *E : D.finals_conditions()) { 1893 if (!E) 1894 continue; 1895 // Check that loop counter in non-rectangular nest fits into the iteration 1896 // space. 1897 llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next"); 1898 EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(), 1899 getProfileCount(D.getBody())); 1900 EmitBlock(NextBB); 1901 } 1902 1903 OMPPrivateScope InscanScope(*this); 1904 EmitOMPReductionClauseInit(D, InscanScope, /*ForInscan=*/true); 1905 bool IsInscanRegion = InscanScope.Privatize(); 1906 if (IsInscanRegion) { 1907 // Need to remember the block before and after scan directive 1908 // to dispatch them correctly depending on the clause used in 1909 // this directive, inclusive or exclusive. For inclusive scan the natural 1910 // order of the blocks is used, for exclusive clause the blocks must be 1911 // executed in reverse order. 1912 OMPBeforeScanBlock = createBasicBlock("omp.before.scan.bb"); 1913 OMPAfterScanBlock = createBasicBlock("omp.after.scan.bb"); 1914 // No need to allocate inscan exit block, in simd mode it is selected in the 1915 // codegen for the scan directive. 1916 if (D.getDirectiveKind() != OMPD_simd && !getLangOpts().OpenMPSimd) 1917 OMPScanExitBlock = createBasicBlock("omp.exit.inscan.bb"); 1918 OMPScanDispatch = createBasicBlock("omp.inscan.dispatch"); 1919 EmitBranch(OMPScanDispatch); 1920 EmitBlock(OMPBeforeScanBlock); 1921 } 1922 1923 // Emit loop variables for C++ range loops. 1924 const Stmt *Body = 1925 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 1926 // Emit loop body. 1927 emitBody(*this, Body, 1928 OMPLoopBasedDirective::tryToFindNextInnerLoop( 1929 Body, /*TryImperfectlyNestedLoops=*/true), 1930 D.getLoopsNumber()); 1931 1932 // Jump to the dispatcher at the end of the loop body. 1933 if (IsInscanRegion) 1934 EmitBranch(OMPScanExitBlock); 1935 1936 // The end (updates/cleanups). 1937 EmitBlock(Continue.getBlock()); 1938 BreakContinueStack.pop_back(); 1939 } 1940 1941 using EmittedClosureTy = std::pair<llvm::Function *, llvm::Value *>; 1942 1943 /// Emit a captured statement and return the function as well as its captured 1944 /// closure context. 1945 static EmittedClosureTy emitCapturedStmtFunc(CodeGenFunction &ParentCGF, 1946 const CapturedStmt *S) { 1947 LValue CapStruct = ParentCGF.InitCapturedStruct(*S); 1948 CodeGenFunction CGF(ParentCGF.CGM, /*suppressNewContext=*/true); 1949 std::unique_ptr<CodeGenFunction::CGCapturedStmtInfo> CSI = 1950 std::make_unique<CodeGenFunction::CGCapturedStmtInfo>(*S); 1951 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, CSI.get()); 1952 llvm::Function *F = CGF.GenerateCapturedStmtFunction(*S); 1953 1954 return {F, CapStruct.getPointer(ParentCGF)}; 1955 } 1956 1957 /// Emit a call to a previously captured closure. 1958 static llvm::CallInst * 1959 emitCapturedStmtCall(CodeGenFunction &ParentCGF, EmittedClosureTy Cap, 1960 llvm::ArrayRef<llvm::Value *> Args) { 1961 // Append the closure context to the argument. 1962 SmallVector<llvm::Value *> EffectiveArgs; 1963 EffectiveArgs.reserve(Args.size() + 1); 1964 llvm::append_range(EffectiveArgs, Args); 1965 EffectiveArgs.push_back(Cap.second); 1966 1967 return ParentCGF.Builder.CreateCall(Cap.first, EffectiveArgs); 1968 } 1969 1970 llvm::CanonicalLoopInfo * 1971 CodeGenFunction::EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, int Depth) { 1972 assert(Depth == 1 && "Nested loops with OpenMPIRBuilder not yet implemented"); 1973 1974 // The caller is processing the loop-associated directive processing the \p 1975 // Depth loops nested in \p S. Put the previous pending loop-associated 1976 // directive to the stack. If the current loop-associated directive is a loop 1977 // transformation directive, it will push its generated loops onto the stack 1978 // such that together with the loops left here they form the combined loop 1979 // nest for the parent loop-associated directive. 1980 int ParentExpectedOMPLoopDepth = ExpectedOMPLoopDepth; 1981 ExpectedOMPLoopDepth = Depth; 1982 1983 EmitStmt(S); 1984 assert(OMPLoopNestStack.size() >= (size_t)Depth && "Found too few loops"); 1985 1986 // The last added loop is the outermost one. 1987 llvm::CanonicalLoopInfo *Result = OMPLoopNestStack.back(); 1988 1989 // Pop the \p Depth loops requested by the call from that stack and restore 1990 // the previous context. 1991 OMPLoopNestStack.pop_back_n(Depth); 1992 ExpectedOMPLoopDepth = ParentExpectedOMPLoopDepth; 1993 1994 return Result; 1995 } 1996 1997 void CodeGenFunction::EmitOMPCanonicalLoop(const OMPCanonicalLoop *S) { 1998 const Stmt *SyntacticalLoop = S->getLoopStmt(); 1999 if (!getLangOpts().OpenMPIRBuilder) { 2000 // Ignore if OpenMPIRBuilder is not enabled. 2001 EmitStmt(SyntacticalLoop); 2002 return; 2003 } 2004 2005 LexicalScope ForScope(*this, S->getSourceRange()); 2006 2007 // Emit init statements. The Distance/LoopVar funcs may reference variable 2008 // declarations they contain. 2009 const Stmt *BodyStmt; 2010 if (const auto *For = dyn_cast<ForStmt>(SyntacticalLoop)) { 2011 if (const Stmt *InitStmt = For->getInit()) 2012 EmitStmt(InitStmt); 2013 BodyStmt = For->getBody(); 2014 } else if (const auto *RangeFor = 2015 dyn_cast<CXXForRangeStmt>(SyntacticalLoop)) { 2016 if (const DeclStmt *RangeStmt = RangeFor->getRangeStmt()) 2017 EmitStmt(RangeStmt); 2018 if (const DeclStmt *BeginStmt = RangeFor->getBeginStmt()) 2019 EmitStmt(BeginStmt); 2020 if (const DeclStmt *EndStmt = RangeFor->getEndStmt()) 2021 EmitStmt(EndStmt); 2022 if (const DeclStmt *LoopVarStmt = RangeFor->getLoopVarStmt()) 2023 EmitStmt(LoopVarStmt); 2024 BodyStmt = RangeFor->getBody(); 2025 } else 2026 llvm_unreachable("Expected for-stmt or range-based for-stmt"); 2027 2028 // Emit closure for later use. By-value captures will be captured here. 2029 const CapturedStmt *DistanceFunc = S->getDistanceFunc(); 2030 EmittedClosureTy DistanceClosure = emitCapturedStmtFunc(*this, DistanceFunc); 2031 const CapturedStmt *LoopVarFunc = S->getLoopVarFunc(); 2032 EmittedClosureTy LoopVarClosure = emitCapturedStmtFunc(*this, LoopVarFunc); 2033 2034 // Call the distance function to get the number of iterations of the loop to 2035 // come. 2036 QualType LogicalTy = DistanceFunc->getCapturedDecl() 2037 ->getParam(0) 2038 ->getType() 2039 .getNonReferenceType(); 2040 Address CountAddr = CreateMemTemp(LogicalTy, ".count.addr"); 2041 emitCapturedStmtCall(*this, DistanceClosure, {CountAddr.getPointer()}); 2042 llvm::Value *DistVal = Builder.CreateLoad(CountAddr, ".count"); 2043 2044 // Emit the loop structure. 2045 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 2046 auto BodyGen = [&, this](llvm::OpenMPIRBuilder::InsertPointTy CodeGenIP, 2047 llvm::Value *IndVar) { 2048 Builder.restoreIP(CodeGenIP); 2049 2050 // Emit the loop body: Convert the logical iteration number to the loop 2051 // variable and emit the body. 2052 const DeclRefExpr *LoopVarRef = S->getLoopVarRef(); 2053 LValue LCVal = EmitLValue(LoopVarRef); 2054 Address LoopVarAddress = LCVal.getAddress(*this); 2055 emitCapturedStmtCall(*this, LoopVarClosure, 2056 {LoopVarAddress.getPointer(), IndVar}); 2057 2058 RunCleanupsScope BodyScope(*this); 2059 EmitStmt(BodyStmt); 2060 }; 2061 llvm::CanonicalLoopInfo *CL = 2062 OMPBuilder.createCanonicalLoop(Builder, BodyGen, DistVal); 2063 2064 // Finish up the loop. 2065 Builder.restoreIP(CL->getAfterIP()); 2066 ForScope.ForceCleanup(); 2067 2068 // Remember the CanonicalLoopInfo for parent AST nodes consuming it. 2069 OMPLoopNestStack.push_back(CL); 2070 } 2071 2072 void CodeGenFunction::EmitOMPInnerLoop( 2073 const OMPExecutableDirective &S, bool RequiresCleanup, const Expr *LoopCond, 2074 const Expr *IncExpr, 2075 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 2076 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 2077 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 2078 2079 // Start the loop with a block that tests the condition. 2080 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 2081 EmitBlock(CondBlock); 2082 const SourceRange R = S.getSourceRange(); 2083 2084 // If attributes are attached, push to the basic block with them. 2085 const auto &OMPED = cast<OMPExecutableDirective>(S); 2086 const CapturedStmt *ICS = OMPED.getInnermostCapturedStmt(); 2087 const Stmt *SS = ICS->getCapturedStmt(); 2088 const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(SS); 2089 OMPLoopNestStack.clear(); 2090 if (AS) 2091 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), 2092 AS->getAttrs(), SourceLocToDebugLoc(R.getBegin()), 2093 SourceLocToDebugLoc(R.getEnd())); 2094 else 2095 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 2096 SourceLocToDebugLoc(R.getEnd())); 2097 2098 // If there are any cleanups between here and the loop-exit scope, 2099 // create a block to stage a loop exit along. 2100 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 2101 if (RequiresCleanup) 2102 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 2103 2104 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 2105 2106 // Emit condition. 2107 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 2108 if (ExitBlock != LoopExit.getBlock()) { 2109 EmitBlock(ExitBlock); 2110 EmitBranchThroughCleanup(LoopExit); 2111 } 2112 2113 EmitBlock(LoopBody); 2114 incrementProfileCounter(&S); 2115 2116 // Create a block for the increment. 2117 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 2118 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 2119 2120 BodyGen(*this); 2121 2122 // Emit "IV = IV + 1" and a back-edge to the condition block. 2123 EmitBlock(Continue.getBlock()); 2124 EmitIgnoredExpr(IncExpr); 2125 PostIncGen(*this); 2126 BreakContinueStack.pop_back(); 2127 EmitBranch(CondBlock); 2128 LoopStack.pop(); 2129 // Emit the fall-through block. 2130 EmitBlock(LoopExit.getBlock()); 2131 } 2132 2133 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 2134 if (!HaveInsertPoint()) 2135 return false; 2136 // Emit inits for the linear variables. 2137 bool HasLinears = false; 2138 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2139 for (const Expr *Init : C->inits()) { 2140 HasLinears = true; 2141 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 2142 if (const auto *Ref = 2143 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 2144 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 2145 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 2146 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 2147 CapturedStmtInfo->lookup(OrigVD) != nullptr, 2148 VD->getInit()->getType(), VK_LValue, 2149 VD->getInit()->getExprLoc()); 2150 EmitExprAsInit( 2151 &DRE, VD, 2152 MakeAddrLValue(Emission.getAllocatedAddress(), VD->getType()), 2153 /*capturedByInit=*/false); 2154 EmitAutoVarCleanups(Emission); 2155 } else { 2156 EmitVarDecl(*VD); 2157 } 2158 } 2159 // Emit the linear steps for the linear clauses. 2160 // If a step is not constant, it is pre-calculated before the loop. 2161 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 2162 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 2163 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 2164 // Emit calculation of the linear step. 2165 EmitIgnoredExpr(CS); 2166 } 2167 } 2168 return HasLinears; 2169 } 2170 2171 void CodeGenFunction::EmitOMPLinearClauseFinal( 2172 const OMPLoopDirective &D, 2173 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 2174 if (!HaveInsertPoint()) 2175 return; 2176 llvm::BasicBlock *DoneBB = nullptr; 2177 // Emit the final values of the linear variables. 2178 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2179 auto IC = C->varlist_begin(); 2180 for (const Expr *F : C->finals()) { 2181 if (!DoneBB) { 2182 if (llvm::Value *Cond = CondGen(*this)) { 2183 // If the first post-update expression is found, emit conditional 2184 // block if it was requested. 2185 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 2186 DoneBB = createBasicBlock(".omp.linear.pu.done"); 2187 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 2188 EmitBlock(ThenBB); 2189 } 2190 } 2191 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 2192 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 2193 CapturedStmtInfo->lookup(OrigVD) != nullptr, 2194 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 2195 Address OrigAddr = EmitLValue(&DRE).getAddress(*this); 2196 CodeGenFunction::OMPPrivateScope VarScope(*this); 2197 VarScope.addPrivate(OrigVD, OrigAddr); 2198 (void)VarScope.Privatize(); 2199 EmitIgnoredExpr(F); 2200 ++IC; 2201 } 2202 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 2203 EmitIgnoredExpr(PostUpdate); 2204 } 2205 if (DoneBB) 2206 EmitBlock(DoneBB, /*IsFinished=*/true); 2207 } 2208 2209 static void emitAlignedClause(CodeGenFunction &CGF, 2210 const OMPExecutableDirective &D) { 2211 if (!CGF.HaveInsertPoint()) 2212 return; 2213 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 2214 llvm::APInt ClauseAlignment(64, 0); 2215 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 2216 auto *AlignmentCI = 2217 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 2218 ClauseAlignment = AlignmentCI->getValue(); 2219 } 2220 for (const Expr *E : Clause->varlists()) { 2221 llvm::APInt Alignment(ClauseAlignment); 2222 if (Alignment == 0) { 2223 // OpenMP [2.8.1, Description] 2224 // If no optional parameter is specified, implementation-defined default 2225 // alignments for SIMD instructions on the target platforms are assumed. 2226 Alignment = 2227 CGF.getContext() 2228 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2229 E->getType()->getPointeeType())) 2230 .getQuantity(); 2231 } 2232 assert((Alignment == 0 || Alignment.isPowerOf2()) && 2233 "alignment is not power of 2"); 2234 if (Alignment != 0) { 2235 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 2236 CGF.emitAlignmentAssumption( 2237 PtrValue, E, /*No second loc needed*/ SourceLocation(), 2238 llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment)); 2239 } 2240 } 2241 } 2242 } 2243 2244 void CodeGenFunction::EmitOMPPrivateLoopCounters( 2245 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 2246 if (!HaveInsertPoint()) 2247 return; 2248 auto I = S.private_counters().begin(); 2249 for (const Expr *E : S.counters()) { 2250 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2251 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 2252 // Emit var without initialization. 2253 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 2254 EmitAutoVarCleanups(VarEmission); 2255 LocalDeclMap.erase(PrivateVD); 2256 (void)LoopScope.addPrivate(VD, VarEmission.getAllocatedAddress()); 2257 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 2258 VD->hasGlobalStorage()) { 2259 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), 2260 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 2261 E->getType(), VK_LValue, E->getExprLoc()); 2262 (void)LoopScope.addPrivate(PrivateVD, EmitLValue(&DRE).getAddress(*this)); 2263 } else { 2264 (void)LoopScope.addPrivate(PrivateVD, VarEmission.getAllocatedAddress()); 2265 } 2266 ++I; 2267 } 2268 // Privatize extra loop counters used in loops for ordered(n) clauses. 2269 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 2270 if (!C->getNumForLoops()) 2271 continue; 2272 for (unsigned I = S.getLoopsNumber(), E = C->getLoopNumIterations().size(); 2273 I < E; ++I) { 2274 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 2275 const auto *VD = cast<VarDecl>(DRE->getDecl()); 2276 // Override only those variables that can be captured to avoid re-emission 2277 // of the variables declared within the loops. 2278 if (DRE->refersToEnclosingVariableOrCapture()) { 2279 (void)LoopScope.addPrivate( 2280 VD, CreateMemTemp(DRE->getType(), VD->getName())); 2281 } 2282 } 2283 } 2284 } 2285 2286 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 2287 const Expr *Cond, llvm::BasicBlock *TrueBlock, 2288 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 2289 if (!CGF.HaveInsertPoint()) 2290 return; 2291 { 2292 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 2293 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 2294 (void)PreCondScope.Privatize(); 2295 // Get initial values of real counters. 2296 for (const Expr *I : S.inits()) { 2297 CGF.EmitIgnoredExpr(I); 2298 } 2299 } 2300 // Create temp loop control variables with their init values to support 2301 // non-rectangular loops. 2302 CodeGenFunction::OMPMapVars PreCondVars; 2303 for (const Expr *E : S.dependent_counters()) { 2304 if (!E) 2305 continue; 2306 assert(!E->getType().getNonReferenceType()->isRecordType() && 2307 "dependent counter must not be an iterator."); 2308 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2309 Address CounterAddr = 2310 CGF.CreateMemTemp(VD->getType().getNonReferenceType()); 2311 (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr); 2312 } 2313 (void)PreCondVars.apply(CGF); 2314 for (const Expr *E : S.dependent_inits()) { 2315 if (!E) 2316 continue; 2317 CGF.EmitIgnoredExpr(E); 2318 } 2319 // Check that loop is executed at least one time. 2320 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 2321 PreCondVars.restore(CGF); 2322 } 2323 2324 void CodeGenFunction::EmitOMPLinearClause( 2325 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 2326 if (!HaveInsertPoint()) 2327 return; 2328 llvm::DenseSet<const VarDecl *> SIMDLCVs; 2329 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 2330 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 2331 for (const Expr *C : LoopDirective->counters()) { 2332 SIMDLCVs.insert( 2333 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 2334 } 2335 } 2336 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2337 auto CurPrivate = C->privates().begin(); 2338 for (const Expr *E : C->varlists()) { 2339 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2340 const auto *PrivateVD = 2341 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 2342 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 2343 // Emit private VarDecl with copy init. 2344 EmitVarDecl(*PrivateVD); 2345 bool IsRegistered = 2346 PrivateScope.addPrivate(VD, GetAddrOfLocalVar(PrivateVD)); 2347 assert(IsRegistered && "linear var already registered as private"); 2348 // Silence the warning about unused variable. 2349 (void)IsRegistered; 2350 } else { 2351 EmitVarDecl(*PrivateVD); 2352 } 2353 ++CurPrivate; 2354 } 2355 } 2356 } 2357 2358 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 2359 const OMPExecutableDirective &D) { 2360 if (!CGF.HaveInsertPoint()) 2361 return; 2362 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 2363 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 2364 /*ignoreResult=*/true); 2365 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2366 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2367 // In presence of finite 'safelen', it may be unsafe to mark all 2368 // the memory instructions parallel, because loop-carried 2369 // dependences of 'safelen' iterations are possible. 2370 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 2371 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 2372 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 2373 /*ignoreResult=*/true); 2374 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2375 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2376 // In presence of finite 'safelen', it may be unsafe to mark all 2377 // the memory instructions parallel, because loop-carried 2378 // dependences of 'safelen' iterations are possible. 2379 CGF.LoopStack.setParallel(/*Enable=*/false); 2380 } 2381 } 2382 2383 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D) { 2384 // Walk clauses and process safelen/lastprivate. 2385 LoopStack.setParallel(/*Enable=*/true); 2386 LoopStack.setVectorizeEnable(); 2387 emitSimdlenSafelenClause(*this, D); 2388 if (const auto *C = D.getSingleClause<OMPOrderClause>()) 2389 if (C->getKind() == OMPC_ORDER_concurrent) 2390 LoopStack.setParallel(/*Enable=*/true); 2391 if ((D.getDirectiveKind() == OMPD_simd || 2392 (getLangOpts().OpenMPSimd && 2393 isOpenMPSimdDirective(D.getDirectiveKind()))) && 2394 llvm::any_of(D.getClausesOfKind<OMPReductionClause>(), 2395 [](const OMPReductionClause *C) { 2396 return C->getModifier() == OMPC_REDUCTION_inscan; 2397 })) 2398 // Disable parallel access in case of prefix sum. 2399 LoopStack.setParallel(/*Enable=*/false); 2400 } 2401 2402 void CodeGenFunction::EmitOMPSimdFinal( 2403 const OMPLoopDirective &D, 2404 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 2405 if (!HaveInsertPoint()) 2406 return; 2407 llvm::BasicBlock *DoneBB = nullptr; 2408 auto IC = D.counters().begin(); 2409 auto IPC = D.private_counters().begin(); 2410 for (const Expr *F : D.finals()) { 2411 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 2412 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 2413 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 2414 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 2415 OrigVD->hasGlobalStorage() || CED) { 2416 if (!DoneBB) { 2417 if (llvm::Value *Cond = CondGen(*this)) { 2418 // If the first post-update expression is found, emit conditional 2419 // block if it was requested. 2420 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 2421 DoneBB = createBasicBlock(".omp.final.done"); 2422 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 2423 EmitBlock(ThenBB); 2424 } 2425 } 2426 Address OrigAddr = Address::invalid(); 2427 if (CED) { 2428 OrigAddr = 2429 EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(*this); 2430 } else { 2431 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD), 2432 /*RefersToEnclosingVariableOrCapture=*/false, 2433 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 2434 OrigAddr = EmitLValue(&DRE).getAddress(*this); 2435 } 2436 OMPPrivateScope VarScope(*this); 2437 VarScope.addPrivate(OrigVD, OrigAddr); 2438 (void)VarScope.Privatize(); 2439 EmitIgnoredExpr(F); 2440 } 2441 ++IC; 2442 ++IPC; 2443 } 2444 if (DoneBB) 2445 EmitBlock(DoneBB, /*IsFinished=*/true); 2446 } 2447 2448 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 2449 const OMPLoopDirective &S, 2450 CodeGenFunction::JumpDest LoopExit) { 2451 CGF.EmitOMPLoopBody(S, LoopExit); 2452 CGF.EmitStopPoint(&S); 2453 } 2454 2455 /// Emit a helper variable and return corresponding lvalue. 2456 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 2457 const DeclRefExpr *Helper) { 2458 auto VDecl = cast<VarDecl>(Helper->getDecl()); 2459 CGF.EmitVarDecl(*VDecl); 2460 return CGF.EmitLValue(Helper); 2461 } 2462 2463 static void emitCommonSimdLoop(CodeGenFunction &CGF, const OMPLoopDirective &S, 2464 const RegionCodeGenTy &SimdInitGen, 2465 const RegionCodeGenTy &BodyCodeGen) { 2466 auto &&ThenGen = [&S, &SimdInitGen, &BodyCodeGen](CodeGenFunction &CGF, 2467 PrePostActionTy &) { 2468 CGOpenMPRuntime::NontemporalDeclsRAII NontemporalsRegion(CGF.CGM, S); 2469 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2470 SimdInitGen(CGF); 2471 2472 BodyCodeGen(CGF); 2473 }; 2474 auto &&ElseGen = [&BodyCodeGen](CodeGenFunction &CGF, PrePostActionTy &) { 2475 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2476 CGF.LoopStack.setVectorizeEnable(/*Enable=*/false); 2477 2478 BodyCodeGen(CGF); 2479 }; 2480 const Expr *IfCond = nullptr; 2481 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2482 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 2483 if (CGF.getLangOpts().OpenMP >= 50 && 2484 (C->getNameModifier() == OMPD_unknown || 2485 C->getNameModifier() == OMPD_simd)) { 2486 IfCond = C->getCondition(); 2487 break; 2488 } 2489 } 2490 } 2491 if (IfCond) { 2492 CGF.CGM.getOpenMPRuntime().emitIfClause(CGF, IfCond, ThenGen, ElseGen); 2493 } else { 2494 RegionCodeGenTy ThenRCG(ThenGen); 2495 ThenRCG(CGF); 2496 } 2497 } 2498 2499 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 2500 PrePostActionTy &Action) { 2501 Action.Enter(CGF); 2502 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 2503 "Expected simd directive"); 2504 OMPLoopScope PreInitScope(CGF, S); 2505 // if (PreCond) { 2506 // for (IV in 0..LastIteration) BODY; 2507 // <Final counter/linear vars updates>; 2508 // } 2509 // 2510 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 2511 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 2512 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 2513 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 2514 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 2515 } 2516 2517 // Emit: if (PreCond) - begin. 2518 // If the condition constant folds and can be elided, avoid emitting the 2519 // whole loop. 2520 bool CondConstant; 2521 llvm::BasicBlock *ContBlock = nullptr; 2522 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2523 if (!CondConstant) 2524 return; 2525 } else { 2526 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 2527 ContBlock = CGF.createBasicBlock("simd.if.end"); 2528 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 2529 CGF.getProfileCount(&S)); 2530 CGF.EmitBlock(ThenBlock); 2531 CGF.incrementProfileCounter(&S); 2532 } 2533 2534 // Emit the loop iteration variable. 2535 const Expr *IVExpr = S.getIterationVariable(); 2536 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 2537 CGF.EmitVarDecl(*IVDecl); 2538 CGF.EmitIgnoredExpr(S.getInit()); 2539 2540 // Emit the iterations count variable. 2541 // If it is not a variable, Sema decided to calculate iterations count on 2542 // each iteration (e.g., it is foldable into a constant). 2543 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2544 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2545 // Emit calculation of the iterations count. 2546 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 2547 } 2548 2549 emitAlignedClause(CGF, S); 2550 (void)CGF.EmitOMPLinearClauseInit(S); 2551 { 2552 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2553 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 2554 CGF.EmitOMPLinearClause(S, LoopScope); 2555 CGF.EmitOMPPrivateClause(S, LoopScope); 2556 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2557 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 2558 CGF, S, CGF.EmitLValue(S.getIterationVariable())); 2559 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2560 (void)LoopScope.Privatize(); 2561 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2562 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2563 2564 emitCommonSimdLoop( 2565 CGF, S, 2566 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2567 CGF.EmitOMPSimdInit(S); 2568 }, 2569 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2570 CGF.EmitOMPInnerLoop( 2571 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 2572 [&S](CodeGenFunction &CGF) { 2573 emitOMPLoopBodyWithStopPoint(CGF, S, 2574 CodeGenFunction::JumpDest()); 2575 }, 2576 [](CodeGenFunction &) {}); 2577 }); 2578 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 2579 // Emit final copy of the lastprivate variables at the end of loops. 2580 if (HasLastprivateClause) 2581 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 2582 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 2583 emitPostUpdateForReductionClause(CGF, S, 2584 [](CodeGenFunction &) { return nullptr; }); 2585 } 2586 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 2587 // Emit: if (PreCond) - end. 2588 if (ContBlock) { 2589 CGF.EmitBranch(ContBlock); 2590 CGF.EmitBlock(ContBlock, true); 2591 } 2592 } 2593 2594 static bool isSupportedByOpenMPIRBuilder(const OMPSimdDirective &S) { 2595 // Check for unsupported clauses 2596 for (OMPClause *C : S.clauses()) { 2597 // Currently only simdlen clause is supported 2598 if (!isa<OMPSimdlenClause>(C)) 2599 return false; 2600 } 2601 2602 // Check if we have a statement with the ordered directive. 2603 // Visit the statement hierarchy to find a compound statement 2604 // with a ordered directive in it. 2605 if (const auto *CanonLoop = dyn_cast<OMPCanonicalLoop>(S.getRawStmt())) { 2606 if (const Stmt *SyntacticalLoop = CanonLoop->getLoopStmt()) { 2607 for (const Stmt *SubStmt : SyntacticalLoop->children()) { 2608 if (!SubStmt) 2609 continue; 2610 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(SubStmt)) { 2611 for (const Stmt *CSSubStmt : CS->children()) { 2612 if (!CSSubStmt) 2613 continue; 2614 if (isa<OMPOrderedDirective>(CSSubStmt)) { 2615 return false; 2616 } 2617 } 2618 } 2619 } 2620 } 2621 } 2622 return true; 2623 } 2624 2625 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 2626 bool UseOMPIRBuilder = 2627 CGM.getLangOpts().OpenMPIRBuilder && isSupportedByOpenMPIRBuilder(S); 2628 if (UseOMPIRBuilder) { 2629 auto &&CodeGenIRBuilder = [this, &S, UseOMPIRBuilder](CodeGenFunction &CGF, 2630 PrePostActionTy &) { 2631 // Use the OpenMPIRBuilder if enabled. 2632 if (UseOMPIRBuilder) { 2633 // Emit the associated statement and get its loop representation. 2634 const Stmt *Inner = S.getRawStmt(); 2635 llvm::CanonicalLoopInfo *CLI = 2636 EmitOMPCollapsedCanonicalLoopNest(Inner, 1); 2637 2638 llvm::OpenMPIRBuilder &OMPBuilder = 2639 CGM.getOpenMPRuntime().getOMPBuilder(); 2640 // Add SIMD specific metadata 2641 llvm::ConstantInt *Simdlen = nullptr; 2642 if (const auto *C = S.getSingleClause<OMPSimdlenClause>()) { 2643 RValue Len = 2644 this->EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 2645 /*ignoreResult=*/true); 2646 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2647 Simdlen = Val; 2648 } 2649 OMPBuilder.applySimd(CLI, Simdlen); 2650 return; 2651 } 2652 }; 2653 { 2654 auto LPCRegion = 2655 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 2656 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2657 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, 2658 CodeGenIRBuilder); 2659 } 2660 return; 2661 } 2662 2663 ParentLoopDirectiveForScanRegion ScanRegion(*this, S); 2664 OMPFirstScanLoop = true; 2665 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2666 emitOMPSimdRegion(CGF, S, Action); 2667 }; 2668 { 2669 auto LPCRegion = 2670 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 2671 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2672 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2673 } 2674 // Check for outer lastprivate conditional update. 2675 checkForLastprivateConditionalUpdate(*this, S); 2676 } 2677 2678 void CodeGenFunction::EmitOMPTileDirective(const OMPTileDirective &S) { 2679 // Emit the de-sugared statement. 2680 OMPTransformDirectiveScopeRAII TileScope(*this, &S); 2681 EmitStmt(S.getTransformedStmt()); 2682 } 2683 2684 void CodeGenFunction::EmitOMPUnrollDirective(const OMPUnrollDirective &S) { 2685 bool UseOMPIRBuilder = CGM.getLangOpts().OpenMPIRBuilder; 2686 2687 if (UseOMPIRBuilder) { 2688 auto DL = SourceLocToDebugLoc(S.getBeginLoc()); 2689 const Stmt *Inner = S.getRawStmt(); 2690 2691 // Consume nested loop. Clear the entire remaining loop stack because a 2692 // fully unrolled loop is non-transformable. For partial unrolling the 2693 // generated outer loop is pushed back to the stack. 2694 llvm::CanonicalLoopInfo *CLI = EmitOMPCollapsedCanonicalLoopNest(Inner, 1); 2695 OMPLoopNestStack.clear(); 2696 2697 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 2698 2699 bool NeedsUnrolledCLI = ExpectedOMPLoopDepth >= 1; 2700 llvm::CanonicalLoopInfo *UnrolledCLI = nullptr; 2701 2702 if (S.hasClausesOfKind<OMPFullClause>()) { 2703 assert(ExpectedOMPLoopDepth == 0); 2704 OMPBuilder.unrollLoopFull(DL, CLI); 2705 } else if (auto *PartialClause = S.getSingleClause<OMPPartialClause>()) { 2706 uint64_t Factor = 0; 2707 if (Expr *FactorExpr = PartialClause->getFactor()) { 2708 Factor = FactorExpr->EvaluateKnownConstInt(getContext()).getZExtValue(); 2709 assert(Factor >= 1 && "Only positive factors are valid"); 2710 } 2711 OMPBuilder.unrollLoopPartial(DL, CLI, Factor, 2712 NeedsUnrolledCLI ? &UnrolledCLI : nullptr); 2713 } else { 2714 OMPBuilder.unrollLoopHeuristic(DL, CLI); 2715 } 2716 2717 assert((!NeedsUnrolledCLI || UnrolledCLI) && 2718 "NeedsUnrolledCLI implies UnrolledCLI to be set"); 2719 if (UnrolledCLI) 2720 OMPLoopNestStack.push_back(UnrolledCLI); 2721 2722 return; 2723 } 2724 2725 // This function is only called if the unrolled loop is not consumed by any 2726 // other loop-associated construct. Such a loop-associated construct will have 2727 // used the transformed AST. 2728 2729 // Set the unroll metadata for the next emitted loop. 2730 LoopStack.setUnrollState(LoopAttributes::Enable); 2731 2732 if (S.hasClausesOfKind<OMPFullClause>()) { 2733 LoopStack.setUnrollState(LoopAttributes::Full); 2734 } else if (auto *PartialClause = S.getSingleClause<OMPPartialClause>()) { 2735 if (Expr *FactorExpr = PartialClause->getFactor()) { 2736 uint64_t Factor = 2737 FactorExpr->EvaluateKnownConstInt(getContext()).getZExtValue(); 2738 assert(Factor >= 1 && "Only positive factors are valid"); 2739 LoopStack.setUnrollCount(Factor); 2740 } 2741 } 2742 2743 EmitStmt(S.getAssociatedStmt()); 2744 } 2745 2746 void CodeGenFunction::EmitOMPOuterLoop( 2747 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 2748 CodeGenFunction::OMPPrivateScope &LoopScope, 2749 const CodeGenFunction::OMPLoopArguments &LoopArgs, 2750 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 2751 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 2752 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2753 2754 const Expr *IVExpr = S.getIterationVariable(); 2755 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2756 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2757 2758 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 2759 2760 // Start the loop with a block that tests the condition. 2761 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 2762 EmitBlock(CondBlock); 2763 const SourceRange R = S.getSourceRange(); 2764 OMPLoopNestStack.clear(); 2765 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 2766 SourceLocToDebugLoc(R.getEnd())); 2767 2768 llvm::Value *BoolCondVal = nullptr; 2769 if (!DynamicOrOrdered) { 2770 // UB = min(UB, GlobalUB) or 2771 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 2772 // 'distribute parallel for') 2773 EmitIgnoredExpr(LoopArgs.EUB); 2774 // IV = LB 2775 EmitIgnoredExpr(LoopArgs.Init); 2776 // IV < UB 2777 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 2778 } else { 2779 BoolCondVal = 2780 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 2781 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 2782 } 2783 2784 // If there are any cleanups between here and the loop-exit scope, 2785 // create a block to stage a loop exit along. 2786 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 2787 if (LoopScope.requiresCleanups()) 2788 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 2789 2790 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 2791 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 2792 if (ExitBlock != LoopExit.getBlock()) { 2793 EmitBlock(ExitBlock); 2794 EmitBranchThroughCleanup(LoopExit); 2795 } 2796 EmitBlock(LoopBody); 2797 2798 // Emit "IV = LB" (in case of static schedule, we have already calculated new 2799 // LB for loop condition and emitted it above). 2800 if (DynamicOrOrdered) 2801 EmitIgnoredExpr(LoopArgs.Init); 2802 2803 // Create a block for the increment. 2804 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 2805 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 2806 2807 emitCommonSimdLoop( 2808 *this, S, 2809 [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) { 2810 // Generate !llvm.loop.parallel metadata for loads and stores for loops 2811 // with dynamic/guided scheduling and without ordered clause. 2812 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2813 CGF.LoopStack.setParallel(!IsMonotonic); 2814 if (const auto *C = S.getSingleClause<OMPOrderClause>()) 2815 if (C->getKind() == OMPC_ORDER_concurrent) 2816 CGF.LoopStack.setParallel(/*Enable=*/true); 2817 } else { 2818 CGF.EmitOMPSimdInit(S); 2819 } 2820 }, 2821 [&S, &LoopArgs, LoopExit, &CodeGenLoop, IVSize, IVSigned, &CodeGenOrdered, 2822 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2823 SourceLocation Loc = S.getBeginLoc(); 2824 // when 'distribute' is not combined with a 'for': 2825 // while (idx <= UB) { BODY; ++idx; } 2826 // when 'distribute' is combined with a 'for' 2827 // (e.g. 'distribute parallel for') 2828 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 2829 CGF.EmitOMPInnerLoop( 2830 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 2831 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 2832 CodeGenLoop(CGF, S, LoopExit); 2833 }, 2834 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 2835 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 2836 }); 2837 }); 2838 2839 EmitBlock(Continue.getBlock()); 2840 BreakContinueStack.pop_back(); 2841 if (!DynamicOrOrdered) { 2842 // Emit "LB = LB + Stride", "UB = UB + Stride". 2843 EmitIgnoredExpr(LoopArgs.NextLB); 2844 EmitIgnoredExpr(LoopArgs.NextUB); 2845 } 2846 2847 EmitBranch(CondBlock); 2848 OMPLoopNestStack.clear(); 2849 LoopStack.pop(); 2850 // Emit the fall-through block. 2851 EmitBlock(LoopExit.getBlock()); 2852 2853 // Tell the runtime we are done. 2854 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 2855 if (!DynamicOrOrdered) 2856 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2857 S.getDirectiveKind()); 2858 }; 2859 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2860 } 2861 2862 void CodeGenFunction::EmitOMPForOuterLoop( 2863 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 2864 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 2865 const OMPLoopArguments &LoopArgs, 2866 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2867 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2868 2869 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 2870 const bool DynamicOrOrdered = Ordered || RT.isDynamic(ScheduleKind.Schedule); 2871 2872 assert((Ordered || !RT.isStaticNonchunked(ScheduleKind.Schedule, 2873 LoopArgs.Chunk != nullptr)) && 2874 "static non-chunked schedule does not need outer loop"); 2875 2876 // Emit outer loop. 2877 // 2878 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2879 // When schedule(dynamic,chunk_size) is specified, the iterations are 2880 // distributed to threads in the team in chunks as the threads request them. 2881 // Each thread executes a chunk of iterations, then requests another chunk, 2882 // until no chunks remain to be distributed. Each chunk contains chunk_size 2883 // iterations, except for the last chunk to be distributed, which may have 2884 // fewer iterations. When no chunk_size is specified, it defaults to 1. 2885 // 2886 // When schedule(guided,chunk_size) is specified, the iterations are assigned 2887 // to threads in the team in chunks as the executing threads request them. 2888 // Each thread executes a chunk of iterations, then requests another chunk, 2889 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 2890 // each chunk is proportional to the number of unassigned iterations divided 2891 // by the number of threads in the team, decreasing to 1. For a chunk_size 2892 // with value k (greater than 1), the size of each chunk is determined in the 2893 // same way, with the restriction that the chunks do not contain fewer than k 2894 // iterations (except for the last chunk to be assigned, which may have fewer 2895 // than k iterations). 2896 // 2897 // When schedule(auto) is specified, the decision regarding scheduling is 2898 // delegated to the compiler and/or runtime system. The programmer gives the 2899 // implementation the freedom to choose any possible mapping of iterations to 2900 // threads in the team. 2901 // 2902 // When schedule(runtime) is specified, the decision regarding scheduling is 2903 // deferred until run time, and the schedule and chunk size are taken from the 2904 // run-sched-var ICV. If the ICV is set to auto, the schedule is 2905 // implementation defined 2906 // 2907 // while(__kmpc_dispatch_next(&LB, &UB)) { 2908 // idx = LB; 2909 // while (idx <= UB) { BODY; ++idx; 2910 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 2911 // } // inner loop 2912 // } 2913 // 2914 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2915 // When schedule(static, chunk_size) is specified, iterations are divided into 2916 // chunks of size chunk_size, and the chunks are assigned to the threads in 2917 // the team in a round-robin fashion in the order of the thread number. 2918 // 2919 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 2920 // while (idx <= UB) { BODY; ++idx; } // inner loop 2921 // LB = LB + ST; 2922 // UB = UB + ST; 2923 // } 2924 // 2925 2926 const Expr *IVExpr = S.getIterationVariable(); 2927 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2928 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2929 2930 if (DynamicOrOrdered) { 2931 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 2932 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 2933 llvm::Value *LBVal = DispatchBounds.first; 2934 llvm::Value *UBVal = DispatchBounds.second; 2935 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 2936 LoopArgs.Chunk}; 2937 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 2938 IVSigned, Ordered, DipatchRTInputValues); 2939 } else { 2940 CGOpenMPRuntime::StaticRTInput StaticInit( 2941 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 2942 LoopArgs.ST, LoopArgs.Chunk); 2943 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2944 ScheduleKind, StaticInit); 2945 } 2946 2947 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 2948 const unsigned IVSize, 2949 const bool IVSigned) { 2950 if (Ordered) { 2951 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 2952 IVSigned); 2953 } 2954 }; 2955 2956 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 2957 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 2958 OuterLoopArgs.IncExpr = S.getInc(); 2959 OuterLoopArgs.Init = S.getInit(); 2960 OuterLoopArgs.Cond = S.getCond(); 2961 OuterLoopArgs.NextLB = S.getNextLowerBound(); 2962 OuterLoopArgs.NextUB = S.getNextUpperBound(); 2963 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 2964 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 2965 } 2966 2967 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 2968 const unsigned IVSize, const bool IVSigned) {} 2969 2970 void CodeGenFunction::EmitOMPDistributeOuterLoop( 2971 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 2972 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 2973 const CodeGenLoopTy &CodeGenLoopContent) { 2974 2975 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2976 2977 // Emit outer loop. 2978 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 2979 // dynamic 2980 // 2981 2982 const Expr *IVExpr = S.getIterationVariable(); 2983 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2984 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2985 2986 CGOpenMPRuntime::StaticRTInput StaticInit( 2987 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 2988 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 2989 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 2990 2991 // for combined 'distribute' and 'for' the increment expression of distribute 2992 // is stored in DistInc. For 'distribute' alone, it is in Inc. 2993 Expr *IncExpr; 2994 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 2995 IncExpr = S.getDistInc(); 2996 else 2997 IncExpr = S.getInc(); 2998 2999 // this routine is shared by 'omp distribute parallel for' and 3000 // 'omp distribute': select the right EUB expression depending on the 3001 // directive 3002 OMPLoopArguments OuterLoopArgs; 3003 OuterLoopArgs.LB = LoopArgs.LB; 3004 OuterLoopArgs.UB = LoopArgs.UB; 3005 OuterLoopArgs.ST = LoopArgs.ST; 3006 OuterLoopArgs.IL = LoopArgs.IL; 3007 OuterLoopArgs.Chunk = LoopArgs.Chunk; 3008 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3009 ? S.getCombinedEnsureUpperBound() 3010 : S.getEnsureUpperBound(); 3011 OuterLoopArgs.IncExpr = IncExpr; 3012 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3013 ? S.getCombinedInit() 3014 : S.getInit(); 3015 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3016 ? S.getCombinedCond() 3017 : S.getCond(); 3018 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3019 ? S.getCombinedNextLowerBound() 3020 : S.getNextLowerBound(); 3021 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3022 ? S.getCombinedNextUpperBound() 3023 : S.getNextUpperBound(); 3024 3025 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 3026 LoopScope, OuterLoopArgs, CodeGenLoopContent, 3027 emitEmptyOrdered); 3028 } 3029 3030 static std::pair<LValue, LValue> 3031 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 3032 const OMPExecutableDirective &S) { 3033 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 3034 LValue LB = 3035 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 3036 LValue UB = 3037 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 3038 3039 // When composing 'distribute' with 'for' (e.g. as in 'distribute 3040 // parallel for') we need to use the 'distribute' 3041 // chunk lower and upper bounds rather than the whole loop iteration 3042 // space. These are parameters to the outlined function for 'parallel' 3043 // and we copy the bounds of the previous schedule into the 3044 // the current ones. 3045 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 3046 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 3047 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 3048 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 3049 PrevLBVal = CGF.EmitScalarConversion( 3050 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 3051 LS.getIterationVariable()->getType(), 3052 LS.getPrevLowerBoundVariable()->getExprLoc()); 3053 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 3054 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 3055 PrevUBVal = CGF.EmitScalarConversion( 3056 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 3057 LS.getIterationVariable()->getType(), 3058 LS.getPrevUpperBoundVariable()->getExprLoc()); 3059 3060 CGF.EmitStoreOfScalar(PrevLBVal, LB); 3061 CGF.EmitStoreOfScalar(PrevUBVal, UB); 3062 3063 return {LB, UB}; 3064 } 3065 3066 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 3067 /// we need to use the LB and UB expressions generated by the worksharing 3068 /// code generation support, whereas in non combined situations we would 3069 /// just emit 0 and the LastIteration expression 3070 /// This function is necessary due to the difference of the LB and UB 3071 /// types for the RT emission routines for 'for_static_init' and 3072 /// 'for_dispatch_init' 3073 static std::pair<llvm::Value *, llvm::Value *> 3074 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 3075 const OMPExecutableDirective &S, 3076 Address LB, Address UB) { 3077 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 3078 const Expr *IVExpr = LS.getIterationVariable(); 3079 // when implementing a dynamic schedule for a 'for' combined with a 3080 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 3081 // is not normalized as each team only executes its own assigned 3082 // distribute chunk 3083 QualType IteratorTy = IVExpr->getType(); 3084 llvm::Value *LBVal = 3085 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 3086 llvm::Value *UBVal = 3087 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 3088 return {LBVal, UBVal}; 3089 } 3090 3091 static void emitDistributeParallelForDistributeInnerBoundParams( 3092 CodeGenFunction &CGF, const OMPExecutableDirective &S, 3093 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 3094 const auto &Dir = cast<OMPLoopDirective>(S); 3095 LValue LB = 3096 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 3097 llvm::Value *LBCast = 3098 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(LB.getAddress(CGF)), 3099 CGF.SizeTy, /*isSigned=*/false); 3100 CapturedVars.push_back(LBCast); 3101 LValue UB = 3102 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 3103 3104 llvm::Value *UBCast = 3105 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(UB.getAddress(CGF)), 3106 CGF.SizeTy, /*isSigned=*/false); 3107 CapturedVars.push_back(UBCast); 3108 } 3109 3110 static void 3111 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 3112 const OMPLoopDirective &S, 3113 CodeGenFunction::JumpDest LoopExit) { 3114 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 3115 PrePostActionTy &Action) { 3116 Action.Enter(CGF); 3117 bool HasCancel = false; 3118 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 3119 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 3120 HasCancel = D->hasCancel(); 3121 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 3122 HasCancel = D->hasCancel(); 3123 else if (const auto *D = 3124 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 3125 HasCancel = D->hasCancel(); 3126 } 3127 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 3128 HasCancel); 3129 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 3130 emitDistributeParallelForInnerBounds, 3131 emitDistributeParallelForDispatchBounds); 3132 }; 3133 3134 emitCommonOMPParallelDirective( 3135 CGF, S, 3136 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 3137 CGInlinedWorksharingLoop, 3138 emitDistributeParallelForDistributeInnerBoundParams); 3139 } 3140 3141 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 3142 const OMPDistributeParallelForDirective &S) { 3143 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3144 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 3145 S.getDistInc()); 3146 }; 3147 OMPLexicalScope Scope(*this, S, OMPD_parallel); 3148 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3149 } 3150 3151 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 3152 const OMPDistributeParallelForSimdDirective &S) { 3153 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3154 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 3155 S.getDistInc()); 3156 }; 3157 OMPLexicalScope Scope(*this, S, OMPD_parallel); 3158 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3159 } 3160 3161 void CodeGenFunction::EmitOMPDistributeSimdDirective( 3162 const OMPDistributeSimdDirective &S) { 3163 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3164 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3165 }; 3166 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3167 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 3168 } 3169 3170 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 3171 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 3172 // Emit SPMD target parallel for region as a standalone region. 3173 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3174 emitOMPSimdRegion(CGF, S, Action); 3175 }; 3176 llvm::Function *Fn; 3177 llvm::Constant *Addr; 3178 // Emit target region as a standalone region. 3179 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 3180 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 3181 assert(Fn && Addr && "Target device function emission failed."); 3182 } 3183 3184 void CodeGenFunction::EmitOMPTargetSimdDirective( 3185 const OMPTargetSimdDirective &S) { 3186 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3187 emitOMPSimdRegion(CGF, S, Action); 3188 }; 3189 emitCommonOMPTargetDirective(*this, S, CodeGen); 3190 } 3191 3192 namespace { 3193 struct ScheduleKindModifiersTy { 3194 OpenMPScheduleClauseKind Kind; 3195 OpenMPScheduleClauseModifier M1; 3196 OpenMPScheduleClauseModifier M2; 3197 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 3198 OpenMPScheduleClauseModifier M1, 3199 OpenMPScheduleClauseModifier M2) 3200 : Kind(Kind), M1(M1), M2(M2) {} 3201 }; 3202 } // namespace 3203 3204 bool CodeGenFunction::EmitOMPWorksharingLoop( 3205 const OMPLoopDirective &S, Expr *EUB, 3206 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3207 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 3208 // Emit the loop iteration variable. 3209 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3210 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3211 EmitVarDecl(*IVDecl); 3212 3213 // Emit the iterations count variable. 3214 // If it is not a variable, Sema decided to calculate iterations count on each 3215 // iteration (e.g., it is foldable into a constant). 3216 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3217 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3218 // Emit calculation of the iterations count. 3219 EmitIgnoredExpr(S.getCalcLastIteration()); 3220 } 3221 3222 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 3223 3224 bool HasLastprivateClause; 3225 // Check pre-condition. 3226 { 3227 OMPLoopScope PreInitScope(*this, S); 3228 // Skip the entire loop if we don't meet the precondition. 3229 // If the condition constant folds and can be elided, avoid emitting the 3230 // whole loop. 3231 bool CondConstant; 3232 llvm::BasicBlock *ContBlock = nullptr; 3233 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3234 if (!CondConstant) 3235 return false; 3236 } else { 3237 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 3238 ContBlock = createBasicBlock("omp.precond.end"); 3239 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3240 getProfileCount(&S)); 3241 EmitBlock(ThenBlock); 3242 incrementProfileCounter(&S); 3243 } 3244 3245 RunCleanupsScope DoacrossCleanupScope(*this); 3246 bool Ordered = false; 3247 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 3248 if (OrderedClause->getNumForLoops()) 3249 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 3250 else 3251 Ordered = true; 3252 } 3253 3254 llvm::DenseSet<const Expr *> EmittedFinals; 3255 emitAlignedClause(*this, S); 3256 bool HasLinears = EmitOMPLinearClauseInit(S); 3257 // Emit helper vars inits. 3258 3259 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 3260 LValue LB = Bounds.first; 3261 LValue UB = Bounds.second; 3262 LValue ST = 3263 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3264 LValue IL = 3265 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3266 3267 // Emit 'then' code. 3268 { 3269 OMPPrivateScope LoopScope(*this); 3270 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 3271 // Emit implicit barrier to synchronize threads and avoid data races on 3272 // initialization of firstprivate variables and post-update of 3273 // lastprivate variables. 3274 CGM.getOpenMPRuntime().emitBarrierCall( 3275 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3276 /*ForceSimpleCall=*/true); 3277 } 3278 EmitOMPPrivateClause(S, LoopScope); 3279 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 3280 *this, S, EmitLValue(S.getIterationVariable())); 3281 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3282 EmitOMPReductionClauseInit(S, LoopScope); 3283 EmitOMPPrivateLoopCounters(S, LoopScope); 3284 EmitOMPLinearClause(S, LoopScope); 3285 (void)LoopScope.Privatize(); 3286 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3287 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 3288 3289 // Detect the loop schedule kind and chunk. 3290 const Expr *ChunkExpr = nullptr; 3291 OpenMPScheduleTy ScheduleKind; 3292 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 3293 ScheduleKind.Schedule = C->getScheduleKind(); 3294 ScheduleKind.M1 = C->getFirstScheduleModifier(); 3295 ScheduleKind.M2 = C->getSecondScheduleModifier(); 3296 ChunkExpr = C->getChunkSize(); 3297 } else { 3298 // Default behaviour for schedule clause. 3299 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 3300 *this, S, ScheduleKind.Schedule, ChunkExpr); 3301 } 3302 bool HasChunkSizeOne = false; 3303 llvm::Value *Chunk = nullptr; 3304 if (ChunkExpr) { 3305 Chunk = EmitScalarExpr(ChunkExpr); 3306 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 3307 S.getIterationVariable()->getType(), 3308 S.getBeginLoc()); 3309 Expr::EvalResult Result; 3310 if (ChunkExpr->EvaluateAsInt(Result, getContext())) { 3311 llvm::APSInt EvaluatedChunk = Result.Val.getInt(); 3312 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 3313 } 3314 } 3315 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3316 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3317 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 3318 // If the static schedule kind is specified or if the ordered clause is 3319 // specified, and if no monotonic modifier is specified, the effect will 3320 // be as if the monotonic modifier was specified. 3321 bool StaticChunkedOne = 3322 RT.isStaticChunked(ScheduleKind.Schedule, 3323 /* Chunked */ Chunk != nullptr) && 3324 HasChunkSizeOne && 3325 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 3326 bool IsMonotonic = 3327 Ordered || 3328 (ScheduleKind.Schedule == OMPC_SCHEDULE_static && 3329 !(ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_nonmonotonic || 3330 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_nonmonotonic)) || 3331 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 3332 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 3333 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 3334 /* Chunked */ Chunk != nullptr) || 3335 StaticChunkedOne) && 3336 !Ordered) { 3337 JumpDest LoopExit = 3338 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3339 emitCommonSimdLoop( 3340 *this, S, 3341 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3342 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3343 CGF.EmitOMPSimdInit(S); 3344 } else if (const auto *C = S.getSingleClause<OMPOrderClause>()) { 3345 if (C->getKind() == OMPC_ORDER_concurrent) 3346 CGF.LoopStack.setParallel(/*Enable=*/true); 3347 } 3348 }, 3349 [IVSize, IVSigned, Ordered, IL, LB, UB, ST, StaticChunkedOne, Chunk, 3350 &S, ScheduleKind, LoopExit, 3351 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 3352 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 3353 // When no chunk_size is specified, the iteration space is divided 3354 // into chunks that are approximately equal in size, and at most 3355 // one chunk is distributed to each thread. Note that the size of 3356 // the chunks is unspecified in this case. 3357 CGOpenMPRuntime::StaticRTInput StaticInit( 3358 IVSize, IVSigned, Ordered, IL.getAddress(CGF), 3359 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF), 3360 StaticChunkedOne ? Chunk : nullptr); 3361 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 3362 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, 3363 StaticInit); 3364 // UB = min(UB, GlobalUB); 3365 if (!StaticChunkedOne) 3366 CGF.EmitIgnoredExpr(S.getEnsureUpperBound()); 3367 // IV = LB; 3368 CGF.EmitIgnoredExpr(S.getInit()); 3369 // For unchunked static schedule generate: 3370 // 3371 // while (idx <= UB) { 3372 // BODY; 3373 // ++idx; 3374 // } 3375 // 3376 // For static schedule with chunk one: 3377 // 3378 // while (IV <= PrevUB) { 3379 // BODY; 3380 // IV += ST; 3381 // } 3382 CGF.EmitOMPInnerLoop( 3383 S, LoopScope.requiresCleanups(), 3384 StaticChunkedOne ? S.getCombinedParForInDistCond() 3385 : S.getCond(), 3386 StaticChunkedOne ? S.getDistInc() : S.getInc(), 3387 [&S, LoopExit](CodeGenFunction &CGF) { 3388 emitOMPLoopBodyWithStopPoint(CGF, S, LoopExit); 3389 }, 3390 [](CodeGenFunction &) {}); 3391 }); 3392 EmitBlock(LoopExit.getBlock()); 3393 // Tell the runtime we are done. 3394 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 3395 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 3396 S.getDirectiveKind()); 3397 }; 3398 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 3399 } else { 3400 // Emit the outer loop, which requests its work chunk [LB..UB] from 3401 // runtime and runs the inner loop to process it. 3402 const OMPLoopArguments LoopArguments( 3403 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 3404 IL.getAddress(*this), Chunk, EUB); 3405 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 3406 LoopArguments, CGDispatchBounds); 3407 } 3408 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3409 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3410 return CGF.Builder.CreateIsNotNull( 3411 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3412 }); 3413 } 3414 EmitOMPReductionClauseFinal( 3415 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 3416 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 3417 : /*Parallel only*/ OMPD_parallel); 3418 // Emit post-update of the reduction variables if IsLastIter != 0. 3419 emitPostUpdateForReductionClause( 3420 *this, S, [IL, &S](CodeGenFunction &CGF) { 3421 return CGF.Builder.CreateIsNotNull( 3422 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3423 }); 3424 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3425 if (HasLastprivateClause) 3426 EmitOMPLastprivateClauseFinal( 3427 S, isOpenMPSimdDirective(S.getDirectiveKind()), 3428 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3429 } 3430 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 3431 return CGF.Builder.CreateIsNotNull( 3432 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3433 }); 3434 DoacrossCleanupScope.ForceCleanup(); 3435 // We're now done with the loop, so jump to the continuation block. 3436 if (ContBlock) { 3437 EmitBranch(ContBlock); 3438 EmitBlock(ContBlock, /*IsFinished=*/true); 3439 } 3440 } 3441 return HasLastprivateClause; 3442 } 3443 3444 /// The following two functions generate expressions for the loop lower 3445 /// and upper bounds in case of static and dynamic (dispatch) schedule 3446 /// of the associated 'for' or 'distribute' loop. 3447 static std::pair<LValue, LValue> 3448 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 3449 const auto &LS = cast<OMPLoopDirective>(S); 3450 LValue LB = 3451 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 3452 LValue UB = 3453 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 3454 return {LB, UB}; 3455 } 3456 3457 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 3458 /// consider the lower and upper bound expressions generated by the 3459 /// worksharing loop support, but we use 0 and the iteration space size as 3460 /// constants 3461 static std::pair<llvm::Value *, llvm::Value *> 3462 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 3463 Address LB, Address UB) { 3464 const auto &LS = cast<OMPLoopDirective>(S); 3465 const Expr *IVExpr = LS.getIterationVariable(); 3466 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 3467 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 3468 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 3469 return {LBVal, UBVal}; 3470 } 3471 3472 /// Emits internal temp array declarations for the directive with inscan 3473 /// reductions. 3474 /// The code is the following: 3475 /// \code 3476 /// size num_iters = <num_iters>; 3477 /// <type> buffer[num_iters]; 3478 /// \endcode 3479 static void emitScanBasedDirectiveDecls( 3480 CodeGenFunction &CGF, const OMPLoopDirective &S, 3481 llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen) { 3482 llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast( 3483 NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false); 3484 SmallVector<const Expr *, 4> Shareds; 3485 SmallVector<const Expr *, 4> Privates; 3486 SmallVector<const Expr *, 4> ReductionOps; 3487 SmallVector<const Expr *, 4> CopyArrayTemps; 3488 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3489 assert(C->getModifier() == OMPC_REDUCTION_inscan && 3490 "Only inscan reductions are expected."); 3491 Shareds.append(C->varlist_begin(), C->varlist_end()); 3492 Privates.append(C->privates().begin(), C->privates().end()); 3493 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 3494 CopyArrayTemps.append(C->copy_array_temps().begin(), 3495 C->copy_array_temps().end()); 3496 } 3497 { 3498 // Emit buffers for each reduction variables. 3499 // ReductionCodeGen is required to emit correctly the code for array 3500 // reductions. 3501 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 3502 unsigned Count = 0; 3503 auto *ITA = CopyArrayTemps.begin(); 3504 for (const Expr *IRef : Privates) { 3505 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 3506 // Emit variably modified arrays, used for arrays/array sections 3507 // reductions. 3508 if (PrivateVD->getType()->isVariablyModifiedType()) { 3509 RedCG.emitSharedOrigLValue(CGF, Count); 3510 RedCG.emitAggregateType(CGF, Count); 3511 } 3512 CodeGenFunction::OpaqueValueMapping DimMapping( 3513 CGF, 3514 cast<OpaqueValueExpr>( 3515 cast<VariableArrayType>((*ITA)->getType()->getAsArrayTypeUnsafe()) 3516 ->getSizeExpr()), 3517 RValue::get(OMPScanNumIterations)); 3518 // Emit temp buffer. 3519 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(*ITA)->getDecl())); 3520 ++ITA; 3521 ++Count; 3522 } 3523 } 3524 } 3525 3526 /// Copies final inscan reductions values to the original variables. 3527 /// The code is the following: 3528 /// \code 3529 /// <orig_var> = buffer[num_iters-1]; 3530 /// \endcode 3531 static void emitScanBasedDirectiveFinals( 3532 CodeGenFunction &CGF, const OMPLoopDirective &S, 3533 llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen) { 3534 llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast( 3535 NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false); 3536 SmallVector<const Expr *, 4> Shareds; 3537 SmallVector<const Expr *, 4> LHSs; 3538 SmallVector<const Expr *, 4> RHSs; 3539 SmallVector<const Expr *, 4> Privates; 3540 SmallVector<const Expr *, 4> CopyOps; 3541 SmallVector<const Expr *, 4> CopyArrayElems; 3542 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3543 assert(C->getModifier() == OMPC_REDUCTION_inscan && 3544 "Only inscan reductions are expected."); 3545 Shareds.append(C->varlist_begin(), C->varlist_end()); 3546 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 3547 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 3548 Privates.append(C->privates().begin(), C->privates().end()); 3549 CopyOps.append(C->copy_ops().begin(), C->copy_ops().end()); 3550 CopyArrayElems.append(C->copy_array_elems().begin(), 3551 C->copy_array_elems().end()); 3552 } 3553 // Create temp var and copy LHS value to this temp value. 3554 // LHS = TMP[LastIter]; 3555 llvm::Value *OMPLast = CGF.Builder.CreateNSWSub( 3556 OMPScanNumIterations, 3557 llvm::ConstantInt::get(CGF.SizeTy, 1, /*isSigned=*/false)); 3558 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 3559 const Expr *PrivateExpr = Privates[I]; 3560 const Expr *OrigExpr = Shareds[I]; 3561 const Expr *CopyArrayElem = CopyArrayElems[I]; 3562 CodeGenFunction::OpaqueValueMapping IdxMapping( 3563 CGF, 3564 cast<OpaqueValueExpr>( 3565 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3566 RValue::get(OMPLast)); 3567 LValue DestLVal = CGF.EmitLValue(OrigExpr); 3568 LValue SrcLVal = CGF.EmitLValue(CopyArrayElem); 3569 CGF.EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(CGF), 3570 SrcLVal.getAddress(CGF), 3571 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 3572 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 3573 CopyOps[I]); 3574 } 3575 } 3576 3577 /// Emits the code for the directive with inscan reductions. 3578 /// The code is the following: 3579 /// \code 3580 /// #pragma omp ... 3581 /// for (i: 0..<num_iters>) { 3582 /// <input phase>; 3583 /// buffer[i] = red; 3584 /// } 3585 /// #pragma omp master // in parallel region 3586 /// for (int k = 0; k != ceil(log2(num_iters)); ++k) 3587 /// for (size cnt = last_iter; cnt >= pow(2, k); --k) 3588 /// buffer[i] op= buffer[i-pow(2,k)]; 3589 /// #pragma omp barrier // in parallel region 3590 /// #pragma omp ... 3591 /// for (0..<num_iters>) { 3592 /// red = InclusiveScan ? buffer[i] : buffer[i-1]; 3593 /// <scan phase>; 3594 /// } 3595 /// \endcode 3596 static void emitScanBasedDirective( 3597 CodeGenFunction &CGF, const OMPLoopDirective &S, 3598 llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen, 3599 llvm::function_ref<void(CodeGenFunction &)> FirstGen, 3600 llvm::function_ref<void(CodeGenFunction &)> SecondGen) { 3601 llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast( 3602 NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false); 3603 SmallVector<const Expr *, 4> Privates; 3604 SmallVector<const Expr *, 4> ReductionOps; 3605 SmallVector<const Expr *, 4> LHSs; 3606 SmallVector<const Expr *, 4> RHSs; 3607 SmallVector<const Expr *, 4> CopyArrayElems; 3608 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3609 assert(C->getModifier() == OMPC_REDUCTION_inscan && 3610 "Only inscan reductions are expected."); 3611 Privates.append(C->privates().begin(), C->privates().end()); 3612 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 3613 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 3614 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 3615 CopyArrayElems.append(C->copy_array_elems().begin(), 3616 C->copy_array_elems().end()); 3617 } 3618 CodeGenFunction::ParentLoopDirectiveForScanRegion ScanRegion(CGF, S); 3619 { 3620 // Emit loop with input phase: 3621 // #pragma omp ... 3622 // for (i: 0..<num_iters>) { 3623 // <input phase>; 3624 // buffer[i] = red; 3625 // } 3626 CGF.OMPFirstScanLoop = true; 3627 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 3628 FirstGen(CGF); 3629 } 3630 // #pragma omp barrier // in parallel region 3631 auto &&CodeGen = [&S, OMPScanNumIterations, &LHSs, &RHSs, &CopyArrayElems, 3632 &ReductionOps, 3633 &Privates](CodeGenFunction &CGF, PrePostActionTy &Action) { 3634 Action.Enter(CGF); 3635 // Emit prefix reduction: 3636 // #pragma omp master // in parallel region 3637 // for (int k = 0; k <= ceil(log2(n)); ++k) 3638 llvm::BasicBlock *InputBB = CGF.Builder.GetInsertBlock(); 3639 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.outer.log.scan.body"); 3640 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.outer.log.scan.exit"); 3641 llvm::Function *F = 3642 CGF.CGM.getIntrinsic(llvm::Intrinsic::log2, CGF.DoubleTy); 3643 llvm::Value *Arg = 3644 CGF.Builder.CreateUIToFP(OMPScanNumIterations, CGF.DoubleTy); 3645 llvm::Value *LogVal = CGF.EmitNounwindRuntimeCall(F, Arg); 3646 F = CGF.CGM.getIntrinsic(llvm::Intrinsic::ceil, CGF.DoubleTy); 3647 LogVal = CGF.EmitNounwindRuntimeCall(F, LogVal); 3648 LogVal = CGF.Builder.CreateFPToUI(LogVal, CGF.IntTy); 3649 llvm::Value *NMin1 = CGF.Builder.CreateNUWSub( 3650 OMPScanNumIterations, llvm::ConstantInt::get(CGF.SizeTy, 1)); 3651 auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getBeginLoc()); 3652 CGF.EmitBlock(LoopBB); 3653 auto *Counter = CGF.Builder.CreatePHI(CGF.IntTy, 2); 3654 // size pow2k = 1; 3655 auto *Pow2K = CGF.Builder.CreatePHI(CGF.SizeTy, 2); 3656 Counter->addIncoming(llvm::ConstantInt::get(CGF.IntTy, 0), InputBB); 3657 Pow2K->addIncoming(llvm::ConstantInt::get(CGF.SizeTy, 1), InputBB); 3658 // for (size i = n - 1; i >= 2 ^ k; --i) 3659 // tmp[i] op= tmp[i-pow2k]; 3660 llvm::BasicBlock *InnerLoopBB = 3661 CGF.createBasicBlock("omp.inner.log.scan.body"); 3662 llvm::BasicBlock *InnerExitBB = 3663 CGF.createBasicBlock("omp.inner.log.scan.exit"); 3664 llvm::Value *CmpI = CGF.Builder.CreateICmpUGE(NMin1, Pow2K); 3665 CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB); 3666 CGF.EmitBlock(InnerLoopBB); 3667 auto *IVal = CGF.Builder.CreatePHI(CGF.SizeTy, 2); 3668 IVal->addIncoming(NMin1, LoopBB); 3669 { 3670 CodeGenFunction::OMPPrivateScope PrivScope(CGF); 3671 auto *ILHS = LHSs.begin(); 3672 auto *IRHS = RHSs.begin(); 3673 for (const Expr *CopyArrayElem : CopyArrayElems) { 3674 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 3675 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 3676 Address LHSAddr = Address::invalid(); 3677 { 3678 CodeGenFunction::OpaqueValueMapping IdxMapping( 3679 CGF, 3680 cast<OpaqueValueExpr>( 3681 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3682 RValue::get(IVal)); 3683 LHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF); 3684 } 3685 PrivScope.addPrivate(LHSVD, LHSAddr); 3686 Address RHSAddr = Address::invalid(); 3687 { 3688 llvm::Value *OffsetIVal = CGF.Builder.CreateNUWSub(IVal, Pow2K); 3689 CodeGenFunction::OpaqueValueMapping IdxMapping( 3690 CGF, 3691 cast<OpaqueValueExpr>( 3692 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3693 RValue::get(OffsetIVal)); 3694 RHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF); 3695 } 3696 PrivScope.addPrivate(RHSVD, RHSAddr); 3697 ++ILHS; 3698 ++IRHS; 3699 } 3700 PrivScope.Privatize(); 3701 CGF.CGM.getOpenMPRuntime().emitReduction( 3702 CGF, S.getEndLoc(), Privates, LHSs, RHSs, ReductionOps, 3703 {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_unknown}); 3704 } 3705 llvm::Value *NextIVal = 3706 CGF.Builder.CreateNUWSub(IVal, llvm::ConstantInt::get(CGF.SizeTy, 1)); 3707 IVal->addIncoming(NextIVal, CGF.Builder.GetInsertBlock()); 3708 CmpI = CGF.Builder.CreateICmpUGE(NextIVal, Pow2K); 3709 CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB); 3710 CGF.EmitBlock(InnerExitBB); 3711 llvm::Value *Next = 3712 CGF.Builder.CreateNUWAdd(Counter, llvm::ConstantInt::get(CGF.IntTy, 1)); 3713 Counter->addIncoming(Next, CGF.Builder.GetInsertBlock()); 3714 // pow2k <<= 1; 3715 llvm::Value *NextPow2K = 3716 CGF.Builder.CreateShl(Pow2K, 1, "", /*HasNUW=*/true); 3717 Pow2K->addIncoming(NextPow2K, CGF.Builder.GetInsertBlock()); 3718 llvm::Value *Cmp = CGF.Builder.CreateICmpNE(Next, LogVal); 3719 CGF.Builder.CreateCondBr(Cmp, LoopBB, ExitBB); 3720 auto DL1 = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getEndLoc()); 3721 CGF.EmitBlock(ExitBB); 3722 }; 3723 if (isOpenMPParallelDirective(S.getDirectiveKind())) { 3724 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 3725 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3726 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3727 /*ForceSimpleCall=*/true); 3728 } else { 3729 RegionCodeGenTy RCG(CodeGen); 3730 RCG(CGF); 3731 } 3732 3733 CGF.OMPFirstScanLoop = false; 3734 SecondGen(CGF); 3735 } 3736 3737 static bool emitWorksharingDirective(CodeGenFunction &CGF, 3738 const OMPLoopDirective &S, 3739 bool HasCancel) { 3740 bool HasLastprivates; 3741 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 3742 [](const OMPReductionClause *C) { 3743 return C->getModifier() == OMPC_REDUCTION_inscan; 3744 })) { 3745 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 3746 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 3747 OMPLoopScope LoopScope(CGF, S); 3748 return CGF.EmitScalarExpr(S.getNumIterations()); 3749 }; 3750 const auto &&FirstGen = [&S, HasCancel](CodeGenFunction &CGF) { 3751 CodeGenFunction::OMPCancelStackRAII CancelRegion( 3752 CGF, S.getDirectiveKind(), HasCancel); 3753 (void)CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3754 emitForLoopBounds, 3755 emitDispatchForLoopBounds); 3756 // Emit an implicit barrier at the end. 3757 CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getBeginLoc(), 3758 OMPD_for); 3759 }; 3760 const auto &&SecondGen = [&S, HasCancel, 3761 &HasLastprivates](CodeGenFunction &CGF) { 3762 CodeGenFunction::OMPCancelStackRAII CancelRegion( 3763 CGF, S.getDirectiveKind(), HasCancel); 3764 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3765 emitForLoopBounds, 3766 emitDispatchForLoopBounds); 3767 }; 3768 if (!isOpenMPParallelDirective(S.getDirectiveKind())) 3769 emitScanBasedDirectiveDecls(CGF, S, NumIteratorsGen); 3770 emitScanBasedDirective(CGF, S, NumIteratorsGen, FirstGen, SecondGen); 3771 if (!isOpenMPParallelDirective(S.getDirectiveKind())) 3772 emitScanBasedDirectiveFinals(CGF, S, NumIteratorsGen); 3773 } else { 3774 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 3775 HasCancel); 3776 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3777 emitForLoopBounds, 3778 emitDispatchForLoopBounds); 3779 } 3780 return HasLastprivates; 3781 } 3782 3783 static bool isSupportedByOpenMPIRBuilder(const OMPForDirective &S) { 3784 if (S.hasCancel()) 3785 return false; 3786 for (OMPClause *C : S.clauses()) { 3787 if (isa<OMPNowaitClause>(C)) 3788 continue; 3789 3790 if (auto *SC = dyn_cast<OMPScheduleClause>(C)) { 3791 if (SC->getFirstScheduleModifier() != OMPC_SCHEDULE_MODIFIER_unknown) 3792 return false; 3793 if (SC->getSecondScheduleModifier() != OMPC_SCHEDULE_MODIFIER_unknown) 3794 return false; 3795 switch (SC->getScheduleKind()) { 3796 case OMPC_SCHEDULE_auto: 3797 case OMPC_SCHEDULE_dynamic: 3798 case OMPC_SCHEDULE_runtime: 3799 case OMPC_SCHEDULE_guided: 3800 case OMPC_SCHEDULE_static: 3801 continue; 3802 case OMPC_SCHEDULE_unknown: 3803 return false; 3804 } 3805 } 3806 3807 return false; 3808 } 3809 3810 return true; 3811 } 3812 3813 static llvm::omp::ScheduleKind 3814 convertClauseKindToSchedKind(OpenMPScheduleClauseKind ScheduleClauseKind) { 3815 switch (ScheduleClauseKind) { 3816 case OMPC_SCHEDULE_unknown: 3817 return llvm::omp::OMP_SCHEDULE_Default; 3818 case OMPC_SCHEDULE_auto: 3819 return llvm::omp::OMP_SCHEDULE_Auto; 3820 case OMPC_SCHEDULE_dynamic: 3821 return llvm::omp::OMP_SCHEDULE_Dynamic; 3822 case OMPC_SCHEDULE_guided: 3823 return llvm::omp::OMP_SCHEDULE_Guided; 3824 case OMPC_SCHEDULE_runtime: 3825 return llvm::omp::OMP_SCHEDULE_Runtime; 3826 case OMPC_SCHEDULE_static: 3827 return llvm::omp::OMP_SCHEDULE_Static; 3828 } 3829 llvm_unreachable("Unhandled schedule kind"); 3830 } 3831 3832 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 3833 bool HasLastprivates = false; 3834 bool UseOMPIRBuilder = 3835 CGM.getLangOpts().OpenMPIRBuilder && isSupportedByOpenMPIRBuilder(S); 3836 auto &&CodeGen = [this, &S, &HasLastprivates, 3837 UseOMPIRBuilder](CodeGenFunction &CGF, PrePostActionTy &) { 3838 // Use the OpenMPIRBuilder if enabled. 3839 if (UseOMPIRBuilder) { 3840 bool NeedsBarrier = !S.getSingleClause<OMPNowaitClause>(); 3841 3842 llvm::omp::ScheduleKind SchedKind = llvm::omp::OMP_SCHEDULE_Default; 3843 llvm::Value *ChunkSize = nullptr; 3844 if (auto *SchedClause = S.getSingleClause<OMPScheduleClause>()) { 3845 SchedKind = 3846 convertClauseKindToSchedKind(SchedClause->getScheduleKind()); 3847 if (const Expr *ChunkSizeExpr = SchedClause->getChunkSize()) 3848 ChunkSize = EmitScalarExpr(ChunkSizeExpr); 3849 } 3850 3851 // Emit the associated statement and get its loop representation. 3852 const Stmt *Inner = S.getRawStmt(); 3853 llvm::CanonicalLoopInfo *CLI = 3854 EmitOMPCollapsedCanonicalLoopNest(Inner, 1); 3855 3856 llvm::OpenMPIRBuilder &OMPBuilder = 3857 CGM.getOpenMPRuntime().getOMPBuilder(); 3858 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 3859 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 3860 OMPBuilder.applyWorkshareLoop( 3861 Builder.getCurrentDebugLocation(), CLI, AllocaIP, NeedsBarrier, 3862 SchedKind, ChunkSize, /*HasSimdModifier=*/false, 3863 /*HasMonotonicModifier=*/false, /*HasNonmonotonicModifier=*/false, 3864 /*HasOrderedClause=*/false); 3865 return; 3866 } 3867 3868 HasLastprivates = emitWorksharingDirective(CGF, S, S.hasCancel()); 3869 }; 3870 { 3871 auto LPCRegion = 3872 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3873 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3874 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 3875 S.hasCancel()); 3876 } 3877 3878 if (!UseOMPIRBuilder) { 3879 // Emit an implicit barrier at the end. 3880 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3881 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3882 } 3883 // Check for outer lastprivate conditional update. 3884 checkForLastprivateConditionalUpdate(*this, S); 3885 } 3886 3887 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 3888 bool HasLastprivates = false; 3889 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 3890 PrePostActionTy &) { 3891 HasLastprivates = emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 3892 }; 3893 { 3894 auto LPCRegion = 3895 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3896 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3897 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 3898 } 3899 3900 // Emit an implicit barrier at the end. 3901 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3902 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3903 // Check for outer lastprivate conditional update. 3904 checkForLastprivateConditionalUpdate(*this, S); 3905 } 3906 3907 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 3908 const Twine &Name, 3909 llvm::Value *Init = nullptr) { 3910 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 3911 if (Init) 3912 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 3913 return LVal; 3914 } 3915 3916 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 3917 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 3918 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 3919 bool HasLastprivates = false; 3920 auto &&CodeGen = [&S, CapturedStmt, CS, 3921 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 3922 const ASTContext &C = CGF.getContext(); 3923 QualType KmpInt32Ty = 3924 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 3925 // Emit helper vars inits. 3926 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 3927 CGF.Builder.getInt32(0)); 3928 llvm::ConstantInt *GlobalUBVal = CS != nullptr 3929 ? CGF.Builder.getInt32(CS->size() - 1) 3930 : CGF.Builder.getInt32(0); 3931 LValue UB = 3932 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 3933 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 3934 CGF.Builder.getInt32(1)); 3935 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 3936 CGF.Builder.getInt32(0)); 3937 // Loop counter. 3938 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 3939 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 3940 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 3941 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 3942 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 3943 // Generate condition for loop. 3944 BinaryOperator *Cond = BinaryOperator::Create( 3945 C, &IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_PRValue, OK_Ordinary, 3946 S.getBeginLoc(), FPOptionsOverride()); 3947 // Increment for loop counter. 3948 UnaryOperator *Inc = UnaryOperator::Create( 3949 C, &IVRefExpr, UO_PreInc, KmpInt32Ty, VK_PRValue, OK_Ordinary, 3950 S.getBeginLoc(), true, FPOptionsOverride()); 3951 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 3952 // Iterate through all sections and emit a switch construct: 3953 // switch (IV) { 3954 // case 0: 3955 // <SectionStmt[0]>; 3956 // break; 3957 // ... 3958 // case <NumSection> - 1: 3959 // <SectionStmt[<NumSection> - 1]>; 3960 // break; 3961 // } 3962 // .omp.sections.exit: 3963 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 3964 llvm::SwitchInst *SwitchStmt = 3965 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 3966 ExitBB, CS == nullptr ? 1 : CS->size()); 3967 if (CS) { 3968 unsigned CaseNumber = 0; 3969 for (const Stmt *SubStmt : CS->children()) { 3970 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 3971 CGF.EmitBlock(CaseBB); 3972 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 3973 CGF.EmitStmt(SubStmt); 3974 CGF.EmitBranch(ExitBB); 3975 ++CaseNumber; 3976 } 3977 } else { 3978 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 3979 CGF.EmitBlock(CaseBB); 3980 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 3981 CGF.EmitStmt(CapturedStmt); 3982 CGF.EmitBranch(ExitBB); 3983 } 3984 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 3985 }; 3986 3987 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 3988 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 3989 // Emit implicit barrier to synchronize threads and avoid data races on 3990 // initialization of firstprivate variables and post-update of lastprivate 3991 // variables. 3992 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3993 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3994 /*ForceSimpleCall=*/true); 3995 } 3996 CGF.EmitOMPPrivateClause(S, LoopScope); 3997 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(CGF, S, IV); 3998 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 3999 CGF.EmitOMPReductionClauseInit(S, LoopScope); 4000 (void)LoopScope.Privatize(); 4001 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4002 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4003 4004 // Emit static non-chunked loop. 4005 OpenMPScheduleTy ScheduleKind; 4006 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 4007 CGOpenMPRuntime::StaticRTInput StaticInit( 4008 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(CGF), 4009 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF)); 4010 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 4011 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 4012 // UB = min(UB, GlobalUB); 4013 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 4014 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 4015 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 4016 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 4017 // IV = LB; 4018 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 4019 // while (idx <= UB) { BODY; ++idx; } 4020 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, Cond, Inc, BodyGen, 4021 [](CodeGenFunction &) {}); 4022 // Tell the runtime we are done. 4023 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 4024 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 4025 S.getDirectiveKind()); 4026 }; 4027 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 4028 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4029 // Emit post-update of the reduction variables if IsLastIter != 0. 4030 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 4031 return CGF.Builder.CreateIsNotNull( 4032 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 4033 }); 4034 4035 // Emit final copy of the lastprivate variables if IsLastIter != 0. 4036 if (HasLastprivates) 4037 CGF.EmitOMPLastprivateClauseFinal( 4038 S, /*NoFinals=*/false, 4039 CGF.Builder.CreateIsNotNull( 4040 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 4041 }; 4042 4043 bool HasCancel = false; 4044 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 4045 HasCancel = OSD->hasCancel(); 4046 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 4047 HasCancel = OPSD->hasCancel(); 4048 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 4049 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 4050 HasCancel); 4051 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 4052 // clause. Otherwise the barrier will be generated by the codegen for the 4053 // directive. 4054 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 4055 // Emit implicit barrier to synchronize threads and avoid data races on 4056 // initialization of firstprivate variables. 4057 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 4058 OMPD_unknown); 4059 } 4060 } 4061 4062 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 4063 if (CGM.getLangOpts().OpenMPIRBuilder) { 4064 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4065 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4066 using BodyGenCallbackTy = llvm::OpenMPIRBuilder::StorableBodyGenCallbackTy; 4067 4068 auto FiniCB = [this](InsertPointTy IP) { 4069 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4070 }; 4071 4072 const CapturedStmt *ICS = S.getInnermostCapturedStmt(); 4073 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 4074 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 4075 llvm::SmallVector<BodyGenCallbackTy, 4> SectionCBVector; 4076 if (CS) { 4077 for (const Stmt *SubStmt : CS->children()) { 4078 auto SectionCB = [this, SubStmt](InsertPointTy AllocaIP, 4079 InsertPointTy CodeGenIP) { 4080 OMPBuilderCBHelpers::EmitOMPInlinedRegionBody( 4081 *this, SubStmt, AllocaIP, CodeGenIP, "section"); 4082 }; 4083 SectionCBVector.push_back(SectionCB); 4084 } 4085 } else { 4086 auto SectionCB = [this, CapturedStmt](InsertPointTy AllocaIP, 4087 InsertPointTy CodeGenIP) { 4088 OMPBuilderCBHelpers::EmitOMPInlinedRegionBody( 4089 *this, CapturedStmt, AllocaIP, CodeGenIP, "section"); 4090 }; 4091 SectionCBVector.push_back(SectionCB); 4092 } 4093 4094 // Privatization callback that performs appropriate action for 4095 // shared/private/firstprivate/lastprivate/copyin/... variables. 4096 // 4097 // TODO: This defaults to shared right now. 4098 auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 4099 llvm::Value &, llvm::Value &Val, llvm::Value *&ReplVal) { 4100 // The next line is appropriate only for variables (Val) with the 4101 // data-sharing attribute "shared". 4102 ReplVal = &Val; 4103 4104 return CodeGenIP; 4105 }; 4106 4107 CGCapturedStmtInfo CGSI(*ICS, CR_OpenMP); 4108 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 4109 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 4110 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 4111 Builder.restoreIP(OMPBuilder.createSections( 4112 Builder, AllocaIP, SectionCBVector, PrivCB, FiniCB, S.hasCancel(), 4113 S.getSingleClause<OMPNowaitClause>())); 4114 return; 4115 } 4116 { 4117 auto LPCRegion = 4118 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4119 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4120 EmitSections(S); 4121 } 4122 // Emit an implicit barrier at the end. 4123 if (!S.getSingleClause<OMPNowaitClause>()) { 4124 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 4125 OMPD_sections); 4126 } 4127 // Check for outer lastprivate conditional update. 4128 checkForLastprivateConditionalUpdate(*this, S); 4129 } 4130 4131 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 4132 if (CGM.getLangOpts().OpenMPIRBuilder) { 4133 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4134 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4135 4136 const Stmt *SectionRegionBodyStmt = S.getAssociatedStmt(); 4137 auto FiniCB = [this](InsertPointTy IP) { 4138 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4139 }; 4140 4141 auto BodyGenCB = [SectionRegionBodyStmt, this](InsertPointTy AllocaIP, 4142 InsertPointTy CodeGenIP) { 4143 OMPBuilderCBHelpers::EmitOMPInlinedRegionBody( 4144 *this, SectionRegionBodyStmt, AllocaIP, CodeGenIP, "section"); 4145 }; 4146 4147 LexicalScope Scope(*this, S.getSourceRange()); 4148 EmitStopPoint(&S); 4149 Builder.restoreIP(OMPBuilder.createSection(Builder, BodyGenCB, FiniCB)); 4150 4151 return; 4152 } 4153 LexicalScope Scope(*this, S.getSourceRange()); 4154 EmitStopPoint(&S); 4155 EmitStmt(S.getAssociatedStmt()); 4156 } 4157 4158 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 4159 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 4160 llvm::SmallVector<const Expr *, 8> DestExprs; 4161 llvm::SmallVector<const Expr *, 8> SrcExprs; 4162 llvm::SmallVector<const Expr *, 8> AssignmentOps; 4163 // Check if there are any 'copyprivate' clauses associated with this 4164 // 'single' construct. 4165 // Build a list of copyprivate variables along with helper expressions 4166 // (<source>, <destination>, <destination>=<source> expressions) 4167 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 4168 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 4169 DestExprs.append(C->destination_exprs().begin(), 4170 C->destination_exprs().end()); 4171 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 4172 AssignmentOps.append(C->assignment_ops().begin(), 4173 C->assignment_ops().end()); 4174 } 4175 // Emit code for 'single' region along with 'copyprivate' clauses 4176 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4177 Action.Enter(CGF); 4178 OMPPrivateScope SingleScope(CGF); 4179 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 4180 CGF.EmitOMPPrivateClause(S, SingleScope); 4181 (void)SingleScope.Privatize(); 4182 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4183 }; 4184 { 4185 auto LPCRegion = 4186 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4187 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4188 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 4189 CopyprivateVars, DestExprs, 4190 SrcExprs, AssignmentOps); 4191 } 4192 // Emit an implicit barrier at the end (to avoid data race on firstprivate 4193 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 4194 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 4195 CGM.getOpenMPRuntime().emitBarrierCall( 4196 *this, S.getBeginLoc(), 4197 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 4198 } 4199 // Check for outer lastprivate conditional update. 4200 checkForLastprivateConditionalUpdate(*this, S); 4201 } 4202 4203 static void emitMaster(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 4204 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4205 Action.Enter(CGF); 4206 CGF.EmitStmt(S.getRawStmt()); 4207 }; 4208 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 4209 } 4210 4211 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 4212 if (CGM.getLangOpts().OpenMPIRBuilder) { 4213 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4214 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4215 4216 const Stmt *MasterRegionBodyStmt = S.getAssociatedStmt(); 4217 4218 auto FiniCB = [this](InsertPointTy IP) { 4219 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4220 }; 4221 4222 auto BodyGenCB = [MasterRegionBodyStmt, this](InsertPointTy AllocaIP, 4223 InsertPointTy CodeGenIP) { 4224 OMPBuilderCBHelpers::EmitOMPInlinedRegionBody( 4225 *this, MasterRegionBodyStmt, AllocaIP, CodeGenIP, "master"); 4226 }; 4227 4228 LexicalScope Scope(*this, S.getSourceRange()); 4229 EmitStopPoint(&S); 4230 Builder.restoreIP(OMPBuilder.createMaster(Builder, BodyGenCB, FiniCB)); 4231 4232 return; 4233 } 4234 LexicalScope Scope(*this, S.getSourceRange()); 4235 EmitStopPoint(&S); 4236 emitMaster(*this, S); 4237 } 4238 4239 static void emitMasked(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 4240 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4241 Action.Enter(CGF); 4242 CGF.EmitStmt(S.getRawStmt()); 4243 }; 4244 Expr *Filter = nullptr; 4245 if (const auto *FilterClause = S.getSingleClause<OMPFilterClause>()) 4246 Filter = FilterClause->getThreadID(); 4247 CGF.CGM.getOpenMPRuntime().emitMaskedRegion(CGF, CodeGen, S.getBeginLoc(), 4248 Filter); 4249 } 4250 4251 void CodeGenFunction::EmitOMPMaskedDirective(const OMPMaskedDirective &S) { 4252 if (CGM.getLangOpts().OpenMPIRBuilder) { 4253 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4254 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4255 4256 const Stmt *MaskedRegionBodyStmt = S.getAssociatedStmt(); 4257 const Expr *Filter = nullptr; 4258 if (const auto *FilterClause = S.getSingleClause<OMPFilterClause>()) 4259 Filter = FilterClause->getThreadID(); 4260 llvm::Value *FilterVal = Filter 4261 ? EmitScalarExpr(Filter, CGM.Int32Ty) 4262 : llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/0); 4263 4264 auto FiniCB = [this](InsertPointTy IP) { 4265 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4266 }; 4267 4268 auto BodyGenCB = [MaskedRegionBodyStmt, this](InsertPointTy AllocaIP, 4269 InsertPointTy CodeGenIP) { 4270 OMPBuilderCBHelpers::EmitOMPInlinedRegionBody( 4271 *this, MaskedRegionBodyStmt, AllocaIP, CodeGenIP, "masked"); 4272 }; 4273 4274 LexicalScope Scope(*this, S.getSourceRange()); 4275 EmitStopPoint(&S); 4276 Builder.restoreIP( 4277 OMPBuilder.createMasked(Builder, BodyGenCB, FiniCB, FilterVal)); 4278 4279 return; 4280 } 4281 LexicalScope Scope(*this, S.getSourceRange()); 4282 EmitStopPoint(&S); 4283 emitMasked(*this, S); 4284 } 4285 4286 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 4287 if (CGM.getLangOpts().OpenMPIRBuilder) { 4288 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4289 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4290 4291 const Stmt *CriticalRegionBodyStmt = S.getAssociatedStmt(); 4292 const Expr *Hint = nullptr; 4293 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 4294 Hint = HintClause->getHint(); 4295 4296 // TODO: This is slightly different from what's currently being done in 4297 // clang. Fix the Int32Ty to IntPtrTy (pointer width size) when everything 4298 // about typing is final. 4299 llvm::Value *HintInst = nullptr; 4300 if (Hint) 4301 HintInst = 4302 Builder.CreateIntCast(EmitScalarExpr(Hint), CGM.Int32Ty, false); 4303 4304 auto FiniCB = [this](InsertPointTy IP) { 4305 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4306 }; 4307 4308 auto BodyGenCB = [CriticalRegionBodyStmt, this](InsertPointTy AllocaIP, 4309 InsertPointTy CodeGenIP) { 4310 OMPBuilderCBHelpers::EmitOMPInlinedRegionBody( 4311 *this, CriticalRegionBodyStmt, AllocaIP, CodeGenIP, "critical"); 4312 }; 4313 4314 LexicalScope Scope(*this, S.getSourceRange()); 4315 EmitStopPoint(&S); 4316 Builder.restoreIP(OMPBuilder.createCritical( 4317 Builder, BodyGenCB, FiniCB, S.getDirectiveName().getAsString(), 4318 HintInst)); 4319 4320 return; 4321 } 4322 4323 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4324 Action.Enter(CGF); 4325 CGF.EmitStmt(S.getAssociatedStmt()); 4326 }; 4327 const Expr *Hint = nullptr; 4328 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 4329 Hint = HintClause->getHint(); 4330 LexicalScope Scope(*this, S.getSourceRange()); 4331 EmitStopPoint(&S); 4332 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 4333 S.getDirectiveName().getAsString(), 4334 CodeGen, S.getBeginLoc(), Hint); 4335 } 4336 4337 void CodeGenFunction::EmitOMPParallelForDirective( 4338 const OMPParallelForDirective &S) { 4339 // Emit directive as a combined directive that consists of two implicit 4340 // directives: 'parallel' with 'for' directive. 4341 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4342 Action.Enter(CGF); 4343 (void)emitWorksharingDirective(CGF, S, S.hasCancel()); 4344 }; 4345 { 4346 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 4347 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 4348 CGCapturedStmtInfo CGSI(CR_OpenMP); 4349 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGSI); 4350 OMPLoopScope LoopScope(CGF, S); 4351 return CGF.EmitScalarExpr(S.getNumIterations()); 4352 }; 4353 bool IsInscan = llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 4354 [](const OMPReductionClause *C) { 4355 return C->getModifier() == OMPC_REDUCTION_inscan; 4356 }); 4357 if (IsInscan) 4358 emitScanBasedDirectiveDecls(*this, S, NumIteratorsGen); 4359 auto LPCRegion = 4360 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4361 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 4362 emitEmptyBoundParameters); 4363 if (IsInscan) 4364 emitScanBasedDirectiveFinals(*this, S, NumIteratorsGen); 4365 } 4366 // Check for outer lastprivate conditional update. 4367 checkForLastprivateConditionalUpdate(*this, S); 4368 } 4369 4370 void CodeGenFunction::EmitOMPParallelForSimdDirective( 4371 const OMPParallelForSimdDirective &S) { 4372 // Emit directive as a combined directive that consists of two implicit 4373 // directives: 'parallel' with 'for' directive. 4374 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4375 Action.Enter(CGF); 4376 (void)emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 4377 }; 4378 { 4379 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 4380 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 4381 CGCapturedStmtInfo CGSI(CR_OpenMP); 4382 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGSI); 4383 OMPLoopScope LoopScope(CGF, S); 4384 return CGF.EmitScalarExpr(S.getNumIterations()); 4385 }; 4386 bool IsInscan = llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 4387 [](const OMPReductionClause *C) { 4388 return C->getModifier() == OMPC_REDUCTION_inscan; 4389 }); 4390 if (IsInscan) 4391 emitScanBasedDirectiveDecls(*this, S, NumIteratorsGen); 4392 auto LPCRegion = 4393 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4394 emitCommonOMPParallelDirective(*this, S, OMPD_for_simd, CodeGen, 4395 emitEmptyBoundParameters); 4396 if (IsInscan) 4397 emitScanBasedDirectiveFinals(*this, S, NumIteratorsGen); 4398 } 4399 // Check for outer lastprivate conditional update. 4400 checkForLastprivateConditionalUpdate(*this, S); 4401 } 4402 4403 void CodeGenFunction::EmitOMPParallelMasterDirective( 4404 const OMPParallelMasterDirective &S) { 4405 // Emit directive as a combined directive that consists of two implicit 4406 // directives: 'parallel' with 'master' directive. 4407 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4408 Action.Enter(CGF); 4409 OMPPrivateScope PrivateScope(CGF); 4410 bool Copyins = CGF.EmitOMPCopyinClause(S); 4411 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4412 if (Copyins) { 4413 // Emit implicit barrier to synchronize threads and avoid data races on 4414 // propagation master's thread values of threadprivate variables to local 4415 // instances of that variables of all other implicit threads. 4416 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 4417 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 4418 /*ForceSimpleCall=*/true); 4419 } 4420 CGF.EmitOMPPrivateClause(S, PrivateScope); 4421 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4422 (void)PrivateScope.Privatize(); 4423 emitMaster(CGF, S); 4424 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4425 }; 4426 { 4427 auto LPCRegion = 4428 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4429 emitCommonOMPParallelDirective(*this, S, OMPD_master, CodeGen, 4430 emitEmptyBoundParameters); 4431 emitPostUpdateForReductionClause(*this, S, 4432 [](CodeGenFunction &) { return nullptr; }); 4433 } 4434 // Check for outer lastprivate conditional update. 4435 checkForLastprivateConditionalUpdate(*this, S); 4436 } 4437 4438 void CodeGenFunction::EmitOMPParallelSectionsDirective( 4439 const OMPParallelSectionsDirective &S) { 4440 // Emit directive as a combined directive that consists of two implicit 4441 // directives: 'parallel' with 'sections' directive. 4442 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4443 Action.Enter(CGF); 4444 CGF.EmitSections(S); 4445 }; 4446 { 4447 auto LPCRegion = 4448 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4449 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 4450 emitEmptyBoundParameters); 4451 } 4452 // Check for outer lastprivate conditional update. 4453 checkForLastprivateConditionalUpdate(*this, S); 4454 } 4455 4456 namespace { 4457 /// Get the list of variables declared in the context of the untied tasks. 4458 class CheckVarsEscapingUntiedTaskDeclContext final 4459 : public ConstStmtVisitor<CheckVarsEscapingUntiedTaskDeclContext> { 4460 llvm::SmallVector<const VarDecl *, 4> PrivateDecls; 4461 4462 public: 4463 explicit CheckVarsEscapingUntiedTaskDeclContext() = default; 4464 virtual ~CheckVarsEscapingUntiedTaskDeclContext() = default; 4465 void VisitDeclStmt(const DeclStmt *S) { 4466 if (!S) 4467 return; 4468 // Need to privatize only local vars, static locals can be processed as is. 4469 for (const Decl *D : S->decls()) { 4470 if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) 4471 if (VD->hasLocalStorage()) 4472 PrivateDecls.push_back(VD); 4473 } 4474 } 4475 void VisitOMPExecutableDirective(const OMPExecutableDirective *) {} 4476 void VisitCapturedStmt(const CapturedStmt *) {} 4477 void VisitLambdaExpr(const LambdaExpr *) {} 4478 void VisitBlockExpr(const BlockExpr *) {} 4479 void VisitStmt(const Stmt *S) { 4480 if (!S) 4481 return; 4482 for (const Stmt *Child : S->children()) 4483 if (Child) 4484 Visit(Child); 4485 } 4486 4487 /// Swaps list of vars with the provided one. 4488 ArrayRef<const VarDecl *> getPrivateDecls() const { return PrivateDecls; } 4489 }; 4490 } // anonymous namespace 4491 4492 static void buildDependences(const OMPExecutableDirective &S, 4493 OMPTaskDataTy &Data) { 4494 4495 // First look for 'omp_all_memory' and add this first. 4496 bool OmpAllMemory = false; 4497 if (llvm::any_of( 4498 S.getClausesOfKind<OMPDependClause>(), [](const OMPDependClause *C) { 4499 return C->getDependencyKind() == OMPC_DEPEND_outallmemory || 4500 C->getDependencyKind() == OMPC_DEPEND_inoutallmemory; 4501 })) { 4502 OmpAllMemory = true; 4503 // Since both OMPC_DEPEND_outallmemory and OMPC_DEPEND_inoutallmemory are 4504 // equivalent to the runtime, always use OMPC_DEPEND_outallmemory to 4505 // simplify. 4506 OMPTaskDataTy::DependData &DD = 4507 Data.Dependences.emplace_back(OMPC_DEPEND_outallmemory, 4508 /*IteratorExpr=*/nullptr); 4509 // Add a nullptr Expr to simplify the codegen in emitDependData. 4510 DD.DepExprs.push_back(nullptr); 4511 } 4512 // Add remaining dependences skipping any 'out' or 'inout' if they are 4513 // overridden by 'omp_all_memory'. 4514 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 4515 OpenMPDependClauseKind Kind = C->getDependencyKind(); 4516 if (Kind == OMPC_DEPEND_outallmemory || Kind == OMPC_DEPEND_inoutallmemory) 4517 continue; 4518 if (OmpAllMemory && (Kind == OMPC_DEPEND_out || Kind == OMPC_DEPEND_inout)) 4519 continue; 4520 OMPTaskDataTy::DependData &DD = 4521 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 4522 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 4523 } 4524 } 4525 4526 void CodeGenFunction::EmitOMPTaskBasedDirective( 4527 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 4528 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 4529 OMPTaskDataTy &Data) { 4530 // Emit outlined function for task construct. 4531 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 4532 auto I = CS->getCapturedDecl()->param_begin(); 4533 auto PartId = std::next(I); 4534 auto TaskT = std::next(I, 4); 4535 // Check if the task is final 4536 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 4537 // If the condition constant folds and can be elided, try to avoid emitting 4538 // the condition and the dead arm of the if/else. 4539 const Expr *Cond = Clause->getCondition(); 4540 bool CondConstant; 4541 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 4542 Data.Final.setInt(CondConstant); 4543 else 4544 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 4545 } else { 4546 // By default the task is not final. 4547 Data.Final.setInt(/*IntVal=*/false); 4548 } 4549 // Check if the task has 'priority' clause. 4550 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 4551 const Expr *Prio = Clause->getPriority(); 4552 Data.Priority.setInt(/*IntVal=*/true); 4553 Data.Priority.setPointer(EmitScalarConversion( 4554 EmitScalarExpr(Prio), Prio->getType(), 4555 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 4556 Prio->getExprLoc())); 4557 } 4558 // The first function argument for tasks is a thread id, the second one is a 4559 // part id (0 for tied tasks, >=0 for untied task). 4560 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 4561 // Get list of private variables. 4562 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 4563 auto IRef = C->varlist_begin(); 4564 for (const Expr *IInit : C->private_copies()) { 4565 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4566 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4567 Data.PrivateVars.push_back(*IRef); 4568 Data.PrivateCopies.push_back(IInit); 4569 } 4570 ++IRef; 4571 } 4572 } 4573 EmittedAsPrivate.clear(); 4574 // Get list of firstprivate variables. 4575 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 4576 auto IRef = C->varlist_begin(); 4577 auto IElemInitRef = C->inits().begin(); 4578 for (const Expr *IInit : C->private_copies()) { 4579 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4580 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4581 Data.FirstprivateVars.push_back(*IRef); 4582 Data.FirstprivateCopies.push_back(IInit); 4583 Data.FirstprivateInits.push_back(*IElemInitRef); 4584 } 4585 ++IRef; 4586 ++IElemInitRef; 4587 } 4588 } 4589 // Get list of lastprivate variables (for taskloops). 4590 llvm::MapVector<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 4591 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 4592 auto IRef = C->varlist_begin(); 4593 auto ID = C->destination_exprs().begin(); 4594 for (const Expr *IInit : C->private_copies()) { 4595 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4596 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4597 Data.LastprivateVars.push_back(*IRef); 4598 Data.LastprivateCopies.push_back(IInit); 4599 } 4600 LastprivateDstsOrigs.insert( 4601 std::make_pair(cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 4602 cast<DeclRefExpr>(*IRef))); 4603 ++IRef; 4604 ++ID; 4605 } 4606 } 4607 SmallVector<const Expr *, 4> LHSs; 4608 SmallVector<const Expr *, 4> RHSs; 4609 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 4610 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 4611 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 4612 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 4613 Data.ReductionOps.append(C->reduction_ops().begin(), 4614 C->reduction_ops().end()); 4615 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4616 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4617 } 4618 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 4619 *this, S.getBeginLoc(), LHSs, RHSs, Data); 4620 // Build list of dependences. 4621 buildDependences(S, Data); 4622 // Get list of local vars for untied tasks. 4623 if (!Data.Tied) { 4624 CheckVarsEscapingUntiedTaskDeclContext Checker; 4625 Checker.Visit(S.getInnermostCapturedStmt()->getCapturedStmt()); 4626 Data.PrivateLocals.append(Checker.getPrivateDecls().begin(), 4627 Checker.getPrivateDecls().end()); 4628 } 4629 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 4630 CapturedRegion](CodeGenFunction &CGF, 4631 PrePostActionTy &Action) { 4632 llvm::MapVector<CanonicalDeclPtr<const VarDecl>, 4633 std::pair<Address, Address>> 4634 UntiedLocalVars; 4635 // Set proper addresses for generated private copies. 4636 OMPPrivateScope Scope(CGF); 4637 // Generate debug info for variables present in shared clause. 4638 if (auto *DI = CGF.getDebugInfo()) { 4639 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields = 4640 CGF.CapturedStmtInfo->getCaptureFields(); 4641 llvm::Value *ContextValue = CGF.CapturedStmtInfo->getContextValue(); 4642 if (CaptureFields.size() && ContextValue) { 4643 unsigned CharWidth = CGF.getContext().getCharWidth(); 4644 // The shared variables are packed together as members of structure. 4645 // So the address of each shared variable can be computed by adding 4646 // offset of it (within record) to the base address of record. For each 4647 // shared variable, debug intrinsic llvm.dbg.declare is generated with 4648 // appropriate expressions (DIExpression). 4649 // Ex: 4650 // %12 = load %struct.anon*, %struct.anon** %__context.addr.i 4651 // call void @llvm.dbg.declare(metadata %struct.anon* %12, 4652 // metadata !svar1, 4653 // metadata !DIExpression(DW_OP_deref)) 4654 // call void @llvm.dbg.declare(metadata %struct.anon* %12, 4655 // metadata !svar2, 4656 // metadata !DIExpression(DW_OP_plus_uconst, 8, DW_OP_deref)) 4657 for (auto It = CaptureFields.begin(); It != CaptureFields.end(); ++It) { 4658 const VarDecl *SharedVar = It->first; 4659 RecordDecl *CaptureRecord = It->second->getParent(); 4660 const ASTRecordLayout &Layout = 4661 CGF.getContext().getASTRecordLayout(CaptureRecord); 4662 unsigned Offset = 4663 Layout.getFieldOffset(It->second->getFieldIndex()) / CharWidth; 4664 if (CGF.CGM.getCodeGenOpts().hasReducedDebugInfo()) 4665 (void)DI->EmitDeclareOfAutoVariable(SharedVar, ContextValue, 4666 CGF.Builder, false); 4667 llvm::Instruction &Last = CGF.Builder.GetInsertBlock()->back(); 4668 // Get the call dbg.declare instruction we just created and update 4669 // its DIExpression to add offset to base address. 4670 if (auto DDI = dyn_cast<llvm::DbgVariableIntrinsic>(&Last)) { 4671 SmallVector<uint64_t, 8> Ops; 4672 // Add offset to the base address if non zero. 4673 if (Offset) { 4674 Ops.push_back(llvm::dwarf::DW_OP_plus_uconst); 4675 Ops.push_back(Offset); 4676 } 4677 Ops.push_back(llvm::dwarf::DW_OP_deref); 4678 auto &Ctx = DDI->getContext(); 4679 llvm::DIExpression *DIExpr = llvm::DIExpression::get(Ctx, Ops); 4680 Last.setOperand(2, llvm::MetadataAsValue::get(Ctx, DIExpr)); 4681 } 4682 } 4683 } 4684 } 4685 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> FirstprivatePtrs; 4686 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 4687 !Data.LastprivateVars.empty() || !Data.PrivateLocals.empty()) { 4688 enum { PrivatesParam = 2, CopyFnParam = 3 }; 4689 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 4690 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 4691 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 4692 CS->getCapturedDecl()->getParam(PrivatesParam))); 4693 // Map privates. 4694 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 4695 llvm::SmallVector<llvm::Value *, 16> CallArgs; 4696 llvm::SmallVector<llvm::Type *, 4> ParamTypes; 4697 CallArgs.push_back(PrivatesPtr); 4698 ParamTypes.push_back(PrivatesPtr->getType()); 4699 for (const Expr *E : Data.PrivateVars) { 4700 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4701 Address PrivatePtr = CGF.CreateMemTemp( 4702 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 4703 PrivatePtrs.emplace_back(VD, PrivatePtr); 4704 CallArgs.push_back(PrivatePtr.getPointer()); 4705 ParamTypes.push_back(PrivatePtr.getType()); 4706 } 4707 for (const Expr *E : Data.FirstprivateVars) { 4708 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4709 Address PrivatePtr = 4710 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4711 ".firstpriv.ptr.addr"); 4712 PrivatePtrs.emplace_back(VD, PrivatePtr); 4713 FirstprivatePtrs.emplace_back(VD, PrivatePtr); 4714 CallArgs.push_back(PrivatePtr.getPointer()); 4715 ParamTypes.push_back(PrivatePtr.getType()); 4716 } 4717 for (const Expr *E : Data.LastprivateVars) { 4718 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4719 Address PrivatePtr = 4720 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4721 ".lastpriv.ptr.addr"); 4722 PrivatePtrs.emplace_back(VD, PrivatePtr); 4723 CallArgs.push_back(PrivatePtr.getPointer()); 4724 ParamTypes.push_back(PrivatePtr.getType()); 4725 } 4726 for (const VarDecl *VD : Data.PrivateLocals) { 4727 QualType Ty = VD->getType().getNonReferenceType(); 4728 if (VD->getType()->isLValueReferenceType()) 4729 Ty = CGF.getContext().getPointerType(Ty); 4730 if (isAllocatableDecl(VD)) 4731 Ty = CGF.getContext().getPointerType(Ty); 4732 Address PrivatePtr = CGF.CreateMemTemp( 4733 CGF.getContext().getPointerType(Ty), ".local.ptr.addr"); 4734 auto Result = UntiedLocalVars.insert( 4735 std::make_pair(VD, std::make_pair(PrivatePtr, Address::invalid()))); 4736 // If key exists update in place. 4737 if (Result.second == false) 4738 *Result.first = std::make_pair( 4739 VD, std::make_pair(PrivatePtr, Address::invalid())); 4740 CallArgs.push_back(PrivatePtr.getPointer()); 4741 ParamTypes.push_back(PrivatePtr.getType()); 4742 } 4743 auto *CopyFnTy = llvm::FunctionType::get(CGF.Builder.getVoidTy(), 4744 ParamTypes, /*isVarArg=*/false); 4745 CopyFn = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 4746 CopyFn, CopyFnTy->getPointerTo()); 4747 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 4748 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 4749 for (const auto &Pair : LastprivateDstsOrigs) { 4750 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 4751 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD), 4752 /*RefersToEnclosingVariableOrCapture=*/ 4753 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 4754 Pair.second->getType(), VK_LValue, 4755 Pair.second->getExprLoc()); 4756 Scope.addPrivate(Pair.first, CGF.EmitLValue(&DRE).getAddress(CGF)); 4757 } 4758 for (const auto &Pair : PrivatePtrs) { 4759 Address Replacement = Address( 4760 CGF.Builder.CreateLoad(Pair.second), 4761 CGF.ConvertTypeForMem(Pair.first->getType().getNonReferenceType()), 4762 CGF.getContext().getDeclAlign(Pair.first)); 4763 Scope.addPrivate(Pair.first, Replacement); 4764 if (auto *DI = CGF.getDebugInfo()) 4765 if (CGF.CGM.getCodeGenOpts().hasReducedDebugInfo()) 4766 (void)DI->EmitDeclareOfAutoVariable( 4767 Pair.first, Pair.second.getPointer(), CGF.Builder, 4768 /*UsePointerValue*/ true); 4769 } 4770 // Adjust mapping for internal locals by mapping actual memory instead of 4771 // a pointer to this memory. 4772 for (auto &Pair : UntiedLocalVars) { 4773 QualType VDType = Pair.first->getType().getNonReferenceType(); 4774 if (isAllocatableDecl(Pair.first)) { 4775 llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first); 4776 Address Replacement( 4777 Ptr, 4778 CGF.ConvertTypeForMem(CGF.getContext().getPointerType(VDType)), 4779 CGF.getPointerAlign()); 4780 Pair.second.first = Replacement; 4781 Ptr = CGF.Builder.CreateLoad(Replacement); 4782 Replacement = Address(Ptr, CGF.ConvertTypeForMem(VDType), 4783 CGF.getContext().getDeclAlign(Pair.first)); 4784 Pair.second.second = Replacement; 4785 } else { 4786 llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first); 4787 Address Replacement(Ptr, CGF.ConvertTypeForMem(VDType), 4788 CGF.getContext().getDeclAlign(Pair.first)); 4789 Pair.second.first = Replacement; 4790 } 4791 } 4792 } 4793 if (Data.Reductions) { 4794 OMPPrivateScope FirstprivateScope(CGF); 4795 for (const auto &Pair : FirstprivatePtrs) { 4796 Address Replacement( 4797 CGF.Builder.CreateLoad(Pair.second), 4798 CGF.ConvertTypeForMem(Pair.first->getType().getNonReferenceType()), 4799 CGF.getContext().getDeclAlign(Pair.first)); 4800 FirstprivateScope.addPrivate(Pair.first, Replacement); 4801 } 4802 (void)FirstprivateScope.Privatize(); 4803 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 4804 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionVars, 4805 Data.ReductionCopies, Data.ReductionOps); 4806 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 4807 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 4808 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 4809 RedCG.emitSharedOrigLValue(CGF, Cnt); 4810 RedCG.emitAggregateType(CGF, Cnt); 4811 // FIXME: This must removed once the runtime library is fixed. 4812 // Emit required threadprivate variables for 4813 // initializer/combiner/finalizer. 4814 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 4815 RedCG, Cnt); 4816 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 4817 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 4818 Replacement = 4819 Address(CGF.EmitScalarConversion( 4820 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 4821 CGF.getContext().getPointerType( 4822 Data.ReductionCopies[Cnt]->getType()), 4823 Data.ReductionCopies[Cnt]->getExprLoc()), 4824 CGF.ConvertTypeForMem(Data.ReductionCopies[Cnt]->getType()), 4825 Replacement.getAlignment()); 4826 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 4827 Scope.addPrivate(RedCG.getBaseDecl(Cnt), Replacement); 4828 } 4829 } 4830 // Privatize all private variables except for in_reduction items. 4831 (void)Scope.Privatize(); 4832 SmallVector<const Expr *, 4> InRedVars; 4833 SmallVector<const Expr *, 4> InRedPrivs; 4834 SmallVector<const Expr *, 4> InRedOps; 4835 SmallVector<const Expr *, 4> TaskgroupDescriptors; 4836 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 4837 auto IPriv = C->privates().begin(); 4838 auto IRed = C->reduction_ops().begin(); 4839 auto ITD = C->taskgroup_descriptors().begin(); 4840 for (const Expr *Ref : C->varlists()) { 4841 InRedVars.emplace_back(Ref); 4842 InRedPrivs.emplace_back(*IPriv); 4843 InRedOps.emplace_back(*IRed); 4844 TaskgroupDescriptors.emplace_back(*ITD); 4845 std::advance(IPriv, 1); 4846 std::advance(IRed, 1); 4847 std::advance(ITD, 1); 4848 } 4849 } 4850 // Privatize in_reduction items here, because taskgroup descriptors must be 4851 // privatized earlier. 4852 OMPPrivateScope InRedScope(CGF); 4853 if (!InRedVars.empty()) { 4854 ReductionCodeGen RedCG(InRedVars, InRedVars, InRedPrivs, InRedOps); 4855 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 4856 RedCG.emitSharedOrigLValue(CGF, Cnt); 4857 RedCG.emitAggregateType(CGF, Cnt); 4858 // The taskgroup descriptor variable is always implicit firstprivate and 4859 // privatized already during processing of the firstprivates. 4860 // FIXME: This must removed once the runtime library is fixed. 4861 // Emit required threadprivate variables for 4862 // initializer/combiner/finalizer. 4863 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 4864 RedCG, Cnt); 4865 llvm::Value *ReductionsPtr; 4866 if (const Expr *TRExpr = TaskgroupDescriptors[Cnt]) { 4867 ReductionsPtr = CGF.EmitLoadOfScalar(CGF.EmitLValue(TRExpr), 4868 TRExpr->getExprLoc()); 4869 } else { 4870 ReductionsPtr = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); 4871 } 4872 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 4873 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 4874 Replacement = Address( 4875 CGF.EmitScalarConversion( 4876 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 4877 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 4878 InRedPrivs[Cnt]->getExprLoc()), 4879 CGF.ConvertTypeForMem(InRedPrivs[Cnt]->getType()), 4880 Replacement.getAlignment()); 4881 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 4882 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), Replacement); 4883 } 4884 } 4885 (void)InRedScope.Privatize(); 4886 4887 CGOpenMPRuntime::UntiedTaskLocalDeclsRAII LocalVarsScope(CGF, 4888 UntiedLocalVars); 4889 Action.Enter(CGF); 4890 BodyGen(CGF); 4891 }; 4892 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 4893 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 4894 Data.NumberOfParts); 4895 OMPLexicalScope Scope(*this, S, llvm::None, 4896 !isOpenMPParallelDirective(S.getDirectiveKind()) && 4897 !isOpenMPSimdDirective(S.getDirectiveKind())); 4898 TaskGen(*this, OutlinedFn, Data); 4899 } 4900 4901 static ImplicitParamDecl * 4902 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 4903 QualType Ty, CapturedDecl *CD, 4904 SourceLocation Loc) { 4905 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 4906 ImplicitParamDecl::Other); 4907 auto *OrigRef = DeclRefExpr::Create( 4908 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 4909 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 4910 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 4911 ImplicitParamDecl::Other); 4912 auto *PrivateRef = DeclRefExpr::Create( 4913 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 4914 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 4915 QualType ElemType = C.getBaseElementType(Ty); 4916 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 4917 ImplicitParamDecl::Other); 4918 auto *InitRef = DeclRefExpr::Create( 4919 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 4920 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 4921 PrivateVD->setInitStyle(VarDecl::CInit); 4922 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 4923 InitRef, /*BasePath=*/nullptr, 4924 VK_PRValue, FPOptionsOverride())); 4925 Data.FirstprivateVars.emplace_back(OrigRef); 4926 Data.FirstprivateCopies.emplace_back(PrivateRef); 4927 Data.FirstprivateInits.emplace_back(InitRef); 4928 return OrigVD; 4929 } 4930 4931 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 4932 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 4933 OMPTargetDataInfo &InputInfo) { 4934 // Emit outlined function for task construct. 4935 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 4936 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4937 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4938 auto I = CS->getCapturedDecl()->param_begin(); 4939 auto PartId = std::next(I); 4940 auto TaskT = std::next(I, 4); 4941 OMPTaskDataTy Data; 4942 // The task is not final. 4943 Data.Final.setInt(/*IntVal=*/false); 4944 // Get list of firstprivate variables. 4945 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 4946 auto IRef = C->varlist_begin(); 4947 auto IElemInitRef = C->inits().begin(); 4948 for (auto *IInit : C->private_copies()) { 4949 Data.FirstprivateVars.push_back(*IRef); 4950 Data.FirstprivateCopies.push_back(IInit); 4951 Data.FirstprivateInits.push_back(*IElemInitRef); 4952 ++IRef; 4953 ++IElemInitRef; 4954 } 4955 } 4956 SmallVector<const Expr *, 4> LHSs; 4957 SmallVector<const Expr *, 4> RHSs; 4958 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 4959 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 4960 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 4961 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 4962 Data.ReductionOps.append(C->reduction_ops().begin(), 4963 C->reduction_ops().end()); 4964 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4965 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4966 } 4967 OMPPrivateScope TargetScope(*this); 4968 VarDecl *BPVD = nullptr; 4969 VarDecl *PVD = nullptr; 4970 VarDecl *SVD = nullptr; 4971 VarDecl *MVD = nullptr; 4972 if (InputInfo.NumberOfTargetItems > 0) { 4973 auto *CD = CapturedDecl::Create( 4974 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 4975 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 4976 QualType BaseAndPointerAndMapperType = getContext().getConstantArrayType( 4977 getContext().VoidPtrTy, ArrSize, nullptr, ArrayType::Normal, 4978 /*IndexTypeQuals=*/0); 4979 BPVD = createImplicitFirstprivateForType( 4980 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4981 PVD = createImplicitFirstprivateForType( 4982 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4983 QualType SizesType = getContext().getConstantArrayType( 4984 getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1), 4985 ArrSize, nullptr, ArrayType::Normal, 4986 /*IndexTypeQuals=*/0); 4987 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 4988 S.getBeginLoc()); 4989 TargetScope.addPrivate(BPVD, InputInfo.BasePointersArray); 4990 TargetScope.addPrivate(PVD, InputInfo.PointersArray); 4991 TargetScope.addPrivate(SVD, InputInfo.SizesArray); 4992 // If there is no user-defined mapper, the mapper array will be nullptr. In 4993 // this case, we don't need to privatize it. 4994 if (!isa_and_nonnull<llvm::ConstantPointerNull>( 4995 InputInfo.MappersArray.getPointer())) { 4996 MVD = createImplicitFirstprivateForType( 4997 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4998 TargetScope.addPrivate(MVD, InputInfo.MappersArray); 4999 } 5000 } 5001 (void)TargetScope.Privatize(); 5002 buildDependences(S, Data); 5003 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, MVD, 5004 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 5005 // Set proper addresses for generated private copies. 5006 OMPPrivateScope Scope(CGF); 5007 if (!Data.FirstprivateVars.empty()) { 5008 enum { PrivatesParam = 2, CopyFnParam = 3 }; 5009 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 5010 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 5011 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 5012 CS->getCapturedDecl()->getParam(PrivatesParam))); 5013 // Map privates. 5014 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 5015 llvm::SmallVector<llvm::Value *, 16> CallArgs; 5016 llvm::SmallVector<llvm::Type *, 4> ParamTypes; 5017 CallArgs.push_back(PrivatesPtr); 5018 ParamTypes.push_back(PrivatesPtr->getType()); 5019 for (const Expr *E : Data.FirstprivateVars) { 5020 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 5021 Address PrivatePtr = 5022 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 5023 ".firstpriv.ptr.addr"); 5024 PrivatePtrs.emplace_back(VD, PrivatePtr); 5025 CallArgs.push_back(PrivatePtr.getPointer()); 5026 ParamTypes.push_back(PrivatePtr.getType()); 5027 } 5028 auto *CopyFnTy = llvm::FunctionType::get(CGF.Builder.getVoidTy(), 5029 ParamTypes, /*isVarArg=*/false); 5030 CopyFn = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 5031 CopyFn, CopyFnTy->getPointerTo()); 5032 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 5033 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 5034 for (const auto &Pair : PrivatePtrs) { 5035 Address Replacement( 5036 CGF.Builder.CreateLoad(Pair.second), 5037 CGF.ConvertTypeForMem(Pair.first->getType().getNonReferenceType()), 5038 CGF.getContext().getDeclAlign(Pair.first)); 5039 Scope.addPrivate(Pair.first, Replacement); 5040 } 5041 } 5042 CGF.processInReduction(S, Data, CGF, CS, Scope); 5043 if (InputInfo.NumberOfTargetItems > 0) { 5044 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 5045 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0); 5046 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 5047 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0); 5048 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 5049 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0); 5050 // If MVD is nullptr, the mapper array is not privatized 5051 if (MVD) 5052 InputInfo.MappersArray = CGF.Builder.CreateConstArrayGEP( 5053 CGF.GetAddrOfLocalVar(MVD), /*Index=*/0); 5054 } 5055 5056 Action.Enter(CGF); 5057 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 5058 BodyGen(CGF); 5059 }; 5060 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 5061 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 5062 Data.NumberOfParts); 5063 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 5064 IntegerLiteral IfCond(getContext(), TrueOrFalse, 5065 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 5066 SourceLocation()); 5067 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 5068 SharedsTy, CapturedStruct, &IfCond, Data); 5069 } 5070 5071 void CodeGenFunction::processInReduction(const OMPExecutableDirective &S, 5072 OMPTaskDataTy &Data, 5073 CodeGenFunction &CGF, 5074 const CapturedStmt *CS, 5075 OMPPrivateScope &Scope) { 5076 if (Data.Reductions) { 5077 OpenMPDirectiveKind CapturedRegion = S.getDirectiveKind(); 5078 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 5079 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionVars, 5080 Data.ReductionCopies, Data.ReductionOps); 5081 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 5082 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(4))); 5083 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 5084 RedCG.emitSharedOrigLValue(CGF, Cnt); 5085 RedCG.emitAggregateType(CGF, Cnt); 5086 // FIXME: This must removed once the runtime library is fixed. 5087 // Emit required threadprivate variables for 5088 // initializer/combiner/finalizer. 5089 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 5090 RedCG, Cnt); 5091 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 5092 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 5093 Replacement = 5094 Address(CGF.EmitScalarConversion( 5095 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 5096 CGF.getContext().getPointerType( 5097 Data.ReductionCopies[Cnt]->getType()), 5098 Data.ReductionCopies[Cnt]->getExprLoc()), 5099 CGF.ConvertTypeForMem(Data.ReductionCopies[Cnt]->getType()), 5100 Replacement.getAlignment()); 5101 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 5102 Scope.addPrivate(RedCG.getBaseDecl(Cnt), Replacement); 5103 } 5104 } 5105 (void)Scope.Privatize(); 5106 SmallVector<const Expr *, 4> InRedVars; 5107 SmallVector<const Expr *, 4> InRedPrivs; 5108 SmallVector<const Expr *, 4> InRedOps; 5109 SmallVector<const Expr *, 4> TaskgroupDescriptors; 5110 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 5111 auto IPriv = C->privates().begin(); 5112 auto IRed = C->reduction_ops().begin(); 5113 auto ITD = C->taskgroup_descriptors().begin(); 5114 for (const Expr *Ref : C->varlists()) { 5115 InRedVars.emplace_back(Ref); 5116 InRedPrivs.emplace_back(*IPriv); 5117 InRedOps.emplace_back(*IRed); 5118 TaskgroupDescriptors.emplace_back(*ITD); 5119 std::advance(IPriv, 1); 5120 std::advance(IRed, 1); 5121 std::advance(ITD, 1); 5122 } 5123 } 5124 OMPPrivateScope InRedScope(CGF); 5125 if (!InRedVars.empty()) { 5126 ReductionCodeGen RedCG(InRedVars, InRedVars, InRedPrivs, InRedOps); 5127 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 5128 RedCG.emitSharedOrigLValue(CGF, Cnt); 5129 RedCG.emitAggregateType(CGF, Cnt); 5130 // FIXME: This must removed once the runtime library is fixed. 5131 // Emit required threadprivate variables for 5132 // initializer/combiner/finalizer. 5133 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 5134 RedCG, Cnt); 5135 llvm::Value *ReductionsPtr; 5136 if (const Expr *TRExpr = TaskgroupDescriptors[Cnt]) { 5137 ReductionsPtr = 5138 CGF.EmitLoadOfScalar(CGF.EmitLValue(TRExpr), TRExpr->getExprLoc()); 5139 } else { 5140 ReductionsPtr = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); 5141 } 5142 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 5143 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 5144 Replacement = Address( 5145 CGF.EmitScalarConversion( 5146 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 5147 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 5148 InRedPrivs[Cnt]->getExprLoc()), 5149 CGF.ConvertTypeForMem(InRedPrivs[Cnt]->getType()), 5150 Replacement.getAlignment()); 5151 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 5152 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), Replacement); 5153 } 5154 } 5155 (void)InRedScope.Privatize(); 5156 } 5157 5158 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 5159 // Emit outlined function for task construct. 5160 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 5161 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 5162 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 5163 const Expr *IfCond = nullptr; 5164 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 5165 if (C->getNameModifier() == OMPD_unknown || 5166 C->getNameModifier() == OMPD_task) { 5167 IfCond = C->getCondition(); 5168 break; 5169 } 5170 } 5171 5172 OMPTaskDataTy Data; 5173 // Check if we should emit tied or untied task. 5174 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 5175 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 5176 CGF.EmitStmt(CS->getCapturedStmt()); 5177 }; 5178 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 5179 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 5180 const OMPTaskDataTy &Data) { 5181 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 5182 SharedsTy, CapturedStruct, IfCond, 5183 Data); 5184 }; 5185 auto LPCRegion = 5186 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 5187 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 5188 } 5189 5190 void CodeGenFunction::EmitOMPTaskyieldDirective( 5191 const OMPTaskyieldDirective &S) { 5192 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 5193 } 5194 5195 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 5196 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 5197 } 5198 5199 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 5200 OMPTaskDataTy Data; 5201 // Build list of dependences 5202 buildDependences(S, Data); 5203 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc(), Data); 5204 } 5205 5206 bool isSupportedByOpenMPIRBuilder(const OMPTaskgroupDirective &T) { 5207 return T.clauses().empty(); 5208 } 5209 5210 void CodeGenFunction::EmitOMPTaskgroupDirective( 5211 const OMPTaskgroupDirective &S) { 5212 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5213 if (CGM.getLangOpts().OpenMPIRBuilder && isSupportedByOpenMPIRBuilder(S)) { 5214 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 5215 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 5216 InsertPointTy AllocaIP(AllocaInsertPt->getParent(), 5217 AllocaInsertPt->getIterator()); 5218 5219 auto BodyGenCB = [&, this](InsertPointTy AllocaIP, 5220 InsertPointTy CodeGenIP) { 5221 Builder.restoreIP(CodeGenIP); 5222 EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 5223 }; 5224 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 5225 if (!CapturedStmtInfo) 5226 CapturedStmtInfo = &CapStmtInfo; 5227 Builder.restoreIP(OMPBuilder.createTaskgroup(Builder, AllocaIP, BodyGenCB)); 5228 return; 5229 } 5230 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5231 Action.Enter(CGF); 5232 if (const Expr *E = S.getReductionRef()) { 5233 SmallVector<const Expr *, 4> LHSs; 5234 SmallVector<const Expr *, 4> RHSs; 5235 OMPTaskDataTy Data; 5236 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 5237 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 5238 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 5239 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 5240 Data.ReductionOps.append(C->reduction_ops().begin(), 5241 C->reduction_ops().end()); 5242 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 5243 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 5244 } 5245 llvm::Value *ReductionDesc = 5246 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 5247 LHSs, RHSs, Data); 5248 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 5249 CGF.EmitVarDecl(*VD); 5250 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 5251 /*Volatile=*/false, E->getType()); 5252 } 5253 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 5254 }; 5255 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 5256 } 5257 5258 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 5259 llvm::AtomicOrdering AO = S.getSingleClause<OMPFlushClause>() 5260 ? llvm::AtomicOrdering::NotAtomic 5261 : llvm::AtomicOrdering::AcquireRelease; 5262 CGM.getOpenMPRuntime().emitFlush( 5263 *this, 5264 [&S]() -> ArrayRef<const Expr *> { 5265 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 5266 return llvm::makeArrayRef(FlushClause->varlist_begin(), 5267 FlushClause->varlist_end()); 5268 return llvm::None; 5269 }(), 5270 S.getBeginLoc(), AO); 5271 } 5272 5273 void CodeGenFunction::EmitOMPDepobjDirective(const OMPDepobjDirective &S) { 5274 const auto *DO = S.getSingleClause<OMPDepobjClause>(); 5275 LValue DOLVal = EmitLValue(DO->getDepobj()); 5276 if (const auto *DC = S.getSingleClause<OMPDependClause>()) { 5277 OMPTaskDataTy::DependData Dependencies(DC->getDependencyKind(), 5278 DC->getModifier()); 5279 Dependencies.DepExprs.append(DC->varlist_begin(), DC->varlist_end()); 5280 Address DepAddr = CGM.getOpenMPRuntime().emitDepobjDependClause( 5281 *this, Dependencies, DC->getBeginLoc()); 5282 EmitStoreOfScalar(DepAddr.getPointer(), DOLVal); 5283 return; 5284 } 5285 if (const auto *DC = S.getSingleClause<OMPDestroyClause>()) { 5286 CGM.getOpenMPRuntime().emitDestroyClause(*this, DOLVal, DC->getBeginLoc()); 5287 return; 5288 } 5289 if (const auto *UC = S.getSingleClause<OMPUpdateClause>()) { 5290 CGM.getOpenMPRuntime().emitUpdateClause( 5291 *this, DOLVal, UC->getDependencyKind(), UC->getBeginLoc()); 5292 return; 5293 } 5294 } 5295 5296 void CodeGenFunction::EmitOMPScanDirective(const OMPScanDirective &S) { 5297 if (!OMPParentLoopDirectiveForScan) 5298 return; 5299 const OMPExecutableDirective &ParentDir = *OMPParentLoopDirectiveForScan; 5300 bool IsInclusive = S.hasClausesOfKind<OMPInclusiveClause>(); 5301 SmallVector<const Expr *, 4> Shareds; 5302 SmallVector<const Expr *, 4> Privates; 5303 SmallVector<const Expr *, 4> LHSs; 5304 SmallVector<const Expr *, 4> RHSs; 5305 SmallVector<const Expr *, 4> ReductionOps; 5306 SmallVector<const Expr *, 4> CopyOps; 5307 SmallVector<const Expr *, 4> CopyArrayTemps; 5308 SmallVector<const Expr *, 4> CopyArrayElems; 5309 for (const auto *C : ParentDir.getClausesOfKind<OMPReductionClause>()) { 5310 if (C->getModifier() != OMPC_REDUCTION_inscan) 5311 continue; 5312 Shareds.append(C->varlist_begin(), C->varlist_end()); 5313 Privates.append(C->privates().begin(), C->privates().end()); 5314 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 5315 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 5316 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 5317 CopyOps.append(C->copy_ops().begin(), C->copy_ops().end()); 5318 CopyArrayTemps.append(C->copy_array_temps().begin(), 5319 C->copy_array_temps().end()); 5320 CopyArrayElems.append(C->copy_array_elems().begin(), 5321 C->copy_array_elems().end()); 5322 } 5323 if (ParentDir.getDirectiveKind() == OMPD_simd || 5324 (getLangOpts().OpenMPSimd && 5325 isOpenMPSimdDirective(ParentDir.getDirectiveKind()))) { 5326 // For simd directive and simd-based directives in simd only mode, use the 5327 // following codegen: 5328 // int x = 0; 5329 // #pragma omp simd reduction(inscan, +: x) 5330 // for (..) { 5331 // <first part> 5332 // #pragma omp scan inclusive(x) 5333 // <second part> 5334 // } 5335 // is transformed to: 5336 // int x = 0; 5337 // for (..) { 5338 // int x_priv = 0; 5339 // <first part> 5340 // x = x_priv + x; 5341 // x_priv = x; 5342 // <second part> 5343 // } 5344 // and 5345 // int x = 0; 5346 // #pragma omp simd reduction(inscan, +: x) 5347 // for (..) { 5348 // <first part> 5349 // #pragma omp scan exclusive(x) 5350 // <second part> 5351 // } 5352 // to 5353 // int x = 0; 5354 // for (..) { 5355 // int x_priv = 0; 5356 // <second part> 5357 // int temp = x; 5358 // x = x_priv + x; 5359 // x_priv = temp; 5360 // <first part> 5361 // } 5362 llvm::BasicBlock *OMPScanReduce = createBasicBlock("omp.inscan.reduce"); 5363 EmitBranch(IsInclusive 5364 ? OMPScanReduce 5365 : BreakContinueStack.back().ContinueBlock.getBlock()); 5366 EmitBlock(OMPScanDispatch); 5367 { 5368 // New scope for correct construction/destruction of temp variables for 5369 // exclusive scan. 5370 LexicalScope Scope(*this, S.getSourceRange()); 5371 EmitBranch(IsInclusive ? OMPBeforeScanBlock : OMPAfterScanBlock); 5372 EmitBlock(OMPScanReduce); 5373 if (!IsInclusive) { 5374 // Create temp var and copy LHS value to this temp value. 5375 // TMP = LHS; 5376 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5377 const Expr *PrivateExpr = Privates[I]; 5378 const Expr *TempExpr = CopyArrayTemps[I]; 5379 EmitAutoVarDecl( 5380 *cast<VarDecl>(cast<DeclRefExpr>(TempExpr)->getDecl())); 5381 LValue DestLVal = EmitLValue(TempExpr); 5382 LValue SrcLVal = EmitLValue(LHSs[I]); 5383 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5384 SrcLVal.getAddress(*this), 5385 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5386 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5387 CopyOps[I]); 5388 } 5389 } 5390 CGM.getOpenMPRuntime().emitReduction( 5391 *this, ParentDir.getEndLoc(), Privates, LHSs, RHSs, ReductionOps, 5392 {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_simd}); 5393 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5394 const Expr *PrivateExpr = Privates[I]; 5395 LValue DestLVal; 5396 LValue SrcLVal; 5397 if (IsInclusive) { 5398 DestLVal = EmitLValue(RHSs[I]); 5399 SrcLVal = EmitLValue(LHSs[I]); 5400 } else { 5401 const Expr *TempExpr = CopyArrayTemps[I]; 5402 DestLVal = EmitLValue(RHSs[I]); 5403 SrcLVal = EmitLValue(TempExpr); 5404 } 5405 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5406 SrcLVal.getAddress(*this), 5407 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5408 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5409 CopyOps[I]); 5410 } 5411 } 5412 EmitBranch(IsInclusive ? OMPAfterScanBlock : OMPBeforeScanBlock); 5413 OMPScanExitBlock = IsInclusive 5414 ? BreakContinueStack.back().ContinueBlock.getBlock() 5415 : OMPScanReduce; 5416 EmitBlock(OMPAfterScanBlock); 5417 return; 5418 } 5419 if (!IsInclusive) { 5420 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 5421 EmitBlock(OMPScanExitBlock); 5422 } 5423 if (OMPFirstScanLoop) { 5424 // Emit buffer[i] = red; at the end of the input phase. 5425 const auto *IVExpr = cast<OMPLoopDirective>(ParentDir) 5426 .getIterationVariable() 5427 ->IgnoreParenImpCasts(); 5428 LValue IdxLVal = EmitLValue(IVExpr); 5429 llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc()); 5430 IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false); 5431 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5432 const Expr *PrivateExpr = Privates[I]; 5433 const Expr *OrigExpr = Shareds[I]; 5434 const Expr *CopyArrayElem = CopyArrayElems[I]; 5435 OpaqueValueMapping IdxMapping( 5436 *this, 5437 cast<OpaqueValueExpr>( 5438 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 5439 RValue::get(IdxVal)); 5440 LValue DestLVal = EmitLValue(CopyArrayElem); 5441 LValue SrcLVal = EmitLValue(OrigExpr); 5442 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5443 SrcLVal.getAddress(*this), 5444 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5445 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5446 CopyOps[I]); 5447 } 5448 } 5449 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 5450 if (IsInclusive) { 5451 EmitBlock(OMPScanExitBlock); 5452 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 5453 } 5454 EmitBlock(OMPScanDispatch); 5455 if (!OMPFirstScanLoop) { 5456 // Emit red = buffer[i]; at the entrance to the scan phase. 5457 const auto *IVExpr = cast<OMPLoopDirective>(ParentDir) 5458 .getIterationVariable() 5459 ->IgnoreParenImpCasts(); 5460 LValue IdxLVal = EmitLValue(IVExpr); 5461 llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc()); 5462 IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false); 5463 llvm::BasicBlock *ExclusiveExitBB = nullptr; 5464 if (!IsInclusive) { 5465 llvm::BasicBlock *ContBB = createBasicBlock("omp.exclusive.dec"); 5466 ExclusiveExitBB = createBasicBlock("omp.exclusive.copy.exit"); 5467 llvm::Value *Cmp = Builder.CreateIsNull(IdxVal); 5468 Builder.CreateCondBr(Cmp, ExclusiveExitBB, ContBB); 5469 EmitBlock(ContBB); 5470 // Use idx - 1 iteration for exclusive scan. 5471 IdxVal = Builder.CreateNUWSub(IdxVal, llvm::ConstantInt::get(SizeTy, 1)); 5472 } 5473 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5474 const Expr *PrivateExpr = Privates[I]; 5475 const Expr *OrigExpr = Shareds[I]; 5476 const Expr *CopyArrayElem = CopyArrayElems[I]; 5477 OpaqueValueMapping IdxMapping( 5478 *this, 5479 cast<OpaqueValueExpr>( 5480 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 5481 RValue::get(IdxVal)); 5482 LValue SrcLVal = EmitLValue(CopyArrayElem); 5483 LValue DestLVal = EmitLValue(OrigExpr); 5484 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5485 SrcLVal.getAddress(*this), 5486 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5487 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5488 CopyOps[I]); 5489 } 5490 if (!IsInclusive) { 5491 EmitBlock(ExclusiveExitBB); 5492 } 5493 } 5494 EmitBranch((OMPFirstScanLoop == IsInclusive) ? OMPBeforeScanBlock 5495 : OMPAfterScanBlock); 5496 EmitBlock(OMPAfterScanBlock); 5497 } 5498 5499 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 5500 const CodeGenLoopTy &CodeGenLoop, 5501 Expr *IncExpr) { 5502 // Emit the loop iteration variable. 5503 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 5504 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 5505 EmitVarDecl(*IVDecl); 5506 5507 // Emit the iterations count variable. 5508 // If it is not a variable, Sema decided to calculate iterations count on each 5509 // iteration (e.g., it is foldable into a constant). 5510 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 5511 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 5512 // Emit calculation of the iterations count. 5513 EmitIgnoredExpr(S.getCalcLastIteration()); 5514 } 5515 5516 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 5517 5518 bool HasLastprivateClause = false; 5519 // Check pre-condition. 5520 { 5521 OMPLoopScope PreInitScope(*this, S); 5522 // Skip the entire loop if we don't meet the precondition. 5523 // If the condition constant folds and can be elided, avoid emitting the 5524 // whole loop. 5525 bool CondConstant; 5526 llvm::BasicBlock *ContBlock = nullptr; 5527 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 5528 if (!CondConstant) 5529 return; 5530 } else { 5531 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 5532 ContBlock = createBasicBlock("omp.precond.end"); 5533 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 5534 getProfileCount(&S)); 5535 EmitBlock(ThenBlock); 5536 incrementProfileCounter(&S); 5537 } 5538 5539 emitAlignedClause(*this, S); 5540 // Emit 'then' code. 5541 { 5542 // Emit helper vars inits. 5543 5544 LValue LB = EmitOMPHelperVar( 5545 *this, cast<DeclRefExpr>( 5546 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5547 ? S.getCombinedLowerBoundVariable() 5548 : S.getLowerBoundVariable()))); 5549 LValue UB = EmitOMPHelperVar( 5550 *this, cast<DeclRefExpr>( 5551 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5552 ? S.getCombinedUpperBoundVariable() 5553 : S.getUpperBoundVariable()))); 5554 LValue ST = 5555 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 5556 LValue IL = 5557 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 5558 5559 OMPPrivateScope LoopScope(*this); 5560 if (EmitOMPFirstprivateClause(S, LoopScope)) { 5561 // Emit implicit barrier to synchronize threads and avoid data races 5562 // on initialization of firstprivate variables and post-update of 5563 // lastprivate variables. 5564 CGM.getOpenMPRuntime().emitBarrierCall( 5565 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 5566 /*ForceSimpleCall=*/true); 5567 } 5568 EmitOMPPrivateClause(S, LoopScope); 5569 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 5570 !isOpenMPParallelDirective(S.getDirectiveKind()) && 5571 !isOpenMPTeamsDirective(S.getDirectiveKind())) 5572 EmitOMPReductionClauseInit(S, LoopScope); 5573 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 5574 EmitOMPPrivateLoopCounters(S, LoopScope); 5575 (void)LoopScope.Privatize(); 5576 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 5577 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 5578 5579 // Detect the distribute schedule kind and chunk. 5580 llvm::Value *Chunk = nullptr; 5581 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 5582 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 5583 ScheduleKind = C->getDistScheduleKind(); 5584 if (const Expr *Ch = C->getChunkSize()) { 5585 Chunk = EmitScalarExpr(Ch); 5586 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 5587 S.getIterationVariable()->getType(), 5588 S.getBeginLoc()); 5589 } 5590 } else { 5591 // Default behaviour for dist_schedule clause. 5592 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 5593 *this, S, ScheduleKind, Chunk); 5594 } 5595 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 5596 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 5597 5598 // OpenMP [2.10.8, distribute Construct, Description] 5599 // If dist_schedule is specified, kind must be static. If specified, 5600 // iterations are divided into chunks of size chunk_size, chunks are 5601 // assigned to the teams of the league in a round-robin fashion in the 5602 // order of the team number. When no chunk_size is specified, the 5603 // iteration space is divided into chunks that are approximately equal 5604 // in size, and at most one chunk is distributed to each team of the 5605 // league. The size of the chunks is unspecified in this case. 5606 bool StaticChunked = 5607 RT.isStaticChunked(ScheduleKind, /* Chunked */ Chunk != nullptr) && 5608 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 5609 if (RT.isStaticNonchunked(ScheduleKind, 5610 /* Chunked */ Chunk != nullptr) || 5611 StaticChunked) { 5612 CGOpenMPRuntime::StaticRTInput StaticInit( 5613 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(*this), 5614 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 5615 StaticChunked ? Chunk : nullptr); 5616 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 5617 StaticInit); 5618 JumpDest LoopExit = 5619 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 5620 // UB = min(UB, GlobalUB); 5621 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5622 ? S.getCombinedEnsureUpperBound() 5623 : S.getEnsureUpperBound()); 5624 // IV = LB; 5625 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5626 ? S.getCombinedInit() 5627 : S.getInit()); 5628 5629 const Expr *Cond = 5630 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5631 ? S.getCombinedCond() 5632 : S.getCond(); 5633 5634 if (StaticChunked) 5635 Cond = S.getCombinedDistCond(); 5636 5637 // For static unchunked schedules generate: 5638 // 5639 // 1. For distribute alone, codegen 5640 // while (idx <= UB) { 5641 // BODY; 5642 // ++idx; 5643 // } 5644 // 5645 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 5646 // while (idx <= UB) { 5647 // <CodeGen rest of pragma>(LB, UB); 5648 // idx += ST; 5649 // } 5650 // 5651 // For static chunk one schedule generate: 5652 // 5653 // while (IV <= GlobalUB) { 5654 // <CodeGen rest of pragma>(LB, UB); 5655 // LB += ST; 5656 // UB += ST; 5657 // UB = min(UB, GlobalUB); 5658 // IV = LB; 5659 // } 5660 // 5661 emitCommonSimdLoop( 5662 *this, S, 5663 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5664 if (isOpenMPSimdDirective(S.getDirectiveKind())) 5665 CGF.EmitOMPSimdInit(S); 5666 }, 5667 [&S, &LoopScope, Cond, IncExpr, LoopExit, &CodeGenLoop, 5668 StaticChunked](CodeGenFunction &CGF, PrePostActionTy &) { 5669 CGF.EmitOMPInnerLoop( 5670 S, LoopScope.requiresCleanups(), Cond, IncExpr, 5671 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 5672 CodeGenLoop(CGF, S, LoopExit); 5673 }, 5674 [&S, StaticChunked](CodeGenFunction &CGF) { 5675 if (StaticChunked) { 5676 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 5677 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 5678 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 5679 CGF.EmitIgnoredExpr(S.getCombinedInit()); 5680 } 5681 }); 5682 }); 5683 EmitBlock(LoopExit.getBlock()); 5684 // Tell the runtime we are done. 5685 RT.emitForStaticFinish(*this, S.getEndLoc(), S.getDirectiveKind()); 5686 } else { 5687 // Emit the outer loop, which requests its work chunk [LB..UB] from 5688 // runtime and runs the inner loop to process it. 5689 const OMPLoopArguments LoopArguments = { 5690 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 5691 IL.getAddress(*this), Chunk}; 5692 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 5693 CodeGenLoop); 5694 } 5695 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 5696 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 5697 return CGF.Builder.CreateIsNotNull( 5698 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 5699 }); 5700 } 5701 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 5702 !isOpenMPParallelDirective(S.getDirectiveKind()) && 5703 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 5704 EmitOMPReductionClauseFinal(S, OMPD_simd); 5705 // Emit post-update of the reduction variables if IsLastIter != 0. 5706 emitPostUpdateForReductionClause( 5707 *this, S, [IL, &S](CodeGenFunction &CGF) { 5708 return CGF.Builder.CreateIsNotNull( 5709 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 5710 }); 5711 } 5712 // Emit final copy of the lastprivate variables if IsLastIter != 0. 5713 if (HasLastprivateClause) { 5714 EmitOMPLastprivateClauseFinal( 5715 S, /*NoFinals=*/false, 5716 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 5717 } 5718 } 5719 5720 // We're now done with the loop, so jump to the continuation block. 5721 if (ContBlock) { 5722 EmitBranch(ContBlock); 5723 EmitBlock(ContBlock, true); 5724 } 5725 } 5726 } 5727 5728 void CodeGenFunction::EmitOMPDistributeDirective( 5729 const OMPDistributeDirective &S) { 5730 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5731 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5732 }; 5733 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5734 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 5735 } 5736 5737 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 5738 const CapturedStmt *S, 5739 SourceLocation Loc) { 5740 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 5741 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 5742 CGF.CapturedStmtInfo = &CapStmtInfo; 5743 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S, Loc); 5744 Fn->setDoesNotRecurse(); 5745 return Fn; 5746 } 5747 5748 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 5749 if (CGM.getLangOpts().OpenMPIRBuilder) { 5750 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 5751 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 5752 5753 if (S.hasClausesOfKind<OMPDependClause>()) { 5754 // The ordered directive with depend clause. 5755 assert(!S.hasAssociatedStmt() && 5756 "No associated statement must be in ordered depend construct."); 5757 InsertPointTy AllocaIP(AllocaInsertPt->getParent(), 5758 AllocaInsertPt->getIterator()); 5759 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) { 5760 unsigned NumLoops = DC->getNumLoops(); 5761 QualType Int64Ty = CGM.getContext().getIntTypeForBitwidth( 5762 /*DestWidth=*/64, /*Signed=*/1); 5763 llvm::SmallVector<llvm::Value *> StoreValues; 5764 for (unsigned I = 0; I < NumLoops; I++) { 5765 const Expr *CounterVal = DC->getLoopData(I); 5766 assert(CounterVal); 5767 llvm::Value *StoreValue = EmitScalarConversion( 5768 EmitScalarExpr(CounterVal), CounterVal->getType(), Int64Ty, 5769 CounterVal->getExprLoc()); 5770 StoreValues.emplace_back(StoreValue); 5771 } 5772 bool IsDependSource = false; 5773 if (DC->getDependencyKind() == OMPC_DEPEND_source) 5774 IsDependSource = true; 5775 Builder.restoreIP(OMPBuilder.createOrderedDepend( 5776 Builder, AllocaIP, NumLoops, StoreValues, ".cnt.addr", 5777 IsDependSource)); 5778 } 5779 } else { 5780 // The ordered directive with threads or simd clause, or without clause. 5781 // Without clause, it behaves as if the threads clause is specified. 5782 const auto *C = S.getSingleClause<OMPSIMDClause>(); 5783 5784 auto FiniCB = [this](InsertPointTy IP) { 5785 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 5786 }; 5787 5788 auto BodyGenCB = [&S, C, this](InsertPointTy AllocaIP, 5789 InsertPointTy CodeGenIP) { 5790 Builder.restoreIP(CodeGenIP); 5791 5792 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 5793 if (C) { 5794 llvm::BasicBlock *FiniBB = splitBBWithSuffix( 5795 Builder, /*CreateBranch=*/false, ".ordered.after"); 5796 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 5797 GenerateOpenMPCapturedVars(*CS, CapturedVars); 5798 llvm::Function *OutlinedFn = 5799 emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc()); 5800 assert(S.getBeginLoc().isValid() && 5801 "Outlined function call location must be valid."); 5802 ApplyDebugLocation::CreateDefaultArtificial(*this, S.getBeginLoc()); 5803 OMPBuilderCBHelpers::EmitCaptureStmt(*this, CodeGenIP, *FiniBB, 5804 OutlinedFn, CapturedVars); 5805 } else { 5806 OMPBuilderCBHelpers::EmitOMPInlinedRegionBody( 5807 *this, CS->getCapturedStmt(), AllocaIP, CodeGenIP, "ordered"); 5808 } 5809 }; 5810 5811 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5812 Builder.restoreIP( 5813 OMPBuilder.createOrderedThreadsSimd(Builder, BodyGenCB, FiniCB, !C)); 5814 } 5815 return; 5816 } 5817 5818 if (S.hasClausesOfKind<OMPDependClause>()) { 5819 assert(!S.hasAssociatedStmt() && 5820 "No associated statement must be in ordered depend construct."); 5821 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 5822 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 5823 return; 5824 } 5825 const auto *C = S.getSingleClause<OMPSIMDClause>(); 5826 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 5827 PrePostActionTy &Action) { 5828 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 5829 if (C) { 5830 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 5831 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 5832 llvm::Function *OutlinedFn = 5833 emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc()); 5834 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 5835 OutlinedFn, CapturedVars); 5836 } else { 5837 Action.Enter(CGF); 5838 CGF.EmitStmt(CS->getCapturedStmt()); 5839 } 5840 }; 5841 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5842 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 5843 } 5844 5845 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 5846 QualType SrcType, QualType DestType, 5847 SourceLocation Loc) { 5848 assert(CGF.hasScalarEvaluationKind(DestType) && 5849 "DestType must have scalar evaluation kind."); 5850 assert(!Val.isAggregate() && "Must be a scalar or complex."); 5851 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 5852 DestType, Loc) 5853 : CGF.EmitComplexToScalarConversion( 5854 Val.getComplexVal(), SrcType, DestType, Loc); 5855 } 5856 5857 static CodeGenFunction::ComplexPairTy 5858 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 5859 QualType DestType, SourceLocation Loc) { 5860 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 5861 "DestType must have complex evaluation kind."); 5862 CodeGenFunction::ComplexPairTy ComplexVal; 5863 if (Val.isScalar()) { 5864 // Convert the input element to the element type of the complex. 5865 QualType DestElementType = 5866 DestType->castAs<ComplexType>()->getElementType(); 5867 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 5868 Val.getScalarVal(), SrcType, DestElementType, Loc); 5869 ComplexVal = CodeGenFunction::ComplexPairTy( 5870 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 5871 } else { 5872 assert(Val.isComplex() && "Must be a scalar or complex."); 5873 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 5874 QualType DestElementType = 5875 DestType->castAs<ComplexType>()->getElementType(); 5876 ComplexVal.first = CGF.EmitScalarConversion( 5877 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 5878 ComplexVal.second = CGF.EmitScalarConversion( 5879 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 5880 } 5881 return ComplexVal; 5882 } 5883 5884 static void emitSimpleAtomicStore(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 5885 LValue LVal, RValue RVal) { 5886 if (LVal.isGlobalReg()) 5887 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 5888 else 5889 CGF.EmitAtomicStore(RVal, LVal, AO, LVal.isVolatile(), /*isInit=*/false); 5890 } 5891 5892 static RValue emitSimpleAtomicLoad(CodeGenFunction &CGF, 5893 llvm::AtomicOrdering AO, LValue LVal, 5894 SourceLocation Loc) { 5895 if (LVal.isGlobalReg()) 5896 return CGF.EmitLoadOfLValue(LVal, Loc); 5897 return CGF.EmitAtomicLoad( 5898 LVal, Loc, llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO), 5899 LVal.isVolatile()); 5900 } 5901 5902 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 5903 QualType RValTy, SourceLocation Loc) { 5904 switch (getEvaluationKind(LVal.getType())) { 5905 case TEK_Scalar: 5906 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 5907 *this, RVal, RValTy, LVal.getType(), Loc)), 5908 LVal); 5909 break; 5910 case TEK_Complex: 5911 EmitStoreOfComplex( 5912 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 5913 /*isInit=*/false); 5914 break; 5915 case TEK_Aggregate: 5916 llvm_unreachable("Must be a scalar or complex."); 5917 } 5918 } 5919 5920 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 5921 const Expr *X, const Expr *V, 5922 SourceLocation Loc) { 5923 // v = x; 5924 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 5925 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 5926 LValue XLValue = CGF.EmitLValue(X); 5927 LValue VLValue = CGF.EmitLValue(V); 5928 RValue Res = emitSimpleAtomicLoad(CGF, AO, XLValue, Loc); 5929 // OpenMP, 2.17.7, atomic Construct 5930 // If the read or capture clause is specified and the acquire, acq_rel, or 5931 // seq_cst clause is specified then the strong flush on exit from the atomic 5932 // operation is also an acquire flush. 5933 switch (AO) { 5934 case llvm::AtomicOrdering::Acquire: 5935 case llvm::AtomicOrdering::AcquireRelease: 5936 case llvm::AtomicOrdering::SequentiallyConsistent: 5937 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5938 llvm::AtomicOrdering::Acquire); 5939 break; 5940 case llvm::AtomicOrdering::Monotonic: 5941 case llvm::AtomicOrdering::Release: 5942 break; 5943 case llvm::AtomicOrdering::NotAtomic: 5944 case llvm::AtomicOrdering::Unordered: 5945 llvm_unreachable("Unexpected ordering."); 5946 } 5947 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 5948 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 5949 } 5950 5951 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, 5952 llvm::AtomicOrdering AO, const Expr *X, 5953 const Expr *E, SourceLocation Loc) { 5954 // x = expr; 5955 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 5956 emitSimpleAtomicStore(CGF, AO, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 5957 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5958 // OpenMP, 2.17.7, atomic Construct 5959 // If the write, update, or capture clause is specified and the release, 5960 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5961 // the atomic operation is also a release flush. 5962 switch (AO) { 5963 case llvm::AtomicOrdering::Release: 5964 case llvm::AtomicOrdering::AcquireRelease: 5965 case llvm::AtomicOrdering::SequentiallyConsistent: 5966 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5967 llvm::AtomicOrdering::Release); 5968 break; 5969 case llvm::AtomicOrdering::Acquire: 5970 case llvm::AtomicOrdering::Monotonic: 5971 break; 5972 case llvm::AtomicOrdering::NotAtomic: 5973 case llvm::AtomicOrdering::Unordered: 5974 llvm_unreachable("Unexpected ordering."); 5975 } 5976 } 5977 5978 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 5979 RValue Update, 5980 BinaryOperatorKind BO, 5981 llvm::AtomicOrdering AO, 5982 bool IsXLHSInRHSPart) { 5983 ASTContext &Context = CGF.getContext(); 5984 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 5985 // expression is simple and atomic is allowed for the given type for the 5986 // target platform. 5987 if (BO == BO_Comma || !Update.isScalar() || !X.isSimple() || 5988 (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 5989 (Update.getScalarVal()->getType() != 5990 X.getAddress(CGF).getElementType())) || 5991 !Context.getTargetInfo().hasBuiltinAtomic( 5992 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 5993 return std::make_pair(false, RValue::get(nullptr)); 5994 5995 auto &&CheckAtomicSupport = [&CGF](llvm::Type *T, BinaryOperatorKind BO) { 5996 if (T->isIntegerTy()) 5997 return true; 5998 5999 if (T->isFloatingPointTy() && (BO == BO_Add || BO == BO_Sub)) 6000 return llvm::isPowerOf2_64(CGF.CGM.getDataLayout().getTypeStoreSize(T)); 6001 6002 return false; 6003 }; 6004 6005 if (!CheckAtomicSupport(Update.getScalarVal()->getType(), BO) || 6006 !CheckAtomicSupport(X.getAddress(CGF).getElementType(), BO)) 6007 return std::make_pair(false, RValue::get(nullptr)); 6008 6009 bool IsInteger = X.getAddress(CGF).getElementType()->isIntegerTy(); 6010 llvm::AtomicRMWInst::BinOp RMWOp; 6011 switch (BO) { 6012 case BO_Add: 6013 RMWOp = IsInteger ? llvm::AtomicRMWInst::Add : llvm::AtomicRMWInst::FAdd; 6014 break; 6015 case BO_Sub: 6016 if (!IsXLHSInRHSPart) 6017 return std::make_pair(false, RValue::get(nullptr)); 6018 RMWOp = IsInteger ? llvm::AtomicRMWInst::Sub : llvm::AtomicRMWInst::FSub; 6019 break; 6020 case BO_And: 6021 RMWOp = llvm::AtomicRMWInst::And; 6022 break; 6023 case BO_Or: 6024 RMWOp = llvm::AtomicRMWInst::Or; 6025 break; 6026 case BO_Xor: 6027 RMWOp = llvm::AtomicRMWInst::Xor; 6028 break; 6029 case BO_LT: 6030 if (IsInteger) 6031 RMWOp = X.getType()->hasSignedIntegerRepresentation() 6032 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 6033 : llvm::AtomicRMWInst::Max) 6034 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 6035 : llvm::AtomicRMWInst::UMax); 6036 else 6037 RMWOp = IsXLHSInRHSPart ? llvm::AtomicRMWInst::FMin 6038 : llvm::AtomicRMWInst::FMax; 6039 break; 6040 case BO_GT: 6041 if (IsInteger) 6042 RMWOp = X.getType()->hasSignedIntegerRepresentation() 6043 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 6044 : llvm::AtomicRMWInst::Min) 6045 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 6046 : llvm::AtomicRMWInst::UMin); 6047 else 6048 RMWOp = IsXLHSInRHSPart ? llvm::AtomicRMWInst::FMax 6049 : llvm::AtomicRMWInst::FMin; 6050 break; 6051 case BO_Assign: 6052 RMWOp = llvm::AtomicRMWInst::Xchg; 6053 break; 6054 case BO_Mul: 6055 case BO_Div: 6056 case BO_Rem: 6057 case BO_Shl: 6058 case BO_Shr: 6059 case BO_LAnd: 6060 case BO_LOr: 6061 return std::make_pair(false, RValue::get(nullptr)); 6062 case BO_PtrMemD: 6063 case BO_PtrMemI: 6064 case BO_LE: 6065 case BO_GE: 6066 case BO_EQ: 6067 case BO_NE: 6068 case BO_Cmp: 6069 case BO_AddAssign: 6070 case BO_SubAssign: 6071 case BO_AndAssign: 6072 case BO_OrAssign: 6073 case BO_XorAssign: 6074 case BO_MulAssign: 6075 case BO_DivAssign: 6076 case BO_RemAssign: 6077 case BO_ShlAssign: 6078 case BO_ShrAssign: 6079 case BO_Comma: 6080 llvm_unreachable("Unsupported atomic update operation"); 6081 } 6082 llvm::Value *UpdateVal = Update.getScalarVal(); 6083 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 6084 if (IsInteger) 6085 UpdateVal = CGF.Builder.CreateIntCast( 6086 IC, X.getAddress(CGF).getElementType(), 6087 X.getType()->hasSignedIntegerRepresentation()); 6088 else 6089 UpdateVal = CGF.Builder.CreateCast(llvm::Instruction::CastOps::UIToFP, IC, 6090 X.getAddress(CGF).getElementType()); 6091 } 6092 llvm::Value *Res = 6093 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(CGF), UpdateVal, AO); 6094 return std::make_pair(true, RValue::get(Res)); 6095 } 6096 6097 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 6098 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 6099 llvm::AtomicOrdering AO, SourceLocation Loc, 6100 const llvm::function_ref<RValue(RValue)> CommonGen) { 6101 // Update expressions are allowed to have the following forms: 6102 // x binop= expr; -> xrval + expr; 6103 // x++, ++x -> xrval + 1; 6104 // x--, --x -> xrval - 1; 6105 // x = x binop expr; -> xrval binop expr 6106 // x = expr Op x; - > expr binop xrval; 6107 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 6108 if (!Res.first) { 6109 if (X.isGlobalReg()) { 6110 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 6111 // 'xrval'. 6112 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 6113 } else { 6114 // Perform compare-and-swap procedure. 6115 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 6116 } 6117 } 6118 return Res; 6119 } 6120 6121 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, 6122 llvm::AtomicOrdering AO, const Expr *X, 6123 const Expr *E, const Expr *UE, 6124 bool IsXLHSInRHSPart, SourceLocation Loc) { 6125 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 6126 "Update expr in 'atomic update' must be a binary operator."); 6127 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 6128 // Update expressions are allowed to have the following forms: 6129 // x binop= expr; -> xrval + expr; 6130 // x++, ++x -> xrval + 1; 6131 // x--, --x -> xrval - 1; 6132 // x = x binop expr; -> xrval binop expr 6133 // x = expr Op x; - > expr binop xrval; 6134 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 6135 LValue XLValue = CGF.EmitLValue(X); 6136 RValue ExprRValue = CGF.EmitAnyExpr(E); 6137 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 6138 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 6139 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 6140 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 6141 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 6142 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 6143 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 6144 return CGF.EmitAnyExpr(UE); 6145 }; 6146 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 6147 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 6148 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 6149 // OpenMP, 2.17.7, atomic Construct 6150 // If the write, update, or capture clause is specified and the release, 6151 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 6152 // the atomic operation is also a release flush. 6153 switch (AO) { 6154 case llvm::AtomicOrdering::Release: 6155 case llvm::AtomicOrdering::AcquireRelease: 6156 case llvm::AtomicOrdering::SequentiallyConsistent: 6157 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 6158 llvm::AtomicOrdering::Release); 6159 break; 6160 case llvm::AtomicOrdering::Acquire: 6161 case llvm::AtomicOrdering::Monotonic: 6162 break; 6163 case llvm::AtomicOrdering::NotAtomic: 6164 case llvm::AtomicOrdering::Unordered: 6165 llvm_unreachable("Unexpected ordering."); 6166 } 6167 } 6168 6169 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 6170 QualType SourceType, QualType ResType, 6171 SourceLocation Loc) { 6172 switch (CGF.getEvaluationKind(ResType)) { 6173 case TEK_Scalar: 6174 return RValue::get( 6175 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 6176 case TEK_Complex: { 6177 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 6178 return RValue::getComplex(Res.first, Res.second); 6179 } 6180 case TEK_Aggregate: 6181 break; 6182 } 6183 llvm_unreachable("Must be a scalar or complex."); 6184 } 6185 6186 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, 6187 llvm::AtomicOrdering AO, 6188 bool IsPostfixUpdate, const Expr *V, 6189 const Expr *X, const Expr *E, 6190 const Expr *UE, bool IsXLHSInRHSPart, 6191 SourceLocation Loc) { 6192 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 6193 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 6194 RValue NewVVal; 6195 LValue VLValue = CGF.EmitLValue(V); 6196 LValue XLValue = CGF.EmitLValue(X); 6197 RValue ExprRValue = CGF.EmitAnyExpr(E); 6198 QualType NewVValType; 6199 if (UE) { 6200 // 'x' is updated with some additional value. 6201 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 6202 "Update expr in 'atomic capture' must be a binary operator."); 6203 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 6204 // Update expressions are allowed to have the following forms: 6205 // x binop= expr; -> xrval + expr; 6206 // x++, ++x -> xrval + 1; 6207 // x--, --x -> xrval - 1; 6208 // x = x binop expr; -> xrval binop expr 6209 // x = expr Op x; - > expr binop xrval; 6210 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 6211 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 6212 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 6213 NewVValType = XRValExpr->getType(); 6214 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 6215 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 6216 IsPostfixUpdate](RValue XRValue) { 6217 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 6218 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 6219 RValue Res = CGF.EmitAnyExpr(UE); 6220 NewVVal = IsPostfixUpdate ? XRValue : Res; 6221 return Res; 6222 }; 6223 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 6224 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 6225 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 6226 if (Res.first) { 6227 // 'atomicrmw' instruction was generated. 6228 if (IsPostfixUpdate) { 6229 // Use old value from 'atomicrmw'. 6230 NewVVal = Res.second; 6231 } else { 6232 // 'atomicrmw' does not provide new value, so evaluate it using old 6233 // value of 'x'. 6234 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 6235 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 6236 NewVVal = CGF.EmitAnyExpr(UE); 6237 } 6238 } 6239 } else { 6240 // 'x' is simply rewritten with some 'expr'. 6241 NewVValType = X->getType().getNonReferenceType(); 6242 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 6243 X->getType().getNonReferenceType(), Loc); 6244 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 6245 NewVVal = XRValue; 6246 return ExprRValue; 6247 }; 6248 // Try to perform atomicrmw xchg, otherwise simple exchange. 6249 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 6250 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 6251 Loc, Gen); 6252 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 6253 if (Res.first) { 6254 // 'atomicrmw' instruction was generated. 6255 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 6256 } 6257 } 6258 // Emit post-update store to 'v' of old/new 'x' value. 6259 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 6260 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 6261 // OpenMP 5.1 removes the required flush for capture clause. 6262 if (CGF.CGM.getLangOpts().OpenMP < 51) { 6263 // OpenMP, 2.17.7, atomic Construct 6264 // If the write, update, or capture clause is specified and the release, 6265 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 6266 // the atomic operation is also a release flush. 6267 // If the read or capture clause is specified and the acquire, acq_rel, or 6268 // seq_cst clause is specified then the strong flush on exit from the atomic 6269 // operation is also an acquire flush. 6270 switch (AO) { 6271 case llvm::AtomicOrdering::Release: 6272 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 6273 llvm::AtomicOrdering::Release); 6274 break; 6275 case llvm::AtomicOrdering::Acquire: 6276 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 6277 llvm::AtomicOrdering::Acquire); 6278 break; 6279 case llvm::AtomicOrdering::AcquireRelease: 6280 case llvm::AtomicOrdering::SequentiallyConsistent: 6281 CGF.CGM.getOpenMPRuntime().emitFlush( 6282 CGF, llvm::None, Loc, llvm::AtomicOrdering::AcquireRelease); 6283 break; 6284 case llvm::AtomicOrdering::Monotonic: 6285 break; 6286 case llvm::AtomicOrdering::NotAtomic: 6287 case llvm::AtomicOrdering::Unordered: 6288 llvm_unreachable("Unexpected ordering."); 6289 } 6290 } 6291 } 6292 6293 static void emitOMPAtomicCompareExpr(CodeGenFunction &CGF, 6294 llvm::AtomicOrdering AO, const Expr *X, 6295 const Expr *V, const Expr *R, 6296 const Expr *E, const Expr *D, 6297 const Expr *CE, bool IsXBinopExpr, 6298 bool IsPostfixUpdate, bool IsFailOnly, 6299 SourceLocation Loc) { 6300 llvm::OpenMPIRBuilder &OMPBuilder = 6301 CGF.CGM.getOpenMPRuntime().getOMPBuilder(); 6302 6303 OMPAtomicCompareOp Op; 6304 assert(isa<BinaryOperator>(CE) && "CE is not a BinaryOperator"); 6305 switch (cast<BinaryOperator>(CE)->getOpcode()) { 6306 case BO_EQ: 6307 Op = OMPAtomicCompareOp::EQ; 6308 break; 6309 case BO_LT: 6310 Op = OMPAtomicCompareOp::MIN; 6311 break; 6312 case BO_GT: 6313 Op = OMPAtomicCompareOp::MAX; 6314 break; 6315 default: 6316 llvm_unreachable("unsupported atomic compare binary operator"); 6317 } 6318 6319 LValue XLVal = CGF.EmitLValue(X); 6320 Address XAddr = XLVal.getAddress(CGF); 6321 6322 auto EmitRValueWithCastIfNeeded = [&CGF, Loc](const Expr *X, const Expr *E) { 6323 if (X->getType() == E->getType()) 6324 return CGF.EmitScalarExpr(E); 6325 const Expr *NewE = E->IgnoreImplicitAsWritten(); 6326 llvm::Value *V = CGF.EmitScalarExpr(NewE); 6327 if (NewE->getType() == X->getType()) 6328 return V; 6329 return CGF.EmitScalarConversion(V, NewE->getType(), X->getType(), Loc); 6330 }; 6331 6332 llvm::Value *EVal = EmitRValueWithCastIfNeeded(X, E); 6333 llvm::Value *DVal = D ? EmitRValueWithCastIfNeeded(X, D) : nullptr; 6334 if (auto *CI = dyn_cast<llvm::ConstantInt>(EVal)) 6335 EVal = CGF.Builder.CreateIntCast( 6336 CI, XLVal.getAddress(CGF).getElementType(), 6337 E->getType()->hasSignedIntegerRepresentation()); 6338 if (DVal) 6339 if (auto *CI = dyn_cast<llvm::ConstantInt>(DVal)) 6340 DVal = CGF.Builder.CreateIntCast( 6341 CI, XLVal.getAddress(CGF).getElementType(), 6342 D->getType()->hasSignedIntegerRepresentation()); 6343 6344 llvm::OpenMPIRBuilder::AtomicOpValue XOpVal{ 6345 XAddr.getPointer(), XAddr.getElementType(), 6346 X->getType()->hasSignedIntegerRepresentation(), 6347 X->getType().isVolatileQualified()}; 6348 llvm::OpenMPIRBuilder::AtomicOpValue VOpVal, ROpVal; 6349 if (V) { 6350 LValue LV = CGF.EmitLValue(V); 6351 Address Addr = LV.getAddress(CGF); 6352 VOpVal = {Addr.getPointer(), Addr.getElementType(), 6353 V->getType()->hasSignedIntegerRepresentation(), 6354 V->getType().isVolatileQualified()}; 6355 } 6356 if (R) { 6357 LValue LV = CGF.EmitLValue(R); 6358 Address Addr = LV.getAddress(CGF); 6359 ROpVal = {Addr.getPointer(), Addr.getElementType(), 6360 R->getType()->hasSignedIntegerRepresentation(), 6361 R->getType().isVolatileQualified()}; 6362 } 6363 6364 CGF.Builder.restoreIP(OMPBuilder.createAtomicCompare( 6365 CGF.Builder, XOpVal, VOpVal, ROpVal, EVal, DVal, AO, Op, IsXBinopExpr, 6366 IsPostfixUpdate, IsFailOnly)); 6367 } 6368 6369 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 6370 llvm::AtomicOrdering AO, bool IsPostfixUpdate, 6371 const Expr *X, const Expr *V, const Expr *R, 6372 const Expr *E, const Expr *UE, const Expr *D, 6373 const Expr *CE, bool IsXLHSInRHSPart, 6374 bool IsFailOnly, SourceLocation Loc) { 6375 switch (Kind) { 6376 case OMPC_read: 6377 emitOMPAtomicReadExpr(CGF, AO, X, V, Loc); 6378 break; 6379 case OMPC_write: 6380 emitOMPAtomicWriteExpr(CGF, AO, X, E, Loc); 6381 break; 6382 case OMPC_unknown: 6383 case OMPC_update: 6384 emitOMPAtomicUpdateExpr(CGF, AO, X, E, UE, IsXLHSInRHSPart, Loc); 6385 break; 6386 case OMPC_capture: 6387 emitOMPAtomicCaptureExpr(CGF, AO, IsPostfixUpdate, V, X, E, UE, 6388 IsXLHSInRHSPart, Loc); 6389 break; 6390 case OMPC_compare: { 6391 emitOMPAtomicCompareExpr(CGF, AO, X, V, R, E, D, CE, IsXLHSInRHSPart, 6392 IsPostfixUpdate, IsFailOnly, Loc); 6393 break; 6394 } 6395 case OMPC_if: 6396 case OMPC_final: 6397 case OMPC_num_threads: 6398 case OMPC_private: 6399 case OMPC_firstprivate: 6400 case OMPC_lastprivate: 6401 case OMPC_reduction: 6402 case OMPC_task_reduction: 6403 case OMPC_in_reduction: 6404 case OMPC_safelen: 6405 case OMPC_simdlen: 6406 case OMPC_sizes: 6407 case OMPC_full: 6408 case OMPC_partial: 6409 case OMPC_allocator: 6410 case OMPC_allocate: 6411 case OMPC_collapse: 6412 case OMPC_default: 6413 case OMPC_seq_cst: 6414 case OMPC_acq_rel: 6415 case OMPC_acquire: 6416 case OMPC_release: 6417 case OMPC_relaxed: 6418 case OMPC_shared: 6419 case OMPC_linear: 6420 case OMPC_aligned: 6421 case OMPC_copyin: 6422 case OMPC_copyprivate: 6423 case OMPC_flush: 6424 case OMPC_depobj: 6425 case OMPC_proc_bind: 6426 case OMPC_schedule: 6427 case OMPC_ordered: 6428 case OMPC_nowait: 6429 case OMPC_untied: 6430 case OMPC_threadprivate: 6431 case OMPC_depend: 6432 case OMPC_mergeable: 6433 case OMPC_device: 6434 case OMPC_threads: 6435 case OMPC_simd: 6436 case OMPC_map: 6437 case OMPC_num_teams: 6438 case OMPC_thread_limit: 6439 case OMPC_priority: 6440 case OMPC_grainsize: 6441 case OMPC_nogroup: 6442 case OMPC_num_tasks: 6443 case OMPC_hint: 6444 case OMPC_dist_schedule: 6445 case OMPC_defaultmap: 6446 case OMPC_uniform: 6447 case OMPC_to: 6448 case OMPC_from: 6449 case OMPC_use_device_ptr: 6450 case OMPC_use_device_addr: 6451 case OMPC_is_device_ptr: 6452 case OMPC_has_device_addr: 6453 case OMPC_unified_address: 6454 case OMPC_unified_shared_memory: 6455 case OMPC_reverse_offload: 6456 case OMPC_dynamic_allocators: 6457 case OMPC_atomic_default_mem_order: 6458 case OMPC_device_type: 6459 case OMPC_match: 6460 case OMPC_nontemporal: 6461 case OMPC_order: 6462 case OMPC_destroy: 6463 case OMPC_detach: 6464 case OMPC_inclusive: 6465 case OMPC_exclusive: 6466 case OMPC_uses_allocators: 6467 case OMPC_affinity: 6468 case OMPC_init: 6469 case OMPC_inbranch: 6470 case OMPC_notinbranch: 6471 case OMPC_link: 6472 case OMPC_indirect: 6473 case OMPC_use: 6474 case OMPC_novariants: 6475 case OMPC_nocontext: 6476 case OMPC_filter: 6477 case OMPC_when: 6478 case OMPC_adjust_args: 6479 case OMPC_append_args: 6480 case OMPC_memory_order: 6481 case OMPC_bind: 6482 case OMPC_align: 6483 case OMPC_cancellation_construct_type: 6484 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 6485 } 6486 } 6487 6488 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 6489 llvm::AtomicOrdering AO = llvm::AtomicOrdering::Monotonic; 6490 bool MemOrderingSpecified = false; 6491 if (S.getSingleClause<OMPSeqCstClause>()) { 6492 AO = llvm::AtomicOrdering::SequentiallyConsistent; 6493 MemOrderingSpecified = true; 6494 } else if (S.getSingleClause<OMPAcqRelClause>()) { 6495 AO = llvm::AtomicOrdering::AcquireRelease; 6496 MemOrderingSpecified = true; 6497 } else if (S.getSingleClause<OMPAcquireClause>()) { 6498 AO = llvm::AtomicOrdering::Acquire; 6499 MemOrderingSpecified = true; 6500 } else if (S.getSingleClause<OMPReleaseClause>()) { 6501 AO = llvm::AtomicOrdering::Release; 6502 MemOrderingSpecified = true; 6503 } else if (S.getSingleClause<OMPRelaxedClause>()) { 6504 AO = llvm::AtomicOrdering::Monotonic; 6505 MemOrderingSpecified = true; 6506 } 6507 llvm::SmallSet<OpenMPClauseKind, 2> KindsEncountered; 6508 OpenMPClauseKind Kind = OMPC_unknown; 6509 for (const OMPClause *C : S.clauses()) { 6510 // Find first clause (skip seq_cst|acq_rel|aqcuire|release|relaxed clause, 6511 // if it is first). 6512 OpenMPClauseKind K = C->getClauseKind(); 6513 if (K == OMPC_seq_cst || K == OMPC_acq_rel || K == OMPC_acquire || 6514 K == OMPC_release || K == OMPC_relaxed || K == OMPC_hint) 6515 continue; 6516 Kind = K; 6517 KindsEncountered.insert(K); 6518 } 6519 // We just need to correct Kind here. No need to set a bool saying it is 6520 // actually compare capture because we can tell from whether V and R are 6521 // nullptr. 6522 if (KindsEncountered.contains(OMPC_compare) && 6523 KindsEncountered.contains(OMPC_capture)) 6524 Kind = OMPC_compare; 6525 if (!MemOrderingSpecified) { 6526 llvm::AtomicOrdering DefaultOrder = 6527 CGM.getOpenMPRuntime().getDefaultMemoryOrdering(); 6528 if (DefaultOrder == llvm::AtomicOrdering::Monotonic || 6529 DefaultOrder == llvm::AtomicOrdering::SequentiallyConsistent || 6530 (DefaultOrder == llvm::AtomicOrdering::AcquireRelease && 6531 Kind == OMPC_capture)) { 6532 AO = DefaultOrder; 6533 } else if (DefaultOrder == llvm::AtomicOrdering::AcquireRelease) { 6534 if (Kind == OMPC_unknown || Kind == OMPC_update || Kind == OMPC_write) { 6535 AO = llvm::AtomicOrdering::Release; 6536 } else if (Kind == OMPC_read) { 6537 assert(Kind == OMPC_read && "Unexpected atomic kind."); 6538 AO = llvm::AtomicOrdering::Acquire; 6539 } 6540 } 6541 } 6542 6543 LexicalScope Scope(*this, S.getSourceRange()); 6544 EmitStopPoint(S.getAssociatedStmt()); 6545 emitOMPAtomicExpr(*this, Kind, AO, S.isPostfixUpdate(), S.getX(), S.getV(), 6546 S.getR(), S.getExpr(), S.getUpdateExpr(), S.getD(), 6547 S.getCondExpr(), S.isXLHSInRHSPart(), S.isFailOnly(), 6548 S.getBeginLoc()); 6549 } 6550 6551 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 6552 const OMPExecutableDirective &S, 6553 const RegionCodeGenTy &CodeGen) { 6554 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 6555 CodeGenModule &CGM = CGF.CGM; 6556 6557 // On device emit this construct as inlined code. 6558 if (CGM.getLangOpts().OpenMPIsDevice) { 6559 OMPLexicalScope Scope(CGF, S, OMPD_target); 6560 CGM.getOpenMPRuntime().emitInlinedDirective( 6561 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6562 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 6563 }); 6564 return; 6565 } 6566 6567 auto LPCRegion = CGOpenMPRuntime::LastprivateConditionalRAII::disable(CGF, S); 6568 llvm::Function *Fn = nullptr; 6569 llvm::Constant *FnID = nullptr; 6570 6571 const Expr *IfCond = nullptr; 6572 // Check for the at most one if clause associated with the target region. 6573 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 6574 if (C->getNameModifier() == OMPD_unknown || 6575 C->getNameModifier() == OMPD_target) { 6576 IfCond = C->getCondition(); 6577 break; 6578 } 6579 } 6580 6581 // Check if we have any device clause associated with the directive. 6582 llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device( 6583 nullptr, OMPC_DEVICE_unknown); 6584 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 6585 Device.setPointerAndInt(C->getDevice(), C->getModifier()); 6586 6587 // Check if we have an if clause whose conditional always evaluates to false 6588 // or if we do not have any targets specified. If so the target region is not 6589 // an offload entry point. 6590 bool IsOffloadEntry = true; 6591 if (IfCond) { 6592 bool Val; 6593 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 6594 IsOffloadEntry = false; 6595 } 6596 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6597 IsOffloadEntry = false; 6598 6599 if (CGM.getLangOpts().OpenMPOffloadMandatory && !IsOffloadEntry) { 6600 unsigned DiagID = CGM.getDiags().getCustomDiagID( 6601 DiagnosticsEngine::Error, 6602 "No offloading entry generated while offloading is mandatory."); 6603 CGM.getDiags().Report(DiagID); 6604 } 6605 6606 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 6607 StringRef ParentName; 6608 // In case we have Ctors/Dtors we use the complete type variant to produce 6609 // the mangling of the device outlined kernel. 6610 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 6611 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 6612 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 6613 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 6614 else 6615 ParentName = 6616 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 6617 6618 // Emit target region as a standalone region. 6619 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 6620 IsOffloadEntry, CodeGen); 6621 OMPLexicalScope Scope(CGF, S, OMPD_task); 6622 auto &&SizeEmitter = 6623 [IsOffloadEntry](CodeGenFunction &CGF, 6624 const OMPLoopDirective &D) -> llvm::Value * { 6625 if (IsOffloadEntry) { 6626 OMPLoopScope(CGF, D); 6627 // Emit calculation of the iterations count. 6628 llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations()); 6629 NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty, 6630 /*isSigned=*/false); 6631 return NumIterations; 6632 } 6633 return nullptr; 6634 }; 6635 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device, 6636 SizeEmitter); 6637 } 6638 6639 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 6640 PrePostActionTy &Action) { 6641 Action.Enter(CGF); 6642 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6643 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6644 CGF.EmitOMPPrivateClause(S, PrivateScope); 6645 (void)PrivateScope.Privatize(); 6646 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6647 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6648 6649 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 6650 CGF.EnsureInsertPoint(); 6651 } 6652 6653 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 6654 StringRef ParentName, 6655 const OMPTargetDirective &S) { 6656 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6657 emitTargetRegion(CGF, S, Action); 6658 }; 6659 llvm::Function *Fn; 6660 llvm::Constant *Addr; 6661 // Emit target region as a standalone region. 6662 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6663 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6664 assert(Fn && Addr && "Target device function emission failed."); 6665 } 6666 6667 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 6668 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6669 emitTargetRegion(CGF, S, Action); 6670 }; 6671 emitCommonOMPTargetDirective(*this, S, CodeGen); 6672 } 6673 6674 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 6675 const OMPExecutableDirective &S, 6676 OpenMPDirectiveKind InnermostKind, 6677 const RegionCodeGenTy &CodeGen) { 6678 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 6679 llvm::Function *OutlinedFn = 6680 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 6681 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 6682 6683 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 6684 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 6685 if (NT || TL) { 6686 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 6687 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 6688 6689 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 6690 S.getBeginLoc()); 6691 } 6692 6693 OMPTeamsScope Scope(CGF, S); 6694 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 6695 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 6696 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 6697 CapturedVars); 6698 } 6699 6700 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 6701 // Emit teams region as a standalone region. 6702 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6703 Action.Enter(CGF); 6704 OMPPrivateScope PrivateScope(CGF); 6705 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6706 CGF.EmitOMPPrivateClause(S, PrivateScope); 6707 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6708 (void)PrivateScope.Privatize(); 6709 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 6710 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6711 }; 6712 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 6713 emitPostUpdateForReductionClause(*this, S, 6714 [](CodeGenFunction &) { return nullptr; }); 6715 } 6716 6717 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 6718 const OMPTargetTeamsDirective &S) { 6719 auto *CS = S.getCapturedStmt(OMPD_teams); 6720 Action.Enter(CGF); 6721 // Emit teams region as a standalone region. 6722 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 6723 Action.Enter(CGF); 6724 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6725 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6726 CGF.EmitOMPPrivateClause(S, PrivateScope); 6727 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6728 (void)PrivateScope.Privatize(); 6729 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6730 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6731 CGF.EmitStmt(CS->getCapturedStmt()); 6732 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6733 }; 6734 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 6735 emitPostUpdateForReductionClause(CGF, S, 6736 [](CodeGenFunction &) { return nullptr; }); 6737 } 6738 6739 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 6740 CodeGenModule &CGM, StringRef ParentName, 6741 const OMPTargetTeamsDirective &S) { 6742 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6743 emitTargetTeamsRegion(CGF, Action, S); 6744 }; 6745 llvm::Function *Fn; 6746 llvm::Constant *Addr; 6747 // Emit target region as a standalone region. 6748 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6749 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6750 assert(Fn && Addr && "Target device function emission failed."); 6751 } 6752 6753 void CodeGenFunction::EmitOMPTargetTeamsDirective( 6754 const OMPTargetTeamsDirective &S) { 6755 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6756 emitTargetTeamsRegion(CGF, Action, S); 6757 }; 6758 emitCommonOMPTargetDirective(*this, S, CodeGen); 6759 } 6760 6761 static void 6762 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 6763 const OMPTargetTeamsDistributeDirective &S) { 6764 Action.Enter(CGF); 6765 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6766 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6767 }; 6768 6769 // Emit teams region as a standalone region. 6770 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6771 PrePostActionTy &Action) { 6772 Action.Enter(CGF); 6773 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6774 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6775 (void)PrivateScope.Privatize(); 6776 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6777 CodeGenDistribute); 6778 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6779 }; 6780 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 6781 emitPostUpdateForReductionClause(CGF, S, 6782 [](CodeGenFunction &) { return nullptr; }); 6783 } 6784 6785 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 6786 CodeGenModule &CGM, StringRef ParentName, 6787 const OMPTargetTeamsDistributeDirective &S) { 6788 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6789 emitTargetTeamsDistributeRegion(CGF, Action, S); 6790 }; 6791 llvm::Function *Fn; 6792 llvm::Constant *Addr; 6793 // Emit target region as a standalone region. 6794 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6795 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6796 assert(Fn && Addr && "Target device function emission failed."); 6797 } 6798 6799 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 6800 const OMPTargetTeamsDistributeDirective &S) { 6801 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6802 emitTargetTeamsDistributeRegion(CGF, Action, S); 6803 }; 6804 emitCommonOMPTargetDirective(*this, S, CodeGen); 6805 } 6806 6807 static void emitTargetTeamsDistributeSimdRegion( 6808 CodeGenFunction &CGF, PrePostActionTy &Action, 6809 const OMPTargetTeamsDistributeSimdDirective &S) { 6810 Action.Enter(CGF); 6811 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6812 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6813 }; 6814 6815 // Emit teams region as a standalone region. 6816 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6817 PrePostActionTy &Action) { 6818 Action.Enter(CGF); 6819 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6820 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6821 (void)PrivateScope.Privatize(); 6822 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6823 CodeGenDistribute); 6824 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6825 }; 6826 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 6827 emitPostUpdateForReductionClause(CGF, S, 6828 [](CodeGenFunction &) { return nullptr; }); 6829 } 6830 6831 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 6832 CodeGenModule &CGM, StringRef ParentName, 6833 const OMPTargetTeamsDistributeSimdDirective &S) { 6834 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6835 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 6836 }; 6837 llvm::Function *Fn; 6838 llvm::Constant *Addr; 6839 // Emit target region as a standalone region. 6840 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6841 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6842 assert(Fn && Addr && "Target device function emission failed."); 6843 } 6844 6845 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 6846 const OMPTargetTeamsDistributeSimdDirective &S) { 6847 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6848 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 6849 }; 6850 emitCommonOMPTargetDirective(*this, S, CodeGen); 6851 } 6852 6853 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 6854 const OMPTeamsDistributeDirective &S) { 6855 6856 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6857 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6858 }; 6859 6860 // Emit teams region as a standalone region. 6861 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6862 PrePostActionTy &Action) { 6863 Action.Enter(CGF); 6864 OMPPrivateScope PrivateScope(CGF); 6865 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6866 (void)PrivateScope.Privatize(); 6867 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6868 CodeGenDistribute); 6869 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6870 }; 6871 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 6872 emitPostUpdateForReductionClause(*this, S, 6873 [](CodeGenFunction &) { return nullptr; }); 6874 } 6875 6876 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 6877 const OMPTeamsDistributeSimdDirective &S) { 6878 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6879 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6880 }; 6881 6882 // Emit teams region as a standalone region. 6883 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6884 PrePostActionTy &Action) { 6885 Action.Enter(CGF); 6886 OMPPrivateScope PrivateScope(CGF); 6887 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6888 (void)PrivateScope.Privatize(); 6889 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 6890 CodeGenDistribute); 6891 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6892 }; 6893 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 6894 emitPostUpdateForReductionClause(*this, S, 6895 [](CodeGenFunction &) { return nullptr; }); 6896 } 6897 6898 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 6899 const OMPTeamsDistributeParallelForDirective &S) { 6900 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6901 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6902 S.getDistInc()); 6903 }; 6904 6905 // Emit teams region as a standalone region. 6906 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6907 PrePostActionTy &Action) { 6908 Action.Enter(CGF); 6909 OMPPrivateScope PrivateScope(CGF); 6910 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6911 (void)PrivateScope.Privatize(); 6912 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6913 CodeGenDistribute); 6914 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6915 }; 6916 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 6917 emitPostUpdateForReductionClause(*this, S, 6918 [](CodeGenFunction &) { return nullptr; }); 6919 } 6920 6921 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 6922 const OMPTeamsDistributeParallelForSimdDirective &S) { 6923 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6924 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6925 S.getDistInc()); 6926 }; 6927 6928 // Emit teams region as a standalone region. 6929 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6930 PrePostActionTy &Action) { 6931 Action.Enter(CGF); 6932 OMPPrivateScope PrivateScope(CGF); 6933 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6934 (void)PrivateScope.Privatize(); 6935 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 6936 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 6937 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6938 }; 6939 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for_simd, 6940 CodeGen); 6941 emitPostUpdateForReductionClause(*this, S, 6942 [](CodeGenFunction &) { return nullptr; }); 6943 } 6944 6945 void CodeGenFunction::EmitOMPInteropDirective(const OMPInteropDirective &S) { 6946 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 6947 llvm::Value *Device = nullptr; 6948 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6949 Device = EmitScalarExpr(C->getDevice()); 6950 6951 llvm::Value *NumDependences = nullptr; 6952 llvm::Value *DependenceAddress = nullptr; 6953 if (const auto *DC = S.getSingleClause<OMPDependClause>()) { 6954 OMPTaskDataTy::DependData Dependencies(DC->getDependencyKind(), 6955 DC->getModifier()); 6956 Dependencies.DepExprs.append(DC->varlist_begin(), DC->varlist_end()); 6957 std::pair<llvm::Value *, Address> DependencePair = 6958 CGM.getOpenMPRuntime().emitDependClause(*this, Dependencies, 6959 DC->getBeginLoc()); 6960 NumDependences = DependencePair.first; 6961 DependenceAddress = Builder.CreatePointerCast( 6962 DependencePair.second.getPointer(), CGM.Int8PtrTy); 6963 } 6964 6965 assert(!(S.hasClausesOfKind<OMPNowaitClause>() && 6966 !(S.getSingleClause<OMPInitClause>() || 6967 S.getSingleClause<OMPDestroyClause>() || 6968 S.getSingleClause<OMPUseClause>())) && 6969 "OMPNowaitClause clause is used separately in OMPInteropDirective."); 6970 6971 if (const auto *C = S.getSingleClause<OMPInitClause>()) { 6972 llvm::Value *InteropvarPtr = 6973 EmitLValue(C->getInteropVar()).getPointer(*this); 6974 llvm::omp::OMPInteropType InteropType = llvm::omp::OMPInteropType::Unknown; 6975 if (C->getIsTarget()) { 6976 InteropType = llvm::omp::OMPInteropType::Target; 6977 } else { 6978 assert(C->getIsTargetSync() && "Expected interop-type target/targetsync"); 6979 InteropType = llvm::omp::OMPInteropType::TargetSync; 6980 } 6981 OMPBuilder.createOMPInteropInit(Builder, InteropvarPtr, InteropType, Device, 6982 NumDependences, DependenceAddress, 6983 S.hasClausesOfKind<OMPNowaitClause>()); 6984 } else if (const auto *C = S.getSingleClause<OMPDestroyClause>()) { 6985 llvm::Value *InteropvarPtr = 6986 EmitLValue(C->getInteropVar()).getPointer(*this); 6987 OMPBuilder.createOMPInteropDestroy(Builder, InteropvarPtr, Device, 6988 NumDependences, DependenceAddress, 6989 S.hasClausesOfKind<OMPNowaitClause>()); 6990 } else if (const auto *C = S.getSingleClause<OMPUseClause>()) { 6991 llvm::Value *InteropvarPtr = 6992 EmitLValue(C->getInteropVar()).getPointer(*this); 6993 OMPBuilder.createOMPInteropUse(Builder, InteropvarPtr, Device, 6994 NumDependences, DependenceAddress, 6995 S.hasClausesOfKind<OMPNowaitClause>()); 6996 } 6997 } 6998 6999 static void emitTargetTeamsDistributeParallelForRegion( 7000 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 7001 PrePostActionTy &Action) { 7002 Action.Enter(CGF); 7003 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 7004 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 7005 S.getDistInc()); 7006 }; 7007 7008 // Emit teams region as a standalone region. 7009 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 7010 PrePostActionTy &Action) { 7011 Action.Enter(CGF); 7012 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 7013 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 7014 (void)PrivateScope.Privatize(); 7015 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 7016 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 7017 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 7018 }; 7019 7020 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 7021 CodeGenTeams); 7022 emitPostUpdateForReductionClause(CGF, S, 7023 [](CodeGenFunction &) { return nullptr; }); 7024 } 7025 7026 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 7027 CodeGenModule &CGM, StringRef ParentName, 7028 const OMPTargetTeamsDistributeParallelForDirective &S) { 7029 // Emit SPMD target teams distribute parallel for region as a standalone 7030 // region. 7031 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7032 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 7033 }; 7034 llvm::Function *Fn; 7035 llvm::Constant *Addr; 7036 // Emit target region as a standalone region. 7037 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 7038 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 7039 assert(Fn && Addr && "Target device function emission failed."); 7040 } 7041 7042 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 7043 const OMPTargetTeamsDistributeParallelForDirective &S) { 7044 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7045 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 7046 }; 7047 emitCommonOMPTargetDirective(*this, S, CodeGen); 7048 } 7049 7050 static void emitTargetTeamsDistributeParallelForSimdRegion( 7051 CodeGenFunction &CGF, 7052 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 7053 PrePostActionTy &Action) { 7054 Action.Enter(CGF); 7055 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 7056 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 7057 S.getDistInc()); 7058 }; 7059 7060 // Emit teams region as a standalone region. 7061 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 7062 PrePostActionTy &Action) { 7063 Action.Enter(CGF); 7064 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 7065 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 7066 (void)PrivateScope.Privatize(); 7067 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 7068 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 7069 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 7070 }; 7071 7072 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 7073 CodeGenTeams); 7074 emitPostUpdateForReductionClause(CGF, S, 7075 [](CodeGenFunction &) { return nullptr; }); 7076 } 7077 7078 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 7079 CodeGenModule &CGM, StringRef ParentName, 7080 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 7081 // Emit SPMD target teams distribute parallel for simd region as a standalone 7082 // region. 7083 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7084 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 7085 }; 7086 llvm::Function *Fn; 7087 llvm::Constant *Addr; 7088 // Emit target region as a standalone region. 7089 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 7090 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 7091 assert(Fn && Addr && "Target device function emission failed."); 7092 } 7093 7094 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 7095 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 7096 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7097 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 7098 }; 7099 emitCommonOMPTargetDirective(*this, S, CodeGen); 7100 } 7101 7102 void CodeGenFunction::EmitOMPCancellationPointDirective( 7103 const OMPCancellationPointDirective &S) { 7104 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 7105 S.getCancelRegion()); 7106 } 7107 7108 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 7109 const Expr *IfCond = nullptr; 7110 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 7111 if (C->getNameModifier() == OMPD_unknown || 7112 C->getNameModifier() == OMPD_cancel) { 7113 IfCond = C->getCondition(); 7114 break; 7115 } 7116 } 7117 if (CGM.getLangOpts().OpenMPIRBuilder) { 7118 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 7119 // TODO: This check is necessary as we only generate `omp parallel` through 7120 // the OpenMPIRBuilder for now. 7121 if (S.getCancelRegion() == OMPD_parallel || 7122 S.getCancelRegion() == OMPD_sections || 7123 S.getCancelRegion() == OMPD_section) { 7124 llvm::Value *IfCondition = nullptr; 7125 if (IfCond) 7126 IfCondition = EmitScalarExpr(IfCond, 7127 /*IgnoreResultAssign=*/true); 7128 return Builder.restoreIP( 7129 OMPBuilder.createCancel(Builder, IfCondition, S.getCancelRegion())); 7130 } 7131 } 7132 7133 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 7134 S.getCancelRegion()); 7135 } 7136 7137 CodeGenFunction::JumpDest 7138 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 7139 if (Kind == OMPD_parallel || Kind == OMPD_task || 7140 Kind == OMPD_target_parallel || Kind == OMPD_taskloop || 7141 Kind == OMPD_master_taskloop || Kind == OMPD_parallel_master_taskloop) 7142 return ReturnBlock; 7143 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 7144 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 7145 Kind == OMPD_distribute_parallel_for || 7146 Kind == OMPD_target_parallel_for || 7147 Kind == OMPD_teams_distribute_parallel_for || 7148 Kind == OMPD_target_teams_distribute_parallel_for); 7149 return OMPCancelStack.getExitBlock(); 7150 } 7151 7152 void CodeGenFunction::EmitOMPUseDevicePtrClause( 7153 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 7154 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 7155 auto OrigVarIt = C.varlist_begin(); 7156 auto InitIt = C.inits().begin(); 7157 for (const Expr *PvtVarIt : C.private_copies()) { 7158 const auto *OrigVD = 7159 cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 7160 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 7161 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 7162 7163 // In order to identify the right initializer we need to match the 7164 // declaration used by the mapping logic. In some cases we may get 7165 // OMPCapturedExprDecl that refers to the original declaration. 7166 const ValueDecl *MatchingVD = OrigVD; 7167 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 7168 // OMPCapturedExprDecl are used to privative fields of the current 7169 // structure. 7170 const auto *ME = cast<MemberExpr>(OED->getInit()); 7171 assert(isa<CXXThisExpr>(ME->getBase()) && 7172 "Base should be the current struct!"); 7173 MatchingVD = ME->getMemberDecl(); 7174 } 7175 7176 // If we don't have information about the current list item, move on to 7177 // the next one. 7178 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 7179 if (InitAddrIt == CaptureDeviceAddrMap.end()) 7180 continue; 7181 7182 // Initialize the temporary initialization variable with the address 7183 // we get from the runtime library. We have to cast the source address 7184 // because it is always a void *. References are materialized in the 7185 // privatization scope, so the initialization here disregards the fact 7186 // the original variable is a reference. 7187 llvm::Type *Ty = ConvertTypeForMem(OrigVD->getType().getNonReferenceType()); 7188 Address InitAddr = Builder.CreateElementBitCast(InitAddrIt->second, Ty); 7189 setAddrOfLocalVar(InitVD, InitAddr); 7190 7191 // Emit private declaration, it will be initialized by the value we 7192 // declaration we just added to the local declarations map. 7193 EmitDecl(*PvtVD); 7194 7195 // The initialization variables reached its purpose in the emission 7196 // of the previous declaration, so we don't need it anymore. 7197 LocalDeclMap.erase(InitVD); 7198 7199 // Return the address of the private variable. 7200 bool IsRegistered = 7201 PrivateScope.addPrivate(OrigVD, GetAddrOfLocalVar(PvtVD)); 7202 assert(IsRegistered && "firstprivate var already registered as private"); 7203 // Silence the warning about unused variable. 7204 (void)IsRegistered; 7205 7206 ++OrigVarIt; 7207 ++InitIt; 7208 } 7209 } 7210 7211 static const VarDecl *getBaseDecl(const Expr *Ref) { 7212 const Expr *Base = Ref->IgnoreParenImpCasts(); 7213 while (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Base)) 7214 Base = OASE->getBase()->IgnoreParenImpCasts(); 7215 while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Base)) 7216 Base = ASE->getBase()->IgnoreParenImpCasts(); 7217 return cast<VarDecl>(cast<DeclRefExpr>(Base)->getDecl()); 7218 } 7219 7220 void CodeGenFunction::EmitOMPUseDeviceAddrClause( 7221 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 7222 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 7223 llvm::SmallDenseSet<CanonicalDeclPtr<const Decl>, 4> Processed; 7224 for (const Expr *Ref : C.varlists()) { 7225 const VarDecl *OrigVD = getBaseDecl(Ref); 7226 if (!Processed.insert(OrigVD).second) 7227 continue; 7228 // In order to identify the right initializer we need to match the 7229 // declaration used by the mapping logic. In some cases we may get 7230 // OMPCapturedExprDecl that refers to the original declaration. 7231 const ValueDecl *MatchingVD = OrigVD; 7232 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 7233 // OMPCapturedExprDecl are used to privative fields of the current 7234 // structure. 7235 const auto *ME = cast<MemberExpr>(OED->getInit()); 7236 assert(isa<CXXThisExpr>(ME->getBase()) && 7237 "Base should be the current struct!"); 7238 MatchingVD = ME->getMemberDecl(); 7239 } 7240 7241 // If we don't have information about the current list item, move on to 7242 // the next one. 7243 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 7244 if (InitAddrIt == CaptureDeviceAddrMap.end()) 7245 continue; 7246 7247 Address PrivAddr = InitAddrIt->getSecond(); 7248 // For declrefs and variable length array need to load the pointer for 7249 // correct mapping, since the pointer to the data was passed to the runtime. 7250 if (isa<DeclRefExpr>(Ref->IgnoreParenImpCasts()) || 7251 MatchingVD->getType()->isArrayType()) { 7252 QualType PtrTy = getContext().getPointerType( 7253 OrigVD->getType().getNonReferenceType()); 7254 PrivAddr = EmitLoadOfPointer( 7255 Builder.CreateElementBitCast(PrivAddr, ConvertTypeForMem(PtrTy)), 7256 PtrTy->castAs<PointerType>()); 7257 } 7258 7259 (void)PrivateScope.addPrivate(OrigVD, PrivAddr); 7260 } 7261 } 7262 7263 // Generate the instructions for '#pragma omp target data' directive. 7264 void CodeGenFunction::EmitOMPTargetDataDirective( 7265 const OMPTargetDataDirective &S) { 7266 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true, 7267 /*SeparateBeginEndCalls=*/true); 7268 7269 // Create a pre/post action to signal the privatization of the device pointer. 7270 // This action can be replaced by the OpenMP runtime code generation to 7271 // deactivate privatization. 7272 bool PrivatizeDevicePointers = false; 7273 class DevicePointerPrivActionTy : public PrePostActionTy { 7274 bool &PrivatizeDevicePointers; 7275 7276 public: 7277 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 7278 : PrivatizeDevicePointers(PrivatizeDevicePointers) {} 7279 void Enter(CodeGenFunction &CGF) override { 7280 PrivatizeDevicePointers = true; 7281 } 7282 }; 7283 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 7284 7285 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 7286 CodeGenFunction &CGF, PrePostActionTy &Action) { 7287 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 7288 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 7289 }; 7290 7291 // Codegen that selects whether to generate the privatization code or not. 7292 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 7293 &InnermostCodeGen](CodeGenFunction &CGF, 7294 PrePostActionTy &Action) { 7295 RegionCodeGenTy RCG(InnermostCodeGen); 7296 PrivatizeDevicePointers = false; 7297 7298 // Call the pre-action to change the status of PrivatizeDevicePointers if 7299 // needed. 7300 Action.Enter(CGF); 7301 7302 if (PrivatizeDevicePointers) { 7303 OMPPrivateScope PrivateScope(CGF); 7304 // Emit all instances of the use_device_ptr clause. 7305 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 7306 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 7307 Info.CaptureDeviceAddrMap); 7308 for (const auto *C : S.getClausesOfKind<OMPUseDeviceAddrClause>()) 7309 CGF.EmitOMPUseDeviceAddrClause(*C, PrivateScope, 7310 Info.CaptureDeviceAddrMap); 7311 (void)PrivateScope.Privatize(); 7312 RCG(CGF); 7313 } else { 7314 OMPLexicalScope Scope(CGF, S, OMPD_unknown); 7315 RCG(CGF); 7316 } 7317 }; 7318 7319 // Forward the provided action to the privatization codegen. 7320 RegionCodeGenTy PrivRCG(PrivCodeGen); 7321 PrivRCG.setAction(Action); 7322 7323 // Notwithstanding the body of the region is emitted as inlined directive, 7324 // we don't use an inline scope as changes in the references inside the 7325 // region are expected to be visible outside, so we do not privative them. 7326 OMPLexicalScope Scope(CGF, S); 7327 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 7328 PrivRCG); 7329 }; 7330 7331 RegionCodeGenTy RCG(CodeGen); 7332 7333 // If we don't have target devices, don't bother emitting the data mapping 7334 // code. 7335 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 7336 RCG(*this); 7337 return; 7338 } 7339 7340 // Check if we have any if clause associated with the directive. 7341 const Expr *IfCond = nullptr; 7342 if (const auto *C = S.getSingleClause<OMPIfClause>()) 7343 IfCond = C->getCondition(); 7344 7345 // Check if we have any device clause associated with the directive. 7346 const Expr *Device = nullptr; 7347 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 7348 Device = C->getDevice(); 7349 7350 // Set the action to signal privatization of device pointers. 7351 RCG.setAction(PrivAction); 7352 7353 // Emit region code. 7354 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 7355 Info); 7356 } 7357 7358 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 7359 const OMPTargetEnterDataDirective &S) { 7360 // If we don't have target devices, don't bother emitting the data mapping 7361 // code. 7362 if (CGM.getLangOpts().OMPTargetTriples.empty()) 7363 return; 7364 7365 // Check if we have any if clause associated with the directive. 7366 const Expr *IfCond = nullptr; 7367 if (const auto *C = S.getSingleClause<OMPIfClause>()) 7368 IfCond = C->getCondition(); 7369 7370 // Check if we have any device clause associated with the directive. 7371 const Expr *Device = nullptr; 7372 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 7373 Device = C->getDevice(); 7374 7375 OMPLexicalScope Scope(*this, S, OMPD_task); 7376 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 7377 } 7378 7379 void CodeGenFunction::EmitOMPTargetExitDataDirective( 7380 const OMPTargetExitDataDirective &S) { 7381 // If we don't have target devices, don't bother emitting the data mapping 7382 // code. 7383 if (CGM.getLangOpts().OMPTargetTriples.empty()) 7384 return; 7385 7386 // Check if we have any if clause associated with the directive. 7387 const Expr *IfCond = nullptr; 7388 if (const auto *C = S.getSingleClause<OMPIfClause>()) 7389 IfCond = C->getCondition(); 7390 7391 // Check if we have any device clause associated with the directive. 7392 const Expr *Device = nullptr; 7393 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 7394 Device = C->getDevice(); 7395 7396 OMPLexicalScope Scope(*this, S, OMPD_task); 7397 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 7398 } 7399 7400 static void emitTargetParallelRegion(CodeGenFunction &CGF, 7401 const OMPTargetParallelDirective &S, 7402 PrePostActionTy &Action) { 7403 // Get the captured statement associated with the 'parallel' region. 7404 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 7405 Action.Enter(CGF); 7406 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 7407 Action.Enter(CGF); 7408 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 7409 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 7410 CGF.EmitOMPPrivateClause(S, PrivateScope); 7411 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 7412 (void)PrivateScope.Privatize(); 7413 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 7414 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 7415 // TODO: Add support for clauses. 7416 CGF.EmitStmt(CS->getCapturedStmt()); 7417 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 7418 }; 7419 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 7420 emitEmptyBoundParameters); 7421 emitPostUpdateForReductionClause(CGF, S, 7422 [](CodeGenFunction &) { return nullptr; }); 7423 } 7424 7425 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 7426 CodeGenModule &CGM, StringRef ParentName, 7427 const OMPTargetParallelDirective &S) { 7428 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7429 emitTargetParallelRegion(CGF, S, Action); 7430 }; 7431 llvm::Function *Fn; 7432 llvm::Constant *Addr; 7433 // Emit target region as a standalone region. 7434 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 7435 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 7436 assert(Fn && Addr && "Target device function emission failed."); 7437 } 7438 7439 void CodeGenFunction::EmitOMPTargetParallelDirective( 7440 const OMPTargetParallelDirective &S) { 7441 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7442 emitTargetParallelRegion(CGF, S, Action); 7443 }; 7444 emitCommonOMPTargetDirective(*this, S, CodeGen); 7445 } 7446 7447 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 7448 const OMPTargetParallelForDirective &S, 7449 PrePostActionTy &Action) { 7450 Action.Enter(CGF); 7451 // Emit directive as a combined directive that consists of two implicit 7452 // directives: 'parallel' with 'for' directive. 7453 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7454 Action.Enter(CGF); 7455 CodeGenFunction::OMPCancelStackRAII CancelRegion( 7456 CGF, OMPD_target_parallel_for, S.hasCancel()); 7457 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 7458 emitDispatchForLoopBounds); 7459 }; 7460 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 7461 emitEmptyBoundParameters); 7462 } 7463 7464 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 7465 CodeGenModule &CGM, StringRef ParentName, 7466 const OMPTargetParallelForDirective &S) { 7467 // Emit SPMD target parallel for region as a standalone region. 7468 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7469 emitTargetParallelForRegion(CGF, S, Action); 7470 }; 7471 llvm::Function *Fn; 7472 llvm::Constant *Addr; 7473 // Emit target region as a standalone region. 7474 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 7475 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 7476 assert(Fn && Addr && "Target device function emission failed."); 7477 } 7478 7479 void CodeGenFunction::EmitOMPTargetParallelForDirective( 7480 const OMPTargetParallelForDirective &S) { 7481 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7482 emitTargetParallelForRegion(CGF, S, Action); 7483 }; 7484 emitCommonOMPTargetDirective(*this, S, CodeGen); 7485 } 7486 7487 static void 7488 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 7489 const OMPTargetParallelForSimdDirective &S, 7490 PrePostActionTy &Action) { 7491 Action.Enter(CGF); 7492 // Emit directive as a combined directive that consists of two implicit 7493 // directives: 'parallel' with 'for' directive. 7494 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7495 Action.Enter(CGF); 7496 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 7497 emitDispatchForLoopBounds); 7498 }; 7499 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 7500 emitEmptyBoundParameters); 7501 } 7502 7503 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 7504 CodeGenModule &CGM, StringRef ParentName, 7505 const OMPTargetParallelForSimdDirective &S) { 7506 // Emit SPMD target parallel for region as a standalone region. 7507 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7508 emitTargetParallelForSimdRegion(CGF, S, Action); 7509 }; 7510 llvm::Function *Fn; 7511 llvm::Constant *Addr; 7512 // Emit target region as a standalone region. 7513 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 7514 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 7515 assert(Fn && Addr && "Target device function emission failed."); 7516 } 7517 7518 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 7519 const OMPTargetParallelForSimdDirective &S) { 7520 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7521 emitTargetParallelForSimdRegion(CGF, S, Action); 7522 }; 7523 emitCommonOMPTargetDirective(*this, S, CodeGen); 7524 } 7525 7526 /// Emit a helper variable and return corresponding lvalue. 7527 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 7528 const ImplicitParamDecl *PVD, 7529 CodeGenFunction::OMPPrivateScope &Privates) { 7530 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 7531 Privates.addPrivate(VDecl, CGF.GetAddrOfLocalVar(PVD)); 7532 } 7533 7534 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 7535 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 7536 // Emit outlined function for task construct. 7537 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 7538 Address CapturedStruct = Address::invalid(); 7539 { 7540 OMPLexicalScope Scope(*this, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 7541 CapturedStruct = GenerateCapturedStmtArgument(*CS); 7542 } 7543 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 7544 const Expr *IfCond = nullptr; 7545 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 7546 if (C->getNameModifier() == OMPD_unknown || 7547 C->getNameModifier() == OMPD_taskloop) { 7548 IfCond = C->getCondition(); 7549 break; 7550 } 7551 } 7552 7553 OMPTaskDataTy Data; 7554 // Check if taskloop must be emitted without taskgroup. 7555 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 7556 // TODO: Check if we should emit tied or untied task. 7557 Data.Tied = true; 7558 // Set scheduling for taskloop 7559 if (const auto *Clause = S.getSingleClause<OMPGrainsizeClause>()) { 7560 // grainsize clause 7561 Data.Schedule.setInt(/*IntVal=*/false); 7562 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 7563 } else if (const auto *Clause = S.getSingleClause<OMPNumTasksClause>()) { 7564 // num_tasks clause 7565 Data.Schedule.setInt(/*IntVal=*/true); 7566 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 7567 } 7568 7569 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 7570 // if (PreCond) { 7571 // for (IV in 0..LastIteration) BODY; 7572 // <Final counter/linear vars updates>; 7573 // } 7574 // 7575 7576 // Emit: if (PreCond) - begin. 7577 // If the condition constant folds and can be elided, avoid emitting the 7578 // whole loop. 7579 bool CondConstant; 7580 llvm::BasicBlock *ContBlock = nullptr; 7581 OMPLoopScope PreInitScope(CGF, S); 7582 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 7583 if (!CondConstant) 7584 return; 7585 } else { 7586 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 7587 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 7588 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 7589 CGF.getProfileCount(&S)); 7590 CGF.EmitBlock(ThenBlock); 7591 CGF.incrementProfileCounter(&S); 7592 } 7593 7594 (void)CGF.EmitOMPLinearClauseInit(S); 7595 7596 OMPPrivateScope LoopScope(CGF); 7597 // Emit helper vars inits. 7598 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 7599 auto *I = CS->getCapturedDecl()->param_begin(); 7600 auto *LBP = std::next(I, LowerBound); 7601 auto *UBP = std::next(I, UpperBound); 7602 auto *STP = std::next(I, Stride); 7603 auto *LIP = std::next(I, LastIter); 7604 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 7605 LoopScope); 7606 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 7607 LoopScope); 7608 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 7609 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 7610 LoopScope); 7611 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 7612 CGF.EmitOMPLinearClause(S, LoopScope); 7613 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 7614 (void)LoopScope.Privatize(); 7615 // Emit the loop iteration variable. 7616 const Expr *IVExpr = S.getIterationVariable(); 7617 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 7618 CGF.EmitVarDecl(*IVDecl); 7619 CGF.EmitIgnoredExpr(S.getInit()); 7620 7621 // Emit the iterations count variable. 7622 // If it is not a variable, Sema decided to calculate iterations count on 7623 // each iteration (e.g., it is foldable into a constant). 7624 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 7625 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 7626 // Emit calculation of the iterations count. 7627 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 7628 } 7629 7630 { 7631 OMPLexicalScope Scope(CGF, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 7632 emitCommonSimdLoop( 7633 CGF, S, 7634 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 7635 if (isOpenMPSimdDirective(S.getDirectiveKind())) 7636 CGF.EmitOMPSimdInit(S); 7637 }, 7638 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 7639 CGF.EmitOMPInnerLoop( 7640 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 7641 [&S](CodeGenFunction &CGF) { 7642 emitOMPLoopBodyWithStopPoint(CGF, S, 7643 CodeGenFunction::JumpDest()); 7644 }, 7645 [](CodeGenFunction &) {}); 7646 }); 7647 } 7648 // Emit: if (PreCond) - end. 7649 if (ContBlock) { 7650 CGF.EmitBranch(ContBlock); 7651 CGF.EmitBlock(ContBlock, true); 7652 } 7653 // Emit final copy of the lastprivate variables if IsLastIter != 0. 7654 if (HasLastprivateClause) { 7655 CGF.EmitOMPLastprivateClauseFinal( 7656 S, isOpenMPSimdDirective(S.getDirectiveKind()), 7657 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 7658 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 7659 (*LIP)->getType(), S.getBeginLoc()))); 7660 } 7661 CGF.EmitOMPLinearClauseFinal(S, [LIP, &S](CodeGenFunction &CGF) { 7662 return CGF.Builder.CreateIsNotNull( 7663 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 7664 (*LIP)->getType(), S.getBeginLoc())); 7665 }); 7666 }; 7667 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 7668 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 7669 const OMPTaskDataTy &Data) { 7670 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 7671 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 7672 OMPLoopScope PreInitScope(CGF, S); 7673 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 7674 OutlinedFn, SharedsTy, 7675 CapturedStruct, IfCond, Data); 7676 }; 7677 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 7678 CodeGen); 7679 }; 7680 if (Data.Nogroup) { 7681 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 7682 } else { 7683 CGM.getOpenMPRuntime().emitTaskgroupRegion( 7684 *this, 7685 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 7686 PrePostActionTy &Action) { 7687 Action.Enter(CGF); 7688 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 7689 Data); 7690 }, 7691 S.getBeginLoc()); 7692 } 7693 } 7694 7695 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 7696 auto LPCRegion = 7697 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7698 EmitOMPTaskLoopBasedDirective(S); 7699 } 7700 7701 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 7702 const OMPTaskLoopSimdDirective &S) { 7703 auto LPCRegion = 7704 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7705 OMPLexicalScope Scope(*this, S); 7706 EmitOMPTaskLoopBasedDirective(S); 7707 } 7708 7709 void CodeGenFunction::EmitOMPMasterTaskLoopDirective( 7710 const OMPMasterTaskLoopDirective &S) { 7711 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7712 Action.Enter(CGF); 7713 EmitOMPTaskLoopBasedDirective(S); 7714 }; 7715 auto LPCRegion = 7716 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7717 OMPLexicalScope Scope(*this, S, llvm::None, /*EmitPreInitStmt=*/false); 7718 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 7719 } 7720 7721 void CodeGenFunction::EmitOMPMasterTaskLoopSimdDirective( 7722 const OMPMasterTaskLoopSimdDirective &S) { 7723 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7724 Action.Enter(CGF); 7725 EmitOMPTaskLoopBasedDirective(S); 7726 }; 7727 auto LPCRegion = 7728 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7729 OMPLexicalScope Scope(*this, S); 7730 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 7731 } 7732 7733 void CodeGenFunction::EmitOMPParallelMasterTaskLoopDirective( 7734 const OMPParallelMasterTaskLoopDirective &S) { 7735 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7736 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 7737 PrePostActionTy &Action) { 7738 Action.Enter(CGF); 7739 CGF.EmitOMPTaskLoopBasedDirective(S); 7740 }; 7741 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 7742 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 7743 S.getBeginLoc()); 7744 }; 7745 auto LPCRegion = 7746 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7747 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop, CodeGen, 7748 emitEmptyBoundParameters); 7749 } 7750 7751 void CodeGenFunction::EmitOMPParallelMasterTaskLoopSimdDirective( 7752 const OMPParallelMasterTaskLoopSimdDirective &S) { 7753 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7754 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 7755 PrePostActionTy &Action) { 7756 Action.Enter(CGF); 7757 CGF.EmitOMPTaskLoopBasedDirective(S); 7758 }; 7759 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 7760 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 7761 S.getBeginLoc()); 7762 }; 7763 auto LPCRegion = 7764 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7765 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop_simd, CodeGen, 7766 emitEmptyBoundParameters); 7767 } 7768 7769 // Generate the instructions for '#pragma omp target update' directive. 7770 void CodeGenFunction::EmitOMPTargetUpdateDirective( 7771 const OMPTargetUpdateDirective &S) { 7772 // If we don't have target devices, don't bother emitting the data mapping 7773 // code. 7774 if (CGM.getLangOpts().OMPTargetTriples.empty()) 7775 return; 7776 7777 // Check if we have any if clause associated with the directive. 7778 const Expr *IfCond = nullptr; 7779 if (const auto *C = S.getSingleClause<OMPIfClause>()) 7780 IfCond = C->getCondition(); 7781 7782 // Check if we have any device clause associated with the directive. 7783 const Expr *Device = nullptr; 7784 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 7785 Device = C->getDevice(); 7786 7787 OMPLexicalScope Scope(*this, S, OMPD_task); 7788 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 7789 } 7790 7791 void CodeGenFunction::EmitOMPGenericLoopDirective( 7792 const OMPGenericLoopDirective &S) { 7793 // Unimplemented, just inline the underlying statement for now. 7794 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7795 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 7796 }; 7797 OMPLexicalScope Scope(*this, S, OMPD_unknown); 7798 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_loop, CodeGen); 7799 } 7800 7801 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 7802 const OMPExecutableDirective &D) { 7803 if (const auto *SD = dyn_cast<OMPScanDirective>(&D)) { 7804 EmitOMPScanDirective(*SD); 7805 return; 7806 } 7807 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 7808 return; 7809 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 7810 OMPPrivateScope GlobalsScope(CGF); 7811 if (isOpenMPTaskingDirective(D.getDirectiveKind())) { 7812 // Capture global firstprivates to avoid crash. 7813 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 7814 for (const Expr *Ref : C->varlists()) { 7815 const auto *DRE = cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 7816 if (!DRE) 7817 continue; 7818 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7819 if (!VD || VD->hasLocalStorage()) 7820 continue; 7821 if (!CGF.LocalDeclMap.count(VD)) { 7822 LValue GlobLVal = CGF.EmitLValue(Ref); 7823 GlobalsScope.addPrivate(VD, GlobLVal.getAddress(CGF)); 7824 } 7825 } 7826 } 7827 } 7828 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 7829 (void)GlobalsScope.Privatize(); 7830 ParentLoopDirectiveForScanRegion ScanRegion(CGF, D); 7831 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 7832 } else { 7833 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 7834 for (const Expr *E : LD->counters()) { 7835 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 7836 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 7837 LValue GlobLVal = CGF.EmitLValue(E); 7838 GlobalsScope.addPrivate(VD, GlobLVal.getAddress(CGF)); 7839 } 7840 if (isa<OMPCapturedExprDecl>(VD)) { 7841 // Emit only those that were not explicitly referenced in clauses. 7842 if (!CGF.LocalDeclMap.count(VD)) 7843 CGF.EmitVarDecl(*VD); 7844 } 7845 } 7846 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 7847 if (!C->getNumForLoops()) 7848 continue; 7849 for (unsigned I = LD->getLoopsNumber(), 7850 E = C->getLoopNumIterations().size(); 7851 I < E; ++I) { 7852 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 7853 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 7854 // Emit only those that were not explicitly referenced in clauses. 7855 if (!CGF.LocalDeclMap.count(VD)) 7856 CGF.EmitVarDecl(*VD); 7857 } 7858 } 7859 } 7860 } 7861 (void)GlobalsScope.Privatize(); 7862 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 7863 } 7864 }; 7865 if (D.getDirectiveKind() == OMPD_atomic || 7866 D.getDirectiveKind() == OMPD_critical || 7867 D.getDirectiveKind() == OMPD_section || 7868 D.getDirectiveKind() == OMPD_master || 7869 D.getDirectiveKind() == OMPD_masked) { 7870 EmitStmt(D.getAssociatedStmt()); 7871 } else { 7872 auto LPCRegion = 7873 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, D); 7874 OMPSimdLexicalScope Scope(*this, D); 7875 CGM.getOpenMPRuntime().emitInlinedDirective( 7876 *this, 7877 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 7878 : D.getDirectiveKind(), 7879 CodeGen); 7880 } 7881 // Check for outer lastprivate conditional update. 7882 checkForLastprivateConditionalUpdate(*this, D); 7883 } 7884