1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit OpenMP nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCleanup.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/Stmt.h" 19 #include "clang/AST/StmtOpenMP.h" 20 #include "clang/AST/DeclOpenMP.h" 21 using namespace clang; 22 using namespace CodeGen; 23 24 namespace { 25 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 26 /// for captured expressions. 27 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 28 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 29 for (const auto *C : S.clauses()) { 30 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 31 if (const auto *PreInit = 32 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 33 for (const auto *I : PreInit->decls()) { 34 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 35 CGF.EmitVarDecl(cast<VarDecl>(*I)); 36 } else { 37 CodeGenFunction::AutoVarEmission Emission = 38 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 39 CGF.EmitAutoVarCleanups(Emission); 40 } 41 } 42 } 43 } 44 } 45 } 46 CodeGenFunction::OMPPrivateScope InlinedShareds; 47 48 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 49 return CGF.LambdaCaptureFields.lookup(VD) || 50 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 51 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl)); 52 } 53 54 public: 55 OMPLexicalScope( 56 CodeGenFunction &CGF, const OMPExecutableDirective &S, 57 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 58 const bool EmitPreInitStmt = true) 59 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 60 InlinedShareds(CGF) { 61 if (EmitPreInitStmt) 62 emitPreInitStmt(CGF, S); 63 if (!CapturedRegion.hasValue()) 64 return; 65 assert(S.hasAssociatedStmt() && 66 "Expected associated statement for inlined directive."); 67 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 68 for (const auto &C : CS->captures()) { 69 if (C.capturesVariable() || C.capturesVariableByCopy()) { 70 auto *VD = C.getCapturedVar(); 71 assert(VD == VD->getCanonicalDecl() && 72 "Canonical decl must be captured."); 73 DeclRefExpr DRE( 74 CGF.getContext(), const_cast<VarDecl *>(VD), 75 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 76 InlinedShareds.isGlobalVarCaptured(VD)), 77 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 78 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 79 return CGF.EmitLValue(&DRE).getAddress(); 80 }); 81 } 82 } 83 (void)InlinedShareds.Privatize(); 84 } 85 }; 86 87 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 88 /// for captured expressions. 89 class OMPParallelScope final : public OMPLexicalScope { 90 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 91 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 92 return !(isOpenMPTargetExecutionDirective(Kind) || 93 isOpenMPLoopBoundSharingDirective(Kind)) && 94 isOpenMPParallelDirective(Kind); 95 } 96 97 public: 98 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 99 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 100 EmitPreInitStmt(S)) {} 101 }; 102 103 /// Lexical scope for OpenMP teams construct, that handles correct codegen 104 /// for captured expressions. 105 class OMPTeamsScope final : public OMPLexicalScope { 106 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 107 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 108 return !isOpenMPTargetExecutionDirective(Kind) && 109 isOpenMPTeamsDirective(Kind); 110 } 111 112 public: 113 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 114 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 115 EmitPreInitStmt(S)) {} 116 }; 117 118 /// Private scope for OpenMP loop-based directives, that supports capturing 119 /// of used expression from loop statement. 120 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 121 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { 122 CodeGenFunction::OMPMapVars PreCondVars; 123 for (const auto *E : S.counters()) { 124 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 125 (void)PreCondVars.setVarAddr( 126 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 127 } 128 (void)PreCondVars.apply(CGF); 129 if (const auto *PreInits = cast_or_null<DeclStmt>(S.getPreInits())) { 130 for (const auto *I : PreInits->decls()) 131 CGF.EmitVarDecl(cast<VarDecl>(*I)); 132 } 133 PreCondVars.restore(CGF); 134 } 135 136 public: 137 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) 138 : CodeGenFunction::RunCleanupsScope(CGF) { 139 emitPreInitStmt(CGF, S); 140 } 141 }; 142 143 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 144 CodeGenFunction::OMPPrivateScope InlinedShareds; 145 146 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 147 return CGF.LambdaCaptureFields.lookup(VD) || 148 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 149 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 150 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 151 } 152 153 public: 154 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 155 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 156 InlinedShareds(CGF) { 157 for (const auto *C : S.clauses()) { 158 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 159 if (const auto *PreInit = 160 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 161 for (const auto *I : PreInit->decls()) { 162 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 163 CGF.EmitVarDecl(cast<VarDecl>(*I)); 164 } else { 165 CodeGenFunction::AutoVarEmission Emission = 166 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 167 CGF.EmitAutoVarCleanups(Emission); 168 } 169 } 170 } 171 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 172 for (const Expr *E : UDP->varlists()) { 173 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 174 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 175 CGF.EmitVarDecl(*OED); 176 } 177 } 178 } 179 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 180 CGF.EmitOMPPrivateClause(S, InlinedShareds); 181 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 182 if (const Expr *E = TG->getReductionRef()) 183 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 184 } 185 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 186 while (CS) { 187 for (auto &C : CS->captures()) { 188 if (C.capturesVariable() || C.capturesVariableByCopy()) { 189 auto *VD = C.getCapturedVar(); 190 assert(VD == VD->getCanonicalDecl() && 191 "Canonical decl must be captured."); 192 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), 193 isCapturedVar(CGF, VD) || 194 (CGF.CapturedStmtInfo && 195 InlinedShareds.isGlobalVarCaptured(VD)), 196 VD->getType().getNonReferenceType(), VK_LValue, 197 C.getLocation()); 198 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 199 return CGF.EmitLValue(&DRE).getAddress(); 200 }); 201 } 202 } 203 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 204 } 205 (void)InlinedShareds.Privatize(); 206 } 207 }; 208 209 } // namespace 210 211 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 212 const OMPExecutableDirective &S, 213 const RegionCodeGenTy &CodeGen); 214 215 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 216 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 217 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 218 OrigVD = OrigVD->getCanonicalDecl(); 219 bool IsCaptured = 220 LambdaCaptureFields.lookup(OrigVD) || 221 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 222 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 223 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured, 224 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 225 return EmitLValue(&DRE); 226 } 227 } 228 return EmitLValue(E); 229 } 230 231 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 232 ASTContext &C = getContext(); 233 llvm::Value *Size = nullptr; 234 auto SizeInChars = C.getTypeSizeInChars(Ty); 235 if (SizeInChars.isZero()) { 236 // getTypeSizeInChars() returns 0 for a VLA. 237 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 238 VlaSizePair VlaSize = getVLASize(VAT); 239 Ty = VlaSize.Type; 240 Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) 241 : VlaSize.NumElts; 242 } 243 SizeInChars = C.getTypeSizeInChars(Ty); 244 if (SizeInChars.isZero()) 245 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 246 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 247 } 248 return CGM.getSize(SizeInChars); 249 } 250 251 void CodeGenFunction::GenerateOpenMPCapturedVars( 252 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 253 const RecordDecl *RD = S.getCapturedRecordDecl(); 254 auto CurField = RD->field_begin(); 255 auto CurCap = S.captures().begin(); 256 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 257 E = S.capture_init_end(); 258 I != E; ++I, ++CurField, ++CurCap) { 259 if (CurField->hasCapturedVLAType()) { 260 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 261 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 262 CapturedVars.push_back(Val); 263 } else if (CurCap->capturesThis()) { 264 CapturedVars.push_back(CXXThisValue); 265 } else if (CurCap->capturesVariableByCopy()) { 266 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 267 268 // If the field is not a pointer, we need to save the actual value 269 // and load it as a void pointer. 270 if (!CurField->getType()->isAnyPointerType()) { 271 ASTContext &Ctx = getContext(); 272 Address DstAddr = CreateMemTemp( 273 Ctx.getUIntPtrType(), 274 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 275 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 276 277 llvm::Value *SrcAddrVal = EmitScalarConversion( 278 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 279 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 280 LValue SrcLV = 281 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 282 283 // Store the value using the source type pointer. 284 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 285 286 // Load the value using the destination type pointer. 287 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 288 } 289 CapturedVars.push_back(CV); 290 } else { 291 assert(CurCap->capturesVariable() && "Expected capture by reference."); 292 CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer()); 293 } 294 } 295 } 296 297 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 298 QualType DstType, StringRef Name, 299 LValue AddrLV) { 300 ASTContext &Ctx = CGF.getContext(); 301 302 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 303 AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(), 304 Ctx.getPointerType(DstType), Loc); 305 Address TmpAddr = 306 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 307 .getAddress(); 308 return TmpAddr; 309 } 310 311 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 312 if (T->isLValueReferenceType()) 313 return C.getLValueReferenceType( 314 getCanonicalParamType(C, T.getNonReferenceType()), 315 /*SpelledAsLValue=*/false); 316 if (T->isPointerType()) 317 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 318 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 319 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 320 return getCanonicalParamType(C, VLA->getElementType()); 321 if (!A->isVariablyModifiedType()) 322 return C.getCanonicalType(T); 323 } 324 return C.getCanonicalParamType(T); 325 } 326 327 namespace { 328 /// Contains required data for proper outlined function codegen. 329 struct FunctionOptions { 330 /// Captured statement for which the function is generated. 331 const CapturedStmt *S = nullptr; 332 /// true if cast to/from UIntPtr is required for variables captured by 333 /// value. 334 const bool UIntPtrCastRequired = true; 335 /// true if only casted arguments must be registered as local args or VLA 336 /// sizes. 337 const bool RegisterCastedArgsOnly = false; 338 /// Name of the generated function. 339 const StringRef FunctionName; 340 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 341 bool RegisterCastedArgsOnly, 342 StringRef FunctionName) 343 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 344 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 345 FunctionName(FunctionName) {} 346 }; 347 } 348 349 static llvm::Function *emitOutlinedFunctionPrologue( 350 CodeGenFunction &CGF, FunctionArgList &Args, 351 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 352 &LocalAddrs, 353 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 354 &VLASizes, 355 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 356 const CapturedDecl *CD = FO.S->getCapturedDecl(); 357 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 358 assert(CD->hasBody() && "missing CapturedDecl body"); 359 360 CXXThisValue = nullptr; 361 // Build the argument list. 362 CodeGenModule &CGM = CGF.CGM; 363 ASTContext &Ctx = CGM.getContext(); 364 FunctionArgList TargetArgs; 365 Args.append(CD->param_begin(), 366 std::next(CD->param_begin(), CD->getContextParamPosition())); 367 TargetArgs.append( 368 CD->param_begin(), 369 std::next(CD->param_begin(), CD->getContextParamPosition())); 370 auto I = FO.S->captures().begin(); 371 FunctionDecl *DebugFunctionDecl = nullptr; 372 if (!FO.UIntPtrCastRequired) { 373 FunctionProtoType::ExtProtoInfo EPI; 374 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI); 375 DebugFunctionDecl = FunctionDecl::Create( 376 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 377 SourceLocation(), DeclarationName(), FunctionTy, 378 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 379 /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false); 380 } 381 for (const FieldDecl *FD : RD->fields()) { 382 QualType ArgType = FD->getType(); 383 IdentifierInfo *II = nullptr; 384 VarDecl *CapVar = nullptr; 385 386 // If this is a capture by copy and the type is not a pointer, the outlined 387 // function argument type should be uintptr and the value properly casted to 388 // uintptr. This is necessary given that the runtime library is only able to 389 // deal with pointers. We can pass in the same way the VLA type sizes to the 390 // outlined function. 391 if (FO.UIntPtrCastRequired && 392 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 393 I->capturesVariableArrayType())) 394 ArgType = Ctx.getUIntPtrType(); 395 396 if (I->capturesVariable() || I->capturesVariableByCopy()) { 397 CapVar = I->getCapturedVar(); 398 II = CapVar->getIdentifier(); 399 } else if (I->capturesThis()) { 400 II = &Ctx.Idents.get("this"); 401 } else { 402 assert(I->capturesVariableArrayType()); 403 II = &Ctx.Idents.get("vla"); 404 } 405 if (ArgType->isVariablyModifiedType()) 406 ArgType = getCanonicalParamType(Ctx, ArgType); 407 VarDecl *Arg; 408 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 409 Arg = ParmVarDecl::Create( 410 Ctx, DebugFunctionDecl, 411 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 412 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 413 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 414 } else { 415 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 416 II, ArgType, ImplicitParamDecl::Other); 417 } 418 Args.emplace_back(Arg); 419 // Do not cast arguments if we emit function with non-original types. 420 TargetArgs.emplace_back( 421 FO.UIntPtrCastRequired 422 ? Arg 423 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 424 ++I; 425 } 426 Args.append( 427 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 428 CD->param_end()); 429 TargetArgs.append( 430 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 431 CD->param_end()); 432 433 // Create the function declaration. 434 const CGFunctionInfo &FuncInfo = 435 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 436 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 437 438 auto *F = 439 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 440 FO.FunctionName, &CGM.getModule()); 441 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 442 if (CD->isNothrow()) 443 F->setDoesNotThrow(); 444 F->setDoesNotRecurse(); 445 446 // Generate the function. 447 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 448 FO.S->getBeginLoc(), CD->getBody()->getBeginLoc()); 449 unsigned Cnt = CD->getContextParamPosition(); 450 I = FO.S->captures().begin(); 451 for (const FieldDecl *FD : RD->fields()) { 452 // Do not map arguments if we emit function with non-original types. 453 Address LocalAddr(Address::invalid()); 454 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 455 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 456 TargetArgs[Cnt]); 457 } else { 458 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 459 } 460 // If we are capturing a pointer by copy we don't need to do anything, just 461 // use the value that we get from the arguments. 462 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 463 const VarDecl *CurVD = I->getCapturedVar(); 464 if (!FO.RegisterCastedArgsOnly) 465 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 466 ++Cnt; 467 ++I; 468 continue; 469 } 470 471 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 472 AlignmentSource::Decl); 473 if (FD->hasCapturedVLAType()) { 474 if (FO.UIntPtrCastRequired) { 475 ArgLVal = CGF.MakeAddrLValue( 476 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 477 Args[Cnt]->getName(), ArgLVal), 478 FD->getType(), AlignmentSource::Decl); 479 } 480 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 481 const VariableArrayType *VAT = FD->getCapturedVLAType(); 482 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 483 } else if (I->capturesVariable()) { 484 const VarDecl *Var = I->getCapturedVar(); 485 QualType VarTy = Var->getType(); 486 Address ArgAddr = ArgLVal.getAddress(); 487 if (ArgLVal.getType()->isLValueReferenceType()) { 488 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 489 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 490 assert(ArgLVal.getType()->isPointerType()); 491 ArgAddr = CGF.EmitLoadOfPointer( 492 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 493 } 494 if (!FO.RegisterCastedArgsOnly) { 495 LocalAddrs.insert( 496 {Args[Cnt], 497 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 498 } 499 } else if (I->capturesVariableByCopy()) { 500 assert(!FD->getType()->isAnyPointerType() && 501 "Not expecting a captured pointer."); 502 const VarDecl *Var = I->getCapturedVar(); 503 LocalAddrs.insert({Args[Cnt], 504 {Var, FO.UIntPtrCastRequired 505 ? castValueFromUintptr( 506 CGF, I->getLocation(), FD->getType(), 507 Args[Cnt]->getName(), ArgLVal) 508 : ArgLVal.getAddress()}}); 509 } else { 510 // If 'this' is captured, load it into CXXThisValue. 511 assert(I->capturesThis()); 512 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 513 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress()}}); 514 } 515 ++Cnt; 516 ++I; 517 } 518 519 return F; 520 } 521 522 llvm::Function * 523 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) { 524 assert( 525 CapturedStmtInfo && 526 "CapturedStmtInfo should be set when generating the captured function"); 527 const CapturedDecl *CD = S.getCapturedDecl(); 528 // Build the argument list. 529 bool NeedWrapperFunction = 530 getDebugInfo() && 531 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo; 532 FunctionArgList Args; 533 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 534 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 535 SmallString<256> Buffer; 536 llvm::raw_svector_ostream Out(Buffer); 537 Out << CapturedStmtInfo->getHelperName(); 538 if (NeedWrapperFunction) 539 Out << "_debug__"; 540 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 541 Out.str()); 542 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 543 VLASizes, CXXThisValue, FO); 544 CodeGenFunction::OMPPrivateScope LocalScope(*this); 545 for (const auto &LocalAddrPair : LocalAddrs) { 546 if (LocalAddrPair.second.first) { 547 LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() { 548 return LocalAddrPair.second.second; 549 }); 550 } 551 } 552 (void)LocalScope.Privatize(); 553 for (const auto &VLASizePair : VLASizes) 554 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 555 PGO.assignRegionCounters(GlobalDecl(CD), F); 556 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 557 (void)LocalScope.ForceCleanup(); 558 FinishFunction(CD->getBodyRBrace()); 559 if (!NeedWrapperFunction) 560 return F; 561 562 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 563 /*RegisterCastedArgsOnly=*/true, 564 CapturedStmtInfo->getHelperName()); 565 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 566 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 567 Args.clear(); 568 LocalAddrs.clear(); 569 VLASizes.clear(); 570 llvm::Function *WrapperF = 571 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 572 WrapperCGF.CXXThisValue, WrapperFO); 573 llvm::SmallVector<llvm::Value *, 4> CallArgs; 574 for (const auto *Arg : Args) { 575 llvm::Value *CallArg; 576 auto I = LocalAddrs.find(Arg); 577 if (I != LocalAddrs.end()) { 578 LValue LV = WrapperCGF.MakeAddrLValue( 579 I->second.second, 580 I->second.first ? I->second.first->getType() : Arg->getType(), 581 AlignmentSource::Decl); 582 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 583 } else { 584 auto EI = VLASizes.find(Arg); 585 if (EI != VLASizes.end()) { 586 CallArg = EI->second.second; 587 } else { 588 LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 589 Arg->getType(), 590 AlignmentSource::Decl); 591 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 592 } 593 } 594 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 595 } 596 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, S.getBeginLoc(), 597 F, CallArgs); 598 WrapperCGF.FinishFunction(); 599 return WrapperF; 600 } 601 602 //===----------------------------------------------------------------------===// 603 // OpenMP Directive Emission 604 //===----------------------------------------------------------------------===// 605 void CodeGenFunction::EmitOMPAggregateAssign( 606 Address DestAddr, Address SrcAddr, QualType OriginalType, 607 const llvm::function_ref<void(Address, Address)> CopyGen) { 608 // Perform element-by-element initialization. 609 QualType ElementTy; 610 611 // Drill down to the base element type on both arrays. 612 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 613 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 614 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 615 616 llvm::Value *SrcBegin = SrcAddr.getPointer(); 617 llvm::Value *DestBegin = DestAddr.getPointer(); 618 // Cast from pointer to array type to pointer to single element. 619 llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements); 620 // The basic structure here is a while-do loop. 621 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 622 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 623 llvm::Value *IsEmpty = 624 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 625 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 626 627 // Enter the loop body, making that address the current address. 628 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 629 EmitBlock(BodyBB); 630 631 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 632 633 llvm::PHINode *SrcElementPHI = 634 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 635 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 636 Address SrcElementCurrent = 637 Address(SrcElementPHI, 638 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 639 640 llvm::PHINode *DestElementPHI = 641 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 642 DestElementPHI->addIncoming(DestBegin, EntryBB); 643 Address DestElementCurrent = 644 Address(DestElementPHI, 645 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 646 647 // Emit copy. 648 CopyGen(DestElementCurrent, SrcElementCurrent); 649 650 // Shift the address forward by one element. 651 llvm::Value *DestElementNext = Builder.CreateConstGEP1_32( 652 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 653 llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32( 654 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 655 // Check whether we've reached the end. 656 llvm::Value *Done = 657 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 658 Builder.CreateCondBr(Done, DoneBB, BodyBB); 659 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 660 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 661 662 // Done. 663 EmitBlock(DoneBB, /*IsFinished=*/true); 664 } 665 666 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 667 Address SrcAddr, const VarDecl *DestVD, 668 const VarDecl *SrcVD, const Expr *Copy) { 669 if (OriginalType->isArrayType()) { 670 const auto *BO = dyn_cast<BinaryOperator>(Copy); 671 if (BO && BO->getOpcode() == BO_Assign) { 672 // Perform simple memcpy for simple copying. 673 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 674 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 675 EmitAggregateAssign(Dest, Src, OriginalType); 676 } else { 677 // For arrays with complex element types perform element by element 678 // copying. 679 EmitOMPAggregateAssign( 680 DestAddr, SrcAddr, OriginalType, 681 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 682 // Working with the single array element, so have to remap 683 // destination and source variables to corresponding array 684 // elements. 685 CodeGenFunction::OMPPrivateScope Remap(*this); 686 Remap.addPrivate(DestVD, [DestElement]() { return DestElement; }); 687 Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; }); 688 (void)Remap.Privatize(); 689 EmitIgnoredExpr(Copy); 690 }); 691 } 692 } else { 693 // Remap pseudo source variable to private copy. 694 CodeGenFunction::OMPPrivateScope Remap(*this); 695 Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; }); 696 Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; }); 697 (void)Remap.Privatize(); 698 // Emit copying of the whole variable. 699 EmitIgnoredExpr(Copy); 700 } 701 } 702 703 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 704 OMPPrivateScope &PrivateScope) { 705 if (!HaveInsertPoint()) 706 return false; 707 bool DeviceConstTarget = 708 getLangOpts().OpenMPIsDevice && 709 isOpenMPTargetExecutionDirective(D.getDirectiveKind()); 710 bool FirstprivateIsLastprivate = false; 711 llvm::DenseSet<const VarDecl *> Lastprivates; 712 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 713 for (const auto *D : C->varlists()) 714 Lastprivates.insert( 715 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl()); 716 } 717 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 718 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 719 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 720 // Force emission of the firstprivate copy if the directive does not emit 721 // outlined function, like omp for, omp simd, omp distribute etc. 722 bool MustEmitFirstprivateCopy = 723 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 724 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 725 auto IRef = C->varlist_begin(); 726 auto InitsRef = C->inits().begin(); 727 for (const Expr *IInit : C->private_copies()) { 728 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 729 bool ThisFirstprivateIsLastprivate = 730 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 731 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 732 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 733 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 734 !FD->getType()->isReferenceType() && 735 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 736 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 737 ++IRef; 738 ++InitsRef; 739 continue; 740 } 741 // Do not emit copy for firstprivate constant variables in target regions, 742 // captured by reference. 743 if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) && 744 FD && FD->getType()->isReferenceType() && 745 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 746 (void)CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(*this, 747 OrigVD); 748 ++IRef; 749 ++InitsRef; 750 continue; 751 } 752 FirstprivateIsLastprivate = 753 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 754 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 755 const auto *VDInit = 756 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 757 bool IsRegistered; 758 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 759 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 760 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 761 LValue OriginalLVal; 762 if (!FD) { 763 // Check if the firstprivate variable is just a constant value. 764 ConstantEmission CE = tryEmitAsConstant(&DRE); 765 if (CE && !CE.isReference()) { 766 // Constant value, no need to create a copy. 767 ++IRef; 768 ++InitsRef; 769 continue; 770 } 771 if (CE && CE.isReference()) { 772 OriginalLVal = CE.getReferenceLValue(*this, &DRE); 773 } else { 774 assert(!CE && "Expected non-constant firstprivate."); 775 OriginalLVal = EmitLValue(&DRE); 776 } 777 } else { 778 OriginalLVal = EmitLValue(&DRE); 779 } 780 QualType Type = VD->getType(); 781 if (Type->isArrayType()) { 782 // Emit VarDecl with copy init for arrays. 783 // Get the address of the original variable captured in current 784 // captured region. 785 IsRegistered = PrivateScope.addPrivate( 786 OrigVD, [this, VD, Type, OriginalLVal, VDInit]() { 787 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 788 const Expr *Init = VD->getInit(); 789 if (!isa<CXXConstructExpr>(Init) || 790 isTrivialInitializer(Init)) { 791 // Perform simple memcpy. 792 LValue Dest = 793 MakeAddrLValue(Emission.getAllocatedAddress(), Type); 794 EmitAggregateAssign(Dest, OriginalLVal, Type); 795 } else { 796 EmitOMPAggregateAssign( 797 Emission.getAllocatedAddress(), OriginalLVal.getAddress(), 798 Type, 799 [this, VDInit, Init](Address DestElement, 800 Address SrcElement) { 801 // Clean up any temporaries needed by the 802 // initialization. 803 RunCleanupsScope InitScope(*this); 804 // Emit initialization for single element. 805 setAddrOfLocalVar(VDInit, SrcElement); 806 EmitAnyExprToMem(Init, DestElement, 807 Init->getType().getQualifiers(), 808 /*IsInitializer*/ false); 809 LocalDeclMap.erase(VDInit); 810 }); 811 } 812 EmitAutoVarCleanups(Emission); 813 return Emission.getAllocatedAddress(); 814 }); 815 } else { 816 Address OriginalAddr = OriginalLVal.getAddress(); 817 IsRegistered = PrivateScope.addPrivate( 818 OrigVD, [this, VDInit, OriginalAddr, VD]() { 819 // Emit private VarDecl with copy init. 820 // Remap temp VDInit variable to the address of the original 821 // variable (for proper handling of captured global variables). 822 setAddrOfLocalVar(VDInit, OriginalAddr); 823 EmitDecl(*VD); 824 LocalDeclMap.erase(VDInit); 825 return GetAddrOfLocalVar(VD); 826 }); 827 } 828 assert(IsRegistered && 829 "firstprivate var already registered as private"); 830 // Silence the warning about unused variable. 831 (void)IsRegistered; 832 } 833 ++IRef; 834 ++InitsRef; 835 } 836 } 837 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 838 } 839 840 void CodeGenFunction::EmitOMPPrivateClause( 841 const OMPExecutableDirective &D, 842 CodeGenFunction::OMPPrivateScope &PrivateScope) { 843 if (!HaveInsertPoint()) 844 return; 845 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 846 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 847 auto IRef = C->varlist_begin(); 848 for (const Expr *IInit : C->private_copies()) { 849 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 850 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 851 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 852 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 853 // Emit private VarDecl with copy init. 854 EmitDecl(*VD); 855 return GetAddrOfLocalVar(VD); 856 }); 857 assert(IsRegistered && "private var already registered as private"); 858 // Silence the warning about unused variable. 859 (void)IsRegistered; 860 } 861 ++IRef; 862 } 863 } 864 } 865 866 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 867 if (!HaveInsertPoint()) 868 return false; 869 // threadprivate_var1 = master_threadprivate_var1; 870 // operator=(threadprivate_var2, master_threadprivate_var2); 871 // ... 872 // __kmpc_barrier(&loc, global_tid); 873 llvm::DenseSet<const VarDecl *> CopiedVars; 874 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 875 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 876 auto IRef = C->varlist_begin(); 877 auto ISrcRef = C->source_exprs().begin(); 878 auto IDestRef = C->destination_exprs().begin(); 879 for (const Expr *AssignOp : C->assignment_ops()) { 880 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 881 QualType Type = VD->getType(); 882 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 883 // Get the address of the master variable. If we are emitting code with 884 // TLS support, the address is passed from the master as field in the 885 // captured declaration. 886 Address MasterAddr = Address::invalid(); 887 if (getLangOpts().OpenMPUseTLS && 888 getContext().getTargetInfo().isTLSSupported()) { 889 assert(CapturedStmtInfo->lookup(VD) && 890 "Copyin threadprivates should have been captured!"); 891 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true, 892 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 893 MasterAddr = EmitLValue(&DRE).getAddress(); 894 LocalDeclMap.erase(VD); 895 } else { 896 MasterAddr = 897 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 898 : CGM.GetAddrOfGlobal(VD), 899 getContext().getDeclAlign(VD)); 900 } 901 // Get the address of the threadprivate variable. 902 Address PrivateAddr = EmitLValue(*IRef).getAddress(); 903 if (CopiedVars.size() == 1) { 904 // At first check if current thread is a master thread. If it is, no 905 // need to copy data. 906 CopyBegin = createBasicBlock("copyin.not.master"); 907 CopyEnd = createBasicBlock("copyin.not.master.end"); 908 Builder.CreateCondBr( 909 Builder.CreateICmpNE( 910 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 911 Builder.CreatePtrToInt(PrivateAddr.getPointer(), 912 CGM.IntPtrTy)), 913 CopyBegin, CopyEnd); 914 EmitBlock(CopyBegin); 915 } 916 const auto *SrcVD = 917 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 918 const auto *DestVD = 919 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 920 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 921 } 922 ++IRef; 923 ++ISrcRef; 924 ++IDestRef; 925 } 926 } 927 if (CopyEnd) { 928 // Exit out of copying procedure for non-master thread. 929 EmitBlock(CopyEnd, /*IsFinished=*/true); 930 return true; 931 } 932 return false; 933 } 934 935 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 936 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 937 if (!HaveInsertPoint()) 938 return false; 939 bool HasAtLeastOneLastprivate = false; 940 llvm::DenseSet<const VarDecl *> SIMDLCVs; 941 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 942 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 943 for (const Expr *C : LoopDirective->counters()) { 944 SIMDLCVs.insert( 945 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 946 } 947 } 948 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 949 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 950 HasAtLeastOneLastprivate = true; 951 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 952 !getLangOpts().OpenMPSimd) 953 break; 954 auto IRef = C->varlist_begin(); 955 auto IDestRef = C->destination_exprs().begin(); 956 for (const Expr *IInit : C->private_copies()) { 957 // Keep the address of the original variable for future update at the end 958 // of the loop. 959 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 960 // Taskloops do not require additional initialization, it is done in 961 // runtime support library. 962 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 963 const auto *DestVD = 964 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 965 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() { 966 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 967 /*RefersToEnclosingVariableOrCapture=*/ 968 CapturedStmtInfo->lookup(OrigVD) != nullptr, 969 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 970 return EmitLValue(&DRE).getAddress(); 971 }); 972 // Check if the variable is also a firstprivate: in this case IInit is 973 // not generated. Initialization of this variable will happen in codegen 974 // for 'firstprivate' clause. 975 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 976 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 977 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 978 // Emit private VarDecl with copy init. 979 EmitDecl(*VD); 980 return GetAddrOfLocalVar(VD); 981 }); 982 assert(IsRegistered && 983 "lastprivate var already registered as private"); 984 (void)IsRegistered; 985 } 986 } 987 ++IRef; 988 ++IDestRef; 989 } 990 } 991 return HasAtLeastOneLastprivate; 992 } 993 994 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 995 const OMPExecutableDirective &D, bool NoFinals, 996 llvm::Value *IsLastIterCond) { 997 if (!HaveInsertPoint()) 998 return; 999 // Emit following code: 1000 // if (<IsLastIterCond>) { 1001 // orig_var1 = private_orig_var1; 1002 // ... 1003 // orig_varn = private_orig_varn; 1004 // } 1005 llvm::BasicBlock *ThenBB = nullptr; 1006 llvm::BasicBlock *DoneBB = nullptr; 1007 if (IsLastIterCond) { 1008 ThenBB = createBasicBlock(".omp.lastprivate.then"); 1009 DoneBB = createBasicBlock(".omp.lastprivate.done"); 1010 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1011 EmitBlock(ThenBB); 1012 } 1013 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1014 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1015 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1016 auto IC = LoopDirective->counters().begin(); 1017 for (const Expr *F : LoopDirective->finals()) { 1018 const auto *D = 1019 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1020 if (NoFinals) 1021 AlreadyEmittedVars.insert(D); 1022 else 1023 LoopCountersAndUpdates[D] = F; 1024 ++IC; 1025 } 1026 } 1027 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1028 auto IRef = C->varlist_begin(); 1029 auto ISrcRef = C->source_exprs().begin(); 1030 auto IDestRef = C->destination_exprs().begin(); 1031 for (const Expr *AssignOp : C->assignment_ops()) { 1032 const auto *PrivateVD = 1033 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1034 QualType Type = PrivateVD->getType(); 1035 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1036 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1037 // If lastprivate variable is a loop control variable for loop-based 1038 // directive, update its value before copyin back to original 1039 // variable. 1040 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1041 EmitIgnoredExpr(FinalExpr); 1042 const auto *SrcVD = 1043 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1044 const auto *DestVD = 1045 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1046 // Get the address of the original variable. 1047 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1048 // Get the address of the private variable. 1049 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1050 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1051 PrivateAddr = 1052 Address(Builder.CreateLoad(PrivateAddr), 1053 getNaturalTypeAlignment(RefTy->getPointeeType())); 1054 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1055 } 1056 ++IRef; 1057 ++ISrcRef; 1058 ++IDestRef; 1059 } 1060 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1061 EmitIgnoredExpr(PostUpdate); 1062 } 1063 if (IsLastIterCond) 1064 EmitBlock(DoneBB, /*IsFinished=*/true); 1065 } 1066 1067 void CodeGenFunction::EmitOMPReductionClauseInit( 1068 const OMPExecutableDirective &D, 1069 CodeGenFunction::OMPPrivateScope &PrivateScope) { 1070 if (!HaveInsertPoint()) 1071 return; 1072 SmallVector<const Expr *, 4> Shareds; 1073 SmallVector<const Expr *, 4> Privates; 1074 SmallVector<const Expr *, 4> ReductionOps; 1075 SmallVector<const Expr *, 4> LHSs; 1076 SmallVector<const Expr *, 4> RHSs; 1077 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1078 auto IPriv = C->privates().begin(); 1079 auto IRed = C->reduction_ops().begin(); 1080 auto ILHS = C->lhs_exprs().begin(); 1081 auto IRHS = C->rhs_exprs().begin(); 1082 for (const Expr *Ref : C->varlists()) { 1083 Shareds.emplace_back(Ref); 1084 Privates.emplace_back(*IPriv); 1085 ReductionOps.emplace_back(*IRed); 1086 LHSs.emplace_back(*ILHS); 1087 RHSs.emplace_back(*IRHS); 1088 std::advance(IPriv, 1); 1089 std::advance(IRed, 1); 1090 std::advance(ILHS, 1); 1091 std::advance(IRHS, 1); 1092 } 1093 } 1094 ReductionCodeGen RedCG(Shareds, Privates, ReductionOps); 1095 unsigned Count = 0; 1096 auto ILHS = LHSs.begin(); 1097 auto IRHS = RHSs.begin(); 1098 auto IPriv = Privates.begin(); 1099 for (const Expr *IRef : Shareds) { 1100 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1101 // Emit private VarDecl with reduction init. 1102 RedCG.emitSharedLValue(*this, Count); 1103 RedCG.emitAggregateType(*this, Count); 1104 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1105 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1106 RedCG.getSharedLValue(Count), 1107 [&Emission](CodeGenFunction &CGF) { 1108 CGF.EmitAutoVarInit(Emission); 1109 return true; 1110 }); 1111 EmitAutoVarCleanups(Emission); 1112 Address BaseAddr = RedCG.adjustPrivateAddress( 1113 *this, Count, Emission.getAllocatedAddress()); 1114 bool IsRegistered = PrivateScope.addPrivate( 1115 RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; }); 1116 assert(IsRegistered && "private var already registered as private"); 1117 // Silence the warning about unused variable. 1118 (void)IsRegistered; 1119 1120 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1121 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1122 QualType Type = PrivateVD->getType(); 1123 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1124 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1125 // Store the address of the original variable associated with the LHS 1126 // implicit variable. 1127 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() { 1128 return RedCG.getSharedLValue(Count).getAddress(); 1129 }); 1130 PrivateScope.addPrivate( 1131 RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); }); 1132 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1133 isa<ArraySubscriptExpr>(IRef)) { 1134 // Store the address of the original variable associated with the LHS 1135 // implicit variable. 1136 PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() { 1137 return RedCG.getSharedLValue(Count).getAddress(); 1138 }); 1139 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() { 1140 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1141 ConvertTypeForMem(RHSVD->getType()), 1142 "rhs.begin"); 1143 }); 1144 } else { 1145 QualType Type = PrivateVD->getType(); 1146 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1147 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(); 1148 // Store the address of the original variable associated with the LHS 1149 // implicit variable. 1150 if (IsArray) { 1151 OriginalAddr = Builder.CreateElementBitCast( 1152 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1153 } 1154 PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; }); 1155 PrivateScope.addPrivate( 1156 RHSVD, [this, PrivateVD, RHSVD, IsArray]() { 1157 return IsArray 1158 ? Builder.CreateElementBitCast( 1159 GetAddrOfLocalVar(PrivateVD), 1160 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1161 : GetAddrOfLocalVar(PrivateVD); 1162 }); 1163 } 1164 ++ILHS; 1165 ++IRHS; 1166 ++IPriv; 1167 ++Count; 1168 } 1169 } 1170 1171 void CodeGenFunction::EmitOMPReductionClauseFinal( 1172 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1173 if (!HaveInsertPoint()) 1174 return; 1175 llvm::SmallVector<const Expr *, 8> Privates; 1176 llvm::SmallVector<const Expr *, 8> LHSExprs; 1177 llvm::SmallVector<const Expr *, 8> RHSExprs; 1178 llvm::SmallVector<const Expr *, 8> ReductionOps; 1179 bool HasAtLeastOneReduction = false; 1180 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1181 HasAtLeastOneReduction = true; 1182 Privates.append(C->privates().begin(), C->privates().end()); 1183 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1184 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1185 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1186 } 1187 if (HasAtLeastOneReduction) { 1188 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1189 isOpenMPParallelDirective(D.getDirectiveKind()) || 1190 ReductionKind == OMPD_simd; 1191 bool SimpleReduction = ReductionKind == OMPD_simd; 1192 // Emit nowait reduction if nowait clause is present or directive is a 1193 // parallel directive (it always has implicit barrier). 1194 CGM.getOpenMPRuntime().emitReduction( 1195 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1196 {WithNowait, SimpleReduction, ReductionKind}); 1197 } 1198 } 1199 1200 static void emitPostUpdateForReductionClause( 1201 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1202 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1203 if (!CGF.HaveInsertPoint()) 1204 return; 1205 llvm::BasicBlock *DoneBB = nullptr; 1206 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1207 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1208 if (!DoneBB) { 1209 if (llvm::Value *Cond = CondGen(CGF)) { 1210 // If the first post-update expression is found, emit conditional 1211 // block if it was requested. 1212 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1213 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1214 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1215 CGF.EmitBlock(ThenBB); 1216 } 1217 } 1218 CGF.EmitIgnoredExpr(PostUpdate); 1219 } 1220 } 1221 if (DoneBB) 1222 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1223 } 1224 1225 namespace { 1226 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1227 /// parallel function. This is necessary for combined constructs such as 1228 /// 'distribute parallel for' 1229 typedef llvm::function_ref<void(CodeGenFunction &, 1230 const OMPExecutableDirective &, 1231 llvm::SmallVectorImpl<llvm::Value *> &)> 1232 CodeGenBoundParametersTy; 1233 } // anonymous namespace 1234 1235 static void emitCommonOMPParallelDirective( 1236 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1237 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1238 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1239 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1240 llvm::Function *OutlinedFn = 1241 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1242 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1243 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1244 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1245 llvm::Value *NumThreads = 1246 CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1247 /*IgnoreResultAssign=*/true); 1248 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1249 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1250 } 1251 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1252 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1253 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1254 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1255 } 1256 const Expr *IfCond = nullptr; 1257 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1258 if (C->getNameModifier() == OMPD_unknown || 1259 C->getNameModifier() == OMPD_parallel) { 1260 IfCond = C->getCondition(); 1261 break; 1262 } 1263 } 1264 1265 OMPParallelScope Scope(CGF, S); 1266 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1267 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1268 // lower and upper bounds with the pragma 'for' chunking mechanism. 1269 // The following lambda takes care of appending the lower and upper bound 1270 // parameters when necessary 1271 CodeGenBoundParameters(CGF, S, CapturedVars); 1272 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1273 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1274 CapturedVars, IfCond); 1275 } 1276 1277 static void emitEmptyBoundParameters(CodeGenFunction &, 1278 const OMPExecutableDirective &, 1279 llvm::SmallVectorImpl<llvm::Value *> &) {} 1280 1281 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1282 // Emit parallel region as a standalone region. 1283 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1284 Action.Enter(CGF); 1285 OMPPrivateScope PrivateScope(CGF); 1286 bool Copyins = CGF.EmitOMPCopyinClause(S); 1287 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1288 if (Copyins) { 1289 // Emit implicit barrier to synchronize threads and avoid data races on 1290 // propagation master's thread values of threadprivate variables to local 1291 // instances of that variables of all other implicit threads. 1292 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1293 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1294 /*ForceSimpleCall=*/true); 1295 } 1296 CGF.EmitOMPPrivateClause(S, PrivateScope); 1297 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1298 (void)PrivateScope.Privatize(); 1299 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1300 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1301 }; 1302 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1303 emitEmptyBoundParameters); 1304 emitPostUpdateForReductionClause(*this, S, 1305 [](CodeGenFunction &) { return nullptr; }); 1306 } 1307 1308 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1309 JumpDest LoopExit) { 1310 RunCleanupsScope BodyScope(*this); 1311 // Update counters values on current iteration. 1312 for (const Expr *UE : D.updates()) 1313 EmitIgnoredExpr(UE); 1314 // Update the linear variables. 1315 // In distribute directives only loop counters may be marked as linear, no 1316 // need to generate the code for them. 1317 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1318 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1319 for (const Expr *UE : C->updates()) 1320 EmitIgnoredExpr(UE); 1321 } 1322 } 1323 1324 // On a continue in the body, jump to the end. 1325 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1326 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1327 // Emit loop body. 1328 EmitStmt(D.getBody()); 1329 // The end (updates/cleanups). 1330 EmitBlock(Continue.getBlock()); 1331 BreakContinueStack.pop_back(); 1332 } 1333 1334 void CodeGenFunction::EmitOMPInnerLoop( 1335 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 1336 const Expr *IncExpr, 1337 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 1338 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 1339 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 1340 1341 // Start the loop with a block that tests the condition. 1342 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 1343 EmitBlock(CondBlock); 1344 const SourceRange R = S.getSourceRange(); 1345 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1346 SourceLocToDebugLoc(R.getEnd())); 1347 1348 // If there are any cleanups between here and the loop-exit scope, 1349 // create a block to stage a loop exit along. 1350 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1351 if (RequiresCleanup) 1352 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 1353 1354 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 1355 1356 // Emit condition. 1357 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 1358 if (ExitBlock != LoopExit.getBlock()) { 1359 EmitBlock(ExitBlock); 1360 EmitBranchThroughCleanup(LoopExit); 1361 } 1362 1363 EmitBlock(LoopBody); 1364 incrementProfileCounter(&S); 1365 1366 // Create a block for the increment. 1367 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 1368 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1369 1370 BodyGen(*this); 1371 1372 // Emit "IV = IV + 1" and a back-edge to the condition block. 1373 EmitBlock(Continue.getBlock()); 1374 EmitIgnoredExpr(IncExpr); 1375 PostIncGen(*this); 1376 BreakContinueStack.pop_back(); 1377 EmitBranch(CondBlock); 1378 LoopStack.pop(); 1379 // Emit the fall-through block. 1380 EmitBlock(LoopExit.getBlock()); 1381 } 1382 1383 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 1384 if (!HaveInsertPoint()) 1385 return false; 1386 // Emit inits for the linear variables. 1387 bool HasLinears = false; 1388 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1389 for (const Expr *Init : C->inits()) { 1390 HasLinears = true; 1391 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 1392 if (const auto *Ref = 1393 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 1394 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 1395 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 1396 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1397 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1398 VD->getInit()->getType(), VK_LValue, 1399 VD->getInit()->getExprLoc()); 1400 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 1401 VD->getType()), 1402 /*capturedByInit=*/false); 1403 EmitAutoVarCleanups(Emission); 1404 } else { 1405 EmitVarDecl(*VD); 1406 } 1407 } 1408 // Emit the linear steps for the linear clauses. 1409 // If a step is not constant, it is pre-calculated before the loop. 1410 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 1411 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 1412 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 1413 // Emit calculation of the linear step. 1414 EmitIgnoredExpr(CS); 1415 } 1416 } 1417 return HasLinears; 1418 } 1419 1420 void CodeGenFunction::EmitOMPLinearClauseFinal( 1421 const OMPLoopDirective &D, 1422 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1423 if (!HaveInsertPoint()) 1424 return; 1425 llvm::BasicBlock *DoneBB = nullptr; 1426 // Emit the final values of the linear variables. 1427 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1428 auto IC = C->varlist_begin(); 1429 for (const Expr *F : C->finals()) { 1430 if (!DoneBB) { 1431 if (llvm::Value *Cond = CondGen(*this)) { 1432 // If the first post-update expression is found, emit conditional 1433 // block if it was requested. 1434 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 1435 DoneBB = createBasicBlock(".omp.linear.pu.done"); 1436 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1437 EmitBlock(ThenBB); 1438 } 1439 } 1440 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1441 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1442 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1443 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1444 Address OrigAddr = EmitLValue(&DRE).getAddress(); 1445 CodeGenFunction::OMPPrivateScope VarScope(*this); 1446 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1447 (void)VarScope.Privatize(); 1448 EmitIgnoredExpr(F); 1449 ++IC; 1450 } 1451 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1452 EmitIgnoredExpr(PostUpdate); 1453 } 1454 if (DoneBB) 1455 EmitBlock(DoneBB, /*IsFinished=*/true); 1456 } 1457 1458 static void emitAlignedClause(CodeGenFunction &CGF, 1459 const OMPExecutableDirective &D) { 1460 if (!CGF.HaveInsertPoint()) 1461 return; 1462 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1463 llvm::APInt ClauseAlignment(64, 0); 1464 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 1465 auto *AlignmentCI = 1466 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1467 ClauseAlignment = AlignmentCI->getValue(); 1468 } 1469 for (const Expr *E : Clause->varlists()) { 1470 llvm::APInt Alignment(ClauseAlignment); 1471 if (Alignment == 0) { 1472 // OpenMP [2.8.1, Description] 1473 // If no optional parameter is specified, implementation-defined default 1474 // alignments for SIMD instructions on the target platforms are assumed. 1475 Alignment = 1476 CGF.getContext() 1477 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 1478 E->getType()->getPointeeType())) 1479 .getQuantity(); 1480 } 1481 assert((Alignment == 0 || Alignment.isPowerOf2()) && 1482 "alignment is not power of 2"); 1483 if (Alignment != 0) { 1484 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 1485 CGF.EmitAlignmentAssumption( 1486 PtrValue, E, /*No second loc needed*/ SourceLocation(), 1487 llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment)); 1488 } 1489 } 1490 } 1491 } 1492 1493 void CodeGenFunction::EmitOMPPrivateLoopCounters( 1494 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 1495 if (!HaveInsertPoint()) 1496 return; 1497 auto I = S.private_counters().begin(); 1498 for (const Expr *E : S.counters()) { 1499 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1500 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 1501 // Emit var without initialization. 1502 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 1503 EmitAutoVarCleanups(VarEmission); 1504 LocalDeclMap.erase(PrivateVD); 1505 (void)LoopScope.addPrivate(VD, [&VarEmission]() { 1506 return VarEmission.getAllocatedAddress(); 1507 }); 1508 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 1509 VD->hasGlobalStorage()) { 1510 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 1511 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), 1512 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 1513 E->getType(), VK_LValue, E->getExprLoc()); 1514 return EmitLValue(&DRE).getAddress(); 1515 }); 1516 } else { 1517 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 1518 return VarEmission.getAllocatedAddress(); 1519 }); 1520 } 1521 ++I; 1522 } 1523 // Privatize extra loop counters used in loops for ordered(n) clauses. 1524 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 1525 if (!C->getNumForLoops()) 1526 continue; 1527 for (unsigned I = S.getCollapsedNumber(), 1528 E = C->getLoopNumIterations().size(); 1529 I < E; ++I) { 1530 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 1531 const auto *VD = cast<VarDecl>(DRE->getDecl()); 1532 // Override only those variables that can be captured to avoid re-emission 1533 // of the variables declared within the loops. 1534 if (DRE->refersToEnclosingVariableOrCapture()) { 1535 (void)LoopScope.addPrivate(VD, [this, DRE, VD]() { 1536 return CreateMemTemp(DRE->getType(), VD->getName()); 1537 }); 1538 } 1539 } 1540 } 1541 } 1542 1543 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 1544 const Expr *Cond, llvm::BasicBlock *TrueBlock, 1545 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 1546 if (!CGF.HaveInsertPoint()) 1547 return; 1548 { 1549 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 1550 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 1551 (void)PreCondScope.Privatize(); 1552 // Get initial values of real counters. 1553 for (const Expr *I : S.inits()) { 1554 CGF.EmitIgnoredExpr(I); 1555 } 1556 } 1557 // Check that loop is executed at least one time. 1558 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 1559 } 1560 1561 void CodeGenFunction::EmitOMPLinearClause( 1562 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 1563 if (!HaveInsertPoint()) 1564 return; 1565 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1566 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1567 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1568 for (const Expr *C : LoopDirective->counters()) { 1569 SIMDLCVs.insert( 1570 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1571 } 1572 } 1573 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1574 auto CurPrivate = C->privates().begin(); 1575 for (const Expr *E : C->varlists()) { 1576 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1577 const auto *PrivateVD = 1578 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 1579 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 1580 bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() { 1581 // Emit private VarDecl with copy init. 1582 EmitVarDecl(*PrivateVD); 1583 return GetAddrOfLocalVar(PrivateVD); 1584 }); 1585 assert(IsRegistered && "linear var already registered as private"); 1586 // Silence the warning about unused variable. 1587 (void)IsRegistered; 1588 } else { 1589 EmitVarDecl(*PrivateVD); 1590 } 1591 ++CurPrivate; 1592 } 1593 } 1594 } 1595 1596 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 1597 const OMPExecutableDirective &D, 1598 bool IsMonotonic) { 1599 if (!CGF.HaveInsertPoint()) 1600 return; 1601 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 1602 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 1603 /*ignoreResult=*/true); 1604 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1605 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1606 // In presence of finite 'safelen', it may be unsafe to mark all 1607 // the memory instructions parallel, because loop-carried 1608 // dependences of 'safelen' iterations are possible. 1609 if (!IsMonotonic) 1610 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 1611 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 1612 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 1613 /*ignoreResult=*/true); 1614 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1615 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1616 // In presence of finite 'safelen', it may be unsafe to mark all 1617 // the memory instructions parallel, because loop-carried 1618 // dependences of 'safelen' iterations are possible. 1619 CGF.LoopStack.setParallel(/*Enable=*/false); 1620 } 1621 } 1622 1623 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, 1624 bool IsMonotonic) { 1625 // Walk clauses and process safelen/lastprivate. 1626 LoopStack.setParallel(!IsMonotonic); 1627 LoopStack.setVectorizeEnable(); 1628 emitSimdlenSafelenClause(*this, D, IsMonotonic); 1629 } 1630 1631 void CodeGenFunction::EmitOMPSimdFinal( 1632 const OMPLoopDirective &D, 1633 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1634 if (!HaveInsertPoint()) 1635 return; 1636 llvm::BasicBlock *DoneBB = nullptr; 1637 auto IC = D.counters().begin(); 1638 auto IPC = D.private_counters().begin(); 1639 for (const Expr *F : D.finals()) { 1640 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 1641 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 1642 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 1643 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 1644 OrigVD->hasGlobalStorage() || CED) { 1645 if (!DoneBB) { 1646 if (llvm::Value *Cond = CondGen(*this)) { 1647 // If the first post-update expression is found, emit conditional 1648 // block if it was requested. 1649 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 1650 DoneBB = createBasicBlock(".omp.final.done"); 1651 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1652 EmitBlock(ThenBB); 1653 } 1654 } 1655 Address OrigAddr = Address::invalid(); 1656 if (CED) { 1657 OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(); 1658 } else { 1659 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD), 1660 /*RefersToEnclosingVariableOrCapture=*/false, 1661 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 1662 OrigAddr = EmitLValue(&DRE).getAddress(); 1663 } 1664 OMPPrivateScope VarScope(*this); 1665 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 1666 (void)VarScope.Privatize(); 1667 EmitIgnoredExpr(F); 1668 } 1669 ++IC; 1670 ++IPC; 1671 } 1672 if (DoneBB) 1673 EmitBlock(DoneBB, /*IsFinished=*/true); 1674 } 1675 1676 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 1677 const OMPLoopDirective &S, 1678 CodeGenFunction::JumpDest LoopExit) { 1679 CGF.EmitOMPLoopBody(S, LoopExit); 1680 CGF.EmitStopPoint(&S); 1681 } 1682 1683 /// Emit a helper variable and return corresponding lvalue. 1684 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 1685 const DeclRefExpr *Helper) { 1686 auto VDecl = cast<VarDecl>(Helper->getDecl()); 1687 CGF.EmitVarDecl(*VDecl); 1688 return CGF.EmitLValue(Helper); 1689 } 1690 1691 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 1692 PrePostActionTy &Action) { 1693 Action.Enter(CGF); 1694 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 1695 "Expected simd directive"); 1696 OMPLoopScope PreInitScope(CGF, S); 1697 // if (PreCond) { 1698 // for (IV in 0..LastIteration) BODY; 1699 // <Final counter/linear vars updates>; 1700 // } 1701 // 1702 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 1703 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 1704 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 1705 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 1706 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 1707 } 1708 1709 // Emit: if (PreCond) - begin. 1710 // If the condition constant folds and can be elided, avoid emitting the 1711 // whole loop. 1712 bool CondConstant; 1713 llvm::BasicBlock *ContBlock = nullptr; 1714 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1715 if (!CondConstant) 1716 return; 1717 } else { 1718 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 1719 ContBlock = CGF.createBasicBlock("simd.if.end"); 1720 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 1721 CGF.getProfileCount(&S)); 1722 CGF.EmitBlock(ThenBlock); 1723 CGF.incrementProfileCounter(&S); 1724 } 1725 1726 // Emit the loop iteration variable. 1727 const Expr *IVExpr = S.getIterationVariable(); 1728 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 1729 CGF.EmitVarDecl(*IVDecl); 1730 CGF.EmitIgnoredExpr(S.getInit()); 1731 1732 // Emit the iterations count variable. 1733 // If it is not a variable, Sema decided to calculate iterations count on 1734 // each iteration (e.g., it is foldable into a constant). 1735 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1736 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1737 // Emit calculation of the iterations count. 1738 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 1739 } 1740 1741 CGF.EmitOMPSimdInit(S); 1742 1743 emitAlignedClause(CGF, S); 1744 (void)CGF.EmitOMPLinearClauseInit(S); 1745 { 1746 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 1747 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 1748 CGF.EmitOMPLinearClause(S, LoopScope); 1749 CGF.EmitOMPPrivateClause(S, LoopScope); 1750 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1751 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1752 (void)LoopScope.Privatize(); 1753 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 1754 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 1755 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 1756 S.getInc(), 1757 [&S](CodeGenFunction &CGF) { 1758 CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest()); 1759 CGF.EmitStopPoint(&S); 1760 }, 1761 [](CodeGenFunction &) {}); 1762 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 1763 // Emit final copy of the lastprivate variables at the end of loops. 1764 if (HasLastprivateClause) 1765 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 1766 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 1767 emitPostUpdateForReductionClause(CGF, S, 1768 [](CodeGenFunction &) { return nullptr; }); 1769 } 1770 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 1771 // Emit: if (PreCond) - end. 1772 if (ContBlock) { 1773 CGF.EmitBranch(ContBlock); 1774 CGF.EmitBlock(ContBlock, true); 1775 } 1776 } 1777 1778 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 1779 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1780 emitOMPSimdRegion(CGF, S, Action); 1781 }; 1782 OMPLexicalScope Scope(*this, S, OMPD_unknown); 1783 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 1784 } 1785 1786 void CodeGenFunction::EmitOMPOuterLoop( 1787 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 1788 CodeGenFunction::OMPPrivateScope &LoopScope, 1789 const CodeGenFunction::OMPLoopArguments &LoopArgs, 1790 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 1791 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 1792 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 1793 1794 const Expr *IVExpr = S.getIterationVariable(); 1795 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1796 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1797 1798 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 1799 1800 // Start the loop with a block that tests the condition. 1801 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 1802 EmitBlock(CondBlock); 1803 const SourceRange R = S.getSourceRange(); 1804 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 1805 SourceLocToDebugLoc(R.getEnd())); 1806 1807 llvm::Value *BoolCondVal = nullptr; 1808 if (!DynamicOrOrdered) { 1809 // UB = min(UB, GlobalUB) or 1810 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 1811 // 'distribute parallel for') 1812 EmitIgnoredExpr(LoopArgs.EUB); 1813 // IV = LB 1814 EmitIgnoredExpr(LoopArgs.Init); 1815 // IV < UB 1816 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 1817 } else { 1818 BoolCondVal = 1819 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 1820 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 1821 } 1822 1823 // If there are any cleanups between here and the loop-exit scope, 1824 // create a block to stage a loop exit along. 1825 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1826 if (LoopScope.requiresCleanups()) 1827 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 1828 1829 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 1830 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 1831 if (ExitBlock != LoopExit.getBlock()) { 1832 EmitBlock(ExitBlock); 1833 EmitBranchThroughCleanup(LoopExit); 1834 } 1835 EmitBlock(LoopBody); 1836 1837 // Emit "IV = LB" (in case of static schedule, we have already calculated new 1838 // LB for loop condition and emitted it above). 1839 if (DynamicOrOrdered) 1840 EmitIgnoredExpr(LoopArgs.Init); 1841 1842 // Create a block for the increment. 1843 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 1844 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1845 1846 // Generate !llvm.loop.parallel metadata for loads and stores for loops 1847 // with dynamic/guided scheduling and without ordered clause. 1848 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 1849 LoopStack.setParallel(!IsMonotonic); 1850 else 1851 EmitOMPSimdInit(S, IsMonotonic); 1852 1853 SourceLocation Loc = S.getBeginLoc(); 1854 1855 // when 'distribute' is not combined with a 'for': 1856 // while (idx <= UB) { BODY; ++idx; } 1857 // when 'distribute' is combined with a 'for' 1858 // (e.g. 'distribute parallel for') 1859 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 1860 EmitOMPInnerLoop( 1861 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 1862 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 1863 CodeGenLoop(CGF, S, LoopExit); 1864 }, 1865 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 1866 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 1867 }); 1868 1869 EmitBlock(Continue.getBlock()); 1870 BreakContinueStack.pop_back(); 1871 if (!DynamicOrOrdered) { 1872 // Emit "LB = LB + Stride", "UB = UB + Stride". 1873 EmitIgnoredExpr(LoopArgs.NextLB); 1874 EmitIgnoredExpr(LoopArgs.NextUB); 1875 } 1876 1877 EmitBranch(CondBlock); 1878 LoopStack.pop(); 1879 // Emit the fall-through block. 1880 EmitBlock(LoopExit.getBlock()); 1881 1882 // Tell the runtime we are done. 1883 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 1884 if (!DynamicOrOrdered) 1885 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 1886 S.getDirectiveKind()); 1887 }; 1888 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 1889 } 1890 1891 void CodeGenFunction::EmitOMPForOuterLoop( 1892 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 1893 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 1894 const OMPLoopArguments &LoopArgs, 1895 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 1896 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 1897 1898 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 1899 const bool DynamicOrOrdered = 1900 Ordered || RT.isDynamic(ScheduleKind.Schedule); 1901 1902 assert((Ordered || 1903 !RT.isStaticNonchunked(ScheduleKind.Schedule, 1904 LoopArgs.Chunk != nullptr)) && 1905 "static non-chunked schedule does not need outer loop"); 1906 1907 // Emit outer loop. 1908 // 1909 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1910 // When schedule(dynamic,chunk_size) is specified, the iterations are 1911 // distributed to threads in the team in chunks as the threads request them. 1912 // Each thread executes a chunk of iterations, then requests another chunk, 1913 // until no chunks remain to be distributed. Each chunk contains chunk_size 1914 // iterations, except for the last chunk to be distributed, which may have 1915 // fewer iterations. When no chunk_size is specified, it defaults to 1. 1916 // 1917 // When schedule(guided,chunk_size) is specified, the iterations are assigned 1918 // to threads in the team in chunks as the executing threads request them. 1919 // Each thread executes a chunk of iterations, then requests another chunk, 1920 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 1921 // each chunk is proportional to the number of unassigned iterations divided 1922 // by the number of threads in the team, decreasing to 1. For a chunk_size 1923 // with value k (greater than 1), the size of each chunk is determined in the 1924 // same way, with the restriction that the chunks do not contain fewer than k 1925 // iterations (except for the last chunk to be assigned, which may have fewer 1926 // than k iterations). 1927 // 1928 // When schedule(auto) is specified, the decision regarding scheduling is 1929 // delegated to the compiler and/or runtime system. The programmer gives the 1930 // implementation the freedom to choose any possible mapping of iterations to 1931 // threads in the team. 1932 // 1933 // When schedule(runtime) is specified, the decision regarding scheduling is 1934 // deferred until run time, and the schedule and chunk size are taken from the 1935 // run-sched-var ICV. If the ICV is set to auto, the schedule is 1936 // implementation defined 1937 // 1938 // while(__kmpc_dispatch_next(&LB, &UB)) { 1939 // idx = LB; 1940 // while (idx <= UB) { BODY; ++idx; 1941 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 1942 // } // inner loop 1943 // } 1944 // 1945 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1946 // When schedule(static, chunk_size) is specified, iterations are divided into 1947 // chunks of size chunk_size, and the chunks are assigned to the threads in 1948 // the team in a round-robin fashion in the order of the thread number. 1949 // 1950 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 1951 // while (idx <= UB) { BODY; ++idx; } // inner loop 1952 // LB = LB + ST; 1953 // UB = UB + ST; 1954 // } 1955 // 1956 1957 const Expr *IVExpr = S.getIterationVariable(); 1958 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1959 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1960 1961 if (DynamicOrOrdered) { 1962 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 1963 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 1964 llvm::Value *LBVal = DispatchBounds.first; 1965 llvm::Value *UBVal = DispatchBounds.second; 1966 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 1967 LoopArgs.Chunk}; 1968 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 1969 IVSigned, Ordered, DipatchRTInputValues); 1970 } else { 1971 CGOpenMPRuntime::StaticRTInput StaticInit( 1972 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 1973 LoopArgs.ST, LoopArgs.Chunk); 1974 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 1975 ScheduleKind, StaticInit); 1976 } 1977 1978 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 1979 const unsigned IVSize, 1980 const bool IVSigned) { 1981 if (Ordered) { 1982 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 1983 IVSigned); 1984 } 1985 }; 1986 1987 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 1988 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 1989 OuterLoopArgs.IncExpr = S.getInc(); 1990 OuterLoopArgs.Init = S.getInit(); 1991 OuterLoopArgs.Cond = S.getCond(); 1992 OuterLoopArgs.NextLB = S.getNextLowerBound(); 1993 OuterLoopArgs.NextUB = S.getNextUpperBound(); 1994 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 1995 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 1996 } 1997 1998 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 1999 const unsigned IVSize, const bool IVSigned) {} 2000 2001 void CodeGenFunction::EmitOMPDistributeOuterLoop( 2002 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 2003 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 2004 const CodeGenLoopTy &CodeGenLoopContent) { 2005 2006 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2007 2008 // Emit outer loop. 2009 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 2010 // dynamic 2011 // 2012 2013 const Expr *IVExpr = S.getIterationVariable(); 2014 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2015 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2016 2017 CGOpenMPRuntime::StaticRTInput StaticInit( 2018 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 2019 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 2020 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 2021 2022 // for combined 'distribute' and 'for' the increment expression of distribute 2023 // is stored in DistInc. For 'distribute' alone, it is in Inc. 2024 Expr *IncExpr; 2025 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 2026 IncExpr = S.getDistInc(); 2027 else 2028 IncExpr = S.getInc(); 2029 2030 // this routine is shared by 'omp distribute parallel for' and 2031 // 'omp distribute': select the right EUB expression depending on the 2032 // directive 2033 OMPLoopArguments OuterLoopArgs; 2034 OuterLoopArgs.LB = LoopArgs.LB; 2035 OuterLoopArgs.UB = LoopArgs.UB; 2036 OuterLoopArgs.ST = LoopArgs.ST; 2037 OuterLoopArgs.IL = LoopArgs.IL; 2038 OuterLoopArgs.Chunk = LoopArgs.Chunk; 2039 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2040 ? S.getCombinedEnsureUpperBound() 2041 : S.getEnsureUpperBound(); 2042 OuterLoopArgs.IncExpr = IncExpr; 2043 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2044 ? S.getCombinedInit() 2045 : S.getInit(); 2046 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2047 ? S.getCombinedCond() 2048 : S.getCond(); 2049 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2050 ? S.getCombinedNextLowerBound() 2051 : S.getNextLowerBound(); 2052 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2053 ? S.getCombinedNextUpperBound() 2054 : S.getNextUpperBound(); 2055 2056 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 2057 LoopScope, OuterLoopArgs, CodeGenLoopContent, 2058 emitEmptyOrdered); 2059 } 2060 2061 static std::pair<LValue, LValue> 2062 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 2063 const OMPExecutableDirective &S) { 2064 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2065 LValue LB = 2066 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2067 LValue UB = 2068 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2069 2070 // When composing 'distribute' with 'for' (e.g. as in 'distribute 2071 // parallel for') we need to use the 'distribute' 2072 // chunk lower and upper bounds rather than the whole loop iteration 2073 // space. These are parameters to the outlined function for 'parallel' 2074 // and we copy the bounds of the previous schedule into the 2075 // the current ones. 2076 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 2077 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 2078 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 2079 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 2080 PrevLBVal = CGF.EmitScalarConversion( 2081 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 2082 LS.getIterationVariable()->getType(), 2083 LS.getPrevLowerBoundVariable()->getExprLoc()); 2084 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 2085 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 2086 PrevUBVal = CGF.EmitScalarConversion( 2087 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 2088 LS.getIterationVariable()->getType(), 2089 LS.getPrevUpperBoundVariable()->getExprLoc()); 2090 2091 CGF.EmitStoreOfScalar(PrevLBVal, LB); 2092 CGF.EmitStoreOfScalar(PrevUBVal, UB); 2093 2094 return {LB, UB}; 2095 } 2096 2097 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 2098 /// we need to use the LB and UB expressions generated by the worksharing 2099 /// code generation support, whereas in non combined situations we would 2100 /// just emit 0 and the LastIteration expression 2101 /// This function is necessary due to the difference of the LB and UB 2102 /// types for the RT emission routines for 'for_static_init' and 2103 /// 'for_dispatch_init' 2104 static std::pair<llvm::Value *, llvm::Value *> 2105 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 2106 const OMPExecutableDirective &S, 2107 Address LB, Address UB) { 2108 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2109 const Expr *IVExpr = LS.getIterationVariable(); 2110 // when implementing a dynamic schedule for a 'for' combined with a 2111 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 2112 // is not normalized as each team only executes its own assigned 2113 // distribute chunk 2114 QualType IteratorTy = IVExpr->getType(); 2115 llvm::Value *LBVal = 2116 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2117 llvm::Value *UBVal = 2118 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2119 return {LBVal, UBVal}; 2120 } 2121 2122 static void emitDistributeParallelForDistributeInnerBoundParams( 2123 CodeGenFunction &CGF, const OMPExecutableDirective &S, 2124 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 2125 const auto &Dir = cast<OMPLoopDirective>(S); 2126 LValue LB = 2127 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 2128 llvm::Value *LBCast = CGF.Builder.CreateIntCast( 2129 CGF.Builder.CreateLoad(LB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2130 CapturedVars.push_back(LBCast); 2131 LValue UB = 2132 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 2133 2134 llvm::Value *UBCast = CGF.Builder.CreateIntCast( 2135 CGF.Builder.CreateLoad(UB.getAddress()), CGF.SizeTy, /*isSigned=*/false); 2136 CapturedVars.push_back(UBCast); 2137 } 2138 2139 static void 2140 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 2141 const OMPLoopDirective &S, 2142 CodeGenFunction::JumpDest LoopExit) { 2143 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 2144 PrePostActionTy &Action) { 2145 Action.Enter(CGF); 2146 bool HasCancel = false; 2147 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2148 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 2149 HasCancel = D->hasCancel(); 2150 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 2151 HasCancel = D->hasCancel(); 2152 else if (const auto *D = 2153 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 2154 HasCancel = D->hasCancel(); 2155 } 2156 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 2157 HasCancel); 2158 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 2159 emitDistributeParallelForInnerBounds, 2160 emitDistributeParallelForDispatchBounds); 2161 }; 2162 2163 emitCommonOMPParallelDirective( 2164 CGF, S, 2165 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 2166 CGInlinedWorksharingLoop, 2167 emitDistributeParallelForDistributeInnerBoundParams); 2168 } 2169 2170 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 2171 const OMPDistributeParallelForDirective &S) { 2172 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2173 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2174 S.getDistInc()); 2175 }; 2176 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2177 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2178 } 2179 2180 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 2181 const OMPDistributeParallelForSimdDirective &S) { 2182 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2183 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 2184 S.getDistInc()); 2185 }; 2186 OMPLexicalScope Scope(*this, S, OMPD_parallel); 2187 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 2188 } 2189 2190 void CodeGenFunction::EmitOMPDistributeSimdDirective( 2191 const OMPDistributeSimdDirective &S) { 2192 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2193 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 2194 }; 2195 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2196 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2197 } 2198 2199 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 2200 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 2201 // Emit SPMD target parallel for region as a standalone region. 2202 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2203 emitOMPSimdRegion(CGF, S, Action); 2204 }; 2205 llvm::Function *Fn; 2206 llvm::Constant *Addr; 2207 // Emit target region as a standalone region. 2208 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 2209 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 2210 assert(Fn && Addr && "Target device function emission failed."); 2211 } 2212 2213 void CodeGenFunction::EmitOMPTargetSimdDirective( 2214 const OMPTargetSimdDirective &S) { 2215 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2216 emitOMPSimdRegion(CGF, S, Action); 2217 }; 2218 emitCommonOMPTargetDirective(*this, S, CodeGen); 2219 } 2220 2221 namespace { 2222 struct ScheduleKindModifiersTy { 2223 OpenMPScheduleClauseKind Kind; 2224 OpenMPScheduleClauseModifier M1; 2225 OpenMPScheduleClauseModifier M2; 2226 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 2227 OpenMPScheduleClauseModifier M1, 2228 OpenMPScheduleClauseModifier M2) 2229 : Kind(Kind), M1(M1), M2(M2) {} 2230 }; 2231 } // namespace 2232 2233 bool CodeGenFunction::EmitOMPWorksharingLoop( 2234 const OMPLoopDirective &S, Expr *EUB, 2235 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2236 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2237 // Emit the loop iteration variable. 2238 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 2239 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 2240 EmitVarDecl(*IVDecl); 2241 2242 // Emit the iterations count variable. 2243 // If it is not a variable, Sema decided to calculate iterations count on each 2244 // iteration (e.g., it is foldable into a constant). 2245 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2246 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2247 // Emit calculation of the iterations count. 2248 EmitIgnoredExpr(S.getCalcLastIteration()); 2249 } 2250 2251 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2252 2253 bool HasLastprivateClause; 2254 // Check pre-condition. 2255 { 2256 OMPLoopScope PreInitScope(*this, S); 2257 // Skip the entire loop if we don't meet the precondition. 2258 // If the condition constant folds and can be elided, avoid emitting the 2259 // whole loop. 2260 bool CondConstant; 2261 llvm::BasicBlock *ContBlock = nullptr; 2262 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2263 if (!CondConstant) 2264 return false; 2265 } else { 2266 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 2267 ContBlock = createBasicBlock("omp.precond.end"); 2268 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 2269 getProfileCount(&S)); 2270 EmitBlock(ThenBlock); 2271 incrementProfileCounter(&S); 2272 } 2273 2274 RunCleanupsScope DoacrossCleanupScope(*this); 2275 bool Ordered = false; 2276 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 2277 if (OrderedClause->getNumForLoops()) 2278 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 2279 else 2280 Ordered = true; 2281 } 2282 2283 llvm::DenseSet<const Expr *> EmittedFinals; 2284 emitAlignedClause(*this, S); 2285 bool HasLinears = EmitOMPLinearClauseInit(S); 2286 // Emit helper vars inits. 2287 2288 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 2289 LValue LB = Bounds.first; 2290 LValue UB = Bounds.second; 2291 LValue ST = 2292 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 2293 LValue IL = 2294 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 2295 2296 // Emit 'then' code. 2297 { 2298 OMPPrivateScope LoopScope(*this); 2299 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 2300 // Emit implicit barrier to synchronize threads and avoid data races on 2301 // initialization of firstprivate variables and post-update of 2302 // lastprivate variables. 2303 CGM.getOpenMPRuntime().emitBarrierCall( 2304 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2305 /*ForceSimpleCall=*/true); 2306 } 2307 EmitOMPPrivateClause(S, LoopScope); 2308 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 2309 EmitOMPReductionClauseInit(S, LoopScope); 2310 EmitOMPPrivateLoopCounters(S, LoopScope); 2311 EmitOMPLinearClause(S, LoopScope); 2312 (void)LoopScope.Privatize(); 2313 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2314 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 2315 2316 // Detect the loop schedule kind and chunk. 2317 const Expr *ChunkExpr = nullptr; 2318 OpenMPScheduleTy ScheduleKind; 2319 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 2320 ScheduleKind.Schedule = C->getScheduleKind(); 2321 ScheduleKind.M1 = C->getFirstScheduleModifier(); 2322 ScheduleKind.M2 = C->getSecondScheduleModifier(); 2323 ChunkExpr = C->getChunkSize(); 2324 } else { 2325 // Default behaviour for schedule clause. 2326 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 2327 *this, S, ScheduleKind.Schedule, ChunkExpr); 2328 } 2329 bool HasChunkSizeOne = false; 2330 llvm::Value *Chunk = nullptr; 2331 if (ChunkExpr) { 2332 Chunk = EmitScalarExpr(ChunkExpr); 2333 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 2334 S.getIterationVariable()->getType(), 2335 S.getBeginLoc()); 2336 Expr::EvalResult Result; 2337 if (ChunkExpr->EvaluateAsInt(Result, getContext())) { 2338 llvm::APSInt EvaluatedChunk = Result.Val.getInt(); 2339 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 2340 } 2341 } 2342 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2343 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2344 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 2345 // If the static schedule kind is specified or if the ordered clause is 2346 // specified, and if no monotonic modifier is specified, the effect will 2347 // be as if the monotonic modifier was specified. 2348 bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule, 2349 /* Chunked */ Chunk != nullptr) && HasChunkSizeOne && 2350 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 2351 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 2352 /* Chunked */ Chunk != nullptr) || 2353 StaticChunkedOne) && 2354 !Ordered) { 2355 if (isOpenMPSimdDirective(S.getDirectiveKind())) 2356 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 2357 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2358 // When no chunk_size is specified, the iteration space is divided into 2359 // chunks that are approximately equal in size, and at most one chunk is 2360 // distributed to each thread. Note that the size of the chunks is 2361 // unspecified in this case. 2362 CGOpenMPRuntime::StaticRTInput StaticInit( 2363 IVSize, IVSigned, Ordered, IL.getAddress(), LB.getAddress(), 2364 UB.getAddress(), ST.getAddress(), 2365 StaticChunkedOne ? Chunk : nullptr); 2366 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2367 ScheduleKind, StaticInit); 2368 JumpDest LoopExit = 2369 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 2370 // UB = min(UB, GlobalUB); 2371 if (!StaticChunkedOne) 2372 EmitIgnoredExpr(S.getEnsureUpperBound()); 2373 // IV = LB; 2374 EmitIgnoredExpr(S.getInit()); 2375 // For unchunked static schedule generate: 2376 // 2377 // while (idx <= UB) { 2378 // BODY; 2379 // ++idx; 2380 // } 2381 // 2382 // For static schedule with chunk one: 2383 // 2384 // while (IV <= PrevUB) { 2385 // BODY; 2386 // IV += ST; 2387 // } 2388 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), 2389 StaticChunkedOne ? S.getCombinedParForInDistCond() : S.getCond(), 2390 StaticChunkedOne ? S.getDistInc() : S.getInc(), 2391 [&S, LoopExit](CodeGenFunction &CGF) { 2392 CGF.EmitOMPLoopBody(S, LoopExit); 2393 CGF.EmitStopPoint(&S); 2394 }, 2395 [](CodeGenFunction &) {}); 2396 EmitBlock(LoopExit.getBlock()); 2397 // Tell the runtime we are done. 2398 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2399 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2400 S.getDirectiveKind()); 2401 }; 2402 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2403 } else { 2404 const bool IsMonotonic = 2405 Ordered || ScheduleKind.Schedule == OMPC_SCHEDULE_static || 2406 ScheduleKind.Schedule == OMPC_SCHEDULE_unknown || 2407 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 2408 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 2409 // Emit the outer loop, which requests its work chunk [LB..UB] from 2410 // runtime and runs the inner loop to process it. 2411 const OMPLoopArguments LoopArguments(LB.getAddress(), UB.getAddress(), 2412 ST.getAddress(), IL.getAddress(), 2413 Chunk, EUB); 2414 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 2415 LoopArguments, CGDispatchBounds); 2416 } 2417 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2418 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 2419 return CGF.Builder.CreateIsNotNull( 2420 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2421 }); 2422 } 2423 EmitOMPReductionClauseFinal( 2424 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 2425 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 2426 : /*Parallel only*/ OMPD_parallel); 2427 // Emit post-update of the reduction variables if IsLastIter != 0. 2428 emitPostUpdateForReductionClause( 2429 *this, S, [IL, &S](CodeGenFunction &CGF) { 2430 return CGF.Builder.CreateIsNotNull( 2431 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2432 }); 2433 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2434 if (HasLastprivateClause) 2435 EmitOMPLastprivateClauseFinal( 2436 S, isOpenMPSimdDirective(S.getDirectiveKind()), 2437 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 2438 } 2439 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 2440 return CGF.Builder.CreateIsNotNull( 2441 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2442 }); 2443 DoacrossCleanupScope.ForceCleanup(); 2444 // We're now done with the loop, so jump to the continuation block. 2445 if (ContBlock) { 2446 EmitBranch(ContBlock); 2447 EmitBlock(ContBlock, /*IsFinished=*/true); 2448 } 2449 } 2450 return HasLastprivateClause; 2451 } 2452 2453 /// The following two functions generate expressions for the loop lower 2454 /// and upper bounds in case of static and dynamic (dispatch) schedule 2455 /// of the associated 'for' or 'distribute' loop. 2456 static std::pair<LValue, LValue> 2457 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 2458 const auto &LS = cast<OMPLoopDirective>(S); 2459 LValue LB = 2460 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2461 LValue UB = 2462 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2463 return {LB, UB}; 2464 } 2465 2466 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 2467 /// consider the lower and upper bound expressions generated by the 2468 /// worksharing loop support, but we use 0 and the iteration space size as 2469 /// constants 2470 static std::pair<llvm::Value *, llvm::Value *> 2471 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 2472 Address LB, Address UB) { 2473 const auto &LS = cast<OMPLoopDirective>(S); 2474 const Expr *IVExpr = LS.getIterationVariable(); 2475 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 2476 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 2477 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 2478 return {LBVal, UBVal}; 2479 } 2480 2481 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 2482 bool HasLastprivates = false; 2483 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2484 PrePostActionTy &) { 2485 OMPCancelStackRAII CancelRegion(CGF, OMPD_for, S.hasCancel()); 2486 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2487 emitForLoopBounds, 2488 emitDispatchForLoopBounds); 2489 }; 2490 { 2491 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2492 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 2493 S.hasCancel()); 2494 } 2495 2496 // Emit an implicit barrier at the end. 2497 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2498 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2499 } 2500 2501 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 2502 bool HasLastprivates = false; 2503 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 2504 PrePostActionTy &) { 2505 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 2506 emitForLoopBounds, 2507 emitDispatchForLoopBounds); 2508 }; 2509 { 2510 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2511 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2512 } 2513 2514 // Emit an implicit barrier at the end. 2515 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 2516 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 2517 } 2518 2519 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 2520 const Twine &Name, 2521 llvm::Value *Init = nullptr) { 2522 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 2523 if (Init) 2524 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 2525 return LVal; 2526 } 2527 2528 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 2529 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 2530 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 2531 bool HasLastprivates = false; 2532 auto &&CodeGen = [&S, CapturedStmt, CS, 2533 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 2534 ASTContext &C = CGF.getContext(); 2535 QualType KmpInt32Ty = 2536 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 2537 // Emit helper vars inits. 2538 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 2539 CGF.Builder.getInt32(0)); 2540 llvm::ConstantInt *GlobalUBVal = CS != nullptr 2541 ? CGF.Builder.getInt32(CS->size() - 1) 2542 : CGF.Builder.getInt32(0); 2543 LValue UB = 2544 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 2545 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 2546 CGF.Builder.getInt32(1)); 2547 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 2548 CGF.Builder.getInt32(0)); 2549 // Loop counter. 2550 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 2551 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2552 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 2553 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 2554 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 2555 // Generate condition for loop. 2556 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 2557 OK_Ordinary, S.getBeginLoc(), FPOptions()); 2558 // Increment for loop counter. 2559 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary, 2560 S.getBeginLoc(), true); 2561 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 2562 // Iterate through all sections and emit a switch construct: 2563 // switch (IV) { 2564 // case 0: 2565 // <SectionStmt[0]>; 2566 // break; 2567 // ... 2568 // case <NumSection> - 1: 2569 // <SectionStmt[<NumSection> - 1]>; 2570 // break; 2571 // } 2572 // .omp.sections.exit: 2573 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 2574 llvm::SwitchInst *SwitchStmt = 2575 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 2576 ExitBB, CS == nullptr ? 1 : CS->size()); 2577 if (CS) { 2578 unsigned CaseNumber = 0; 2579 for (const Stmt *SubStmt : CS->children()) { 2580 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2581 CGF.EmitBlock(CaseBB); 2582 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 2583 CGF.EmitStmt(SubStmt); 2584 CGF.EmitBranch(ExitBB); 2585 ++CaseNumber; 2586 } 2587 } else { 2588 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 2589 CGF.EmitBlock(CaseBB); 2590 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 2591 CGF.EmitStmt(CapturedStmt); 2592 CGF.EmitBranch(ExitBB); 2593 } 2594 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2595 }; 2596 2597 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2598 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 2599 // Emit implicit barrier to synchronize threads and avoid data races on 2600 // initialization of firstprivate variables and post-update of lastprivate 2601 // variables. 2602 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 2603 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 2604 /*ForceSimpleCall=*/true); 2605 } 2606 CGF.EmitOMPPrivateClause(S, LoopScope); 2607 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2608 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2609 (void)LoopScope.Privatize(); 2610 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2611 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2612 2613 // Emit static non-chunked loop. 2614 OpenMPScheduleTy ScheduleKind; 2615 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 2616 CGOpenMPRuntime::StaticRTInput StaticInit( 2617 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), 2618 LB.getAddress(), UB.getAddress(), ST.getAddress()); 2619 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 2620 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 2621 // UB = min(UB, GlobalUB); 2622 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 2623 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 2624 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 2625 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 2626 // IV = LB; 2627 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 2628 // while (idx <= UB) { BODY; ++idx; } 2629 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 2630 [](CodeGenFunction &) {}); 2631 // Tell the runtime we are done. 2632 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2633 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2634 S.getDirectiveKind()); 2635 }; 2636 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 2637 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 2638 // Emit post-update of the reduction variables if IsLastIter != 0. 2639 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 2640 return CGF.Builder.CreateIsNotNull( 2641 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 2642 }); 2643 2644 // Emit final copy of the lastprivate variables if IsLastIter != 0. 2645 if (HasLastprivates) 2646 CGF.EmitOMPLastprivateClauseFinal( 2647 S, /*NoFinals=*/false, 2648 CGF.Builder.CreateIsNotNull( 2649 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 2650 }; 2651 2652 bool HasCancel = false; 2653 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 2654 HasCancel = OSD->hasCancel(); 2655 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 2656 HasCancel = OPSD->hasCancel(); 2657 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 2658 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 2659 HasCancel); 2660 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 2661 // clause. Otherwise the barrier will be generated by the codegen for the 2662 // directive. 2663 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 2664 // Emit implicit barrier to synchronize threads and avoid data races on 2665 // initialization of firstprivate variables. 2666 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 2667 OMPD_unknown); 2668 } 2669 } 2670 2671 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 2672 { 2673 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2674 EmitSections(S); 2675 } 2676 // Emit an implicit barrier at the end. 2677 if (!S.getSingleClause<OMPNowaitClause>()) { 2678 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 2679 OMPD_sections); 2680 } 2681 } 2682 2683 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 2684 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2685 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2686 }; 2687 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2688 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 2689 S.hasCancel()); 2690 } 2691 2692 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 2693 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 2694 llvm::SmallVector<const Expr *, 8> DestExprs; 2695 llvm::SmallVector<const Expr *, 8> SrcExprs; 2696 llvm::SmallVector<const Expr *, 8> AssignmentOps; 2697 // Check if there are any 'copyprivate' clauses associated with this 2698 // 'single' construct. 2699 // Build a list of copyprivate variables along with helper expressions 2700 // (<source>, <destination>, <destination>=<source> expressions) 2701 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 2702 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 2703 DestExprs.append(C->destination_exprs().begin(), 2704 C->destination_exprs().end()); 2705 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 2706 AssignmentOps.append(C->assignment_ops().begin(), 2707 C->assignment_ops().end()); 2708 } 2709 // Emit code for 'single' region along with 'copyprivate' clauses 2710 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2711 Action.Enter(CGF); 2712 OMPPrivateScope SingleScope(CGF); 2713 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 2714 CGF.EmitOMPPrivateClause(S, SingleScope); 2715 (void)SingleScope.Privatize(); 2716 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2717 }; 2718 { 2719 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2720 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 2721 CopyprivateVars, DestExprs, 2722 SrcExprs, AssignmentOps); 2723 } 2724 // Emit an implicit barrier at the end (to avoid data race on firstprivate 2725 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 2726 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 2727 CGM.getOpenMPRuntime().emitBarrierCall( 2728 *this, S.getBeginLoc(), 2729 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 2730 } 2731 } 2732 2733 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 2734 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2735 Action.Enter(CGF); 2736 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2737 }; 2738 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2739 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 2740 } 2741 2742 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 2743 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2744 Action.Enter(CGF); 2745 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 2746 }; 2747 const Expr *Hint = nullptr; 2748 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 2749 Hint = HintClause->getHint(); 2750 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2751 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 2752 S.getDirectiveName().getAsString(), 2753 CodeGen, S.getBeginLoc(), Hint); 2754 } 2755 2756 void CodeGenFunction::EmitOMPParallelForDirective( 2757 const OMPParallelForDirective &S) { 2758 // Emit directive as a combined directive that consists of two implicit 2759 // directives: 'parallel' with 'for' directive. 2760 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2761 Action.Enter(CGF); 2762 OMPCancelStackRAII CancelRegion(CGF, OMPD_parallel_for, S.hasCancel()); 2763 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2764 emitDispatchForLoopBounds); 2765 }; 2766 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 2767 emitEmptyBoundParameters); 2768 } 2769 2770 void CodeGenFunction::EmitOMPParallelForSimdDirective( 2771 const OMPParallelForSimdDirective &S) { 2772 // Emit directive as a combined directive that consists of two implicit 2773 // directives: 'parallel' with 'for' directive. 2774 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2775 Action.Enter(CGF); 2776 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 2777 emitDispatchForLoopBounds); 2778 }; 2779 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen, 2780 emitEmptyBoundParameters); 2781 } 2782 2783 void CodeGenFunction::EmitOMPParallelSectionsDirective( 2784 const OMPParallelSectionsDirective &S) { 2785 // Emit directive as a combined directive that consists of two implicit 2786 // directives: 'parallel' with 'sections' directive. 2787 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2788 Action.Enter(CGF); 2789 CGF.EmitSections(S); 2790 }; 2791 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 2792 emitEmptyBoundParameters); 2793 } 2794 2795 void CodeGenFunction::EmitOMPTaskBasedDirective( 2796 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 2797 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 2798 OMPTaskDataTy &Data) { 2799 // Emit outlined function for task construct. 2800 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 2801 auto I = CS->getCapturedDecl()->param_begin(); 2802 auto PartId = std::next(I); 2803 auto TaskT = std::next(I, 4); 2804 // Check if the task is final 2805 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 2806 // If the condition constant folds and can be elided, try to avoid emitting 2807 // the condition and the dead arm of the if/else. 2808 const Expr *Cond = Clause->getCondition(); 2809 bool CondConstant; 2810 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 2811 Data.Final.setInt(CondConstant); 2812 else 2813 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 2814 } else { 2815 // By default the task is not final. 2816 Data.Final.setInt(/*IntVal=*/false); 2817 } 2818 // Check if the task has 'priority' clause. 2819 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 2820 const Expr *Prio = Clause->getPriority(); 2821 Data.Priority.setInt(/*IntVal=*/true); 2822 Data.Priority.setPointer(EmitScalarConversion( 2823 EmitScalarExpr(Prio), Prio->getType(), 2824 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 2825 Prio->getExprLoc())); 2826 } 2827 // The first function argument for tasks is a thread id, the second one is a 2828 // part id (0 for tied tasks, >=0 for untied task). 2829 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 2830 // Get list of private variables. 2831 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 2832 auto IRef = C->varlist_begin(); 2833 for (const Expr *IInit : C->private_copies()) { 2834 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2835 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2836 Data.PrivateVars.push_back(*IRef); 2837 Data.PrivateCopies.push_back(IInit); 2838 } 2839 ++IRef; 2840 } 2841 } 2842 EmittedAsPrivate.clear(); 2843 // Get list of firstprivate variables. 2844 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 2845 auto IRef = C->varlist_begin(); 2846 auto IElemInitRef = C->inits().begin(); 2847 for (const Expr *IInit : C->private_copies()) { 2848 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2849 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2850 Data.FirstprivateVars.push_back(*IRef); 2851 Data.FirstprivateCopies.push_back(IInit); 2852 Data.FirstprivateInits.push_back(*IElemInitRef); 2853 } 2854 ++IRef; 2855 ++IElemInitRef; 2856 } 2857 } 2858 // Get list of lastprivate variables (for taskloops). 2859 llvm::DenseMap<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 2860 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 2861 auto IRef = C->varlist_begin(); 2862 auto ID = C->destination_exprs().begin(); 2863 for (const Expr *IInit : C->private_copies()) { 2864 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 2865 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 2866 Data.LastprivateVars.push_back(*IRef); 2867 Data.LastprivateCopies.push_back(IInit); 2868 } 2869 LastprivateDstsOrigs.insert( 2870 {cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 2871 cast<DeclRefExpr>(*IRef)}); 2872 ++IRef; 2873 ++ID; 2874 } 2875 } 2876 SmallVector<const Expr *, 4> LHSs; 2877 SmallVector<const Expr *, 4> RHSs; 2878 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 2879 auto IPriv = C->privates().begin(); 2880 auto IRed = C->reduction_ops().begin(); 2881 auto ILHS = C->lhs_exprs().begin(); 2882 auto IRHS = C->rhs_exprs().begin(); 2883 for (const Expr *Ref : C->varlists()) { 2884 Data.ReductionVars.emplace_back(Ref); 2885 Data.ReductionCopies.emplace_back(*IPriv); 2886 Data.ReductionOps.emplace_back(*IRed); 2887 LHSs.emplace_back(*ILHS); 2888 RHSs.emplace_back(*IRHS); 2889 std::advance(IPriv, 1); 2890 std::advance(IRed, 1); 2891 std::advance(ILHS, 1); 2892 std::advance(IRHS, 1); 2893 } 2894 } 2895 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 2896 *this, S.getBeginLoc(), LHSs, RHSs, Data); 2897 // Build list of dependences. 2898 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 2899 for (const Expr *IRef : C->varlists()) 2900 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 2901 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 2902 CapturedRegion](CodeGenFunction &CGF, 2903 PrePostActionTy &Action) { 2904 // Set proper addresses for generated private copies. 2905 OMPPrivateScope Scope(CGF); 2906 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 2907 !Data.LastprivateVars.empty()) { 2908 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 2909 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 2910 enum { PrivatesParam = 2, CopyFnParam = 3 }; 2911 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 2912 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 2913 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 2914 CS->getCapturedDecl()->getParam(PrivatesParam))); 2915 // Map privates. 2916 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 2917 llvm::SmallVector<llvm::Value *, 16> CallArgs; 2918 CallArgs.push_back(PrivatesPtr); 2919 for (const Expr *E : Data.PrivateVars) { 2920 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2921 Address PrivatePtr = CGF.CreateMemTemp( 2922 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 2923 PrivatePtrs.emplace_back(VD, PrivatePtr); 2924 CallArgs.push_back(PrivatePtr.getPointer()); 2925 } 2926 for (const Expr *E : Data.FirstprivateVars) { 2927 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2928 Address PrivatePtr = 2929 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2930 ".firstpriv.ptr.addr"); 2931 PrivatePtrs.emplace_back(VD, PrivatePtr); 2932 CallArgs.push_back(PrivatePtr.getPointer()); 2933 } 2934 for (const Expr *E : Data.LastprivateVars) { 2935 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2936 Address PrivatePtr = 2937 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 2938 ".lastpriv.ptr.addr"); 2939 PrivatePtrs.emplace_back(VD, PrivatePtr); 2940 CallArgs.push_back(PrivatePtr.getPointer()); 2941 } 2942 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2943 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 2944 for (const auto &Pair : LastprivateDstsOrigs) { 2945 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 2946 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD), 2947 /*RefersToEnclosingVariableOrCapture=*/ 2948 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 2949 Pair.second->getType(), VK_LValue, 2950 Pair.second->getExprLoc()); 2951 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 2952 return CGF.EmitLValue(&DRE).getAddress(); 2953 }); 2954 } 2955 for (const auto &Pair : PrivatePtrs) { 2956 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 2957 CGF.getContext().getDeclAlign(Pair.first)); 2958 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 2959 } 2960 } 2961 if (Data.Reductions) { 2962 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 2963 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionCopies, 2964 Data.ReductionOps); 2965 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 2966 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 2967 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 2968 RedCG.emitSharedLValue(CGF, Cnt); 2969 RedCG.emitAggregateType(CGF, Cnt); 2970 // FIXME: This must removed once the runtime library is fixed. 2971 // Emit required threadprivate variables for 2972 // initializer/combiner/finalizer. 2973 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 2974 RedCG, Cnt); 2975 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 2976 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 2977 Replacement = 2978 Address(CGF.EmitScalarConversion( 2979 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 2980 CGF.getContext().getPointerType( 2981 Data.ReductionCopies[Cnt]->getType()), 2982 Data.ReductionCopies[Cnt]->getExprLoc()), 2983 Replacement.getAlignment()); 2984 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 2985 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 2986 [Replacement]() { return Replacement; }); 2987 } 2988 } 2989 // Privatize all private variables except for in_reduction items. 2990 (void)Scope.Privatize(); 2991 SmallVector<const Expr *, 4> InRedVars; 2992 SmallVector<const Expr *, 4> InRedPrivs; 2993 SmallVector<const Expr *, 4> InRedOps; 2994 SmallVector<const Expr *, 4> TaskgroupDescriptors; 2995 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 2996 auto IPriv = C->privates().begin(); 2997 auto IRed = C->reduction_ops().begin(); 2998 auto ITD = C->taskgroup_descriptors().begin(); 2999 for (const Expr *Ref : C->varlists()) { 3000 InRedVars.emplace_back(Ref); 3001 InRedPrivs.emplace_back(*IPriv); 3002 InRedOps.emplace_back(*IRed); 3003 TaskgroupDescriptors.emplace_back(*ITD); 3004 std::advance(IPriv, 1); 3005 std::advance(IRed, 1); 3006 std::advance(ITD, 1); 3007 } 3008 } 3009 // Privatize in_reduction items here, because taskgroup descriptors must be 3010 // privatized earlier. 3011 OMPPrivateScope InRedScope(CGF); 3012 if (!InRedVars.empty()) { 3013 ReductionCodeGen RedCG(InRedVars, InRedPrivs, InRedOps); 3014 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 3015 RedCG.emitSharedLValue(CGF, Cnt); 3016 RedCG.emitAggregateType(CGF, Cnt); 3017 // The taskgroup descriptor variable is always implicit firstprivate and 3018 // privatized already during processing of the firstprivates. 3019 // FIXME: This must removed once the runtime library is fixed. 3020 // Emit required threadprivate variables for 3021 // initializer/combiner/finalizer. 3022 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 3023 RedCG, Cnt); 3024 llvm::Value *ReductionsPtr = 3025 CGF.EmitLoadOfScalar(CGF.EmitLValue(TaskgroupDescriptors[Cnt]), 3026 TaskgroupDescriptors[Cnt]->getExprLoc()); 3027 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 3028 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 3029 Replacement = Address( 3030 CGF.EmitScalarConversion( 3031 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 3032 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 3033 InRedPrivs[Cnt]->getExprLoc()), 3034 Replacement.getAlignment()); 3035 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 3036 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 3037 [Replacement]() { return Replacement; }); 3038 } 3039 } 3040 (void)InRedScope.Privatize(); 3041 3042 Action.Enter(CGF); 3043 BodyGen(CGF); 3044 }; 3045 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3046 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 3047 Data.NumberOfParts); 3048 OMPLexicalScope Scope(*this, S); 3049 TaskGen(*this, OutlinedFn, Data); 3050 } 3051 3052 static ImplicitParamDecl * 3053 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 3054 QualType Ty, CapturedDecl *CD, 3055 SourceLocation Loc) { 3056 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3057 ImplicitParamDecl::Other); 3058 auto *OrigRef = DeclRefExpr::Create( 3059 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 3060 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3061 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 3062 ImplicitParamDecl::Other); 3063 auto *PrivateRef = DeclRefExpr::Create( 3064 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 3065 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 3066 QualType ElemType = C.getBaseElementType(Ty); 3067 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 3068 ImplicitParamDecl::Other); 3069 auto *InitRef = DeclRefExpr::Create( 3070 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 3071 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 3072 PrivateVD->setInitStyle(VarDecl::CInit); 3073 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 3074 InitRef, /*BasePath=*/nullptr, 3075 VK_RValue)); 3076 Data.FirstprivateVars.emplace_back(OrigRef); 3077 Data.FirstprivateCopies.emplace_back(PrivateRef); 3078 Data.FirstprivateInits.emplace_back(InitRef); 3079 return OrigVD; 3080 } 3081 3082 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 3083 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 3084 OMPTargetDataInfo &InputInfo) { 3085 // Emit outlined function for task construct. 3086 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3087 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3088 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3089 auto I = CS->getCapturedDecl()->param_begin(); 3090 auto PartId = std::next(I); 3091 auto TaskT = std::next(I, 4); 3092 OMPTaskDataTy Data; 3093 // The task is not final. 3094 Data.Final.setInt(/*IntVal=*/false); 3095 // Get list of firstprivate variables. 3096 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 3097 auto IRef = C->varlist_begin(); 3098 auto IElemInitRef = C->inits().begin(); 3099 for (auto *IInit : C->private_copies()) { 3100 Data.FirstprivateVars.push_back(*IRef); 3101 Data.FirstprivateCopies.push_back(IInit); 3102 Data.FirstprivateInits.push_back(*IElemInitRef); 3103 ++IRef; 3104 ++IElemInitRef; 3105 } 3106 } 3107 OMPPrivateScope TargetScope(*this); 3108 VarDecl *BPVD = nullptr; 3109 VarDecl *PVD = nullptr; 3110 VarDecl *SVD = nullptr; 3111 if (InputInfo.NumberOfTargetItems > 0) { 3112 auto *CD = CapturedDecl::Create( 3113 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 3114 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 3115 QualType BaseAndPointersType = getContext().getConstantArrayType( 3116 getContext().VoidPtrTy, ArrSize, ArrayType::Normal, 3117 /*IndexTypeQuals=*/0); 3118 BPVD = createImplicitFirstprivateForType( 3119 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3120 PVD = createImplicitFirstprivateForType( 3121 getContext(), Data, BaseAndPointersType, CD, S.getBeginLoc()); 3122 QualType SizesType = getContext().getConstantArrayType( 3123 getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1), 3124 ArrSize, ArrayType::Normal, 3125 /*IndexTypeQuals=*/0); 3126 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 3127 S.getBeginLoc()); 3128 TargetScope.addPrivate( 3129 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 3130 TargetScope.addPrivate(PVD, 3131 [&InputInfo]() { return InputInfo.PointersArray; }); 3132 TargetScope.addPrivate(SVD, 3133 [&InputInfo]() { return InputInfo.SizesArray; }); 3134 } 3135 (void)TargetScope.Privatize(); 3136 // Build list of dependences. 3137 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) 3138 for (const Expr *IRef : C->varlists()) 3139 Data.Dependences.emplace_back(C->getDependencyKind(), IRef); 3140 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, 3141 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 3142 // Set proper addresses for generated private copies. 3143 OMPPrivateScope Scope(CGF); 3144 if (!Data.FirstprivateVars.empty()) { 3145 llvm::FunctionType *CopyFnTy = llvm::FunctionType::get( 3146 CGF.Builder.getVoidTy(), {CGF.Builder.getInt8PtrTy()}, true); 3147 enum { PrivatesParam = 2, CopyFnParam = 3 }; 3148 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 3149 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 3150 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 3151 CS->getCapturedDecl()->getParam(PrivatesParam))); 3152 // Map privates. 3153 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 3154 llvm::SmallVector<llvm::Value *, 16> CallArgs; 3155 CallArgs.push_back(PrivatesPtr); 3156 for (const Expr *E : Data.FirstprivateVars) { 3157 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3158 Address PrivatePtr = 3159 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 3160 ".firstpriv.ptr.addr"); 3161 PrivatePtrs.emplace_back(VD, PrivatePtr); 3162 CallArgs.push_back(PrivatePtr.getPointer()); 3163 } 3164 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3165 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 3166 for (const auto &Pair : PrivatePtrs) { 3167 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 3168 CGF.getContext().getDeclAlign(Pair.first)); 3169 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 3170 } 3171 } 3172 // Privatize all private variables except for in_reduction items. 3173 (void)Scope.Privatize(); 3174 if (InputInfo.NumberOfTargetItems > 0) { 3175 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 3176 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0); 3177 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 3178 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0); 3179 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 3180 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0); 3181 } 3182 3183 Action.Enter(CGF); 3184 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 3185 BodyGen(CGF); 3186 }; 3187 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 3188 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 3189 Data.NumberOfParts); 3190 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 3191 IntegerLiteral IfCond(getContext(), TrueOrFalse, 3192 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3193 SourceLocation()); 3194 3195 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 3196 SharedsTy, CapturedStruct, &IfCond, Data); 3197 } 3198 3199 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 3200 // Emit outlined function for task construct. 3201 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 3202 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 3203 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 3204 const Expr *IfCond = nullptr; 3205 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 3206 if (C->getNameModifier() == OMPD_unknown || 3207 C->getNameModifier() == OMPD_task) { 3208 IfCond = C->getCondition(); 3209 break; 3210 } 3211 } 3212 3213 OMPTaskDataTy Data; 3214 // Check if we should emit tied or untied task. 3215 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 3216 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 3217 CGF.EmitStmt(CS->getCapturedStmt()); 3218 }; 3219 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 3220 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 3221 const OMPTaskDataTy &Data) { 3222 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 3223 SharedsTy, CapturedStruct, IfCond, 3224 Data); 3225 }; 3226 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 3227 } 3228 3229 void CodeGenFunction::EmitOMPTaskyieldDirective( 3230 const OMPTaskyieldDirective &S) { 3231 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 3232 } 3233 3234 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 3235 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 3236 } 3237 3238 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 3239 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc()); 3240 } 3241 3242 void CodeGenFunction::EmitOMPTaskgroupDirective( 3243 const OMPTaskgroupDirective &S) { 3244 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3245 Action.Enter(CGF); 3246 if (const Expr *E = S.getReductionRef()) { 3247 SmallVector<const Expr *, 4> LHSs; 3248 SmallVector<const Expr *, 4> RHSs; 3249 OMPTaskDataTy Data; 3250 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 3251 auto IPriv = C->privates().begin(); 3252 auto IRed = C->reduction_ops().begin(); 3253 auto ILHS = C->lhs_exprs().begin(); 3254 auto IRHS = C->rhs_exprs().begin(); 3255 for (const Expr *Ref : C->varlists()) { 3256 Data.ReductionVars.emplace_back(Ref); 3257 Data.ReductionCopies.emplace_back(*IPriv); 3258 Data.ReductionOps.emplace_back(*IRed); 3259 LHSs.emplace_back(*ILHS); 3260 RHSs.emplace_back(*IRHS); 3261 std::advance(IPriv, 1); 3262 std::advance(IRed, 1); 3263 std::advance(ILHS, 1); 3264 std::advance(IRHS, 1); 3265 } 3266 } 3267 llvm::Value *ReductionDesc = 3268 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 3269 LHSs, RHSs, Data); 3270 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 3271 CGF.EmitVarDecl(*VD); 3272 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 3273 /*Volatile=*/false, E->getType()); 3274 } 3275 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3276 }; 3277 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3278 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 3279 } 3280 3281 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 3282 CGM.getOpenMPRuntime().emitFlush( 3283 *this, 3284 [&S]() -> ArrayRef<const Expr *> { 3285 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 3286 return llvm::makeArrayRef(FlushClause->varlist_begin(), 3287 FlushClause->varlist_end()); 3288 return llvm::None; 3289 }(), 3290 S.getBeginLoc()); 3291 } 3292 3293 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 3294 const CodeGenLoopTy &CodeGenLoop, 3295 Expr *IncExpr) { 3296 // Emit the loop iteration variable. 3297 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3298 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3299 EmitVarDecl(*IVDecl); 3300 3301 // Emit the iterations count variable. 3302 // If it is not a variable, Sema decided to calculate iterations count on each 3303 // iteration (e.g., it is foldable into a constant). 3304 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3305 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3306 // Emit calculation of the iterations count. 3307 EmitIgnoredExpr(S.getCalcLastIteration()); 3308 } 3309 3310 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 3311 3312 bool HasLastprivateClause = false; 3313 // Check pre-condition. 3314 { 3315 OMPLoopScope PreInitScope(*this, S); 3316 // Skip the entire loop if we don't meet the precondition. 3317 // If the condition constant folds and can be elided, avoid emitting the 3318 // whole loop. 3319 bool CondConstant; 3320 llvm::BasicBlock *ContBlock = nullptr; 3321 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3322 if (!CondConstant) 3323 return; 3324 } else { 3325 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 3326 ContBlock = createBasicBlock("omp.precond.end"); 3327 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3328 getProfileCount(&S)); 3329 EmitBlock(ThenBlock); 3330 incrementProfileCounter(&S); 3331 } 3332 3333 emitAlignedClause(*this, S); 3334 // Emit 'then' code. 3335 { 3336 // Emit helper vars inits. 3337 3338 LValue LB = EmitOMPHelperVar( 3339 *this, cast<DeclRefExpr>( 3340 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3341 ? S.getCombinedLowerBoundVariable() 3342 : S.getLowerBoundVariable()))); 3343 LValue UB = EmitOMPHelperVar( 3344 *this, cast<DeclRefExpr>( 3345 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3346 ? S.getCombinedUpperBoundVariable() 3347 : S.getUpperBoundVariable()))); 3348 LValue ST = 3349 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3350 LValue IL = 3351 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3352 3353 OMPPrivateScope LoopScope(*this); 3354 if (EmitOMPFirstprivateClause(S, LoopScope)) { 3355 // Emit implicit barrier to synchronize threads and avoid data races 3356 // on initialization of firstprivate variables and post-update of 3357 // lastprivate variables. 3358 CGM.getOpenMPRuntime().emitBarrierCall( 3359 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3360 /*ForceSimpleCall=*/true); 3361 } 3362 EmitOMPPrivateClause(S, LoopScope); 3363 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3364 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3365 !isOpenMPTeamsDirective(S.getDirectiveKind())) 3366 EmitOMPReductionClauseInit(S, LoopScope); 3367 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3368 EmitOMPPrivateLoopCounters(S, LoopScope); 3369 (void)LoopScope.Privatize(); 3370 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3371 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 3372 3373 // Detect the distribute schedule kind and chunk. 3374 llvm::Value *Chunk = nullptr; 3375 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 3376 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 3377 ScheduleKind = C->getDistScheduleKind(); 3378 if (const Expr *Ch = C->getChunkSize()) { 3379 Chunk = EmitScalarExpr(Ch); 3380 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 3381 S.getIterationVariable()->getType(), 3382 S.getBeginLoc()); 3383 } 3384 } else { 3385 // Default behaviour for dist_schedule clause. 3386 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 3387 *this, S, ScheduleKind, Chunk); 3388 } 3389 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3390 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3391 3392 // OpenMP [2.10.8, distribute Construct, Description] 3393 // If dist_schedule is specified, kind must be static. If specified, 3394 // iterations are divided into chunks of size chunk_size, chunks are 3395 // assigned to the teams of the league in a round-robin fashion in the 3396 // order of the team number. When no chunk_size is specified, the 3397 // iteration space is divided into chunks that are approximately equal 3398 // in size, and at most one chunk is distributed to each team of the 3399 // league. The size of the chunks is unspecified in this case. 3400 bool StaticChunked = RT.isStaticChunked( 3401 ScheduleKind, /* Chunked */ Chunk != nullptr) && 3402 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 3403 if (RT.isStaticNonchunked(ScheduleKind, 3404 /* Chunked */ Chunk != nullptr) || 3405 StaticChunked) { 3406 if (isOpenMPSimdDirective(S.getDirectiveKind())) 3407 EmitOMPSimdInit(S, /*IsMonotonic=*/true); 3408 CGOpenMPRuntime::StaticRTInput StaticInit( 3409 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(), 3410 LB.getAddress(), UB.getAddress(), ST.getAddress(), 3411 StaticChunked ? Chunk : nullptr); 3412 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 3413 StaticInit); 3414 JumpDest LoopExit = 3415 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3416 // UB = min(UB, GlobalUB); 3417 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3418 ? S.getCombinedEnsureUpperBound() 3419 : S.getEnsureUpperBound()); 3420 // IV = LB; 3421 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3422 ? S.getCombinedInit() 3423 : S.getInit()); 3424 3425 const Expr *Cond = 3426 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3427 ? S.getCombinedCond() 3428 : S.getCond(); 3429 3430 if (StaticChunked) 3431 Cond = S.getCombinedDistCond(); 3432 3433 // For static unchunked schedules generate: 3434 // 3435 // 1. For distribute alone, codegen 3436 // while (idx <= UB) { 3437 // BODY; 3438 // ++idx; 3439 // } 3440 // 3441 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 3442 // while (idx <= UB) { 3443 // <CodeGen rest of pragma>(LB, UB); 3444 // idx += ST; 3445 // } 3446 // 3447 // For static chunk one schedule generate: 3448 // 3449 // while (IV <= GlobalUB) { 3450 // <CodeGen rest of pragma>(LB, UB); 3451 // LB += ST; 3452 // UB += ST; 3453 // UB = min(UB, GlobalUB); 3454 // IV = LB; 3455 // } 3456 // 3457 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), Cond, IncExpr, 3458 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 3459 CodeGenLoop(CGF, S, LoopExit); 3460 }, 3461 [&S, StaticChunked](CodeGenFunction &CGF) { 3462 if (StaticChunked) { 3463 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 3464 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 3465 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 3466 CGF.EmitIgnoredExpr(S.getCombinedInit()); 3467 } 3468 }); 3469 EmitBlock(LoopExit.getBlock()); 3470 // Tell the runtime we are done. 3471 RT.emitForStaticFinish(*this, S.getBeginLoc(), S.getDirectiveKind()); 3472 } else { 3473 // Emit the outer loop, which requests its work chunk [LB..UB] from 3474 // runtime and runs the inner loop to process it. 3475 const OMPLoopArguments LoopArguments = { 3476 LB.getAddress(), UB.getAddress(), ST.getAddress(), IL.getAddress(), 3477 Chunk}; 3478 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 3479 CodeGenLoop); 3480 } 3481 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3482 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3483 return CGF.Builder.CreateIsNotNull( 3484 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3485 }); 3486 } 3487 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 3488 !isOpenMPParallelDirective(S.getDirectiveKind()) && 3489 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 3490 EmitOMPReductionClauseFinal(S, OMPD_simd); 3491 // Emit post-update of the reduction variables if IsLastIter != 0. 3492 emitPostUpdateForReductionClause( 3493 *this, S, [IL, &S](CodeGenFunction &CGF) { 3494 return CGF.Builder.CreateIsNotNull( 3495 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3496 }); 3497 } 3498 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3499 if (HasLastprivateClause) { 3500 EmitOMPLastprivateClauseFinal( 3501 S, /*NoFinals=*/false, 3502 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3503 } 3504 } 3505 3506 // We're now done with the loop, so jump to the continuation block. 3507 if (ContBlock) { 3508 EmitBranch(ContBlock); 3509 EmitBlock(ContBlock, true); 3510 } 3511 } 3512 } 3513 3514 void CodeGenFunction::EmitOMPDistributeDirective( 3515 const OMPDistributeDirective &S) { 3516 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3517 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3518 }; 3519 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3520 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3521 } 3522 3523 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 3524 const CapturedStmt *S) { 3525 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3526 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 3527 CGF.CapturedStmtInfo = &CapStmtInfo; 3528 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S); 3529 Fn->setDoesNotRecurse(); 3530 return Fn; 3531 } 3532 3533 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 3534 if (S.hasClausesOfKind<OMPDependClause>()) { 3535 assert(!S.getAssociatedStmt() && 3536 "No associated statement must be in ordered depend construct."); 3537 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 3538 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 3539 return; 3540 } 3541 const auto *C = S.getSingleClause<OMPSIMDClause>(); 3542 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 3543 PrePostActionTy &Action) { 3544 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 3545 if (C) { 3546 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 3547 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 3548 llvm::Function *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS); 3549 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 3550 OutlinedFn, CapturedVars); 3551 } else { 3552 Action.Enter(CGF); 3553 CGF.EmitStmt(CS->getCapturedStmt()); 3554 } 3555 }; 3556 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3557 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 3558 } 3559 3560 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 3561 QualType SrcType, QualType DestType, 3562 SourceLocation Loc) { 3563 assert(CGF.hasScalarEvaluationKind(DestType) && 3564 "DestType must have scalar evaluation kind."); 3565 assert(!Val.isAggregate() && "Must be a scalar or complex."); 3566 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 3567 DestType, Loc) 3568 : CGF.EmitComplexToScalarConversion( 3569 Val.getComplexVal(), SrcType, DestType, Loc); 3570 } 3571 3572 static CodeGenFunction::ComplexPairTy 3573 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 3574 QualType DestType, SourceLocation Loc) { 3575 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 3576 "DestType must have complex evaluation kind."); 3577 CodeGenFunction::ComplexPairTy ComplexVal; 3578 if (Val.isScalar()) { 3579 // Convert the input element to the element type of the complex. 3580 QualType DestElementType = 3581 DestType->castAs<ComplexType>()->getElementType(); 3582 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 3583 Val.getScalarVal(), SrcType, DestElementType, Loc); 3584 ComplexVal = CodeGenFunction::ComplexPairTy( 3585 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 3586 } else { 3587 assert(Val.isComplex() && "Must be a scalar or complex."); 3588 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 3589 QualType DestElementType = 3590 DestType->castAs<ComplexType>()->getElementType(); 3591 ComplexVal.first = CGF.EmitScalarConversion( 3592 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 3593 ComplexVal.second = CGF.EmitScalarConversion( 3594 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 3595 } 3596 return ComplexVal; 3597 } 3598 3599 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 3600 LValue LVal, RValue RVal) { 3601 if (LVal.isGlobalReg()) { 3602 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 3603 } else { 3604 CGF.EmitAtomicStore(RVal, LVal, 3605 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3606 : llvm::AtomicOrdering::Monotonic, 3607 LVal.isVolatile(), /*isInit=*/false); 3608 } 3609 } 3610 3611 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 3612 QualType RValTy, SourceLocation Loc) { 3613 switch (getEvaluationKind(LVal.getType())) { 3614 case TEK_Scalar: 3615 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 3616 *this, RVal, RValTy, LVal.getType(), Loc)), 3617 LVal); 3618 break; 3619 case TEK_Complex: 3620 EmitStoreOfComplex( 3621 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 3622 /*isInit=*/false); 3623 break; 3624 case TEK_Aggregate: 3625 llvm_unreachable("Must be a scalar or complex."); 3626 } 3627 } 3628 3629 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 3630 const Expr *X, const Expr *V, 3631 SourceLocation Loc) { 3632 // v = x; 3633 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 3634 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 3635 LValue XLValue = CGF.EmitLValue(X); 3636 LValue VLValue = CGF.EmitLValue(V); 3637 RValue Res = XLValue.isGlobalReg() 3638 ? CGF.EmitLoadOfLValue(XLValue, Loc) 3639 : CGF.EmitAtomicLoad( 3640 XLValue, Loc, 3641 IsSeqCst ? llvm::AtomicOrdering::SequentiallyConsistent 3642 : llvm::AtomicOrdering::Monotonic, 3643 XLValue.isVolatile()); 3644 // OpenMP, 2.12.6, atomic Construct 3645 // Any atomic construct with a seq_cst clause forces the atomically 3646 // performed operation to include an implicit flush operation without a 3647 // list. 3648 if (IsSeqCst) 3649 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3650 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 3651 } 3652 3653 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 3654 const Expr *X, const Expr *E, 3655 SourceLocation Loc) { 3656 // x = expr; 3657 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 3658 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 3659 // OpenMP, 2.12.6, atomic Construct 3660 // Any atomic construct with a seq_cst clause forces the atomically 3661 // performed operation to include an implicit flush operation without a 3662 // list. 3663 if (IsSeqCst) 3664 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3665 } 3666 3667 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 3668 RValue Update, 3669 BinaryOperatorKind BO, 3670 llvm::AtomicOrdering AO, 3671 bool IsXLHSInRHSPart) { 3672 ASTContext &Context = CGF.getContext(); 3673 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 3674 // expression is simple and atomic is allowed for the given type for the 3675 // target platform. 3676 if (BO == BO_Comma || !Update.isScalar() || 3677 !Update.getScalarVal()->getType()->isIntegerTy() || 3678 !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 3679 (Update.getScalarVal()->getType() != 3680 X.getAddress().getElementType())) || 3681 !X.getAddress().getElementType()->isIntegerTy() || 3682 !Context.getTargetInfo().hasBuiltinAtomic( 3683 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 3684 return std::make_pair(false, RValue::get(nullptr)); 3685 3686 llvm::AtomicRMWInst::BinOp RMWOp; 3687 switch (BO) { 3688 case BO_Add: 3689 RMWOp = llvm::AtomicRMWInst::Add; 3690 break; 3691 case BO_Sub: 3692 if (!IsXLHSInRHSPart) 3693 return std::make_pair(false, RValue::get(nullptr)); 3694 RMWOp = llvm::AtomicRMWInst::Sub; 3695 break; 3696 case BO_And: 3697 RMWOp = llvm::AtomicRMWInst::And; 3698 break; 3699 case BO_Or: 3700 RMWOp = llvm::AtomicRMWInst::Or; 3701 break; 3702 case BO_Xor: 3703 RMWOp = llvm::AtomicRMWInst::Xor; 3704 break; 3705 case BO_LT: 3706 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3707 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 3708 : llvm::AtomicRMWInst::Max) 3709 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 3710 : llvm::AtomicRMWInst::UMax); 3711 break; 3712 case BO_GT: 3713 RMWOp = X.getType()->hasSignedIntegerRepresentation() 3714 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 3715 : llvm::AtomicRMWInst::Min) 3716 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 3717 : llvm::AtomicRMWInst::UMin); 3718 break; 3719 case BO_Assign: 3720 RMWOp = llvm::AtomicRMWInst::Xchg; 3721 break; 3722 case BO_Mul: 3723 case BO_Div: 3724 case BO_Rem: 3725 case BO_Shl: 3726 case BO_Shr: 3727 case BO_LAnd: 3728 case BO_LOr: 3729 return std::make_pair(false, RValue::get(nullptr)); 3730 case BO_PtrMemD: 3731 case BO_PtrMemI: 3732 case BO_LE: 3733 case BO_GE: 3734 case BO_EQ: 3735 case BO_NE: 3736 case BO_Cmp: 3737 case BO_AddAssign: 3738 case BO_SubAssign: 3739 case BO_AndAssign: 3740 case BO_OrAssign: 3741 case BO_XorAssign: 3742 case BO_MulAssign: 3743 case BO_DivAssign: 3744 case BO_RemAssign: 3745 case BO_ShlAssign: 3746 case BO_ShrAssign: 3747 case BO_Comma: 3748 llvm_unreachable("Unsupported atomic update operation"); 3749 } 3750 llvm::Value *UpdateVal = Update.getScalarVal(); 3751 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 3752 UpdateVal = CGF.Builder.CreateIntCast( 3753 IC, X.getAddress().getElementType(), 3754 X.getType()->hasSignedIntegerRepresentation()); 3755 } 3756 llvm::Value *Res = 3757 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO); 3758 return std::make_pair(true, RValue::get(Res)); 3759 } 3760 3761 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 3762 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3763 llvm::AtomicOrdering AO, SourceLocation Loc, 3764 const llvm::function_ref<RValue(RValue)> CommonGen) { 3765 // Update expressions are allowed to have the following forms: 3766 // x binop= expr; -> xrval + expr; 3767 // x++, ++x -> xrval + 1; 3768 // x--, --x -> xrval - 1; 3769 // x = x binop expr; -> xrval binop expr 3770 // x = expr Op x; - > expr binop xrval; 3771 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 3772 if (!Res.first) { 3773 if (X.isGlobalReg()) { 3774 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 3775 // 'xrval'. 3776 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 3777 } else { 3778 // Perform compare-and-swap procedure. 3779 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 3780 } 3781 } 3782 return Res; 3783 } 3784 3785 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 3786 const Expr *X, const Expr *E, 3787 const Expr *UE, bool IsXLHSInRHSPart, 3788 SourceLocation Loc) { 3789 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3790 "Update expr in 'atomic update' must be a binary operator."); 3791 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3792 // Update expressions are allowed to have the following forms: 3793 // x binop= expr; -> xrval + expr; 3794 // x++, ++x -> xrval + 1; 3795 // x--, --x -> xrval - 1; 3796 // x = x binop expr; -> xrval binop expr 3797 // x = expr Op x; - > expr binop xrval; 3798 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 3799 LValue XLValue = CGF.EmitLValue(X); 3800 RValue ExprRValue = CGF.EmitAnyExpr(E); 3801 llvm::AtomicOrdering AO = IsSeqCst 3802 ? llvm::AtomicOrdering::SequentiallyConsistent 3803 : llvm::AtomicOrdering::Monotonic; 3804 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3805 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3806 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3807 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3808 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 3809 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3810 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3811 return CGF.EmitAnyExpr(UE); 3812 }; 3813 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 3814 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3815 // OpenMP, 2.12.6, atomic Construct 3816 // Any atomic construct with a seq_cst clause forces the atomically 3817 // performed operation to include an implicit flush operation without a 3818 // list. 3819 if (IsSeqCst) 3820 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3821 } 3822 3823 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 3824 QualType SourceType, QualType ResType, 3825 SourceLocation Loc) { 3826 switch (CGF.getEvaluationKind(ResType)) { 3827 case TEK_Scalar: 3828 return RValue::get( 3829 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 3830 case TEK_Complex: { 3831 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 3832 return RValue::getComplex(Res.first, Res.second); 3833 } 3834 case TEK_Aggregate: 3835 break; 3836 } 3837 llvm_unreachable("Must be a scalar or complex."); 3838 } 3839 3840 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 3841 bool IsPostfixUpdate, const Expr *V, 3842 const Expr *X, const Expr *E, 3843 const Expr *UE, bool IsXLHSInRHSPart, 3844 SourceLocation Loc) { 3845 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 3846 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 3847 RValue NewVVal; 3848 LValue VLValue = CGF.EmitLValue(V); 3849 LValue XLValue = CGF.EmitLValue(X); 3850 RValue ExprRValue = CGF.EmitAnyExpr(E); 3851 llvm::AtomicOrdering AO = IsSeqCst 3852 ? llvm::AtomicOrdering::SequentiallyConsistent 3853 : llvm::AtomicOrdering::Monotonic; 3854 QualType NewVValType; 3855 if (UE) { 3856 // 'x' is updated with some additional value. 3857 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 3858 "Update expr in 'atomic capture' must be a binary operator."); 3859 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 3860 // Update expressions are allowed to have the following forms: 3861 // x binop= expr; -> xrval + expr; 3862 // x++, ++x -> xrval + 1; 3863 // x--, --x -> xrval - 1; 3864 // x = x binop expr; -> xrval binop expr 3865 // x = expr Op x; - > expr binop xrval; 3866 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 3867 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 3868 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 3869 NewVValType = XRValExpr->getType(); 3870 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 3871 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 3872 IsPostfixUpdate](RValue XRValue) { 3873 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3874 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 3875 RValue Res = CGF.EmitAnyExpr(UE); 3876 NewVVal = IsPostfixUpdate ? XRValue : Res; 3877 return Res; 3878 }; 3879 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3880 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 3881 if (Res.first) { 3882 // 'atomicrmw' instruction was generated. 3883 if (IsPostfixUpdate) { 3884 // Use old value from 'atomicrmw'. 3885 NewVVal = Res.second; 3886 } else { 3887 // 'atomicrmw' does not provide new value, so evaluate it using old 3888 // value of 'x'. 3889 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 3890 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 3891 NewVVal = CGF.EmitAnyExpr(UE); 3892 } 3893 } 3894 } else { 3895 // 'x' is simply rewritten with some 'expr'. 3896 NewVValType = X->getType().getNonReferenceType(); 3897 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 3898 X->getType().getNonReferenceType(), Loc); 3899 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 3900 NewVVal = XRValue; 3901 return ExprRValue; 3902 }; 3903 // Try to perform atomicrmw xchg, otherwise simple exchange. 3904 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 3905 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 3906 Loc, Gen); 3907 if (Res.first) { 3908 // 'atomicrmw' instruction was generated. 3909 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 3910 } 3911 } 3912 // Emit post-update store to 'v' of old/new 'x' value. 3913 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 3914 // OpenMP, 2.12.6, atomic Construct 3915 // Any atomic construct with a seq_cst clause forces the atomically 3916 // performed operation to include an implicit flush operation without a 3917 // list. 3918 if (IsSeqCst) 3919 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 3920 } 3921 3922 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 3923 bool IsSeqCst, bool IsPostfixUpdate, 3924 const Expr *X, const Expr *V, const Expr *E, 3925 const Expr *UE, bool IsXLHSInRHSPart, 3926 SourceLocation Loc) { 3927 switch (Kind) { 3928 case OMPC_read: 3929 emitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 3930 break; 3931 case OMPC_write: 3932 emitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 3933 break; 3934 case OMPC_unknown: 3935 case OMPC_update: 3936 emitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 3937 break; 3938 case OMPC_capture: 3939 emitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 3940 IsXLHSInRHSPart, Loc); 3941 break; 3942 case OMPC_if: 3943 case OMPC_final: 3944 case OMPC_num_threads: 3945 case OMPC_private: 3946 case OMPC_firstprivate: 3947 case OMPC_lastprivate: 3948 case OMPC_reduction: 3949 case OMPC_task_reduction: 3950 case OMPC_in_reduction: 3951 case OMPC_safelen: 3952 case OMPC_simdlen: 3953 case OMPC_allocator: 3954 case OMPC_allocate: 3955 case OMPC_collapse: 3956 case OMPC_default: 3957 case OMPC_seq_cst: 3958 case OMPC_shared: 3959 case OMPC_linear: 3960 case OMPC_aligned: 3961 case OMPC_copyin: 3962 case OMPC_copyprivate: 3963 case OMPC_flush: 3964 case OMPC_proc_bind: 3965 case OMPC_schedule: 3966 case OMPC_ordered: 3967 case OMPC_nowait: 3968 case OMPC_untied: 3969 case OMPC_threadprivate: 3970 case OMPC_depend: 3971 case OMPC_mergeable: 3972 case OMPC_device: 3973 case OMPC_threads: 3974 case OMPC_simd: 3975 case OMPC_map: 3976 case OMPC_num_teams: 3977 case OMPC_thread_limit: 3978 case OMPC_priority: 3979 case OMPC_grainsize: 3980 case OMPC_nogroup: 3981 case OMPC_num_tasks: 3982 case OMPC_hint: 3983 case OMPC_dist_schedule: 3984 case OMPC_defaultmap: 3985 case OMPC_uniform: 3986 case OMPC_to: 3987 case OMPC_from: 3988 case OMPC_use_device_ptr: 3989 case OMPC_is_device_ptr: 3990 case OMPC_unified_address: 3991 case OMPC_unified_shared_memory: 3992 case OMPC_reverse_offload: 3993 case OMPC_dynamic_allocators: 3994 case OMPC_atomic_default_mem_order: 3995 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 3996 } 3997 } 3998 3999 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 4000 bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>(); 4001 OpenMPClauseKind Kind = OMPC_unknown; 4002 for (const OMPClause *C : S.clauses()) { 4003 // Find first clause (skip seq_cst clause, if it is first). 4004 if (C->getClauseKind() != OMPC_seq_cst) { 4005 Kind = C->getClauseKind(); 4006 break; 4007 } 4008 } 4009 4010 const Stmt *CS = S.getInnermostCapturedStmt()->IgnoreContainers(); 4011 if (const auto *FE = dyn_cast<FullExpr>(CS)) 4012 enterFullExpression(FE); 4013 // Processing for statements under 'atomic capture'. 4014 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 4015 for (const Stmt *C : Compound->body()) { 4016 if (const auto *FE = dyn_cast<FullExpr>(C)) 4017 enterFullExpression(FE); 4018 } 4019 } 4020 4021 auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF, 4022 PrePostActionTy &) { 4023 CGF.EmitStopPoint(CS); 4024 emitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 4025 S.getV(), S.getExpr(), S.getUpdateExpr(), 4026 S.isXLHSInRHSPart(), S.getBeginLoc()); 4027 }; 4028 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4029 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 4030 } 4031 4032 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 4033 const OMPExecutableDirective &S, 4034 const RegionCodeGenTy &CodeGen) { 4035 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 4036 CodeGenModule &CGM = CGF.CGM; 4037 4038 // On device emit this construct as inlined code. 4039 if (CGM.getLangOpts().OpenMPIsDevice) { 4040 OMPLexicalScope Scope(CGF, S, OMPD_target); 4041 CGM.getOpenMPRuntime().emitInlinedDirective( 4042 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4043 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4044 }); 4045 return; 4046 } 4047 4048 llvm::Function *Fn = nullptr; 4049 llvm::Constant *FnID = nullptr; 4050 4051 const Expr *IfCond = nullptr; 4052 // Check for the at most one if clause associated with the target region. 4053 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4054 if (C->getNameModifier() == OMPD_unknown || 4055 C->getNameModifier() == OMPD_target) { 4056 IfCond = C->getCondition(); 4057 break; 4058 } 4059 } 4060 4061 // Check if we have any device clause associated with the directive. 4062 const Expr *Device = nullptr; 4063 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 4064 Device = C->getDevice(); 4065 4066 // Check if we have an if clause whose conditional always evaluates to false 4067 // or if we do not have any targets specified. If so the target region is not 4068 // an offload entry point. 4069 bool IsOffloadEntry = true; 4070 if (IfCond) { 4071 bool Val; 4072 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 4073 IsOffloadEntry = false; 4074 } 4075 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4076 IsOffloadEntry = false; 4077 4078 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 4079 StringRef ParentName; 4080 // In case we have Ctors/Dtors we use the complete type variant to produce 4081 // the mangling of the device outlined kernel. 4082 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 4083 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 4084 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 4085 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 4086 else 4087 ParentName = 4088 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 4089 4090 // Emit target region as a standalone region. 4091 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 4092 IsOffloadEntry, CodeGen); 4093 OMPLexicalScope Scope(CGF, S, OMPD_task); 4094 auto &&SizeEmitter = [](CodeGenFunction &CGF, const OMPLoopDirective &D) { 4095 OMPLoopScope(CGF, D); 4096 // Emit calculation of the iterations count. 4097 llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations()); 4098 NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty, 4099 /*isSigned=*/false); 4100 return NumIterations; 4101 }; 4102 if (IsOffloadEntry) 4103 CGM.getOpenMPRuntime().emitTargetNumIterationsCall(CGF, S, Device, 4104 SizeEmitter); 4105 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device); 4106 } 4107 4108 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 4109 PrePostActionTy &Action) { 4110 Action.Enter(CGF); 4111 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4112 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4113 CGF.EmitOMPPrivateClause(S, PrivateScope); 4114 (void)PrivateScope.Privatize(); 4115 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4116 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4117 4118 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 4119 } 4120 4121 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 4122 StringRef ParentName, 4123 const OMPTargetDirective &S) { 4124 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4125 emitTargetRegion(CGF, S, Action); 4126 }; 4127 llvm::Function *Fn; 4128 llvm::Constant *Addr; 4129 // Emit target region as a standalone region. 4130 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4131 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4132 assert(Fn && Addr && "Target device function emission failed."); 4133 } 4134 4135 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 4136 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4137 emitTargetRegion(CGF, S, Action); 4138 }; 4139 emitCommonOMPTargetDirective(*this, S, CodeGen); 4140 } 4141 4142 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 4143 const OMPExecutableDirective &S, 4144 OpenMPDirectiveKind InnermostKind, 4145 const RegionCodeGenTy &CodeGen) { 4146 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 4147 llvm::Function *OutlinedFn = 4148 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 4149 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 4150 4151 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 4152 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 4153 if (NT || TL) { 4154 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 4155 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 4156 4157 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 4158 S.getBeginLoc()); 4159 } 4160 4161 OMPTeamsScope Scope(CGF, S); 4162 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 4163 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 4164 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 4165 CapturedVars); 4166 } 4167 4168 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 4169 // Emit teams region as a standalone region. 4170 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4171 Action.Enter(CGF); 4172 OMPPrivateScope PrivateScope(CGF); 4173 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4174 CGF.EmitOMPPrivateClause(S, PrivateScope); 4175 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4176 (void)PrivateScope.Privatize(); 4177 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 4178 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4179 }; 4180 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4181 emitPostUpdateForReductionClause(*this, S, 4182 [](CodeGenFunction &) { return nullptr; }); 4183 } 4184 4185 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4186 const OMPTargetTeamsDirective &S) { 4187 auto *CS = S.getCapturedStmt(OMPD_teams); 4188 Action.Enter(CGF); 4189 // Emit teams region as a standalone region. 4190 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4191 Action.Enter(CGF); 4192 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4193 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4194 CGF.EmitOMPPrivateClause(S, PrivateScope); 4195 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4196 (void)PrivateScope.Privatize(); 4197 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4198 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4199 CGF.EmitStmt(CS->getCapturedStmt()); 4200 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4201 }; 4202 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 4203 emitPostUpdateForReductionClause(CGF, S, 4204 [](CodeGenFunction &) { return nullptr; }); 4205 } 4206 4207 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 4208 CodeGenModule &CGM, StringRef ParentName, 4209 const OMPTargetTeamsDirective &S) { 4210 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4211 emitTargetTeamsRegion(CGF, Action, S); 4212 }; 4213 llvm::Function *Fn; 4214 llvm::Constant *Addr; 4215 // Emit target region as a standalone region. 4216 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4217 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4218 assert(Fn && Addr && "Target device function emission failed."); 4219 } 4220 4221 void CodeGenFunction::EmitOMPTargetTeamsDirective( 4222 const OMPTargetTeamsDirective &S) { 4223 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4224 emitTargetTeamsRegion(CGF, Action, S); 4225 }; 4226 emitCommonOMPTargetDirective(*this, S, CodeGen); 4227 } 4228 4229 static void 4230 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 4231 const OMPTargetTeamsDistributeDirective &S) { 4232 Action.Enter(CGF); 4233 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4234 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4235 }; 4236 4237 // Emit teams region as a standalone region. 4238 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4239 PrePostActionTy &Action) { 4240 Action.Enter(CGF); 4241 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4242 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4243 (void)PrivateScope.Privatize(); 4244 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4245 CodeGenDistribute); 4246 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4247 }; 4248 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 4249 emitPostUpdateForReductionClause(CGF, S, 4250 [](CodeGenFunction &) { return nullptr; }); 4251 } 4252 4253 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 4254 CodeGenModule &CGM, StringRef ParentName, 4255 const OMPTargetTeamsDistributeDirective &S) { 4256 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4257 emitTargetTeamsDistributeRegion(CGF, Action, S); 4258 }; 4259 llvm::Function *Fn; 4260 llvm::Constant *Addr; 4261 // Emit target region as a standalone region. 4262 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4263 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4264 assert(Fn && Addr && "Target device function emission failed."); 4265 } 4266 4267 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 4268 const OMPTargetTeamsDistributeDirective &S) { 4269 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4270 emitTargetTeamsDistributeRegion(CGF, Action, S); 4271 }; 4272 emitCommonOMPTargetDirective(*this, S, CodeGen); 4273 } 4274 4275 static void emitTargetTeamsDistributeSimdRegion( 4276 CodeGenFunction &CGF, PrePostActionTy &Action, 4277 const OMPTargetTeamsDistributeSimdDirective &S) { 4278 Action.Enter(CGF); 4279 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4280 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4281 }; 4282 4283 // Emit teams region as a standalone region. 4284 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4285 PrePostActionTy &Action) { 4286 Action.Enter(CGF); 4287 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4288 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4289 (void)PrivateScope.Privatize(); 4290 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4291 CodeGenDistribute); 4292 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4293 }; 4294 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 4295 emitPostUpdateForReductionClause(CGF, S, 4296 [](CodeGenFunction &) { return nullptr; }); 4297 } 4298 4299 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 4300 CodeGenModule &CGM, StringRef ParentName, 4301 const OMPTargetTeamsDistributeSimdDirective &S) { 4302 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4303 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4304 }; 4305 llvm::Function *Fn; 4306 llvm::Constant *Addr; 4307 // Emit target region as a standalone region. 4308 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4309 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4310 assert(Fn && Addr && "Target device function emission failed."); 4311 } 4312 4313 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 4314 const OMPTargetTeamsDistributeSimdDirective &S) { 4315 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4316 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 4317 }; 4318 emitCommonOMPTargetDirective(*this, S, CodeGen); 4319 } 4320 4321 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 4322 const OMPTeamsDistributeDirective &S) { 4323 4324 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4325 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4326 }; 4327 4328 // Emit teams region as a standalone region. 4329 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4330 PrePostActionTy &Action) { 4331 Action.Enter(CGF); 4332 OMPPrivateScope PrivateScope(CGF); 4333 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4334 (void)PrivateScope.Privatize(); 4335 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4336 CodeGenDistribute); 4337 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4338 }; 4339 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 4340 emitPostUpdateForReductionClause(*this, S, 4341 [](CodeGenFunction &) { return nullptr; }); 4342 } 4343 4344 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 4345 const OMPTeamsDistributeSimdDirective &S) { 4346 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4347 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 4348 }; 4349 4350 // Emit teams region as a standalone region. 4351 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4352 PrePostActionTy &Action) { 4353 Action.Enter(CGF); 4354 OMPPrivateScope PrivateScope(CGF); 4355 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4356 (void)PrivateScope.Privatize(); 4357 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 4358 CodeGenDistribute); 4359 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4360 }; 4361 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 4362 emitPostUpdateForReductionClause(*this, S, 4363 [](CodeGenFunction &) { return nullptr; }); 4364 } 4365 4366 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 4367 const OMPTeamsDistributeParallelForDirective &S) { 4368 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4369 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4370 S.getDistInc()); 4371 }; 4372 4373 // Emit teams region as a standalone region. 4374 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4375 PrePostActionTy &Action) { 4376 Action.Enter(CGF); 4377 OMPPrivateScope PrivateScope(CGF); 4378 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4379 (void)PrivateScope.Privatize(); 4380 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 4381 CodeGenDistribute); 4382 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4383 }; 4384 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4385 emitPostUpdateForReductionClause(*this, S, 4386 [](CodeGenFunction &) { return nullptr; }); 4387 } 4388 4389 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 4390 const OMPTeamsDistributeParallelForSimdDirective &S) { 4391 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4392 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4393 S.getDistInc()); 4394 }; 4395 4396 // Emit teams region as a standalone region. 4397 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4398 PrePostActionTy &Action) { 4399 Action.Enter(CGF); 4400 OMPPrivateScope PrivateScope(CGF); 4401 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4402 (void)PrivateScope.Privatize(); 4403 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4404 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4405 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4406 }; 4407 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 4408 emitPostUpdateForReductionClause(*this, S, 4409 [](CodeGenFunction &) { return nullptr; }); 4410 } 4411 4412 static void emitTargetTeamsDistributeParallelForRegion( 4413 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 4414 PrePostActionTy &Action) { 4415 Action.Enter(CGF); 4416 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4417 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4418 S.getDistInc()); 4419 }; 4420 4421 // Emit teams region as a standalone region. 4422 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4423 PrePostActionTy &Action) { 4424 Action.Enter(CGF); 4425 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4426 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4427 (void)PrivateScope.Privatize(); 4428 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4429 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4430 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4431 }; 4432 4433 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 4434 CodeGenTeams); 4435 emitPostUpdateForReductionClause(CGF, S, 4436 [](CodeGenFunction &) { return nullptr; }); 4437 } 4438 4439 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 4440 CodeGenModule &CGM, StringRef ParentName, 4441 const OMPTargetTeamsDistributeParallelForDirective &S) { 4442 // Emit SPMD target teams distribute parallel for region as a standalone 4443 // region. 4444 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4445 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4446 }; 4447 llvm::Function *Fn; 4448 llvm::Constant *Addr; 4449 // Emit target region as a standalone region. 4450 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4451 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4452 assert(Fn && Addr && "Target device function emission failed."); 4453 } 4454 4455 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 4456 const OMPTargetTeamsDistributeParallelForDirective &S) { 4457 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4458 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 4459 }; 4460 emitCommonOMPTargetDirective(*this, S, CodeGen); 4461 } 4462 4463 static void emitTargetTeamsDistributeParallelForSimdRegion( 4464 CodeGenFunction &CGF, 4465 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 4466 PrePostActionTy &Action) { 4467 Action.Enter(CGF); 4468 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4469 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 4470 S.getDistInc()); 4471 }; 4472 4473 // Emit teams region as a standalone region. 4474 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 4475 PrePostActionTy &Action) { 4476 Action.Enter(CGF); 4477 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4478 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4479 (void)PrivateScope.Privatize(); 4480 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 4481 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 4482 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 4483 }; 4484 4485 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 4486 CodeGenTeams); 4487 emitPostUpdateForReductionClause(CGF, S, 4488 [](CodeGenFunction &) { return nullptr; }); 4489 } 4490 4491 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 4492 CodeGenModule &CGM, StringRef ParentName, 4493 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4494 // Emit SPMD target teams distribute parallel for simd region as a standalone 4495 // region. 4496 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4497 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4498 }; 4499 llvm::Function *Fn; 4500 llvm::Constant *Addr; 4501 // Emit target region as a standalone region. 4502 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4503 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4504 assert(Fn && Addr && "Target device function emission failed."); 4505 } 4506 4507 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 4508 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 4509 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4510 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 4511 }; 4512 emitCommonOMPTargetDirective(*this, S, CodeGen); 4513 } 4514 4515 void CodeGenFunction::EmitOMPCancellationPointDirective( 4516 const OMPCancellationPointDirective &S) { 4517 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 4518 S.getCancelRegion()); 4519 } 4520 4521 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 4522 const Expr *IfCond = nullptr; 4523 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4524 if (C->getNameModifier() == OMPD_unknown || 4525 C->getNameModifier() == OMPD_cancel) { 4526 IfCond = C->getCondition(); 4527 break; 4528 } 4529 } 4530 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 4531 S.getCancelRegion()); 4532 } 4533 4534 CodeGenFunction::JumpDest 4535 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 4536 if (Kind == OMPD_parallel || Kind == OMPD_task || 4537 Kind == OMPD_target_parallel) 4538 return ReturnBlock; 4539 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 4540 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 4541 Kind == OMPD_distribute_parallel_for || 4542 Kind == OMPD_target_parallel_for || 4543 Kind == OMPD_teams_distribute_parallel_for || 4544 Kind == OMPD_target_teams_distribute_parallel_for); 4545 return OMPCancelStack.getExitBlock(); 4546 } 4547 4548 void CodeGenFunction::EmitOMPUseDevicePtrClause( 4549 const OMPClause &NC, OMPPrivateScope &PrivateScope, 4550 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 4551 const auto &C = cast<OMPUseDevicePtrClause>(NC); 4552 auto OrigVarIt = C.varlist_begin(); 4553 auto InitIt = C.inits().begin(); 4554 for (const Expr *PvtVarIt : C.private_copies()) { 4555 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 4556 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 4557 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 4558 4559 // In order to identify the right initializer we need to match the 4560 // declaration used by the mapping logic. In some cases we may get 4561 // OMPCapturedExprDecl that refers to the original declaration. 4562 const ValueDecl *MatchingVD = OrigVD; 4563 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 4564 // OMPCapturedExprDecl are used to privative fields of the current 4565 // structure. 4566 const auto *ME = cast<MemberExpr>(OED->getInit()); 4567 assert(isa<CXXThisExpr>(ME->getBase()) && 4568 "Base should be the current struct!"); 4569 MatchingVD = ME->getMemberDecl(); 4570 } 4571 4572 // If we don't have information about the current list item, move on to 4573 // the next one. 4574 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 4575 if (InitAddrIt == CaptureDeviceAddrMap.end()) 4576 continue; 4577 4578 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD, 4579 InitAddrIt, InitVD, 4580 PvtVD]() { 4581 // Initialize the temporary initialization variable with the address we 4582 // get from the runtime library. We have to cast the source address 4583 // because it is always a void *. References are materialized in the 4584 // privatization scope, so the initialization here disregards the fact 4585 // the original variable is a reference. 4586 QualType AddrQTy = 4587 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 4588 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 4589 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 4590 setAddrOfLocalVar(InitVD, InitAddr); 4591 4592 // Emit private declaration, it will be initialized by the value we 4593 // declaration we just added to the local declarations map. 4594 EmitDecl(*PvtVD); 4595 4596 // The initialization variables reached its purpose in the emission 4597 // of the previous declaration, so we don't need it anymore. 4598 LocalDeclMap.erase(InitVD); 4599 4600 // Return the address of the private variable. 4601 return GetAddrOfLocalVar(PvtVD); 4602 }); 4603 assert(IsRegistered && "firstprivate var already registered as private"); 4604 // Silence the warning about unused variable. 4605 (void)IsRegistered; 4606 4607 ++OrigVarIt; 4608 ++InitIt; 4609 } 4610 } 4611 4612 // Generate the instructions for '#pragma omp target data' directive. 4613 void CodeGenFunction::EmitOMPTargetDataDirective( 4614 const OMPTargetDataDirective &S) { 4615 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true); 4616 4617 // Create a pre/post action to signal the privatization of the device pointer. 4618 // This action can be replaced by the OpenMP runtime code generation to 4619 // deactivate privatization. 4620 bool PrivatizeDevicePointers = false; 4621 class DevicePointerPrivActionTy : public PrePostActionTy { 4622 bool &PrivatizeDevicePointers; 4623 4624 public: 4625 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 4626 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 4627 void Enter(CodeGenFunction &CGF) override { 4628 PrivatizeDevicePointers = true; 4629 } 4630 }; 4631 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 4632 4633 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 4634 CodeGenFunction &CGF, PrePostActionTy &Action) { 4635 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 4636 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4637 }; 4638 4639 // Codegen that selects whether to generate the privatization code or not. 4640 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 4641 &InnermostCodeGen](CodeGenFunction &CGF, 4642 PrePostActionTy &Action) { 4643 RegionCodeGenTy RCG(InnermostCodeGen); 4644 PrivatizeDevicePointers = false; 4645 4646 // Call the pre-action to change the status of PrivatizeDevicePointers if 4647 // needed. 4648 Action.Enter(CGF); 4649 4650 if (PrivatizeDevicePointers) { 4651 OMPPrivateScope PrivateScope(CGF); 4652 // Emit all instances of the use_device_ptr clause. 4653 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 4654 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 4655 Info.CaptureDeviceAddrMap); 4656 (void)PrivateScope.Privatize(); 4657 RCG(CGF); 4658 } else { 4659 RCG(CGF); 4660 } 4661 }; 4662 4663 // Forward the provided action to the privatization codegen. 4664 RegionCodeGenTy PrivRCG(PrivCodeGen); 4665 PrivRCG.setAction(Action); 4666 4667 // Notwithstanding the body of the region is emitted as inlined directive, 4668 // we don't use an inline scope as changes in the references inside the 4669 // region are expected to be visible outside, so we do not privative them. 4670 OMPLexicalScope Scope(CGF, S); 4671 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 4672 PrivRCG); 4673 }; 4674 4675 RegionCodeGenTy RCG(CodeGen); 4676 4677 // If we don't have target devices, don't bother emitting the data mapping 4678 // code. 4679 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 4680 RCG(*this); 4681 return; 4682 } 4683 4684 // Check if we have any if clause associated with the directive. 4685 const Expr *IfCond = nullptr; 4686 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4687 IfCond = C->getCondition(); 4688 4689 // Check if we have any device clause associated with the directive. 4690 const Expr *Device = nullptr; 4691 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4692 Device = C->getDevice(); 4693 4694 // Set the action to signal privatization of device pointers. 4695 RCG.setAction(PrivAction); 4696 4697 // Emit region code. 4698 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 4699 Info); 4700 } 4701 4702 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 4703 const OMPTargetEnterDataDirective &S) { 4704 // If we don't have target devices, don't bother emitting the data mapping 4705 // code. 4706 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4707 return; 4708 4709 // Check if we have any if clause associated with the directive. 4710 const Expr *IfCond = nullptr; 4711 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4712 IfCond = C->getCondition(); 4713 4714 // Check if we have any device clause associated with the directive. 4715 const Expr *Device = nullptr; 4716 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4717 Device = C->getDevice(); 4718 4719 OMPLexicalScope Scope(*this, S, OMPD_task); 4720 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4721 } 4722 4723 void CodeGenFunction::EmitOMPTargetExitDataDirective( 4724 const OMPTargetExitDataDirective &S) { 4725 // If we don't have target devices, don't bother emitting the data mapping 4726 // code. 4727 if (CGM.getLangOpts().OMPTargetTriples.empty()) 4728 return; 4729 4730 // Check if we have any if clause associated with the directive. 4731 const Expr *IfCond = nullptr; 4732 if (const auto *C = S.getSingleClause<OMPIfClause>()) 4733 IfCond = C->getCondition(); 4734 4735 // Check if we have any device clause associated with the directive. 4736 const Expr *Device = nullptr; 4737 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 4738 Device = C->getDevice(); 4739 4740 OMPLexicalScope Scope(*this, S, OMPD_task); 4741 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 4742 } 4743 4744 static void emitTargetParallelRegion(CodeGenFunction &CGF, 4745 const OMPTargetParallelDirective &S, 4746 PrePostActionTy &Action) { 4747 // Get the captured statement associated with the 'parallel' region. 4748 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 4749 Action.Enter(CGF); 4750 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 4751 Action.Enter(CGF); 4752 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 4753 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4754 CGF.EmitOMPPrivateClause(S, PrivateScope); 4755 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4756 (void)PrivateScope.Privatize(); 4757 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4758 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4759 // TODO: Add support for clauses. 4760 CGF.EmitStmt(CS->getCapturedStmt()); 4761 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4762 }; 4763 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 4764 emitEmptyBoundParameters); 4765 emitPostUpdateForReductionClause(CGF, S, 4766 [](CodeGenFunction &) { return nullptr; }); 4767 } 4768 4769 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 4770 CodeGenModule &CGM, StringRef ParentName, 4771 const OMPTargetParallelDirective &S) { 4772 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4773 emitTargetParallelRegion(CGF, S, Action); 4774 }; 4775 llvm::Function *Fn; 4776 llvm::Constant *Addr; 4777 // Emit target region as a standalone region. 4778 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4779 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4780 assert(Fn && Addr && "Target device function emission failed."); 4781 } 4782 4783 void CodeGenFunction::EmitOMPTargetParallelDirective( 4784 const OMPTargetParallelDirective &S) { 4785 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4786 emitTargetParallelRegion(CGF, S, Action); 4787 }; 4788 emitCommonOMPTargetDirective(*this, S, CodeGen); 4789 } 4790 4791 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 4792 const OMPTargetParallelForDirective &S, 4793 PrePostActionTy &Action) { 4794 Action.Enter(CGF); 4795 // Emit directive as a combined directive that consists of two implicit 4796 // directives: 'parallel' with 'for' directive. 4797 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4798 Action.Enter(CGF); 4799 CodeGenFunction::OMPCancelStackRAII CancelRegion( 4800 CGF, OMPD_target_parallel_for, S.hasCancel()); 4801 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4802 emitDispatchForLoopBounds); 4803 }; 4804 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 4805 emitEmptyBoundParameters); 4806 } 4807 4808 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 4809 CodeGenModule &CGM, StringRef ParentName, 4810 const OMPTargetParallelForDirective &S) { 4811 // Emit SPMD target parallel for region as a standalone region. 4812 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4813 emitTargetParallelForRegion(CGF, S, Action); 4814 }; 4815 llvm::Function *Fn; 4816 llvm::Constant *Addr; 4817 // Emit target region as a standalone region. 4818 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4819 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4820 assert(Fn && Addr && "Target device function emission failed."); 4821 } 4822 4823 void CodeGenFunction::EmitOMPTargetParallelForDirective( 4824 const OMPTargetParallelForDirective &S) { 4825 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4826 emitTargetParallelForRegion(CGF, S, Action); 4827 }; 4828 emitCommonOMPTargetDirective(*this, S, CodeGen); 4829 } 4830 4831 static void 4832 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 4833 const OMPTargetParallelForSimdDirective &S, 4834 PrePostActionTy &Action) { 4835 Action.Enter(CGF); 4836 // Emit directive as a combined directive that consists of two implicit 4837 // directives: 'parallel' with 'for' directive. 4838 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4839 Action.Enter(CGF); 4840 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 4841 emitDispatchForLoopBounds); 4842 }; 4843 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 4844 emitEmptyBoundParameters); 4845 } 4846 4847 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 4848 CodeGenModule &CGM, StringRef ParentName, 4849 const OMPTargetParallelForSimdDirective &S) { 4850 // Emit SPMD target parallel for region as a standalone region. 4851 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4852 emitTargetParallelForSimdRegion(CGF, S, Action); 4853 }; 4854 llvm::Function *Fn; 4855 llvm::Constant *Addr; 4856 // Emit target region as a standalone region. 4857 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 4858 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 4859 assert(Fn && Addr && "Target device function emission failed."); 4860 } 4861 4862 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 4863 const OMPTargetParallelForSimdDirective &S) { 4864 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4865 emitTargetParallelForSimdRegion(CGF, S, Action); 4866 }; 4867 emitCommonOMPTargetDirective(*this, S, CodeGen); 4868 } 4869 4870 /// Emit a helper variable and return corresponding lvalue. 4871 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 4872 const ImplicitParamDecl *PVD, 4873 CodeGenFunction::OMPPrivateScope &Privates) { 4874 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 4875 Privates.addPrivate(VDecl, 4876 [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); }); 4877 } 4878 4879 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 4880 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 4881 // Emit outlined function for task construct. 4882 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 4883 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4884 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4885 const Expr *IfCond = nullptr; 4886 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4887 if (C->getNameModifier() == OMPD_unknown || 4888 C->getNameModifier() == OMPD_taskloop) { 4889 IfCond = C->getCondition(); 4890 break; 4891 } 4892 } 4893 4894 OMPTaskDataTy Data; 4895 // Check if taskloop must be emitted without taskgroup. 4896 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 4897 // TODO: Check if we should emit tied or untied task. 4898 Data.Tied = true; 4899 // Set scheduling for taskloop 4900 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 4901 // grainsize clause 4902 Data.Schedule.setInt(/*IntVal=*/false); 4903 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 4904 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 4905 // num_tasks clause 4906 Data.Schedule.setInt(/*IntVal=*/true); 4907 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 4908 } 4909 4910 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 4911 // if (PreCond) { 4912 // for (IV in 0..LastIteration) BODY; 4913 // <Final counter/linear vars updates>; 4914 // } 4915 // 4916 4917 // Emit: if (PreCond) - begin. 4918 // If the condition constant folds and can be elided, avoid emitting the 4919 // whole loop. 4920 bool CondConstant; 4921 llvm::BasicBlock *ContBlock = nullptr; 4922 OMPLoopScope PreInitScope(CGF, S); 4923 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 4924 if (!CondConstant) 4925 return; 4926 } else { 4927 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 4928 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 4929 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 4930 CGF.getProfileCount(&S)); 4931 CGF.EmitBlock(ThenBlock); 4932 CGF.incrementProfileCounter(&S); 4933 } 4934 4935 if (isOpenMPSimdDirective(S.getDirectiveKind())) 4936 CGF.EmitOMPSimdInit(S); 4937 4938 OMPPrivateScope LoopScope(CGF); 4939 // Emit helper vars inits. 4940 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 4941 auto *I = CS->getCapturedDecl()->param_begin(); 4942 auto *LBP = std::next(I, LowerBound); 4943 auto *UBP = std::next(I, UpperBound); 4944 auto *STP = std::next(I, Stride); 4945 auto *LIP = std::next(I, LastIter); 4946 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 4947 LoopScope); 4948 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 4949 LoopScope); 4950 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 4951 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 4952 LoopScope); 4953 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 4954 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 4955 (void)LoopScope.Privatize(); 4956 // Emit the loop iteration variable. 4957 const Expr *IVExpr = S.getIterationVariable(); 4958 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 4959 CGF.EmitVarDecl(*IVDecl); 4960 CGF.EmitIgnoredExpr(S.getInit()); 4961 4962 // Emit the iterations count variable. 4963 // If it is not a variable, Sema decided to calculate iterations count on 4964 // each iteration (e.g., it is foldable into a constant). 4965 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 4966 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 4967 // Emit calculation of the iterations count. 4968 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 4969 } 4970 4971 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 4972 S.getInc(), 4973 [&S](CodeGenFunction &CGF) { 4974 CGF.EmitOMPLoopBody(S, JumpDest()); 4975 CGF.EmitStopPoint(&S); 4976 }, 4977 [](CodeGenFunction &) {}); 4978 // Emit: if (PreCond) - end. 4979 if (ContBlock) { 4980 CGF.EmitBranch(ContBlock); 4981 CGF.EmitBlock(ContBlock, true); 4982 } 4983 // Emit final copy of the lastprivate variables if IsLastIter != 0. 4984 if (HasLastprivateClause) { 4985 CGF.EmitOMPLastprivateClauseFinal( 4986 S, isOpenMPSimdDirective(S.getDirectiveKind()), 4987 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 4988 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 4989 (*LIP)->getType(), S.getBeginLoc()))); 4990 } 4991 }; 4992 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 4993 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 4994 const OMPTaskDataTy &Data) { 4995 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 4996 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 4997 OMPLoopScope PreInitScope(CGF, S); 4998 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 4999 OutlinedFn, SharedsTy, 5000 CapturedStruct, IfCond, Data); 5001 }; 5002 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 5003 CodeGen); 5004 }; 5005 if (Data.Nogroup) { 5006 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 5007 } else { 5008 CGM.getOpenMPRuntime().emitTaskgroupRegion( 5009 *this, 5010 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 5011 PrePostActionTy &Action) { 5012 Action.Enter(CGF); 5013 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 5014 Data); 5015 }, 5016 S.getBeginLoc()); 5017 } 5018 } 5019 5020 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 5021 EmitOMPTaskLoopBasedDirective(S); 5022 } 5023 5024 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 5025 const OMPTaskLoopSimdDirective &S) { 5026 EmitOMPTaskLoopBasedDirective(S); 5027 } 5028 5029 // Generate the instructions for '#pragma omp target update' directive. 5030 void CodeGenFunction::EmitOMPTargetUpdateDirective( 5031 const OMPTargetUpdateDirective &S) { 5032 // If we don't have target devices, don't bother emitting the data mapping 5033 // code. 5034 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5035 return; 5036 5037 // Check if we have any if clause associated with the directive. 5038 const Expr *IfCond = nullptr; 5039 if (const auto *C = S.getSingleClause<OMPIfClause>()) 5040 IfCond = C->getCondition(); 5041 5042 // Check if we have any device clause associated with the directive. 5043 const Expr *Device = nullptr; 5044 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 5045 Device = C->getDevice(); 5046 5047 OMPLexicalScope Scope(*this, S, OMPD_task); 5048 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 5049 } 5050 5051 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 5052 const OMPExecutableDirective &D) { 5053 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 5054 return; 5055 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 5056 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 5057 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 5058 } else { 5059 OMPPrivateScope LoopGlobals(CGF); 5060 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 5061 for (const Expr *E : LD->counters()) { 5062 const auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 5063 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 5064 LValue GlobLVal = CGF.EmitLValue(E); 5065 LoopGlobals.addPrivate( 5066 VD, [&GlobLVal]() { return GlobLVal.getAddress(); }); 5067 } 5068 if (isa<OMPCapturedExprDecl>(VD)) { 5069 // Emit only those that were not explicitly referenced in clauses. 5070 if (!CGF.LocalDeclMap.count(VD)) 5071 CGF.EmitVarDecl(*VD); 5072 } 5073 } 5074 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 5075 if (!C->getNumForLoops()) 5076 continue; 5077 for (unsigned I = LD->getCollapsedNumber(), 5078 E = C->getLoopNumIterations().size(); 5079 I < E; ++I) { 5080 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 5081 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 5082 // Emit only those that were not explicitly referenced in clauses. 5083 if (!CGF.LocalDeclMap.count(VD)) 5084 CGF.EmitVarDecl(*VD); 5085 } 5086 } 5087 } 5088 } 5089 LoopGlobals.Privatize(); 5090 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 5091 } 5092 }; 5093 OMPSimdLexicalScope Scope(*this, D); 5094 CGM.getOpenMPRuntime().emitInlinedDirective( 5095 *this, 5096 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 5097 : D.getDirectiveKind(), 5098 CodeGen); 5099 } 5100