1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit OpenMP nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCleanup.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/DeclOpenMP.h" 21 #include "clang/AST/OpenMPClause.h" 22 #include "clang/AST/Stmt.h" 23 #include "clang/AST/StmtOpenMP.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/Basic/OpenMPKinds.h" 26 #include "clang/Basic/PrettyStackTrace.h" 27 #include "llvm/BinaryFormat/Dwarf.h" 28 #include "llvm/Frontend/OpenMP/OMPConstants.h" 29 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DebugInfoMetadata.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Metadata.h" 35 #include "llvm/Support/AtomicOrdering.h" 36 using namespace clang; 37 using namespace CodeGen; 38 using namespace llvm::omp; 39 40 static const VarDecl *getBaseDecl(const Expr *Ref); 41 42 namespace { 43 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 44 /// for captured expressions. 45 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 46 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 47 for (const auto *C : S.clauses()) { 48 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 49 if (const auto *PreInit = 50 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 51 for (const auto *I : PreInit->decls()) { 52 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 53 CGF.EmitVarDecl(cast<VarDecl>(*I)); 54 } else { 55 CodeGenFunction::AutoVarEmission Emission = 56 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 57 CGF.EmitAutoVarCleanups(Emission); 58 } 59 } 60 } 61 } 62 } 63 } 64 CodeGenFunction::OMPPrivateScope InlinedShareds; 65 66 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 67 return CGF.LambdaCaptureFields.lookup(VD) || 68 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 69 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 70 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 71 } 72 73 public: 74 OMPLexicalScope( 75 CodeGenFunction &CGF, const OMPExecutableDirective &S, 76 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 77 const bool EmitPreInitStmt = true) 78 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 79 InlinedShareds(CGF) { 80 if (EmitPreInitStmt) 81 emitPreInitStmt(CGF, S); 82 if (!CapturedRegion.hasValue()) 83 return; 84 assert(S.hasAssociatedStmt() && 85 "Expected associated statement for inlined directive."); 86 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 87 for (const auto &C : CS->captures()) { 88 if (C.capturesVariable() || C.capturesVariableByCopy()) { 89 auto *VD = C.getCapturedVar(); 90 assert(VD == VD->getCanonicalDecl() && 91 "Canonical decl must be captured."); 92 DeclRefExpr DRE( 93 CGF.getContext(), const_cast<VarDecl *>(VD), 94 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 95 InlinedShareds.isGlobalVarCaptured(VD)), 96 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 97 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 98 return CGF.EmitLValue(&DRE).getAddress(CGF); 99 }); 100 } 101 } 102 (void)InlinedShareds.Privatize(); 103 } 104 }; 105 106 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 107 /// for captured expressions. 108 class OMPParallelScope final : public OMPLexicalScope { 109 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 110 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 111 return !(isOpenMPTargetExecutionDirective(Kind) || 112 isOpenMPLoopBoundSharingDirective(Kind)) && 113 isOpenMPParallelDirective(Kind); 114 } 115 116 public: 117 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 118 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 119 EmitPreInitStmt(S)) {} 120 }; 121 122 /// Lexical scope for OpenMP teams construct, that handles correct codegen 123 /// for captured expressions. 124 class OMPTeamsScope final : public OMPLexicalScope { 125 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 126 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 127 return !isOpenMPTargetExecutionDirective(Kind) && 128 isOpenMPTeamsDirective(Kind); 129 } 130 131 public: 132 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 133 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 134 EmitPreInitStmt(S)) {} 135 }; 136 137 /// Private scope for OpenMP loop-based directives, that supports capturing 138 /// of used expression from loop statement. 139 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 140 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopBasedDirective &S) { 141 const DeclStmt *PreInits; 142 CodeGenFunction::OMPMapVars PreCondVars; 143 if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) { 144 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 145 for (const auto *E : LD->counters()) { 146 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 147 EmittedAsPrivate.insert(VD->getCanonicalDecl()); 148 (void)PreCondVars.setVarAddr( 149 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 150 } 151 // Mark private vars as undefs. 152 for (const auto *C : LD->getClausesOfKind<OMPPrivateClause>()) { 153 for (const Expr *IRef : C->varlists()) { 154 const auto *OrigVD = 155 cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 156 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 157 (void)PreCondVars.setVarAddr( 158 CGF, OrigVD, 159 Address(llvm::UndefValue::get(CGF.ConvertTypeForMem( 160 CGF.getContext().getPointerType( 161 OrigVD->getType().getNonReferenceType()))), 162 CGF.getContext().getDeclAlign(OrigVD))); 163 } 164 } 165 } 166 (void)PreCondVars.apply(CGF); 167 // Emit init, __range and __end variables for C++ range loops. 168 (void)OMPLoopBasedDirective::doForAllLoops( 169 LD->getInnermostCapturedStmt()->getCapturedStmt(), 170 /*TryImperfectlyNestedLoops=*/true, LD->getLoopsNumber(), 171 [&CGF](unsigned Cnt, const Stmt *CurStmt) { 172 if (const auto *CXXFor = dyn_cast<CXXForRangeStmt>(CurStmt)) { 173 if (const Stmt *Init = CXXFor->getInit()) 174 CGF.EmitStmt(Init); 175 CGF.EmitStmt(CXXFor->getRangeStmt()); 176 CGF.EmitStmt(CXXFor->getEndStmt()); 177 } 178 return false; 179 }); 180 PreInits = cast_or_null<DeclStmt>(LD->getPreInits()); 181 } else if (const auto *Tile = dyn_cast<OMPTileDirective>(&S)) { 182 PreInits = cast_or_null<DeclStmt>(Tile->getPreInits()); 183 } else if (const auto *Unroll = dyn_cast<OMPUnrollDirective>(&S)) { 184 PreInits = cast_or_null<DeclStmt>(Unroll->getPreInits()); 185 } else { 186 llvm_unreachable("Unknown loop-based directive kind."); 187 } 188 if (PreInits) { 189 for (const auto *I : PreInits->decls()) 190 CGF.EmitVarDecl(cast<VarDecl>(*I)); 191 } 192 PreCondVars.restore(CGF); 193 } 194 195 public: 196 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopBasedDirective &S) 197 : CodeGenFunction::RunCleanupsScope(CGF) { 198 emitPreInitStmt(CGF, S); 199 } 200 }; 201 202 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 203 CodeGenFunction::OMPPrivateScope InlinedShareds; 204 205 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 206 return CGF.LambdaCaptureFields.lookup(VD) || 207 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 208 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 209 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 210 } 211 212 public: 213 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 214 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 215 InlinedShareds(CGF) { 216 for (const auto *C : S.clauses()) { 217 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 218 if (const auto *PreInit = 219 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 220 for (const auto *I : PreInit->decls()) { 221 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 222 CGF.EmitVarDecl(cast<VarDecl>(*I)); 223 } else { 224 CodeGenFunction::AutoVarEmission Emission = 225 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 226 CGF.EmitAutoVarCleanups(Emission); 227 } 228 } 229 } 230 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 231 for (const Expr *E : UDP->varlists()) { 232 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 233 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 234 CGF.EmitVarDecl(*OED); 235 } 236 } else if (const auto *UDP = dyn_cast<OMPUseDeviceAddrClause>(C)) { 237 for (const Expr *E : UDP->varlists()) { 238 const Decl *D = getBaseDecl(E); 239 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 240 CGF.EmitVarDecl(*OED); 241 } 242 } 243 } 244 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 245 CGF.EmitOMPPrivateClause(S, InlinedShareds); 246 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 247 if (const Expr *E = TG->getReductionRef()) 248 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 249 } 250 // Temp copy arrays for inscan reductions should not be emitted as they are 251 // not used in simd only mode. 252 llvm::DenseSet<CanonicalDeclPtr<const Decl>> CopyArrayTemps; 253 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 254 if (C->getModifier() != OMPC_REDUCTION_inscan) 255 continue; 256 for (const Expr *E : C->copy_array_temps()) 257 CopyArrayTemps.insert(cast<DeclRefExpr>(E)->getDecl()); 258 } 259 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 260 while (CS) { 261 for (auto &C : CS->captures()) { 262 if (C.capturesVariable() || C.capturesVariableByCopy()) { 263 auto *VD = C.getCapturedVar(); 264 if (CopyArrayTemps.contains(VD)) 265 continue; 266 assert(VD == VD->getCanonicalDecl() && 267 "Canonical decl must be captured."); 268 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), 269 isCapturedVar(CGF, VD) || 270 (CGF.CapturedStmtInfo && 271 InlinedShareds.isGlobalVarCaptured(VD)), 272 VD->getType().getNonReferenceType(), VK_LValue, 273 C.getLocation()); 274 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 275 return CGF.EmitLValue(&DRE).getAddress(CGF); 276 }); 277 } 278 } 279 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 280 } 281 (void)InlinedShareds.Privatize(); 282 } 283 }; 284 285 } // namespace 286 287 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 288 const OMPExecutableDirective &S, 289 const RegionCodeGenTy &CodeGen); 290 291 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 292 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 293 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 294 OrigVD = OrigVD->getCanonicalDecl(); 295 bool IsCaptured = 296 LambdaCaptureFields.lookup(OrigVD) || 297 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 298 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 299 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured, 300 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 301 return EmitLValue(&DRE); 302 } 303 } 304 return EmitLValue(E); 305 } 306 307 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 308 ASTContext &C = getContext(); 309 llvm::Value *Size = nullptr; 310 auto SizeInChars = C.getTypeSizeInChars(Ty); 311 if (SizeInChars.isZero()) { 312 // getTypeSizeInChars() returns 0 for a VLA. 313 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 314 VlaSizePair VlaSize = getVLASize(VAT); 315 Ty = VlaSize.Type; 316 Size = 317 Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) : VlaSize.NumElts; 318 } 319 SizeInChars = C.getTypeSizeInChars(Ty); 320 if (SizeInChars.isZero()) 321 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 322 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 323 } 324 return CGM.getSize(SizeInChars); 325 } 326 327 void CodeGenFunction::GenerateOpenMPCapturedVars( 328 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 329 const RecordDecl *RD = S.getCapturedRecordDecl(); 330 auto CurField = RD->field_begin(); 331 auto CurCap = S.captures().begin(); 332 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 333 E = S.capture_init_end(); 334 I != E; ++I, ++CurField, ++CurCap) { 335 if (CurField->hasCapturedVLAType()) { 336 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 337 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 338 CapturedVars.push_back(Val); 339 } else if (CurCap->capturesThis()) { 340 CapturedVars.push_back(CXXThisValue); 341 } else if (CurCap->capturesVariableByCopy()) { 342 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 343 344 // If the field is not a pointer, we need to save the actual value 345 // and load it as a void pointer. 346 if (!CurField->getType()->isAnyPointerType()) { 347 ASTContext &Ctx = getContext(); 348 Address DstAddr = CreateMemTemp( 349 Ctx.getUIntPtrType(), 350 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 351 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 352 353 llvm::Value *SrcAddrVal = EmitScalarConversion( 354 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 355 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 356 LValue SrcLV = 357 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 358 359 // Store the value using the source type pointer. 360 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 361 362 // Load the value using the destination type pointer. 363 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 364 } 365 CapturedVars.push_back(CV); 366 } else { 367 assert(CurCap->capturesVariable() && "Expected capture by reference."); 368 CapturedVars.push_back(EmitLValue(*I).getAddress(*this).getPointer()); 369 } 370 } 371 } 372 373 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 374 QualType DstType, StringRef Name, 375 LValue AddrLV) { 376 ASTContext &Ctx = CGF.getContext(); 377 378 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 379 AddrLV.getAddress(CGF).getPointer(), Ctx.getUIntPtrType(), 380 Ctx.getPointerType(DstType), Loc); 381 Address TmpAddr = 382 CGF.MakeNaturalAlignAddrLValue(CastedPtr, DstType).getAddress(CGF); 383 return TmpAddr; 384 } 385 386 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 387 if (T->isLValueReferenceType()) 388 return C.getLValueReferenceType( 389 getCanonicalParamType(C, T.getNonReferenceType()), 390 /*SpelledAsLValue=*/false); 391 if (T->isPointerType()) 392 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 393 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 394 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 395 return getCanonicalParamType(C, VLA->getElementType()); 396 if (!A->isVariablyModifiedType()) 397 return C.getCanonicalType(T); 398 } 399 return C.getCanonicalParamType(T); 400 } 401 402 namespace { 403 /// Contains required data for proper outlined function codegen. 404 struct FunctionOptions { 405 /// Captured statement for which the function is generated. 406 const CapturedStmt *S = nullptr; 407 /// true if cast to/from UIntPtr is required for variables captured by 408 /// value. 409 const bool UIntPtrCastRequired = true; 410 /// true if only casted arguments must be registered as local args or VLA 411 /// sizes. 412 const bool RegisterCastedArgsOnly = false; 413 /// Name of the generated function. 414 const StringRef FunctionName; 415 /// Location of the non-debug version of the outlined function. 416 SourceLocation Loc; 417 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 418 bool RegisterCastedArgsOnly, StringRef FunctionName, 419 SourceLocation Loc) 420 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 421 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 422 FunctionName(FunctionName), Loc(Loc) {} 423 }; 424 } // namespace 425 426 static llvm::Function *emitOutlinedFunctionPrologue( 427 CodeGenFunction &CGF, FunctionArgList &Args, 428 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 429 &LocalAddrs, 430 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 431 &VLASizes, 432 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 433 const CapturedDecl *CD = FO.S->getCapturedDecl(); 434 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 435 assert(CD->hasBody() && "missing CapturedDecl body"); 436 437 CXXThisValue = nullptr; 438 // Build the argument list. 439 CodeGenModule &CGM = CGF.CGM; 440 ASTContext &Ctx = CGM.getContext(); 441 FunctionArgList TargetArgs; 442 Args.append(CD->param_begin(), 443 std::next(CD->param_begin(), CD->getContextParamPosition())); 444 TargetArgs.append( 445 CD->param_begin(), 446 std::next(CD->param_begin(), CD->getContextParamPosition())); 447 auto I = FO.S->captures().begin(); 448 FunctionDecl *DebugFunctionDecl = nullptr; 449 if (!FO.UIntPtrCastRequired) { 450 FunctionProtoType::ExtProtoInfo EPI; 451 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI); 452 DebugFunctionDecl = FunctionDecl::Create( 453 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 454 SourceLocation(), DeclarationName(), FunctionTy, 455 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 456 /*UsesFPIntrin=*/false, /*isInlineSpecified=*/false, 457 /*hasWrittenPrototype=*/false); 458 } 459 for (const FieldDecl *FD : RD->fields()) { 460 QualType ArgType = FD->getType(); 461 IdentifierInfo *II = nullptr; 462 VarDecl *CapVar = nullptr; 463 464 // If this is a capture by copy and the type is not a pointer, the outlined 465 // function argument type should be uintptr and the value properly casted to 466 // uintptr. This is necessary given that the runtime library is only able to 467 // deal with pointers. We can pass in the same way the VLA type sizes to the 468 // outlined function. 469 if (FO.UIntPtrCastRequired && 470 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 471 I->capturesVariableArrayType())) 472 ArgType = Ctx.getUIntPtrType(); 473 474 if (I->capturesVariable() || I->capturesVariableByCopy()) { 475 CapVar = I->getCapturedVar(); 476 II = CapVar->getIdentifier(); 477 } else if (I->capturesThis()) { 478 II = &Ctx.Idents.get("this"); 479 } else { 480 assert(I->capturesVariableArrayType()); 481 II = &Ctx.Idents.get("vla"); 482 } 483 if (ArgType->isVariablyModifiedType()) 484 ArgType = getCanonicalParamType(Ctx, ArgType); 485 VarDecl *Arg; 486 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 487 Arg = ParmVarDecl::Create( 488 Ctx, DebugFunctionDecl, 489 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 490 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 491 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 492 } else { 493 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 494 II, ArgType, ImplicitParamDecl::Other); 495 } 496 Args.emplace_back(Arg); 497 // Do not cast arguments if we emit function with non-original types. 498 TargetArgs.emplace_back( 499 FO.UIntPtrCastRequired 500 ? Arg 501 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 502 ++I; 503 } 504 Args.append(std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 505 CD->param_end()); 506 TargetArgs.append( 507 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 508 CD->param_end()); 509 510 // Create the function declaration. 511 const CGFunctionInfo &FuncInfo = 512 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 513 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 514 515 auto *F = 516 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 517 FO.FunctionName, &CGM.getModule()); 518 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 519 if (CD->isNothrow()) 520 F->setDoesNotThrow(); 521 F->setDoesNotRecurse(); 522 523 // Always inline the outlined function if optimizations are enabled. 524 if (CGM.getCodeGenOpts().OptimizationLevel != 0) { 525 F->removeFnAttr(llvm::Attribute::NoInline); 526 F->addFnAttr(llvm::Attribute::AlwaysInline); 527 } 528 529 // Generate the function. 530 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 531 FO.UIntPtrCastRequired ? FO.Loc : FO.S->getBeginLoc(), 532 FO.UIntPtrCastRequired ? FO.Loc 533 : CD->getBody()->getBeginLoc()); 534 unsigned Cnt = CD->getContextParamPosition(); 535 I = FO.S->captures().begin(); 536 for (const FieldDecl *FD : RD->fields()) { 537 // Do not map arguments if we emit function with non-original types. 538 Address LocalAddr(Address::invalid()); 539 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 540 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 541 TargetArgs[Cnt]); 542 } else { 543 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 544 } 545 // If we are capturing a pointer by copy we don't need to do anything, just 546 // use the value that we get from the arguments. 547 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 548 const VarDecl *CurVD = I->getCapturedVar(); 549 if (!FO.RegisterCastedArgsOnly) 550 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 551 ++Cnt; 552 ++I; 553 continue; 554 } 555 556 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 557 AlignmentSource::Decl); 558 if (FD->hasCapturedVLAType()) { 559 if (FO.UIntPtrCastRequired) { 560 ArgLVal = CGF.MakeAddrLValue( 561 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 562 Args[Cnt]->getName(), ArgLVal), 563 FD->getType(), AlignmentSource::Decl); 564 } 565 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 566 const VariableArrayType *VAT = FD->getCapturedVLAType(); 567 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 568 } else if (I->capturesVariable()) { 569 const VarDecl *Var = I->getCapturedVar(); 570 QualType VarTy = Var->getType(); 571 Address ArgAddr = ArgLVal.getAddress(CGF); 572 if (ArgLVal.getType()->isLValueReferenceType()) { 573 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 574 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 575 assert(ArgLVal.getType()->isPointerType()); 576 ArgAddr = CGF.EmitLoadOfPointer( 577 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 578 } 579 if (!FO.RegisterCastedArgsOnly) { 580 LocalAddrs.insert( 581 {Args[Cnt], 582 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 583 } 584 } else if (I->capturesVariableByCopy()) { 585 assert(!FD->getType()->isAnyPointerType() && 586 "Not expecting a captured pointer."); 587 const VarDecl *Var = I->getCapturedVar(); 588 LocalAddrs.insert({Args[Cnt], 589 {Var, FO.UIntPtrCastRequired 590 ? castValueFromUintptr( 591 CGF, I->getLocation(), FD->getType(), 592 Args[Cnt]->getName(), ArgLVal) 593 : ArgLVal.getAddress(CGF)}}); 594 } else { 595 // If 'this' is captured, load it into CXXThisValue. 596 assert(I->capturesThis()); 597 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 598 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress(CGF)}}); 599 } 600 ++Cnt; 601 ++I; 602 } 603 604 return F; 605 } 606 607 llvm::Function * 608 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 609 SourceLocation Loc) { 610 assert( 611 CapturedStmtInfo && 612 "CapturedStmtInfo should be set when generating the captured function"); 613 const CapturedDecl *CD = S.getCapturedDecl(); 614 // Build the argument list. 615 bool NeedWrapperFunction = 616 getDebugInfo() && CGM.getCodeGenOpts().hasReducedDebugInfo(); 617 FunctionArgList Args; 618 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 619 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 620 SmallString<256> Buffer; 621 llvm::raw_svector_ostream Out(Buffer); 622 Out << CapturedStmtInfo->getHelperName(); 623 if (NeedWrapperFunction) 624 Out << "_debug__"; 625 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 626 Out.str(), Loc); 627 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 628 VLASizes, CXXThisValue, FO); 629 CodeGenFunction::OMPPrivateScope LocalScope(*this); 630 for (const auto &LocalAddrPair : LocalAddrs) { 631 if (LocalAddrPair.second.first) { 632 LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() { 633 return LocalAddrPair.second.second; 634 }); 635 } 636 } 637 (void)LocalScope.Privatize(); 638 for (const auto &VLASizePair : VLASizes) 639 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 640 PGO.assignRegionCounters(GlobalDecl(CD), F); 641 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 642 (void)LocalScope.ForceCleanup(); 643 FinishFunction(CD->getBodyRBrace()); 644 if (!NeedWrapperFunction) 645 return F; 646 647 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 648 /*RegisterCastedArgsOnly=*/true, 649 CapturedStmtInfo->getHelperName(), Loc); 650 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 651 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 652 Args.clear(); 653 LocalAddrs.clear(); 654 VLASizes.clear(); 655 llvm::Function *WrapperF = 656 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 657 WrapperCGF.CXXThisValue, WrapperFO); 658 llvm::SmallVector<llvm::Value *, 4> CallArgs; 659 auto *PI = F->arg_begin(); 660 for (const auto *Arg : Args) { 661 llvm::Value *CallArg; 662 auto I = LocalAddrs.find(Arg); 663 if (I != LocalAddrs.end()) { 664 LValue LV = WrapperCGF.MakeAddrLValue( 665 I->second.second, 666 I->second.first ? I->second.first->getType() : Arg->getType(), 667 AlignmentSource::Decl); 668 if (LV.getType()->isAnyComplexType()) 669 LV.setAddress(WrapperCGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 670 LV.getAddress(WrapperCGF), 671 PI->getType()->getPointerTo( 672 LV.getAddress(WrapperCGF).getAddressSpace()))); 673 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 674 } else { 675 auto EI = VLASizes.find(Arg); 676 if (EI != VLASizes.end()) { 677 CallArg = EI->second.second; 678 } else { 679 LValue LV = 680 WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 681 Arg->getType(), AlignmentSource::Decl); 682 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 683 } 684 } 685 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 686 ++PI; 687 } 688 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, Loc, F, CallArgs); 689 WrapperCGF.FinishFunction(); 690 return WrapperF; 691 } 692 693 //===----------------------------------------------------------------------===// 694 // OpenMP Directive Emission 695 //===----------------------------------------------------------------------===// 696 void CodeGenFunction::EmitOMPAggregateAssign( 697 Address DestAddr, Address SrcAddr, QualType OriginalType, 698 const llvm::function_ref<void(Address, Address)> CopyGen) { 699 // Perform element-by-element initialization. 700 QualType ElementTy; 701 702 // Drill down to the base element type on both arrays. 703 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 704 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 705 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 706 707 llvm::Value *SrcBegin = SrcAddr.getPointer(); 708 llvm::Value *DestBegin = DestAddr.getPointer(); 709 // Cast from pointer to array type to pointer to single element. 710 llvm::Value *DestEnd = 711 Builder.CreateGEP(DestAddr.getElementType(), DestBegin, NumElements); 712 // The basic structure here is a while-do loop. 713 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 714 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 715 llvm::Value *IsEmpty = 716 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 717 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 718 719 // Enter the loop body, making that address the current address. 720 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 721 EmitBlock(BodyBB); 722 723 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 724 725 llvm::PHINode *SrcElementPHI = 726 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 727 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 728 Address SrcElementCurrent = 729 Address(SrcElementPHI, 730 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 731 732 llvm::PHINode *DestElementPHI = Builder.CreatePHI( 733 DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 734 DestElementPHI->addIncoming(DestBegin, EntryBB); 735 Address DestElementCurrent = 736 Address(DestElementPHI, 737 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 738 739 // Emit copy. 740 CopyGen(DestElementCurrent, SrcElementCurrent); 741 742 // Shift the address forward by one element. 743 llvm::Value *DestElementNext = 744 Builder.CreateConstGEP1_32(DestAddr.getElementType(), DestElementPHI, 745 /*Idx0=*/1, "omp.arraycpy.dest.element"); 746 llvm::Value *SrcElementNext = 747 Builder.CreateConstGEP1_32(SrcAddr.getElementType(), SrcElementPHI, 748 /*Idx0=*/1, "omp.arraycpy.src.element"); 749 // Check whether we've reached the end. 750 llvm::Value *Done = 751 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 752 Builder.CreateCondBr(Done, DoneBB, BodyBB); 753 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 754 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 755 756 // Done. 757 EmitBlock(DoneBB, /*IsFinished=*/true); 758 } 759 760 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 761 Address SrcAddr, const VarDecl *DestVD, 762 const VarDecl *SrcVD, const Expr *Copy) { 763 if (OriginalType->isArrayType()) { 764 const auto *BO = dyn_cast<BinaryOperator>(Copy); 765 if (BO && BO->getOpcode() == BO_Assign) { 766 // Perform simple memcpy for simple copying. 767 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 768 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 769 EmitAggregateAssign(Dest, Src, OriginalType); 770 } else { 771 // For arrays with complex element types perform element by element 772 // copying. 773 EmitOMPAggregateAssign( 774 DestAddr, SrcAddr, OriginalType, 775 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 776 // Working with the single array element, so have to remap 777 // destination and source variables to corresponding array 778 // elements. 779 CodeGenFunction::OMPPrivateScope Remap(*this); 780 Remap.addPrivate(DestVD, [DestElement]() { return DestElement; }); 781 Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; }); 782 (void)Remap.Privatize(); 783 EmitIgnoredExpr(Copy); 784 }); 785 } 786 } else { 787 // Remap pseudo source variable to private copy. 788 CodeGenFunction::OMPPrivateScope Remap(*this); 789 Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; }); 790 Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; }); 791 (void)Remap.Privatize(); 792 // Emit copying of the whole variable. 793 EmitIgnoredExpr(Copy); 794 } 795 } 796 797 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 798 OMPPrivateScope &PrivateScope) { 799 if (!HaveInsertPoint()) 800 return false; 801 bool DeviceConstTarget = 802 getLangOpts().OpenMPIsDevice && 803 isOpenMPTargetExecutionDirective(D.getDirectiveKind()); 804 bool FirstprivateIsLastprivate = false; 805 llvm::DenseMap<const VarDecl *, OpenMPLastprivateModifier> Lastprivates; 806 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 807 for (const auto *D : C->varlists()) 808 Lastprivates.try_emplace( 809 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl(), 810 C->getKind()); 811 } 812 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 813 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 814 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 815 // Force emission of the firstprivate copy if the directive does not emit 816 // outlined function, like omp for, omp simd, omp distribute etc. 817 bool MustEmitFirstprivateCopy = 818 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 819 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 820 const auto *IRef = C->varlist_begin(); 821 const auto *InitsRef = C->inits().begin(); 822 for (const Expr *IInit : C->private_copies()) { 823 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 824 bool ThisFirstprivateIsLastprivate = 825 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 826 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 827 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 828 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 829 !FD->getType()->isReferenceType() && 830 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 831 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 832 ++IRef; 833 ++InitsRef; 834 continue; 835 } 836 // Do not emit copy for firstprivate constant variables in target regions, 837 // captured by reference. 838 if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) && 839 FD && FD->getType()->isReferenceType() && 840 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 841 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 842 ++IRef; 843 ++InitsRef; 844 continue; 845 } 846 FirstprivateIsLastprivate = 847 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 848 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 849 const auto *VDInit = 850 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 851 bool IsRegistered; 852 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 853 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 854 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 855 LValue OriginalLVal; 856 if (!FD) { 857 // Check if the firstprivate variable is just a constant value. 858 ConstantEmission CE = tryEmitAsConstant(&DRE); 859 if (CE && !CE.isReference()) { 860 // Constant value, no need to create a copy. 861 ++IRef; 862 ++InitsRef; 863 continue; 864 } 865 if (CE && CE.isReference()) { 866 OriginalLVal = CE.getReferenceLValue(*this, &DRE); 867 } else { 868 assert(!CE && "Expected non-constant firstprivate."); 869 OriginalLVal = EmitLValue(&DRE); 870 } 871 } else { 872 OriginalLVal = EmitLValue(&DRE); 873 } 874 QualType Type = VD->getType(); 875 if (Type->isArrayType()) { 876 // Emit VarDecl with copy init for arrays. 877 // Get the address of the original variable captured in current 878 // captured region. 879 IsRegistered = PrivateScope.addPrivate( 880 OrigVD, [this, VD, Type, OriginalLVal, VDInit]() { 881 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 882 const Expr *Init = VD->getInit(); 883 if (!isa<CXXConstructExpr>(Init) || 884 isTrivialInitializer(Init)) { 885 // Perform simple memcpy. 886 LValue Dest = 887 MakeAddrLValue(Emission.getAllocatedAddress(), Type); 888 EmitAggregateAssign(Dest, OriginalLVal, Type); 889 } else { 890 EmitOMPAggregateAssign( 891 Emission.getAllocatedAddress(), 892 OriginalLVal.getAddress(*this), Type, 893 [this, VDInit, Init](Address DestElement, 894 Address SrcElement) { 895 // Clean up any temporaries needed by the 896 // initialization. 897 RunCleanupsScope InitScope(*this); 898 // Emit initialization for single element. 899 setAddrOfLocalVar(VDInit, SrcElement); 900 EmitAnyExprToMem(Init, DestElement, 901 Init->getType().getQualifiers(), 902 /*IsInitializer*/ false); 903 LocalDeclMap.erase(VDInit); 904 }); 905 } 906 EmitAutoVarCleanups(Emission); 907 return Emission.getAllocatedAddress(); 908 }); 909 } else { 910 Address OriginalAddr = OriginalLVal.getAddress(*this); 911 IsRegistered = 912 PrivateScope.addPrivate(OrigVD, [this, VDInit, OriginalAddr, VD, 913 ThisFirstprivateIsLastprivate, 914 OrigVD, &Lastprivates, IRef]() { 915 // Emit private VarDecl with copy init. 916 // Remap temp VDInit variable to the address of the original 917 // variable (for proper handling of captured global variables). 918 setAddrOfLocalVar(VDInit, OriginalAddr); 919 EmitDecl(*VD); 920 LocalDeclMap.erase(VDInit); 921 if (ThisFirstprivateIsLastprivate && 922 Lastprivates[OrigVD->getCanonicalDecl()] == 923 OMPC_LASTPRIVATE_conditional) { 924 // Create/init special variable for lastprivate conditionals. 925 Address VDAddr = 926 CGM.getOpenMPRuntime().emitLastprivateConditionalInit( 927 *this, OrigVD); 928 llvm::Value *V = EmitLoadOfScalar( 929 MakeAddrLValue(GetAddrOfLocalVar(VD), (*IRef)->getType(), 930 AlignmentSource::Decl), 931 (*IRef)->getExprLoc()); 932 EmitStoreOfScalar(V, 933 MakeAddrLValue(VDAddr, (*IRef)->getType(), 934 AlignmentSource::Decl)); 935 LocalDeclMap.erase(VD); 936 setAddrOfLocalVar(VD, VDAddr); 937 return VDAddr; 938 } 939 return GetAddrOfLocalVar(VD); 940 }); 941 } 942 assert(IsRegistered && 943 "firstprivate var already registered as private"); 944 // Silence the warning about unused variable. 945 (void)IsRegistered; 946 } 947 ++IRef; 948 ++InitsRef; 949 } 950 } 951 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 952 } 953 954 void CodeGenFunction::EmitOMPPrivateClause( 955 const OMPExecutableDirective &D, 956 CodeGenFunction::OMPPrivateScope &PrivateScope) { 957 if (!HaveInsertPoint()) 958 return; 959 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 960 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 961 auto IRef = C->varlist_begin(); 962 for (const Expr *IInit : C->private_copies()) { 963 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 964 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 965 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 966 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 967 // Emit private VarDecl with copy init. 968 EmitDecl(*VD); 969 return GetAddrOfLocalVar(VD); 970 }); 971 assert(IsRegistered && "private var already registered as private"); 972 // Silence the warning about unused variable. 973 (void)IsRegistered; 974 } 975 ++IRef; 976 } 977 } 978 } 979 980 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 981 if (!HaveInsertPoint()) 982 return false; 983 // threadprivate_var1 = master_threadprivate_var1; 984 // operator=(threadprivate_var2, master_threadprivate_var2); 985 // ... 986 // __kmpc_barrier(&loc, global_tid); 987 llvm::DenseSet<const VarDecl *> CopiedVars; 988 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 989 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 990 auto IRef = C->varlist_begin(); 991 auto ISrcRef = C->source_exprs().begin(); 992 auto IDestRef = C->destination_exprs().begin(); 993 for (const Expr *AssignOp : C->assignment_ops()) { 994 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 995 QualType Type = VD->getType(); 996 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 997 // Get the address of the master variable. If we are emitting code with 998 // TLS support, the address is passed from the master as field in the 999 // captured declaration. 1000 Address MasterAddr = Address::invalid(); 1001 if (getLangOpts().OpenMPUseTLS && 1002 getContext().getTargetInfo().isTLSSupported()) { 1003 assert(CapturedStmtInfo->lookup(VD) && 1004 "Copyin threadprivates should have been captured!"); 1005 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true, 1006 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1007 MasterAddr = EmitLValue(&DRE).getAddress(*this); 1008 LocalDeclMap.erase(VD); 1009 } else { 1010 MasterAddr = 1011 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 1012 : CGM.GetAddrOfGlobal(VD), 1013 getContext().getDeclAlign(VD)); 1014 } 1015 // Get the address of the threadprivate variable. 1016 Address PrivateAddr = EmitLValue(*IRef).getAddress(*this); 1017 if (CopiedVars.size() == 1) { 1018 // At first check if current thread is a master thread. If it is, no 1019 // need to copy data. 1020 CopyBegin = createBasicBlock("copyin.not.master"); 1021 CopyEnd = createBasicBlock("copyin.not.master.end"); 1022 // TODO: Avoid ptrtoint conversion. 1023 auto *MasterAddrInt = 1024 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy); 1025 auto *PrivateAddrInt = 1026 Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy); 1027 Builder.CreateCondBr( 1028 Builder.CreateICmpNE(MasterAddrInt, PrivateAddrInt), CopyBegin, 1029 CopyEnd); 1030 EmitBlock(CopyBegin); 1031 } 1032 const auto *SrcVD = 1033 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1034 const auto *DestVD = 1035 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1036 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 1037 } 1038 ++IRef; 1039 ++ISrcRef; 1040 ++IDestRef; 1041 } 1042 } 1043 if (CopyEnd) { 1044 // Exit out of copying procedure for non-master thread. 1045 EmitBlock(CopyEnd, /*IsFinished=*/true); 1046 return true; 1047 } 1048 return false; 1049 } 1050 1051 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 1052 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 1053 if (!HaveInsertPoint()) 1054 return false; 1055 bool HasAtLeastOneLastprivate = false; 1056 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1057 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1058 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1059 for (const Expr *C : LoopDirective->counters()) { 1060 SIMDLCVs.insert( 1061 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1062 } 1063 } 1064 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1065 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1066 HasAtLeastOneLastprivate = true; 1067 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 1068 !getLangOpts().OpenMPSimd) 1069 break; 1070 const auto *IRef = C->varlist_begin(); 1071 const auto *IDestRef = C->destination_exprs().begin(); 1072 for (const Expr *IInit : C->private_copies()) { 1073 // Keep the address of the original variable for future update at the end 1074 // of the loop. 1075 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1076 // Taskloops do not require additional initialization, it is done in 1077 // runtime support library. 1078 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 1079 const auto *DestVD = 1080 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1081 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() { 1082 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1083 /*RefersToEnclosingVariableOrCapture=*/ 1084 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1085 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1086 return EmitLValue(&DRE).getAddress(*this); 1087 }); 1088 // Check if the variable is also a firstprivate: in this case IInit is 1089 // not generated. Initialization of this variable will happen in codegen 1090 // for 'firstprivate' clause. 1091 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 1092 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 1093 bool IsRegistered = 1094 PrivateScope.addPrivate(OrigVD, [this, VD, C, OrigVD]() { 1095 if (C->getKind() == OMPC_LASTPRIVATE_conditional) { 1096 Address VDAddr = 1097 CGM.getOpenMPRuntime().emitLastprivateConditionalInit( 1098 *this, OrigVD); 1099 setAddrOfLocalVar(VD, VDAddr); 1100 return VDAddr; 1101 } 1102 // Emit private VarDecl with copy init. 1103 EmitDecl(*VD); 1104 return GetAddrOfLocalVar(VD); 1105 }); 1106 assert(IsRegistered && 1107 "lastprivate var already registered as private"); 1108 (void)IsRegistered; 1109 } 1110 } 1111 ++IRef; 1112 ++IDestRef; 1113 } 1114 } 1115 return HasAtLeastOneLastprivate; 1116 } 1117 1118 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 1119 const OMPExecutableDirective &D, bool NoFinals, 1120 llvm::Value *IsLastIterCond) { 1121 if (!HaveInsertPoint()) 1122 return; 1123 // Emit following code: 1124 // if (<IsLastIterCond>) { 1125 // orig_var1 = private_orig_var1; 1126 // ... 1127 // orig_varn = private_orig_varn; 1128 // } 1129 llvm::BasicBlock *ThenBB = nullptr; 1130 llvm::BasicBlock *DoneBB = nullptr; 1131 if (IsLastIterCond) { 1132 // Emit implicit barrier if at least one lastprivate conditional is found 1133 // and this is not a simd mode. 1134 if (!getLangOpts().OpenMPSimd && 1135 llvm::any_of(D.getClausesOfKind<OMPLastprivateClause>(), 1136 [](const OMPLastprivateClause *C) { 1137 return C->getKind() == OMPC_LASTPRIVATE_conditional; 1138 })) { 1139 CGM.getOpenMPRuntime().emitBarrierCall(*this, D.getBeginLoc(), 1140 OMPD_unknown, 1141 /*EmitChecks=*/false, 1142 /*ForceSimpleCall=*/true); 1143 } 1144 ThenBB = createBasicBlock(".omp.lastprivate.then"); 1145 DoneBB = createBasicBlock(".omp.lastprivate.done"); 1146 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1147 EmitBlock(ThenBB); 1148 } 1149 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1150 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1151 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1152 auto IC = LoopDirective->counters().begin(); 1153 for (const Expr *F : LoopDirective->finals()) { 1154 const auto *D = 1155 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1156 if (NoFinals) 1157 AlreadyEmittedVars.insert(D); 1158 else 1159 LoopCountersAndUpdates[D] = F; 1160 ++IC; 1161 } 1162 } 1163 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1164 auto IRef = C->varlist_begin(); 1165 auto ISrcRef = C->source_exprs().begin(); 1166 auto IDestRef = C->destination_exprs().begin(); 1167 for (const Expr *AssignOp : C->assignment_ops()) { 1168 const auto *PrivateVD = 1169 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1170 QualType Type = PrivateVD->getType(); 1171 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1172 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1173 // If lastprivate variable is a loop control variable for loop-based 1174 // directive, update its value before copyin back to original 1175 // variable. 1176 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1177 EmitIgnoredExpr(FinalExpr); 1178 const auto *SrcVD = 1179 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1180 const auto *DestVD = 1181 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1182 // Get the address of the private variable. 1183 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1184 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1185 PrivateAddr = 1186 Address(Builder.CreateLoad(PrivateAddr), 1187 CGM.getNaturalTypeAlignment(RefTy->getPointeeType())); 1188 // Store the last value to the private copy in the last iteration. 1189 if (C->getKind() == OMPC_LASTPRIVATE_conditional) 1190 CGM.getOpenMPRuntime().emitLastprivateConditionalFinalUpdate( 1191 *this, MakeAddrLValue(PrivateAddr, (*IRef)->getType()), PrivateVD, 1192 (*IRef)->getExprLoc()); 1193 // Get the address of the original variable. 1194 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1195 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1196 } 1197 ++IRef; 1198 ++ISrcRef; 1199 ++IDestRef; 1200 } 1201 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1202 EmitIgnoredExpr(PostUpdate); 1203 } 1204 if (IsLastIterCond) 1205 EmitBlock(DoneBB, /*IsFinished=*/true); 1206 } 1207 1208 void CodeGenFunction::EmitOMPReductionClauseInit( 1209 const OMPExecutableDirective &D, 1210 CodeGenFunction::OMPPrivateScope &PrivateScope, bool ForInscan) { 1211 if (!HaveInsertPoint()) 1212 return; 1213 SmallVector<const Expr *, 4> Shareds; 1214 SmallVector<const Expr *, 4> Privates; 1215 SmallVector<const Expr *, 4> ReductionOps; 1216 SmallVector<const Expr *, 4> LHSs; 1217 SmallVector<const Expr *, 4> RHSs; 1218 OMPTaskDataTy Data; 1219 SmallVector<const Expr *, 4> TaskLHSs; 1220 SmallVector<const Expr *, 4> TaskRHSs; 1221 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1222 if (ForInscan != (C->getModifier() == OMPC_REDUCTION_inscan)) 1223 continue; 1224 Shareds.append(C->varlist_begin(), C->varlist_end()); 1225 Privates.append(C->privates().begin(), C->privates().end()); 1226 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1227 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1228 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1229 if (C->getModifier() == OMPC_REDUCTION_task) { 1230 Data.ReductionVars.append(C->privates().begin(), C->privates().end()); 1231 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 1232 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 1233 Data.ReductionOps.append(C->reduction_ops().begin(), 1234 C->reduction_ops().end()); 1235 TaskLHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1236 TaskRHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1237 } 1238 } 1239 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 1240 unsigned Count = 0; 1241 auto *ILHS = LHSs.begin(); 1242 auto *IRHS = RHSs.begin(); 1243 auto *IPriv = Privates.begin(); 1244 for (const Expr *IRef : Shareds) { 1245 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1246 // Emit private VarDecl with reduction init. 1247 RedCG.emitSharedOrigLValue(*this, Count); 1248 RedCG.emitAggregateType(*this, Count); 1249 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1250 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1251 RedCG.getSharedLValue(Count).getAddress(*this), 1252 [&Emission](CodeGenFunction &CGF) { 1253 CGF.EmitAutoVarInit(Emission); 1254 return true; 1255 }); 1256 EmitAutoVarCleanups(Emission); 1257 Address BaseAddr = RedCG.adjustPrivateAddress( 1258 *this, Count, Emission.getAllocatedAddress()); 1259 bool IsRegistered = PrivateScope.addPrivate( 1260 RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; }); 1261 assert(IsRegistered && "private var already registered as private"); 1262 // Silence the warning about unused variable. 1263 (void)IsRegistered; 1264 1265 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1266 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1267 QualType Type = PrivateVD->getType(); 1268 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1269 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1270 // Store the address of the original variable associated with the LHS 1271 // implicit variable. 1272 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1273 return RedCG.getSharedLValue(Count).getAddress(*this); 1274 }); 1275 PrivateScope.addPrivate( 1276 RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); }); 1277 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1278 isa<ArraySubscriptExpr>(IRef)) { 1279 // Store the address of the original variable associated with the LHS 1280 // implicit variable. 1281 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1282 return RedCG.getSharedLValue(Count).getAddress(*this); 1283 }); 1284 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() { 1285 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1286 ConvertTypeForMem(RHSVD->getType()), 1287 "rhs.begin"); 1288 }); 1289 } else { 1290 QualType Type = PrivateVD->getType(); 1291 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1292 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(*this); 1293 // Store the address of the original variable associated with the LHS 1294 // implicit variable. 1295 if (IsArray) { 1296 OriginalAddr = Builder.CreateElementBitCast( 1297 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1298 } 1299 PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; }); 1300 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD, IsArray]() { 1301 return IsArray ? Builder.CreateElementBitCast( 1302 GetAddrOfLocalVar(PrivateVD), 1303 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1304 : GetAddrOfLocalVar(PrivateVD); 1305 }); 1306 } 1307 ++ILHS; 1308 ++IRHS; 1309 ++IPriv; 1310 ++Count; 1311 } 1312 if (!Data.ReductionVars.empty()) { 1313 Data.IsReductionWithTaskMod = true; 1314 Data.IsWorksharingReduction = 1315 isOpenMPWorksharingDirective(D.getDirectiveKind()); 1316 llvm::Value *ReductionDesc = CGM.getOpenMPRuntime().emitTaskReductionInit( 1317 *this, D.getBeginLoc(), TaskLHSs, TaskRHSs, Data); 1318 const Expr *TaskRedRef = nullptr; 1319 switch (D.getDirectiveKind()) { 1320 case OMPD_parallel: 1321 TaskRedRef = cast<OMPParallelDirective>(D).getTaskReductionRefExpr(); 1322 break; 1323 case OMPD_for: 1324 TaskRedRef = cast<OMPForDirective>(D).getTaskReductionRefExpr(); 1325 break; 1326 case OMPD_sections: 1327 TaskRedRef = cast<OMPSectionsDirective>(D).getTaskReductionRefExpr(); 1328 break; 1329 case OMPD_parallel_for: 1330 TaskRedRef = cast<OMPParallelForDirective>(D).getTaskReductionRefExpr(); 1331 break; 1332 case OMPD_parallel_master: 1333 TaskRedRef = 1334 cast<OMPParallelMasterDirective>(D).getTaskReductionRefExpr(); 1335 break; 1336 case OMPD_parallel_sections: 1337 TaskRedRef = 1338 cast<OMPParallelSectionsDirective>(D).getTaskReductionRefExpr(); 1339 break; 1340 case OMPD_target_parallel: 1341 TaskRedRef = 1342 cast<OMPTargetParallelDirective>(D).getTaskReductionRefExpr(); 1343 break; 1344 case OMPD_target_parallel_for: 1345 TaskRedRef = 1346 cast<OMPTargetParallelForDirective>(D).getTaskReductionRefExpr(); 1347 break; 1348 case OMPD_distribute_parallel_for: 1349 TaskRedRef = 1350 cast<OMPDistributeParallelForDirective>(D).getTaskReductionRefExpr(); 1351 break; 1352 case OMPD_teams_distribute_parallel_for: 1353 TaskRedRef = cast<OMPTeamsDistributeParallelForDirective>(D) 1354 .getTaskReductionRefExpr(); 1355 break; 1356 case OMPD_target_teams_distribute_parallel_for: 1357 TaskRedRef = cast<OMPTargetTeamsDistributeParallelForDirective>(D) 1358 .getTaskReductionRefExpr(); 1359 break; 1360 case OMPD_simd: 1361 case OMPD_for_simd: 1362 case OMPD_section: 1363 case OMPD_single: 1364 case OMPD_master: 1365 case OMPD_critical: 1366 case OMPD_parallel_for_simd: 1367 case OMPD_task: 1368 case OMPD_taskyield: 1369 case OMPD_barrier: 1370 case OMPD_taskwait: 1371 case OMPD_taskgroup: 1372 case OMPD_flush: 1373 case OMPD_depobj: 1374 case OMPD_scan: 1375 case OMPD_ordered: 1376 case OMPD_atomic: 1377 case OMPD_teams: 1378 case OMPD_target: 1379 case OMPD_cancellation_point: 1380 case OMPD_cancel: 1381 case OMPD_target_data: 1382 case OMPD_target_enter_data: 1383 case OMPD_target_exit_data: 1384 case OMPD_taskloop: 1385 case OMPD_taskloop_simd: 1386 case OMPD_master_taskloop: 1387 case OMPD_master_taskloop_simd: 1388 case OMPD_parallel_master_taskloop: 1389 case OMPD_parallel_master_taskloop_simd: 1390 case OMPD_distribute: 1391 case OMPD_target_update: 1392 case OMPD_distribute_parallel_for_simd: 1393 case OMPD_distribute_simd: 1394 case OMPD_target_parallel_for_simd: 1395 case OMPD_target_simd: 1396 case OMPD_teams_distribute: 1397 case OMPD_teams_distribute_simd: 1398 case OMPD_teams_distribute_parallel_for_simd: 1399 case OMPD_target_teams: 1400 case OMPD_target_teams_distribute: 1401 case OMPD_target_teams_distribute_parallel_for_simd: 1402 case OMPD_target_teams_distribute_simd: 1403 case OMPD_declare_target: 1404 case OMPD_end_declare_target: 1405 case OMPD_threadprivate: 1406 case OMPD_allocate: 1407 case OMPD_declare_reduction: 1408 case OMPD_declare_mapper: 1409 case OMPD_declare_simd: 1410 case OMPD_requires: 1411 case OMPD_declare_variant: 1412 case OMPD_begin_declare_variant: 1413 case OMPD_end_declare_variant: 1414 case OMPD_unknown: 1415 default: 1416 llvm_unreachable("Enexpected directive with task reductions."); 1417 } 1418 1419 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(TaskRedRef)->getDecl()); 1420 EmitVarDecl(*VD); 1421 EmitStoreOfScalar(ReductionDesc, GetAddrOfLocalVar(VD), 1422 /*Volatile=*/false, TaskRedRef->getType()); 1423 } 1424 } 1425 1426 void CodeGenFunction::EmitOMPReductionClauseFinal( 1427 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1428 if (!HaveInsertPoint()) 1429 return; 1430 llvm::SmallVector<const Expr *, 8> Privates; 1431 llvm::SmallVector<const Expr *, 8> LHSExprs; 1432 llvm::SmallVector<const Expr *, 8> RHSExprs; 1433 llvm::SmallVector<const Expr *, 8> ReductionOps; 1434 bool HasAtLeastOneReduction = false; 1435 bool IsReductionWithTaskMod = false; 1436 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1437 // Do not emit for inscan reductions. 1438 if (C->getModifier() == OMPC_REDUCTION_inscan) 1439 continue; 1440 HasAtLeastOneReduction = true; 1441 Privates.append(C->privates().begin(), C->privates().end()); 1442 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1443 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1444 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1445 IsReductionWithTaskMod = 1446 IsReductionWithTaskMod || C->getModifier() == OMPC_REDUCTION_task; 1447 } 1448 if (HasAtLeastOneReduction) { 1449 if (IsReductionWithTaskMod) { 1450 CGM.getOpenMPRuntime().emitTaskReductionFini( 1451 *this, D.getBeginLoc(), 1452 isOpenMPWorksharingDirective(D.getDirectiveKind())); 1453 } 1454 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1455 isOpenMPParallelDirective(D.getDirectiveKind()) || 1456 ReductionKind == OMPD_simd; 1457 bool SimpleReduction = ReductionKind == OMPD_simd; 1458 // Emit nowait reduction if nowait clause is present or directive is a 1459 // parallel directive (it always has implicit barrier). 1460 CGM.getOpenMPRuntime().emitReduction( 1461 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1462 {WithNowait, SimpleReduction, ReductionKind}); 1463 } 1464 } 1465 1466 static void emitPostUpdateForReductionClause( 1467 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1468 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1469 if (!CGF.HaveInsertPoint()) 1470 return; 1471 llvm::BasicBlock *DoneBB = nullptr; 1472 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1473 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1474 if (!DoneBB) { 1475 if (llvm::Value *Cond = CondGen(CGF)) { 1476 // If the first post-update expression is found, emit conditional 1477 // block if it was requested. 1478 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1479 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1480 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1481 CGF.EmitBlock(ThenBB); 1482 } 1483 } 1484 CGF.EmitIgnoredExpr(PostUpdate); 1485 } 1486 } 1487 if (DoneBB) 1488 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1489 } 1490 1491 namespace { 1492 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1493 /// parallel function. This is necessary for combined constructs such as 1494 /// 'distribute parallel for' 1495 typedef llvm::function_ref<void(CodeGenFunction &, 1496 const OMPExecutableDirective &, 1497 llvm::SmallVectorImpl<llvm::Value *> &)> 1498 CodeGenBoundParametersTy; 1499 } // anonymous namespace 1500 1501 static void 1502 checkForLastprivateConditionalUpdate(CodeGenFunction &CGF, 1503 const OMPExecutableDirective &S) { 1504 if (CGF.getLangOpts().OpenMP < 50) 1505 return; 1506 llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> PrivateDecls; 1507 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 1508 for (const Expr *Ref : C->varlists()) { 1509 if (!Ref->getType()->isScalarType()) 1510 continue; 1511 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1512 if (!DRE) 1513 continue; 1514 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1515 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1516 } 1517 } 1518 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 1519 for (const Expr *Ref : C->varlists()) { 1520 if (!Ref->getType()->isScalarType()) 1521 continue; 1522 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1523 if (!DRE) 1524 continue; 1525 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1526 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1527 } 1528 } 1529 for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) { 1530 for (const Expr *Ref : C->varlists()) { 1531 if (!Ref->getType()->isScalarType()) 1532 continue; 1533 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1534 if (!DRE) 1535 continue; 1536 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1537 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1538 } 1539 } 1540 // Privates should ne analyzed since they are not captured at all. 1541 // Task reductions may be skipped - tasks are ignored. 1542 // Firstprivates do not return value but may be passed by reference - no need 1543 // to check for updated lastprivate conditional. 1544 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 1545 for (const Expr *Ref : C->varlists()) { 1546 if (!Ref->getType()->isScalarType()) 1547 continue; 1548 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1549 if (!DRE) 1550 continue; 1551 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1552 } 1553 } 1554 CGF.CGM.getOpenMPRuntime().checkAndEmitSharedLastprivateConditional( 1555 CGF, S, PrivateDecls); 1556 } 1557 1558 static void emitCommonOMPParallelDirective( 1559 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1560 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1561 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1562 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1563 llvm::Value *NumThreads = nullptr; 1564 llvm::Function *OutlinedFn = 1565 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1566 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1567 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1568 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1569 NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1570 /*IgnoreResultAssign=*/true); 1571 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1572 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1573 } 1574 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1575 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1576 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1577 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1578 } 1579 const Expr *IfCond = nullptr; 1580 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1581 if (C->getNameModifier() == OMPD_unknown || 1582 C->getNameModifier() == OMPD_parallel) { 1583 IfCond = C->getCondition(); 1584 break; 1585 } 1586 } 1587 1588 OMPParallelScope Scope(CGF, S); 1589 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1590 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1591 // lower and upper bounds with the pragma 'for' chunking mechanism. 1592 // The following lambda takes care of appending the lower and upper bound 1593 // parameters when necessary 1594 CodeGenBoundParameters(CGF, S, CapturedVars); 1595 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1596 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1597 CapturedVars, IfCond, NumThreads); 1598 } 1599 1600 static bool isAllocatableDecl(const VarDecl *VD) { 1601 const VarDecl *CVD = VD->getCanonicalDecl(); 1602 if (!CVD->hasAttr<OMPAllocateDeclAttr>()) 1603 return false; 1604 const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); 1605 // Use the default allocation. 1606 return !((AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc || 1607 AA->getAllocatorType() == OMPAllocateDeclAttr::OMPNullMemAlloc) && 1608 !AA->getAllocator()); 1609 } 1610 1611 static void emitEmptyBoundParameters(CodeGenFunction &, 1612 const OMPExecutableDirective &, 1613 llvm::SmallVectorImpl<llvm::Value *> &) {} 1614 1615 Address CodeGenFunction::OMPBuilderCBHelpers::getAddressOfLocalVariable( 1616 CodeGenFunction &CGF, const VarDecl *VD) { 1617 CodeGenModule &CGM = CGF.CGM; 1618 auto &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1619 1620 if (!VD) 1621 return Address::invalid(); 1622 const VarDecl *CVD = VD->getCanonicalDecl(); 1623 if (!isAllocatableDecl(CVD)) 1624 return Address::invalid(); 1625 llvm::Value *Size; 1626 CharUnits Align = CGM.getContext().getDeclAlign(CVD); 1627 if (CVD->getType()->isVariablyModifiedType()) { 1628 Size = CGF.getTypeSize(CVD->getType()); 1629 // Align the size: ((size + align - 1) / align) * align 1630 Size = CGF.Builder.CreateNUWAdd( 1631 Size, CGM.getSize(Align - CharUnits::fromQuantity(1))); 1632 Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align)); 1633 Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align)); 1634 } else { 1635 CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType()); 1636 Size = CGM.getSize(Sz.alignTo(Align)); 1637 } 1638 1639 const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); 1640 assert(AA->getAllocator() && 1641 "Expected allocator expression for non-default allocator."); 1642 llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator()); 1643 // According to the standard, the original allocator type is a enum (integer). 1644 // Convert to pointer type, if required. 1645 if (Allocator->getType()->isIntegerTy()) 1646 Allocator = CGF.Builder.CreateIntToPtr(Allocator, CGM.VoidPtrTy); 1647 else if (Allocator->getType()->isPointerTy()) 1648 Allocator = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Allocator, 1649 CGM.VoidPtrTy); 1650 1651 llvm::Value *Addr = OMPBuilder.createOMPAlloc( 1652 CGF.Builder, Size, Allocator, 1653 getNameWithSeparators({CVD->getName(), ".void.addr"}, ".", ".")); 1654 llvm::CallInst *FreeCI = 1655 OMPBuilder.createOMPFree(CGF.Builder, Addr, Allocator); 1656 1657 CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(NormalAndEHCleanup, FreeCI); 1658 Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 1659 Addr, 1660 CGF.ConvertTypeForMem(CGM.getContext().getPointerType(CVD->getType())), 1661 getNameWithSeparators({CVD->getName(), ".addr"}, ".", ".")); 1662 return Address(Addr, Align); 1663 } 1664 1665 Address CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate( 1666 CodeGenFunction &CGF, const VarDecl *VD, Address VDAddr, 1667 SourceLocation Loc) { 1668 CodeGenModule &CGM = CGF.CGM; 1669 if (CGM.getLangOpts().OpenMPUseTLS && 1670 CGM.getContext().getTargetInfo().isTLSSupported()) 1671 return VDAddr; 1672 1673 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1674 1675 llvm::Type *VarTy = VDAddr.getElementType(); 1676 llvm::Value *Data = 1677 CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.Int8PtrTy); 1678 llvm::ConstantInt *Size = CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)); 1679 std::string Suffix = getNameWithSeparators({"cache", ""}); 1680 llvm::Twine CacheName = Twine(CGM.getMangledName(VD)).concat(Suffix); 1681 1682 llvm::CallInst *ThreadPrivateCacheCall = 1683 OMPBuilder.createCachedThreadPrivate(CGF.Builder, Data, Size, CacheName); 1684 1685 return Address(ThreadPrivateCacheCall, VDAddr.getAlignment()); 1686 } 1687 1688 std::string CodeGenFunction::OMPBuilderCBHelpers::getNameWithSeparators( 1689 ArrayRef<StringRef> Parts, StringRef FirstSeparator, StringRef Separator) { 1690 SmallString<128> Buffer; 1691 llvm::raw_svector_ostream OS(Buffer); 1692 StringRef Sep = FirstSeparator; 1693 for (StringRef Part : Parts) { 1694 OS << Sep << Part; 1695 Sep = Separator; 1696 } 1697 return OS.str().str(); 1698 } 1699 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1700 if (CGM.getLangOpts().OpenMPIRBuilder) { 1701 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1702 // Check if we have any if clause associated with the directive. 1703 llvm::Value *IfCond = nullptr; 1704 if (const auto *C = S.getSingleClause<OMPIfClause>()) 1705 IfCond = EmitScalarExpr(C->getCondition(), 1706 /*IgnoreResultAssign=*/true); 1707 1708 llvm::Value *NumThreads = nullptr; 1709 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) 1710 NumThreads = EmitScalarExpr(NumThreadsClause->getNumThreads(), 1711 /*IgnoreResultAssign=*/true); 1712 1713 ProcBindKind ProcBind = OMP_PROC_BIND_default; 1714 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) 1715 ProcBind = ProcBindClause->getProcBindKind(); 1716 1717 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1718 1719 // The cleanup callback that finalizes all variabels at the given location, 1720 // thus calls destructors etc. 1721 auto FiniCB = [this](InsertPointTy IP) { 1722 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 1723 }; 1724 1725 // Privatization callback that performs appropriate action for 1726 // shared/private/firstprivate/lastprivate/copyin/... variables. 1727 // 1728 // TODO: This defaults to shared right now. 1729 auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1730 llvm::Value &, llvm::Value &Val, llvm::Value *&ReplVal) { 1731 // The next line is appropriate only for variables (Val) with the 1732 // data-sharing attribute "shared". 1733 ReplVal = &Val; 1734 1735 return CodeGenIP; 1736 }; 1737 1738 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1739 const Stmt *ParallelRegionBodyStmt = CS->getCapturedStmt(); 1740 1741 auto BodyGenCB = [ParallelRegionBodyStmt, 1742 this](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1743 llvm::BasicBlock &ContinuationBB) { 1744 OMPBuilderCBHelpers::OutlinedRegionBodyRAII ORB(*this, AllocaIP, 1745 ContinuationBB); 1746 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, ParallelRegionBodyStmt, 1747 CodeGenIP, ContinuationBB); 1748 }; 1749 1750 CGCapturedStmtInfo CGSI(*CS, CR_OpenMP); 1751 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 1752 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 1753 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 1754 Builder.restoreIP( 1755 OMPBuilder.createParallel(Builder, AllocaIP, BodyGenCB, PrivCB, FiniCB, 1756 IfCond, NumThreads, ProcBind, S.hasCancel())); 1757 return; 1758 } 1759 1760 // Emit parallel region as a standalone region. 1761 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1762 Action.Enter(CGF); 1763 OMPPrivateScope PrivateScope(CGF); 1764 bool Copyins = CGF.EmitOMPCopyinClause(S); 1765 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1766 if (Copyins) { 1767 // Emit implicit barrier to synchronize threads and avoid data races on 1768 // propagation master's thread values of threadprivate variables to local 1769 // instances of that variables of all other implicit threads. 1770 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1771 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1772 /*ForceSimpleCall=*/true); 1773 } 1774 CGF.EmitOMPPrivateClause(S, PrivateScope); 1775 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1776 (void)PrivateScope.Privatize(); 1777 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1778 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1779 }; 1780 { 1781 auto LPCRegion = 1782 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 1783 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1784 emitEmptyBoundParameters); 1785 emitPostUpdateForReductionClause(*this, S, 1786 [](CodeGenFunction &) { return nullptr; }); 1787 } 1788 // Check for outer lastprivate conditional update. 1789 checkForLastprivateConditionalUpdate(*this, S); 1790 } 1791 1792 void CodeGenFunction::EmitOMPMetaDirective(const OMPMetaDirective &S) { 1793 EmitStmt(S.getIfStmt()); 1794 } 1795 1796 namespace { 1797 /// RAII to handle scopes for loop transformation directives. 1798 class OMPTransformDirectiveScopeRAII { 1799 OMPLoopScope *Scope = nullptr; 1800 CodeGenFunction::CGCapturedStmtInfo *CGSI = nullptr; 1801 CodeGenFunction::CGCapturedStmtRAII *CapInfoRAII = nullptr; 1802 1803 public: 1804 OMPTransformDirectiveScopeRAII(CodeGenFunction &CGF, const Stmt *S) { 1805 if (const auto *Dir = dyn_cast<OMPLoopBasedDirective>(S)) { 1806 Scope = new OMPLoopScope(CGF, *Dir); 1807 CGSI = new CodeGenFunction::CGCapturedStmtInfo(CR_OpenMP); 1808 CapInfoRAII = new CodeGenFunction::CGCapturedStmtRAII(CGF, CGSI); 1809 } 1810 } 1811 ~OMPTransformDirectiveScopeRAII() { 1812 if (!Scope) 1813 return; 1814 delete CapInfoRAII; 1815 delete CGSI; 1816 delete Scope; 1817 } 1818 }; 1819 } // namespace 1820 1821 static void emitBody(CodeGenFunction &CGF, const Stmt *S, const Stmt *NextLoop, 1822 int MaxLevel, int Level = 0) { 1823 assert(Level < MaxLevel && "Too deep lookup during loop body codegen."); 1824 const Stmt *SimplifiedS = S->IgnoreContainers(); 1825 if (const auto *CS = dyn_cast<CompoundStmt>(SimplifiedS)) { 1826 PrettyStackTraceLoc CrashInfo( 1827 CGF.getContext().getSourceManager(), CS->getLBracLoc(), 1828 "LLVM IR generation of compound statement ('{}')"); 1829 1830 // Keep track of the current cleanup stack depth, including debug scopes. 1831 CodeGenFunction::LexicalScope Scope(CGF, S->getSourceRange()); 1832 for (const Stmt *CurStmt : CS->body()) 1833 emitBody(CGF, CurStmt, NextLoop, MaxLevel, Level); 1834 return; 1835 } 1836 if (SimplifiedS == NextLoop) { 1837 if (auto *Dir = dyn_cast<OMPLoopTransformationDirective>(SimplifiedS)) 1838 SimplifiedS = Dir->getTransformedStmt(); 1839 if (const auto *CanonLoop = dyn_cast<OMPCanonicalLoop>(SimplifiedS)) 1840 SimplifiedS = CanonLoop->getLoopStmt(); 1841 if (const auto *For = dyn_cast<ForStmt>(SimplifiedS)) { 1842 S = For->getBody(); 1843 } else { 1844 assert(isa<CXXForRangeStmt>(SimplifiedS) && 1845 "Expected canonical for loop or range-based for loop."); 1846 const auto *CXXFor = cast<CXXForRangeStmt>(SimplifiedS); 1847 CGF.EmitStmt(CXXFor->getLoopVarStmt()); 1848 S = CXXFor->getBody(); 1849 } 1850 if (Level + 1 < MaxLevel) { 1851 NextLoop = OMPLoopDirective::tryToFindNextInnerLoop( 1852 S, /*TryImperfectlyNestedLoops=*/true); 1853 emitBody(CGF, S, NextLoop, MaxLevel, Level + 1); 1854 return; 1855 } 1856 } 1857 CGF.EmitStmt(S); 1858 } 1859 1860 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1861 JumpDest LoopExit) { 1862 RunCleanupsScope BodyScope(*this); 1863 // Update counters values on current iteration. 1864 for (const Expr *UE : D.updates()) 1865 EmitIgnoredExpr(UE); 1866 // Update the linear variables. 1867 // In distribute directives only loop counters may be marked as linear, no 1868 // need to generate the code for them. 1869 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1870 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1871 for (const Expr *UE : C->updates()) 1872 EmitIgnoredExpr(UE); 1873 } 1874 } 1875 1876 // On a continue in the body, jump to the end. 1877 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1878 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1879 for (const Expr *E : D.finals_conditions()) { 1880 if (!E) 1881 continue; 1882 // Check that loop counter in non-rectangular nest fits into the iteration 1883 // space. 1884 llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next"); 1885 EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(), 1886 getProfileCount(D.getBody())); 1887 EmitBlock(NextBB); 1888 } 1889 1890 OMPPrivateScope InscanScope(*this); 1891 EmitOMPReductionClauseInit(D, InscanScope, /*ForInscan=*/true); 1892 bool IsInscanRegion = InscanScope.Privatize(); 1893 if (IsInscanRegion) { 1894 // Need to remember the block before and after scan directive 1895 // to dispatch them correctly depending on the clause used in 1896 // this directive, inclusive or exclusive. For inclusive scan the natural 1897 // order of the blocks is used, for exclusive clause the blocks must be 1898 // executed in reverse order. 1899 OMPBeforeScanBlock = createBasicBlock("omp.before.scan.bb"); 1900 OMPAfterScanBlock = createBasicBlock("omp.after.scan.bb"); 1901 // No need to allocate inscan exit block, in simd mode it is selected in the 1902 // codegen for the scan directive. 1903 if (D.getDirectiveKind() != OMPD_simd && !getLangOpts().OpenMPSimd) 1904 OMPScanExitBlock = createBasicBlock("omp.exit.inscan.bb"); 1905 OMPScanDispatch = createBasicBlock("omp.inscan.dispatch"); 1906 EmitBranch(OMPScanDispatch); 1907 EmitBlock(OMPBeforeScanBlock); 1908 } 1909 1910 // Emit loop variables for C++ range loops. 1911 const Stmt *Body = 1912 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 1913 // Emit loop body. 1914 emitBody(*this, Body, 1915 OMPLoopBasedDirective::tryToFindNextInnerLoop( 1916 Body, /*TryImperfectlyNestedLoops=*/true), 1917 D.getLoopsNumber()); 1918 1919 // Jump to the dispatcher at the end of the loop body. 1920 if (IsInscanRegion) 1921 EmitBranch(OMPScanExitBlock); 1922 1923 // The end (updates/cleanups). 1924 EmitBlock(Continue.getBlock()); 1925 BreakContinueStack.pop_back(); 1926 } 1927 1928 using EmittedClosureTy = std::pair<llvm::Function *, llvm::Value *>; 1929 1930 /// Emit a captured statement and return the function as well as its captured 1931 /// closure context. 1932 static EmittedClosureTy emitCapturedStmtFunc(CodeGenFunction &ParentCGF, 1933 const CapturedStmt *S) { 1934 LValue CapStruct = ParentCGF.InitCapturedStruct(*S); 1935 CodeGenFunction CGF(ParentCGF.CGM, /*suppressNewContext=*/true); 1936 std::unique_ptr<CodeGenFunction::CGCapturedStmtInfo> CSI = 1937 std::make_unique<CodeGenFunction::CGCapturedStmtInfo>(*S); 1938 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, CSI.get()); 1939 llvm::Function *F = CGF.GenerateCapturedStmtFunction(*S); 1940 1941 return {F, CapStruct.getPointer(ParentCGF)}; 1942 } 1943 1944 /// Emit a call to a previously captured closure. 1945 static llvm::CallInst * 1946 emitCapturedStmtCall(CodeGenFunction &ParentCGF, EmittedClosureTy Cap, 1947 llvm::ArrayRef<llvm::Value *> Args) { 1948 // Append the closure context to the argument. 1949 SmallVector<llvm::Value *> EffectiveArgs; 1950 EffectiveArgs.reserve(Args.size() + 1); 1951 llvm::append_range(EffectiveArgs, Args); 1952 EffectiveArgs.push_back(Cap.second); 1953 1954 return ParentCGF.Builder.CreateCall(Cap.first, EffectiveArgs); 1955 } 1956 1957 llvm::CanonicalLoopInfo * 1958 CodeGenFunction::EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, int Depth) { 1959 assert(Depth == 1 && "Nested loops with OpenMPIRBuilder not yet implemented"); 1960 1961 // The caller is processing the loop-associated directive processing the \p 1962 // Depth loops nested in \p S. Put the previous pending loop-associated 1963 // directive to the stack. If the current loop-associated directive is a loop 1964 // transformation directive, it will push its generated loops onto the stack 1965 // such that together with the loops left here they form the combined loop 1966 // nest for the parent loop-associated directive. 1967 int ParentExpectedOMPLoopDepth = ExpectedOMPLoopDepth; 1968 ExpectedOMPLoopDepth = Depth; 1969 1970 EmitStmt(S); 1971 assert(OMPLoopNestStack.size() >= (size_t)Depth && "Found too few loops"); 1972 1973 // The last added loop is the outermost one. 1974 llvm::CanonicalLoopInfo *Result = OMPLoopNestStack.back(); 1975 1976 // Pop the \p Depth loops requested by the call from that stack and restore 1977 // the previous context. 1978 OMPLoopNestStack.pop_back_n(Depth); 1979 ExpectedOMPLoopDepth = ParentExpectedOMPLoopDepth; 1980 1981 return Result; 1982 } 1983 1984 void CodeGenFunction::EmitOMPCanonicalLoop(const OMPCanonicalLoop *S) { 1985 const Stmt *SyntacticalLoop = S->getLoopStmt(); 1986 if (!getLangOpts().OpenMPIRBuilder) { 1987 // Ignore if OpenMPIRBuilder is not enabled. 1988 EmitStmt(SyntacticalLoop); 1989 return; 1990 } 1991 1992 LexicalScope ForScope(*this, S->getSourceRange()); 1993 1994 // Emit init statements. The Distance/LoopVar funcs may reference variable 1995 // declarations they contain. 1996 const Stmt *BodyStmt; 1997 if (const auto *For = dyn_cast<ForStmt>(SyntacticalLoop)) { 1998 if (const Stmt *InitStmt = For->getInit()) 1999 EmitStmt(InitStmt); 2000 BodyStmt = For->getBody(); 2001 } else if (const auto *RangeFor = 2002 dyn_cast<CXXForRangeStmt>(SyntacticalLoop)) { 2003 if (const DeclStmt *RangeStmt = RangeFor->getRangeStmt()) 2004 EmitStmt(RangeStmt); 2005 if (const DeclStmt *BeginStmt = RangeFor->getBeginStmt()) 2006 EmitStmt(BeginStmt); 2007 if (const DeclStmt *EndStmt = RangeFor->getEndStmt()) 2008 EmitStmt(EndStmt); 2009 if (const DeclStmt *LoopVarStmt = RangeFor->getLoopVarStmt()) 2010 EmitStmt(LoopVarStmt); 2011 BodyStmt = RangeFor->getBody(); 2012 } else 2013 llvm_unreachable("Expected for-stmt or range-based for-stmt"); 2014 2015 // Emit closure for later use. By-value captures will be captured here. 2016 const CapturedStmt *DistanceFunc = S->getDistanceFunc(); 2017 EmittedClosureTy DistanceClosure = emitCapturedStmtFunc(*this, DistanceFunc); 2018 const CapturedStmt *LoopVarFunc = S->getLoopVarFunc(); 2019 EmittedClosureTy LoopVarClosure = emitCapturedStmtFunc(*this, LoopVarFunc); 2020 2021 // Call the distance function to get the number of iterations of the loop to 2022 // come. 2023 QualType LogicalTy = DistanceFunc->getCapturedDecl() 2024 ->getParam(0) 2025 ->getType() 2026 .getNonReferenceType(); 2027 Address CountAddr = CreateMemTemp(LogicalTy, ".count.addr"); 2028 emitCapturedStmtCall(*this, DistanceClosure, {CountAddr.getPointer()}); 2029 llvm::Value *DistVal = Builder.CreateLoad(CountAddr, ".count"); 2030 2031 // Emit the loop structure. 2032 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 2033 auto BodyGen = [&, this](llvm::OpenMPIRBuilder::InsertPointTy CodeGenIP, 2034 llvm::Value *IndVar) { 2035 Builder.restoreIP(CodeGenIP); 2036 2037 // Emit the loop body: Convert the logical iteration number to the loop 2038 // variable and emit the body. 2039 const DeclRefExpr *LoopVarRef = S->getLoopVarRef(); 2040 LValue LCVal = EmitLValue(LoopVarRef); 2041 Address LoopVarAddress = LCVal.getAddress(*this); 2042 emitCapturedStmtCall(*this, LoopVarClosure, 2043 {LoopVarAddress.getPointer(), IndVar}); 2044 2045 RunCleanupsScope BodyScope(*this); 2046 EmitStmt(BodyStmt); 2047 }; 2048 llvm::CanonicalLoopInfo *CL = 2049 OMPBuilder.createCanonicalLoop(Builder, BodyGen, DistVal); 2050 2051 // Finish up the loop. 2052 Builder.restoreIP(CL->getAfterIP()); 2053 ForScope.ForceCleanup(); 2054 2055 // Remember the CanonicalLoopInfo for parent AST nodes consuming it. 2056 OMPLoopNestStack.push_back(CL); 2057 } 2058 2059 void CodeGenFunction::EmitOMPInnerLoop( 2060 const OMPExecutableDirective &S, bool RequiresCleanup, const Expr *LoopCond, 2061 const Expr *IncExpr, 2062 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 2063 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 2064 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 2065 2066 // Start the loop with a block that tests the condition. 2067 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 2068 EmitBlock(CondBlock); 2069 const SourceRange R = S.getSourceRange(); 2070 2071 // If attributes are attached, push to the basic block with them. 2072 const auto &OMPED = cast<OMPExecutableDirective>(S); 2073 const CapturedStmt *ICS = OMPED.getInnermostCapturedStmt(); 2074 const Stmt *SS = ICS->getCapturedStmt(); 2075 const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(SS); 2076 OMPLoopNestStack.clear(); 2077 if (AS) 2078 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), 2079 AS->getAttrs(), SourceLocToDebugLoc(R.getBegin()), 2080 SourceLocToDebugLoc(R.getEnd())); 2081 else 2082 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 2083 SourceLocToDebugLoc(R.getEnd())); 2084 2085 // If there are any cleanups between here and the loop-exit scope, 2086 // create a block to stage a loop exit along. 2087 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 2088 if (RequiresCleanup) 2089 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 2090 2091 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 2092 2093 // Emit condition. 2094 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 2095 if (ExitBlock != LoopExit.getBlock()) { 2096 EmitBlock(ExitBlock); 2097 EmitBranchThroughCleanup(LoopExit); 2098 } 2099 2100 EmitBlock(LoopBody); 2101 incrementProfileCounter(&S); 2102 2103 // Create a block for the increment. 2104 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 2105 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 2106 2107 BodyGen(*this); 2108 2109 // Emit "IV = IV + 1" and a back-edge to the condition block. 2110 EmitBlock(Continue.getBlock()); 2111 EmitIgnoredExpr(IncExpr); 2112 PostIncGen(*this); 2113 BreakContinueStack.pop_back(); 2114 EmitBranch(CondBlock); 2115 LoopStack.pop(); 2116 // Emit the fall-through block. 2117 EmitBlock(LoopExit.getBlock()); 2118 } 2119 2120 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 2121 if (!HaveInsertPoint()) 2122 return false; 2123 // Emit inits for the linear variables. 2124 bool HasLinears = false; 2125 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2126 for (const Expr *Init : C->inits()) { 2127 HasLinears = true; 2128 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 2129 if (const auto *Ref = 2130 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 2131 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 2132 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 2133 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 2134 CapturedStmtInfo->lookup(OrigVD) != nullptr, 2135 VD->getInit()->getType(), VK_LValue, 2136 VD->getInit()->getExprLoc()); 2137 EmitExprAsInit( 2138 &DRE, VD, 2139 MakeAddrLValue(Emission.getAllocatedAddress(), VD->getType()), 2140 /*capturedByInit=*/false); 2141 EmitAutoVarCleanups(Emission); 2142 } else { 2143 EmitVarDecl(*VD); 2144 } 2145 } 2146 // Emit the linear steps for the linear clauses. 2147 // If a step is not constant, it is pre-calculated before the loop. 2148 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 2149 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 2150 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 2151 // Emit calculation of the linear step. 2152 EmitIgnoredExpr(CS); 2153 } 2154 } 2155 return HasLinears; 2156 } 2157 2158 void CodeGenFunction::EmitOMPLinearClauseFinal( 2159 const OMPLoopDirective &D, 2160 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 2161 if (!HaveInsertPoint()) 2162 return; 2163 llvm::BasicBlock *DoneBB = nullptr; 2164 // Emit the final values of the linear variables. 2165 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2166 auto IC = C->varlist_begin(); 2167 for (const Expr *F : C->finals()) { 2168 if (!DoneBB) { 2169 if (llvm::Value *Cond = CondGen(*this)) { 2170 // If the first post-update expression is found, emit conditional 2171 // block if it was requested. 2172 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 2173 DoneBB = createBasicBlock(".omp.linear.pu.done"); 2174 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 2175 EmitBlock(ThenBB); 2176 } 2177 } 2178 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 2179 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 2180 CapturedStmtInfo->lookup(OrigVD) != nullptr, 2181 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 2182 Address OrigAddr = EmitLValue(&DRE).getAddress(*this); 2183 CodeGenFunction::OMPPrivateScope VarScope(*this); 2184 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 2185 (void)VarScope.Privatize(); 2186 EmitIgnoredExpr(F); 2187 ++IC; 2188 } 2189 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 2190 EmitIgnoredExpr(PostUpdate); 2191 } 2192 if (DoneBB) 2193 EmitBlock(DoneBB, /*IsFinished=*/true); 2194 } 2195 2196 static void emitAlignedClause(CodeGenFunction &CGF, 2197 const OMPExecutableDirective &D) { 2198 if (!CGF.HaveInsertPoint()) 2199 return; 2200 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 2201 llvm::APInt ClauseAlignment(64, 0); 2202 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 2203 auto *AlignmentCI = 2204 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 2205 ClauseAlignment = AlignmentCI->getValue(); 2206 } 2207 for (const Expr *E : Clause->varlists()) { 2208 llvm::APInt Alignment(ClauseAlignment); 2209 if (Alignment == 0) { 2210 // OpenMP [2.8.1, Description] 2211 // If no optional parameter is specified, implementation-defined default 2212 // alignments for SIMD instructions on the target platforms are assumed. 2213 Alignment = 2214 CGF.getContext() 2215 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2216 E->getType()->getPointeeType())) 2217 .getQuantity(); 2218 } 2219 assert((Alignment == 0 || Alignment.isPowerOf2()) && 2220 "alignment is not power of 2"); 2221 if (Alignment != 0) { 2222 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 2223 CGF.emitAlignmentAssumption( 2224 PtrValue, E, /*No second loc needed*/ SourceLocation(), 2225 llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment)); 2226 } 2227 } 2228 } 2229 } 2230 2231 void CodeGenFunction::EmitOMPPrivateLoopCounters( 2232 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 2233 if (!HaveInsertPoint()) 2234 return; 2235 auto I = S.private_counters().begin(); 2236 for (const Expr *E : S.counters()) { 2237 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2238 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 2239 // Emit var without initialization. 2240 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 2241 EmitAutoVarCleanups(VarEmission); 2242 LocalDeclMap.erase(PrivateVD); 2243 (void)LoopScope.addPrivate( 2244 VD, [&VarEmission]() { return VarEmission.getAllocatedAddress(); }); 2245 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 2246 VD->hasGlobalStorage()) { 2247 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 2248 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), 2249 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 2250 E->getType(), VK_LValue, E->getExprLoc()); 2251 return EmitLValue(&DRE).getAddress(*this); 2252 }); 2253 } else { 2254 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 2255 return VarEmission.getAllocatedAddress(); 2256 }); 2257 } 2258 ++I; 2259 } 2260 // Privatize extra loop counters used in loops for ordered(n) clauses. 2261 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 2262 if (!C->getNumForLoops()) 2263 continue; 2264 for (unsigned I = S.getLoopsNumber(), E = C->getLoopNumIterations().size(); 2265 I < E; ++I) { 2266 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 2267 const auto *VD = cast<VarDecl>(DRE->getDecl()); 2268 // Override only those variables that can be captured to avoid re-emission 2269 // of the variables declared within the loops. 2270 if (DRE->refersToEnclosingVariableOrCapture()) { 2271 (void)LoopScope.addPrivate(VD, [this, DRE, VD]() { 2272 return CreateMemTemp(DRE->getType(), VD->getName()); 2273 }); 2274 } 2275 } 2276 } 2277 } 2278 2279 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 2280 const Expr *Cond, llvm::BasicBlock *TrueBlock, 2281 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 2282 if (!CGF.HaveInsertPoint()) 2283 return; 2284 { 2285 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 2286 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 2287 (void)PreCondScope.Privatize(); 2288 // Get initial values of real counters. 2289 for (const Expr *I : S.inits()) { 2290 CGF.EmitIgnoredExpr(I); 2291 } 2292 } 2293 // Create temp loop control variables with their init values to support 2294 // non-rectangular loops. 2295 CodeGenFunction::OMPMapVars PreCondVars; 2296 for (const Expr *E : S.dependent_counters()) { 2297 if (!E) 2298 continue; 2299 assert(!E->getType().getNonReferenceType()->isRecordType() && 2300 "dependent counter must not be an iterator."); 2301 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2302 Address CounterAddr = 2303 CGF.CreateMemTemp(VD->getType().getNonReferenceType()); 2304 (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr); 2305 } 2306 (void)PreCondVars.apply(CGF); 2307 for (const Expr *E : S.dependent_inits()) { 2308 if (!E) 2309 continue; 2310 CGF.EmitIgnoredExpr(E); 2311 } 2312 // Check that loop is executed at least one time. 2313 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 2314 PreCondVars.restore(CGF); 2315 } 2316 2317 void CodeGenFunction::EmitOMPLinearClause( 2318 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 2319 if (!HaveInsertPoint()) 2320 return; 2321 llvm::DenseSet<const VarDecl *> SIMDLCVs; 2322 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 2323 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 2324 for (const Expr *C : LoopDirective->counters()) { 2325 SIMDLCVs.insert( 2326 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 2327 } 2328 } 2329 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2330 auto CurPrivate = C->privates().begin(); 2331 for (const Expr *E : C->varlists()) { 2332 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2333 const auto *PrivateVD = 2334 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 2335 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 2336 bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() { 2337 // Emit private VarDecl with copy init. 2338 EmitVarDecl(*PrivateVD); 2339 return GetAddrOfLocalVar(PrivateVD); 2340 }); 2341 assert(IsRegistered && "linear var already registered as private"); 2342 // Silence the warning about unused variable. 2343 (void)IsRegistered; 2344 } else { 2345 EmitVarDecl(*PrivateVD); 2346 } 2347 ++CurPrivate; 2348 } 2349 } 2350 } 2351 2352 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 2353 const OMPExecutableDirective &D) { 2354 if (!CGF.HaveInsertPoint()) 2355 return; 2356 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 2357 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 2358 /*ignoreResult=*/true); 2359 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2360 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2361 // In presence of finite 'safelen', it may be unsafe to mark all 2362 // the memory instructions parallel, because loop-carried 2363 // dependences of 'safelen' iterations are possible. 2364 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 2365 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 2366 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 2367 /*ignoreResult=*/true); 2368 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2369 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2370 // In presence of finite 'safelen', it may be unsafe to mark all 2371 // the memory instructions parallel, because loop-carried 2372 // dependences of 'safelen' iterations are possible. 2373 CGF.LoopStack.setParallel(/*Enable=*/false); 2374 } 2375 } 2376 2377 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D) { 2378 // Walk clauses and process safelen/lastprivate. 2379 LoopStack.setParallel(/*Enable=*/true); 2380 LoopStack.setVectorizeEnable(); 2381 emitSimdlenSafelenClause(*this, D); 2382 if (const auto *C = D.getSingleClause<OMPOrderClause>()) 2383 if (C->getKind() == OMPC_ORDER_concurrent) 2384 LoopStack.setParallel(/*Enable=*/true); 2385 if ((D.getDirectiveKind() == OMPD_simd || 2386 (getLangOpts().OpenMPSimd && 2387 isOpenMPSimdDirective(D.getDirectiveKind()))) && 2388 llvm::any_of(D.getClausesOfKind<OMPReductionClause>(), 2389 [](const OMPReductionClause *C) { 2390 return C->getModifier() == OMPC_REDUCTION_inscan; 2391 })) 2392 // Disable parallel access in case of prefix sum. 2393 LoopStack.setParallel(/*Enable=*/false); 2394 } 2395 2396 void CodeGenFunction::EmitOMPSimdFinal( 2397 const OMPLoopDirective &D, 2398 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 2399 if (!HaveInsertPoint()) 2400 return; 2401 llvm::BasicBlock *DoneBB = nullptr; 2402 auto IC = D.counters().begin(); 2403 auto IPC = D.private_counters().begin(); 2404 for (const Expr *F : D.finals()) { 2405 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 2406 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 2407 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 2408 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 2409 OrigVD->hasGlobalStorage() || CED) { 2410 if (!DoneBB) { 2411 if (llvm::Value *Cond = CondGen(*this)) { 2412 // If the first post-update expression is found, emit conditional 2413 // block if it was requested. 2414 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 2415 DoneBB = createBasicBlock(".omp.final.done"); 2416 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 2417 EmitBlock(ThenBB); 2418 } 2419 } 2420 Address OrigAddr = Address::invalid(); 2421 if (CED) { 2422 OrigAddr = 2423 EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(*this); 2424 } else { 2425 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD), 2426 /*RefersToEnclosingVariableOrCapture=*/false, 2427 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 2428 OrigAddr = EmitLValue(&DRE).getAddress(*this); 2429 } 2430 OMPPrivateScope VarScope(*this); 2431 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 2432 (void)VarScope.Privatize(); 2433 EmitIgnoredExpr(F); 2434 } 2435 ++IC; 2436 ++IPC; 2437 } 2438 if (DoneBB) 2439 EmitBlock(DoneBB, /*IsFinished=*/true); 2440 } 2441 2442 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 2443 const OMPLoopDirective &S, 2444 CodeGenFunction::JumpDest LoopExit) { 2445 CGF.EmitOMPLoopBody(S, LoopExit); 2446 CGF.EmitStopPoint(&S); 2447 } 2448 2449 /// Emit a helper variable and return corresponding lvalue. 2450 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 2451 const DeclRefExpr *Helper) { 2452 auto VDecl = cast<VarDecl>(Helper->getDecl()); 2453 CGF.EmitVarDecl(*VDecl); 2454 return CGF.EmitLValue(Helper); 2455 } 2456 2457 static void emitCommonSimdLoop(CodeGenFunction &CGF, const OMPLoopDirective &S, 2458 const RegionCodeGenTy &SimdInitGen, 2459 const RegionCodeGenTy &BodyCodeGen) { 2460 auto &&ThenGen = [&S, &SimdInitGen, &BodyCodeGen](CodeGenFunction &CGF, 2461 PrePostActionTy &) { 2462 CGOpenMPRuntime::NontemporalDeclsRAII NontemporalsRegion(CGF.CGM, S); 2463 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2464 SimdInitGen(CGF); 2465 2466 BodyCodeGen(CGF); 2467 }; 2468 auto &&ElseGen = [&BodyCodeGen](CodeGenFunction &CGF, PrePostActionTy &) { 2469 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2470 CGF.LoopStack.setVectorizeEnable(/*Enable=*/false); 2471 2472 BodyCodeGen(CGF); 2473 }; 2474 const Expr *IfCond = nullptr; 2475 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2476 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 2477 if (CGF.getLangOpts().OpenMP >= 50 && 2478 (C->getNameModifier() == OMPD_unknown || 2479 C->getNameModifier() == OMPD_simd)) { 2480 IfCond = C->getCondition(); 2481 break; 2482 } 2483 } 2484 } 2485 if (IfCond) { 2486 CGF.CGM.getOpenMPRuntime().emitIfClause(CGF, IfCond, ThenGen, ElseGen); 2487 } else { 2488 RegionCodeGenTy ThenRCG(ThenGen); 2489 ThenRCG(CGF); 2490 } 2491 } 2492 2493 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 2494 PrePostActionTy &Action) { 2495 Action.Enter(CGF); 2496 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 2497 "Expected simd directive"); 2498 OMPLoopScope PreInitScope(CGF, S); 2499 // if (PreCond) { 2500 // for (IV in 0..LastIteration) BODY; 2501 // <Final counter/linear vars updates>; 2502 // } 2503 // 2504 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 2505 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 2506 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 2507 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 2508 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 2509 } 2510 2511 // Emit: if (PreCond) - begin. 2512 // If the condition constant folds and can be elided, avoid emitting the 2513 // whole loop. 2514 bool CondConstant; 2515 llvm::BasicBlock *ContBlock = nullptr; 2516 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2517 if (!CondConstant) 2518 return; 2519 } else { 2520 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 2521 ContBlock = CGF.createBasicBlock("simd.if.end"); 2522 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 2523 CGF.getProfileCount(&S)); 2524 CGF.EmitBlock(ThenBlock); 2525 CGF.incrementProfileCounter(&S); 2526 } 2527 2528 // Emit the loop iteration variable. 2529 const Expr *IVExpr = S.getIterationVariable(); 2530 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 2531 CGF.EmitVarDecl(*IVDecl); 2532 CGF.EmitIgnoredExpr(S.getInit()); 2533 2534 // Emit the iterations count variable. 2535 // If it is not a variable, Sema decided to calculate iterations count on 2536 // each iteration (e.g., it is foldable into a constant). 2537 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2538 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2539 // Emit calculation of the iterations count. 2540 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 2541 } 2542 2543 emitAlignedClause(CGF, S); 2544 (void)CGF.EmitOMPLinearClauseInit(S); 2545 { 2546 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2547 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 2548 CGF.EmitOMPLinearClause(S, LoopScope); 2549 CGF.EmitOMPPrivateClause(S, LoopScope); 2550 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2551 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 2552 CGF, S, CGF.EmitLValue(S.getIterationVariable())); 2553 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2554 (void)LoopScope.Privatize(); 2555 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2556 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2557 2558 emitCommonSimdLoop( 2559 CGF, S, 2560 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2561 CGF.EmitOMPSimdInit(S); 2562 }, 2563 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2564 CGF.EmitOMPInnerLoop( 2565 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 2566 [&S](CodeGenFunction &CGF) { 2567 emitOMPLoopBodyWithStopPoint(CGF, S, 2568 CodeGenFunction::JumpDest()); 2569 }, 2570 [](CodeGenFunction &) {}); 2571 }); 2572 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 2573 // Emit final copy of the lastprivate variables at the end of loops. 2574 if (HasLastprivateClause) 2575 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 2576 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 2577 emitPostUpdateForReductionClause(CGF, S, 2578 [](CodeGenFunction &) { return nullptr; }); 2579 } 2580 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 2581 // Emit: if (PreCond) - end. 2582 if (ContBlock) { 2583 CGF.EmitBranch(ContBlock); 2584 CGF.EmitBlock(ContBlock, true); 2585 } 2586 } 2587 2588 static bool isSupportedByOpenMPIRBuilder(const OMPExecutableDirective &S) { 2589 // Check for unsupported clauses 2590 if (!S.clauses().empty()) { 2591 // Currently no clause is supported 2592 return false; 2593 } 2594 2595 // Check if we have a statement with the ordered directive. 2596 // Visit the statement hierarchy to find a compound statement 2597 // with a ordered directive in it. 2598 if (const auto *CanonLoop = dyn_cast<OMPCanonicalLoop>(S.getRawStmt())) { 2599 if (const Stmt *SyntacticalLoop = CanonLoop->getLoopStmt()) { 2600 for (const Stmt *SubStmt : SyntacticalLoop->children()) { 2601 if (!SubStmt) 2602 continue; 2603 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(SubStmt)) { 2604 for (const Stmt *CSSubStmt : CS->children()) { 2605 if (!CSSubStmt) 2606 continue; 2607 if (isa<OMPOrderedDirective>(CSSubStmt)) { 2608 return false; 2609 } 2610 } 2611 } 2612 } 2613 } 2614 } 2615 return true; 2616 } 2617 2618 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 2619 bool UseOMPIRBuilder = 2620 CGM.getLangOpts().OpenMPIRBuilder && isSupportedByOpenMPIRBuilder(S); 2621 if (UseOMPIRBuilder) { 2622 auto &&CodeGenIRBuilder = [this, &S, UseOMPIRBuilder](CodeGenFunction &CGF, 2623 PrePostActionTy &) { 2624 // Use the OpenMPIRBuilder if enabled. 2625 if (UseOMPIRBuilder) { 2626 // Emit the associated statement and get its loop representation. 2627 llvm::DebugLoc DL = SourceLocToDebugLoc(S.getBeginLoc()); 2628 const Stmt *Inner = S.getRawStmt(); 2629 llvm::CanonicalLoopInfo *CLI = 2630 EmitOMPCollapsedCanonicalLoopNest(Inner, 1); 2631 2632 llvm::OpenMPIRBuilder &OMPBuilder = 2633 CGM.getOpenMPRuntime().getOMPBuilder(); 2634 // Add SIMD specific metadata 2635 OMPBuilder.applySimd(DL, CLI); 2636 return; 2637 } 2638 }; 2639 { 2640 auto LPCRegion = 2641 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 2642 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2643 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, 2644 CodeGenIRBuilder); 2645 } 2646 return; 2647 } 2648 2649 ParentLoopDirectiveForScanRegion ScanRegion(*this, S); 2650 OMPFirstScanLoop = true; 2651 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2652 emitOMPSimdRegion(CGF, S, Action); 2653 }; 2654 { 2655 auto LPCRegion = 2656 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 2657 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2658 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2659 } 2660 // Check for outer lastprivate conditional update. 2661 checkForLastprivateConditionalUpdate(*this, S); 2662 } 2663 2664 void CodeGenFunction::EmitOMPTileDirective(const OMPTileDirective &S) { 2665 // Emit the de-sugared statement. 2666 OMPTransformDirectiveScopeRAII TileScope(*this, &S); 2667 EmitStmt(S.getTransformedStmt()); 2668 } 2669 2670 void CodeGenFunction::EmitOMPUnrollDirective(const OMPUnrollDirective &S) { 2671 bool UseOMPIRBuilder = CGM.getLangOpts().OpenMPIRBuilder; 2672 2673 if (UseOMPIRBuilder) { 2674 auto DL = SourceLocToDebugLoc(S.getBeginLoc()); 2675 const Stmt *Inner = S.getRawStmt(); 2676 2677 // Consume nested loop. Clear the entire remaining loop stack because a 2678 // fully unrolled loop is non-transformable. For partial unrolling the 2679 // generated outer loop is pushed back to the stack. 2680 llvm::CanonicalLoopInfo *CLI = EmitOMPCollapsedCanonicalLoopNest(Inner, 1); 2681 OMPLoopNestStack.clear(); 2682 2683 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 2684 2685 bool NeedsUnrolledCLI = ExpectedOMPLoopDepth >= 1; 2686 llvm::CanonicalLoopInfo *UnrolledCLI = nullptr; 2687 2688 if (S.hasClausesOfKind<OMPFullClause>()) { 2689 assert(ExpectedOMPLoopDepth == 0); 2690 OMPBuilder.unrollLoopFull(DL, CLI); 2691 } else if (auto *PartialClause = S.getSingleClause<OMPPartialClause>()) { 2692 uint64_t Factor = 0; 2693 if (Expr *FactorExpr = PartialClause->getFactor()) { 2694 Factor = FactorExpr->EvaluateKnownConstInt(getContext()).getZExtValue(); 2695 assert(Factor >= 1 && "Only positive factors are valid"); 2696 } 2697 OMPBuilder.unrollLoopPartial(DL, CLI, Factor, 2698 NeedsUnrolledCLI ? &UnrolledCLI : nullptr); 2699 } else { 2700 OMPBuilder.unrollLoopHeuristic(DL, CLI); 2701 } 2702 2703 assert((!NeedsUnrolledCLI || UnrolledCLI) && 2704 "NeedsUnrolledCLI implies UnrolledCLI to be set"); 2705 if (UnrolledCLI) 2706 OMPLoopNestStack.push_back(UnrolledCLI); 2707 2708 return; 2709 } 2710 2711 // This function is only called if the unrolled loop is not consumed by any 2712 // other loop-associated construct. Such a loop-associated construct will have 2713 // used the transformed AST. 2714 2715 // Set the unroll metadata for the next emitted loop. 2716 LoopStack.setUnrollState(LoopAttributes::Enable); 2717 2718 if (S.hasClausesOfKind<OMPFullClause>()) { 2719 LoopStack.setUnrollState(LoopAttributes::Full); 2720 } else if (auto *PartialClause = S.getSingleClause<OMPPartialClause>()) { 2721 if (Expr *FactorExpr = PartialClause->getFactor()) { 2722 uint64_t Factor = 2723 FactorExpr->EvaluateKnownConstInt(getContext()).getZExtValue(); 2724 assert(Factor >= 1 && "Only positive factors are valid"); 2725 LoopStack.setUnrollCount(Factor); 2726 } 2727 } 2728 2729 EmitStmt(S.getAssociatedStmt()); 2730 } 2731 2732 void CodeGenFunction::EmitOMPOuterLoop( 2733 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 2734 CodeGenFunction::OMPPrivateScope &LoopScope, 2735 const CodeGenFunction::OMPLoopArguments &LoopArgs, 2736 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 2737 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 2738 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2739 2740 const Expr *IVExpr = S.getIterationVariable(); 2741 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2742 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2743 2744 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 2745 2746 // Start the loop with a block that tests the condition. 2747 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 2748 EmitBlock(CondBlock); 2749 const SourceRange R = S.getSourceRange(); 2750 OMPLoopNestStack.clear(); 2751 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 2752 SourceLocToDebugLoc(R.getEnd())); 2753 2754 llvm::Value *BoolCondVal = nullptr; 2755 if (!DynamicOrOrdered) { 2756 // UB = min(UB, GlobalUB) or 2757 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 2758 // 'distribute parallel for') 2759 EmitIgnoredExpr(LoopArgs.EUB); 2760 // IV = LB 2761 EmitIgnoredExpr(LoopArgs.Init); 2762 // IV < UB 2763 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 2764 } else { 2765 BoolCondVal = 2766 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 2767 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 2768 } 2769 2770 // If there are any cleanups between here and the loop-exit scope, 2771 // create a block to stage a loop exit along. 2772 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 2773 if (LoopScope.requiresCleanups()) 2774 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 2775 2776 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 2777 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 2778 if (ExitBlock != LoopExit.getBlock()) { 2779 EmitBlock(ExitBlock); 2780 EmitBranchThroughCleanup(LoopExit); 2781 } 2782 EmitBlock(LoopBody); 2783 2784 // Emit "IV = LB" (in case of static schedule, we have already calculated new 2785 // LB for loop condition and emitted it above). 2786 if (DynamicOrOrdered) 2787 EmitIgnoredExpr(LoopArgs.Init); 2788 2789 // Create a block for the increment. 2790 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 2791 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 2792 2793 emitCommonSimdLoop( 2794 *this, S, 2795 [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) { 2796 // Generate !llvm.loop.parallel metadata for loads and stores for loops 2797 // with dynamic/guided scheduling and without ordered clause. 2798 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2799 CGF.LoopStack.setParallel(!IsMonotonic); 2800 if (const auto *C = S.getSingleClause<OMPOrderClause>()) 2801 if (C->getKind() == OMPC_ORDER_concurrent) 2802 CGF.LoopStack.setParallel(/*Enable=*/true); 2803 } else { 2804 CGF.EmitOMPSimdInit(S); 2805 } 2806 }, 2807 [&S, &LoopArgs, LoopExit, &CodeGenLoop, IVSize, IVSigned, &CodeGenOrdered, 2808 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2809 SourceLocation Loc = S.getBeginLoc(); 2810 // when 'distribute' is not combined with a 'for': 2811 // while (idx <= UB) { BODY; ++idx; } 2812 // when 'distribute' is combined with a 'for' 2813 // (e.g. 'distribute parallel for') 2814 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 2815 CGF.EmitOMPInnerLoop( 2816 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 2817 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 2818 CodeGenLoop(CGF, S, LoopExit); 2819 }, 2820 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 2821 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 2822 }); 2823 }); 2824 2825 EmitBlock(Continue.getBlock()); 2826 BreakContinueStack.pop_back(); 2827 if (!DynamicOrOrdered) { 2828 // Emit "LB = LB + Stride", "UB = UB + Stride". 2829 EmitIgnoredExpr(LoopArgs.NextLB); 2830 EmitIgnoredExpr(LoopArgs.NextUB); 2831 } 2832 2833 EmitBranch(CondBlock); 2834 OMPLoopNestStack.clear(); 2835 LoopStack.pop(); 2836 // Emit the fall-through block. 2837 EmitBlock(LoopExit.getBlock()); 2838 2839 // Tell the runtime we are done. 2840 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 2841 if (!DynamicOrOrdered) 2842 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2843 S.getDirectiveKind()); 2844 }; 2845 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2846 } 2847 2848 void CodeGenFunction::EmitOMPForOuterLoop( 2849 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 2850 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 2851 const OMPLoopArguments &LoopArgs, 2852 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2853 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2854 2855 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 2856 const bool DynamicOrOrdered = Ordered || RT.isDynamic(ScheduleKind.Schedule); 2857 2858 assert((Ordered || !RT.isStaticNonchunked(ScheduleKind.Schedule, 2859 LoopArgs.Chunk != nullptr)) && 2860 "static non-chunked schedule does not need outer loop"); 2861 2862 // Emit outer loop. 2863 // 2864 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2865 // When schedule(dynamic,chunk_size) is specified, the iterations are 2866 // distributed to threads in the team in chunks as the threads request them. 2867 // Each thread executes a chunk of iterations, then requests another chunk, 2868 // until no chunks remain to be distributed. Each chunk contains chunk_size 2869 // iterations, except for the last chunk to be distributed, which may have 2870 // fewer iterations. When no chunk_size is specified, it defaults to 1. 2871 // 2872 // When schedule(guided,chunk_size) is specified, the iterations are assigned 2873 // to threads in the team in chunks as the executing threads request them. 2874 // Each thread executes a chunk of iterations, then requests another chunk, 2875 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 2876 // each chunk is proportional to the number of unassigned iterations divided 2877 // by the number of threads in the team, decreasing to 1. For a chunk_size 2878 // with value k (greater than 1), the size of each chunk is determined in the 2879 // same way, with the restriction that the chunks do not contain fewer than k 2880 // iterations (except for the last chunk to be assigned, which may have fewer 2881 // than k iterations). 2882 // 2883 // When schedule(auto) is specified, the decision regarding scheduling is 2884 // delegated to the compiler and/or runtime system. The programmer gives the 2885 // implementation the freedom to choose any possible mapping of iterations to 2886 // threads in the team. 2887 // 2888 // When schedule(runtime) is specified, the decision regarding scheduling is 2889 // deferred until run time, and the schedule and chunk size are taken from the 2890 // run-sched-var ICV. If the ICV is set to auto, the schedule is 2891 // implementation defined 2892 // 2893 // while(__kmpc_dispatch_next(&LB, &UB)) { 2894 // idx = LB; 2895 // while (idx <= UB) { BODY; ++idx; 2896 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 2897 // } // inner loop 2898 // } 2899 // 2900 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2901 // When schedule(static, chunk_size) is specified, iterations are divided into 2902 // chunks of size chunk_size, and the chunks are assigned to the threads in 2903 // the team in a round-robin fashion in the order of the thread number. 2904 // 2905 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 2906 // while (idx <= UB) { BODY; ++idx; } // inner loop 2907 // LB = LB + ST; 2908 // UB = UB + ST; 2909 // } 2910 // 2911 2912 const Expr *IVExpr = S.getIterationVariable(); 2913 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2914 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2915 2916 if (DynamicOrOrdered) { 2917 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 2918 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 2919 llvm::Value *LBVal = DispatchBounds.first; 2920 llvm::Value *UBVal = DispatchBounds.second; 2921 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 2922 LoopArgs.Chunk}; 2923 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 2924 IVSigned, Ordered, DipatchRTInputValues); 2925 } else { 2926 CGOpenMPRuntime::StaticRTInput StaticInit( 2927 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 2928 LoopArgs.ST, LoopArgs.Chunk); 2929 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2930 ScheduleKind, StaticInit); 2931 } 2932 2933 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 2934 const unsigned IVSize, 2935 const bool IVSigned) { 2936 if (Ordered) { 2937 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 2938 IVSigned); 2939 } 2940 }; 2941 2942 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 2943 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 2944 OuterLoopArgs.IncExpr = S.getInc(); 2945 OuterLoopArgs.Init = S.getInit(); 2946 OuterLoopArgs.Cond = S.getCond(); 2947 OuterLoopArgs.NextLB = S.getNextLowerBound(); 2948 OuterLoopArgs.NextUB = S.getNextUpperBound(); 2949 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 2950 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 2951 } 2952 2953 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 2954 const unsigned IVSize, const bool IVSigned) {} 2955 2956 void CodeGenFunction::EmitOMPDistributeOuterLoop( 2957 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 2958 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 2959 const CodeGenLoopTy &CodeGenLoopContent) { 2960 2961 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2962 2963 // Emit outer loop. 2964 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 2965 // dynamic 2966 // 2967 2968 const Expr *IVExpr = S.getIterationVariable(); 2969 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2970 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2971 2972 CGOpenMPRuntime::StaticRTInput StaticInit( 2973 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 2974 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 2975 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 2976 2977 // for combined 'distribute' and 'for' the increment expression of distribute 2978 // is stored in DistInc. For 'distribute' alone, it is in Inc. 2979 Expr *IncExpr; 2980 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 2981 IncExpr = S.getDistInc(); 2982 else 2983 IncExpr = S.getInc(); 2984 2985 // this routine is shared by 'omp distribute parallel for' and 2986 // 'omp distribute': select the right EUB expression depending on the 2987 // directive 2988 OMPLoopArguments OuterLoopArgs; 2989 OuterLoopArgs.LB = LoopArgs.LB; 2990 OuterLoopArgs.UB = LoopArgs.UB; 2991 OuterLoopArgs.ST = LoopArgs.ST; 2992 OuterLoopArgs.IL = LoopArgs.IL; 2993 OuterLoopArgs.Chunk = LoopArgs.Chunk; 2994 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2995 ? S.getCombinedEnsureUpperBound() 2996 : S.getEnsureUpperBound(); 2997 OuterLoopArgs.IncExpr = IncExpr; 2998 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2999 ? S.getCombinedInit() 3000 : S.getInit(); 3001 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3002 ? S.getCombinedCond() 3003 : S.getCond(); 3004 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3005 ? S.getCombinedNextLowerBound() 3006 : S.getNextLowerBound(); 3007 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3008 ? S.getCombinedNextUpperBound() 3009 : S.getNextUpperBound(); 3010 3011 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 3012 LoopScope, OuterLoopArgs, CodeGenLoopContent, 3013 emitEmptyOrdered); 3014 } 3015 3016 static std::pair<LValue, LValue> 3017 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 3018 const OMPExecutableDirective &S) { 3019 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 3020 LValue LB = 3021 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 3022 LValue UB = 3023 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 3024 3025 // When composing 'distribute' with 'for' (e.g. as in 'distribute 3026 // parallel for') we need to use the 'distribute' 3027 // chunk lower and upper bounds rather than the whole loop iteration 3028 // space. These are parameters to the outlined function for 'parallel' 3029 // and we copy the bounds of the previous schedule into the 3030 // the current ones. 3031 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 3032 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 3033 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 3034 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 3035 PrevLBVal = CGF.EmitScalarConversion( 3036 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 3037 LS.getIterationVariable()->getType(), 3038 LS.getPrevLowerBoundVariable()->getExprLoc()); 3039 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 3040 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 3041 PrevUBVal = CGF.EmitScalarConversion( 3042 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 3043 LS.getIterationVariable()->getType(), 3044 LS.getPrevUpperBoundVariable()->getExprLoc()); 3045 3046 CGF.EmitStoreOfScalar(PrevLBVal, LB); 3047 CGF.EmitStoreOfScalar(PrevUBVal, UB); 3048 3049 return {LB, UB}; 3050 } 3051 3052 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 3053 /// we need to use the LB and UB expressions generated by the worksharing 3054 /// code generation support, whereas in non combined situations we would 3055 /// just emit 0 and the LastIteration expression 3056 /// This function is necessary due to the difference of the LB and UB 3057 /// types for the RT emission routines for 'for_static_init' and 3058 /// 'for_dispatch_init' 3059 static std::pair<llvm::Value *, llvm::Value *> 3060 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 3061 const OMPExecutableDirective &S, 3062 Address LB, Address UB) { 3063 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 3064 const Expr *IVExpr = LS.getIterationVariable(); 3065 // when implementing a dynamic schedule for a 'for' combined with a 3066 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 3067 // is not normalized as each team only executes its own assigned 3068 // distribute chunk 3069 QualType IteratorTy = IVExpr->getType(); 3070 llvm::Value *LBVal = 3071 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 3072 llvm::Value *UBVal = 3073 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 3074 return {LBVal, UBVal}; 3075 } 3076 3077 static void emitDistributeParallelForDistributeInnerBoundParams( 3078 CodeGenFunction &CGF, const OMPExecutableDirective &S, 3079 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 3080 const auto &Dir = cast<OMPLoopDirective>(S); 3081 LValue LB = 3082 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 3083 llvm::Value *LBCast = 3084 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(LB.getAddress(CGF)), 3085 CGF.SizeTy, /*isSigned=*/false); 3086 CapturedVars.push_back(LBCast); 3087 LValue UB = 3088 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 3089 3090 llvm::Value *UBCast = 3091 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(UB.getAddress(CGF)), 3092 CGF.SizeTy, /*isSigned=*/false); 3093 CapturedVars.push_back(UBCast); 3094 } 3095 3096 static void 3097 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 3098 const OMPLoopDirective &S, 3099 CodeGenFunction::JumpDest LoopExit) { 3100 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 3101 PrePostActionTy &Action) { 3102 Action.Enter(CGF); 3103 bool HasCancel = false; 3104 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 3105 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 3106 HasCancel = D->hasCancel(); 3107 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 3108 HasCancel = D->hasCancel(); 3109 else if (const auto *D = 3110 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 3111 HasCancel = D->hasCancel(); 3112 } 3113 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 3114 HasCancel); 3115 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 3116 emitDistributeParallelForInnerBounds, 3117 emitDistributeParallelForDispatchBounds); 3118 }; 3119 3120 emitCommonOMPParallelDirective( 3121 CGF, S, 3122 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 3123 CGInlinedWorksharingLoop, 3124 emitDistributeParallelForDistributeInnerBoundParams); 3125 } 3126 3127 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 3128 const OMPDistributeParallelForDirective &S) { 3129 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3130 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 3131 S.getDistInc()); 3132 }; 3133 OMPLexicalScope Scope(*this, S, OMPD_parallel); 3134 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3135 } 3136 3137 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 3138 const OMPDistributeParallelForSimdDirective &S) { 3139 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3140 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 3141 S.getDistInc()); 3142 }; 3143 OMPLexicalScope Scope(*this, S, OMPD_parallel); 3144 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3145 } 3146 3147 void CodeGenFunction::EmitOMPDistributeSimdDirective( 3148 const OMPDistributeSimdDirective &S) { 3149 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3150 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3151 }; 3152 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3153 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 3154 } 3155 3156 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 3157 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 3158 // Emit SPMD target parallel for region as a standalone region. 3159 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3160 emitOMPSimdRegion(CGF, S, Action); 3161 }; 3162 llvm::Function *Fn; 3163 llvm::Constant *Addr; 3164 // Emit target region as a standalone region. 3165 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 3166 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 3167 assert(Fn && Addr && "Target device function emission failed."); 3168 } 3169 3170 void CodeGenFunction::EmitOMPTargetSimdDirective( 3171 const OMPTargetSimdDirective &S) { 3172 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3173 emitOMPSimdRegion(CGF, S, Action); 3174 }; 3175 emitCommonOMPTargetDirective(*this, S, CodeGen); 3176 } 3177 3178 namespace { 3179 struct ScheduleKindModifiersTy { 3180 OpenMPScheduleClauseKind Kind; 3181 OpenMPScheduleClauseModifier M1; 3182 OpenMPScheduleClauseModifier M2; 3183 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 3184 OpenMPScheduleClauseModifier M1, 3185 OpenMPScheduleClauseModifier M2) 3186 : Kind(Kind), M1(M1), M2(M2) {} 3187 }; 3188 } // namespace 3189 3190 bool CodeGenFunction::EmitOMPWorksharingLoop( 3191 const OMPLoopDirective &S, Expr *EUB, 3192 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3193 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 3194 // Emit the loop iteration variable. 3195 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3196 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3197 EmitVarDecl(*IVDecl); 3198 3199 // Emit the iterations count variable. 3200 // If it is not a variable, Sema decided to calculate iterations count on each 3201 // iteration (e.g., it is foldable into a constant). 3202 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3203 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3204 // Emit calculation of the iterations count. 3205 EmitIgnoredExpr(S.getCalcLastIteration()); 3206 } 3207 3208 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 3209 3210 bool HasLastprivateClause; 3211 // Check pre-condition. 3212 { 3213 OMPLoopScope PreInitScope(*this, S); 3214 // Skip the entire loop if we don't meet the precondition. 3215 // If the condition constant folds and can be elided, avoid emitting the 3216 // whole loop. 3217 bool CondConstant; 3218 llvm::BasicBlock *ContBlock = nullptr; 3219 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3220 if (!CondConstant) 3221 return false; 3222 } else { 3223 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 3224 ContBlock = createBasicBlock("omp.precond.end"); 3225 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3226 getProfileCount(&S)); 3227 EmitBlock(ThenBlock); 3228 incrementProfileCounter(&S); 3229 } 3230 3231 RunCleanupsScope DoacrossCleanupScope(*this); 3232 bool Ordered = false; 3233 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 3234 if (OrderedClause->getNumForLoops()) 3235 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 3236 else 3237 Ordered = true; 3238 } 3239 3240 llvm::DenseSet<const Expr *> EmittedFinals; 3241 emitAlignedClause(*this, S); 3242 bool HasLinears = EmitOMPLinearClauseInit(S); 3243 // Emit helper vars inits. 3244 3245 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 3246 LValue LB = Bounds.first; 3247 LValue UB = Bounds.second; 3248 LValue ST = 3249 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3250 LValue IL = 3251 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3252 3253 // Emit 'then' code. 3254 { 3255 OMPPrivateScope LoopScope(*this); 3256 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 3257 // Emit implicit barrier to synchronize threads and avoid data races on 3258 // initialization of firstprivate variables and post-update of 3259 // lastprivate variables. 3260 CGM.getOpenMPRuntime().emitBarrierCall( 3261 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3262 /*ForceSimpleCall=*/true); 3263 } 3264 EmitOMPPrivateClause(S, LoopScope); 3265 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 3266 *this, S, EmitLValue(S.getIterationVariable())); 3267 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3268 EmitOMPReductionClauseInit(S, LoopScope); 3269 EmitOMPPrivateLoopCounters(S, LoopScope); 3270 EmitOMPLinearClause(S, LoopScope); 3271 (void)LoopScope.Privatize(); 3272 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3273 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 3274 3275 // Detect the loop schedule kind and chunk. 3276 const Expr *ChunkExpr = nullptr; 3277 OpenMPScheduleTy ScheduleKind; 3278 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 3279 ScheduleKind.Schedule = C->getScheduleKind(); 3280 ScheduleKind.M1 = C->getFirstScheduleModifier(); 3281 ScheduleKind.M2 = C->getSecondScheduleModifier(); 3282 ChunkExpr = C->getChunkSize(); 3283 } else { 3284 // Default behaviour for schedule clause. 3285 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 3286 *this, S, ScheduleKind.Schedule, ChunkExpr); 3287 } 3288 bool HasChunkSizeOne = false; 3289 llvm::Value *Chunk = nullptr; 3290 if (ChunkExpr) { 3291 Chunk = EmitScalarExpr(ChunkExpr); 3292 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 3293 S.getIterationVariable()->getType(), 3294 S.getBeginLoc()); 3295 Expr::EvalResult Result; 3296 if (ChunkExpr->EvaluateAsInt(Result, getContext())) { 3297 llvm::APSInt EvaluatedChunk = Result.Val.getInt(); 3298 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 3299 } 3300 } 3301 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3302 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3303 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 3304 // If the static schedule kind is specified or if the ordered clause is 3305 // specified, and if no monotonic modifier is specified, the effect will 3306 // be as if the monotonic modifier was specified. 3307 bool StaticChunkedOne = 3308 RT.isStaticChunked(ScheduleKind.Schedule, 3309 /* Chunked */ Chunk != nullptr) && 3310 HasChunkSizeOne && 3311 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 3312 bool IsMonotonic = 3313 Ordered || 3314 (ScheduleKind.Schedule == OMPC_SCHEDULE_static && 3315 !(ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_nonmonotonic || 3316 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_nonmonotonic)) || 3317 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 3318 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 3319 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 3320 /* Chunked */ Chunk != nullptr) || 3321 StaticChunkedOne) && 3322 !Ordered) { 3323 JumpDest LoopExit = 3324 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3325 emitCommonSimdLoop( 3326 *this, S, 3327 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3328 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3329 CGF.EmitOMPSimdInit(S); 3330 } else if (const auto *C = S.getSingleClause<OMPOrderClause>()) { 3331 if (C->getKind() == OMPC_ORDER_concurrent) 3332 CGF.LoopStack.setParallel(/*Enable=*/true); 3333 } 3334 }, 3335 [IVSize, IVSigned, Ordered, IL, LB, UB, ST, StaticChunkedOne, Chunk, 3336 &S, ScheduleKind, LoopExit, 3337 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 3338 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 3339 // When no chunk_size is specified, the iteration space is divided 3340 // into chunks that are approximately equal in size, and at most 3341 // one chunk is distributed to each thread. Note that the size of 3342 // the chunks is unspecified in this case. 3343 CGOpenMPRuntime::StaticRTInput StaticInit( 3344 IVSize, IVSigned, Ordered, IL.getAddress(CGF), 3345 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF), 3346 StaticChunkedOne ? Chunk : nullptr); 3347 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 3348 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, 3349 StaticInit); 3350 // UB = min(UB, GlobalUB); 3351 if (!StaticChunkedOne) 3352 CGF.EmitIgnoredExpr(S.getEnsureUpperBound()); 3353 // IV = LB; 3354 CGF.EmitIgnoredExpr(S.getInit()); 3355 // For unchunked static schedule generate: 3356 // 3357 // while (idx <= UB) { 3358 // BODY; 3359 // ++idx; 3360 // } 3361 // 3362 // For static schedule with chunk one: 3363 // 3364 // while (IV <= PrevUB) { 3365 // BODY; 3366 // IV += ST; 3367 // } 3368 CGF.EmitOMPInnerLoop( 3369 S, LoopScope.requiresCleanups(), 3370 StaticChunkedOne ? S.getCombinedParForInDistCond() 3371 : S.getCond(), 3372 StaticChunkedOne ? S.getDistInc() : S.getInc(), 3373 [&S, LoopExit](CodeGenFunction &CGF) { 3374 emitOMPLoopBodyWithStopPoint(CGF, S, LoopExit); 3375 }, 3376 [](CodeGenFunction &) {}); 3377 }); 3378 EmitBlock(LoopExit.getBlock()); 3379 // Tell the runtime we are done. 3380 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 3381 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 3382 S.getDirectiveKind()); 3383 }; 3384 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 3385 } else { 3386 // Emit the outer loop, which requests its work chunk [LB..UB] from 3387 // runtime and runs the inner loop to process it. 3388 const OMPLoopArguments LoopArguments( 3389 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 3390 IL.getAddress(*this), Chunk, EUB); 3391 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 3392 LoopArguments, CGDispatchBounds); 3393 } 3394 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3395 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3396 return CGF.Builder.CreateIsNotNull( 3397 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3398 }); 3399 } 3400 EmitOMPReductionClauseFinal( 3401 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 3402 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 3403 : /*Parallel only*/ OMPD_parallel); 3404 // Emit post-update of the reduction variables if IsLastIter != 0. 3405 emitPostUpdateForReductionClause( 3406 *this, S, [IL, &S](CodeGenFunction &CGF) { 3407 return CGF.Builder.CreateIsNotNull( 3408 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3409 }); 3410 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3411 if (HasLastprivateClause) 3412 EmitOMPLastprivateClauseFinal( 3413 S, isOpenMPSimdDirective(S.getDirectiveKind()), 3414 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3415 } 3416 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 3417 return CGF.Builder.CreateIsNotNull( 3418 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3419 }); 3420 DoacrossCleanupScope.ForceCleanup(); 3421 // We're now done with the loop, so jump to the continuation block. 3422 if (ContBlock) { 3423 EmitBranch(ContBlock); 3424 EmitBlock(ContBlock, /*IsFinished=*/true); 3425 } 3426 } 3427 return HasLastprivateClause; 3428 } 3429 3430 /// The following two functions generate expressions for the loop lower 3431 /// and upper bounds in case of static and dynamic (dispatch) schedule 3432 /// of the associated 'for' or 'distribute' loop. 3433 static std::pair<LValue, LValue> 3434 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 3435 const auto &LS = cast<OMPLoopDirective>(S); 3436 LValue LB = 3437 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 3438 LValue UB = 3439 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 3440 return {LB, UB}; 3441 } 3442 3443 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 3444 /// consider the lower and upper bound expressions generated by the 3445 /// worksharing loop support, but we use 0 and the iteration space size as 3446 /// constants 3447 static std::pair<llvm::Value *, llvm::Value *> 3448 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 3449 Address LB, Address UB) { 3450 const auto &LS = cast<OMPLoopDirective>(S); 3451 const Expr *IVExpr = LS.getIterationVariable(); 3452 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 3453 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 3454 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 3455 return {LBVal, UBVal}; 3456 } 3457 3458 /// Emits internal temp array declarations for the directive with inscan 3459 /// reductions. 3460 /// The code is the following: 3461 /// \code 3462 /// size num_iters = <num_iters>; 3463 /// <type> buffer[num_iters]; 3464 /// \endcode 3465 static void emitScanBasedDirectiveDecls( 3466 CodeGenFunction &CGF, const OMPLoopDirective &S, 3467 llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen) { 3468 llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast( 3469 NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false); 3470 SmallVector<const Expr *, 4> Shareds; 3471 SmallVector<const Expr *, 4> Privates; 3472 SmallVector<const Expr *, 4> ReductionOps; 3473 SmallVector<const Expr *, 4> CopyArrayTemps; 3474 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3475 assert(C->getModifier() == OMPC_REDUCTION_inscan && 3476 "Only inscan reductions are expected."); 3477 Shareds.append(C->varlist_begin(), C->varlist_end()); 3478 Privates.append(C->privates().begin(), C->privates().end()); 3479 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 3480 CopyArrayTemps.append(C->copy_array_temps().begin(), 3481 C->copy_array_temps().end()); 3482 } 3483 { 3484 // Emit buffers for each reduction variables. 3485 // ReductionCodeGen is required to emit correctly the code for array 3486 // reductions. 3487 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 3488 unsigned Count = 0; 3489 auto *ITA = CopyArrayTemps.begin(); 3490 for (const Expr *IRef : Privates) { 3491 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 3492 // Emit variably modified arrays, used for arrays/array sections 3493 // reductions. 3494 if (PrivateVD->getType()->isVariablyModifiedType()) { 3495 RedCG.emitSharedOrigLValue(CGF, Count); 3496 RedCG.emitAggregateType(CGF, Count); 3497 } 3498 CodeGenFunction::OpaqueValueMapping DimMapping( 3499 CGF, 3500 cast<OpaqueValueExpr>( 3501 cast<VariableArrayType>((*ITA)->getType()->getAsArrayTypeUnsafe()) 3502 ->getSizeExpr()), 3503 RValue::get(OMPScanNumIterations)); 3504 // Emit temp buffer. 3505 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(*ITA)->getDecl())); 3506 ++ITA; 3507 ++Count; 3508 } 3509 } 3510 } 3511 3512 /// Emits the code for the directive with inscan reductions. 3513 /// The code is the following: 3514 /// \code 3515 /// #pragma omp ... 3516 /// for (i: 0..<num_iters>) { 3517 /// <input phase>; 3518 /// buffer[i] = red; 3519 /// } 3520 /// #pragma omp master // in parallel region 3521 /// for (int k = 0; k != ceil(log2(num_iters)); ++k) 3522 /// for (size cnt = last_iter; cnt >= pow(2, k); --k) 3523 /// buffer[i] op= buffer[i-pow(2,k)]; 3524 /// #pragma omp barrier // in parallel region 3525 /// #pragma omp ... 3526 /// for (0..<num_iters>) { 3527 /// red = InclusiveScan ? buffer[i] : buffer[i-1]; 3528 /// <scan phase>; 3529 /// } 3530 /// \endcode 3531 static void emitScanBasedDirective( 3532 CodeGenFunction &CGF, const OMPLoopDirective &S, 3533 llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen, 3534 llvm::function_ref<void(CodeGenFunction &)> FirstGen, 3535 llvm::function_ref<void(CodeGenFunction &)> SecondGen) { 3536 llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast( 3537 NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false); 3538 SmallVector<const Expr *, 4> Privates; 3539 SmallVector<const Expr *, 4> ReductionOps; 3540 SmallVector<const Expr *, 4> LHSs; 3541 SmallVector<const Expr *, 4> RHSs; 3542 SmallVector<const Expr *, 4> CopyArrayElems; 3543 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3544 assert(C->getModifier() == OMPC_REDUCTION_inscan && 3545 "Only inscan reductions are expected."); 3546 Privates.append(C->privates().begin(), C->privates().end()); 3547 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 3548 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 3549 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 3550 CopyArrayElems.append(C->copy_array_elems().begin(), 3551 C->copy_array_elems().end()); 3552 } 3553 CodeGenFunction::ParentLoopDirectiveForScanRegion ScanRegion(CGF, S); 3554 { 3555 // Emit loop with input phase: 3556 // #pragma omp ... 3557 // for (i: 0..<num_iters>) { 3558 // <input phase>; 3559 // buffer[i] = red; 3560 // } 3561 CGF.OMPFirstScanLoop = true; 3562 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 3563 FirstGen(CGF); 3564 } 3565 // #pragma omp barrier // in parallel region 3566 auto &&CodeGen = [&S, OMPScanNumIterations, &LHSs, &RHSs, &CopyArrayElems, 3567 &ReductionOps, 3568 &Privates](CodeGenFunction &CGF, PrePostActionTy &Action) { 3569 Action.Enter(CGF); 3570 // Emit prefix reduction: 3571 // #pragma omp master // in parallel region 3572 // for (int k = 0; k <= ceil(log2(n)); ++k) 3573 llvm::BasicBlock *InputBB = CGF.Builder.GetInsertBlock(); 3574 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.outer.log.scan.body"); 3575 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.outer.log.scan.exit"); 3576 llvm::Function *F = 3577 CGF.CGM.getIntrinsic(llvm::Intrinsic::log2, CGF.DoubleTy); 3578 llvm::Value *Arg = 3579 CGF.Builder.CreateUIToFP(OMPScanNumIterations, CGF.DoubleTy); 3580 llvm::Value *LogVal = CGF.EmitNounwindRuntimeCall(F, Arg); 3581 F = CGF.CGM.getIntrinsic(llvm::Intrinsic::ceil, CGF.DoubleTy); 3582 LogVal = CGF.EmitNounwindRuntimeCall(F, LogVal); 3583 LogVal = CGF.Builder.CreateFPToUI(LogVal, CGF.IntTy); 3584 llvm::Value *NMin1 = CGF.Builder.CreateNUWSub( 3585 OMPScanNumIterations, llvm::ConstantInt::get(CGF.SizeTy, 1)); 3586 auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getBeginLoc()); 3587 CGF.EmitBlock(LoopBB); 3588 auto *Counter = CGF.Builder.CreatePHI(CGF.IntTy, 2); 3589 // size pow2k = 1; 3590 auto *Pow2K = CGF.Builder.CreatePHI(CGF.SizeTy, 2); 3591 Counter->addIncoming(llvm::ConstantInt::get(CGF.IntTy, 0), InputBB); 3592 Pow2K->addIncoming(llvm::ConstantInt::get(CGF.SizeTy, 1), InputBB); 3593 // for (size i = n - 1; i >= 2 ^ k; --i) 3594 // tmp[i] op= tmp[i-pow2k]; 3595 llvm::BasicBlock *InnerLoopBB = 3596 CGF.createBasicBlock("omp.inner.log.scan.body"); 3597 llvm::BasicBlock *InnerExitBB = 3598 CGF.createBasicBlock("omp.inner.log.scan.exit"); 3599 llvm::Value *CmpI = CGF.Builder.CreateICmpUGE(NMin1, Pow2K); 3600 CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB); 3601 CGF.EmitBlock(InnerLoopBB); 3602 auto *IVal = CGF.Builder.CreatePHI(CGF.SizeTy, 2); 3603 IVal->addIncoming(NMin1, LoopBB); 3604 { 3605 CodeGenFunction::OMPPrivateScope PrivScope(CGF); 3606 auto *ILHS = LHSs.begin(); 3607 auto *IRHS = RHSs.begin(); 3608 for (const Expr *CopyArrayElem : CopyArrayElems) { 3609 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 3610 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 3611 Address LHSAddr = Address::invalid(); 3612 { 3613 CodeGenFunction::OpaqueValueMapping IdxMapping( 3614 CGF, 3615 cast<OpaqueValueExpr>( 3616 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3617 RValue::get(IVal)); 3618 LHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF); 3619 } 3620 PrivScope.addPrivate(LHSVD, [LHSAddr]() { return LHSAddr; }); 3621 Address RHSAddr = Address::invalid(); 3622 { 3623 llvm::Value *OffsetIVal = CGF.Builder.CreateNUWSub(IVal, Pow2K); 3624 CodeGenFunction::OpaqueValueMapping IdxMapping( 3625 CGF, 3626 cast<OpaqueValueExpr>( 3627 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3628 RValue::get(OffsetIVal)); 3629 RHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF); 3630 } 3631 PrivScope.addPrivate(RHSVD, [RHSAddr]() { return RHSAddr; }); 3632 ++ILHS; 3633 ++IRHS; 3634 } 3635 PrivScope.Privatize(); 3636 CGF.CGM.getOpenMPRuntime().emitReduction( 3637 CGF, S.getEndLoc(), Privates, LHSs, RHSs, ReductionOps, 3638 {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_unknown}); 3639 } 3640 llvm::Value *NextIVal = 3641 CGF.Builder.CreateNUWSub(IVal, llvm::ConstantInt::get(CGF.SizeTy, 1)); 3642 IVal->addIncoming(NextIVal, CGF.Builder.GetInsertBlock()); 3643 CmpI = CGF.Builder.CreateICmpUGE(NextIVal, Pow2K); 3644 CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB); 3645 CGF.EmitBlock(InnerExitBB); 3646 llvm::Value *Next = 3647 CGF.Builder.CreateNUWAdd(Counter, llvm::ConstantInt::get(CGF.IntTy, 1)); 3648 Counter->addIncoming(Next, CGF.Builder.GetInsertBlock()); 3649 // pow2k <<= 1; 3650 llvm::Value *NextPow2K = 3651 CGF.Builder.CreateShl(Pow2K, 1, "", /*HasNUW=*/true); 3652 Pow2K->addIncoming(NextPow2K, CGF.Builder.GetInsertBlock()); 3653 llvm::Value *Cmp = CGF.Builder.CreateICmpNE(Next, LogVal); 3654 CGF.Builder.CreateCondBr(Cmp, LoopBB, ExitBB); 3655 auto DL1 = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getEndLoc()); 3656 CGF.EmitBlock(ExitBB); 3657 }; 3658 if (isOpenMPParallelDirective(S.getDirectiveKind())) { 3659 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 3660 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3661 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3662 /*ForceSimpleCall=*/true); 3663 } else { 3664 RegionCodeGenTy RCG(CodeGen); 3665 RCG(CGF); 3666 } 3667 3668 CGF.OMPFirstScanLoop = false; 3669 SecondGen(CGF); 3670 } 3671 3672 static bool emitWorksharingDirective(CodeGenFunction &CGF, 3673 const OMPLoopDirective &S, 3674 bool HasCancel) { 3675 bool HasLastprivates; 3676 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 3677 [](const OMPReductionClause *C) { 3678 return C->getModifier() == OMPC_REDUCTION_inscan; 3679 })) { 3680 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 3681 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 3682 OMPLoopScope LoopScope(CGF, S); 3683 return CGF.EmitScalarExpr(S.getNumIterations()); 3684 }; 3685 const auto &&FirstGen = [&S, HasCancel](CodeGenFunction &CGF) { 3686 CodeGenFunction::OMPCancelStackRAII CancelRegion( 3687 CGF, S.getDirectiveKind(), HasCancel); 3688 (void)CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3689 emitForLoopBounds, 3690 emitDispatchForLoopBounds); 3691 // Emit an implicit barrier at the end. 3692 CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getBeginLoc(), 3693 OMPD_for); 3694 }; 3695 const auto &&SecondGen = [&S, HasCancel, 3696 &HasLastprivates](CodeGenFunction &CGF) { 3697 CodeGenFunction::OMPCancelStackRAII CancelRegion( 3698 CGF, S.getDirectiveKind(), HasCancel); 3699 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3700 emitForLoopBounds, 3701 emitDispatchForLoopBounds); 3702 }; 3703 if (!isOpenMPParallelDirective(S.getDirectiveKind())) 3704 emitScanBasedDirectiveDecls(CGF, S, NumIteratorsGen); 3705 emitScanBasedDirective(CGF, S, NumIteratorsGen, FirstGen, SecondGen); 3706 } else { 3707 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 3708 HasCancel); 3709 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3710 emitForLoopBounds, 3711 emitDispatchForLoopBounds); 3712 } 3713 return HasLastprivates; 3714 } 3715 3716 static bool isSupportedByOpenMPIRBuilder(const OMPForDirective &S) { 3717 if (S.hasCancel()) 3718 return false; 3719 for (OMPClause *C : S.clauses()) 3720 if (!isa<OMPNowaitClause>(C)) 3721 return false; 3722 3723 return true; 3724 } 3725 3726 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 3727 bool HasLastprivates = false; 3728 bool UseOMPIRBuilder = 3729 CGM.getLangOpts().OpenMPIRBuilder && isSupportedByOpenMPIRBuilder(S); 3730 auto &&CodeGen = [this, &S, &HasLastprivates, 3731 UseOMPIRBuilder](CodeGenFunction &CGF, PrePostActionTy &) { 3732 // Use the OpenMPIRBuilder if enabled. 3733 if (UseOMPIRBuilder) { 3734 // Emit the associated statement and get its loop representation. 3735 const Stmt *Inner = S.getRawStmt(); 3736 llvm::CanonicalLoopInfo *CLI = 3737 EmitOMPCollapsedCanonicalLoopNest(Inner, 1); 3738 3739 bool NeedsBarrier = !S.getSingleClause<OMPNowaitClause>(); 3740 llvm::OpenMPIRBuilder &OMPBuilder = 3741 CGM.getOpenMPRuntime().getOMPBuilder(); 3742 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 3743 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 3744 OMPBuilder.applyWorkshareLoop(Builder.getCurrentDebugLocation(), CLI, 3745 AllocaIP, NeedsBarrier); 3746 return; 3747 } 3748 3749 HasLastprivates = emitWorksharingDirective(CGF, S, S.hasCancel()); 3750 }; 3751 { 3752 auto LPCRegion = 3753 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3754 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3755 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 3756 S.hasCancel()); 3757 } 3758 3759 if (!UseOMPIRBuilder) { 3760 // Emit an implicit barrier at the end. 3761 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3762 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3763 } 3764 // Check for outer lastprivate conditional update. 3765 checkForLastprivateConditionalUpdate(*this, S); 3766 } 3767 3768 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 3769 bool HasLastprivates = false; 3770 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 3771 PrePostActionTy &) { 3772 HasLastprivates = emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 3773 }; 3774 { 3775 auto LPCRegion = 3776 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3777 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3778 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 3779 } 3780 3781 // Emit an implicit barrier at the end. 3782 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3783 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3784 // Check for outer lastprivate conditional update. 3785 checkForLastprivateConditionalUpdate(*this, S); 3786 } 3787 3788 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 3789 const Twine &Name, 3790 llvm::Value *Init = nullptr) { 3791 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 3792 if (Init) 3793 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 3794 return LVal; 3795 } 3796 3797 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 3798 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 3799 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 3800 bool HasLastprivates = false; 3801 auto &&CodeGen = [&S, CapturedStmt, CS, 3802 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 3803 const ASTContext &C = CGF.getContext(); 3804 QualType KmpInt32Ty = 3805 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 3806 // Emit helper vars inits. 3807 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 3808 CGF.Builder.getInt32(0)); 3809 llvm::ConstantInt *GlobalUBVal = CS != nullptr 3810 ? CGF.Builder.getInt32(CS->size() - 1) 3811 : CGF.Builder.getInt32(0); 3812 LValue UB = 3813 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 3814 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 3815 CGF.Builder.getInt32(1)); 3816 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 3817 CGF.Builder.getInt32(0)); 3818 // Loop counter. 3819 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 3820 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 3821 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 3822 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 3823 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 3824 // Generate condition for loop. 3825 BinaryOperator *Cond = BinaryOperator::Create( 3826 C, &IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_PRValue, OK_Ordinary, 3827 S.getBeginLoc(), FPOptionsOverride()); 3828 // Increment for loop counter. 3829 UnaryOperator *Inc = UnaryOperator::Create( 3830 C, &IVRefExpr, UO_PreInc, KmpInt32Ty, VK_PRValue, OK_Ordinary, 3831 S.getBeginLoc(), true, FPOptionsOverride()); 3832 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 3833 // Iterate through all sections and emit a switch construct: 3834 // switch (IV) { 3835 // case 0: 3836 // <SectionStmt[0]>; 3837 // break; 3838 // ... 3839 // case <NumSection> - 1: 3840 // <SectionStmt[<NumSection> - 1]>; 3841 // break; 3842 // } 3843 // .omp.sections.exit: 3844 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 3845 llvm::SwitchInst *SwitchStmt = 3846 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 3847 ExitBB, CS == nullptr ? 1 : CS->size()); 3848 if (CS) { 3849 unsigned CaseNumber = 0; 3850 for (const Stmt *SubStmt : CS->children()) { 3851 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 3852 CGF.EmitBlock(CaseBB); 3853 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 3854 CGF.EmitStmt(SubStmt); 3855 CGF.EmitBranch(ExitBB); 3856 ++CaseNumber; 3857 } 3858 } else { 3859 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 3860 CGF.EmitBlock(CaseBB); 3861 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 3862 CGF.EmitStmt(CapturedStmt); 3863 CGF.EmitBranch(ExitBB); 3864 } 3865 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 3866 }; 3867 3868 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 3869 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 3870 // Emit implicit barrier to synchronize threads and avoid data races on 3871 // initialization of firstprivate variables and post-update of lastprivate 3872 // variables. 3873 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3874 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3875 /*ForceSimpleCall=*/true); 3876 } 3877 CGF.EmitOMPPrivateClause(S, LoopScope); 3878 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(CGF, S, IV); 3879 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 3880 CGF.EmitOMPReductionClauseInit(S, LoopScope); 3881 (void)LoopScope.Privatize(); 3882 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3883 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 3884 3885 // Emit static non-chunked loop. 3886 OpenMPScheduleTy ScheduleKind; 3887 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 3888 CGOpenMPRuntime::StaticRTInput StaticInit( 3889 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(CGF), 3890 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF)); 3891 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 3892 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 3893 // UB = min(UB, GlobalUB); 3894 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 3895 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 3896 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 3897 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 3898 // IV = LB; 3899 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 3900 // while (idx <= UB) { BODY; ++idx; } 3901 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, Cond, Inc, BodyGen, 3902 [](CodeGenFunction &) {}); 3903 // Tell the runtime we are done. 3904 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 3905 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 3906 S.getDirectiveKind()); 3907 }; 3908 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 3909 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 3910 // Emit post-update of the reduction variables if IsLastIter != 0. 3911 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 3912 return CGF.Builder.CreateIsNotNull( 3913 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3914 }); 3915 3916 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3917 if (HasLastprivates) 3918 CGF.EmitOMPLastprivateClauseFinal( 3919 S, /*NoFinals=*/false, 3920 CGF.Builder.CreateIsNotNull( 3921 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 3922 }; 3923 3924 bool HasCancel = false; 3925 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 3926 HasCancel = OSD->hasCancel(); 3927 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 3928 HasCancel = OPSD->hasCancel(); 3929 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 3930 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 3931 HasCancel); 3932 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 3933 // clause. Otherwise the barrier will be generated by the codegen for the 3934 // directive. 3935 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 3936 // Emit implicit barrier to synchronize threads and avoid data races on 3937 // initialization of firstprivate variables. 3938 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 3939 OMPD_unknown); 3940 } 3941 } 3942 3943 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 3944 if (CGM.getLangOpts().OpenMPIRBuilder) { 3945 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 3946 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 3947 using BodyGenCallbackTy = llvm::OpenMPIRBuilder::StorableBodyGenCallbackTy; 3948 3949 auto FiniCB = [this](InsertPointTy IP) { 3950 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 3951 }; 3952 3953 const CapturedStmt *ICS = S.getInnermostCapturedStmt(); 3954 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 3955 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 3956 llvm::SmallVector<BodyGenCallbackTy, 4> SectionCBVector; 3957 if (CS) { 3958 for (const Stmt *SubStmt : CS->children()) { 3959 auto SectionCB = [this, SubStmt](InsertPointTy AllocaIP, 3960 InsertPointTy CodeGenIP, 3961 llvm::BasicBlock &FiniBB) { 3962 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, 3963 FiniBB); 3964 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, SubStmt, CodeGenIP, 3965 FiniBB); 3966 }; 3967 SectionCBVector.push_back(SectionCB); 3968 } 3969 } else { 3970 auto SectionCB = [this, CapturedStmt](InsertPointTy AllocaIP, 3971 InsertPointTy CodeGenIP, 3972 llvm::BasicBlock &FiniBB) { 3973 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 3974 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CapturedStmt, CodeGenIP, 3975 FiniBB); 3976 }; 3977 SectionCBVector.push_back(SectionCB); 3978 } 3979 3980 // Privatization callback that performs appropriate action for 3981 // shared/private/firstprivate/lastprivate/copyin/... variables. 3982 // 3983 // TODO: This defaults to shared right now. 3984 auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 3985 llvm::Value &, llvm::Value &Val, llvm::Value *&ReplVal) { 3986 // The next line is appropriate only for variables (Val) with the 3987 // data-sharing attribute "shared". 3988 ReplVal = &Val; 3989 3990 return CodeGenIP; 3991 }; 3992 3993 CGCapturedStmtInfo CGSI(*ICS, CR_OpenMP); 3994 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 3995 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 3996 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 3997 Builder.restoreIP(OMPBuilder.createSections( 3998 Builder, AllocaIP, SectionCBVector, PrivCB, FiniCB, S.hasCancel(), 3999 S.getSingleClause<OMPNowaitClause>())); 4000 return; 4001 } 4002 { 4003 auto LPCRegion = 4004 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4005 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4006 EmitSections(S); 4007 } 4008 // Emit an implicit barrier at the end. 4009 if (!S.getSingleClause<OMPNowaitClause>()) { 4010 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 4011 OMPD_sections); 4012 } 4013 // Check for outer lastprivate conditional update. 4014 checkForLastprivateConditionalUpdate(*this, S); 4015 } 4016 4017 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 4018 if (CGM.getLangOpts().OpenMPIRBuilder) { 4019 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4020 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4021 4022 const Stmt *SectionRegionBodyStmt = S.getAssociatedStmt(); 4023 auto FiniCB = [this](InsertPointTy IP) { 4024 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4025 }; 4026 4027 auto BodyGenCB = [SectionRegionBodyStmt, this](InsertPointTy AllocaIP, 4028 InsertPointTy CodeGenIP, 4029 llvm::BasicBlock &FiniBB) { 4030 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 4031 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, SectionRegionBodyStmt, 4032 CodeGenIP, FiniBB); 4033 }; 4034 4035 LexicalScope Scope(*this, S.getSourceRange()); 4036 EmitStopPoint(&S); 4037 Builder.restoreIP(OMPBuilder.createSection(Builder, BodyGenCB, FiniCB)); 4038 4039 return; 4040 } 4041 LexicalScope Scope(*this, S.getSourceRange()); 4042 EmitStopPoint(&S); 4043 EmitStmt(S.getAssociatedStmt()); 4044 } 4045 4046 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 4047 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 4048 llvm::SmallVector<const Expr *, 8> DestExprs; 4049 llvm::SmallVector<const Expr *, 8> SrcExprs; 4050 llvm::SmallVector<const Expr *, 8> AssignmentOps; 4051 // Check if there are any 'copyprivate' clauses associated with this 4052 // 'single' construct. 4053 // Build a list of copyprivate variables along with helper expressions 4054 // (<source>, <destination>, <destination>=<source> expressions) 4055 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 4056 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 4057 DestExprs.append(C->destination_exprs().begin(), 4058 C->destination_exprs().end()); 4059 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 4060 AssignmentOps.append(C->assignment_ops().begin(), 4061 C->assignment_ops().end()); 4062 } 4063 // Emit code for 'single' region along with 'copyprivate' clauses 4064 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4065 Action.Enter(CGF); 4066 OMPPrivateScope SingleScope(CGF); 4067 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 4068 CGF.EmitOMPPrivateClause(S, SingleScope); 4069 (void)SingleScope.Privatize(); 4070 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4071 }; 4072 { 4073 auto LPCRegion = 4074 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4075 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4076 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 4077 CopyprivateVars, DestExprs, 4078 SrcExprs, AssignmentOps); 4079 } 4080 // Emit an implicit barrier at the end (to avoid data race on firstprivate 4081 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 4082 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 4083 CGM.getOpenMPRuntime().emitBarrierCall( 4084 *this, S.getBeginLoc(), 4085 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 4086 } 4087 // Check for outer lastprivate conditional update. 4088 checkForLastprivateConditionalUpdate(*this, S); 4089 } 4090 4091 static void emitMaster(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 4092 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4093 Action.Enter(CGF); 4094 CGF.EmitStmt(S.getRawStmt()); 4095 }; 4096 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 4097 } 4098 4099 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 4100 if (CGM.getLangOpts().OpenMPIRBuilder) { 4101 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4102 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4103 4104 const Stmt *MasterRegionBodyStmt = S.getAssociatedStmt(); 4105 4106 auto FiniCB = [this](InsertPointTy IP) { 4107 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4108 }; 4109 4110 auto BodyGenCB = [MasterRegionBodyStmt, this](InsertPointTy AllocaIP, 4111 InsertPointTy CodeGenIP, 4112 llvm::BasicBlock &FiniBB) { 4113 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 4114 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, MasterRegionBodyStmt, 4115 CodeGenIP, FiniBB); 4116 }; 4117 4118 LexicalScope Scope(*this, S.getSourceRange()); 4119 EmitStopPoint(&S); 4120 Builder.restoreIP(OMPBuilder.createMaster(Builder, BodyGenCB, FiniCB)); 4121 4122 return; 4123 } 4124 LexicalScope Scope(*this, S.getSourceRange()); 4125 EmitStopPoint(&S); 4126 emitMaster(*this, S); 4127 } 4128 4129 static void emitMasked(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 4130 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4131 Action.Enter(CGF); 4132 CGF.EmitStmt(S.getRawStmt()); 4133 }; 4134 Expr *Filter = nullptr; 4135 if (const auto *FilterClause = S.getSingleClause<OMPFilterClause>()) 4136 Filter = FilterClause->getThreadID(); 4137 CGF.CGM.getOpenMPRuntime().emitMaskedRegion(CGF, CodeGen, S.getBeginLoc(), 4138 Filter); 4139 } 4140 4141 void CodeGenFunction::EmitOMPMaskedDirective(const OMPMaskedDirective &S) { 4142 if (CGM.getLangOpts().OpenMPIRBuilder) { 4143 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4144 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4145 4146 const Stmt *MaskedRegionBodyStmt = S.getAssociatedStmt(); 4147 const Expr *Filter = nullptr; 4148 if (const auto *FilterClause = S.getSingleClause<OMPFilterClause>()) 4149 Filter = FilterClause->getThreadID(); 4150 llvm::Value *FilterVal = Filter 4151 ? EmitScalarExpr(Filter, CGM.Int32Ty) 4152 : llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/0); 4153 4154 auto FiniCB = [this](InsertPointTy IP) { 4155 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4156 }; 4157 4158 auto BodyGenCB = [MaskedRegionBodyStmt, this](InsertPointTy AllocaIP, 4159 InsertPointTy CodeGenIP, 4160 llvm::BasicBlock &FiniBB) { 4161 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 4162 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, MaskedRegionBodyStmt, 4163 CodeGenIP, FiniBB); 4164 }; 4165 4166 LexicalScope Scope(*this, S.getSourceRange()); 4167 EmitStopPoint(&S); 4168 Builder.restoreIP( 4169 OMPBuilder.createMasked(Builder, BodyGenCB, FiniCB, FilterVal)); 4170 4171 return; 4172 } 4173 LexicalScope Scope(*this, S.getSourceRange()); 4174 EmitStopPoint(&S); 4175 emitMasked(*this, S); 4176 } 4177 4178 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 4179 if (CGM.getLangOpts().OpenMPIRBuilder) { 4180 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4181 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4182 4183 const Stmt *CriticalRegionBodyStmt = S.getAssociatedStmt(); 4184 const Expr *Hint = nullptr; 4185 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 4186 Hint = HintClause->getHint(); 4187 4188 // TODO: This is slightly different from what's currently being done in 4189 // clang. Fix the Int32Ty to IntPtrTy (pointer width size) when everything 4190 // about typing is final. 4191 llvm::Value *HintInst = nullptr; 4192 if (Hint) 4193 HintInst = 4194 Builder.CreateIntCast(EmitScalarExpr(Hint), CGM.Int32Ty, false); 4195 4196 auto FiniCB = [this](InsertPointTy IP) { 4197 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4198 }; 4199 4200 auto BodyGenCB = [CriticalRegionBodyStmt, this](InsertPointTy AllocaIP, 4201 InsertPointTy CodeGenIP, 4202 llvm::BasicBlock &FiniBB) { 4203 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 4204 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CriticalRegionBodyStmt, 4205 CodeGenIP, FiniBB); 4206 }; 4207 4208 LexicalScope Scope(*this, S.getSourceRange()); 4209 EmitStopPoint(&S); 4210 Builder.restoreIP(OMPBuilder.createCritical( 4211 Builder, BodyGenCB, FiniCB, S.getDirectiveName().getAsString(), 4212 HintInst)); 4213 4214 return; 4215 } 4216 4217 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4218 Action.Enter(CGF); 4219 CGF.EmitStmt(S.getAssociatedStmt()); 4220 }; 4221 const Expr *Hint = nullptr; 4222 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 4223 Hint = HintClause->getHint(); 4224 LexicalScope Scope(*this, S.getSourceRange()); 4225 EmitStopPoint(&S); 4226 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 4227 S.getDirectiveName().getAsString(), 4228 CodeGen, S.getBeginLoc(), Hint); 4229 } 4230 4231 void CodeGenFunction::EmitOMPParallelForDirective( 4232 const OMPParallelForDirective &S) { 4233 // Emit directive as a combined directive that consists of two implicit 4234 // directives: 'parallel' with 'for' directive. 4235 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4236 Action.Enter(CGF); 4237 (void)emitWorksharingDirective(CGF, S, S.hasCancel()); 4238 }; 4239 { 4240 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 4241 [](const OMPReductionClause *C) { 4242 return C->getModifier() == OMPC_REDUCTION_inscan; 4243 })) { 4244 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 4245 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 4246 CGCapturedStmtInfo CGSI(CR_OpenMP); 4247 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGSI); 4248 OMPLoopScope LoopScope(CGF, S); 4249 return CGF.EmitScalarExpr(S.getNumIterations()); 4250 }; 4251 emitScanBasedDirectiveDecls(*this, S, NumIteratorsGen); 4252 } 4253 auto LPCRegion = 4254 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4255 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 4256 emitEmptyBoundParameters); 4257 } 4258 // Check for outer lastprivate conditional update. 4259 checkForLastprivateConditionalUpdate(*this, S); 4260 } 4261 4262 void CodeGenFunction::EmitOMPParallelForSimdDirective( 4263 const OMPParallelForSimdDirective &S) { 4264 // Emit directive as a combined directive that consists of two implicit 4265 // directives: 'parallel' with 'for' directive. 4266 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4267 Action.Enter(CGF); 4268 (void)emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 4269 }; 4270 { 4271 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 4272 [](const OMPReductionClause *C) { 4273 return C->getModifier() == OMPC_REDUCTION_inscan; 4274 })) { 4275 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 4276 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 4277 CGCapturedStmtInfo CGSI(CR_OpenMP); 4278 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGSI); 4279 OMPLoopScope LoopScope(CGF, S); 4280 return CGF.EmitScalarExpr(S.getNumIterations()); 4281 }; 4282 emitScanBasedDirectiveDecls(*this, S, NumIteratorsGen); 4283 } 4284 auto LPCRegion = 4285 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4286 emitCommonOMPParallelDirective(*this, S, OMPD_for_simd, CodeGen, 4287 emitEmptyBoundParameters); 4288 } 4289 // Check for outer lastprivate conditional update. 4290 checkForLastprivateConditionalUpdate(*this, S); 4291 } 4292 4293 void CodeGenFunction::EmitOMPParallelMasterDirective( 4294 const OMPParallelMasterDirective &S) { 4295 // Emit directive as a combined directive that consists of two implicit 4296 // directives: 'parallel' with 'master' directive. 4297 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4298 Action.Enter(CGF); 4299 OMPPrivateScope PrivateScope(CGF); 4300 bool Copyins = CGF.EmitOMPCopyinClause(S); 4301 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4302 if (Copyins) { 4303 // Emit implicit barrier to synchronize threads and avoid data races on 4304 // propagation master's thread values of threadprivate variables to local 4305 // instances of that variables of all other implicit threads. 4306 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 4307 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 4308 /*ForceSimpleCall=*/true); 4309 } 4310 CGF.EmitOMPPrivateClause(S, PrivateScope); 4311 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4312 (void)PrivateScope.Privatize(); 4313 emitMaster(CGF, S); 4314 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4315 }; 4316 { 4317 auto LPCRegion = 4318 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4319 emitCommonOMPParallelDirective(*this, S, OMPD_master, CodeGen, 4320 emitEmptyBoundParameters); 4321 emitPostUpdateForReductionClause(*this, S, 4322 [](CodeGenFunction &) { return nullptr; }); 4323 } 4324 // Check for outer lastprivate conditional update. 4325 checkForLastprivateConditionalUpdate(*this, S); 4326 } 4327 4328 void CodeGenFunction::EmitOMPParallelSectionsDirective( 4329 const OMPParallelSectionsDirective &S) { 4330 // Emit directive as a combined directive that consists of two implicit 4331 // directives: 'parallel' with 'sections' directive. 4332 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4333 Action.Enter(CGF); 4334 CGF.EmitSections(S); 4335 }; 4336 { 4337 auto LPCRegion = 4338 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4339 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 4340 emitEmptyBoundParameters); 4341 } 4342 // Check for outer lastprivate conditional update. 4343 checkForLastprivateConditionalUpdate(*this, S); 4344 } 4345 4346 namespace { 4347 /// Get the list of variables declared in the context of the untied tasks. 4348 class CheckVarsEscapingUntiedTaskDeclContext final 4349 : public ConstStmtVisitor<CheckVarsEscapingUntiedTaskDeclContext> { 4350 llvm::SmallVector<const VarDecl *, 4> PrivateDecls; 4351 4352 public: 4353 explicit CheckVarsEscapingUntiedTaskDeclContext() = default; 4354 virtual ~CheckVarsEscapingUntiedTaskDeclContext() = default; 4355 void VisitDeclStmt(const DeclStmt *S) { 4356 if (!S) 4357 return; 4358 // Need to privatize only local vars, static locals can be processed as is. 4359 for (const Decl *D : S->decls()) { 4360 if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) 4361 if (VD->hasLocalStorage()) 4362 PrivateDecls.push_back(VD); 4363 } 4364 } 4365 void VisitOMPExecutableDirective(const OMPExecutableDirective *) {} 4366 void VisitCapturedStmt(const CapturedStmt *) {} 4367 void VisitLambdaExpr(const LambdaExpr *) {} 4368 void VisitBlockExpr(const BlockExpr *) {} 4369 void VisitStmt(const Stmt *S) { 4370 if (!S) 4371 return; 4372 for (const Stmt *Child : S->children()) 4373 if (Child) 4374 Visit(Child); 4375 } 4376 4377 /// Swaps list of vars with the provided one. 4378 ArrayRef<const VarDecl *> getPrivateDecls() const { return PrivateDecls; } 4379 }; 4380 } // anonymous namespace 4381 4382 void CodeGenFunction::EmitOMPTaskBasedDirective( 4383 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 4384 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 4385 OMPTaskDataTy &Data) { 4386 // Emit outlined function for task construct. 4387 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 4388 auto I = CS->getCapturedDecl()->param_begin(); 4389 auto PartId = std::next(I); 4390 auto TaskT = std::next(I, 4); 4391 // Check if the task is final 4392 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 4393 // If the condition constant folds and can be elided, try to avoid emitting 4394 // the condition and the dead arm of the if/else. 4395 const Expr *Cond = Clause->getCondition(); 4396 bool CondConstant; 4397 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 4398 Data.Final.setInt(CondConstant); 4399 else 4400 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 4401 } else { 4402 // By default the task is not final. 4403 Data.Final.setInt(/*IntVal=*/false); 4404 } 4405 // Check if the task has 'priority' clause. 4406 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 4407 const Expr *Prio = Clause->getPriority(); 4408 Data.Priority.setInt(/*IntVal=*/true); 4409 Data.Priority.setPointer(EmitScalarConversion( 4410 EmitScalarExpr(Prio), Prio->getType(), 4411 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 4412 Prio->getExprLoc())); 4413 } 4414 // The first function argument for tasks is a thread id, the second one is a 4415 // part id (0 for tied tasks, >=0 for untied task). 4416 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 4417 // Get list of private variables. 4418 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 4419 auto IRef = C->varlist_begin(); 4420 for (const Expr *IInit : C->private_copies()) { 4421 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4422 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4423 Data.PrivateVars.push_back(*IRef); 4424 Data.PrivateCopies.push_back(IInit); 4425 } 4426 ++IRef; 4427 } 4428 } 4429 EmittedAsPrivate.clear(); 4430 // Get list of firstprivate variables. 4431 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 4432 auto IRef = C->varlist_begin(); 4433 auto IElemInitRef = C->inits().begin(); 4434 for (const Expr *IInit : C->private_copies()) { 4435 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4436 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4437 Data.FirstprivateVars.push_back(*IRef); 4438 Data.FirstprivateCopies.push_back(IInit); 4439 Data.FirstprivateInits.push_back(*IElemInitRef); 4440 } 4441 ++IRef; 4442 ++IElemInitRef; 4443 } 4444 } 4445 // Get list of lastprivate variables (for taskloops). 4446 llvm::MapVector<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 4447 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 4448 auto IRef = C->varlist_begin(); 4449 auto ID = C->destination_exprs().begin(); 4450 for (const Expr *IInit : C->private_copies()) { 4451 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4452 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4453 Data.LastprivateVars.push_back(*IRef); 4454 Data.LastprivateCopies.push_back(IInit); 4455 } 4456 LastprivateDstsOrigs.insert( 4457 std::make_pair(cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 4458 cast<DeclRefExpr>(*IRef))); 4459 ++IRef; 4460 ++ID; 4461 } 4462 } 4463 SmallVector<const Expr *, 4> LHSs; 4464 SmallVector<const Expr *, 4> RHSs; 4465 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 4466 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 4467 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 4468 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 4469 Data.ReductionOps.append(C->reduction_ops().begin(), 4470 C->reduction_ops().end()); 4471 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4472 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4473 } 4474 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 4475 *this, S.getBeginLoc(), LHSs, RHSs, Data); 4476 // Build list of dependences. 4477 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 4478 OMPTaskDataTy::DependData &DD = 4479 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 4480 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 4481 } 4482 // Get list of local vars for untied tasks. 4483 if (!Data.Tied) { 4484 CheckVarsEscapingUntiedTaskDeclContext Checker; 4485 Checker.Visit(S.getInnermostCapturedStmt()->getCapturedStmt()); 4486 Data.PrivateLocals.append(Checker.getPrivateDecls().begin(), 4487 Checker.getPrivateDecls().end()); 4488 } 4489 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 4490 CapturedRegion](CodeGenFunction &CGF, 4491 PrePostActionTy &Action) { 4492 llvm::MapVector<CanonicalDeclPtr<const VarDecl>, 4493 std::pair<Address, Address>> 4494 UntiedLocalVars; 4495 // Set proper addresses for generated private copies. 4496 OMPPrivateScope Scope(CGF); 4497 // Generate debug info for variables present in shared clause. 4498 if (auto *DI = CGF.getDebugInfo()) { 4499 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields = 4500 CGF.CapturedStmtInfo->getCaptureFields(); 4501 llvm::Value *ContextValue = CGF.CapturedStmtInfo->getContextValue(); 4502 if (CaptureFields.size() && ContextValue) { 4503 unsigned CharWidth = CGF.getContext().getCharWidth(); 4504 // The shared variables are packed together as members of structure. 4505 // So the address of each shared variable can be computed by adding 4506 // offset of it (within record) to the base address of record. For each 4507 // shared variable, debug intrinsic llvm.dbg.declare is generated with 4508 // appropriate expressions (DIExpression). 4509 // Ex: 4510 // %12 = load %struct.anon*, %struct.anon** %__context.addr.i 4511 // call void @llvm.dbg.declare(metadata %struct.anon* %12, 4512 // metadata !svar1, 4513 // metadata !DIExpression(DW_OP_deref)) 4514 // call void @llvm.dbg.declare(metadata %struct.anon* %12, 4515 // metadata !svar2, 4516 // metadata !DIExpression(DW_OP_plus_uconst, 8, DW_OP_deref)) 4517 for (auto It = CaptureFields.begin(); It != CaptureFields.end(); ++It) { 4518 const VarDecl *SharedVar = It->first; 4519 RecordDecl *CaptureRecord = It->second->getParent(); 4520 const ASTRecordLayout &Layout = 4521 CGF.getContext().getASTRecordLayout(CaptureRecord); 4522 unsigned Offset = 4523 Layout.getFieldOffset(It->second->getFieldIndex()) / CharWidth; 4524 if (CGF.CGM.getCodeGenOpts().hasReducedDebugInfo()) 4525 (void)DI->EmitDeclareOfAutoVariable(SharedVar, ContextValue, 4526 CGF.Builder, false); 4527 llvm::Instruction &Last = CGF.Builder.GetInsertBlock()->back(); 4528 // Get the call dbg.declare instruction we just created and update 4529 // its DIExpression to add offset to base address. 4530 if (auto DDI = dyn_cast<llvm::DbgVariableIntrinsic>(&Last)) { 4531 SmallVector<uint64_t, 8> Ops; 4532 // Add offset to the base address if non zero. 4533 if (Offset) { 4534 Ops.push_back(llvm::dwarf::DW_OP_plus_uconst); 4535 Ops.push_back(Offset); 4536 } 4537 Ops.push_back(llvm::dwarf::DW_OP_deref); 4538 auto &Ctx = DDI->getContext(); 4539 llvm::DIExpression *DIExpr = llvm::DIExpression::get(Ctx, Ops); 4540 Last.setOperand(2, llvm::MetadataAsValue::get(Ctx, DIExpr)); 4541 } 4542 } 4543 } 4544 } 4545 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> FirstprivatePtrs; 4546 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 4547 !Data.LastprivateVars.empty() || !Data.PrivateLocals.empty()) { 4548 enum { PrivatesParam = 2, CopyFnParam = 3 }; 4549 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 4550 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 4551 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 4552 CS->getCapturedDecl()->getParam(PrivatesParam))); 4553 // Map privates. 4554 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 4555 llvm::SmallVector<llvm::Value *, 16> CallArgs; 4556 llvm::SmallVector<llvm::Type *, 4> ParamTypes; 4557 CallArgs.push_back(PrivatesPtr); 4558 ParamTypes.push_back(PrivatesPtr->getType()); 4559 for (const Expr *E : Data.PrivateVars) { 4560 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4561 Address PrivatePtr = CGF.CreateMemTemp( 4562 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 4563 PrivatePtrs.emplace_back(VD, PrivatePtr); 4564 CallArgs.push_back(PrivatePtr.getPointer()); 4565 ParamTypes.push_back(PrivatePtr.getType()); 4566 } 4567 for (const Expr *E : Data.FirstprivateVars) { 4568 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4569 Address PrivatePtr = 4570 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4571 ".firstpriv.ptr.addr"); 4572 PrivatePtrs.emplace_back(VD, PrivatePtr); 4573 FirstprivatePtrs.emplace_back(VD, PrivatePtr); 4574 CallArgs.push_back(PrivatePtr.getPointer()); 4575 ParamTypes.push_back(PrivatePtr.getType()); 4576 } 4577 for (const Expr *E : Data.LastprivateVars) { 4578 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4579 Address PrivatePtr = 4580 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4581 ".lastpriv.ptr.addr"); 4582 PrivatePtrs.emplace_back(VD, PrivatePtr); 4583 CallArgs.push_back(PrivatePtr.getPointer()); 4584 ParamTypes.push_back(PrivatePtr.getType()); 4585 } 4586 for (const VarDecl *VD : Data.PrivateLocals) { 4587 QualType Ty = VD->getType().getNonReferenceType(); 4588 if (VD->getType()->isLValueReferenceType()) 4589 Ty = CGF.getContext().getPointerType(Ty); 4590 if (isAllocatableDecl(VD)) 4591 Ty = CGF.getContext().getPointerType(Ty); 4592 Address PrivatePtr = CGF.CreateMemTemp( 4593 CGF.getContext().getPointerType(Ty), ".local.ptr.addr"); 4594 auto Result = UntiedLocalVars.insert( 4595 std::make_pair(VD, std::make_pair(PrivatePtr, Address::invalid()))); 4596 // If key exists update in place. 4597 if (Result.second == false) 4598 *Result.first = std::make_pair( 4599 VD, std::make_pair(PrivatePtr, Address::invalid())); 4600 CallArgs.push_back(PrivatePtr.getPointer()); 4601 ParamTypes.push_back(PrivatePtr.getType()); 4602 } 4603 auto *CopyFnTy = llvm::FunctionType::get(CGF.Builder.getVoidTy(), 4604 ParamTypes, /*isVarArg=*/false); 4605 CopyFn = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 4606 CopyFn, CopyFnTy->getPointerTo()); 4607 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 4608 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 4609 for (const auto &Pair : LastprivateDstsOrigs) { 4610 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 4611 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD), 4612 /*RefersToEnclosingVariableOrCapture=*/ 4613 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 4614 Pair.second->getType(), VK_LValue, 4615 Pair.second->getExprLoc()); 4616 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 4617 return CGF.EmitLValue(&DRE).getAddress(CGF); 4618 }); 4619 } 4620 for (const auto &Pair : PrivatePtrs) { 4621 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 4622 CGF.getContext().getDeclAlign(Pair.first)); 4623 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 4624 if (auto *DI = CGF.getDebugInfo()) 4625 if (CGF.CGM.getCodeGenOpts().hasReducedDebugInfo()) 4626 (void)DI->EmitDeclareOfAutoVariable( 4627 Pair.first, Pair.second.getPointer(), CGF.Builder, 4628 /*UsePointerValue*/ true); 4629 } 4630 // Adjust mapping for internal locals by mapping actual memory instead of 4631 // a pointer to this memory. 4632 for (auto &Pair : UntiedLocalVars) { 4633 if (isAllocatableDecl(Pair.first)) { 4634 llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first); 4635 Address Replacement(Ptr, CGF.getPointerAlign()); 4636 Pair.second.first = Replacement; 4637 Ptr = CGF.Builder.CreateLoad(Replacement); 4638 Replacement = Address(Ptr, CGF.getContext().getDeclAlign(Pair.first)); 4639 Pair.second.second = Replacement; 4640 } else { 4641 llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first); 4642 Address Replacement(Ptr, CGF.getContext().getDeclAlign(Pair.first)); 4643 Pair.second.first = Replacement; 4644 } 4645 } 4646 } 4647 if (Data.Reductions) { 4648 OMPPrivateScope FirstprivateScope(CGF); 4649 for (const auto &Pair : FirstprivatePtrs) { 4650 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 4651 CGF.getContext().getDeclAlign(Pair.first)); 4652 FirstprivateScope.addPrivate(Pair.first, 4653 [Replacement]() { return Replacement; }); 4654 } 4655 (void)FirstprivateScope.Privatize(); 4656 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 4657 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionVars, 4658 Data.ReductionCopies, Data.ReductionOps); 4659 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 4660 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 4661 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 4662 RedCG.emitSharedOrigLValue(CGF, Cnt); 4663 RedCG.emitAggregateType(CGF, Cnt); 4664 // FIXME: This must removed once the runtime library is fixed. 4665 // Emit required threadprivate variables for 4666 // initializer/combiner/finalizer. 4667 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 4668 RedCG, Cnt); 4669 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 4670 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 4671 Replacement = 4672 Address(CGF.EmitScalarConversion( 4673 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 4674 CGF.getContext().getPointerType( 4675 Data.ReductionCopies[Cnt]->getType()), 4676 Data.ReductionCopies[Cnt]->getExprLoc()), 4677 Replacement.getAlignment()); 4678 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 4679 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 4680 [Replacement]() { return Replacement; }); 4681 } 4682 } 4683 // Privatize all private variables except for in_reduction items. 4684 (void)Scope.Privatize(); 4685 SmallVector<const Expr *, 4> InRedVars; 4686 SmallVector<const Expr *, 4> InRedPrivs; 4687 SmallVector<const Expr *, 4> InRedOps; 4688 SmallVector<const Expr *, 4> TaskgroupDescriptors; 4689 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 4690 auto IPriv = C->privates().begin(); 4691 auto IRed = C->reduction_ops().begin(); 4692 auto ITD = C->taskgroup_descriptors().begin(); 4693 for (const Expr *Ref : C->varlists()) { 4694 InRedVars.emplace_back(Ref); 4695 InRedPrivs.emplace_back(*IPriv); 4696 InRedOps.emplace_back(*IRed); 4697 TaskgroupDescriptors.emplace_back(*ITD); 4698 std::advance(IPriv, 1); 4699 std::advance(IRed, 1); 4700 std::advance(ITD, 1); 4701 } 4702 } 4703 // Privatize in_reduction items here, because taskgroup descriptors must be 4704 // privatized earlier. 4705 OMPPrivateScope InRedScope(CGF); 4706 if (!InRedVars.empty()) { 4707 ReductionCodeGen RedCG(InRedVars, InRedVars, InRedPrivs, InRedOps); 4708 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 4709 RedCG.emitSharedOrigLValue(CGF, Cnt); 4710 RedCG.emitAggregateType(CGF, Cnt); 4711 // The taskgroup descriptor variable is always implicit firstprivate and 4712 // privatized already during processing of the firstprivates. 4713 // FIXME: This must removed once the runtime library is fixed. 4714 // Emit required threadprivate variables for 4715 // initializer/combiner/finalizer. 4716 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 4717 RedCG, Cnt); 4718 llvm::Value *ReductionsPtr; 4719 if (const Expr *TRExpr = TaskgroupDescriptors[Cnt]) { 4720 ReductionsPtr = CGF.EmitLoadOfScalar(CGF.EmitLValue(TRExpr), 4721 TRExpr->getExprLoc()); 4722 } else { 4723 ReductionsPtr = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); 4724 } 4725 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 4726 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 4727 Replacement = Address( 4728 CGF.EmitScalarConversion( 4729 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 4730 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 4731 InRedPrivs[Cnt]->getExprLoc()), 4732 Replacement.getAlignment()); 4733 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 4734 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 4735 [Replacement]() { return Replacement; }); 4736 } 4737 } 4738 (void)InRedScope.Privatize(); 4739 4740 CGOpenMPRuntime::UntiedTaskLocalDeclsRAII LocalVarsScope(CGF, 4741 UntiedLocalVars); 4742 Action.Enter(CGF); 4743 BodyGen(CGF); 4744 }; 4745 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 4746 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 4747 Data.NumberOfParts); 4748 OMPLexicalScope Scope(*this, S, llvm::None, 4749 !isOpenMPParallelDirective(S.getDirectiveKind()) && 4750 !isOpenMPSimdDirective(S.getDirectiveKind())); 4751 TaskGen(*this, OutlinedFn, Data); 4752 } 4753 4754 static ImplicitParamDecl * 4755 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 4756 QualType Ty, CapturedDecl *CD, 4757 SourceLocation Loc) { 4758 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 4759 ImplicitParamDecl::Other); 4760 auto *OrigRef = DeclRefExpr::Create( 4761 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 4762 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 4763 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 4764 ImplicitParamDecl::Other); 4765 auto *PrivateRef = DeclRefExpr::Create( 4766 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 4767 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 4768 QualType ElemType = C.getBaseElementType(Ty); 4769 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 4770 ImplicitParamDecl::Other); 4771 auto *InitRef = DeclRefExpr::Create( 4772 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 4773 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 4774 PrivateVD->setInitStyle(VarDecl::CInit); 4775 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 4776 InitRef, /*BasePath=*/nullptr, 4777 VK_PRValue, FPOptionsOverride())); 4778 Data.FirstprivateVars.emplace_back(OrigRef); 4779 Data.FirstprivateCopies.emplace_back(PrivateRef); 4780 Data.FirstprivateInits.emplace_back(InitRef); 4781 return OrigVD; 4782 } 4783 4784 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 4785 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 4786 OMPTargetDataInfo &InputInfo) { 4787 // Emit outlined function for task construct. 4788 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 4789 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4790 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4791 auto I = CS->getCapturedDecl()->param_begin(); 4792 auto PartId = std::next(I); 4793 auto TaskT = std::next(I, 4); 4794 OMPTaskDataTy Data; 4795 // The task is not final. 4796 Data.Final.setInt(/*IntVal=*/false); 4797 // Get list of firstprivate variables. 4798 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 4799 auto IRef = C->varlist_begin(); 4800 auto IElemInitRef = C->inits().begin(); 4801 for (auto *IInit : C->private_copies()) { 4802 Data.FirstprivateVars.push_back(*IRef); 4803 Data.FirstprivateCopies.push_back(IInit); 4804 Data.FirstprivateInits.push_back(*IElemInitRef); 4805 ++IRef; 4806 ++IElemInitRef; 4807 } 4808 } 4809 OMPPrivateScope TargetScope(*this); 4810 VarDecl *BPVD = nullptr; 4811 VarDecl *PVD = nullptr; 4812 VarDecl *SVD = nullptr; 4813 VarDecl *MVD = nullptr; 4814 if (InputInfo.NumberOfTargetItems > 0) { 4815 auto *CD = CapturedDecl::Create( 4816 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 4817 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 4818 QualType BaseAndPointerAndMapperType = getContext().getConstantArrayType( 4819 getContext().VoidPtrTy, ArrSize, nullptr, ArrayType::Normal, 4820 /*IndexTypeQuals=*/0); 4821 BPVD = createImplicitFirstprivateForType( 4822 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4823 PVD = createImplicitFirstprivateForType( 4824 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4825 QualType SizesType = getContext().getConstantArrayType( 4826 getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1), 4827 ArrSize, nullptr, ArrayType::Normal, 4828 /*IndexTypeQuals=*/0); 4829 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 4830 S.getBeginLoc()); 4831 TargetScope.addPrivate( 4832 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 4833 TargetScope.addPrivate(PVD, 4834 [&InputInfo]() { return InputInfo.PointersArray; }); 4835 TargetScope.addPrivate(SVD, 4836 [&InputInfo]() { return InputInfo.SizesArray; }); 4837 // If there is no user-defined mapper, the mapper array will be nullptr. In 4838 // this case, we don't need to privatize it. 4839 if (!isa_and_nonnull<llvm::ConstantPointerNull>( 4840 InputInfo.MappersArray.getPointer())) { 4841 MVD = createImplicitFirstprivateForType( 4842 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4843 TargetScope.addPrivate(MVD, 4844 [&InputInfo]() { return InputInfo.MappersArray; }); 4845 } 4846 } 4847 (void)TargetScope.Privatize(); 4848 // Build list of dependences. 4849 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 4850 OMPTaskDataTy::DependData &DD = 4851 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 4852 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 4853 } 4854 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, MVD, 4855 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 4856 // Set proper addresses for generated private copies. 4857 OMPPrivateScope Scope(CGF); 4858 if (!Data.FirstprivateVars.empty()) { 4859 enum { PrivatesParam = 2, CopyFnParam = 3 }; 4860 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 4861 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 4862 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 4863 CS->getCapturedDecl()->getParam(PrivatesParam))); 4864 // Map privates. 4865 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 4866 llvm::SmallVector<llvm::Value *, 16> CallArgs; 4867 llvm::SmallVector<llvm::Type *, 4> ParamTypes; 4868 CallArgs.push_back(PrivatesPtr); 4869 ParamTypes.push_back(PrivatesPtr->getType()); 4870 for (const Expr *E : Data.FirstprivateVars) { 4871 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4872 Address PrivatePtr = 4873 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4874 ".firstpriv.ptr.addr"); 4875 PrivatePtrs.emplace_back(VD, PrivatePtr); 4876 CallArgs.push_back(PrivatePtr.getPointer()); 4877 ParamTypes.push_back(PrivatePtr.getType()); 4878 } 4879 auto *CopyFnTy = llvm::FunctionType::get(CGF.Builder.getVoidTy(), 4880 ParamTypes, /*isVarArg=*/false); 4881 CopyFn = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 4882 CopyFn, CopyFnTy->getPointerTo()); 4883 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 4884 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 4885 for (const auto &Pair : PrivatePtrs) { 4886 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 4887 CGF.getContext().getDeclAlign(Pair.first)); 4888 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 4889 } 4890 } 4891 // Privatize all private variables except for in_reduction items. 4892 (void)Scope.Privatize(); 4893 if (InputInfo.NumberOfTargetItems > 0) { 4894 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 4895 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0); 4896 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 4897 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0); 4898 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 4899 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0); 4900 // If MVD is nullptr, the mapper array is not privatized 4901 if (MVD) 4902 InputInfo.MappersArray = CGF.Builder.CreateConstArrayGEP( 4903 CGF.GetAddrOfLocalVar(MVD), /*Index=*/0); 4904 } 4905 4906 Action.Enter(CGF); 4907 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 4908 BodyGen(CGF); 4909 }; 4910 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 4911 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 4912 Data.NumberOfParts); 4913 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 4914 IntegerLiteral IfCond(getContext(), TrueOrFalse, 4915 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 4916 SourceLocation()); 4917 4918 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 4919 SharedsTy, CapturedStruct, &IfCond, Data); 4920 } 4921 4922 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 4923 // Emit outlined function for task construct. 4924 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 4925 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4926 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4927 const Expr *IfCond = nullptr; 4928 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4929 if (C->getNameModifier() == OMPD_unknown || 4930 C->getNameModifier() == OMPD_task) { 4931 IfCond = C->getCondition(); 4932 break; 4933 } 4934 } 4935 4936 OMPTaskDataTy Data; 4937 // Check if we should emit tied or untied task. 4938 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 4939 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 4940 CGF.EmitStmt(CS->getCapturedStmt()); 4941 }; 4942 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 4943 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 4944 const OMPTaskDataTy &Data) { 4945 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 4946 SharedsTy, CapturedStruct, IfCond, 4947 Data); 4948 }; 4949 auto LPCRegion = 4950 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4951 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 4952 } 4953 4954 void CodeGenFunction::EmitOMPTaskyieldDirective( 4955 const OMPTaskyieldDirective &S) { 4956 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 4957 } 4958 4959 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 4960 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 4961 } 4962 4963 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 4964 OMPTaskDataTy Data; 4965 // Build list of dependences 4966 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 4967 OMPTaskDataTy::DependData &DD = 4968 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 4969 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 4970 } 4971 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc(), Data); 4972 } 4973 4974 void CodeGenFunction::EmitOMPTaskgroupDirective( 4975 const OMPTaskgroupDirective &S) { 4976 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4977 Action.Enter(CGF); 4978 if (const Expr *E = S.getReductionRef()) { 4979 SmallVector<const Expr *, 4> LHSs; 4980 SmallVector<const Expr *, 4> RHSs; 4981 OMPTaskDataTy Data; 4982 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 4983 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 4984 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 4985 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 4986 Data.ReductionOps.append(C->reduction_ops().begin(), 4987 C->reduction_ops().end()); 4988 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4989 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4990 } 4991 llvm::Value *ReductionDesc = 4992 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 4993 LHSs, RHSs, Data); 4994 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4995 CGF.EmitVarDecl(*VD); 4996 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 4997 /*Volatile=*/false, E->getType()); 4998 } 4999 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 5000 }; 5001 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5002 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 5003 } 5004 5005 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 5006 llvm::AtomicOrdering AO = S.getSingleClause<OMPFlushClause>() 5007 ? llvm::AtomicOrdering::NotAtomic 5008 : llvm::AtomicOrdering::AcquireRelease; 5009 CGM.getOpenMPRuntime().emitFlush( 5010 *this, 5011 [&S]() -> ArrayRef<const Expr *> { 5012 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 5013 return llvm::makeArrayRef(FlushClause->varlist_begin(), 5014 FlushClause->varlist_end()); 5015 return llvm::None; 5016 }(), 5017 S.getBeginLoc(), AO); 5018 } 5019 5020 void CodeGenFunction::EmitOMPDepobjDirective(const OMPDepobjDirective &S) { 5021 const auto *DO = S.getSingleClause<OMPDepobjClause>(); 5022 LValue DOLVal = EmitLValue(DO->getDepobj()); 5023 if (const auto *DC = S.getSingleClause<OMPDependClause>()) { 5024 OMPTaskDataTy::DependData Dependencies(DC->getDependencyKind(), 5025 DC->getModifier()); 5026 Dependencies.DepExprs.append(DC->varlist_begin(), DC->varlist_end()); 5027 Address DepAddr = CGM.getOpenMPRuntime().emitDepobjDependClause( 5028 *this, Dependencies, DC->getBeginLoc()); 5029 EmitStoreOfScalar(DepAddr.getPointer(), DOLVal); 5030 return; 5031 } 5032 if (const auto *DC = S.getSingleClause<OMPDestroyClause>()) { 5033 CGM.getOpenMPRuntime().emitDestroyClause(*this, DOLVal, DC->getBeginLoc()); 5034 return; 5035 } 5036 if (const auto *UC = S.getSingleClause<OMPUpdateClause>()) { 5037 CGM.getOpenMPRuntime().emitUpdateClause( 5038 *this, DOLVal, UC->getDependencyKind(), UC->getBeginLoc()); 5039 return; 5040 } 5041 } 5042 5043 void CodeGenFunction::EmitOMPScanDirective(const OMPScanDirective &S) { 5044 if (!OMPParentLoopDirectiveForScan) 5045 return; 5046 const OMPExecutableDirective &ParentDir = *OMPParentLoopDirectiveForScan; 5047 bool IsInclusive = S.hasClausesOfKind<OMPInclusiveClause>(); 5048 SmallVector<const Expr *, 4> Shareds; 5049 SmallVector<const Expr *, 4> Privates; 5050 SmallVector<const Expr *, 4> LHSs; 5051 SmallVector<const Expr *, 4> RHSs; 5052 SmallVector<const Expr *, 4> ReductionOps; 5053 SmallVector<const Expr *, 4> CopyOps; 5054 SmallVector<const Expr *, 4> CopyArrayTemps; 5055 SmallVector<const Expr *, 4> CopyArrayElems; 5056 for (const auto *C : ParentDir.getClausesOfKind<OMPReductionClause>()) { 5057 if (C->getModifier() != OMPC_REDUCTION_inscan) 5058 continue; 5059 Shareds.append(C->varlist_begin(), C->varlist_end()); 5060 Privates.append(C->privates().begin(), C->privates().end()); 5061 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 5062 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 5063 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 5064 CopyOps.append(C->copy_ops().begin(), C->copy_ops().end()); 5065 CopyArrayTemps.append(C->copy_array_temps().begin(), 5066 C->copy_array_temps().end()); 5067 CopyArrayElems.append(C->copy_array_elems().begin(), 5068 C->copy_array_elems().end()); 5069 } 5070 if (ParentDir.getDirectiveKind() == OMPD_simd || 5071 (getLangOpts().OpenMPSimd && 5072 isOpenMPSimdDirective(ParentDir.getDirectiveKind()))) { 5073 // For simd directive and simd-based directives in simd only mode, use the 5074 // following codegen: 5075 // int x = 0; 5076 // #pragma omp simd reduction(inscan, +: x) 5077 // for (..) { 5078 // <first part> 5079 // #pragma omp scan inclusive(x) 5080 // <second part> 5081 // } 5082 // is transformed to: 5083 // int x = 0; 5084 // for (..) { 5085 // int x_priv = 0; 5086 // <first part> 5087 // x = x_priv + x; 5088 // x_priv = x; 5089 // <second part> 5090 // } 5091 // and 5092 // int x = 0; 5093 // #pragma omp simd reduction(inscan, +: x) 5094 // for (..) { 5095 // <first part> 5096 // #pragma omp scan exclusive(x) 5097 // <second part> 5098 // } 5099 // to 5100 // int x = 0; 5101 // for (..) { 5102 // int x_priv = 0; 5103 // <second part> 5104 // int temp = x; 5105 // x = x_priv + x; 5106 // x_priv = temp; 5107 // <first part> 5108 // } 5109 llvm::BasicBlock *OMPScanReduce = createBasicBlock("omp.inscan.reduce"); 5110 EmitBranch(IsInclusive 5111 ? OMPScanReduce 5112 : BreakContinueStack.back().ContinueBlock.getBlock()); 5113 EmitBlock(OMPScanDispatch); 5114 { 5115 // New scope for correct construction/destruction of temp variables for 5116 // exclusive scan. 5117 LexicalScope Scope(*this, S.getSourceRange()); 5118 EmitBranch(IsInclusive ? OMPBeforeScanBlock : OMPAfterScanBlock); 5119 EmitBlock(OMPScanReduce); 5120 if (!IsInclusive) { 5121 // Create temp var and copy LHS value to this temp value. 5122 // TMP = LHS; 5123 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5124 const Expr *PrivateExpr = Privates[I]; 5125 const Expr *TempExpr = CopyArrayTemps[I]; 5126 EmitAutoVarDecl( 5127 *cast<VarDecl>(cast<DeclRefExpr>(TempExpr)->getDecl())); 5128 LValue DestLVal = EmitLValue(TempExpr); 5129 LValue SrcLVal = EmitLValue(LHSs[I]); 5130 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5131 SrcLVal.getAddress(*this), 5132 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5133 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5134 CopyOps[I]); 5135 } 5136 } 5137 CGM.getOpenMPRuntime().emitReduction( 5138 *this, ParentDir.getEndLoc(), Privates, LHSs, RHSs, ReductionOps, 5139 {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_simd}); 5140 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5141 const Expr *PrivateExpr = Privates[I]; 5142 LValue DestLVal; 5143 LValue SrcLVal; 5144 if (IsInclusive) { 5145 DestLVal = EmitLValue(RHSs[I]); 5146 SrcLVal = EmitLValue(LHSs[I]); 5147 } else { 5148 const Expr *TempExpr = CopyArrayTemps[I]; 5149 DestLVal = EmitLValue(RHSs[I]); 5150 SrcLVal = EmitLValue(TempExpr); 5151 } 5152 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5153 SrcLVal.getAddress(*this), 5154 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5155 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5156 CopyOps[I]); 5157 } 5158 } 5159 EmitBranch(IsInclusive ? OMPAfterScanBlock : OMPBeforeScanBlock); 5160 OMPScanExitBlock = IsInclusive 5161 ? BreakContinueStack.back().ContinueBlock.getBlock() 5162 : OMPScanReduce; 5163 EmitBlock(OMPAfterScanBlock); 5164 return; 5165 } 5166 if (!IsInclusive) { 5167 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 5168 EmitBlock(OMPScanExitBlock); 5169 } 5170 if (OMPFirstScanLoop) { 5171 // Emit buffer[i] = red; at the end of the input phase. 5172 const auto *IVExpr = cast<OMPLoopDirective>(ParentDir) 5173 .getIterationVariable() 5174 ->IgnoreParenImpCasts(); 5175 LValue IdxLVal = EmitLValue(IVExpr); 5176 llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc()); 5177 IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false); 5178 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5179 const Expr *PrivateExpr = Privates[I]; 5180 const Expr *OrigExpr = Shareds[I]; 5181 const Expr *CopyArrayElem = CopyArrayElems[I]; 5182 OpaqueValueMapping IdxMapping( 5183 *this, 5184 cast<OpaqueValueExpr>( 5185 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 5186 RValue::get(IdxVal)); 5187 LValue DestLVal = EmitLValue(CopyArrayElem); 5188 LValue SrcLVal = EmitLValue(OrigExpr); 5189 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5190 SrcLVal.getAddress(*this), 5191 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5192 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5193 CopyOps[I]); 5194 } 5195 } 5196 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 5197 if (IsInclusive) { 5198 EmitBlock(OMPScanExitBlock); 5199 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 5200 } 5201 EmitBlock(OMPScanDispatch); 5202 if (!OMPFirstScanLoop) { 5203 // Emit red = buffer[i]; at the entrance to the scan phase. 5204 const auto *IVExpr = cast<OMPLoopDirective>(ParentDir) 5205 .getIterationVariable() 5206 ->IgnoreParenImpCasts(); 5207 LValue IdxLVal = EmitLValue(IVExpr); 5208 llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc()); 5209 IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false); 5210 llvm::BasicBlock *ExclusiveExitBB = nullptr; 5211 if (!IsInclusive) { 5212 llvm::BasicBlock *ContBB = createBasicBlock("omp.exclusive.dec"); 5213 ExclusiveExitBB = createBasicBlock("omp.exclusive.copy.exit"); 5214 llvm::Value *Cmp = Builder.CreateIsNull(IdxVal); 5215 Builder.CreateCondBr(Cmp, ExclusiveExitBB, ContBB); 5216 EmitBlock(ContBB); 5217 // Use idx - 1 iteration for exclusive scan. 5218 IdxVal = Builder.CreateNUWSub(IdxVal, llvm::ConstantInt::get(SizeTy, 1)); 5219 } 5220 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5221 const Expr *PrivateExpr = Privates[I]; 5222 const Expr *OrigExpr = Shareds[I]; 5223 const Expr *CopyArrayElem = CopyArrayElems[I]; 5224 OpaqueValueMapping IdxMapping( 5225 *this, 5226 cast<OpaqueValueExpr>( 5227 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 5228 RValue::get(IdxVal)); 5229 LValue SrcLVal = EmitLValue(CopyArrayElem); 5230 LValue DestLVal = EmitLValue(OrigExpr); 5231 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5232 SrcLVal.getAddress(*this), 5233 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5234 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5235 CopyOps[I]); 5236 } 5237 if (!IsInclusive) { 5238 EmitBlock(ExclusiveExitBB); 5239 } 5240 } 5241 EmitBranch((OMPFirstScanLoop == IsInclusive) ? OMPBeforeScanBlock 5242 : OMPAfterScanBlock); 5243 EmitBlock(OMPAfterScanBlock); 5244 } 5245 5246 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 5247 const CodeGenLoopTy &CodeGenLoop, 5248 Expr *IncExpr) { 5249 // Emit the loop iteration variable. 5250 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 5251 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 5252 EmitVarDecl(*IVDecl); 5253 5254 // Emit the iterations count variable. 5255 // If it is not a variable, Sema decided to calculate iterations count on each 5256 // iteration (e.g., it is foldable into a constant). 5257 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 5258 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 5259 // Emit calculation of the iterations count. 5260 EmitIgnoredExpr(S.getCalcLastIteration()); 5261 } 5262 5263 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 5264 5265 bool HasLastprivateClause = false; 5266 // Check pre-condition. 5267 { 5268 OMPLoopScope PreInitScope(*this, S); 5269 // Skip the entire loop if we don't meet the precondition. 5270 // If the condition constant folds and can be elided, avoid emitting the 5271 // whole loop. 5272 bool CondConstant; 5273 llvm::BasicBlock *ContBlock = nullptr; 5274 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 5275 if (!CondConstant) 5276 return; 5277 } else { 5278 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 5279 ContBlock = createBasicBlock("omp.precond.end"); 5280 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 5281 getProfileCount(&S)); 5282 EmitBlock(ThenBlock); 5283 incrementProfileCounter(&S); 5284 } 5285 5286 emitAlignedClause(*this, S); 5287 // Emit 'then' code. 5288 { 5289 // Emit helper vars inits. 5290 5291 LValue LB = EmitOMPHelperVar( 5292 *this, cast<DeclRefExpr>( 5293 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5294 ? S.getCombinedLowerBoundVariable() 5295 : S.getLowerBoundVariable()))); 5296 LValue UB = EmitOMPHelperVar( 5297 *this, cast<DeclRefExpr>( 5298 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5299 ? S.getCombinedUpperBoundVariable() 5300 : S.getUpperBoundVariable()))); 5301 LValue ST = 5302 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 5303 LValue IL = 5304 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 5305 5306 OMPPrivateScope LoopScope(*this); 5307 if (EmitOMPFirstprivateClause(S, LoopScope)) { 5308 // Emit implicit barrier to synchronize threads and avoid data races 5309 // on initialization of firstprivate variables and post-update of 5310 // lastprivate variables. 5311 CGM.getOpenMPRuntime().emitBarrierCall( 5312 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 5313 /*ForceSimpleCall=*/true); 5314 } 5315 EmitOMPPrivateClause(S, LoopScope); 5316 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 5317 !isOpenMPParallelDirective(S.getDirectiveKind()) && 5318 !isOpenMPTeamsDirective(S.getDirectiveKind())) 5319 EmitOMPReductionClauseInit(S, LoopScope); 5320 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 5321 EmitOMPPrivateLoopCounters(S, LoopScope); 5322 (void)LoopScope.Privatize(); 5323 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 5324 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 5325 5326 // Detect the distribute schedule kind and chunk. 5327 llvm::Value *Chunk = nullptr; 5328 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 5329 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 5330 ScheduleKind = C->getDistScheduleKind(); 5331 if (const Expr *Ch = C->getChunkSize()) { 5332 Chunk = EmitScalarExpr(Ch); 5333 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 5334 S.getIterationVariable()->getType(), 5335 S.getBeginLoc()); 5336 } 5337 } else { 5338 // Default behaviour for dist_schedule clause. 5339 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 5340 *this, S, ScheduleKind, Chunk); 5341 } 5342 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 5343 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 5344 5345 // OpenMP [2.10.8, distribute Construct, Description] 5346 // If dist_schedule is specified, kind must be static. If specified, 5347 // iterations are divided into chunks of size chunk_size, chunks are 5348 // assigned to the teams of the league in a round-robin fashion in the 5349 // order of the team number. When no chunk_size is specified, the 5350 // iteration space is divided into chunks that are approximately equal 5351 // in size, and at most one chunk is distributed to each team of the 5352 // league. The size of the chunks is unspecified in this case. 5353 bool StaticChunked = 5354 RT.isStaticChunked(ScheduleKind, /* Chunked */ Chunk != nullptr) && 5355 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 5356 if (RT.isStaticNonchunked(ScheduleKind, 5357 /* Chunked */ Chunk != nullptr) || 5358 StaticChunked) { 5359 CGOpenMPRuntime::StaticRTInput StaticInit( 5360 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(*this), 5361 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 5362 StaticChunked ? Chunk : nullptr); 5363 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 5364 StaticInit); 5365 JumpDest LoopExit = 5366 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 5367 // UB = min(UB, GlobalUB); 5368 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5369 ? S.getCombinedEnsureUpperBound() 5370 : S.getEnsureUpperBound()); 5371 // IV = LB; 5372 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5373 ? S.getCombinedInit() 5374 : S.getInit()); 5375 5376 const Expr *Cond = 5377 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5378 ? S.getCombinedCond() 5379 : S.getCond(); 5380 5381 if (StaticChunked) 5382 Cond = S.getCombinedDistCond(); 5383 5384 // For static unchunked schedules generate: 5385 // 5386 // 1. For distribute alone, codegen 5387 // while (idx <= UB) { 5388 // BODY; 5389 // ++idx; 5390 // } 5391 // 5392 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 5393 // while (idx <= UB) { 5394 // <CodeGen rest of pragma>(LB, UB); 5395 // idx += ST; 5396 // } 5397 // 5398 // For static chunk one schedule generate: 5399 // 5400 // while (IV <= GlobalUB) { 5401 // <CodeGen rest of pragma>(LB, UB); 5402 // LB += ST; 5403 // UB += ST; 5404 // UB = min(UB, GlobalUB); 5405 // IV = LB; 5406 // } 5407 // 5408 emitCommonSimdLoop( 5409 *this, S, 5410 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5411 if (isOpenMPSimdDirective(S.getDirectiveKind())) 5412 CGF.EmitOMPSimdInit(S); 5413 }, 5414 [&S, &LoopScope, Cond, IncExpr, LoopExit, &CodeGenLoop, 5415 StaticChunked](CodeGenFunction &CGF, PrePostActionTy &) { 5416 CGF.EmitOMPInnerLoop( 5417 S, LoopScope.requiresCleanups(), Cond, IncExpr, 5418 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 5419 CodeGenLoop(CGF, S, LoopExit); 5420 }, 5421 [&S, StaticChunked](CodeGenFunction &CGF) { 5422 if (StaticChunked) { 5423 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 5424 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 5425 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 5426 CGF.EmitIgnoredExpr(S.getCombinedInit()); 5427 } 5428 }); 5429 }); 5430 EmitBlock(LoopExit.getBlock()); 5431 // Tell the runtime we are done. 5432 RT.emitForStaticFinish(*this, S.getEndLoc(), S.getDirectiveKind()); 5433 } else { 5434 // Emit the outer loop, which requests its work chunk [LB..UB] from 5435 // runtime and runs the inner loop to process it. 5436 const OMPLoopArguments LoopArguments = { 5437 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 5438 IL.getAddress(*this), Chunk}; 5439 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 5440 CodeGenLoop); 5441 } 5442 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 5443 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 5444 return CGF.Builder.CreateIsNotNull( 5445 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 5446 }); 5447 } 5448 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 5449 !isOpenMPParallelDirective(S.getDirectiveKind()) && 5450 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 5451 EmitOMPReductionClauseFinal(S, OMPD_simd); 5452 // Emit post-update of the reduction variables if IsLastIter != 0. 5453 emitPostUpdateForReductionClause( 5454 *this, S, [IL, &S](CodeGenFunction &CGF) { 5455 return CGF.Builder.CreateIsNotNull( 5456 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 5457 }); 5458 } 5459 // Emit final copy of the lastprivate variables if IsLastIter != 0. 5460 if (HasLastprivateClause) { 5461 EmitOMPLastprivateClauseFinal( 5462 S, /*NoFinals=*/false, 5463 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 5464 } 5465 } 5466 5467 // We're now done with the loop, so jump to the continuation block. 5468 if (ContBlock) { 5469 EmitBranch(ContBlock); 5470 EmitBlock(ContBlock, true); 5471 } 5472 } 5473 } 5474 5475 void CodeGenFunction::EmitOMPDistributeDirective( 5476 const OMPDistributeDirective &S) { 5477 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5478 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5479 }; 5480 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5481 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 5482 } 5483 5484 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 5485 const CapturedStmt *S, 5486 SourceLocation Loc) { 5487 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 5488 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 5489 CGF.CapturedStmtInfo = &CapStmtInfo; 5490 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S, Loc); 5491 Fn->setDoesNotRecurse(); 5492 return Fn; 5493 } 5494 5495 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 5496 if (CGM.getLangOpts().OpenMPIRBuilder) { 5497 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 5498 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 5499 5500 if (S.hasClausesOfKind<OMPDependClause>()) { 5501 // The ordered directive with depend clause. 5502 assert(!S.hasAssociatedStmt() && 5503 "No associated statement must be in ordered depend construct."); 5504 InsertPointTy AllocaIP(AllocaInsertPt->getParent(), 5505 AllocaInsertPt->getIterator()); 5506 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) { 5507 unsigned NumLoops = DC->getNumLoops(); 5508 QualType Int64Ty = CGM.getContext().getIntTypeForBitwidth( 5509 /*DestWidth=*/64, /*Signed=*/1); 5510 llvm::SmallVector<llvm::Value *> StoreValues; 5511 for (unsigned I = 0; I < NumLoops; I++) { 5512 const Expr *CounterVal = DC->getLoopData(I); 5513 assert(CounterVal); 5514 llvm::Value *StoreValue = EmitScalarConversion( 5515 EmitScalarExpr(CounterVal), CounterVal->getType(), Int64Ty, 5516 CounterVal->getExprLoc()); 5517 StoreValues.emplace_back(StoreValue); 5518 } 5519 bool IsDependSource = false; 5520 if (DC->getDependencyKind() == OMPC_DEPEND_source) 5521 IsDependSource = true; 5522 Builder.restoreIP(OMPBuilder.createOrderedDepend( 5523 Builder, AllocaIP, NumLoops, StoreValues, ".cnt.addr", 5524 IsDependSource)); 5525 } 5526 } else { 5527 // The ordered directive with threads or simd clause, or without clause. 5528 // Without clause, it behaves as if the threads clause is specified. 5529 const auto *C = S.getSingleClause<OMPSIMDClause>(); 5530 5531 auto FiniCB = [this](InsertPointTy IP) { 5532 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 5533 }; 5534 5535 auto BodyGenCB = [&S, C, this](InsertPointTy AllocaIP, 5536 InsertPointTy CodeGenIP, 5537 llvm::BasicBlock &FiniBB) { 5538 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 5539 if (C) { 5540 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 5541 GenerateOpenMPCapturedVars(*CS, CapturedVars); 5542 llvm::Function *OutlinedFn = 5543 emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc()); 5544 assert(S.getBeginLoc().isValid() && 5545 "Outlined function call location must be valid."); 5546 ApplyDebugLocation::CreateDefaultArtificial(*this, S.getBeginLoc()); 5547 OMPBuilderCBHelpers::EmitCaptureStmt(*this, CodeGenIP, FiniBB, 5548 OutlinedFn, CapturedVars); 5549 } else { 5550 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, 5551 FiniBB); 5552 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CS->getCapturedStmt(), 5553 CodeGenIP, FiniBB); 5554 } 5555 }; 5556 5557 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5558 Builder.restoreIP( 5559 OMPBuilder.createOrderedThreadsSimd(Builder, BodyGenCB, FiniCB, !C)); 5560 } 5561 return; 5562 } 5563 5564 if (S.hasClausesOfKind<OMPDependClause>()) { 5565 assert(!S.hasAssociatedStmt() && 5566 "No associated statement must be in ordered depend construct."); 5567 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 5568 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 5569 return; 5570 } 5571 const auto *C = S.getSingleClause<OMPSIMDClause>(); 5572 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 5573 PrePostActionTy &Action) { 5574 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 5575 if (C) { 5576 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 5577 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 5578 llvm::Function *OutlinedFn = 5579 emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc()); 5580 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 5581 OutlinedFn, CapturedVars); 5582 } else { 5583 Action.Enter(CGF); 5584 CGF.EmitStmt(CS->getCapturedStmt()); 5585 } 5586 }; 5587 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5588 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 5589 } 5590 5591 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 5592 QualType SrcType, QualType DestType, 5593 SourceLocation Loc) { 5594 assert(CGF.hasScalarEvaluationKind(DestType) && 5595 "DestType must have scalar evaluation kind."); 5596 assert(!Val.isAggregate() && "Must be a scalar or complex."); 5597 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 5598 DestType, Loc) 5599 : CGF.EmitComplexToScalarConversion( 5600 Val.getComplexVal(), SrcType, DestType, Loc); 5601 } 5602 5603 static CodeGenFunction::ComplexPairTy 5604 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 5605 QualType DestType, SourceLocation Loc) { 5606 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 5607 "DestType must have complex evaluation kind."); 5608 CodeGenFunction::ComplexPairTy ComplexVal; 5609 if (Val.isScalar()) { 5610 // Convert the input element to the element type of the complex. 5611 QualType DestElementType = 5612 DestType->castAs<ComplexType>()->getElementType(); 5613 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 5614 Val.getScalarVal(), SrcType, DestElementType, Loc); 5615 ComplexVal = CodeGenFunction::ComplexPairTy( 5616 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 5617 } else { 5618 assert(Val.isComplex() && "Must be a scalar or complex."); 5619 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 5620 QualType DestElementType = 5621 DestType->castAs<ComplexType>()->getElementType(); 5622 ComplexVal.first = CGF.EmitScalarConversion( 5623 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 5624 ComplexVal.second = CGF.EmitScalarConversion( 5625 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 5626 } 5627 return ComplexVal; 5628 } 5629 5630 static void emitSimpleAtomicStore(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 5631 LValue LVal, RValue RVal) { 5632 if (LVal.isGlobalReg()) 5633 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 5634 else 5635 CGF.EmitAtomicStore(RVal, LVal, AO, LVal.isVolatile(), /*isInit=*/false); 5636 } 5637 5638 static RValue emitSimpleAtomicLoad(CodeGenFunction &CGF, 5639 llvm::AtomicOrdering AO, LValue LVal, 5640 SourceLocation Loc) { 5641 if (LVal.isGlobalReg()) 5642 return CGF.EmitLoadOfLValue(LVal, Loc); 5643 return CGF.EmitAtomicLoad( 5644 LVal, Loc, llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO), 5645 LVal.isVolatile()); 5646 } 5647 5648 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 5649 QualType RValTy, SourceLocation Loc) { 5650 switch (getEvaluationKind(LVal.getType())) { 5651 case TEK_Scalar: 5652 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 5653 *this, RVal, RValTy, LVal.getType(), Loc)), 5654 LVal); 5655 break; 5656 case TEK_Complex: 5657 EmitStoreOfComplex( 5658 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 5659 /*isInit=*/false); 5660 break; 5661 case TEK_Aggregate: 5662 llvm_unreachable("Must be a scalar or complex."); 5663 } 5664 } 5665 5666 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 5667 const Expr *X, const Expr *V, 5668 SourceLocation Loc) { 5669 // v = x; 5670 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 5671 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 5672 LValue XLValue = CGF.EmitLValue(X); 5673 LValue VLValue = CGF.EmitLValue(V); 5674 RValue Res = emitSimpleAtomicLoad(CGF, AO, XLValue, Loc); 5675 // OpenMP, 2.17.7, atomic Construct 5676 // If the read or capture clause is specified and the acquire, acq_rel, or 5677 // seq_cst clause is specified then the strong flush on exit from the atomic 5678 // operation is also an acquire flush. 5679 switch (AO) { 5680 case llvm::AtomicOrdering::Acquire: 5681 case llvm::AtomicOrdering::AcquireRelease: 5682 case llvm::AtomicOrdering::SequentiallyConsistent: 5683 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5684 llvm::AtomicOrdering::Acquire); 5685 break; 5686 case llvm::AtomicOrdering::Monotonic: 5687 case llvm::AtomicOrdering::Release: 5688 break; 5689 case llvm::AtomicOrdering::NotAtomic: 5690 case llvm::AtomicOrdering::Unordered: 5691 llvm_unreachable("Unexpected ordering."); 5692 } 5693 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 5694 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 5695 } 5696 5697 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, 5698 llvm::AtomicOrdering AO, const Expr *X, 5699 const Expr *E, SourceLocation Loc) { 5700 // x = expr; 5701 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 5702 emitSimpleAtomicStore(CGF, AO, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 5703 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5704 // OpenMP, 2.17.7, atomic Construct 5705 // If the write, update, or capture clause is specified and the release, 5706 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5707 // the atomic operation is also a release flush. 5708 switch (AO) { 5709 case llvm::AtomicOrdering::Release: 5710 case llvm::AtomicOrdering::AcquireRelease: 5711 case llvm::AtomicOrdering::SequentiallyConsistent: 5712 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5713 llvm::AtomicOrdering::Release); 5714 break; 5715 case llvm::AtomicOrdering::Acquire: 5716 case llvm::AtomicOrdering::Monotonic: 5717 break; 5718 case llvm::AtomicOrdering::NotAtomic: 5719 case llvm::AtomicOrdering::Unordered: 5720 llvm_unreachable("Unexpected ordering."); 5721 } 5722 } 5723 5724 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 5725 RValue Update, 5726 BinaryOperatorKind BO, 5727 llvm::AtomicOrdering AO, 5728 bool IsXLHSInRHSPart) { 5729 ASTContext &Context = CGF.getContext(); 5730 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 5731 // expression is simple and atomic is allowed for the given type for the 5732 // target platform. 5733 if (BO == BO_Comma || !Update.isScalar() || 5734 !Update.getScalarVal()->getType()->isIntegerTy() || !X.isSimple() || 5735 (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 5736 (Update.getScalarVal()->getType() != 5737 X.getAddress(CGF).getElementType())) || 5738 !X.getAddress(CGF).getElementType()->isIntegerTy() || 5739 !Context.getTargetInfo().hasBuiltinAtomic( 5740 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 5741 return std::make_pair(false, RValue::get(nullptr)); 5742 5743 llvm::AtomicRMWInst::BinOp RMWOp; 5744 switch (BO) { 5745 case BO_Add: 5746 RMWOp = llvm::AtomicRMWInst::Add; 5747 break; 5748 case BO_Sub: 5749 if (!IsXLHSInRHSPart) 5750 return std::make_pair(false, RValue::get(nullptr)); 5751 RMWOp = llvm::AtomicRMWInst::Sub; 5752 break; 5753 case BO_And: 5754 RMWOp = llvm::AtomicRMWInst::And; 5755 break; 5756 case BO_Or: 5757 RMWOp = llvm::AtomicRMWInst::Or; 5758 break; 5759 case BO_Xor: 5760 RMWOp = llvm::AtomicRMWInst::Xor; 5761 break; 5762 case BO_LT: 5763 RMWOp = X.getType()->hasSignedIntegerRepresentation() 5764 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 5765 : llvm::AtomicRMWInst::Max) 5766 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 5767 : llvm::AtomicRMWInst::UMax); 5768 break; 5769 case BO_GT: 5770 RMWOp = X.getType()->hasSignedIntegerRepresentation() 5771 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 5772 : llvm::AtomicRMWInst::Min) 5773 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 5774 : llvm::AtomicRMWInst::UMin); 5775 break; 5776 case BO_Assign: 5777 RMWOp = llvm::AtomicRMWInst::Xchg; 5778 break; 5779 case BO_Mul: 5780 case BO_Div: 5781 case BO_Rem: 5782 case BO_Shl: 5783 case BO_Shr: 5784 case BO_LAnd: 5785 case BO_LOr: 5786 return std::make_pair(false, RValue::get(nullptr)); 5787 case BO_PtrMemD: 5788 case BO_PtrMemI: 5789 case BO_LE: 5790 case BO_GE: 5791 case BO_EQ: 5792 case BO_NE: 5793 case BO_Cmp: 5794 case BO_AddAssign: 5795 case BO_SubAssign: 5796 case BO_AndAssign: 5797 case BO_OrAssign: 5798 case BO_XorAssign: 5799 case BO_MulAssign: 5800 case BO_DivAssign: 5801 case BO_RemAssign: 5802 case BO_ShlAssign: 5803 case BO_ShrAssign: 5804 case BO_Comma: 5805 llvm_unreachable("Unsupported atomic update operation"); 5806 } 5807 llvm::Value *UpdateVal = Update.getScalarVal(); 5808 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 5809 UpdateVal = CGF.Builder.CreateIntCast( 5810 IC, X.getAddress(CGF).getElementType(), 5811 X.getType()->hasSignedIntegerRepresentation()); 5812 } 5813 llvm::Value *Res = 5814 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(CGF), UpdateVal, AO); 5815 return std::make_pair(true, RValue::get(Res)); 5816 } 5817 5818 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 5819 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 5820 llvm::AtomicOrdering AO, SourceLocation Loc, 5821 const llvm::function_ref<RValue(RValue)> CommonGen) { 5822 // Update expressions are allowed to have the following forms: 5823 // x binop= expr; -> xrval + expr; 5824 // x++, ++x -> xrval + 1; 5825 // x--, --x -> xrval - 1; 5826 // x = x binop expr; -> xrval binop expr 5827 // x = expr Op x; - > expr binop xrval; 5828 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 5829 if (!Res.first) { 5830 if (X.isGlobalReg()) { 5831 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 5832 // 'xrval'. 5833 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 5834 } else { 5835 // Perform compare-and-swap procedure. 5836 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 5837 } 5838 } 5839 return Res; 5840 } 5841 5842 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, 5843 llvm::AtomicOrdering AO, const Expr *X, 5844 const Expr *E, const Expr *UE, 5845 bool IsXLHSInRHSPart, SourceLocation Loc) { 5846 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 5847 "Update expr in 'atomic update' must be a binary operator."); 5848 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 5849 // Update expressions are allowed to have the following forms: 5850 // x binop= expr; -> xrval + expr; 5851 // x++, ++x -> xrval + 1; 5852 // x--, --x -> xrval - 1; 5853 // x = x binop expr; -> xrval binop expr 5854 // x = expr Op x; - > expr binop xrval; 5855 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 5856 LValue XLValue = CGF.EmitLValue(X); 5857 RValue ExprRValue = CGF.EmitAnyExpr(E); 5858 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 5859 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 5860 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 5861 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 5862 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 5863 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5864 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 5865 return CGF.EmitAnyExpr(UE); 5866 }; 5867 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 5868 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 5869 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5870 // OpenMP, 2.17.7, atomic Construct 5871 // If the write, update, or capture clause is specified and the release, 5872 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5873 // the atomic operation is also a release flush. 5874 switch (AO) { 5875 case llvm::AtomicOrdering::Release: 5876 case llvm::AtomicOrdering::AcquireRelease: 5877 case llvm::AtomicOrdering::SequentiallyConsistent: 5878 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5879 llvm::AtomicOrdering::Release); 5880 break; 5881 case llvm::AtomicOrdering::Acquire: 5882 case llvm::AtomicOrdering::Monotonic: 5883 break; 5884 case llvm::AtomicOrdering::NotAtomic: 5885 case llvm::AtomicOrdering::Unordered: 5886 llvm_unreachable("Unexpected ordering."); 5887 } 5888 } 5889 5890 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 5891 QualType SourceType, QualType ResType, 5892 SourceLocation Loc) { 5893 switch (CGF.getEvaluationKind(ResType)) { 5894 case TEK_Scalar: 5895 return RValue::get( 5896 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 5897 case TEK_Complex: { 5898 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 5899 return RValue::getComplex(Res.first, Res.second); 5900 } 5901 case TEK_Aggregate: 5902 break; 5903 } 5904 llvm_unreachable("Must be a scalar or complex."); 5905 } 5906 5907 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, 5908 llvm::AtomicOrdering AO, 5909 bool IsPostfixUpdate, const Expr *V, 5910 const Expr *X, const Expr *E, 5911 const Expr *UE, bool IsXLHSInRHSPart, 5912 SourceLocation Loc) { 5913 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 5914 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 5915 RValue NewVVal; 5916 LValue VLValue = CGF.EmitLValue(V); 5917 LValue XLValue = CGF.EmitLValue(X); 5918 RValue ExprRValue = CGF.EmitAnyExpr(E); 5919 QualType NewVValType; 5920 if (UE) { 5921 // 'x' is updated with some additional value. 5922 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 5923 "Update expr in 'atomic capture' must be a binary operator."); 5924 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 5925 // Update expressions are allowed to have the following forms: 5926 // x binop= expr; -> xrval + expr; 5927 // x++, ++x -> xrval + 1; 5928 // x--, --x -> xrval - 1; 5929 // x = x binop expr; -> xrval binop expr 5930 // x = expr Op x; - > expr binop xrval; 5931 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 5932 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 5933 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 5934 NewVValType = XRValExpr->getType(); 5935 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 5936 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 5937 IsPostfixUpdate](RValue XRValue) { 5938 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5939 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 5940 RValue Res = CGF.EmitAnyExpr(UE); 5941 NewVVal = IsPostfixUpdate ? XRValue : Res; 5942 return Res; 5943 }; 5944 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 5945 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 5946 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5947 if (Res.first) { 5948 // 'atomicrmw' instruction was generated. 5949 if (IsPostfixUpdate) { 5950 // Use old value from 'atomicrmw'. 5951 NewVVal = Res.second; 5952 } else { 5953 // 'atomicrmw' does not provide new value, so evaluate it using old 5954 // value of 'x'. 5955 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5956 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 5957 NewVVal = CGF.EmitAnyExpr(UE); 5958 } 5959 } 5960 } else { 5961 // 'x' is simply rewritten with some 'expr'. 5962 NewVValType = X->getType().getNonReferenceType(); 5963 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 5964 X->getType().getNonReferenceType(), Loc); 5965 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 5966 NewVVal = XRValue; 5967 return ExprRValue; 5968 }; 5969 // Try to perform atomicrmw xchg, otherwise simple exchange. 5970 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 5971 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 5972 Loc, Gen); 5973 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5974 if (Res.first) { 5975 // 'atomicrmw' instruction was generated. 5976 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 5977 } 5978 } 5979 // Emit post-update store to 'v' of old/new 'x' value. 5980 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 5981 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 5982 // OpenMP 5.1 removes the required flush for capture clause. 5983 if (CGF.CGM.getLangOpts().OpenMP < 51) { 5984 // OpenMP, 2.17.7, atomic Construct 5985 // If the write, update, or capture clause is specified and the release, 5986 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5987 // the atomic operation is also a release flush. 5988 // If the read or capture clause is specified and the acquire, acq_rel, or 5989 // seq_cst clause is specified then the strong flush on exit from the atomic 5990 // operation is also an acquire flush. 5991 switch (AO) { 5992 case llvm::AtomicOrdering::Release: 5993 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5994 llvm::AtomicOrdering::Release); 5995 break; 5996 case llvm::AtomicOrdering::Acquire: 5997 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5998 llvm::AtomicOrdering::Acquire); 5999 break; 6000 case llvm::AtomicOrdering::AcquireRelease: 6001 case llvm::AtomicOrdering::SequentiallyConsistent: 6002 CGF.CGM.getOpenMPRuntime().emitFlush( 6003 CGF, llvm::None, Loc, llvm::AtomicOrdering::AcquireRelease); 6004 break; 6005 case llvm::AtomicOrdering::Monotonic: 6006 break; 6007 case llvm::AtomicOrdering::NotAtomic: 6008 case llvm::AtomicOrdering::Unordered: 6009 llvm_unreachable("Unexpected ordering."); 6010 } 6011 } 6012 } 6013 6014 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 6015 llvm::AtomicOrdering AO, bool IsPostfixUpdate, 6016 const Expr *X, const Expr *V, const Expr *E, 6017 const Expr *UE, bool IsXLHSInRHSPart, 6018 SourceLocation Loc) { 6019 switch (Kind) { 6020 case OMPC_read: 6021 emitOMPAtomicReadExpr(CGF, AO, X, V, Loc); 6022 break; 6023 case OMPC_write: 6024 emitOMPAtomicWriteExpr(CGF, AO, X, E, Loc); 6025 break; 6026 case OMPC_unknown: 6027 case OMPC_update: 6028 emitOMPAtomicUpdateExpr(CGF, AO, X, E, UE, IsXLHSInRHSPart, Loc); 6029 break; 6030 case OMPC_capture: 6031 emitOMPAtomicCaptureExpr(CGF, AO, IsPostfixUpdate, V, X, E, UE, 6032 IsXLHSInRHSPart, Loc); 6033 break; 6034 case OMPC_compare: 6035 // Do nothing here as we already emit an error. 6036 break; 6037 case OMPC_if: 6038 case OMPC_final: 6039 case OMPC_num_threads: 6040 case OMPC_private: 6041 case OMPC_firstprivate: 6042 case OMPC_lastprivate: 6043 case OMPC_reduction: 6044 case OMPC_task_reduction: 6045 case OMPC_in_reduction: 6046 case OMPC_safelen: 6047 case OMPC_simdlen: 6048 case OMPC_sizes: 6049 case OMPC_full: 6050 case OMPC_partial: 6051 case OMPC_allocator: 6052 case OMPC_allocate: 6053 case OMPC_collapse: 6054 case OMPC_default: 6055 case OMPC_seq_cst: 6056 case OMPC_acq_rel: 6057 case OMPC_acquire: 6058 case OMPC_release: 6059 case OMPC_relaxed: 6060 case OMPC_shared: 6061 case OMPC_linear: 6062 case OMPC_aligned: 6063 case OMPC_copyin: 6064 case OMPC_copyprivate: 6065 case OMPC_flush: 6066 case OMPC_depobj: 6067 case OMPC_proc_bind: 6068 case OMPC_schedule: 6069 case OMPC_ordered: 6070 case OMPC_nowait: 6071 case OMPC_untied: 6072 case OMPC_threadprivate: 6073 case OMPC_depend: 6074 case OMPC_mergeable: 6075 case OMPC_device: 6076 case OMPC_threads: 6077 case OMPC_simd: 6078 case OMPC_map: 6079 case OMPC_num_teams: 6080 case OMPC_thread_limit: 6081 case OMPC_priority: 6082 case OMPC_grainsize: 6083 case OMPC_nogroup: 6084 case OMPC_num_tasks: 6085 case OMPC_hint: 6086 case OMPC_dist_schedule: 6087 case OMPC_defaultmap: 6088 case OMPC_uniform: 6089 case OMPC_to: 6090 case OMPC_from: 6091 case OMPC_use_device_ptr: 6092 case OMPC_use_device_addr: 6093 case OMPC_is_device_ptr: 6094 case OMPC_unified_address: 6095 case OMPC_unified_shared_memory: 6096 case OMPC_reverse_offload: 6097 case OMPC_dynamic_allocators: 6098 case OMPC_atomic_default_mem_order: 6099 case OMPC_device_type: 6100 case OMPC_match: 6101 case OMPC_nontemporal: 6102 case OMPC_order: 6103 case OMPC_destroy: 6104 case OMPC_detach: 6105 case OMPC_inclusive: 6106 case OMPC_exclusive: 6107 case OMPC_uses_allocators: 6108 case OMPC_affinity: 6109 case OMPC_init: 6110 case OMPC_inbranch: 6111 case OMPC_notinbranch: 6112 case OMPC_link: 6113 case OMPC_indirect: 6114 case OMPC_use: 6115 case OMPC_novariants: 6116 case OMPC_nocontext: 6117 case OMPC_filter: 6118 case OMPC_when: 6119 case OMPC_adjust_args: 6120 case OMPC_append_args: 6121 case OMPC_memory_order: 6122 case OMPC_bind: 6123 case OMPC_align: 6124 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 6125 } 6126 } 6127 6128 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 6129 llvm::AtomicOrdering AO = llvm::AtomicOrdering::Monotonic; 6130 bool MemOrderingSpecified = false; 6131 if (S.getSingleClause<OMPSeqCstClause>()) { 6132 AO = llvm::AtomicOrdering::SequentiallyConsistent; 6133 MemOrderingSpecified = true; 6134 } else if (S.getSingleClause<OMPAcqRelClause>()) { 6135 AO = llvm::AtomicOrdering::AcquireRelease; 6136 MemOrderingSpecified = true; 6137 } else if (S.getSingleClause<OMPAcquireClause>()) { 6138 AO = llvm::AtomicOrdering::Acquire; 6139 MemOrderingSpecified = true; 6140 } else if (S.getSingleClause<OMPReleaseClause>()) { 6141 AO = llvm::AtomicOrdering::Release; 6142 MemOrderingSpecified = true; 6143 } else if (S.getSingleClause<OMPRelaxedClause>()) { 6144 AO = llvm::AtomicOrdering::Monotonic; 6145 MemOrderingSpecified = true; 6146 } 6147 OpenMPClauseKind Kind = OMPC_unknown; 6148 for (const OMPClause *C : S.clauses()) { 6149 // Find first clause (skip seq_cst|acq_rel|aqcuire|release|relaxed clause, 6150 // if it is first). 6151 if (C->getClauseKind() != OMPC_seq_cst && 6152 C->getClauseKind() != OMPC_acq_rel && 6153 C->getClauseKind() != OMPC_acquire && 6154 C->getClauseKind() != OMPC_release && 6155 C->getClauseKind() != OMPC_relaxed && C->getClauseKind() != OMPC_hint) { 6156 Kind = C->getClauseKind(); 6157 break; 6158 } 6159 } 6160 if (!MemOrderingSpecified) { 6161 llvm::AtomicOrdering DefaultOrder = 6162 CGM.getOpenMPRuntime().getDefaultMemoryOrdering(); 6163 if (DefaultOrder == llvm::AtomicOrdering::Monotonic || 6164 DefaultOrder == llvm::AtomicOrdering::SequentiallyConsistent || 6165 (DefaultOrder == llvm::AtomicOrdering::AcquireRelease && 6166 Kind == OMPC_capture)) { 6167 AO = DefaultOrder; 6168 } else if (DefaultOrder == llvm::AtomicOrdering::AcquireRelease) { 6169 if (Kind == OMPC_unknown || Kind == OMPC_update || Kind == OMPC_write) { 6170 AO = llvm::AtomicOrdering::Release; 6171 } else if (Kind == OMPC_read) { 6172 assert(Kind == OMPC_read && "Unexpected atomic kind."); 6173 AO = llvm::AtomicOrdering::Acquire; 6174 } 6175 } 6176 } 6177 6178 LexicalScope Scope(*this, S.getSourceRange()); 6179 EmitStopPoint(S.getAssociatedStmt()); 6180 emitOMPAtomicExpr(*this, Kind, AO, S.isPostfixUpdate(), S.getX(), S.getV(), 6181 S.getExpr(), S.getUpdateExpr(), S.isXLHSInRHSPart(), 6182 S.getBeginLoc()); 6183 } 6184 6185 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 6186 const OMPExecutableDirective &S, 6187 const RegionCodeGenTy &CodeGen) { 6188 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 6189 CodeGenModule &CGM = CGF.CGM; 6190 6191 // On device emit this construct as inlined code. 6192 if (CGM.getLangOpts().OpenMPIsDevice) { 6193 OMPLexicalScope Scope(CGF, S, OMPD_target); 6194 CGM.getOpenMPRuntime().emitInlinedDirective( 6195 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6196 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 6197 }); 6198 return; 6199 } 6200 6201 auto LPCRegion = CGOpenMPRuntime::LastprivateConditionalRAII::disable(CGF, S); 6202 llvm::Function *Fn = nullptr; 6203 llvm::Constant *FnID = nullptr; 6204 6205 const Expr *IfCond = nullptr; 6206 // Check for the at most one if clause associated with the target region. 6207 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 6208 if (C->getNameModifier() == OMPD_unknown || 6209 C->getNameModifier() == OMPD_target) { 6210 IfCond = C->getCondition(); 6211 break; 6212 } 6213 } 6214 6215 // Check if we have any device clause associated with the directive. 6216 llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device( 6217 nullptr, OMPC_DEVICE_unknown); 6218 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 6219 Device.setPointerAndInt(C->getDevice(), C->getModifier()); 6220 6221 // Check if we have an if clause whose conditional always evaluates to false 6222 // or if we do not have any targets specified. If so the target region is not 6223 // an offload entry point. 6224 bool IsOffloadEntry = true; 6225 if (IfCond) { 6226 bool Val; 6227 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 6228 IsOffloadEntry = false; 6229 } 6230 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6231 IsOffloadEntry = false; 6232 6233 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 6234 StringRef ParentName; 6235 // In case we have Ctors/Dtors we use the complete type variant to produce 6236 // the mangling of the device outlined kernel. 6237 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 6238 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 6239 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 6240 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 6241 else 6242 ParentName = 6243 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 6244 6245 // Emit target region as a standalone region. 6246 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 6247 IsOffloadEntry, CodeGen); 6248 OMPLexicalScope Scope(CGF, S, OMPD_task); 6249 auto &&SizeEmitter = 6250 [IsOffloadEntry](CodeGenFunction &CGF, 6251 const OMPLoopDirective &D) -> llvm::Value * { 6252 if (IsOffloadEntry) { 6253 OMPLoopScope(CGF, D); 6254 // Emit calculation of the iterations count. 6255 llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations()); 6256 NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty, 6257 /*isSigned=*/false); 6258 return NumIterations; 6259 } 6260 return nullptr; 6261 }; 6262 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device, 6263 SizeEmitter); 6264 } 6265 6266 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 6267 PrePostActionTy &Action) { 6268 Action.Enter(CGF); 6269 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6270 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6271 CGF.EmitOMPPrivateClause(S, PrivateScope); 6272 (void)PrivateScope.Privatize(); 6273 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6274 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6275 6276 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 6277 CGF.EnsureInsertPoint(); 6278 } 6279 6280 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 6281 StringRef ParentName, 6282 const OMPTargetDirective &S) { 6283 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6284 emitTargetRegion(CGF, S, Action); 6285 }; 6286 llvm::Function *Fn; 6287 llvm::Constant *Addr; 6288 // Emit target region as a standalone region. 6289 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6290 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6291 assert(Fn && Addr && "Target device function emission failed."); 6292 } 6293 6294 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 6295 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6296 emitTargetRegion(CGF, S, Action); 6297 }; 6298 emitCommonOMPTargetDirective(*this, S, CodeGen); 6299 } 6300 6301 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 6302 const OMPExecutableDirective &S, 6303 OpenMPDirectiveKind InnermostKind, 6304 const RegionCodeGenTy &CodeGen) { 6305 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 6306 llvm::Function *OutlinedFn = 6307 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 6308 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 6309 6310 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 6311 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 6312 if (NT || TL) { 6313 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 6314 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 6315 6316 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 6317 S.getBeginLoc()); 6318 } 6319 6320 OMPTeamsScope Scope(CGF, S); 6321 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 6322 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 6323 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 6324 CapturedVars); 6325 } 6326 6327 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 6328 // Emit teams region as a standalone region. 6329 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6330 Action.Enter(CGF); 6331 OMPPrivateScope PrivateScope(CGF); 6332 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6333 CGF.EmitOMPPrivateClause(S, PrivateScope); 6334 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6335 (void)PrivateScope.Privatize(); 6336 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 6337 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6338 }; 6339 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 6340 emitPostUpdateForReductionClause(*this, S, 6341 [](CodeGenFunction &) { return nullptr; }); 6342 } 6343 6344 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 6345 const OMPTargetTeamsDirective &S) { 6346 auto *CS = S.getCapturedStmt(OMPD_teams); 6347 Action.Enter(CGF); 6348 // Emit teams region as a standalone region. 6349 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 6350 Action.Enter(CGF); 6351 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6352 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6353 CGF.EmitOMPPrivateClause(S, PrivateScope); 6354 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6355 (void)PrivateScope.Privatize(); 6356 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6357 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6358 CGF.EmitStmt(CS->getCapturedStmt()); 6359 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6360 }; 6361 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 6362 emitPostUpdateForReductionClause(CGF, S, 6363 [](CodeGenFunction &) { return nullptr; }); 6364 } 6365 6366 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 6367 CodeGenModule &CGM, StringRef ParentName, 6368 const OMPTargetTeamsDirective &S) { 6369 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6370 emitTargetTeamsRegion(CGF, Action, S); 6371 }; 6372 llvm::Function *Fn; 6373 llvm::Constant *Addr; 6374 // Emit target region as a standalone region. 6375 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6376 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6377 assert(Fn && Addr && "Target device function emission failed."); 6378 } 6379 6380 void CodeGenFunction::EmitOMPTargetTeamsDirective( 6381 const OMPTargetTeamsDirective &S) { 6382 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6383 emitTargetTeamsRegion(CGF, Action, S); 6384 }; 6385 emitCommonOMPTargetDirective(*this, S, CodeGen); 6386 } 6387 6388 static void 6389 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 6390 const OMPTargetTeamsDistributeDirective &S) { 6391 Action.Enter(CGF); 6392 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6393 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6394 }; 6395 6396 // Emit teams region as a standalone region. 6397 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6398 PrePostActionTy &Action) { 6399 Action.Enter(CGF); 6400 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6401 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6402 (void)PrivateScope.Privatize(); 6403 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6404 CodeGenDistribute); 6405 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6406 }; 6407 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 6408 emitPostUpdateForReductionClause(CGF, S, 6409 [](CodeGenFunction &) { return nullptr; }); 6410 } 6411 6412 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 6413 CodeGenModule &CGM, StringRef ParentName, 6414 const OMPTargetTeamsDistributeDirective &S) { 6415 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6416 emitTargetTeamsDistributeRegion(CGF, Action, S); 6417 }; 6418 llvm::Function *Fn; 6419 llvm::Constant *Addr; 6420 // Emit target region as a standalone region. 6421 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6422 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6423 assert(Fn && Addr && "Target device function emission failed."); 6424 } 6425 6426 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 6427 const OMPTargetTeamsDistributeDirective &S) { 6428 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6429 emitTargetTeamsDistributeRegion(CGF, Action, S); 6430 }; 6431 emitCommonOMPTargetDirective(*this, S, CodeGen); 6432 } 6433 6434 static void emitTargetTeamsDistributeSimdRegion( 6435 CodeGenFunction &CGF, PrePostActionTy &Action, 6436 const OMPTargetTeamsDistributeSimdDirective &S) { 6437 Action.Enter(CGF); 6438 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6439 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6440 }; 6441 6442 // Emit teams region as a standalone region. 6443 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6444 PrePostActionTy &Action) { 6445 Action.Enter(CGF); 6446 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6447 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6448 (void)PrivateScope.Privatize(); 6449 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6450 CodeGenDistribute); 6451 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6452 }; 6453 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 6454 emitPostUpdateForReductionClause(CGF, S, 6455 [](CodeGenFunction &) { return nullptr; }); 6456 } 6457 6458 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 6459 CodeGenModule &CGM, StringRef ParentName, 6460 const OMPTargetTeamsDistributeSimdDirective &S) { 6461 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6462 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 6463 }; 6464 llvm::Function *Fn; 6465 llvm::Constant *Addr; 6466 // Emit target region as a standalone region. 6467 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6468 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6469 assert(Fn && Addr && "Target device function emission failed."); 6470 } 6471 6472 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 6473 const OMPTargetTeamsDistributeSimdDirective &S) { 6474 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6475 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 6476 }; 6477 emitCommonOMPTargetDirective(*this, S, CodeGen); 6478 } 6479 6480 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 6481 const OMPTeamsDistributeDirective &S) { 6482 6483 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6484 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6485 }; 6486 6487 // Emit teams region as a standalone region. 6488 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6489 PrePostActionTy &Action) { 6490 Action.Enter(CGF); 6491 OMPPrivateScope PrivateScope(CGF); 6492 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6493 (void)PrivateScope.Privatize(); 6494 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6495 CodeGenDistribute); 6496 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6497 }; 6498 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 6499 emitPostUpdateForReductionClause(*this, S, 6500 [](CodeGenFunction &) { return nullptr; }); 6501 } 6502 6503 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 6504 const OMPTeamsDistributeSimdDirective &S) { 6505 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6506 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6507 }; 6508 6509 // Emit teams region as a standalone region. 6510 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6511 PrePostActionTy &Action) { 6512 Action.Enter(CGF); 6513 OMPPrivateScope PrivateScope(CGF); 6514 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6515 (void)PrivateScope.Privatize(); 6516 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 6517 CodeGenDistribute); 6518 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6519 }; 6520 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 6521 emitPostUpdateForReductionClause(*this, S, 6522 [](CodeGenFunction &) { return nullptr; }); 6523 } 6524 6525 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 6526 const OMPTeamsDistributeParallelForDirective &S) { 6527 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6528 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6529 S.getDistInc()); 6530 }; 6531 6532 // Emit teams region as a standalone region. 6533 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6534 PrePostActionTy &Action) { 6535 Action.Enter(CGF); 6536 OMPPrivateScope PrivateScope(CGF); 6537 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6538 (void)PrivateScope.Privatize(); 6539 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6540 CodeGenDistribute); 6541 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6542 }; 6543 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 6544 emitPostUpdateForReductionClause(*this, S, 6545 [](CodeGenFunction &) { return nullptr; }); 6546 } 6547 6548 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 6549 const OMPTeamsDistributeParallelForSimdDirective &S) { 6550 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6551 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6552 S.getDistInc()); 6553 }; 6554 6555 // Emit teams region as a standalone region. 6556 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6557 PrePostActionTy &Action) { 6558 Action.Enter(CGF); 6559 OMPPrivateScope PrivateScope(CGF); 6560 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6561 (void)PrivateScope.Privatize(); 6562 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 6563 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 6564 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6565 }; 6566 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for_simd, 6567 CodeGen); 6568 emitPostUpdateForReductionClause(*this, S, 6569 [](CodeGenFunction &) { return nullptr; }); 6570 } 6571 6572 void CodeGenFunction::EmitOMPInteropDirective(const OMPInteropDirective &S) { 6573 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 6574 llvm::Value *Device = nullptr; 6575 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6576 Device = EmitScalarExpr(C->getDevice()); 6577 6578 llvm::Value *NumDependences = nullptr; 6579 llvm::Value *DependenceAddress = nullptr; 6580 if (const auto *DC = S.getSingleClause<OMPDependClause>()) { 6581 OMPTaskDataTy::DependData Dependencies(DC->getDependencyKind(), 6582 DC->getModifier()); 6583 Dependencies.DepExprs.append(DC->varlist_begin(), DC->varlist_end()); 6584 std::pair<llvm::Value *, Address> DependencePair = 6585 CGM.getOpenMPRuntime().emitDependClause(*this, Dependencies, 6586 DC->getBeginLoc()); 6587 NumDependences = DependencePair.first; 6588 DependenceAddress = Builder.CreatePointerCast( 6589 DependencePair.second.getPointer(), CGM.Int8PtrTy); 6590 } 6591 6592 assert(!(S.hasClausesOfKind<OMPNowaitClause>() && 6593 !(S.getSingleClause<OMPInitClause>() || 6594 S.getSingleClause<OMPDestroyClause>() || 6595 S.getSingleClause<OMPUseClause>())) && 6596 "OMPNowaitClause clause is used separately in OMPInteropDirective."); 6597 6598 if (const auto *C = S.getSingleClause<OMPInitClause>()) { 6599 llvm::Value *InteropvarPtr = 6600 EmitLValue(C->getInteropVar()).getPointer(*this); 6601 llvm::omp::OMPInteropType InteropType = llvm::omp::OMPInteropType::Unknown; 6602 if (C->getIsTarget()) { 6603 InteropType = llvm::omp::OMPInteropType::Target; 6604 } else { 6605 assert(C->getIsTargetSync() && "Expected interop-type target/targetsync"); 6606 InteropType = llvm::omp::OMPInteropType::TargetSync; 6607 } 6608 OMPBuilder.createOMPInteropInit(Builder, InteropvarPtr, InteropType, Device, 6609 NumDependences, DependenceAddress, 6610 S.hasClausesOfKind<OMPNowaitClause>()); 6611 } else if (const auto *C = S.getSingleClause<OMPDestroyClause>()) { 6612 llvm::Value *InteropvarPtr = 6613 EmitLValue(C->getInteropVar()).getPointer(*this); 6614 OMPBuilder.createOMPInteropDestroy(Builder, InteropvarPtr, Device, 6615 NumDependences, DependenceAddress, 6616 S.hasClausesOfKind<OMPNowaitClause>()); 6617 } else if (const auto *C = S.getSingleClause<OMPUseClause>()) { 6618 llvm::Value *InteropvarPtr = 6619 EmitLValue(C->getInteropVar()).getPointer(*this); 6620 OMPBuilder.createOMPInteropUse(Builder, InteropvarPtr, Device, 6621 NumDependences, DependenceAddress, 6622 S.hasClausesOfKind<OMPNowaitClause>()); 6623 } 6624 } 6625 6626 static void emitTargetTeamsDistributeParallelForRegion( 6627 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 6628 PrePostActionTy &Action) { 6629 Action.Enter(CGF); 6630 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6631 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6632 S.getDistInc()); 6633 }; 6634 6635 // Emit teams region as a standalone region. 6636 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6637 PrePostActionTy &Action) { 6638 Action.Enter(CGF); 6639 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6640 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6641 (void)PrivateScope.Privatize(); 6642 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 6643 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 6644 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6645 }; 6646 6647 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 6648 CodeGenTeams); 6649 emitPostUpdateForReductionClause(CGF, S, 6650 [](CodeGenFunction &) { return nullptr; }); 6651 } 6652 6653 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 6654 CodeGenModule &CGM, StringRef ParentName, 6655 const OMPTargetTeamsDistributeParallelForDirective &S) { 6656 // Emit SPMD target teams distribute parallel for region as a standalone 6657 // region. 6658 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6659 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 6660 }; 6661 llvm::Function *Fn; 6662 llvm::Constant *Addr; 6663 // Emit target region as a standalone region. 6664 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6665 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6666 assert(Fn && Addr && "Target device function emission failed."); 6667 } 6668 6669 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 6670 const OMPTargetTeamsDistributeParallelForDirective &S) { 6671 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6672 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 6673 }; 6674 emitCommonOMPTargetDirective(*this, S, CodeGen); 6675 } 6676 6677 static void emitTargetTeamsDistributeParallelForSimdRegion( 6678 CodeGenFunction &CGF, 6679 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 6680 PrePostActionTy &Action) { 6681 Action.Enter(CGF); 6682 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6683 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6684 S.getDistInc()); 6685 }; 6686 6687 // Emit teams region as a standalone region. 6688 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6689 PrePostActionTy &Action) { 6690 Action.Enter(CGF); 6691 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6692 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6693 (void)PrivateScope.Privatize(); 6694 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 6695 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 6696 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6697 }; 6698 6699 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 6700 CodeGenTeams); 6701 emitPostUpdateForReductionClause(CGF, S, 6702 [](CodeGenFunction &) { return nullptr; }); 6703 } 6704 6705 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 6706 CodeGenModule &CGM, StringRef ParentName, 6707 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 6708 // Emit SPMD target teams distribute parallel for simd region as a standalone 6709 // region. 6710 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6711 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 6712 }; 6713 llvm::Function *Fn; 6714 llvm::Constant *Addr; 6715 // Emit target region as a standalone region. 6716 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6717 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6718 assert(Fn && Addr && "Target device function emission failed."); 6719 } 6720 6721 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 6722 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 6723 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6724 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 6725 }; 6726 emitCommonOMPTargetDirective(*this, S, CodeGen); 6727 } 6728 6729 void CodeGenFunction::EmitOMPCancellationPointDirective( 6730 const OMPCancellationPointDirective &S) { 6731 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 6732 S.getCancelRegion()); 6733 } 6734 6735 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 6736 const Expr *IfCond = nullptr; 6737 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 6738 if (C->getNameModifier() == OMPD_unknown || 6739 C->getNameModifier() == OMPD_cancel) { 6740 IfCond = C->getCondition(); 6741 break; 6742 } 6743 } 6744 if (CGM.getLangOpts().OpenMPIRBuilder) { 6745 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 6746 // TODO: This check is necessary as we only generate `omp parallel` through 6747 // the OpenMPIRBuilder for now. 6748 if (S.getCancelRegion() == OMPD_parallel || 6749 S.getCancelRegion() == OMPD_sections || 6750 S.getCancelRegion() == OMPD_section) { 6751 llvm::Value *IfCondition = nullptr; 6752 if (IfCond) 6753 IfCondition = EmitScalarExpr(IfCond, 6754 /*IgnoreResultAssign=*/true); 6755 return Builder.restoreIP( 6756 OMPBuilder.createCancel(Builder, IfCondition, S.getCancelRegion())); 6757 } 6758 } 6759 6760 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 6761 S.getCancelRegion()); 6762 } 6763 6764 CodeGenFunction::JumpDest 6765 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 6766 if (Kind == OMPD_parallel || Kind == OMPD_task || 6767 Kind == OMPD_target_parallel || Kind == OMPD_taskloop || 6768 Kind == OMPD_master_taskloop || Kind == OMPD_parallel_master_taskloop) 6769 return ReturnBlock; 6770 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 6771 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 6772 Kind == OMPD_distribute_parallel_for || 6773 Kind == OMPD_target_parallel_for || 6774 Kind == OMPD_teams_distribute_parallel_for || 6775 Kind == OMPD_target_teams_distribute_parallel_for); 6776 return OMPCancelStack.getExitBlock(); 6777 } 6778 6779 void CodeGenFunction::EmitOMPUseDevicePtrClause( 6780 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 6781 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 6782 auto OrigVarIt = C.varlist_begin(); 6783 auto InitIt = C.inits().begin(); 6784 for (const Expr *PvtVarIt : C.private_copies()) { 6785 const auto *OrigVD = 6786 cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 6787 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 6788 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 6789 6790 // In order to identify the right initializer we need to match the 6791 // declaration used by the mapping logic. In some cases we may get 6792 // OMPCapturedExprDecl that refers to the original declaration. 6793 const ValueDecl *MatchingVD = OrigVD; 6794 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 6795 // OMPCapturedExprDecl are used to privative fields of the current 6796 // structure. 6797 const auto *ME = cast<MemberExpr>(OED->getInit()); 6798 assert(isa<CXXThisExpr>(ME->getBase()) && 6799 "Base should be the current struct!"); 6800 MatchingVD = ME->getMemberDecl(); 6801 } 6802 6803 // If we don't have information about the current list item, move on to 6804 // the next one. 6805 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 6806 if (InitAddrIt == CaptureDeviceAddrMap.end()) 6807 continue; 6808 6809 bool IsRegistered = PrivateScope.addPrivate( 6810 OrigVD, [this, OrigVD, InitAddrIt, InitVD, PvtVD]() { 6811 // Initialize the temporary initialization variable with the address 6812 // we get from the runtime library. We have to cast the source address 6813 // because it is always a void *. References are materialized in the 6814 // privatization scope, so the initialization here disregards the fact 6815 // the original variable is a reference. 6816 QualType AddrQTy = getContext().getPointerType( 6817 OrigVD->getType().getNonReferenceType()); 6818 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 6819 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 6820 setAddrOfLocalVar(InitVD, InitAddr); 6821 6822 // Emit private declaration, it will be initialized by the value we 6823 // declaration we just added to the local declarations map. 6824 EmitDecl(*PvtVD); 6825 6826 // The initialization variables reached its purpose in the emission 6827 // of the previous declaration, so we don't need it anymore. 6828 LocalDeclMap.erase(InitVD); 6829 6830 // Return the address of the private variable. 6831 return GetAddrOfLocalVar(PvtVD); 6832 }); 6833 assert(IsRegistered && "firstprivate var already registered as private"); 6834 // Silence the warning about unused variable. 6835 (void)IsRegistered; 6836 6837 ++OrigVarIt; 6838 ++InitIt; 6839 } 6840 } 6841 6842 static const VarDecl *getBaseDecl(const Expr *Ref) { 6843 const Expr *Base = Ref->IgnoreParenImpCasts(); 6844 while (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Base)) 6845 Base = OASE->getBase()->IgnoreParenImpCasts(); 6846 while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Base)) 6847 Base = ASE->getBase()->IgnoreParenImpCasts(); 6848 return cast<VarDecl>(cast<DeclRefExpr>(Base)->getDecl()); 6849 } 6850 6851 void CodeGenFunction::EmitOMPUseDeviceAddrClause( 6852 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 6853 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 6854 llvm::SmallDenseSet<CanonicalDeclPtr<const Decl>, 4> Processed; 6855 for (const Expr *Ref : C.varlists()) { 6856 const VarDecl *OrigVD = getBaseDecl(Ref); 6857 if (!Processed.insert(OrigVD).second) 6858 continue; 6859 // In order to identify the right initializer we need to match the 6860 // declaration used by the mapping logic. In some cases we may get 6861 // OMPCapturedExprDecl that refers to the original declaration. 6862 const ValueDecl *MatchingVD = OrigVD; 6863 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 6864 // OMPCapturedExprDecl are used to privative fields of the current 6865 // structure. 6866 const auto *ME = cast<MemberExpr>(OED->getInit()); 6867 assert(isa<CXXThisExpr>(ME->getBase()) && 6868 "Base should be the current struct!"); 6869 MatchingVD = ME->getMemberDecl(); 6870 } 6871 6872 // If we don't have information about the current list item, move on to 6873 // the next one. 6874 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 6875 if (InitAddrIt == CaptureDeviceAddrMap.end()) 6876 continue; 6877 6878 Address PrivAddr = InitAddrIt->getSecond(); 6879 // For declrefs and variable length array need to load the pointer for 6880 // correct mapping, since the pointer to the data was passed to the runtime. 6881 if (isa<DeclRefExpr>(Ref->IgnoreParenImpCasts()) || 6882 MatchingVD->getType()->isArrayType()) 6883 PrivAddr = 6884 EmitLoadOfPointer(PrivAddr, getContext() 6885 .getPointerType(OrigVD->getType()) 6886 ->castAs<PointerType>()); 6887 llvm::Type *RealTy = 6888 ConvertTypeForMem(OrigVD->getType().getNonReferenceType()) 6889 ->getPointerTo(); 6890 PrivAddr = Builder.CreatePointerBitCastOrAddrSpaceCast(PrivAddr, RealTy); 6891 6892 (void)PrivateScope.addPrivate(OrigVD, [PrivAddr]() { return PrivAddr; }); 6893 } 6894 } 6895 6896 // Generate the instructions for '#pragma omp target data' directive. 6897 void CodeGenFunction::EmitOMPTargetDataDirective( 6898 const OMPTargetDataDirective &S) { 6899 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true, 6900 /*SeparateBeginEndCalls=*/true); 6901 6902 // Create a pre/post action to signal the privatization of the device pointer. 6903 // This action can be replaced by the OpenMP runtime code generation to 6904 // deactivate privatization. 6905 bool PrivatizeDevicePointers = false; 6906 class DevicePointerPrivActionTy : public PrePostActionTy { 6907 bool &PrivatizeDevicePointers; 6908 6909 public: 6910 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 6911 : PrivatizeDevicePointers(PrivatizeDevicePointers) {} 6912 void Enter(CodeGenFunction &CGF) override { 6913 PrivatizeDevicePointers = true; 6914 } 6915 }; 6916 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 6917 6918 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 6919 CodeGenFunction &CGF, PrePostActionTy &Action) { 6920 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6921 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 6922 }; 6923 6924 // Codegen that selects whether to generate the privatization code or not. 6925 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 6926 &InnermostCodeGen](CodeGenFunction &CGF, 6927 PrePostActionTy &Action) { 6928 RegionCodeGenTy RCG(InnermostCodeGen); 6929 PrivatizeDevicePointers = false; 6930 6931 // Call the pre-action to change the status of PrivatizeDevicePointers if 6932 // needed. 6933 Action.Enter(CGF); 6934 6935 if (PrivatizeDevicePointers) { 6936 OMPPrivateScope PrivateScope(CGF); 6937 // Emit all instances of the use_device_ptr clause. 6938 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 6939 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 6940 Info.CaptureDeviceAddrMap); 6941 for (const auto *C : S.getClausesOfKind<OMPUseDeviceAddrClause>()) 6942 CGF.EmitOMPUseDeviceAddrClause(*C, PrivateScope, 6943 Info.CaptureDeviceAddrMap); 6944 (void)PrivateScope.Privatize(); 6945 RCG(CGF); 6946 } else { 6947 OMPLexicalScope Scope(CGF, S, OMPD_unknown); 6948 RCG(CGF); 6949 } 6950 }; 6951 6952 // Forward the provided action to the privatization codegen. 6953 RegionCodeGenTy PrivRCG(PrivCodeGen); 6954 PrivRCG.setAction(Action); 6955 6956 // Notwithstanding the body of the region is emitted as inlined directive, 6957 // we don't use an inline scope as changes in the references inside the 6958 // region are expected to be visible outside, so we do not privative them. 6959 OMPLexicalScope Scope(CGF, S); 6960 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 6961 PrivRCG); 6962 }; 6963 6964 RegionCodeGenTy RCG(CodeGen); 6965 6966 // If we don't have target devices, don't bother emitting the data mapping 6967 // code. 6968 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 6969 RCG(*this); 6970 return; 6971 } 6972 6973 // Check if we have any if clause associated with the directive. 6974 const Expr *IfCond = nullptr; 6975 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6976 IfCond = C->getCondition(); 6977 6978 // Check if we have any device clause associated with the directive. 6979 const Expr *Device = nullptr; 6980 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6981 Device = C->getDevice(); 6982 6983 // Set the action to signal privatization of device pointers. 6984 RCG.setAction(PrivAction); 6985 6986 // Emit region code. 6987 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 6988 Info); 6989 } 6990 6991 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 6992 const OMPTargetEnterDataDirective &S) { 6993 // If we don't have target devices, don't bother emitting the data mapping 6994 // code. 6995 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6996 return; 6997 6998 // Check if we have any if clause associated with the directive. 6999 const Expr *IfCond = nullptr; 7000 if (const auto *C = S.getSingleClause<OMPIfClause>()) 7001 IfCond = C->getCondition(); 7002 7003 // Check if we have any device clause associated with the directive. 7004 const Expr *Device = nullptr; 7005 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 7006 Device = C->getDevice(); 7007 7008 OMPLexicalScope Scope(*this, S, OMPD_task); 7009 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 7010 } 7011 7012 void CodeGenFunction::EmitOMPTargetExitDataDirective( 7013 const OMPTargetExitDataDirective &S) { 7014 // If we don't have target devices, don't bother emitting the data mapping 7015 // code. 7016 if (CGM.getLangOpts().OMPTargetTriples.empty()) 7017 return; 7018 7019 // Check if we have any if clause associated with the directive. 7020 const Expr *IfCond = nullptr; 7021 if (const auto *C = S.getSingleClause<OMPIfClause>()) 7022 IfCond = C->getCondition(); 7023 7024 // Check if we have any device clause associated with the directive. 7025 const Expr *Device = nullptr; 7026 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 7027 Device = C->getDevice(); 7028 7029 OMPLexicalScope Scope(*this, S, OMPD_task); 7030 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 7031 } 7032 7033 static void emitTargetParallelRegion(CodeGenFunction &CGF, 7034 const OMPTargetParallelDirective &S, 7035 PrePostActionTy &Action) { 7036 // Get the captured statement associated with the 'parallel' region. 7037 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 7038 Action.Enter(CGF); 7039 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 7040 Action.Enter(CGF); 7041 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 7042 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 7043 CGF.EmitOMPPrivateClause(S, PrivateScope); 7044 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 7045 (void)PrivateScope.Privatize(); 7046 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 7047 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 7048 // TODO: Add support for clauses. 7049 CGF.EmitStmt(CS->getCapturedStmt()); 7050 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 7051 }; 7052 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 7053 emitEmptyBoundParameters); 7054 emitPostUpdateForReductionClause(CGF, S, 7055 [](CodeGenFunction &) { return nullptr; }); 7056 } 7057 7058 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 7059 CodeGenModule &CGM, StringRef ParentName, 7060 const OMPTargetParallelDirective &S) { 7061 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7062 emitTargetParallelRegion(CGF, S, Action); 7063 }; 7064 llvm::Function *Fn; 7065 llvm::Constant *Addr; 7066 // Emit target region as a standalone region. 7067 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 7068 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 7069 assert(Fn && Addr && "Target device function emission failed."); 7070 } 7071 7072 void CodeGenFunction::EmitOMPTargetParallelDirective( 7073 const OMPTargetParallelDirective &S) { 7074 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7075 emitTargetParallelRegion(CGF, S, Action); 7076 }; 7077 emitCommonOMPTargetDirective(*this, S, CodeGen); 7078 } 7079 7080 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 7081 const OMPTargetParallelForDirective &S, 7082 PrePostActionTy &Action) { 7083 Action.Enter(CGF); 7084 // Emit directive as a combined directive that consists of two implicit 7085 // directives: 'parallel' with 'for' directive. 7086 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7087 Action.Enter(CGF); 7088 CodeGenFunction::OMPCancelStackRAII CancelRegion( 7089 CGF, OMPD_target_parallel_for, S.hasCancel()); 7090 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 7091 emitDispatchForLoopBounds); 7092 }; 7093 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 7094 emitEmptyBoundParameters); 7095 } 7096 7097 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 7098 CodeGenModule &CGM, StringRef ParentName, 7099 const OMPTargetParallelForDirective &S) { 7100 // Emit SPMD target parallel for region as a standalone region. 7101 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7102 emitTargetParallelForRegion(CGF, S, Action); 7103 }; 7104 llvm::Function *Fn; 7105 llvm::Constant *Addr; 7106 // Emit target region as a standalone region. 7107 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 7108 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 7109 assert(Fn && Addr && "Target device function emission failed."); 7110 } 7111 7112 void CodeGenFunction::EmitOMPTargetParallelForDirective( 7113 const OMPTargetParallelForDirective &S) { 7114 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7115 emitTargetParallelForRegion(CGF, S, Action); 7116 }; 7117 emitCommonOMPTargetDirective(*this, S, CodeGen); 7118 } 7119 7120 static void 7121 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 7122 const OMPTargetParallelForSimdDirective &S, 7123 PrePostActionTy &Action) { 7124 Action.Enter(CGF); 7125 // Emit directive as a combined directive that consists of two implicit 7126 // directives: 'parallel' with 'for' directive. 7127 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7128 Action.Enter(CGF); 7129 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 7130 emitDispatchForLoopBounds); 7131 }; 7132 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 7133 emitEmptyBoundParameters); 7134 } 7135 7136 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 7137 CodeGenModule &CGM, StringRef ParentName, 7138 const OMPTargetParallelForSimdDirective &S) { 7139 // Emit SPMD target parallel for region as a standalone region. 7140 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7141 emitTargetParallelForSimdRegion(CGF, S, Action); 7142 }; 7143 llvm::Function *Fn; 7144 llvm::Constant *Addr; 7145 // Emit target region as a standalone region. 7146 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 7147 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 7148 assert(Fn && Addr && "Target device function emission failed."); 7149 } 7150 7151 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 7152 const OMPTargetParallelForSimdDirective &S) { 7153 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7154 emitTargetParallelForSimdRegion(CGF, S, Action); 7155 }; 7156 emitCommonOMPTargetDirective(*this, S, CodeGen); 7157 } 7158 7159 /// Emit a helper variable and return corresponding lvalue. 7160 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 7161 const ImplicitParamDecl *PVD, 7162 CodeGenFunction::OMPPrivateScope &Privates) { 7163 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 7164 Privates.addPrivate(VDecl, 7165 [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); }); 7166 } 7167 7168 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 7169 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 7170 // Emit outlined function for task construct. 7171 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 7172 Address CapturedStruct = Address::invalid(); 7173 { 7174 OMPLexicalScope Scope(*this, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 7175 CapturedStruct = GenerateCapturedStmtArgument(*CS); 7176 } 7177 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 7178 const Expr *IfCond = nullptr; 7179 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 7180 if (C->getNameModifier() == OMPD_unknown || 7181 C->getNameModifier() == OMPD_taskloop) { 7182 IfCond = C->getCondition(); 7183 break; 7184 } 7185 } 7186 7187 OMPTaskDataTy Data; 7188 // Check if taskloop must be emitted without taskgroup. 7189 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 7190 // TODO: Check if we should emit tied or untied task. 7191 Data.Tied = true; 7192 // Set scheduling for taskloop 7193 if (const auto *Clause = S.getSingleClause<OMPGrainsizeClause>()) { 7194 // grainsize clause 7195 Data.Schedule.setInt(/*IntVal=*/false); 7196 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 7197 } else if (const auto *Clause = S.getSingleClause<OMPNumTasksClause>()) { 7198 // num_tasks clause 7199 Data.Schedule.setInt(/*IntVal=*/true); 7200 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 7201 } 7202 7203 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 7204 // if (PreCond) { 7205 // for (IV in 0..LastIteration) BODY; 7206 // <Final counter/linear vars updates>; 7207 // } 7208 // 7209 7210 // Emit: if (PreCond) - begin. 7211 // If the condition constant folds and can be elided, avoid emitting the 7212 // whole loop. 7213 bool CondConstant; 7214 llvm::BasicBlock *ContBlock = nullptr; 7215 OMPLoopScope PreInitScope(CGF, S); 7216 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 7217 if (!CondConstant) 7218 return; 7219 } else { 7220 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 7221 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 7222 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 7223 CGF.getProfileCount(&S)); 7224 CGF.EmitBlock(ThenBlock); 7225 CGF.incrementProfileCounter(&S); 7226 } 7227 7228 (void)CGF.EmitOMPLinearClauseInit(S); 7229 7230 OMPPrivateScope LoopScope(CGF); 7231 // Emit helper vars inits. 7232 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 7233 auto *I = CS->getCapturedDecl()->param_begin(); 7234 auto *LBP = std::next(I, LowerBound); 7235 auto *UBP = std::next(I, UpperBound); 7236 auto *STP = std::next(I, Stride); 7237 auto *LIP = std::next(I, LastIter); 7238 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 7239 LoopScope); 7240 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 7241 LoopScope); 7242 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 7243 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 7244 LoopScope); 7245 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 7246 CGF.EmitOMPLinearClause(S, LoopScope); 7247 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 7248 (void)LoopScope.Privatize(); 7249 // Emit the loop iteration variable. 7250 const Expr *IVExpr = S.getIterationVariable(); 7251 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 7252 CGF.EmitVarDecl(*IVDecl); 7253 CGF.EmitIgnoredExpr(S.getInit()); 7254 7255 // Emit the iterations count variable. 7256 // If it is not a variable, Sema decided to calculate iterations count on 7257 // each iteration (e.g., it is foldable into a constant). 7258 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 7259 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 7260 // Emit calculation of the iterations count. 7261 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 7262 } 7263 7264 { 7265 OMPLexicalScope Scope(CGF, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 7266 emitCommonSimdLoop( 7267 CGF, S, 7268 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 7269 if (isOpenMPSimdDirective(S.getDirectiveKind())) 7270 CGF.EmitOMPSimdInit(S); 7271 }, 7272 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 7273 CGF.EmitOMPInnerLoop( 7274 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 7275 [&S](CodeGenFunction &CGF) { 7276 emitOMPLoopBodyWithStopPoint(CGF, S, 7277 CodeGenFunction::JumpDest()); 7278 }, 7279 [](CodeGenFunction &) {}); 7280 }); 7281 } 7282 // Emit: if (PreCond) - end. 7283 if (ContBlock) { 7284 CGF.EmitBranch(ContBlock); 7285 CGF.EmitBlock(ContBlock, true); 7286 } 7287 // Emit final copy of the lastprivate variables if IsLastIter != 0. 7288 if (HasLastprivateClause) { 7289 CGF.EmitOMPLastprivateClauseFinal( 7290 S, isOpenMPSimdDirective(S.getDirectiveKind()), 7291 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 7292 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 7293 (*LIP)->getType(), S.getBeginLoc()))); 7294 } 7295 CGF.EmitOMPLinearClauseFinal(S, [LIP, &S](CodeGenFunction &CGF) { 7296 return CGF.Builder.CreateIsNotNull( 7297 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 7298 (*LIP)->getType(), S.getBeginLoc())); 7299 }); 7300 }; 7301 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 7302 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 7303 const OMPTaskDataTy &Data) { 7304 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 7305 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 7306 OMPLoopScope PreInitScope(CGF, S); 7307 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 7308 OutlinedFn, SharedsTy, 7309 CapturedStruct, IfCond, Data); 7310 }; 7311 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 7312 CodeGen); 7313 }; 7314 if (Data.Nogroup) { 7315 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 7316 } else { 7317 CGM.getOpenMPRuntime().emitTaskgroupRegion( 7318 *this, 7319 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 7320 PrePostActionTy &Action) { 7321 Action.Enter(CGF); 7322 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 7323 Data); 7324 }, 7325 S.getBeginLoc()); 7326 } 7327 } 7328 7329 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 7330 auto LPCRegion = 7331 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7332 EmitOMPTaskLoopBasedDirective(S); 7333 } 7334 7335 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 7336 const OMPTaskLoopSimdDirective &S) { 7337 auto LPCRegion = 7338 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7339 OMPLexicalScope Scope(*this, S); 7340 EmitOMPTaskLoopBasedDirective(S); 7341 } 7342 7343 void CodeGenFunction::EmitOMPMasterTaskLoopDirective( 7344 const OMPMasterTaskLoopDirective &S) { 7345 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7346 Action.Enter(CGF); 7347 EmitOMPTaskLoopBasedDirective(S); 7348 }; 7349 auto LPCRegion = 7350 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7351 OMPLexicalScope Scope(*this, S, llvm::None, /*EmitPreInitStmt=*/false); 7352 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 7353 } 7354 7355 void CodeGenFunction::EmitOMPMasterTaskLoopSimdDirective( 7356 const OMPMasterTaskLoopSimdDirective &S) { 7357 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7358 Action.Enter(CGF); 7359 EmitOMPTaskLoopBasedDirective(S); 7360 }; 7361 auto LPCRegion = 7362 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7363 OMPLexicalScope Scope(*this, S); 7364 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 7365 } 7366 7367 void CodeGenFunction::EmitOMPParallelMasterTaskLoopDirective( 7368 const OMPParallelMasterTaskLoopDirective &S) { 7369 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7370 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 7371 PrePostActionTy &Action) { 7372 Action.Enter(CGF); 7373 CGF.EmitOMPTaskLoopBasedDirective(S); 7374 }; 7375 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 7376 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 7377 S.getBeginLoc()); 7378 }; 7379 auto LPCRegion = 7380 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7381 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop, CodeGen, 7382 emitEmptyBoundParameters); 7383 } 7384 7385 void CodeGenFunction::EmitOMPParallelMasterTaskLoopSimdDirective( 7386 const OMPParallelMasterTaskLoopSimdDirective &S) { 7387 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7388 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 7389 PrePostActionTy &Action) { 7390 Action.Enter(CGF); 7391 CGF.EmitOMPTaskLoopBasedDirective(S); 7392 }; 7393 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 7394 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 7395 S.getBeginLoc()); 7396 }; 7397 auto LPCRegion = 7398 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7399 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop_simd, CodeGen, 7400 emitEmptyBoundParameters); 7401 } 7402 7403 // Generate the instructions for '#pragma omp target update' directive. 7404 void CodeGenFunction::EmitOMPTargetUpdateDirective( 7405 const OMPTargetUpdateDirective &S) { 7406 // If we don't have target devices, don't bother emitting the data mapping 7407 // code. 7408 if (CGM.getLangOpts().OMPTargetTriples.empty()) 7409 return; 7410 7411 // Check if we have any if clause associated with the directive. 7412 const Expr *IfCond = nullptr; 7413 if (const auto *C = S.getSingleClause<OMPIfClause>()) 7414 IfCond = C->getCondition(); 7415 7416 // Check if we have any device clause associated with the directive. 7417 const Expr *Device = nullptr; 7418 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 7419 Device = C->getDevice(); 7420 7421 OMPLexicalScope Scope(*this, S, OMPD_task); 7422 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 7423 } 7424 7425 void CodeGenFunction::EmitOMPGenericLoopDirective( 7426 const OMPGenericLoopDirective &S) { 7427 // Unimplemented, just inline the underlying statement for now. 7428 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7429 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 7430 }; 7431 OMPLexicalScope Scope(*this, S, OMPD_unknown); 7432 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_loop, CodeGen); 7433 } 7434 7435 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 7436 const OMPExecutableDirective &D) { 7437 if (const auto *SD = dyn_cast<OMPScanDirective>(&D)) { 7438 EmitOMPScanDirective(*SD); 7439 return; 7440 } 7441 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 7442 return; 7443 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 7444 OMPPrivateScope GlobalsScope(CGF); 7445 if (isOpenMPTaskingDirective(D.getDirectiveKind())) { 7446 // Capture global firstprivates to avoid crash. 7447 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 7448 for (const Expr *Ref : C->varlists()) { 7449 const auto *DRE = cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 7450 if (!DRE) 7451 continue; 7452 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7453 if (!VD || VD->hasLocalStorage()) 7454 continue; 7455 if (!CGF.LocalDeclMap.count(VD)) { 7456 LValue GlobLVal = CGF.EmitLValue(Ref); 7457 GlobalsScope.addPrivate( 7458 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 7459 } 7460 } 7461 } 7462 } 7463 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 7464 (void)GlobalsScope.Privatize(); 7465 ParentLoopDirectiveForScanRegion ScanRegion(CGF, D); 7466 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 7467 } else { 7468 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 7469 for (const Expr *E : LD->counters()) { 7470 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 7471 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 7472 LValue GlobLVal = CGF.EmitLValue(E); 7473 GlobalsScope.addPrivate( 7474 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 7475 } 7476 if (isa<OMPCapturedExprDecl>(VD)) { 7477 // Emit only those that were not explicitly referenced in clauses. 7478 if (!CGF.LocalDeclMap.count(VD)) 7479 CGF.EmitVarDecl(*VD); 7480 } 7481 } 7482 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 7483 if (!C->getNumForLoops()) 7484 continue; 7485 for (unsigned I = LD->getLoopsNumber(), 7486 E = C->getLoopNumIterations().size(); 7487 I < E; ++I) { 7488 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 7489 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 7490 // Emit only those that were not explicitly referenced in clauses. 7491 if (!CGF.LocalDeclMap.count(VD)) 7492 CGF.EmitVarDecl(*VD); 7493 } 7494 } 7495 } 7496 } 7497 (void)GlobalsScope.Privatize(); 7498 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 7499 } 7500 }; 7501 if (D.getDirectiveKind() == OMPD_atomic || 7502 D.getDirectiveKind() == OMPD_critical || 7503 D.getDirectiveKind() == OMPD_section || 7504 D.getDirectiveKind() == OMPD_master || 7505 D.getDirectiveKind() == OMPD_masked) { 7506 EmitStmt(D.getAssociatedStmt()); 7507 } else { 7508 auto LPCRegion = 7509 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, D); 7510 OMPSimdLexicalScope Scope(*this, D); 7511 CGM.getOpenMPRuntime().emitInlinedDirective( 7512 *this, 7513 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 7514 : D.getDirectiveKind(), 7515 CodeGen); 7516 } 7517 // Check for outer lastprivate conditional update. 7518 checkForLastprivateConditionalUpdate(*this, D); 7519 } 7520