1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit OpenMP nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCleanup.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/DeclOpenMP.h" 21 #include "clang/AST/OpenMPClause.h" 22 #include "clang/AST/Stmt.h" 23 #include "clang/AST/StmtOpenMP.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/Basic/OpenMPKinds.h" 26 #include "clang/Basic/PrettyStackTrace.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/BinaryFormat/Dwarf.h" 29 #include "llvm/Frontend/OpenMP/OMPConstants.h" 30 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DebugInfoMetadata.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/Support/AtomicOrdering.h" 37 #include <optional> 38 using namespace clang; 39 using namespace CodeGen; 40 using namespace llvm::omp; 41 42 static const VarDecl *getBaseDecl(const Expr *Ref); 43 44 namespace { 45 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 46 /// for captured expressions. 47 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 48 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 49 for (const auto *C : S.clauses()) { 50 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 51 if (const auto *PreInit = 52 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 53 for (const auto *I : PreInit->decls()) { 54 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 55 CGF.EmitVarDecl(cast<VarDecl>(*I)); 56 } else { 57 CodeGenFunction::AutoVarEmission Emission = 58 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 59 CGF.EmitAutoVarCleanups(Emission); 60 } 61 } 62 } 63 } 64 } 65 } 66 CodeGenFunction::OMPPrivateScope InlinedShareds; 67 68 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 69 return CGF.LambdaCaptureFields.lookup(VD) || 70 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 71 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 72 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 73 } 74 75 public: 76 OMPLexicalScope( 77 CodeGenFunction &CGF, const OMPExecutableDirective &S, 78 const std::optional<OpenMPDirectiveKind> CapturedRegion = std::nullopt, 79 const bool EmitPreInitStmt = true) 80 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 81 InlinedShareds(CGF) { 82 if (EmitPreInitStmt) 83 emitPreInitStmt(CGF, S); 84 if (!CapturedRegion) 85 return; 86 assert(S.hasAssociatedStmt() && 87 "Expected associated statement for inlined directive."); 88 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 89 for (const auto &C : CS->captures()) { 90 if (C.capturesVariable() || C.capturesVariableByCopy()) { 91 auto *VD = C.getCapturedVar(); 92 assert(VD == VD->getCanonicalDecl() && 93 "Canonical decl must be captured."); 94 DeclRefExpr DRE( 95 CGF.getContext(), const_cast<VarDecl *>(VD), 96 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 97 InlinedShareds.isGlobalVarCaptured(VD)), 98 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 99 InlinedShareds.addPrivate(VD, CGF.EmitLValue(&DRE).getAddress(CGF)); 100 } 101 } 102 (void)InlinedShareds.Privatize(); 103 } 104 }; 105 106 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 107 /// for captured expressions. 108 class OMPParallelScope final : public OMPLexicalScope { 109 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 110 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 111 return !(isOpenMPTargetExecutionDirective(Kind) || 112 isOpenMPLoopBoundSharingDirective(Kind)) && 113 isOpenMPParallelDirective(Kind); 114 } 115 116 public: 117 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 118 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/std::nullopt, 119 EmitPreInitStmt(S)) {} 120 }; 121 122 /// Lexical scope for OpenMP teams construct, that handles correct codegen 123 /// for captured expressions. 124 class OMPTeamsScope final : public OMPLexicalScope { 125 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 126 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 127 return !isOpenMPTargetExecutionDirective(Kind) && 128 isOpenMPTeamsDirective(Kind); 129 } 130 131 public: 132 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 133 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/std::nullopt, 134 EmitPreInitStmt(S)) {} 135 }; 136 137 /// Private scope for OpenMP loop-based directives, that supports capturing 138 /// of used expression from loop statement. 139 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 140 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopBasedDirective &S) { 141 const DeclStmt *PreInits; 142 CodeGenFunction::OMPMapVars PreCondVars; 143 if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) { 144 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 145 for (const auto *E : LD->counters()) { 146 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 147 EmittedAsPrivate.insert(VD->getCanonicalDecl()); 148 (void)PreCondVars.setVarAddr( 149 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 150 } 151 // Mark private vars as undefs. 152 for (const auto *C : LD->getClausesOfKind<OMPPrivateClause>()) { 153 for (const Expr *IRef : C->varlists()) { 154 const auto *OrigVD = 155 cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 156 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 157 QualType OrigVDTy = OrigVD->getType().getNonReferenceType(); 158 (void)PreCondVars.setVarAddr( 159 CGF, OrigVD, 160 Address(llvm::UndefValue::get(CGF.ConvertTypeForMem( 161 CGF.getContext().getPointerType(OrigVDTy))), 162 CGF.ConvertTypeForMem(OrigVDTy), 163 CGF.getContext().getDeclAlign(OrigVD))); 164 } 165 } 166 } 167 (void)PreCondVars.apply(CGF); 168 // Emit init, __range and __end variables for C++ range loops. 169 (void)OMPLoopBasedDirective::doForAllLoops( 170 LD->getInnermostCapturedStmt()->getCapturedStmt(), 171 /*TryImperfectlyNestedLoops=*/true, LD->getLoopsNumber(), 172 [&CGF](unsigned Cnt, const Stmt *CurStmt) { 173 if (const auto *CXXFor = dyn_cast<CXXForRangeStmt>(CurStmt)) { 174 if (const Stmt *Init = CXXFor->getInit()) 175 CGF.EmitStmt(Init); 176 CGF.EmitStmt(CXXFor->getRangeStmt()); 177 CGF.EmitStmt(CXXFor->getEndStmt()); 178 } 179 return false; 180 }); 181 PreInits = cast_or_null<DeclStmt>(LD->getPreInits()); 182 } else if (const auto *Tile = dyn_cast<OMPTileDirective>(&S)) { 183 PreInits = cast_or_null<DeclStmt>(Tile->getPreInits()); 184 } else if (const auto *Unroll = dyn_cast<OMPUnrollDirective>(&S)) { 185 PreInits = cast_or_null<DeclStmt>(Unroll->getPreInits()); 186 } else { 187 llvm_unreachable("Unknown loop-based directive kind."); 188 } 189 if (PreInits) { 190 for (const auto *I : PreInits->decls()) 191 CGF.EmitVarDecl(cast<VarDecl>(*I)); 192 } 193 PreCondVars.restore(CGF); 194 } 195 196 public: 197 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopBasedDirective &S) 198 : CodeGenFunction::RunCleanupsScope(CGF) { 199 emitPreInitStmt(CGF, S); 200 } 201 }; 202 203 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 204 CodeGenFunction::OMPPrivateScope InlinedShareds; 205 206 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 207 return CGF.LambdaCaptureFields.lookup(VD) || 208 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 209 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 210 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 211 } 212 213 public: 214 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 215 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 216 InlinedShareds(CGF) { 217 for (const auto *C : S.clauses()) { 218 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 219 if (const auto *PreInit = 220 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 221 for (const auto *I : PreInit->decls()) { 222 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 223 CGF.EmitVarDecl(cast<VarDecl>(*I)); 224 } else { 225 CodeGenFunction::AutoVarEmission Emission = 226 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 227 CGF.EmitAutoVarCleanups(Emission); 228 } 229 } 230 } 231 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 232 for (const Expr *E : UDP->varlists()) { 233 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 234 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 235 CGF.EmitVarDecl(*OED); 236 } 237 } else if (const auto *UDP = dyn_cast<OMPUseDeviceAddrClause>(C)) { 238 for (const Expr *E : UDP->varlists()) { 239 const Decl *D = getBaseDecl(E); 240 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 241 CGF.EmitVarDecl(*OED); 242 } 243 } 244 } 245 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 246 CGF.EmitOMPPrivateClause(S, InlinedShareds); 247 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 248 if (const Expr *E = TG->getReductionRef()) 249 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 250 } 251 // Temp copy arrays for inscan reductions should not be emitted as they are 252 // not used in simd only mode. 253 llvm::DenseSet<CanonicalDeclPtr<const Decl>> CopyArrayTemps; 254 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 255 if (C->getModifier() != OMPC_REDUCTION_inscan) 256 continue; 257 for (const Expr *E : C->copy_array_temps()) 258 CopyArrayTemps.insert(cast<DeclRefExpr>(E)->getDecl()); 259 } 260 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 261 while (CS) { 262 for (auto &C : CS->captures()) { 263 if (C.capturesVariable() || C.capturesVariableByCopy()) { 264 auto *VD = C.getCapturedVar(); 265 if (CopyArrayTemps.contains(VD)) 266 continue; 267 assert(VD == VD->getCanonicalDecl() && 268 "Canonical decl must be captured."); 269 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), 270 isCapturedVar(CGF, VD) || 271 (CGF.CapturedStmtInfo && 272 InlinedShareds.isGlobalVarCaptured(VD)), 273 VD->getType().getNonReferenceType(), VK_LValue, 274 C.getLocation()); 275 InlinedShareds.addPrivate(VD, CGF.EmitLValue(&DRE).getAddress(CGF)); 276 } 277 } 278 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 279 } 280 (void)InlinedShareds.Privatize(); 281 } 282 }; 283 284 } // namespace 285 286 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 287 const OMPExecutableDirective &S, 288 const RegionCodeGenTy &CodeGen); 289 290 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 291 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 292 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 293 OrigVD = OrigVD->getCanonicalDecl(); 294 bool IsCaptured = 295 LambdaCaptureFields.lookup(OrigVD) || 296 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 297 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 298 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured, 299 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 300 return EmitLValue(&DRE); 301 } 302 } 303 return EmitLValue(E); 304 } 305 306 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 307 ASTContext &C = getContext(); 308 llvm::Value *Size = nullptr; 309 auto SizeInChars = C.getTypeSizeInChars(Ty); 310 if (SizeInChars.isZero()) { 311 // getTypeSizeInChars() returns 0 for a VLA. 312 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 313 VlaSizePair VlaSize = getVLASize(VAT); 314 Ty = VlaSize.Type; 315 Size = 316 Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) : VlaSize.NumElts; 317 } 318 SizeInChars = C.getTypeSizeInChars(Ty); 319 if (SizeInChars.isZero()) 320 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 321 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 322 } 323 return CGM.getSize(SizeInChars); 324 } 325 326 void CodeGenFunction::GenerateOpenMPCapturedVars( 327 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 328 const RecordDecl *RD = S.getCapturedRecordDecl(); 329 auto CurField = RD->field_begin(); 330 auto CurCap = S.captures().begin(); 331 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 332 E = S.capture_init_end(); 333 I != E; ++I, ++CurField, ++CurCap) { 334 if (CurField->hasCapturedVLAType()) { 335 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 336 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 337 CapturedVars.push_back(Val); 338 } else if (CurCap->capturesThis()) { 339 CapturedVars.push_back(CXXThisValue); 340 } else if (CurCap->capturesVariableByCopy()) { 341 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 342 343 // If the field is not a pointer, we need to save the actual value 344 // and load it as a void pointer. 345 if (!CurField->getType()->isAnyPointerType()) { 346 ASTContext &Ctx = getContext(); 347 Address DstAddr = CreateMemTemp( 348 Ctx.getUIntPtrType(), 349 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 350 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 351 352 llvm::Value *SrcAddrVal = EmitScalarConversion( 353 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 354 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 355 LValue SrcLV = 356 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 357 358 // Store the value using the source type pointer. 359 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 360 361 // Load the value using the destination type pointer. 362 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 363 } 364 CapturedVars.push_back(CV); 365 } else { 366 assert(CurCap->capturesVariable() && "Expected capture by reference."); 367 CapturedVars.push_back(EmitLValue(*I).getAddress(*this).getPointer()); 368 } 369 } 370 } 371 372 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 373 QualType DstType, StringRef Name, 374 LValue AddrLV) { 375 ASTContext &Ctx = CGF.getContext(); 376 377 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 378 AddrLV.getAddress(CGF).getPointer(), Ctx.getUIntPtrType(), 379 Ctx.getPointerType(DstType), Loc); 380 Address TmpAddr = 381 CGF.MakeNaturalAlignAddrLValue(CastedPtr, DstType).getAddress(CGF); 382 return TmpAddr; 383 } 384 385 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 386 if (T->isLValueReferenceType()) 387 return C.getLValueReferenceType( 388 getCanonicalParamType(C, T.getNonReferenceType()), 389 /*SpelledAsLValue=*/false); 390 if (T->isPointerType()) 391 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 392 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 393 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 394 return getCanonicalParamType(C, VLA->getElementType()); 395 if (!A->isVariablyModifiedType()) 396 return C.getCanonicalType(T); 397 } 398 return C.getCanonicalParamType(T); 399 } 400 401 namespace { 402 /// Contains required data for proper outlined function codegen. 403 struct FunctionOptions { 404 /// Captured statement for which the function is generated. 405 const CapturedStmt *S = nullptr; 406 /// true if cast to/from UIntPtr is required for variables captured by 407 /// value. 408 const bool UIntPtrCastRequired = true; 409 /// true if only casted arguments must be registered as local args or VLA 410 /// sizes. 411 const bool RegisterCastedArgsOnly = false; 412 /// Name of the generated function. 413 const StringRef FunctionName; 414 /// Location of the non-debug version of the outlined function. 415 SourceLocation Loc; 416 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 417 bool RegisterCastedArgsOnly, StringRef FunctionName, 418 SourceLocation Loc) 419 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 420 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 421 FunctionName(FunctionName), Loc(Loc) {} 422 }; 423 } // namespace 424 425 static llvm::Function *emitOutlinedFunctionPrologue( 426 CodeGenFunction &CGF, FunctionArgList &Args, 427 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 428 &LocalAddrs, 429 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 430 &VLASizes, 431 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 432 const CapturedDecl *CD = FO.S->getCapturedDecl(); 433 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 434 assert(CD->hasBody() && "missing CapturedDecl body"); 435 436 CXXThisValue = nullptr; 437 // Build the argument list. 438 CodeGenModule &CGM = CGF.CGM; 439 ASTContext &Ctx = CGM.getContext(); 440 FunctionArgList TargetArgs; 441 Args.append(CD->param_begin(), 442 std::next(CD->param_begin(), CD->getContextParamPosition())); 443 TargetArgs.append( 444 CD->param_begin(), 445 std::next(CD->param_begin(), CD->getContextParamPosition())); 446 auto I = FO.S->captures().begin(); 447 FunctionDecl *DebugFunctionDecl = nullptr; 448 if (!FO.UIntPtrCastRequired) { 449 FunctionProtoType::ExtProtoInfo EPI; 450 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, std::nullopt, EPI); 451 DebugFunctionDecl = FunctionDecl::Create( 452 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 453 SourceLocation(), DeclarationName(), FunctionTy, 454 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 455 /*UsesFPIntrin=*/false, /*isInlineSpecified=*/false, 456 /*hasWrittenPrototype=*/false); 457 } 458 for (const FieldDecl *FD : RD->fields()) { 459 QualType ArgType = FD->getType(); 460 IdentifierInfo *II = nullptr; 461 VarDecl *CapVar = nullptr; 462 463 // If this is a capture by copy and the type is not a pointer, the outlined 464 // function argument type should be uintptr and the value properly casted to 465 // uintptr. This is necessary given that the runtime library is only able to 466 // deal with pointers. We can pass in the same way the VLA type sizes to the 467 // outlined function. 468 if (FO.UIntPtrCastRequired && 469 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 470 I->capturesVariableArrayType())) 471 ArgType = Ctx.getUIntPtrType(); 472 473 if (I->capturesVariable() || I->capturesVariableByCopy()) { 474 CapVar = I->getCapturedVar(); 475 II = CapVar->getIdentifier(); 476 } else if (I->capturesThis()) { 477 II = &Ctx.Idents.get("this"); 478 } else { 479 assert(I->capturesVariableArrayType()); 480 II = &Ctx.Idents.get("vla"); 481 } 482 if (ArgType->isVariablyModifiedType()) 483 ArgType = getCanonicalParamType(Ctx, ArgType); 484 VarDecl *Arg; 485 if (CapVar && (CapVar->getTLSKind() != clang::VarDecl::TLS_None)) { 486 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 487 II, ArgType, 488 ImplicitParamKind::ThreadPrivateVar); 489 } else if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 490 Arg = ParmVarDecl::Create( 491 Ctx, DebugFunctionDecl, 492 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 493 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 494 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 495 } else { 496 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 497 II, ArgType, ImplicitParamKind::Other); 498 } 499 Args.emplace_back(Arg); 500 // Do not cast arguments if we emit function with non-original types. 501 TargetArgs.emplace_back( 502 FO.UIntPtrCastRequired 503 ? Arg 504 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 505 ++I; 506 } 507 Args.append(std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 508 CD->param_end()); 509 TargetArgs.append( 510 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 511 CD->param_end()); 512 513 // Create the function declaration. 514 const CGFunctionInfo &FuncInfo = 515 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 516 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 517 518 auto *F = 519 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 520 FO.FunctionName, &CGM.getModule()); 521 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 522 if (CD->isNothrow()) 523 F->setDoesNotThrow(); 524 F->setDoesNotRecurse(); 525 526 // Always inline the outlined function if optimizations are enabled. 527 if (CGM.getCodeGenOpts().OptimizationLevel != 0) { 528 F->removeFnAttr(llvm::Attribute::NoInline); 529 F->addFnAttr(llvm::Attribute::AlwaysInline); 530 } 531 532 // Generate the function. 533 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 534 FO.UIntPtrCastRequired ? FO.Loc : FO.S->getBeginLoc(), 535 FO.UIntPtrCastRequired ? FO.Loc 536 : CD->getBody()->getBeginLoc()); 537 unsigned Cnt = CD->getContextParamPosition(); 538 I = FO.S->captures().begin(); 539 for (const FieldDecl *FD : RD->fields()) { 540 // Do not map arguments if we emit function with non-original types. 541 Address LocalAddr(Address::invalid()); 542 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 543 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 544 TargetArgs[Cnt]); 545 } else { 546 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 547 } 548 // If we are capturing a pointer by copy we don't need to do anything, just 549 // use the value that we get from the arguments. 550 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 551 const VarDecl *CurVD = I->getCapturedVar(); 552 if (!FO.RegisterCastedArgsOnly) 553 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 554 ++Cnt; 555 ++I; 556 continue; 557 } 558 559 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 560 AlignmentSource::Decl); 561 if (FD->hasCapturedVLAType()) { 562 if (FO.UIntPtrCastRequired) { 563 ArgLVal = CGF.MakeAddrLValue( 564 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 565 Args[Cnt]->getName(), ArgLVal), 566 FD->getType(), AlignmentSource::Decl); 567 } 568 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 569 const VariableArrayType *VAT = FD->getCapturedVLAType(); 570 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 571 } else if (I->capturesVariable()) { 572 const VarDecl *Var = I->getCapturedVar(); 573 QualType VarTy = Var->getType(); 574 Address ArgAddr = ArgLVal.getAddress(CGF); 575 if (ArgLVal.getType()->isLValueReferenceType()) { 576 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 577 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 578 assert(ArgLVal.getType()->isPointerType()); 579 ArgAddr = CGF.EmitLoadOfPointer( 580 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 581 } 582 if (!FO.RegisterCastedArgsOnly) { 583 LocalAddrs.insert( 584 {Args[Cnt], {Var, ArgAddr.withAlignment(Ctx.getDeclAlign(Var))}}); 585 } 586 } else if (I->capturesVariableByCopy()) { 587 assert(!FD->getType()->isAnyPointerType() && 588 "Not expecting a captured pointer."); 589 const VarDecl *Var = I->getCapturedVar(); 590 LocalAddrs.insert({Args[Cnt], 591 {Var, FO.UIntPtrCastRequired 592 ? castValueFromUintptr( 593 CGF, I->getLocation(), FD->getType(), 594 Args[Cnt]->getName(), ArgLVal) 595 : ArgLVal.getAddress(CGF)}}); 596 } else { 597 // If 'this' is captured, load it into CXXThisValue. 598 assert(I->capturesThis()); 599 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 600 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress(CGF)}}); 601 } 602 ++Cnt; 603 ++I; 604 } 605 606 return F; 607 } 608 609 llvm::Function * 610 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 611 SourceLocation Loc) { 612 assert( 613 CapturedStmtInfo && 614 "CapturedStmtInfo should be set when generating the captured function"); 615 const CapturedDecl *CD = S.getCapturedDecl(); 616 // Build the argument list. 617 bool NeedWrapperFunction = 618 getDebugInfo() && CGM.getCodeGenOpts().hasReducedDebugInfo(); 619 FunctionArgList Args; 620 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 621 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 622 SmallString<256> Buffer; 623 llvm::raw_svector_ostream Out(Buffer); 624 Out << CapturedStmtInfo->getHelperName(); 625 if (NeedWrapperFunction) 626 Out << "_debug__"; 627 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 628 Out.str(), Loc); 629 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 630 VLASizes, CXXThisValue, FO); 631 CodeGenFunction::OMPPrivateScope LocalScope(*this); 632 for (const auto &LocalAddrPair : LocalAddrs) { 633 if (LocalAddrPair.second.first) { 634 LocalScope.addPrivate(LocalAddrPair.second.first, 635 LocalAddrPair.second.second); 636 } 637 } 638 (void)LocalScope.Privatize(); 639 for (const auto &VLASizePair : VLASizes) 640 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 641 PGO.assignRegionCounters(GlobalDecl(CD), F); 642 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 643 (void)LocalScope.ForceCleanup(); 644 FinishFunction(CD->getBodyRBrace()); 645 if (!NeedWrapperFunction) 646 return F; 647 648 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 649 /*RegisterCastedArgsOnly=*/true, 650 CapturedStmtInfo->getHelperName(), Loc); 651 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 652 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 653 Args.clear(); 654 LocalAddrs.clear(); 655 VLASizes.clear(); 656 llvm::Function *WrapperF = 657 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 658 WrapperCGF.CXXThisValue, WrapperFO); 659 llvm::SmallVector<llvm::Value *, 4> CallArgs; 660 auto *PI = F->arg_begin(); 661 for (const auto *Arg : Args) { 662 llvm::Value *CallArg; 663 auto I = LocalAddrs.find(Arg); 664 if (I != LocalAddrs.end()) { 665 LValue LV = WrapperCGF.MakeAddrLValue( 666 I->second.second, 667 I->second.first ? I->second.first->getType() : Arg->getType(), 668 AlignmentSource::Decl); 669 if (LV.getType()->isAnyComplexType()) 670 LV.setAddress(LV.getAddress(WrapperCGF).withElementType(PI->getType())); 671 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 672 } else { 673 auto EI = VLASizes.find(Arg); 674 if (EI != VLASizes.end()) { 675 CallArg = EI->second.second; 676 } else { 677 LValue LV = 678 WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 679 Arg->getType(), AlignmentSource::Decl); 680 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 681 } 682 } 683 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 684 ++PI; 685 } 686 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, Loc, F, CallArgs); 687 WrapperCGF.FinishFunction(); 688 return WrapperF; 689 } 690 691 //===----------------------------------------------------------------------===// 692 // OpenMP Directive Emission 693 //===----------------------------------------------------------------------===// 694 void CodeGenFunction::EmitOMPAggregateAssign( 695 Address DestAddr, Address SrcAddr, QualType OriginalType, 696 const llvm::function_ref<void(Address, Address)> CopyGen) { 697 // Perform element-by-element initialization. 698 QualType ElementTy; 699 700 // Drill down to the base element type on both arrays. 701 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 702 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 703 SrcAddr = SrcAddr.withElementType(DestAddr.getElementType()); 704 705 llvm::Value *SrcBegin = SrcAddr.getPointer(); 706 llvm::Value *DestBegin = DestAddr.getPointer(); 707 // Cast from pointer to array type to pointer to single element. 708 llvm::Value *DestEnd = Builder.CreateInBoundsGEP(DestAddr.getElementType(), 709 DestBegin, NumElements); 710 711 // The basic structure here is a while-do loop. 712 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 713 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 714 llvm::Value *IsEmpty = 715 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 716 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 717 718 // Enter the loop body, making that address the current address. 719 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 720 EmitBlock(BodyBB); 721 722 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 723 724 llvm::PHINode *SrcElementPHI = 725 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 726 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 727 Address SrcElementCurrent = 728 Address(SrcElementPHI, SrcAddr.getElementType(), 729 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 730 731 llvm::PHINode *DestElementPHI = Builder.CreatePHI( 732 DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 733 DestElementPHI->addIncoming(DestBegin, EntryBB); 734 Address DestElementCurrent = 735 Address(DestElementPHI, DestAddr.getElementType(), 736 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 737 738 // Emit copy. 739 CopyGen(DestElementCurrent, SrcElementCurrent); 740 741 // Shift the address forward by one element. 742 llvm::Value *DestElementNext = 743 Builder.CreateConstGEP1_32(DestAddr.getElementType(), DestElementPHI, 744 /*Idx0=*/1, "omp.arraycpy.dest.element"); 745 llvm::Value *SrcElementNext = 746 Builder.CreateConstGEP1_32(SrcAddr.getElementType(), SrcElementPHI, 747 /*Idx0=*/1, "omp.arraycpy.src.element"); 748 // Check whether we've reached the end. 749 llvm::Value *Done = 750 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 751 Builder.CreateCondBr(Done, DoneBB, BodyBB); 752 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 753 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 754 755 // Done. 756 EmitBlock(DoneBB, /*IsFinished=*/true); 757 } 758 759 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 760 Address SrcAddr, const VarDecl *DestVD, 761 const VarDecl *SrcVD, const Expr *Copy) { 762 if (OriginalType->isArrayType()) { 763 const auto *BO = dyn_cast<BinaryOperator>(Copy); 764 if (BO && BO->getOpcode() == BO_Assign) { 765 // Perform simple memcpy for simple copying. 766 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 767 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 768 EmitAggregateAssign(Dest, Src, OriginalType); 769 } else { 770 // For arrays with complex element types perform element by element 771 // copying. 772 EmitOMPAggregateAssign( 773 DestAddr, SrcAddr, OriginalType, 774 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 775 // Working with the single array element, so have to remap 776 // destination and source variables to corresponding array 777 // elements. 778 CodeGenFunction::OMPPrivateScope Remap(*this); 779 Remap.addPrivate(DestVD, DestElement); 780 Remap.addPrivate(SrcVD, SrcElement); 781 (void)Remap.Privatize(); 782 EmitIgnoredExpr(Copy); 783 }); 784 } 785 } else { 786 // Remap pseudo source variable to private copy. 787 CodeGenFunction::OMPPrivateScope Remap(*this); 788 Remap.addPrivate(SrcVD, SrcAddr); 789 Remap.addPrivate(DestVD, DestAddr); 790 (void)Remap.Privatize(); 791 // Emit copying of the whole variable. 792 EmitIgnoredExpr(Copy); 793 } 794 } 795 796 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 797 OMPPrivateScope &PrivateScope) { 798 if (!HaveInsertPoint()) 799 return false; 800 bool DeviceConstTarget = 801 getLangOpts().OpenMPIsTargetDevice && 802 isOpenMPTargetExecutionDirective(D.getDirectiveKind()); 803 bool FirstprivateIsLastprivate = false; 804 llvm::DenseMap<const VarDecl *, OpenMPLastprivateModifier> Lastprivates; 805 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 806 for (const auto *D : C->varlists()) 807 Lastprivates.try_emplace( 808 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl(), 809 C->getKind()); 810 } 811 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 812 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 813 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 814 // Force emission of the firstprivate copy if the directive does not emit 815 // outlined function, like omp for, omp simd, omp distribute etc. 816 bool MustEmitFirstprivateCopy = 817 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 818 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 819 const auto *IRef = C->varlist_begin(); 820 const auto *InitsRef = C->inits().begin(); 821 for (const Expr *IInit : C->private_copies()) { 822 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 823 bool ThisFirstprivateIsLastprivate = 824 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 825 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 826 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 827 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 828 !FD->getType()->isReferenceType() && 829 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 830 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 831 ++IRef; 832 ++InitsRef; 833 continue; 834 } 835 // Do not emit copy for firstprivate constant variables in target regions, 836 // captured by reference. 837 if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) && 838 FD && FD->getType()->isReferenceType() && 839 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 840 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 841 ++IRef; 842 ++InitsRef; 843 continue; 844 } 845 FirstprivateIsLastprivate = 846 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 847 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 848 const auto *VDInit = 849 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 850 bool IsRegistered; 851 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 852 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 853 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 854 LValue OriginalLVal; 855 if (!FD) { 856 // Check if the firstprivate variable is just a constant value. 857 ConstantEmission CE = tryEmitAsConstant(&DRE); 858 if (CE && !CE.isReference()) { 859 // Constant value, no need to create a copy. 860 ++IRef; 861 ++InitsRef; 862 continue; 863 } 864 if (CE && CE.isReference()) { 865 OriginalLVal = CE.getReferenceLValue(*this, &DRE); 866 } else { 867 assert(!CE && "Expected non-constant firstprivate."); 868 OriginalLVal = EmitLValue(&DRE); 869 } 870 } else { 871 OriginalLVal = EmitLValue(&DRE); 872 } 873 QualType Type = VD->getType(); 874 if (Type->isArrayType()) { 875 // Emit VarDecl with copy init for arrays. 876 // Get the address of the original variable captured in current 877 // captured region. 878 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 879 const Expr *Init = VD->getInit(); 880 if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) { 881 // Perform simple memcpy. 882 LValue Dest = MakeAddrLValue(Emission.getAllocatedAddress(), Type); 883 EmitAggregateAssign(Dest, OriginalLVal, Type); 884 } else { 885 EmitOMPAggregateAssign( 886 Emission.getAllocatedAddress(), OriginalLVal.getAddress(*this), 887 Type, 888 [this, VDInit, Init](Address DestElement, Address SrcElement) { 889 // Clean up any temporaries needed by the 890 // initialization. 891 RunCleanupsScope InitScope(*this); 892 // Emit initialization for single element. 893 setAddrOfLocalVar(VDInit, SrcElement); 894 EmitAnyExprToMem(Init, DestElement, 895 Init->getType().getQualifiers(), 896 /*IsInitializer*/ false); 897 LocalDeclMap.erase(VDInit); 898 }); 899 } 900 EmitAutoVarCleanups(Emission); 901 IsRegistered = 902 PrivateScope.addPrivate(OrigVD, Emission.getAllocatedAddress()); 903 } else { 904 Address OriginalAddr = OriginalLVal.getAddress(*this); 905 // Emit private VarDecl with copy init. 906 // Remap temp VDInit variable to the address of the original 907 // variable (for proper handling of captured global variables). 908 setAddrOfLocalVar(VDInit, OriginalAddr); 909 EmitDecl(*VD); 910 LocalDeclMap.erase(VDInit); 911 Address VDAddr = GetAddrOfLocalVar(VD); 912 if (ThisFirstprivateIsLastprivate && 913 Lastprivates[OrigVD->getCanonicalDecl()] == 914 OMPC_LASTPRIVATE_conditional) { 915 // Create/init special variable for lastprivate conditionals. 916 llvm::Value *V = 917 EmitLoadOfScalar(MakeAddrLValue(VDAddr, (*IRef)->getType(), 918 AlignmentSource::Decl), 919 (*IRef)->getExprLoc()); 920 VDAddr = CGM.getOpenMPRuntime().emitLastprivateConditionalInit( 921 *this, OrigVD); 922 EmitStoreOfScalar(V, MakeAddrLValue(VDAddr, (*IRef)->getType(), 923 AlignmentSource::Decl)); 924 LocalDeclMap.erase(VD); 925 setAddrOfLocalVar(VD, VDAddr); 926 } 927 IsRegistered = PrivateScope.addPrivate(OrigVD, VDAddr); 928 } 929 assert(IsRegistered && 930 "firstprivate var already registered as private"); 931 // Silence the warning about unused variable. 932 (void)IsRegistered; 933 } 934 ++IRef; 935 ++InitsRef; 936 } 937 } 938 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 939 } 940 941 void CodeGenFunction::EmitOMPPrivateClause( 942 const OMPExecutableDirective &D, 943 CodeGenFunction::OMPPrivateScope &PrivateScope) { 944 if (!HaveInsertPoint()) 945 return; 946 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 947 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 948 auto IRef = C->varlist_begin(); 949 for (const Expr *IInit : C->private_copies()) { 950 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 951 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 952 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 953 EmitDecl(*VD); 954 // Emit private VarDecl with copy init. 955 bool IsRegistered = 956 PrivateScope.addPrivate(OrigVD, GetAddrOfLocalVar(VD)); 957 assert(IsRegistered && "private var already registered as private"); 958 // Silence the warning about unused variable. 959 (void)IsRegistered; 960 } 961 ++IRef; 962 } 963 } 964 } 965 966 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 967 if (!HaveInsertPoint()) 968 return false; 969 // threadprivate_var1 = master_threadprivate_var1; 970 // operator=(threadprivate_var2, master_threadprivate_var2); 971 // ... 972 // __kmpc_barrier(&loc, global_tid); 973 llvm::DenseSet<const VarDecl *> CopiedVars; 974 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 975 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 976 auto IRef = C->varlist_begin(); 977 auto ISrcRef = C->source_exprs().begin(); 978 auto IDestRef = C->destination_exprs().begin(); 979 for (const Expr *AssignOp : C->assignment_ops()) { 980 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 981 QualType Type = VD->getType(); 982 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 983 // Get the address of the master variable. If we are emitting code with 984 // TLS support, the address is passed from the master as field in the 985 // captured declaration. 986 Address MasterAddr = Address::invalid(); 987 if (getLangOpts().OpenMPUseTLS && 988 getContext().getTargetInfo().isTLSSupported()) { 989 assert(CapturedStmtInfo->lookup(VD) && 990 "Copyin threadprivates should have been captured!"); 991 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true, 992 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 993 MasterAddr = EmitLValue(&DRE).getAddress(*this); 994 LocalDeclMap.erase(VD); 995 } else { 996 MasterAddr = 997 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 998 : CGM.GetAddrOfGlobal(VD), 999 CGM.getTypes().ConvertTypeForMem(VD->getType()), 1000 getContext().getDeclAlign(VD)); 1001 } 1002 // Get the address of the threadprivate variable. 1003 Address PrivateAddr = EmitLValue(*IRef).getAddress(*this); 1004 if (CopiedVars.size() == 1) { 1005 // At first check if current thread is a master thread. If it is, no 1006 // need to copy data. 1007 CopyBegin = createBasicBlock("copyin.not.master"); 1008 CopyEnd = createBasicBlock("copyin.not.master.end"); 1009 // TODO: Avoid ptrtoint conversion. 1010 auto *MasterAddrInt = 1011 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy); 1012 auto *PrivateAddrInt = 1013 Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy); 1014 Builder.CreateCondBr( 1015 Builder.CreateICmpNE(MasterAddrInt, PrivateAddrInt), CopyBegin, 1016 CopyEnd); 1017 EmitBlock(CopyBegin); 1018 } 1019 const auto *SrcVD = 1020 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1021 const auto *DestVD = 1022 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1023 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 1024 } 1025 ++IRef; 1026 ++ISrcRef; 1027 ++IDestRef; 1028 } 1029 } 1030 if (CopyEnd) { 1031 // Exit out of copying procedure for non-master thread. 1032 EmitBlock(CopyEnd, /*IsFinished=*/true); 1033 return true; 1034 } 1035 return false; 1036 } 1037 1038 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 1039 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 1040 if (!HaveInsertPoint()) 1041 return false; 1042 bool HasAtLeastOneLastprivate = false; 1043 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1044 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1045 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1046 for (const Expr *C : LoopDirective->counters()) { 1047 SIMDLCVs.insert( 1048 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1049 } 1050 } 1051 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1052 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1053 HasAtLeastOneLastprivate = true; 1054 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 1055 !getLangOpts().OpenMPSimd) 1056 break; 1057 const auto *IRef = C->varlist_begin(); 1058 const auto *IDestRef = C->destination_exprs().begin(); 1059 for (const Expr *IInit : C->private_copies()) { 1060 // Keep the address of the original variable for future update at the end 1061 // of the loop. 1062 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1063 // Taskloops do not require additional initialization, it is done in 1064 // runtime support library. 1065 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 1066 const auto *DestVD = 1067 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1068 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1069 /*RefersToEnclosingVariableOrCapture=*/ 1070 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1071 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1072 PrivateScope.addPrivate(DestVD, EmitLValue(&DRE).getAddress(*this)); 1073 // Check if the variable is also a firstprivate: in this case IInit is 1074 // not generated. Initialization of this variable will happen in codegen 1075 // for 'firstprivate' clause. 1076 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 1077 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 1078 Address VDAddr = Address::invalid(); 1079 if (C->getKind() == OMPC_LASTPRIVATE_conditional) { 1080 VDAddr = CGM.getOpenMPRuntime().emitLastprivateConditionalInit( 1081 *this, OrigVD); 1082 setAddrOfLocalVar(VD, VDAddr); 1083 } else { 1084 // Emit private VarDecl with copy init. 1085 EmitDecl(*VD); 1086 VDAddr = GetAddrOfLocalVar(VD); 1087 } 1088 bool IsRegistered = PrivateScope.addPrivate(OrigVD, VDAddr); 1089 assert(IsRegistered && 1090 "lastprivate var already registered as private"); 1091 (void)IsRegistered; 1092 } 1093 } 1094 ++IRef; 1095 ++IDestRef; 1096 } 1097 } 1098 return HasAtLeastOneLastprivate; 1099 } 1100 1101 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 1102 const OMPExecutableDirective &D, bool NoFinals, 1103 llvm::Value *IsLastIterCond) { 1104 if (!HaveInsertPoint()) 1105 return; 1106 // Emit following code: 1107 // if (<IsLastIterCond>) { 1108 // orig_var1 = private_orig_var1; 1109 // ... 1110 // orig_varn = private_orig_varn; 1111 // } 1112 llvm::BasicBlock *ThenBB = nullptr; 1113 llvm::BasicBlock *DoneBB = nullptr; 1114 if (IsLastIterCond) { 1115 // Emit implicit barrier if at least one lastprivate conditional is found 1116 // and this is not a simd mode. 1117 if (!getLangOpts().OpenMPSimd && 1118 llvm::any_of(D.getClausesOfKind<OMPLastprivateClause>(), 1119 [](const OMPLastprivateClause *C) { 1120 return C->getKind() == OMPC_LASTPRIVATE_conditional; 1121 })) { 1122 CGM.getOpenMPRuntime().emitBarrierCall(*this, D.getBeginLoc(), 1123 OMPD_unknown, 1124 /*EmitChecks=*/false, 1125 /*ForceSimpleCall=*/true); 1126 } 1127 ThenBB = createBasicBlock(".omp.lastprivate.then"); 1128 DoneBB = createBasicBlock(".omp.lastprivate.done"); 1129 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1130 EmitBlock(ThenBB); 1131 } 1132 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1133 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1134 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1135 auto IC = LoopDirective->counters().begin(); 1136 for (const Expr *F : LoopDirective->finals()) { 1137 const auto *D = 1138 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1139 if (NoFinals) 1140 AlreadyEmittedVars.insert(D); 1141 else 1142 LoopCountersAndUpdates[D] = F; 1143 ++IC; 1144 } 1145 } 1146 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1147 auto IRef = C->varlist_begin(); 1148 auto ISrcRef = C->source_exprs().begin(); 1149 auto IDestRef = C->destination_exprs().begin(); 1150 for (const Expr *AssignOp : C->assignment_ops()) { 1151 const auto *PrivateVD = 1152 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1153 QualType Type = PrivateVD->getType(); 1154 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1155 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1156 // If lastprivate variable is a loop control variable for loop-based 1157 // directive, update its value before copyin back to original 1158 // variable. 1159 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1160 EmitIgnoredExpr(FinalExpr); 1161 const auto *SrcVD = 1162 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1163 const auto *DestVD = 1164 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1165 // Get the address of the private variable. 1166 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1167 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1168 PrivateAddr = Address( 1169 Builder.CreateLoad(PrivateAddr), 1170 CGM.getTypes().ConvertTypeForMem(RefTy->getPointeeType()), 1171 CGM.getNaturalTypeAlignment(RefTy->getPointeeType())); 1172 // Store the last value to the private copy in the last iteration. 1173 if (C->getKind() == OMPC_LASTPRIVATE_conditional) 1174 CGM.getOpenMPRuntime().emitLastprivateConditionalFinalUpdate( 1175 *this, MakeAddrLValue(PrivateAddr, (*IRef)->getType()), PrivateVD, 1176 (*IRef)->getExprLoc()); 1177 // Get the address of the original variable. 1178 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1179 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1180 } 1181 ++IRef; 1182 ++ISrcRef; 1183 ++IDestRef; 1184 } 1185 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1186 EmitIgnoredExpr(PostUpdate); 1187 } 1188 if (IsLastIterCond) 1189 EmitBlock(DoneBB, /*IsFinished=*/true); 1190 } 1191 1192 void CodeGenFunction::EmitOMPReductionClauseInit( 1193 const OMPExecutableDirective &D, 1194 CodeGenFunction::OMPPrivateScope &PrivateScope, bool ForInscan) { 1195 if (!HaveInsertPoint()) 1196 return; 1197 SmallVector<const Expr *, 4> Shareds; 1198 SmallVector<const Expr *, 4> Privates; 1199 SmallVector<const Expr *, 4> ReductionOps; 1200 SmallVector<const Expr *, 4> LHSs; 1201 SmallVector<const Expr *, 4> RHSs; 1202 OMPTaskDataTy Data; 1203 SmallVector<const Expr *, 4> TaskLHSs; 1204 SmallVector<const Expr *, 4> TaskRHSs; 1205 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1206 if (ForInscan != (C->getModifier() == OMPC_REDUCTION_inscan)) 1207 continue; 1208 Shareds.append(C->varlist_begin(), C->varlist_end()); 1209 Privates.append(C->privates().begin(), C->privates().end()); 1210 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1211 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1212 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1213 if (C->getModifier() == OMPC_REDUCTION_task) { 1214 Data.ReductionVars.append(C->privates().begin(), C->privates().end()); 1215 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 1216 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 1217 Data.ReductionOps.append(C->reduction_ops().begin(), 1218 C->reduction_ops().end()); 1219 TaskLHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1220 TaskRHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1221 } 1222 } 1223 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 1224 unsigned Count = 0; 1225 auto *ILHS = LHSs.begin(); 1226 auto *IRHS = RHSs.begin(); 1227 auto *IPriv = Privates.begin(); 1228 for (const Expr *IRef : Shareds) { 1229 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1230 // Emit private VarDecl with reduction init. 1231 RedCG.emitSharedOrigLValue(*this, Count); 1232 RedCG.emitAggregateType(*this, Count); 1233 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1234 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1235 RedCG.getSharedLValue(Count).getAddress(*this), 1236 [&Emission](CodeGenFunction &CGF) { 1237 CGF.EmitAutoVarInit(Emission); 1238 return true; 1239 }); 1240 EmitAutoVarCleanups(Emission); 1241 Address BaseAddr = RedCG.adjustPrivateAddress( 1242 *this, Count, Emission.getAllocatedAddress()); 1243 bool IsRegistered = 1244 PrivateScope.addPrivate(RedCG.getBaseDecl(Count), BaseAddr); 1245 assert(IsRegistered && "private var already registered as private"); 1246 // Silence the warning about unused variable. 1247 (void)IsRegistered; 1248 1249 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1250 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1251 QualType Type = PrivateVD->getType(); 1252 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1253 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1254 // Store the address of the original variable associated with the LHS 1255 // implicit variable. 1256 PrivateScope.addPrivate(LHSVD, 1257 RedCG.getSharedLValue(Count).getAddress(*this)); 1258 PrivateScope.addPrivate(RHSVD, GetAddrOfLocalVar(PrivateVD)); 1259 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1260 isa<ArraySubscriptExpr>(IRef)) { 1261 // Store the address of the original variable associated with the LHS 1262 // implicit variable. 1263 PrivateScope.addPrivate(LHSVD, 1264 RedCG.getSharedLValue(Count).getAddress(*this)); 1265 PrivateScope.addPrivate(RHSVD, 1266 GetAddrOfLocalVar(PrivateVD).withElementType( 1267 ConvertTypeForMem(RHSVD->getType()))); 1268 } else { 1269 QualType Type = PrivateVD->getType(); 1270 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1271 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(*this); 1272 // Store the address of the original variable associated with the LHS 1273 // implicit variable. 1274 if (IsArray) { 1275 OriginalAddr = 1276 OriginalAddr.withElementType(ConvertTypeForMem(LHSVD->getType())); 1277 } 1278 PrivateScope.addPrivate(LHSVD, OriginalAddr); 1279 PrivateScope.addPrivate( 1280 RHSVD, IsArray ? GetAddrOfLocalVar(PrivateVD).withElementType( 1281 ConvertTypeForMem(RHSVD->getType())) 1282 : GetAddrOfLocalVar(PrivateVD)); 1283 } 1284 ++ILHS; 1285 ++IRHS; 1286 ++IPriv; 1287 ++Count; 1288 } 1289 if (!Data.ReductionVars.empty()) { 1290 Data.IsReductionWithTaskMod = true; 1291 Data.IsWorksharingReduction = 1292 isOpenMPWorksharingDirective(D.getDirectiveKind()); 1293 llvm::Value *ReductionDesc = CGM.getOpenMPRuntime().emitTaskReductionInit( 1294 *this, D.getBeginLoc(), TaskLHSs, TaskRHSs, Data); 1295 const Expr *TaskRedRef = nullptr; 1296 switch (D.getDirectiveKind()) { 1297 case OMPD_parallel: 1298 TaskRedRef = cast<OMPParallelDirective>(D).getTaskReductionRefExpr(); 1299 break; 1300 case OMPD_for: 1301 TaskRedRef = cast<OMPForDirective>(D).getTaskReductionRefExpr(); 1302 break; 1303 case OMPD_sections: 1304 TaskRedRef = cast<OMPSectionsDirective>(D).getTaskReductionRefExpr(); 1305 break; 1306 case OMPD_parallel_for: 1307 TaskRedRef = cast<OMPParallelForDirective>(D).getTaskReductionRefExpr(); 1308 break; 1309 case OMPD_parallel_master: 1310 TaskRedRef = 1311 cast<OMPParallelMasterDirective>(D).getTaskReductionRefExpr(); 1312 break; 1313 case OMPD_parallel_sections: 1314 TaskRedRef = 1315 cast<OMPParallelSectionsDirective>(D).getTaskReductionRefExpr(); 1316 break; 1317 case OMPD_target_parallel: 1318 TaskRedRef = 1319 cast<OMPTargetParallelDirective>(D).getTaskReductionRefExpr(); 1320 break; 1321 case OMPD_target_parallel_for: 1322 TaskRedRef = 1323 cast<OMPTargetParallelForDirective>(D).getTaskReductionRefExpr(); 1324 break; 1325 case OMPD_distribute_parallel_for: 1326 TaskRedRef = 1327 cast<OMPDistributeParallelForDirective>(D).getTaskReductionRefExpr(); 1328 break; 1329 case OMPD_teams_distribute_parallel_for: 1330 TaskRedRef = cast<OMPTeamsDistributeParallelForDirective>(D) 1331 .getTaskReductionRefExpr(); 1332 break; 1333 case OMPD_target_teams_distribute_parallel_for: 1334 TaskRedRef = cast<OMPTargetTeamsDistributeParallelForDirective>(D) 1335 .getTaskReductionRefExpr(); 1336 break; 1337 case OMPD_simd: 1338 case OMPD_for_simd: 1339 case OMPD_section: 1340 case OMPD_single: 1341 case OMPD_master: 1342 case OMPD_critical: 1343 case OMPD_parallel_for_simd: 1344 case OMPD_task: 1345 case OMPD_taskyield: 1346 case OMPD_error: 1347 case OMPD_barrier: 1348 case OMPD_taskwait: 1349 case OMPD_taskgroup: 1350 case OMPD_flush: 1351 case OMPD_depobj: 1352 case OMPD_scan: 1353 case OMPD_ordered: 1354 case OMPD_atomic: 1355 case OMPD_teams: 1356 case OMPD_target: 1357 case OMPD_cancellation_point: 1358 case OMPD_cancel: 1359 case OMPD_target_data: 1360 case OMPD_target_enter_data: 1361 case OMPD_target_exit_data: 1362 case OMPD_taskloop: 1363 case OMPD_taskloop_simd: 1364 case OMPD_master_taskloop: 1365 case OMPD_master_taskloop_simd: 1366 case OMPD_parallel_master_taskloop: 1367 case OMPD_parallel_master_taskloop_simd: 1368 case OMPD_distribute: 1369 case OMPD_target_update: 1370 case OMPD_distribute_parallel_for_simd: 1371 case OMPD_distribute_simd: 1372 case OMPD_target_parallel_for_simd: 1373 case OMPD_target_simd: 1374 case OMPD_teams_distribute: 1375 case OMPD_teams_distribute_simd: 1376 case OMPD_teams_distribute_parallel_for_simd: 1377 case OMPD_target_teams: 1378 case OMPD_target_teams_distribute: 1379 case OMPD_target_teams_distribute_parallel_for_simd: 1380 case OMPD_target_teams_distribute_simd: 1381 case OMPD_declare_target: 1382 case OMPD_end_declare_target: 1383 case OMPD_threadprivate: 1384 case OMPD_allocate: 1385 case OMPD_declare_reduction: 1386 case OMPD_declare_mapper: 1387 case OMPD_declare_simd: 1388 case OMPD_requires: 1389 case OMPD_declare_variant: 1390 case OMPD_begin_declare_variant: 1391 case OMPD_end_declare_variant: 1392 case OMPD_unknown: 1393 default: 1394 llvm_unreachable("Enexpected directive with task reductions."); 1395 } 1396 1397 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(TaskRedRef)->getDecl()); 1398 EmitVarDecl(*VD); 1399 EmitStoreOfScalar(ReductionDesc, GetAddrOfLocalVar(VD), 1400 /*Volatile=*/false, TaskRedRef->getType()); 1401 } 1402 } 1403 1404 void CodeGenFunction::EmitOMPReductionClauseFinal( 1405 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1406 if (!HaveInsertPoint()) 1407 return; 1408 llvm::SmallVector<const Expr *, 8> Privates; 1409 llvm::SmallVector<const Expr *, 8> LHSExprs; 1410 llvm::SmallVector<const Expr *, 8> RHSExprs; 1411 llvm::SmallVector<const Expr *, 8> ReductionOps; 1412 bool HasAtLeastOneReduction = false; 1413 bool IsReductionWithTaskMod = false; 1414 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1415 // Do not emit for inscan reductions. 1416 if (C->getModifier() == OMPC_REDUCTION_inscan) 1417 continue; 1418 HasAtLeastOneReduction = true; 1419 Privates.append(C->privates().begin(), C->privates().end()); 1420 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1421 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1422 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1423 IsReductionWithTaskMod = 1424 IsReductionWithTaskMod || C->getModifier() == OMPC_REDUCTION_task; 1425 } 1426 if (HasAtLeastOneReduction) { 1427 if (IsReductionWithTaskMod) { 1428 CGM.getOpenMPRuntime().emitTaskReductionFini( 1429 *this, D.getBeginLoc(), 1430 isOpenMPWorksharingDirective(D.getDirectiveKind())); 1431 } 1432 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1433 isOpenMPParallelDirective(D.getDirectiveKind()) || 1434 ReductionKind == OMPD_simd; 1435 bool SimpleReduction = ReductionKind == OMPD_simd; 1436 // Emit nowait reduction if nowait clause is present or directive is a 1437 // parallel directive (it always has implicit barrier). 1438 CGM.getOpenMPRuntime().emitReduction( 1439 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1440 {WithNowait, SimpleReduction, ReductionKind}); 1441 } 1442 } 1443 1444 static void emitPostUpdateForReductionClause( 1445 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1446 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1447 if (!CGF.HaveInsertPoint()) 1448 return; 1449 llvm::BasicBlock *DoneBB = nullptr; 1450 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1451 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1452 if (!DoneBB) { 1453 if (llvm::Value *Cond = CondGen(CGF)) { 1454 // If the first post-update expression is found, emit conditional 1455 // block if it was requested. 1456 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1457 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1458 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1459 CGF.EmitBlock(ThenBB); 1460 } 1461 } 1462 CGF.EmitIgnoredExpr(PostUpdate); 1463 } 1464 } 1465 if (DoneBB) 1466 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1467 } 1468 1469 namespace { 1470 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1471 /// parallel function. This is necessary for combined constructs such as 1472 /// 'distribute parallel for' 1473 typedef llvm::function_ref<void(CodeGenFunction &, 1474 const OMPExecutableDirective &, 1475 llvm::SmallVectorImpl<llvm::Value *> &)> 1476 CodeGenBoundParametersTy; 1477 } // anonymous namespace 1478 1479 static void 1480 checkForLastprivateConditionalUpdate(CodeGenFunction &CGF, 1481 const OMPExecutableDirective &S) { 1482 if (CGF.getLangOpts().OpenMP < 50) 1483 return; 1484 llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> PrivateDecls; 1485 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 1486 for (const Expr *Ref : C->varlists()) { 1487 if (!Ref->getType()->isScalarType()) 1488 continue; 1489 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1490 if (!DRE) 1491 continue; 1492 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1493 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1494 } 1495 } 1496 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 1497 for (const Expr *Ref : C->varlists()) { 1498 if (!Ref->getType()->isScalarType()) 1499 continue; 1500 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1501 if (!DRE) 1502 continue; 1503 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1504 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1505 } 1506 } 1507 for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) { 1508 for (const Expr *Ref : C->varlists()) { 1509 if (!Ref->getType()->isScalarType()) 1510 continue; 1511 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1512 if (!DRE) 1513 continue; 1514 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1515 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1516 } 1517 } 1518 // Privates should ne analyzed since they are not captured at all. 1519 // Task reductions may be skipped - tasks are ignored. 1520 // Firstprivates do not return value but may be passed by reference - no need 1521 // to check for updated lastprivate conditional. 1522 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 1523 for (const Expr *Ref : C->varlists()) { 1524 if (!Ref->getType()->isScalarType()) 1525 continue; 1526 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1527 if (!DRE) 1528 continue; 1529 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1530 } 1531 } 1532 CGF.CGM.getOpenMPRuntime().checkAndEmitSharedLastprivateConditional( 1533 CGF, S, PrivateDecls); 1534 } 1535 1536 static void emitCommonOMPParallelDirective( 1537 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1538 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1539 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1540 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1541 llvm::Value *NumThreads = nullptr; 1542 llvm::Function *OutlinedFn = 1543 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1544 CGF, S, *CS->getCapturedDecl()->param_begin(), InnermostKind, 1545 CodeGen); 1546 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1547 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1548 NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1549 /*IgnoreResultAssign=*/true); 1550 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1551 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1552 } 1553 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1554 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1555 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1556 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1557 } 1558 const Expr *IfCond = nullptr; 1559 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1560 if (C->getNameModifier() == OMPD_unknown || 1561 C->getNameModifier() == OMPD_parallel) { 1562 IfCond = C->getCondition(); 1563 break; 1564 } 1565 } 1566 1567 OMPParallelScope Scope(CGF, S); 1568 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1569 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1570 // lower and upper bounds with the pragma 'for' chunking mechanism. 1571 // The following lambda takes care of appending the lower and upper bound 1572 // parameters when necessary 1573 CodeGenBoundParameters(CGF, S, CapturedVars); 1574 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1575 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1576 CapturedVars, IfCond, NumThreads); 1577 } 1578 1579 static bool isAllocatableDecl(const VarDecl *VD) { 1580 const VarDecl *CVD = VD->getCanonicalDecl(); 1581 if (!CVD->hasAttr<OMPAllocateDeclAttr>()) 1582 return false; 1583 const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); 1584 // Use the default allocation. 1585 return !((AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc || 1586 AA->getAllocatorType() == OMPAllocateDeclAttr::OMPNullMemAlloc) && 1587 !AA->getAllocator()); 1588 } 1589 1590 static void emitEmptyBoundParameters(CodeGenFunction &, 1591 const OMPExecutableDirective &, 1592 llvm::SmallVectorImpl<llvm::Value *> &) {} 1593 1594 static void emitOMPCopyinClause(CodeGenFunction &CGF, 1595 const OMPExecutableDirective &S) { 1596 bool Copyins = CGF.EmitOMPCopyinClause(S); 1597 if (Copyins) { 1598 // Emit implicit barrier to synchronize threads and avoid data races on 1599 // propagation master's thread values of threadprivate variables to local 1600 // instances of that variables of all other implicit threads. 1601 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1602 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1603 /*ForceSimpleCall=*/true); 1604 } 1605 } 1606 1607 Address CodeGenFunction::OMPBuilderCBHelpers::getAddressOfLocalVariable( 1608 CodeGenFunction &CGF, const VarDecl *VD) { 1609 CodeGenModule &CGM = CGF.CGM; 1610 auto &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1611 1612 if (!VD) 1613 return Address::invalid(); 1614 const VarDecl *CVD = VD->getCanonicalDecl(); 1615 if (!isAllocatableDecl(CVD)) 1616 return Address::invalid(); 1617 llvm::Value *Size; 1618 CharUnits Align = CGM.getContext().getDeclAlign(CVD); 1619 if (CVD->getType()->isVariablyModifiedType()) { 1620 Size = CGF.getTypeSize(CVD->getType()); 1621 // Align the size: ((size + align - 1) / align) * align 1622 Size = CGF.Builder.CreateNUWAdd( 1623 Size, CGM.getSize(Align - CharUnits::fromQuantity(1))); 1624 Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align)); 1625 Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align)); 1626 } else { 1627 CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType()); 1628 Size = CGM.getSize(Sz.alignTo(Align)); 1629 } 1630 1631 const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); 1632 assert(AA->getAllocator() && 1633 "Expected allocator expression for non-default allocator."); 1634 llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator()); 1635 // According to the standard, the original allocator type is a enum (integer). 1636 // Convert to pointer type, if required. 1637 if (Allocator->getType()->isIntegerTy()) 1638 Allocator = CGF.Builder.CreateIntToPtr(Allocator, CGM.VoidPtrTy); 1639 else if (Allocator->getType()->isPointerTy()) 1640 Allocator = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Allocator, 1641 CGM.VoidPtrTy); 1642 1643 llvm::Value *Addr = OMPBuilder.createOMPAlloc( 1644 CGF.Builder, Size, Allocator, 1645 getNameWithSeparators({CVD->getName(), ".void.addr"}, ".", ".")); 1646 llvm::CallInst *FreeCI = 1647 OMPBuilder.createOMPFree(CGF.Builder, Addr, Allocator); 1648 1649 CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(NormalAndEHCleanup, FreeCI); 1650 Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 1651 Addr, 1652 CGF.ConvertTypeForMem(CGM.getContext().getPointerType(CVD->getType())), 1653 getNameWithSeparators({CVD->getName(), ".addr"}, ".", ".")); 1654 return Address(Addr, CGF.ConvertTypeForMem(CVD->getType()), Align); 1655 } 1656 1657 Address CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate( 1658 CodeGenFunction &CGF, const VarDecl *VD, Address VDAddr, 1659 SourceLocation Loc) { 1660 CodeGenModule &CGM = CGF.CGM; 1661 if (CGM.getLangOpts().OpenMPUseTLS && 1662 CGM.getContext().getTargetInfo().isTLSSupported()) 1663 return VDAddr; 1664 1665 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1666 1667 llvm::Type *VarTy = VDAddr.getElementType(); 1668 llvm::Value *Data = 1669 CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.Int8PtrTy); 1670 llvm::ConstantInt *Size = CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)); 1671 std::string Suffix = getNameWithSeparators({"cache", ""}); 1672 llvm::Twine CacheName = Twine(CGM.getMangledName(VD)).concat(Suffix); 1673 1674 llvm::CallInst *ThreadPrivateCacheCall = 1675 OMPBuilder.createCachedThreadPrivate(CGF.Builder, Data, Size, CacheName); 1676 1677 return Address(ThreadPrivateCacheCall, CGM.Int8Ty, VDAddr.getAlignment()); 1678 } 1679 1680 std::string CodeGenFunction::OMPBuilderCBHelpers::getNameWithSeparators( 1681 ArrayRef<StringRef> Parts, StringRef FirstSeparator, StringRef Separator) { 1682 SmallString<128> Buffer; 1683 llvm::raw_svector_ostream OS(Buffer); 1684 StringRef Sep = FirstSeparator; 1685 for (StringRef Part : Parts) { 1686 OS << Sep << Part; 1687 Sep = Separator; 1688 } 1689 return OS.str().str(); 1690 } 1691 1692 void CodeGenFunction::OMPBuilderCBHelpers::EmitOMPInlinedRegionBody( 1693 CodeGenFunction &CGF, const Stmt *RegionBodyStmt, InsertPointTy AllocaIP, 1694 InsertPointTy CodeGenIP, Twine RegionName) { 1695 CGBuilderTy &Builder = CGF.Builder; 1696 Builder.restoreIP(CodeGenIP); 1697 llvm::BasicBlock *FiniBB = splitBBWithSuffix(Builder, /*CreateBranch=*/false, 1698 "." + RegionName + ".after"); 1699 1700 { 1701 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(CGF, AllocaIP, *FiniBB); 1702 CGF.EmitStmt(RegionBodyStmt); 1703 } 1704 1705 if (Builder.saveIP().isSet()) 1706 Builder.CreateBr(FiniBB); 1707 } 1708 1709 void CodeGenFunction::OMPBuilderCBHelpers::EmitOMPOutlinedRegionBody( 1710 CodeGenFunction &CGF, const Stmt *RegionBodyStmt, InsertPointTy AllocaIP, 1711 InsertPointTy CodeGenIP, Twine RegionName) { 1712 CGBuilderTy &Builder = CGF.Builder; 1713 Builder.restoreIP(CodeGenIP); 1714 llvm::BasicBlock *FiniBB = splitBBWithSuffix(Builder, /*CreateBranch=*/false, 1715 "." + RegionName + ".after"); 1716 1717 { 1718 OMPBuilderCBHelpers::OutlinedRegionBodyRAII IRB(CGF, AllocaIP, *FiniBB); 1719 CGF.EmitStmt(RegionBodyStmt); 1720 } 1721 1722 if (Builder.saveIP().isSet()) 1723 Builder.CreateBr(FiniBB); 1724 } 1725 1726 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1727 if (CGM.getLangOpts().OpenMPIRBuilder) { 1728 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1729 // Check if we have any if clause associated with the directive. 1730 llvm::Value *IfCond = nullptr; 1731 if (const auto *C = S.getSingleClause<OMPIfClause>()) 1732 IfCond = EmitScalarExpr(C->getCondition(), 1733 /*IgnoreResultAssign=*/true); 1734 1735 llvm::Value *NumThreads = nullptr; 1736 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) 1737 NumThreads = EmitScalarExpr(NumThreadsClause->getNumThreads(), 1738 /*IgnoreResultAssign=*/true); 1739 1740 ProcBindKind ProcBind = OMP_PROC_BIND_default; 1741 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) 1742 ProcBind = ProcBindClause->getProcBindKind(); 1743 1744 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1745 1746 // The cleanup callback that finalizes all variabels at the given location, 1747 // thus calls destructors etc. 1748 auto FiniCB = [this](InsertPointTy IP) { 1749 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 1750 }; 1751 1752 // Privatization callback that performs appropriate action for 1753 // shared/private/firstprivate/lastprivate/copyin/... variables. 1754 // 1755 // TODO: This defaults to shared right now. 1756 auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1757 llvm::Value &, llvm::Value &Val, llvm::Value *&ReplVal) { 1758 // The next line is appropriate only for variables (Val) with the 1759 // data-sharing attribute "shared". 1760 ReplVal = &Val; 1761 1762 return CodeGenIP; 1763 }; 1764 1765 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1766 const Stmt *ParallelRegionBodyStmt = CS->getCapturedStmt(); 1767 1768 auto BodyGenCB = [&, this](InsertPointTy AllocaIP, 1769 InsertPointTy CodeGenIP) { 1770 OMPBuilderCBHelpers::EmitOMPOutlinedRegionBody( 1771 *this, ParallelRegionBodyStmt, AllocaIP, CodeGenIP, "parallel"); 1772 }; 1773 1774 CGCapturedStmtInfo CGSI(*CS, CR_OpenMP); 1775 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 1776 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 1777 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 1778 Builder.restoreIP( 1779 OMPBuilder.createParallel(Builder, AllocaIP, BodyGenCB, PrivCB, FiniCB, 1780 IfCond, NumThreads, ProcBind, S.hasCancel())); 1781 return; 1782 } 1783 1784 // Emit parallel region as a standalone region. 1785 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1786 Action.Enter(CGF); 1787 OMPPrivateScope PrivateScope(CGF); 1788 emitOMPCopyinClause(CGF, S); 1789 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1790 CGF.EmitOMPPrivateClause(S, PrivateScope); 1791 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1792 (void)PrivateScope.Privatize(); 1793 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1794 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1795 }; 1796 { 1797 auto LPCRegion = 1798 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 1799 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1800 emitEmptyBoundParameters); 1801 emitPostUpdateForReductionClause(*this, S, 1802 [](CodeGenFunction &) { return nullptr; }); 1803 } 1804 // Check for outer lastprivate conditional update. 1805 checkForLastprivateConditionalUpdate(*this, S); 1806 } 1807 1808 void CodeGenFunction::EmitOMPMetaDirective(const OMPMetaDirective &S) { 1809 EmitStmt(S.getIfStmt()); 1810 } 1811 1812 namespace { 1813 /// RAII to handle scopes for loop transformation directives. 1814 class OMPTransformDirectiveScopeRAII { 1815 OMPLoopScope *Scope = nullptr; 1816 CodeGenFunction::CGCapturedStmtInfo *CGSI = nullptr; 1817 CodeGenFunction::CGCapturedStmtRAII *CapInfoRAII = nullptr; 1818 1819 OMPTransformDirectiveScopeRAII(const OMPTransformDirectiveScopeRAII &) = 1820 delete; 1821 OMPTransformDirectiveScopeRAII & 1822 operator=(const OMPTransformDirectiveScopeRAII &) = delete; 1823 1824 public: 1825 OMPTransformDirectiveScopeRAII(CodeGenFunction &CGF, const Stmt *S) { 1826 if (const auto *Dir = dyn_cast<OMPLoopBasedDirective>(S)) { 1827 Scope = new OMPLoopScope(CGF, *Dir); 1828 CGSI = new CodeGenFunction::CGCapturedStmtInfo(CR_OpenMP); 1829 CapInfoRAII = new CodeGenFunction::CGCapturedStmtRAII(CGF, CGSI); 1830 } 1831 } 1832 ~OMPTransformDirectiveScopeRAII() { 1833 if (!Scope) 1834 return; 1835 delete CapInfoRAII; 1836 delete CGSI; 1837 delete Scope; 1838 } 1839 }; 1840 } // namespace 1841 1842 static void emitBody(CodeGenFunction &CGF, const Stmt *S, const Stmt *NextLoop, 1843 int MaxLevel, int Level = 0) { 1844 assert(Level < MaxLevel && "Too deep lookup during loop body codegen."); 1845 const Stmt *SimplifiedS = S->IgnoreContainers(); 1846 if (const auto *CS = dyn_cast<CompoundStmt>(SimplifiedS)) { 1847 PrettyStackTraceLoc CrashInfo( 1848 CGF.getContext().getSourceManager(), CS->getLBracLoc(), 1849 "LLVM IR generation of compound statement ('{}')"); 1850 1851 // Keep track of the current cleanup stack depth, including debug scopes. 1852 CodeGenFunction::LexicalScope Scope(CGF, S->getSourceRange()); 1853 for (const Stmt *CurStmt : CS->body()) 1854 emitBody(CGF, CurStmt, NextLoop, MaxLevel, Level); 1855 return; 1856 } 1857 if (SimplifiedS == NextLoop) { 1858 if (auto *Dir = dyn_cast<OMPLoopTransformationDirective>(SimplifiedS)) 1859 SimplifiedS = Dir->getTransformedStmt(); 1860 if (const auto *CanonLoop = dyn_cast<OMPCanonicalLoop>(SimplifiedS)) 1861 SimplifiedS = CanonLoop->getLoopStmt(); 1862 if (const auto *For = dyn_cast<ForStmt>(SimplifiedS)) { 1863 S = For->getBody(); 1864 } else { 1865 assert(isa<CXXForRangeStmt>(SimplifiedS) && 1866 "Expected canonical for loop or range-based for loop."); 1867 const auto *CXXFor = cast<CXXForRangeStmt>(SimplifiedS); 1868 CGF.EmitStmt(CXXFor->getLoopVarStmt()); 1869 S = CXXFor->getBody(); 1870 } 1871 if (Level + 1 < MaxLevel) { 1872 NextLoop = OMPLoopDirective::tryToFindNextInnerLoop( 1873 S, /*TryImperfectlyNestedLoops=*/true); 1874 emitBody(CGF, S, NextLoop, MaxLevel, Level + 1); 1875 return; 1876 } 1877 } 1878 CGF.EmitStmt(S); 1879 } 1880 1881 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1882 JumpDest LoopExit) { 1883 RunCleanupsScope BodyScope(*this); 1884 // Update counters values on current iteration. 1885 for (const Expr *UE : D.updates()) 1886 EmitIgnoredExpr(UE); 1887 // Update the linear variables. 1888 // In distribute directives only loop counters may be marked as linear, no 1889 // need to generate the code for them. 1890 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1891 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1892 for (const Expr *UE : C->updates()) 1893 EmitIgnoredExpr(UE); 1894 } 1895 } 1896 1897 // On a continue in the body, jump to the end. 1898 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1899 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1900 for (const Expr *E : D.finals_conditions()) { 1901 if (!E) 1902 continue; 1903 // Check that loop counter in non-rectangular nest fits into the iteration 1904 // space. 1905 llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next"); 1906 EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(), 1907 getProfileCount(D.getBody())); 1908 EmitBlock(NextBB); 1909 } 1910 1911 OMPPrivateScope InscanScope(*this); 1912 EmitOMPReductionClauseInit(D, InscanScope, /*ForInscan=*/true); 1913 bool IsInscanRegion = InscanScope.Privatize(); 1914 if (IsInscanRegion) { 1915 // Need to remember the block before and after scan directive 1916 // to dispatch them correctly depending on the clause used in 1917 // this directive, inclusive or exclusive. For inclusive scan the natural 1918 // order of the blocks is used, for exclusive clause the blocks must be 1919 // executed in reverse order. 1920 OMPBeforeScanBlock = createBasicBlock("omp.before.scan.bb"); 1921 OMPAfterScanBlock = createBasicBlock("omp.after.scan.bb"); 1922 // No need to allocate inscan exit block, in simd mode it is selected in the 1923 // codegen for the scan directive. 1924 if (D.getDirectiveKind() != OMPD_simd && !getLangOpts().OpenMPSimd) 1925 OMPScanExitBlock = createBasicBlock("omp.exit.inscan.bb"); 1926 OMPScanDispatch = createBasicBlock("omp.inscan.dispatch"); 1927 EmitBranch(OMPScanDispatch); 1928 EmitBlock(OMPBeforeScanBlock); 1929 } 1930 1931 // Emit loop variables for C++ range loops. 1932 const Stmt *Body = 1933 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 1934 // Emit loop body. 1935 emitBody(*this, Body, 1936 OMPLoopBasedDirective::tryToFindNextInnerLoop( 1937 Body, /*TryImperfectlyNestedLoops=*/true), 1938 D.getLoopsNumber()); 1939 1940 // Jump to the dispatcher at the end of the loop body. 1941 if (IsInscanRegion) 1942 EmitBranch(OMPScanExitBlock); 1943 1944 // The end (updates/cleanups). 1945 EmitBlock(Continue.getBlock()); 1946 BreakContinueStack.pop_back(); 1947 } 1948 1949 using EmittedClosureTy = std::pair<llvm::Function *, llvm::Value *>; 1950 1951 /// Emit a captured statement and return the function as well as its captured 1952 /// closure context. 1953 static EmittedClosureTy emitCapturedStmtFunc(CodeGenFunction &ParentCGF, 1954 const CapturedStmt *S) { 1955 LValue CapStruct = ParentCGF.InitCapturedStruct(*S); 1956 CodeGenFunction CGF(ParentCGF.CGM, /*suppressNewContext=*/true); 1957 std::unique_ptr<CodeGenFunction::CGCapturedStmtInfo> CSI = 1958 std::make_unique<CodeGenFunction::CGCapturedStmtInfo>(*S); 1959 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, CSI.get()); 1960 llvm::Function *F = CGF.GenerateCapturedStmtFunction(*S); 1961 1962 return {F, CapStruct.getPointer(ParentCGF)}; 1963 } 1964 1965 /// Emit a call to a previously captured closure. 1966 static llvm::CallInst * 1967 emitCapturedStmtCall(CodeGenFunction &ParentCGF, EmittedClosureTy Cap, 1968 llvm::ArrayRef<llvm::Value *> Args) { 1969 // Append the closure context to the argument. 1970 SmallVector<llvm::Value *> EffectiveArgs; 1971 EffectiveArgs.reserve(Args.size() + 1); 1972 llvm::append_range(EffectiveArgs, Args); 1973 EffectiveArgs.push_back(Cap.second); 1974 1975 return ParentCGF.Builder.CreateCall(Cap.first, EffectiveArgs); 1976 } 1977 1978 llvm::CanonicalLoopInfo * 1979 CodeGenFunction::EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, int Depth) { 1980 assert(Depth == 1 && "Nested loops with OpenMPIRBuilder not yet implemented"); 1981 1982 // The caller is processing the loop-associated directive processing the \p 1983 // Depth loops nested in \p S. Put the previous pending loop-associated 1984 // directive to the stack. If the current loop-associated directive is a loop 1985 // transformation directive, it will push its generated loops onto the stack 1986 // such that together with the loops left here they form the combined loop 1987 // nest for the parent loop-associated directive. 1988 int ParentExpectedOMPLoopDepth = ExpectedOMPLoopDepth; 1989 ExpectedOMPLoopDepth = Depth; 1990 1991 EmitStmt(S); 1992 assert(OMPLoopNestStack.size() >= (size_t)Depth && "Found too few loops"); 1993 1994 // The last added loop is the outermost one. 1995 llvm::CanonicalLoopInfo *Result = OMPLoopNestStack.back(); 1996 1997 // Pop the \p Depth loops requested by the call from that stack and restore 1998 // the previous context. 1999 OMPLoopNestStack.pop_back_n(Depth); 2000 ExpectedOMPLoopDepth = ParentExpectedOMPLoopDepth; 2001 2002 return Result; 2003 } 2004 2005 void CodeGenFunction::EmitOMPCanonicalLoop(const OMPCanonicalLoop *S) { 2006 const Stmt *SyntacticalLoop = S->getLoopStmt(); 2007 if (!getLangOpts().OpenMPIRBuilder) { 2008 // Ignore if OpenMPIRBuilder is not enabled. 2009 EmitStmt(SyntacticalLoop); 2010 return; 2011 } 2012 2013 LexicalScope ForScope(*this, S->getSourceRange()); 2014 2015 // Emit init statements. The Distance/LoopVar funcs may reference variable 2016 // declarations they contain. 2017 const Stmt *BodyStmt; 2018 if (const auto *For = dyn_cast<ForStmt>(SyntacticalLoop)) { 2019 if (const Stmt *InitStmt = For->getInit()) 2020 EmitStmt(InitStmt); 2021 BodyStmt = For->getBody(); 2022 } else if (const auto *RangeFor = 2023 dyn_cast<CXXForRangeStmt>(SyntacticalLoop)) { 2024 if (const DeclStmt *RangeStmt = RangeFor->getRangeStmt()) 2025 EmitStmt(RangeStmt); 2026 if (const DeclStmt *BeginStmt = RangeFor->getBeginStmt()) 2027 EmitStmt(BeginStmt); 2028 if (const DeclStmt *EndStmt = RangeFor->getEndStmt()) 2029 EmitStmt(EndStmt); 2030 if (const DeclStmt *LoopVarStmt = RangeFor->getLoopVarStmt()) 2031 EmitStmt(LoopVarStmt); 2032 BodyStmt = RangeFor->getBody(); 2033 } else 2034 llvm_unreachable("Expected for-stmt or range-based for-stmt"); 2035 2036 // Emit closure for later use. By-value captures will be captured here. 2037 const CapturedStmt *DistanceFunc = S->getDistanceFunc(); 2038 EmittedClosureTy DistanceClosure = emitCapturedStmtFunc(*this, DistanceFunc); 2039 const CapturedStmt *LoopVarFunc = S->getLoopVarFunc(); 2040 EmittedClosureTy LoopVarClosure = emitCapturedStmtFunc(*this, LoopVarFunc); 2041 2042 // Call the distance function to get the number of iterations of the loop to 2043 // come. 2044 QualType LogicalTy = DistanceFunc->getCapturedDecl() 2045 ->getParam(0) 2046 ->getType() 2047 .getNonReferenceType(); 2048 Address CountAddr = CreateMemTemp(LogicalTy, ".count.addr"); 2049 emitCapturedStmtCall(*this, DistanceClosure, {CountAddr.getPointer()}); 2050 llvm::Value *DistVal = Builder.CreateLoad(CountAddr, ".count"); 2051 2052 // Emit the loop structure. 2053 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 2054 auto BodyGen = [&, this](llvm::OpenMPIRBuilder::InsertPointTy CodeGenIP, 2055 llvm::Value *IndVar) { 2056 Builder.restoreIP(CodeGenIP); 2057 2058 // Emit the loop body: Convert the logical iteration number to the loop 2059 // variable and emit the body. 2060 const DeclRefExpr *LoopVarRef = S->getLoopVarRef(); 2061 LValue LCVal = EmitLValue(LoopVarRef); 2062 Address LoopVarAddress = LCVal.getAddress(*this); 2063 emitCapturedStmtCall(*this, LoopVarClosure, 2064 {LoopVarAddress.getPointer(), IndVar}); 2065 2066 RunCleanupsScope BodyScope(*this); 2067 EmitStmt(BodyStmt); 2068 }; 2069 llvm::CanonicalLoopInfo *CL = 2070 OMPBuilder.createCanonicalLoop(Builder, BodyGen, DistVal); 2071 2072 // Finish up the loop. 2073 Builder.restoreIP(CL->getAfterIP()); 2074 ForScope.ForceCleanup(); 2075 2076 // Remember the CanonicalLoopInfo for parent AST nodes consuming it. 2077 OMPLoopNestStack.push_back(CL); 2078 } 2079 2080 void CodeGenFunction::EmitOMPInnerLoop( 2081 const OMPExecutableDirective &S, bool RequiresCleanup, const Expr *LoopCond, 2082 const Expr *IncExpr, 2083 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 2084 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 2085 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 2086 2087 // Start the loop with a block that tests the condition. 2088 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 2089 EmitBlock(CondBlock); 2090 const SourceRange R = S.getSourceRange(); 2091 2092 // If attributes are attached, push to the basic block with them. 2093 const auto &OMPED = cast<OMPExecutableDirective>(S); 2094 const CapturedStmt *ICS = OMPED.getInnermostCapturedStmt(); 2095 const Stmt *SS = ICS->getCapturedStmt(); 2096 const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(SS); 2097 OMPLoopNestStack.clear(); 2098 if (AS) 2099 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), 2100 AS->getAttrs(), SourceLocToDebugLoc(R.getBegin()), 2101 SourceLocToDebugLoc(R.getEnd())); 2102 else 2103 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 2104 SourceLocToDebugLoc(R.getEnd())); 2105 2106 // If there are any cleanups between here and the loop-exit scope, 2107 // create a block to stage a loop exit along. 2108 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 2109 if (RequiresCleanup) 2110 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 2111 2112 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 2113 2114 // Emit condition. 2115 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 2116 if (ExitBlock != LoopExit.getBlock()) { 2117 EmitBlock(ExitBlock); 2118 EmitBranchThroughCleanup(LoopExit); 2119 } 2120 2121 EmitBlock(LoopBody); 2122 incrementProfileCounter(&S); 2123 2124 // Create a block for the increment. 2125 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 2126 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 2127 2128 BodyGen(*this); 2129 2130 // Emit "IV = IV + 1" and a back-edge to the condition block. 2131 EmitBlock(Continue.getBlock()); 2132 EmitIgnoredExpr(IncExpr); 2133 PostIncGen(*this); 2134 BreakContinueStack.pop_back(); 2135 EmitBranch(CondBlock); 2136 LoopStack.pop(); 2137 // Emit the fall-through block. 2138 EmitBlock(LoopExit.getBlock()); 2139 } 2140 2141 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 2142 if (!HaveInsertPoint()) 2143 return false; 2144 // Emit inits for the linear variables. 2145 bool HasLinears = false; 2146 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2147 for (const Expr *Init : C->inits()) { 2148 HasLinears = true; 2149 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 2150 if (const auto *Ref = 2151 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 2152 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 2153 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 2154 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 2155 CapturedStmtInfo->lookup(OrigVD) != nullptr, 2156 VD->getInit()->getType(), VK_LValue, 2157 VD->getInit()->getExprLoc()); 2158 EmitExprAsInit( 2159 &DRE, VD, 2160 MakeAddrLValue(Emission.getAllocatedAddress(), VD->getType()), 2161 /*capturedByInit=*/false); 2162 EmitAutoVarCleanups(Emission); 2163 } else { 2164 EmitVarDecl(*VD); 2165 } 2166 } 2167 // Emit the linear steps for the linear clauses. 2168 // If a step is not constant, it is pre-calculated before the loop. 2169 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 2170 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 2171 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 2172 // Emit calculation of the linear step. 2173 EmitIgnoredExpr(CS); 2174 } 2175 } 2176 return HasLinears; 2177 } 2178 2179 void CodeGenFunction::EmitOMPLinearClauseFinal( 2180 const OMPLoopDirective &D, 2181 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 2182 if (!HaveInsertPoint()) 2183 return; 2184 llvm::BasicBlock *DoneBB = nullptr; 2185 // Emit the final values of the linear variables. 2186 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2187 auto IC = C->varlist_begin(); 2188 for (const Expr *F : C->finals()) { 2189 if (!DoneBB) { 2190 if (llvm::Value *Cond = CondGen(*this)) { 2191 // If the first post-update expression is found, emit conditional 2192 // block if it was requested. 2193 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 2194 DoneBB = createBasicBlock(".omp.linear.pu.done"); 2195 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 2196 EmitBlock(ThenBB); 2197 } 2198 } 2199 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 2200 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 2201 CapturedStmtInfo->lookup(OrigVD) != nullptr, 2202 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 2203 Address OrigAddr = EmitLValue(&DRE).getAddress(*this); 2204 CodeGenFunction::OMPPrivateScope VarScope(*this); 2205 VarScope.addPrivate(OrigVD, OrigAddr); 2206 (void)VarScope.Privatize(); 2207 EmitIgnoredExpr(F); 2208 ++IC; 2209 } 2210 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 2211 EmitIgnoredExpr(PostUpdate); 2212 } 2213 if (DoneBB) 2214 EmitBlock(DoneBB, /*IsFinished=*/true); 2215 } 2216 2217 static void emitAlignedClause(CodeGenFunction &CGF, 2218 const OMPExecutableDirective &D) { 2219 if (!CGF.HaveInsertPoint()) 2220 return; 2221 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 2222 llvm::APInt ClauseAlignment(64, 0); 2223 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 2224 auto *AlignmentCI = 2225 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 2226 ClauseAlignment = AlignmentCI->getValue(); 2227 } 2228 for (const Expr *E : Clause->varlists()) { 2229 llvm::APInt Alignment(ClauseAlignment); 2230 if (Alignment == 0) { 2231 // OpenMP [2.8.1, Description] 2232 // If no optional parameter is specified, implementation-defined default 2233 // alignments for SIMD instructions on the target platforms are assumed. 2234 Alignment = 2235 CGF.getContext() 2236 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2237 E->getType()->getPointeeType())) 2238 .getQuantity(); 2239 } 2240 assert((Alignment == 0 || Alignment.isPowerOf2()) && 2241 "alignment is not power of 2"); 2242 if (Alignment != 0) { 2243 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 2244 CGF.emitAlignmentAssumption( 2245 PtrValue, E, /*No second loc needed*/ SourceLocation(), 2246 llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment)); 2247 } 2248 } 2249 } 2250 } 2251 2252 void CodeGenFunction::EmitOMPPrivateLoopCounters( 2253 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 2254 if (!HaveInsertPoint()) 2255 return; 2256 auto I = S.private_counters().begin(); 2257 for (const Expr *E : S.counters()) { 2258 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2259 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 2260 // Emit var without initialization. 2261 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 2262 EmitAutoVarCleanups(VarEmission); 2263 LocalDeclMap.erase(PrivateVD); 2264 (void)LoopScope.addPrivate(VD, VarEmission.getAllocatedAddress()); 2265 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 2266 VD->hasGlobalStorage()) { 2267 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), 2268 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 2269 E->getType(), VK_LValue, E->getExprLoc()); 2270 (void)LoopScope.addPrivate(PrivateVD, EmitLValue(&DRE).getAddress(*this)); 2271 } else { 2272 (void)LoopScope.addPrivate(PrivateVD, VarEmission.getAllocatedAddress()); 2273 } 2274 ++I; 2275 } 2276 // Privatize extra loop counters used in loops for ordered(n) clauses. 2277 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 2278 if (!C->getNumForLoops()) 2279 continue; 2280 for (unsigned I = S.getLoopsNumber(), E = C->getLoopNumIterations().size(); 2281 I < E; ++I) { 2282 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 2283 const auto *VD = cast<VarDecl>(DRE->getDecl()); 2284 // Override only those variables that can be captured to avoid re-emission 2285 // of the variables declared within the loops. 2286 if (DRE->refersToEnclosingVariableOrCapture()) { 2287 (void)LoopScope.addPrivate( 2288 VD, CreateMemTemp(DRE->getType(), VD->getName())); 2289 } 2290 } 2291 } 2292 } 2293 2294 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 2295 const Expr *Cond, llvm::BasicBlock *TrueBlock, 2296 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 2297 if (!CGF.HaveInsertPoint()) 2298 return; 2299 { 2300 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 2301 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 2302 (void)PreCondScope.Privatize(); 2303 // Get initial values of real counters. 2304 for (const Expr *I : S.inits()) { 2305 CGF.EmitIgnoredExpr(I); 2306 } 2307 } 2308 // Create temp loop control variables with their init values to support 2309 // non-rectangular loops. 2310 CodeGenFunction::OMPMapVars PreCondVars; 2311 for (const Expr *E : S.dependent_counters()) { 2312 if (!E) 2313 continue; 2314 assert(!E->getType().getNonReferenceType()->isRecordType() && 2315 "dependent counter must not be an iterator."); 2316 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2317 Address CounterAddr = 2318 CGF.CreateMemTemp(VD->getType().getNonReferenceType()); 2319 (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr); 2320 } 2321 (void)PreCondVars.apply(CGF); 2322 for (const Expr *E : S.dependent_inits()) { 2323 if (!E) 2324 continue; 2325 CGF.EmitIgnoredExpr(E); 2326 } 2327 // Check that loop is executed at least one time. 2328 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 2329 PreCondVars.restore(CGF); 2330 } 2331 2332 void CodeGenFunction::EmitOMPLinearClause( 2333 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 2334 if (!HaveInsertPoint()) 2335 return; 2336 llvm::DenseSet<const VarDecl *> SIMDLCVs; 2337 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 2338 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 2339 for (const Expr *C : LoopDirective->counters()) { 2340 SIMDLCVs.insert( 2341 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 2342 } 2343 } 2344 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2345 auto CurPrivate = C->privates().begin(); 2346 for (const Expr *E : C->varlists()) { 2347 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2348 const auto *PrivateVD = 2349 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 2350 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 2351 // Emit private VarDecl with copy init. 2352 EmitVarDecl(*PrivateVD); 2353 bool IsRegistered = 2354 PrivateScope.addPrivate(VD, GetAddrOfLocalVar(PrivateVD)); 2355 assert(IsRegistered && "linear var already registered as private"); 2356 // Silence the warning about unused variable. 2357 (void)IsRegistered; 2358 } else { 2359 EmitVarDecl(*PrivateVD); 2360 } 2361 ++CurPrivate; 2362 } 2363 } 2364 } 2365 2366 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 2367 const OMPExecutableDirective &D) { 2368 if (!CGF.HaveInsertPoint()) 2369 return; 2370 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 2371 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 2372 /*ignoreResult=*/true); 2373 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2374 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2375 // In presence of finite 'safelen', it may be unsafe to mark all 2376 // the memory instructions parallel, because loop-carried 2377 // dependences of 'safelen' iterations are possible. 2378 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 2379 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 2380 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 2381 /*ignoreResult=*/true); 2382 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2383 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2384 // In presence of finite 'safelen', it may be unsafe to mark all 2385 // the memory instructions parallel, because loop-carried 2386 // dependences of 'safelen' iterations are possible. 2387 CGF.LoopStack.setParallel(/*Enable=*/false); 2388 } 2389 } 2390 2391 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D) { 2392 // Walk clauses and process safelen/lastprivate. 2393 LoopStack.setParallel(/*Enable=*/true); 2394 LoopStack.setVectorizeEnable(); 2395 emitSimdlenSafelenClause(*this, D); 2396 if (const auto *C = D.getSingleClause<OMPOrderClause>()) 2397 if (C->getKind() == OMPC_ORDER_concurrent) 2398 LoopStack.setParallel(/*Enable=*/true); 2399 if ((D.getDirectiveKind() == OMPD_simd || 2400 (getLangOpts().OpenMPSimd && 2401 isOpenMPSimdDirective(D.getDirectiveKind()))) && 2402 llvm::any_of(D.getClausesOfKind<OMPReductionClause>(), 2403 [](const OMPReductionClause *C) { 2404 return C->getModifier() == OMPC_REDUCTION_inscan; 2405 })) 2406 // Disable parallel access in case of prefix sum. 2407 LoopStack.setParallel(/*Enable=*/false); 2408 } 2409 2410 void CodeGenFunction::EmitOMPSimdFinal( 2411 const OMPLoopDirective &D, 2412 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 2413 if (!HaveInsertPoint()) 2414 return; 2415 llvm::BasicBlock *DoneBB = nullptr; 2416 auto IC = D.counters().begin(); 2417 auto IPC = D.private_counters().begin(); 2418 for (const Expr *F : D.finals()) { 2419 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 2420 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 2421 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 2422 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 2423 OrigVD->hasGlobalStorage() || CED) { 2424 if (!DoneBB) { 2425 if (llvm::Value *Cond = CondGen(*this)) { 2426 // If the first post-update expression is found, emit conditional 2427 // block if it was requested. 2428 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 2429 DoneBB = createBasicBlock(".omp.final.done"); 2430 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 2431 EmitBlock(ThenBB); 2432 } 2433 } 2434 Address OrigAddr = Address::invalid(); 2435 if (CED) { 2436 OrigAddr = 2437 EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(*this); 2438 } else { 2439 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD), 2440 /*RefersToEnclosingVariableOrCapture=*/false, 2441 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 2442 OrigAddr = EmitLValue(&DRE).getAddress(*this); 2443 } 2444 OMPPrivateScope VarScope(*this); 2445 VarScope.addPrivate(OrigVD, OrigAddr); 2446 (void)VarScope.Privatize(); 2447 EmitIgnoredExpr(F); 2448 } 2449 ++IC; 2450 ++IPC; 2451 } 2452 if (DoneBB) 2453 EmitBlock(DoneBB, /*IsFinished=*/true); 2454 } 2455 2456 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 2457 const OMPLoopDirective &S, 2458 CodeGenFunction::JumpDest LoopExit) { 2459 CGF.EmitOMPLoopBody(S, LoopExit); 2460 CGF.EmitStopPoint(&S); 2461 } 2462 2463 /// Emit a helper variable and return corresponding lvalue. 2464 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 2465 const DeclRefExpr *Helper) { 2466 auto VDecl = cast<VarDecl>(Helper->getDecl()); 2467 CGF.EmitVarDecl(*VDecl); 2468 return CGF.EmitLValue(Helper); 2469 } 2470 2471 static void emitCommonSimdLoop(CodeGenFunction &CGF, const OMPLoopDirective &S, 2472 const RegionCodeGenTy &SimdInitGen, 2473 const RegionCodeGenTy &BodyCodeGen) { 2474 auto &&ThenGen = [&S, &SimdInitGen, &BodyCodeGen](CodeGenFunction &CGF, 2475 PrePostActionTy &) { 2476 CGOpenMPRuntime::NontemporalDeclsRAII NontemporalsRegion(CGF.CGM, S); 2477 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2478 SimdInitGen(CGF); 2479 2480 BodyCodeGen(CGF); 2481 }; 2482 auto &&ElseGen = [&BodyCodeGen](CodeGenFunction &CGF, PrePostActionTy &) { 2483 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2484 CGF.LoopStack.setVectorizeEnable(/*Enable=*/false); 2485 2486 BodyCodeGen(CGF); 2487 }; 2488 const Expr *IfCond = nullptr; 2489 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2490 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 2491 if (CGF.getLangOpts().OpenMP >= 50 && 2492 (C->getNameModifier() == OMPD_unknown || 2493 C->getNameModifier() == OMPD_simd)) { 2494 IfCond = C->getCondition(); 2495 break; 2496 } 2497 } 2498 } 2499 if (IfCond) { 2500 CGF.CGM.getOpenMPRuntime().emitIfClause(CGF, IfCond, ThenGen, ElseGen); 2501 } else { 2502 RegionCodeGenTy ThenRCG(ThenGen); 2503 ThenRCG(CGF); 2504 } 2505 } 2506 2507 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 2508 PrePostActionTy &Action) { 2509 Action.Enter(CGF); 2510 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 2511 "Expected simd directive"); 2512 OMPLoopScope PreInitScope(CGF, S); 2513 // if (PreCond) { 2514 // for (IV in 0..LastIteration) BODY; 2515 // <Final counter/linear vars updates>; 2516 // } 2517 // 2518 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 2519 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 2520 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 2521 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 2522 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 2523 } 2524 2525 // Emit: if (PreCond) - begin. 2526 // If the condition constant folds and can be elided, avoid emitting the 2527 // whole loop. 2528 bool CondConstant; 2529 llvm::BasicBlock *ContBlock = nullptr; 2530 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2531 if (!CondConstant) 2532 return; 2533 } else { 2534 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 2535 ContBlock = CGF.createBasicBlock("simd.if.end"); 2536 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 2537 CGF.getProfileCount(&S)); 2538 CGF.EmitBlock(ThenBlock); 2539 CGF.incrementProfileCounter(&S); 2540 } 2541 2542 // Emit the loop iteration variable. 2543 const Expr *IVExpr = S.getIterationVariable(); 2544 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 2545 CGF.EmitVarDecl(*IVDecl); 2546 CGF.EmitIgnoredExpr(S.getInit()); 2547 2548 // Emit the iterations count variable. 2549 // If it is not a variable, Sema decided to calculate iterations count on 2550 // each iteration (e.g., it is foldable into a constant). 2551 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2552 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2553 // Emit calculation of the iterations count. 2554 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 2555 } 2556 2557 emitAlignedClause(CGF, S); 2558 (void)CGF.EmitOMPLinearClauseInit(S); 2559 { 2560 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2561 CGF.EmitOMPPrivateClause(S, LoopScope); 2562 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 2563 CGF.EmitOMPLinearClause(S, LoopScope); 2564 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2565 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 2566 CGF, S, CGF.EmitLValue(S.getIterationVariable())); 2567 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2568 (void)LoopScope.Privatize(); 2569 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2570 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2571 2572 emitCommonSimdLoop( 2573 CGF, S, 2574 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2575 CGF.EmitOMPSimdInit(S); 2576 }, 2577 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2578 CGF.EmitOMPInnerLoop( 2579 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 2580 [&S](CodeGenFunction &CGF) { 2581 emitOMPLoopBodyWithStopPoint(CGF, S, 2582 CodeGenFunction::JumpDest()); 2583 }, 2584 [](CodeGenFunction &) {}); 2585 }); 2586 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 2587 // Emit final copy of the lastprivate variables at the end of loops. 2588 if (HasLastprivateClause) 2589 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 2590 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 2591 emitPostUpdateForReductionClause(CGF, S, 2592 [](CodeGenFunction &) { return nullptr; }); 2593 LoopScope.restoreMap(); 2594 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 2595 } 2596 // Emit: if (PreCond) - end. 2597 if (ContBlock) { 2598 CGF.EmitBranch(ContBlock); 2599 CGF.EmitBlock(ContBlock, true); 2600 } 2601 } 2602 2603 static bool isSupportedByOpenMPIRBuilder(const OMPSimdDirective &S) { 2604 // Check for unsupported clauses 2605 for (OMPClause *C : S.clauses()) { 2606 // Currently only order, simdlen and safelen clauses are supported 2607 if (!(isa<OMPSimdlenClause>(C) || isa<OMPSafelenClause>(C) || 2608 isa<OMPOrderClause>(C) || isa<OMPAlignedClause>(C))) 2609 return false; 2610 } 2611 2612 // Check if we have a statement with the ordered directive. 2613 // Visit the statement hierarchy to find a compound statement 2614 // with a ordered directive in it. 2615 if (const auto *CanonLoop = dyn_cast<OMPCanonicalLoop>(S.getRawStmt())) { 2616 if (const Stmt *SyntacticalLoop = CanonLoop->getLoopStmt()) { 2617 for (const Stmt *SubStmt : SyntacticalLoop->children()) { 2618 if (!SubStmt) 2619 continue; 2620 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(SubStmt)) { 2621 for (const Stmt *CSSubStmt : CS->children()) { 2622 if (!CSSubStmt) 2623 continue; 2624 if (isa<OMPOrderedDirective>(CSSubStmt)) { 2625 return false; 2626 } 2627 } 2628 } 2629 } 2630 } 2631 } 2632 return true; 2633 } 2634 static llvm::MapVector<llvm::Value *, llvm::Value *> 2635 GetAlignedMapping(const OMPSimdDirective &S, CodeGenFunction &CGF) { 2636 llvm::MapVector<llvm::Value *, llvm::Value *> AlignedVars; 2637 for (const auto *Clause : S.getClausesOfKind<OMPAlignedClause>()) { 2638 llvm::APInt ClauseAlignment(64, 0); 2639 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 2640 auto *AlignmentCI = 2641 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 2642 ClauseAlignment = AlignmentCI->getValue(); 2643 } 2644 for (const Expr *E : Clause->varlists()) { 2645 llvm::APInt Alignment(ClauseAlignment); 2646 if (Alignment == 0) { 2647 // OpenMP [2.8.1, Description] 2648 // If no optional parameter is specified, implementation-defined default 2649 // alignments for SIMD instructions on the target platforms are assumed. 2650 Alignment = 2651 CGF.getContext() 2652 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2653 E->getType()->getPointeeType())) 2654 .getQuantity(); 2655 } 2656 assert((Alignment == 0 || Alignment.isPowerOf2()) && 2657 "alignment is not power of 2"); 2658 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 2659 AlignedVars[PtrValue] = CGF.Builder.getInt64(Alignment.getSExtValue()); 2660 } 2661 } 2662 return AlignedVars; 2663 } 2664 2665 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 2666 bool UseOMPIRBuilder = 2667 CGM.getLangOpts().OpenMPIRBuilder && isSupportedByOpenMPIRBuilder(S); 2668 if (UseOMPIRBuilder) { 2669 auto &&CodeGenIRBuilder = [this, &S, UseOMPIRBuilder](CodeGenFunction &CGF, 2670 PrePostActionTy &) { 2671 // Use the OpenMPIRBuilder if enabled. 2672 if (UseOMPIRBuilder) { 2673 llvm::MapVector<llvm::Value *, llvm::Value *> AlignedVars = 2674 GetAlignedMapping(S, CGF); 2675 // Emit the associated statement and get its loop representation. 2676 const Stmt *Inner = S.getRawStmt(); 2677 llvm::CanonicalLoopInfo *CLI = 2678 EmitOMPCollapsedCanonicalLoopNest(Inner, 1); 2679 2680 llvm::OpenMPIRBuilder &OMPBuilder = 2681 CGM.getOpenMPRuntime().getOMPBuilder(); 2682 // Add SIMD specific metadata 2683 llvm::ConstantInt *Simdlen = nullptr; 2684 if (const auto *C = S.getSingleClause<OMPSimdlenClause>()) { 2685 RValue Len = 2686 this->EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 2687 /*ignoreResult=*/true); 2688 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2689 Simdlen = Val; 2690 } 2691 llvm::ConstantInt *Safelen = nullptr; 2692 if (const auto *C = S.getSingleClause<OMPSafelenClause>()) { 2693 RValue Len = 2694 this->EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 2695 /*ignoreResult=*/true); 2696 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2697 Safelen = Val; 2698 } 2699 llvm::omp::OrderKind Order = llvm::omp::OrderKind::OMP_ORDER_unknown; 2700 if (const auto *C = S.getSingleClause<OMPOrderClause>()) { 2701 if (C->getKind() == OpenMPOrderClauseKind ::OMPC_ORDER_concurrent) { 2702 Order = llvm::omp::OrderKind::OMP_ORDER_concurrent; 2703 } 2704 } 2705 // Add simd metadata to the collapsed loop. Do not generate 2706 // another loop for if clause. Support for if clause is done earlier. 2707 OMPBuilder.applySimd(CLI, AlignedVars, 2708 /*IfCond*/ nullptr, Order, Simdlen, Safelen); 2709 return; 2710 } 2711 }; 2712 { 2713 auto LPCRegion = 2714 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 2715 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2716 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, 2717 CodeGenIRBuilder); 2718 } 2719 return; 2720 } 2721 2722 ParentLoopDirectiveForScanRegion ScanRegion(*this, S); 2723 OMPFirstScanLoop = true; 2724 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2725 emitOMPSimdRegion(CGF, S, Action); 2726 }; 2727 { 2728 auto LPCRegion = 2729 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 2730 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2731 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2732 } 2733 // Check for outer lastprivate conditional update. 2734 checkForLastprivateConditionalUpdate(*this, S); 2735 } 2736 2737 void CodeGenFunction::EmitOMPTileDirective(const OMPTileDirective &S) { 2738 // Emit the de-sugared statement. 2739 OMPTransformDirectiveScopeRAII TileScope(*this, &S); 2740 EmitStmt(S.getTransformedStmt()); 2741 } 2742 2743 void CodeGenFunction::EmitOMPUnrollDirective(const OMPUnrollDirective &S) { 2744 bool UseOMPIRBuilder = CGM.getLangOpts().OpenMPIRBuilder; 2745 2746 if (UseOMPIRBuilder) { 2747 auto DL = SourceLocToDebugLoc(S.getBeginLoc()); 2748 const Stmt *Inner = S.getRawStmt(); 2749 2750 // Consume nested loop. Clear the entire remaining loop stack because a 2751 // fully unrolled loop is non-transformable. For partial unrolling the 2752 // generated outer loop is pushed back to the stack. 2753 llvm::CanonicalLoopInfo *CLI = EmitOMPCollapsedCanonicalLoopNest(Inner, 1); 2754 OMPLoopNestStack.clear(); 2755 2756 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 2757 2758 bool NeedsUnrolledCLI = ExpectedOMPLoopDepth >= 1; 2759 llvm::CanonicalLoopInfo *UnrolledCLI = nullptr; 2760 2761 if (S.hasClausesOfKind<OMPFullClause>()) { 2762 assert(ExpectedOMPLoopDepth == 0); 2763 OMPBuilder.unrollLoopFull(DL, CLI); 2764 } else if (auto *PartialClause = S.getSingleClause<OMPPartialClause>()) { 2765 uint64_t Factor = 0; 2766 if (Expr *FactorExpr = PartialClause->getFactor()) { 2767 Factor = FactorExpr->EvaluateKnownConstInt(getContext()).getZExtValue(); 2768 assert(Factor >= 1 && "Only positive factors are valid"); 2769 } 2770 OMPBuilder.unrollLoopPartial(DL, CLI, Factor, 2771 NeedsUnrolledCLI ? &UnrolledCLI : nullptr); 2772 } else { 2773 OMPBuilder.unrollLoopHeuristic(DL, CLI); 2774 } 2775 2776 assert((!NeedsUnrolledCLI || UnrolledCLI) && 2777 "NeedsUnrolledCLI implies UnrolledCLI to be set"); 2778 if (UnrolledCLI) 2779 OMPLoopNestStack.push_back(UnrolledCLI); 2780 2781 return; 2782 } 2783 2784 // This function is only called if the unrolled loop is not consumed by any 2785 // other loop-associated construct. Such a loop-associated construct will have 2786 // used the transformed AST. 2787 2788 // Set the unroll metadata for the next emitted loop. 2789 LoopStack.setUnrollState(LoopAttributes::Enable); 2790 2791 if (S.hasClausesOfKind<OMPFullClause>()) { 2792 LoopStack.setUnrollState(LoopAttributes::Full); 2793 } else if (auto *PartialClause = S.getSingleClause<OMPPartialClause>()) { 2794 if (Expr *FactorExpr = PartialClause->getFactor()) { 2795 uint64_t Factor = 2796 FactorExpr->EvaluateKnownConstInt(getContext()).getZExtValue(); 2797 assert(Factor >= 1 && "Only positive factors are valid"); 2798 LoopStack.setUnrollCount(Factor); 2799 } 2800 } 2801 2802 EmitStmt(S.getAssociatedStmt()); 2803 } 2804 2805 void CodeGenFunction::EmitOMPOuterLoop( 2806 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 2807 CodeGenFunction::OMPPrivateScope &LoopScope, 2808 const CodeGenFunction::OMPLoopArguments &LoopArgs, 2809 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 2810 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 2811 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2812 2813 const Expr *IVExpr = S.getIterationVariable(); 2814 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2815 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2816 2817 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 2818 2819 // Start the loop with a block that tests the condition. 2820 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 2821 EmitBlock(CondBlock); 2822 const SourceRange R = S.getSourceRange(); 2823 OMPLoopNestStack.clear(); 2824 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 2825 SourceLocToDebugLoc(R.getEnd())); 2826 2827 llvm::Value *BoolCondVal = nullptr; 2828 if (!DynamicOrOrdered) { 2829 // UB = min(UB, GlobalUB) or 2830 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 2831 // 'distribute parallel for') 2832 EmitIgnoredExpr(LoopArgs.EUB); 2833 // IV = LB 2834 EmitIgnoredExpr(LoopArgs.Init); 2835 // IV < UB 2836 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 2837 } else { 2838 BoolCondVal = 2839 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 2840 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 2841 } 2842 2843 // If there are any cleanups between here and the loop-exit scope, 2844 // create a block to stage a loop exit along. 2845 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 2846 if (LoopScope.requiresCleanups()) 2847 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 2848 2849 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 2850 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 2851 if (ExitBlock != LoopExit.getBlock()) { 2852 EmitBlock(ExitBlock); 2853 EmitBranchThroughCleanup(LoopExit); 2854 } 2855 EmitBlock(LoopBody); 2856 2857 // Emit "IV = LB" (in case of static schedule, we have already calculated new 2858 // LB for loop condition and emitted it above). 2859 if (DynamicOrOrdered) 2860 EmitIgnoredExpr(LoopArgs.Init); 2861 2862 // Create a block for the increment. 2863 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 2864 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 2865 2866 emitCommonSimdLoop( 2867 *this, S, 2868 [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) { 2869 // Generate !llvm.loop.parallel metadata for loads and stores for loops 2870 // with dynamic/guided scheduling and without ordered clause. 2871 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2872 CGF.LoopStack.setParallel(!IsMonotonic); 2873 if (const auto *C = S.getSingleClause<OMPOrderClause>()) 2874 if (C->getKind() == OMPC_ORDER_concurrent) 2875 CGF.LoopStack.setParallel(/*Enable=*/true); 2876 } else { 2877 CGF.EmitOMPSimdInit(S); 2878 } 2879 }, 2880 [&S, &LoopArgs, LoopExit, &CodeGenLoop, IVSize, IVSigned, &CodeGenOrdered, 2881 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2882 SourceLocation Loc = S.getBeginLoc(); 2883 // when 'distribute' is not combined with a 'for': 2884 // while (idx <= UB) { BODY; ++idx; } 2885 // when 'distribute' is combined with a 'for' 2886 // (e.g. 'distribute parallel for') 2887 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 2888 CGF.EmitOMPInnerLoop( 2889 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 2890 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 2891 CodeGenLoop(CGF, S, LoopExit); 2892 }, 2893 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 2894 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 2895 }); 2896 }); 2897 2898 EmitBlock(Continue.getBlock()); 2899 BreakContinueStack.pop_back(); 2900 if (!DynamicOrOrdered) { 2901 // Emit "LB = LB + Stride", "UB = UB + Stride". 2902 EmitIgnoredExpr(LoopArgs.NextLB); 2903 EmitIgnoredExpr(LoopArgs.NextUB); 2904 } 2905 2906 EmitBranch(CondBlock); 2907 OMPLoopNestStack.clear(); 2908 LoopStack.pop(); 2909 // Emit the fall-through block. 2910 EmitBlock(LoopExit.getBlock()); 2911 2912 // Tell the runtime we are done. 2913 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 2914 if (!DynamicOrOrdered) 2915 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2916 S.getDirectiveKind()); 2917 }; 2918 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2919 } 2920 2921 void CodeGenFunction::EmitOMPForOuterLoop( 2922 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 2923 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 2924 const OMPLoopArguments &LoopArgs, 2925 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2926 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2927 2928 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 2929 const bool DynamicOrOrdered = Ordered || RT.isDynamic(ScheduleKind.Schedule); 2930 2931 assert((Ordered || !RT.isStaticNonchunked(ScheduleKind.Schedule, 2932 LoopArgs.Chunk != nullptr)) && 2933 "static non-chunked schedule does not need outer loop"); 2934 2935 // Emit outer loop. 2936 // 2937 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2938 // When schedule(dynamic,chunk_size) is specified, the iterations are 2939 // distributed to threads in the team in chunks as the threads request them. 2940 // Each thread executes a chunk of iterations, then requests another chunk, 2941 // until no chunks remain to be distributed. Each chunk contains chunk_size 2942 // iterations, except for the last chunk to be distributed, which may have 2943 // fewer iterations. When no chunk_size is specified, it defaults to 1. 2944 // 2945 // When schedule(guided,chunk_size) is specified, the iterations are assigned 2946 // to threads in the team in chunks as the executing threads request them. 2947 // Each thread executes a chunk of iterations, then requests another chunk, 2948 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 2949 // each chunk is proportional to the number of unassigned iterations divided 2950 // by the number of threads in the team, decreasing to 1. For a chunk_size 2951 // with value k (greater than 1), the size of each chunk is determined in the 2952 // same way, with the restriction that the chunks do not contain fewer than k 2953 // iterations (except for the last chunk to be assigned, which may have fewer 2954 // than k iterations). 2955 // 2956 // When schedule(auto) is specified, the decision regarding scheduling is 2957 // delegated to the compiler and/or runtime system. The programmer gives the 2958 // implementation the freedom to choose any possible mapping of iterations to 2959 // threads in the team. 2960 // 2961 // When schedule(runtime) is specified, the decision regarding scheduling is 2962 // deferred until run time, and the schedule and chunk size are taken from the 2963 // run-sched-var ICV. If the ICV is set to auto, the schedule is 2964 // implementation defined 2965 // 2966 // while(__kmpc_dispatch_next(&LB, &UB)) { 2967 // idx = LB; 2968 // while (idx <= UB) { BODY; ++idx; 2969 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 2970 // } // inner loop 2971 // } 2972 // 2973 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2974 // When schedule(static, chunk_size) is specified, iterations are divided into 2975 // chunks of size chunk_size, and the chunks are assigned to the threads in 2976 // the team in a round-robin fashion in the order of the thread number. 2977 // 2978 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 2979 // while (idx <= UB) { BODY; ++idx; } // inner loop 2980 // LB = LB + ST; 2981 // UB = UB + ST; 2982 // } 2983 // 2984 2985 const Expr *IVExpr = S.getIterationVariable(); 2986 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2987 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2988 2989 if (DynamicOrOrdered) { 2990 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 2991 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 2992 llvm::Value *LBVal = DispatchBounds.first; 2993 llvm::Value *UBVal = DispatchBounds.second; 2994 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 2995 LoopArgs.Chunk}; 2996 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 2997 IVSigned, Ordered, DipatchRTInputValues); 2998 } else { 2999 CGOpenMPRuntime::StaticRTInput StaticInit( 3000 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 3001 LoopArgs.ST, LoopArgs.Chunk); 3002 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 3003 ScheduleKind, StaticInit); 3004 } 3005 3006 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 3007 const unsigned IVSize, 3008 const bool IVSigned) { 3009 if (Ordered) { 3010 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 3011 IVSigned); 3012 } 3013 }; 3014 3015 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 3016 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 3017 OuterLoopArgs.IncExpr = S.getInc(); 3018 OuterLoopArgs.Init = S.getInit(); 3019 OuterLoopArgs.Cond = S.getCond(); 3020 OuterLoopArgs.NextLB = S.getNextLowerBound(); 3021 OuterLoopArgs.NextUB = S.getNextUpperBound(); 3022 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 3023 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 3024 } 3025 3026 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 3027 const unsigned IVSize, const bool IVSigned) {} 3028 3029 void CodeGenFunction::EmitOMPDistributeOuterLoop( 3030 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 3031 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 3032 const CodeGenLoopTy &CodeGenLoopContent) { 3033 3034 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 3035 3036 // Emit outer loop. 3037 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 3038 // dynamic 3039 // 3040 3041 const Expr *IVExpr = S.getIterationVariable(); 3042 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3043 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3044 3045 CGOpenMPRuntime::StaticRTInput StaticInit( 3046 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 3047 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 3048 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 3049 3050 // for combined 'distribute' and 'for' the increment expression of distribute 3051 // is stored in DistInc. For 'distribute' alone, it is in Inc. 3052 Expr *IncExpr; 3053 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 3054 IncExpr = S.getDistInc(); 3055 else 3056 IncExpr = S.getInc(); 3057 3058 // this routine is shared by 'omp distribute parallel for' and 3059 // 'omp distribute': select the right EUB expression depending on the 3060 // directive 3061 OMPLoopArguments OuterLoopArgs; 3062 OuterLoopArgs.LB = LoopArgs.LB; 3063 OuterLoopArgs.UB = LoopArgs.UB; 3064 OuterLoopArgs.ST = LoopArgs.ST; 3065 OuterLoopArgs.IL = LoopArgs.IL; 3066 OuterLoopArgs.Chunk = LoopArgs.Chunk; 3067 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3068 ? S.getCombinedEnsureUpperBound() 3069 : S.getEnsureUpperBound(); 3070 OuterLoopArgs.IncExpr = IncExpr; 3071 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3072 ? S.getCombinedInit() 3073 : S.getInit(); 3074 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3075 ? S.getCombinedCond() 3076 : S.getCond(); 3077 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3078 ? S.getCombinedNextLowerBound() 3079 : S.getNextLowerBound(); 3080 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 3081 ? S.getCombinedNextUpperBound() 3082 : S.getNextUpperBound(); 3083 3084 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 3085 LoopScope, OuterLoopArgs, CodeGenLoopContent, 3086 emitEmptyOrdered); 3087 } 3088 3089 static std::pair<LValue, LValue> 3090 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 3091 const OMPExecutableDirective &S) { 3092 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 3093 LValue LB = 3094 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 3095 LValue UB = 3096 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 3097 3098 // When composing 'distribute' with 'for' (e.g. as in 'distribute 3099 // parallel for') we need to use the 'distribute' 3100 // chunk lower and upper bounds rather than the whole loop iteration 3101 // space. These are parameters to the outlined function for 'parallel' 3102 // and we copy the bounds of the previous schedule into the 3103 // the current ones. 3104 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 3105 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 3106 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 3107 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 3108 PrevLBVal = CGF.EmitScalarConversion( 3109 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 3110 LS.getIterationVariable()->getType(), 3111 LS.getPrevLowerBoundVariable()->getExprLoc()); 3112 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 3113 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 3114 PrevUBVal = CGF.EmitScalarConversion( 3115 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 3116 LS.getIterationVariable()->getType(), 3117 LS.getPrevUpperBoundVariable()->getExprLoc()); 3118 3119 CGF.EmitStoreOfScalar(PrevLBVal, LB); 3120 CGF.EmitStoreOfScalar(PrevUBVal, UB); 3121 3122 return {LB, UB}; 3123 } 3124 3125 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 3126 /// we need to use the LB and UB expressions generated by the worksharing 3127 /// code generation support, whereas in non combined situations we would 3128 /// just emit 0 and the LastIteration expression 3129 /// This function is necessary due to the difference of the LB and UB 3130 /// types for the RT emission routines for 'for_static_init' and 3131 /// 'for_dispatch_init' 3132 static std::pair<llvm::Value *, llvm::Value *> 3133 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 3134 const OMPExecutableDirective &S, 3135 Address LB, Address UB) { 3136 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 3137 const Expr *IVExpr = LS.getIterationVariable(); 3138 // when implementing a dynamic schedule for a 'for' combined with a 3139 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 3140 // is not normalized as each team only executes its own assigned 3141 // distribute chunk 3142 QualType IteratorTy = IVExpr->getType(); 3143 llvm::Value *LBVal = 3144 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 3145 llvm::Value *UBVal = 3146 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 3147 return {LBVal, UBVal}; 3148 } 3149 3150 static void emitDistributeParallelForDistributeInnerBoundParams( 3151 CodeGenFunction &CGF, const OMPExecutableDirective &S, 3152 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 3153 const auto &Dir = cast<OMPLoopDirective>(S); 3154 LValue LB = 3155 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 3156 llvm::Value *LBCast = 3157 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(LB.getAddress(CGF)), 3158 CGF.SizeTy, /*isSigned=*/false); 3159 CapturedVars.push_back(LBCast); 3160 LValue UB = 3161 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 3162 3163 llvm::Value *UBCast = 3164 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(UB.getAddress(CGF)), 3165 CGF.SizeTy, /*isSigned=*/false); 3166 CapturedVars.push_back(UBCast); 3167 } 3168 3169 static void 3170 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 3171 const OMPLoopDirective &S, 3172 CodeGenFunction::JumpDest LoopExit) { 3173 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 3174 PrePostActionTy &Action) { 3175 Action.Enter(CGF); 3176 bool HasCancel = false; 3177 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 3178 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 3179 HasCancel = D->hasCancel(); 3180 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 3181 HasCancel = D->hasCancel(); 3182 else if (const auto *D = 3183 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 3184 HasCancel = D->hasCancel(); 3185 } 3186 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 3187 HasCancel); 3188 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 3189 emitDistributeParallelForInnerBounds, 3190 emitDistributeParallelForDispatchBounds); 3191 }; 3192 3193 emitCommonOMPParallelDirective( 3194 CGF, S, 3195 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 3196 CGInlinedWorksharingLoop, 3197 emitDistributeParallelForDistributeInnerBoundParams); 3198 } 3199 3200 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 3201 const OMPDistributeParallelForDirective &S) { 3202 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3203 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 3204 S.getDistInc()); 3205 }; 3206 OMPLexicalScope Scope(*this, S, OMPD_parallel); 3207 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3208 } 3209 3210 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 3211 const OMPDistributeParallelForSimdDirective &S) { 3212 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3213 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 3214 S.getDistInc()); 3215 }; 3216 OMPLexicalScope Scope(*this, S, OMPD_parallel); 3217 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3218 } 3219 3220 void CodeGenFunction::EmitOMPDistributeSimdDirective( 3221 const OMPDistributeSimdDirective &S) { 3222 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3223 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3224 }; 3225 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3226 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 3227 } 3228 3229 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 3230 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 3231 // Emit SPMD target parallel for region as a standalone region. 3232 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3233 emitOMPSimdRegion(CGF, S, Action); 3234 }; 3235 llvm::Function *Fn; 3236 llvm::Constant *Addr; 3237 // Emit target region as a standalone region. 3238 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 3239 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 3240 assert(Fn && Addr && "Target device function emission failed."); 3241 } 3242 3243 void CodeGenFunction::EmitOMPTargetSimdDirective( 3244 const OMPTargetSimdDirective &S) { 3245 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3246 emitOMPSimdRegion(CGF, S, Action); 3247 }; 3248 emitCommonOMPTargetDirective(*this, S, CodeGen); 3249 } 3250 3251 namespace { 3252 struct ScheduleKindModifiersTy { 3253 OpenMPScheduleClauseKind Kind; 3254 OpenMPScheduleClauseModifier M1; 3255 OpenMPScheduleClauseModifier M2; 3256 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 3257 OpenMPScheduleClauseModifier M1, 3258 OpenMPScheduleClauseModifier M2) 3259 : Kind(Kind), M1(M1), M2(M2) {} 3260 }; 3261 } // namespace 3262 3263 bool CodeGenFunction::EmitOMPWorksharingLoop( 3264 const OMPLoopDirective &S, Expr *EUB, 3265 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3266 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 3267 // Emit the loop iteration variable. 3268 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3269 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3270 EmitVarDecl(*IVDecl); 3271 3272 // Emit the iterations count variable. 3273 // If it is not a variable, Sema decided to calculate iterations count on each 3274 // iteration (e.g., it is foldable into a constant). 3275 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3276 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3277 // Emit calculation of the iterations count. 3278 EmitIgnoredExpr(S.getCalcLastIteration()); 3279 } 3280 3281 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 3282 3283 bool HasLastprivateClause; 3284 // Check pre-condition. 3285 { 3286 OMPLoopScope PreInitScope(*this, S); 3287 // Skip the entire loop if we don't meet the precondition. 3288 // If the condition constant folds and can be elided, avoid emitting the 3289 // whole loop. 3290 bool CondConstant; 3291 llvm::BasicBlock *ContBlock = nullptr; 3292 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3293 if (!CondConstant) 3294 return false; 3295 } else { 3296 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 3297 ContBlock = createBasicBlock("omp.precond.end"); 3298 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3299 getProfileCount(&S)); 3300 EmitBlock(ThenBlock); 3301 incrementProfileCounter(&S); 3302 } 3303 3304 RunCleanupsScope DoacrossCleanupScope(*this); 3305 bool Ordered = false; 3306 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 3307 if (OrderedClause->getNumForLoops()) 3308 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 3309 else 3310 Ordered = true; 3311 } 3312 3313 llvm::DenseSet<const Expr *> EmittedFinals; 3314 emitAlignedClause(*this, S); 3315 bool HasLinears = EmitOMPLinearClauseInit(S); 3316 // Emit helper vars inits. 3317 3318 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 3319 LValue LB = Bounds.first; 3320 LValue UB = Bounds.second; 3321 LValue ST = 3322 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3323 LValue IL = 3324 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3325 3326 // Emit 'then' code. 3327 { 3328 OMPPrivateScope LoopScope(*this); 3329 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 3330 // Emit implicit barrier to synchronize threads and avoid data races on 3331 // initialization of firstprivate variables and post-update of 3332 // lastprivate variables. 3333 CGM.getOpenMPRuntime().emitBarrierCall( 3334 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3335 /*ForceSimpleCall=*/true); 3336 } 3337 EmitOMPPrivateClause(S, LoopScope); 3338 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 3339 *this, S, EmitLValue(S.getIterationVariable())); 3340 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3341 EmitOMPReductionClauseInit(S, LoopScope); 3342 EmitOMPPrivateLoopCounters(S, LoopScope); 3343 EmitOMPLinearClause(S, LoopScope); 3344 (void)LoopScope.Privatize(); 3345 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3346 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 3347 3348 // Detect the loop schedule kind and chunk. 3349 const Expr *ChunkExpr = nullptr; 3350 OpenMPScheduleTy ScheduleKind; 3351 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 3352 ScheduleKind.Schedule = C->getScheduleKind(); 3353 ScheduleKind.M1 = C->getFirstScheduleModifier(); 3354 ScheduleKind.M2 = C->getSecondScheduleModifier(); 3355 ChunkExpr = C->getChunkSize(); 3356 } else { 3357 // Default behaviour for schedule clause. 3358 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 3359 *this, S, ScheduleKind.Schedule, ChunkExpr); 3360 } 3361 bool HasChunkSizeOne = false; 3362 llvm::Value *Chunk = nullptr; 3363 if (ChunkExpr) { 3364 Chunk = EmitScalarExpr(ChunkExpr); 3365 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 3366 S.getIterationVariable()->getType(), 3367 S.getBeginLoc()); 3368 Expr::EvalResult Result; 3369 if (ChunkExpr->EvaluateAsInt(Result, getContext())) { 3370 llvm::APSInt EvaluatedChunk = Result.Val.getInt(); 3371 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 3372 } 3373 } 3374 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3375 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3376 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 3377 // If the static schedule kind is specified or if the ordered clause is 3378 // specified, and if no monotonic modifier is specified, the effect will 3379 // be as if the monotonic modifier was specified. 3380 bool StaticChunkedOne = 3381 RT.isStaticChunked(ScheduleKind.Schedule, 3382 /* Chunked */ Chunk != nullptr) && 3383 HasChunkSizeOne && 3384 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 3385 bool IsMonotonic = 3386 Ordered || 3387 (ScheduleKind.Schedule == OMPC_SCHEDULE_static && 3388 !(ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_nonmonotonic || 3389 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_nonmonotonic)) || 3390 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 3391 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 3392 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 3393 /* Chunked */ Chunk != nullptr) || 3394 StaticChunkedOne) && 3395 !Ordered) { 3396 JumpDest LoopExit = 3397 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3398 emitCommonSimdLoop( 3399 *this, S, 3400 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3401 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3402 CGF.EmitOMPSimdInit(S); 3403 } else if (const auto *C = S.getSingleClause<OMPOrderClause>()) { 3404 if (C->getKind() == OMPC_ORDER_concurrent) 3405 CGF.LoopStack.setParallel(/*Enable=*/true); 3406 } 3407 }, 3408 [IVSize, IVSigned, Ordered, IL, LB, UB, ST, StaticChunkedOne, Chunk, 3409 &S, ScheduleKind, LoopExit, 3410 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 3411 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 3412 // When no chunk_size is specified, the iteration space is divided 3413 // into chunks that are approximately equal in size, and at most 3414 // one chunk is distributed to each thread. Note that the size of 3415 // the chunks is unspecified in this case. 3416 CGOpenMPRuntime::StaticRTInput StaticInit( 3417 IVSize, IVSigned, Ordered, IL.getAddress(CGF), 3418 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF), 3419 StaticChunkedOne ? Chunk : nullptr); 3420 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 3421 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, 3422 StaticInit); 3423 // UB = min(UB, GlobalUB); 3424 if (!StaticChunkedOne) 3425 CGF.EmitIgnoredExpr(S.getEnsureUpperBound()); 3426 // IV = LB; 3427 CGF.EmitIgnoredExpr(S.getInit()); 3428 // For unchunked static schedule generate: 3429 // 3430 // while (idx <= UB) { 3431 // BODY; 3432 // ++idx; 3433 // } 3434 // 3435 // For static schedule with chunk one: 3436 // 3437 // while (IV <= PrevUB) { 3438 // BODY; 3439 // IV += ST; 3440 // } 3441 CGF.EmitOMPInnerLoop( 3442 S, LoopScope.requiresCleanups(), 3443 StaticChunkedOne ? S.getCombinedParForInDistCond() 3444 : S.getCond(), 3445 StaticChunkedOne ? S.getDistInc() : S.getInc(), 3446 [&S, LoopExit](CodeGenFunction &CGF) { 3447 emitOMPLoopBodyWithStopPoint(CGF, S, LoopExit); 3448 }, 3449 [](CodeGenFunction &) {}); 3450 }); 3451 EmitBlock(LoopExit.getBlock()); 3452 // Tell the runtime we are done. 3453 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 3454 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 3455 S.getDirectiveKind()); 3456 }; 3457 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 3458 } else { 3459 // Emit the outer loop, which requests its work chunk [LB..UB] from 3460 // runtime and runs the inner loop to process it. 3461 const OMPLoopArguments LoopArguments( 3462 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 3463 IL.getAddress(*this), Chunk, EUB); 3464 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 3465 LoopArguments, CGDispatchBounds); 3466 } 3467 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3468 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3469 return CGF.Builder.CreateIsNotNull( 3470 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3471 }); 3472 } 3473 EmitOMPReductionClauseFinal( 3474 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 3475 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 3476 : /*Parallel only*/ OMPD_parallel); 3477 // Emit post-update of the reduction variables if IsLastIter != 0. 3478 emitPostUpdateForReductionClause( 3479 *this, S, [IL, &S](CodeGenFunction &CGF) { 3480 return CGF.Builder.CreateIsNotNull( 3481 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3482 }); 3483 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3484 if (HasLastprivateClause) 3485 EmitOMPLastprivateClauseFinal( 3486 S, isOpenMPSimdDirective(S.getDirectiveKind()), 3487 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3488 LoopScope.restoreMap(); 3489 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 3490 return CGF.Builder.CreateIsNotNull( 3491 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3492 }); 3493 } 3494 DoacrossCleanupScope.ForceCleanup(); 3495 // We're now done with the loop, so jump to the continuation block. 3496 if (ContBlock) { 3497 EmitBranch(ContBlock); 3498 EmitBlock(ContBlock, /*IsFinished=*/true); 3499 } 3500 } 3501 return HasLastprivateClause; 3502 } 3503 3504 /// The following two functions generate expressions for the loop lower 3505 /// and upper bounds in case of static and dynamic (dispatch) schedule 3506 /// of the associated 'for' or 'distribute' loop. 3507 static std::pair<LValue, LValue> 3508 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 3509 const auto &LS = cast<OMPLoopDirective>(S); 3510 LValue LB = 3511 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 3512 LValue UB = 3513 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 3514 return {LB, UB}; 3515 } 3516 3517 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 3518 /// consider the lower and upper bound expressions generated by the 3519 /// worksharing loop support, but we use 0 and the iteration space size as 3520 /// constants 3521 static std::pair<llvm::Value *, llvm::Value *> 3522 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 3523 Address LB, Address UB) { 3524 const auto &LS = cast<OMPLoopDirective>(S); 3525 const Expr *IVExpr = LS.getIterationVariable(); 3526 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 3527 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 3528 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 3529 return {LBVal, UBVal}; 3530 } 3531 3532 /// Emits internal temp array declarations for the directive with inscan 3533 /// reductions. 3534 /// The code is the following: 3535 /// \code 3536 /// size num_iters = <num_iters>; 3537 /// <type> buffer[num_iters]; 3538 /// \endcode 3539 static void emitScanBasedDirectiveDecls( 3540 CodeGenFunction &CGF, const OMPLoopDirective &S, 3541 llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen) { 3542 llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast( 3543 NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false); 3544 SmallVector<const Expr *, 4> Shareds; 3545 SmallVector<const Expr *, 4> Privates; 3546 SmallVector<const Expr *, 4> ReductionOps; 3547 SmallVector<const Expr *, 4> CopyArrayTemps; 3548 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3549 assert(C->getModifier() == OMPC_REDUCTION_inscan && 3550 "Only inscan reductions are expected."); 3551 Shareds.append(C->varlist_begin(), C->varlist_end()); 3552 Privates.append(C->privates().begin(), C->privates().end()); 3553 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 3554 CopyArrayTemps.append(C->copy_array_temps().begin(), 3555 C->copy_array_temps().end()); 3556 } 3557 { 3558 // Emit buffers for each reduction variables. 3559 // ReductionCodeGen is required to emit correctly the code for array 3560 // reductions. 3561 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 3562 unsigned Count = 0; 3563 auto *ITA = CopyArrayTemps.begin(); 3564 for (const Expr *IRef : Privates) { 3565 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 3566 // Emit variably modified arrays, used for arrays/array sections 3567 // reductions. 3568 if (PrivateVD->getType()->isVariablyModifiedType()) { 3569 RedCG.emitSharedOrigLValue(CGF, Count); 3570 RedCG.emitAggregateType(CGF, Count); 3571 } 3572 CodeGenFunction::OpaqueValueMapping DimMapping( 3573 CGF, 3574 cast<OpaqueValueExpr>( 3575 cast<VariableArrayType>((*ITA)->getType()->getAsArrayTypeUnsafe()) 3576 ->getSizeExpr()), 3577 RValue::get(OMPScanNumIterations)); 3578 // Emit temp buffer. 3579 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(*ITA)->getDecl())); 3580 ++ITA; 3581 ++Count; 3582 } 3583 } 3584 } 3585 3586 /// Copies final inscan reductions values to the original variables. 3587 /// The code is the following: 3588 /// \code 3589 /// <orig_var> = buffer[num_iters-1]; 3590 /// \endcode 3591 static void emitScanBasedDirectiveFinals( 3592 CodeGenFunction &CGF, const OMPLoopDirective &S, 3593 llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen) { 3594 llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast( 3595 NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false); 3596 SmallVector<const Expr *, 4> Shareds; 3597 SmallVector<const Expr *, 4> LHSs; 3598 SmallVector<const Expr *, 4> RHSs; 3599 SmallVector<const Expr *, 4> Privates; 3600 SmallVector<const Expr *, 4> CopyOps; 3601 SmallVector<const Expr *, 4> CopyArrayElems; 3602 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3603 assert(C->getModifier() == OMPC_REDUCTION_inscan && 3604 "Only inscan reductions are expected."); 3605 Shareds.append(C->varlist_begin(), C->varlist_end()); 3606 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 3607 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 3608 Privates.append(C->privates().begin(), C->privates().end()); 3609 CopyOps.append(C->copy_ops().begin(), C->copy_ops().end()); 3610 CopyArrayElems.append(C->copy_array_elems().begin(), 3611 C->copy_array_elems().end()); 3612 } 3613 // Create temp var and copy LHS value to this temp value. 3614 // LHS = TMP[LastIter]; 3615 llvm::Value *OMPLast = CGF.Builder.CreateNSWSub( 3616 OMPScanNumIterations, 3617 llvm::ConstantInt::get(CGF.SizeTy, 1, /*isSigned=*/false)); 3618 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 3619 const Expr *PrivateExpr = Privates[I]; 3620 const Expr *OrigExpr = Shareds[I]; 3621 const Expr *CopyArrayElem = CopyArrayElems[I]; 3622 CodeGenFunction::OpaqueValueMapping IdxMapping( 3623 CGF, 3624 cast<OpaqueValueExpr>( 3625 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3626 RValue::get(OMPLast)); 3627 LValue DestLVal = CGF.EmitLValue(OrigExpr); 3628 LValue SrcLVal = CGF.EmitLValue(CopyArrayElem); 3629 CGF.EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(CGF), 3630 SrcLVal.getAddress(CGF), 3631 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 3632 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 3633 CopyOps[I]); 3634 } 3635 } 3636 3637 /// Emits the code for the directive with inscan reductions. 3638 /// The code is the following: 3639 /// \code 3640 /// #pragma omp ... 3641 /// for (i: 0..<num_iters>) { 3642 /// <input phase>; 3643 /// buffer[i] = red; 3644 /// } 3645 /// #pragma omp master // in parallel region 3646 /// for (int k = 0; k != ceil(log2(num_iters)); ++k) 3647 /// for (size cnt = last_iter; cnt >= pow(2, k); --k) 3648 /// buffer[i] op= buffer[i-pow(2,k)]; 3649 /// #pragma omp barrier // in parallel region 3650 /// #pragma omp ... 3651 /// for (0..<num_iters>) { 3652 /// red = InclusiveScan ? buffer[i] : buffer[i-1]; 3653 /// <scan phase>; 3654 /// } 3655 /// \endcode 3656 static void emitScanBasedDirective( 3657 CodeGenFunction &CGF, const OMPLoopDirective &S, 3658 llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen, 3659 llvm::function_ref<void(CodeGenFunction &)> FirstGen, 3660 llvm::function_ref<void(CodeGenFunction &)> SecondGen) { 3661 llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast( 3662 NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false); 3663 SmallVector<const Expr *, 4> Privates; 3664 SmallVector<const Expr *, 4> ReductionOps; 3665 SmallVector<const Expr *, 4> LHSs; 3666 SmallVector<const Expr *, 4> RHSs; 3667 SmallVector<const Expr *, 4> CopyArrayElems; 3668 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3669 assert(C->getModifier() == OMPC_REDUCTION_inscan && 3670 "Only inscan reductions are expected."); 3671 Privates.append(C->privates().begin(), C->privates().end()); 3672 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 3673 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 3674 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 3675 CopyArrayElems.append(C->copy_array_elems().begin(), 3676 C->copy_array_elems().end()); 3677 } 3678 CodeGenFunction::ParentLoopDirectiveForScanRegion ScanRegion(CGF, S); 3679 { 3680 // Emit loop with input phase: 3681 // #pragma omp ... 3682 // for (i: 0..<num_iters>) { 3683 // <input phase>; 3684 // buffer[i] = red; 3685 // } 3686 CGF.OMPFirstScanLoop = true; 3687 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 3688 FirstGen(CGF); 3689 } 3690 // #pragma omp barrier // in parallel region 3691 auto &&CodeGen = [&S, OMPScanNumIterations, &LHSs, &RHSs, &CopyArrayElems, 3692 &ReductionOps, 3693 &Privates](CodeGenFunction &CGF, PrePostActionTy &Action) { 3694 Action.Enter(CGF); 3695 // Emit prefix reduction: 3696 // #pragma omp master // in parallel region 3697 // for (int k = 0; k <= ceil(log2(n)); ++k) 3698 llvm::BasicBlock *InputBB = CGF.Builder.GetInsertBlock(); 3699 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.outer.log.scan.body"); 3700 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.outer.log.scan.exit"); 3701 llvm::Function *F = 3702 CGF.CGM.getIntrinsic(llvm::Intrinsic::log2, CGF.DoubleTy); 3703 llvm::Value *Arg = 3704 CGF.Builder.CreateUIToFP(OMPScanNumIterations, CGF.DoubleTy); 3705 llvm::Value *LogVal = CGF.EmitNounwindRuntimeCall(F, Arg); 3706 F = CGF.CGM.getIntrinsic(llvm::Intrinsic::ceil, CGF.DoubleTy); 3707 LogVal = CGF.EmitNounwindRuntimeCall(F, LogVal); 3708 LogVal = CGF.Builder.CreateFPToUI(LogVal, CGF.IntTy); 3709 llvm::Value *NMin1 = CGF.Builder.CreateNUWSub( 3710 OMPScanNumIterations, llvm::ConstantInt::get(CGF.SizeTy, 1)); 3711 auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getBeginLoc()); 3712 CGF.EmitBlock(LoopBB); 3713 auto *Counter = CGF.Builder.CreatePHI(CGF.IntTy, 2); 3714 // size pow2k = 1; 3715 auto *Pow2K = CGF.Builder.CreatePHI(CGF.SizeTy, 2); 3716 Counter->addIncoming(llvm::ConstantInt::get(CGF.IntTy, 0), InputBB); 3717 Pow2K->addIncoming(llvm::ConstantInt::get(CGF.SizeTy, 1), InputBB); 3718 // for (size i = n - 1; i >= 2 ^ k; --i) 3719 // tmp[i] op= tmp[i-pow2k]; 3720 llvm::BasicBlock *InnerLoopBB = 3721 CGF.createBasicBlock("omp.inner.log.scan.body"); 3722 llvm::BasicBlock *InnerExitBB = 3723 CGF.createBasicBlock("omp.inner.log.scan.exit"); 3724 llvm::Value *CmpI = CGF.Builder.CreateICmpUGE(NMin1, Pow2K); 3725 CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB); 3726 CGF.EmitBlock(InnerLoopBB); 3727 auto *IVal = CGF.Builder.CreatePHI(CGF.SizeTy, 2); 3728 IVal->addIncoming(NMin1, LoopBB); 3729 { 3730 CodeGenFunction::OMPPrivateScope PrivScope(CGF); 3731 auto *ILHS = LHSs.begin(); 3732 auto *IRHS = RHSs.begin(); 3733 for (const Expr *CopyArrayElem : CopyArrayElems) { 3734 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 3735 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 3736 Address LHSAddr = Address::invalid(); 3737 { 3738 CodeGenFunction::OpaqueValueMapping IdxMapping( 3739 CGF, 3740 cast<OpaqueValueExpr>( 3741 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3742 RValue::get(IVal)); 3743 LHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF); 3744 } 3745 PrivScope.addPrivate(LHSVD, LHSAddr); 3746 Address RHSAddr = Address::invalid(); 3747 { 3748 llvm::Value *OffsetIVal = CGF.Builder.CreateNUWSub(IVal, Pow2K); 3749 CodeGenFunction::OpaqueValueMapping IdxMapping( 3750 CGF, 3751 cast<OpaqueValueExpr>( 3752 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3753 RValue::get(OffsetIVal)); 3754 RHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF); 3755 } 3756 PrivScope.addPrivate(RHSVD, RHSAddr); 3757 ++ILHS; 3758 ++IRHS; 3759 } 3760 PrivScope.Privatize(); 3761 CGF.CGM.getOpenMPRuntime().emitReduction( 3762 CGF, S.getEndLoc(), Privates, LHSs, RHSs, ReductionOps, 3763 {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_unknown}); 3764 } 3765 llvm::Value *NextIVal = 3766 CGF.Builder.CreateNUWSub(IVal, llvm::ConstantInt::get(CGF.SizeTy, 1)); 3767 IVal->addIncoming(NextIVal, CGF.Builder.GetInsertBlock()); 3768 CmpI = CGF.Builder.CreateICmpUGE(NextIVal, Pow2K); 3769 CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB); 3770 CGF.EmitBlock(InnerExitBB); 3771 llvm::Value *Next = 3772 CGF.Builder.CreateNUWAdd(Counter, llvm::ConstantInt::get(CGF.IntTy, 1)); 3773 Counter->addIncoming(Next, CGF.Builder.GetInsertBlock()); 3774 // pow2k <<= 1; 3775 llvm::Value *NextPow2K = 3776 CGF.Builder.CreateShl(Pow2K, 1, "", /*HasNUW=*/true); 3777 Pow2K->addIncoming(NextPow2K, CGF.Builder.GetInsertBlock()); 3778 llvm::Value *Cmp = CGF.Builder.CreateICmpNE(Next, LogVal); 3779 CGF.Builder.CreateCondBr(Cmp, LoopBB, ExitBB); 3780 auto DL1 = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getEndLoc()); 3781 CGF.EmitBlock(ExitBB); 3782 }; 3783 if (isOpenMPParallelDirective(S.getDirectiveKind())) { 3784 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 3785 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3786 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3787 /*ForceSimpleCall=*/true); 3788 } else { 3789 RegionCodeGenTy RCG(CodeGen); 3790 RCG(CGF); 3791 } 3792 3793 CGF.OMPFirstScanLoop = false; 3794 SecondGen(CGF); 3795 } 3796 3797 static bool emitWorksharingDirective(CodeGenFunction &CGF, 3798 const OMPLoopDirective &S, 3799 bool HasCancel) { 3800 bool HasLastprivates; 3801 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 3802 [](const OMPReductionClause *C) { 3803 return C->getModifier() == OMPC_REDUCTION_inscan; 3804 })) { 3805 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 3806 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 3807 OMPLoopScope LoopScope(CGF, S); 3808 return CGF.EmitScalarExpr(S.getNumIterations()); 3809 }; 3810 const auto &&FirstGen = [&S, HasCancel](CodeGenFunction &CGF) { 3811 CodeGenFunction::OMPCancelStackRAII CancelRegion( 3812 CGF, S.getDirectiveKind(), HasCancel); 3813 (void)CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3814 emitForLoopBounds, 3815 emitDispatchForLoopBounds); 3816 // Emit an implicit barrier at the end. 3817 CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getBeginLoc(), 3818 OMPD_for); 3819 }; 3820 const auto &&SecondGen = [&S, HasCancel, 3821 &HasLastprivates](CodeGenFunction &CGF) { 3822 CodeGenFunction::OMPCancelStackRAII CancelRegion( 3823 CGF, S.getDirectiveKind(), HasCancel); 3824 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3825 emitForLoopBounds, 3826 emitDispatchForLoopBounds); 3827 }; 3828 if (!isOpenMPParallelDirective(S.getDirectiveKind())) 3829 emitScanBasedDirectiveDecls(CGF, S, NumIteratorsGen); 3830 emitScanBasedDirective(CGF, S, NumIteratorsGen, FirstGen, SecondGen); 3831 if (!isOpenMPParallelDirective(S.getDirectiveKind())) 3832 emitScanBasedDirectiveFinals(CGF, S, NumIteratorsGen); 3833 } else { 3834 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 3835 HasCancel); 3836 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3837 emitForLoopBounds, 3838 emitDispatchForLoopBounds); 3839 } 3840 return HasLastprivates; 3841 } 3842 3843 static bool isSupportedByOpenMPIRBuilder(const OMPForDirective &S) { 3844 if (S.hasCancel()) 3845 return false; 3846 for (OMPClause *C : S.clauses()) { 3847 if (isa<OMPNowaitClause>(C)) 3848 continue; 3849 3850 if (auto *SC = dyn_cast<OMPScheduleClause>(C)) { 3851 if (SC->getFirstScheduleModifier() != OMPC_SCHEDULE_MODIFIER_unknown) 3852 return false; 3853 if (SC->getSecondScheduleModifier() != OMPC_SCHEDULE_MODIFIER_unknown) 3854 return false; 3855 switch (SC->getScheduleKind()) { 3856 case OMPC_SCHEDULE_auto: 3857 case OMPC_SCHEDULE_dynamic: 3858 case OMPC_SCHEDULE_runtime: 3859 case OMPC_SCHEDULE_guided: 3860 case OMPC_SCHEDULE_static: 3861 continue; 3862 case OMPC_SCHEDULE_unknown: 3863 return false; 3864 } 3865 } 3866 3867 return false; 3868 } 3869 3870 return true; 3871 } 3872 3873 static llvm::omp::ScheduleKind 3874 convertClauseKindToSchedKind(OpenMPScheduleClauseKind ScheduleClauseKind) { 3875 switch (ScheduleClauseKind) { 3876 case OMPC_SCHEDULE_unknown: 3877 return llvm::omp::OMP_SCHEDULE_Default; 3878 case OMPC_SCHEDULE_auto: 3879 return llvm::omp::OMP_SCHEDULE_Auto; 3880 case OMPC_SCHEDULE_dynamic: 3881 return llvm::omp::OMP_SCHEDULE_Dynamic; 3882 case OMPC_SCHEDULE_guided: 3883 return llvm::omp::OMP_SCHEDULE_Guided; 3884 case OMPC_SCHEDULE_runtime: 3885 return llvm::omp::OMP_SCHEDULE_Runtime; 3886 case OMPC_SCHEDULE_static: 3887 return llvm::omp::OMP_SCHEDULE_Static; 3888 } 3889 llvm_unreachable("Unhandled schedule kind"); 3890 } 3891 3892 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 3893 bool HasLastprivates = false; 3894 bool UseOMPIRBuilder = 3895 CGM.getLangOpts().OpenMPIRBuilder && isSupportedByOpenMPIRBuilder(S); 3896 auto &&CodeGen = [this, &S, &HasLastprivates, 3897 UseOMPIRBuilder](CodeGenFunction &CGF, PrePostActionTy &) { 3898 // Use the OpenMPIRBuilder if enabled. 3899 if (UseOMPIRBuilder) { 3900 bool NeedsBarrier = !S.getSingleClause<OMPNowaitClause>(); 3901 3902 llvm::omp::ScheduleKind SchedKind = llvm::omp::OMP_SCHEDULE_Default; 3903 llvm::Value *ChunkSize = nullptr; 3904 if (auto *SchedClause = S.getSingleClause<OMPScheduleClause>()) { 3905 SchedKind = 3906 convertClauseKindToSchedKind(SchedClause->getScheduleKind()); 3907 if (const Expr *ChunkSizeExpr = SchedClause->getChunkSize()) 3908 ChunkSize = EmitScalarExpr(ChunkSizeExpr); 3909 } 3910 3911 // Emit the associated statement and get its loop representation. 3912 const Stmt *Inner = S.getRawStmt(); 3913 llvm::CanonicalLoopInfo *CLI = 3914 EmitOMPCollapsedCanonicalLoopNest(Inner, 1); 3915 3916 llvm::OpenMPIRBuilder &OMPBuilder = 3917 CGM.getOpenMPRuntime().getOMPBuilder(); 3918 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 3919 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 3920 OMPBuilder.applyWorkshareLoop( 3921 Builder.getCurrentDebugLocation(), CLI, AllocaIP, NeedsBarrier, 3922 SchedKind, ChunkSize, /*HasSimdModifier=*/false, 3923 /*HasMonotonicModifier=*/false, /*HasNonmonotonicModifier=*/false, 3924 /*HasOrderedClause=*/false); 3925 return; 3926 } 3927 3928 HasLastprivates = emitWorksharingDirective(CGF, S, S.hasCancel()); 3929 }; 3930 { 3931 auto LPCRegion = 3932 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3933 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3934 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 3935 S.hasCancel()); 3936 } 3937 3938 if (!UseOMPIRBuilder) { 3939 // Emit an implicit barrier at the end. 3940 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3941 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3942 } 3943 // Check for outer lastprivate conditional update. 3944 checkForLastprivateConditionalUpdate(*this, S); 3945 } 3946 3947 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 3948 bool HasLastprivates = false; 3949 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 3950 PrePostActionTy &) { 3951 HasLastprivates = emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 3952 }; 3953 { 3954 auto LPCRegion = 3955 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3956 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3957 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 3958 } 3959 3960 // Emit an implicit barrier at the end. 3961 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3962 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3963 // Check for outer lastprivate conditional update. 3964 checkForLastprivateConditionalUpdate(*this, S); 3965 } 3966 3967 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 3968 const Twine &Name, 3969 llvm::Value *Init = nullptr) { 3970 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 3971 if (Init) 3972 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 3973 return LVal; 3974 } 3975 3976 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 3977 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 3978 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 3979 bool HasLastprivates = false; 3980 auto &&CodeGen = [&S, CapturedStmt, CS, 3981 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 3982 const ASTContext &C = CGF.getContext(); 3983 QualType KmpInt32Ty = 3984 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 3985 // Emit helper vars inits. 3986 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 3987 CGF.Builder.getInt32(0)); 3988 llvm::ConstantInt *GlobalUBVal = CS != nullptr 3989 ? CGF.Builder.getInt32(CS->size() - 1) 3990 : CGF.Builder.getInt32(0); 3991 LValue UB = 3992 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 3993 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 3994 CGF.Builder.getInt32(1)); 3995 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 3996 CGF.Builder.getInt32(0)); 3997 // Loop counter. 3998 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 3999 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 4000 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 4001 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 4002 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 4003 // Generate condition for loop. 4004 BinaryOperator *Cond = BinaryOperator::Create( 4005 C, &IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_PRValue, OK_Ordinary, 4006 S.getBeginLoc(), FPOptionsOverride()); 4007 // Increment for loop counter. 4008 UnaryOperator *Inc = UnaryOperator::Create( 4009 C, &IVRefExpr, UO_PreInc, KmpInt32Ty, VK_PRValue, OK_Ordinary, 4010 S.getBeginLoc(), true, FPOptionsOverride()); 4011 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 4012 // Iterate through all sections and emit a switch construct: 4013 // switch (IV) { 4014 // case 0: 4015 // <SectionStmt[0]>; 4016 // break; 4017 // ... 4018 // case <NumSection> - 1: 4019 // <SectionStmt[<NumSection> - 1]>; 4020 // break; 4021 // } 4022 // .omp.sections.exit: 4023 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 4024 llvm::SwitchInst *SwitchStmt = 4025 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 4026 ExitBB, CS == nullptr ? 1 : CS->size()); 4027 if (CS) { 4028 unsigned CaseNumber = 0; 4029 for (const Stmt *SubStmt : CS->children()) { 4030 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 4031 CGF.EmitBlock(CaseBB); 4032 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 4033 CGF.EmitStmt(SubStmt); 4034 CGF.EmitBranch(ExitBB); 4035 ++CaseNumber; 4036 } 4037 } else { 4038 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 4039 CGF.EmitBlock(CaseBB); 4040 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 4041 CGF.EmitStmt(CapturedStmt); 4042 CGF.EmitBranch(ExitBB); 4043 } 4044 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 4045 }; 4046 4047 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 4048 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 4049 // Emit implicit barrier to synchronize threads and avoid data races on 4050 // initialization of firstprivate variables and post-update of lastprivate 4051 // variables. 4052 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 4053 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 4054 /*ForceSimpleCall=*/true); 4055 } 4056 CGF.EmitOMPPrivateClause(S, LoopScope); 4057 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(CGF, S, IV); 4058 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 4059 CGF.EmitOMPReductionClauseInit(S, LoopScope); 4060 (void)LoopScope.Privatize(); 4061 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 4062 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 4063 4064 // Emit static non-chunked loop. 4065 OpenMPScheduleTy ScheduleKind; 4066 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 4067 CGOpenMPRuntime::StaticRTInput StaticInit( 4068 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(CGF), 4069 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF)); 4070 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 4071 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 4072 // UB = min(UB, GlobalUB); 4073 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 4074 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 4075 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 4076 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 4077 // IV = LB; 4078 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 4079 // while (idx <= UB) { BODY; ++idx; } 4080 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, Cond, Inc, BodyGen, 4081 [](CodeGenFunction &) {}); 4082 // Tell the runtime we are done. 4083 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 4084 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 4085 S.getDirectiveKind()); 4086 }; 4087 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 4088 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4089 // Emit post-update of the reduction variables if IsLastIter != 0. 4090 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 4091 return CGF.Builder.CreateIsNotNull( 4092 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 4093 }); 4094 4095 // Emit final copy of the lastprivate variables if IsLastIter != 0. 4096 if (HasLastprivates) 4097 CGF.EmitOMPLastprivateClauseFinal( 4098 S, /*NoFinals=*/false, 4099 CGF.Builder.CreateIsNotNull( 4100 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 4101 }; 4102 4103 bool HasCancel = false; 4104 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 4105 HasCancel = OSD->hasCancel(); 4106 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 4107 HasCancel = OPSD->hasCancel(); 4108 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 4109 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 4110 HasCancel); 4111 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 4112 // clause. Otherwise the barrier will be generated by the codegen for the 4113 // directive. 4114 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 4115 // Emit implicit barrier to synchronize threads and avoid data races on 4116 // initialization of firstprivate variables. 4117 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 4118 OMPD_unknown); 4119 } 4120 } 4121 4122 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 4123 if (CGM.getLangOpts().OpenMPIRBuilder) { 4124 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4125 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4126 using BodyGenCallbackTy = llvm::OpenMPIRBuilder::StorableBodyGenCallbackTy; 4127 4128 auto FiniCB = [this](InsertPointTy IP) { 4129 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4130 }; 4131 4132 const CapturedStmt *ICS = S.getInnermostCapturedStmt(); 4133 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 4134 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 4135 llvm::SmallVector<BodyGenCallbackTy, 4> SectionCBVector; 4136 if (CS) { 4137 for (const Stmt *SubStmt : CS->children()) { 4138 auto SectionCB = [this, SubStmt](InsertPointTy AllocaIP, 4139 InsertPointTy CodeGenIP) { 4140 OMPBuilderCBHelpers::EmitOMPInlinedRegionBody( 4141 *this, SubStmt, AllocaIP, CodeGenIP, "section"); 4142 }; 4143 SectionCBVector.push_back(SectionCB); 4144 } 4145 } else { 4146 auto SectionCB = [this, CapturedStmt](InsertPointTy AllocaIP, 4147 InsertPointTy CodeGenIP) { 4148 OMPBuilderCBHelpers::EmitOMPInlinedRegionBody( 4149 *this, CapturedStmt, AllocaIP, CodeGenIP, "section"); 4150 }; 4151 SectionCBVector.push_back(SectionCB); 4152 } 4153 4154 // Privatization callback that performs appropriate action for 4155 // shared/private/firstprivate/lastprivate/copyin/... variables. 4156 // 4157 // TODO: This defaults to shared right now. 4158 auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 4159 llvm::Value &, llvm::Value &Val, llvm::Value *&ReplVal) { 4160 // The next line is appropriate only for variables (Val) with the 4161 // data-sharing attribute "shared". 4162 ReplVal = &Val; 4163 4164 return CodeGenIP; 4165 }; 4166 4167 CGCapturedStmtInfo CGSI(*ICS, CR_OpenMP); 4168 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 4169 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 4170 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 4171 Builder.restoreIP(OMPBuilder.createSections( 4172 Builder, AllocaIP, SectionCBVector, PrivCB, FiniCB, S.hasCancel(), 4173 S.getSingleClause<OMPNowaitClause>())); 4174 return; 4175 } 4176 { 4177 auto LPCRegion = 4178 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4179 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4180 EmitSections(S); 4181 } 4182 // Emit an implicit barrier at the end. 4183 if (!S.getSingleClause<OMPNowaitClause>()) { 4184 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 4185 OMPD_sections); 4186 } 4187 // Check for outer lastprivate conditional update. 4188 checkForLastprivateConditionalUpdate(*this, S); 4189 } 4190 4191 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 4192 if (CGM.getLangOpts().OpenMPIRBuilder) { 4193 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4194 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4195 4196 const Stmt *SectionRegionBodyStmt = S.getAssociatedStmt(); 4197 auto FiniCB = [this](InsertPointTy IP) { 4198 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4199 }; 4200 4201 auto BodyGenCB = [SectionRegionBodyStmt, this](InsertPointTy AllocaIP, 4202 InsertPointTy CodeGenIP) { 4203 OMPBuilderCBHelpers::EmitOMPInlinedRegionBody( 4204 *this, SectionRegionBodyStmt, AllocaIP, CodeGenIP, "section"); 4205 }; 4206 4207 LexicalScope Scope(*this, S.getSourceRange()); 4208 EmitStopPoint(&S); 4209 Builder.restoreIP(OMPBuilder.createSection(Builder, BodyGenCB, FiniCB)); 4210 4211 return; 4212 } 4213 LexicalScope Scope(*this, S.getSourceRange()); 4214 EmitStopPoint(&S); 4215 EmitStmt(S.getAssociatedStmt()); 4216 } 4217 4218 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 4219 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 4220 llvm::SmallVector<const Expr *, 8> DestExprs; 4221 llvm::SmallVector<const Expr *, 8> SrcExprs; 4222 llvm::SmallVector<const Expr *, 8> AssignmentOps; 4223 // Check if there are any 'copyprivate' clauses associated with this 4224 // 'single' construct. 4225 // Build a list of copyprivate variables along with helper expressions 4226 // (<source>, <destination>, <destination>=<source> expressions) 4227 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 4228 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 4229 DestExprs.append(C->destination_exprs().begin(), 4230 C->destination_exprs().end()); 4231 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 4232 AssignmentOps.append(C->assignment_ops().begin(), 4233 C->assignment_ops().end()); 4234 } 4235 // Emit code for 'single' region along with 'copyprivate' clauses 4236 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4237 Action.Enter(CGF); 4238 OMPPrivateScope SingleScope(CGF); 4239 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 4240 CGF.EmitOMPPrivateClause(S, SingleScope); 4241 (void)SingleScope.Privatize(); 4242 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4243 }; 4244 { 4245 auto LPCRegion = 4246 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4247 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4248 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 4249 CopyprivateVars, DestExprs, 4250 SrcExprs, AssignmentOps); 4251 } 4252 // Emit an implicit barrier at the end (to avoid data race on firstprivate 4253 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 4254 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 4255 CGM.getOpenMPRuntime().emitBarrierCall( 4256 *this, S.getBeginLoc(), 4257 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 4258 } 4259 // Check for outer lastprivate conditional update. 4260 checkForLastprivateConditionalUpdate(*this, S); 4261 } 4262 4263 static void emitMaster(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 4264 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4265 Action.Enter(CGF); 4266 CGF.EmitStmt(S.getRawStmt()); 4267 }; 4268 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 4269 } 4270 4271 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 4272 if (CGM.getLangOpts().OpenMPIRBuilder) { 4273 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4274 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4275 4276 const Stmt *MasterRegionBodyStmt = S.getAssociatedStmt(); 4277 4278 auto FiniCB = [this](InsertPointTy IP) { 4279 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4280 }; 4281 4282 auto BodyGenCB = [MasterRegionBodyStmt, this](InsertPointTy AllocaIP, 4283 InsertPointTy CodeGenIP) { 4284 OMPBuilderCBHelpers::EmitOMPInlinedRegionBody( 4285 *this, MasterRegionBodyStmt, AllocaIP, CodeGenIP, "master"); 4286 }; 4287 4288 LexicalScope Scope(*this, S.getSourceRange()); 4289 EmitStopPoint(&S); 4290 Builder.restoreIP(OMPBuilder.createMaster(Builder, BodyGenCB, FiniCB)); 4291 4292 return; 4293 } 4294 LexicalScope Scope(*this, S.getSourceRange()); 4295 EmitStopPoint(&S); 4296 emitMaster(*this, S); 4297 } 4298 4299 static void emitMasked(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 4300 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4301 Action.Enter(CGF); 4302 CGF.EmitStmt(S.getRawStmt()); 4303 }; 4304 Expr *Filter = nullptr; 4305 if (const auto *FilterClause = S.getSingleClause<OMPFilterClause>()) 4306 Filter = FilterClause->getThreadID(); 4307 CGF.CGM.getOpenMPRuntime().emitMaskedRegion(CGF, CodeGen, S.getBeginLoc(), 4308 Filter); 4309 } 4310 4311 void CodeGenFunction::EmitOMPMaskedDirective(const OMPMaskedDirective &S) { 4312 if (CGM.getLangOpts().OpenMPIRBuilder) { 4313 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4314 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4315 4316 const Stmt *MaskedRegionBodyStmt = S.getAssociatedStmt(); 4317 const Expr *Filter = nullptr; 4318 if (const auto *FilterClause = S.getSingleClause<OMPFilterClause>()) 4319 Filter = FilterClause->getThreadID(); 4320 llvm::Value *FilterVal = Filter 4321 ? EmitScalarExpr(Filter, CGM.Int32Ty) 4322 : llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/0); 4323 4324 auto FiniCB = [this](InsertPointTy IP) { 4325 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4326 }; 4327 4328 auto BodyGenCB = [MaskedRegionBodyStmt, this](InsertPointTy AllocaIP, 4329 InsertPointTy CodeGenIP) { 4330 OMPBuilderCBHelpers::EmitOMPInlinedRegionBody( 4331 *this, MaskedRegionBodyStmt, AllocaIP, CodeGenIP, "masked"); 4332 }; 4333 4334 LexicalScope Scope(*this, S.getSourceRange()); 4335 EmitStopPoint(&S); 4336 Builder.restoreIP( 4337 OMPBuilder.createMasked(Builder, BodyGenCB, FiniCB, FilterVal)); 4338 4339 return; 4340 } 4341 LexicalScope Scope(*this, S.getSourceRange()); 4342 EmitStopPoint(&S); 4343 emitMasked(*this, S); 4344 } 4345 4346 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 4347 if (CGM.getLangOpts().OpenMPIRBuilder) { 4348 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4349 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4350 4351 const Stmt *CriticalRegionBodyStmt = S.getAssociatedStmt(); 4352 const Expr *Hint = nullptr; 4353 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 4354 Hint = HintClause->getHint(); 4355 4356 // TODO: This is slightly different from what's currently being done in 4357 // clang. Fix the Int32Ty to IntPtrTy (pointer width size) when everything 4358 // about typing is final. 4359 llvm::Value *HintInst = nullptr; 4360 if (Hint) 4361 HintInst = 4362 Builder.CreateIntCast(EmitScalarExpr(Hint), CGM.Int32Ty, false); 4363 4364 auto FiniCB = [this](InsertPointTy IP) { 4365 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4366 }; 4367 4368 auto BodyGenCB = [CriticalRegionBodyStmt, this](InsertPointTy AllocaIP, 4369 InsertPointTy CodeGenIP) { 4370 OMPBuilderCBHelpers::EmitOMPInlinedRegionBody( 4371 *this, CriticalRegionBodyStmt, AllocaIP, CodeGenIP, "critical"); 4372 }; 4373 4374 LexicalScope Scope(*this, S.getSourceRange()); 4375 EmitStopPoint(&S); 4376 Builder.restoreIP(OMPBuilder.createCritical( 4377 Builder, BodyGenCB, FiniCB, S.getDirectiveName().getAsString(), 4378 HintInst)); 4379 4380 return; 4381 } 4382 4383 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4384 Action.Enter(CGF); 4385 CGF.EmitStmt(S.getAssociatedStmt()); 4386 }; 4387 const Expr *Hint = nullptr; 4388 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 4389 Hint = HintClause->getHint(); 4390 LexicalScope Scope(*this, S.getSourceRange()); 4391 EmitStopPoint(&S); 4392 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 4393 S.getDirectiveName().getAsString(), 4394 CodeGen, S.getBeginLoc(), Hint); 4395 } 4396 4397 void CodeGenFunction::EmitOMPParallelForDirective( 4398 const OMPParallelForDirective &S) { 4399 // Emit directive as a combined directive that consists of two implicit 4400 // directives: 'parallel' with 'for' directive. 4401 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4402 Action.Enter(CGF); 4403 emitOMPCopyinClause(CGF, S); 4404 (void)emitWorksharingDirective(CGF, S, S.hasCancel()); 4405 }; 4406 { 4407 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 4408 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 4409 CGCapturedStmtInfo CGSI(CR_OpenMP); 4410 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGSI); 4411 OMPLoopScope LoopScope(CGF, S); 4412 return CGF.EmitScalarExpr(S.getNumIterations()); 4413 }; 4414 bool IsInscan = llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 4415 [](const OMPReductionClause *C) { 4416 return C->getModifier() == OMPC_REDUCTION_inscan; 4417 }); 4418 if (IsInscan) 4419 emitScanBasedDirectiveDecls(*this, S, NumIteratorsGen); 4420 auto LPCRegion = 4421 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4422 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 4423 emitEmptyBoundParameters); 4424 if (IsInscan) 4425 emitScanBasedDirectiveFinals(*this, S, NumIteratorsGen); 4426 } 4427 // Check for outer lastprivate conditional update. 4428 checkForLastprivateConditionalUpdate(*this, S); 4429 } 4430 4431 void CodeGenFunction::EmitOMPParallelForSimdDirective( 4432 const OMPParallelForSimdDirective &S) { 4433 // Emit directive as a combined directive that consists of two implicit 4434 // directives: 'parallel' with 'for' directive. 4435 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4436 Action.Enter(CGF); 4437 emitOMPCopyinClause(CGF, S); 4438 (void)emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 4439 }; 4440 { 4441 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 4442 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 4443 CGCapturedStmtInfo CGSI(CR_OpenMP); 4444 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGSI); 4445 OMPLoopScope LoopScope(CGF, S); 4446 return CGF.EmitScalarExpr(S.getNumIterations()); 4447 }; 4448 bool IsInscan = llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 4449 [](const OMPReductionClause *C) { 4450 return C->getModifier() == OMPC_REDUCTION_inscan; 4451 }); 4452 if (IsInscan) 4453 emitScanBasedDirectiveDecls(*this, S, NumIteratorsGen); 4454 auto LPCRegion = 4455 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4456 emitCommonOMPParallelDirective(*this, S, OMPD_for_simd, CodeGen, 4457 emitEmptyBoundParameters); 4458 if (IsInscan) 4459 emitScanBasedDirectiveFinals(*this, S, NumIteratorsGen); 4460 } 4461 // Check for outer lastprivate conditional update. 4462 checkForLastprivateConditionalUpdate(*this, S); 4463 } 4464 4465 void CodeGenFunction::EmitOMPParallelMasterDirective( 4466 const OMPParallelMasterDirective &S) { 4467 // Emit directive as a combined directive that consists of two implicit 4468 // directives: 'parallel' with 'master' directive. 4469 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4470 Action.Enter(CGF); 4471 OMPPrivateScope PrivateScope(CGF); 4472 emitOMPCopyinClause(CGF, S); 4473 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4474 CGF.EmitOMPPrivateClause(S, PrivateScope); 4475 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4476 (void)PrivateScope.Privatize(); 4477 emitMaster(CGF, S); 4478 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4479 }; 4480 { 4481 auto LPCRegion = 4482 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4483 emitCommonOMPParallelDirective(*this, S, OMPD_master, CodeGen, 4484 emitEmptyBoundParameters); 4485 emitPostUpdateForReductionClause(*this, S, 4486 [](CodeGenFunction &) { return nullptr; }); 4487 } 4488 // Check for outer lastprivate conditional update. 4489 checkForLastprivateConditionalUpdate(*this, S); 4490 } 4491 4492 void CodeGenFunction::EmitOMPParallelMaskedDirective( 4493 const OMPParallelMaskedDirective &S) { 4494 // Emit directive as a combined directive that consists of two implicit 4495 // directives: 'parallel' with 'masked' directive. 4496 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4497 Action.Enter(CGF); 4498 OMPPrivateScope PrivateScope(CGF); 4499 emitOMPCopyinClause(CGF, S); 4500 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4501 CGF.EmitOMPPrivateClause(S, PrivateScope); 4502 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4503 (void)PrivateScope.Privatize(); 4504 emitMasked(CGF, S); 4505 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4506 }; 4507 { 4508 auto LPCRegion = 4509 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4510 emitCommonOMPParallelDirective(*this, S, OMPD_masked, CodeGen, 4511 emitEmptyBoundParameters); 4512 emitPostUpdateForReductionClause(*this, S, 4513 [](CodeGenFunction &) { return nullptr; }); 4514 } 4515 // Check for outer lastprivate conditional update. 4516 checkForLastprivateConditionalUpdate(*this, S); 4517 } 4518 4519 void CodeGenFunction::EmitOMPParallelSectionsDirective( 4520 const OMPParallelSectionsDirective &S) { 4521 // Emit directive as a combined directive that consists of two implicit 4522 // directives: 'parallel' with 'sections' directive. 4523 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4524 Action.Enter(CGF); 4525 emitOMPCopyinClause(CGF, S); 4526 CGF.EmitSections(S); 4527 }; 4528 { 4529 auto LPCRegion = 4530 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4531 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 4532 emitEmptyBoundParameters); 4533 } 4534 // Check for outer lastprivate conditional update. 4535 checkForLastprivateConditionalUpdate(*this, S); 4536 } 4537 4538 namespace { 4539 /// Get the list of variables declared in the context of the untied tasks. 4540 class CheckVarsEscapingUntiedTaskDeclContext final 4541 : public ConstStmtVisitor<CheckVarsEscapingUntiedTaskDeclContext> { 4542 llvm::SmallVector<const VarDecl *, 4> PrivateDecls; 4543 4544 public: 4545 explicit CheckVarsEscapingUntiedTaskDeclContext() = default; 4546 virtual ~CheckVarsEscapingUntiedTaskDeclContext() = default; 4547 void VisitDeclStmt(const DeclStmt *S) { 4548 if (!S) 4549 return; 4550 // Need to privatize only local vars, static locals can be processed as is. 4551 for (const Decl *D : S->decls()) { 4552 if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) 4553 if (VD->hasLocalStorage()) 4554 PrivateDecls.push_back(VD); 4555 } 4556 } 4557 void VisitOMPExecutableDirective(const OMPExecutableDirective *) {} 4558 void VisitCapturedStmt(const CapturedStmt *) {} 4559 void VisitLambdaExpr(const LambdaExpr *) {} 4560 void VisitBlockExpr(const BlockExpr *) {} 4561 void VisitStmt(const Stmt *S) { 4562 if (!S) 4563 return; 4564 for (const Stmt *Child : S->children()) 4565 if (Child) 4566 Visit(Child); 4567 } 4568 4569 /// Swaps list of vars with the provided one. 4570 ArrayRef<const VarDecl *> getPrivateDecls() const { return PrivateDecls; } 4571 }; 4572 } // anonymous namespace 4573 4574 static void buildDependences(const OMPExecutableDirective &S, 4575 OMPTaskDataTy &Data) { 4576 4577 // First look for 'omp_all_memory' and add this first. 4578 bool OmpAllMemory = false; 4579 if (llvm::any_of( 4580 S.getClausesOfKind<OMPDependClause>(), [](const OMPDependClause *C) { 4581 return C->getDependencyKind() == OMPC_DEPEND_outallmemory || 4582 C->getDependencyKind() == OMPC_DEPEND_inoutallmemory; 4583 })) { 4584 OmpAllMemory = true; 4585 // Since both OMPC_DEPEND_outallmemory and OMPC_DEPEND_inoutallmemory are 4586 // equivalent to the runtime, always use OMPC_DEPEND_outallmemory to 4587 // simplify. 4588 OMPTaskDataTy::DependData &DD = 4589 Data.Dependences.emplace_back(OMPC_DEPEND_outallmemory, 4590 /*IteratorExpr=*/nullptr); 4591 // Add a nullptr Expr to simplify the codegen in emitDependData. 4592 DD.DepExprs.push_back(nullptr); 4593 } 4594 // Add remaining dependences skipping any 'out' or 'inout' if they are 4595 // overridden by 'omp_all_memory'. 4596 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 4597 OpenMPDependClauseKind Kind = C->getDependencyKind(); 4598 if (Kind == OMPC_DEPEND_outallmemory || Kind == OMPC_DEPEND_inoutallmemory) 4599 continue; 4600 if (OmpAllMemory && (Kind == OMPC_DEPEND_out || Kind == OMPC_DEPEND_inout)) 4601 continue; 4602 OMPTaskDataTy::DependData &DD = 4603 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 4604 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 4605 } 4606 } 4607 4608 void CodeGenFunction::EmitOMPTaskBasedDirective( 4609 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 4610 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 4611 OMPTaskDataTy &Data) { 4612 // Emit outlined function for task construct. 4613 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 4614 auto I = CS->getCapturedDecl()->param_begin(); 4615 auto PartId = std::next(I); 4616 auto TaskT = std::next(I, 4); 4617 // Check if the task is final 4618 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 4619 // If the condition constant folds and can be elided, try to avoid emitting 4620 // the condition and the dead arm of the if/else. 4621 const Expr *Cond = Clause->getCondition(); 4622 bool CondConstant; 4623 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 4624 Data.Final.setInt(CondConstant); 4625 else 4626 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 4627 } else { 4628 // By default the task is not final. 4629 Data.Final.setInt(/*IntVal=*/false); 4630 } 4631 // Check if the task has 'priority' clause. 4632 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 4633 const Expr *Prio = Clause->getPriority(); 4634 Data.Priority.setInt(/*IntVal=*/true); 4635 Data.Priority.setPointer(EmitScalarConversion( 4636 EmitScalarExpr(Prio), Prio->getType(), 4637 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 4638 Prio->getExprLoc())); 4639 } 4640 // The first function argument for tasks is a thread id, the second one is a 4641 // part id (0 for tied tasks, >=0 for untied task). 4642 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 4643 // Get list of private variables. 4644 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 4645 auto IRef = C->varlist_begin(); 4646 for (const Expr *IInit : C->private_copies()) { 4647 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4648 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4649 Data.PrivateVars.push_back(*IRef); 4650 Data.PrivateCopies.push_back(IInit); 4651 } 4652 ++IRef; 4653 } 4654 } 4655 EmittedAsPrivate.clear(); 4656 // Get list of firstprivate variables. 4657 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 4658 auto IRef = C->varlist_begin(); 4659 auto IElemInitRef = C->inits().begin(); 4660 for (const Expr *IInit : C->private_copies()) { 4661 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4662 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4663 Data.FirstprivateVars.push_back(*IRef); 4664 Data.FirstprivateCopies.push_back(IInit); 4665 Data.FirstprivateInits.push_back(*IElemInitRef); 4666 } 4667 ++IRef; 4668 ++IElemInitRef; 4669 } 4670 } 4671 // Get list of lastprivate variables (for taskloops). 4672 llvm::MapVector<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 4673 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 4674 auto IRef = C->varlist_begin(); 4675 auto ID = C->destination_exprs().begin(); 4676 for (const Expr *IInit : C->private_copies()) { 4677 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4678 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4679 Data.LastprivateVars.push_back(*IRef); 4680 Data.LastprivateCopies.push_back(IInit); 4681 } 4682 LastprivateDstsOrigs.insert( 4683 std::make_pair(cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 4684 cast<DeclRefExpr>(*IRef))); 4685 ++IRef; 4686 ++ID; 4687 } 4688 } 4689 SmallVector<const Expr *, 4> LHSs; 4690 SmallVector<const Expr *, 4> RHSs; 4691 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 4692 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 4693 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 4694 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 4695 Data.ReductionOps.append(C->reduction_ops().begin(), 4696 C->reduction_ops().end()); 4697 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4698 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4699 } 4700 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 4701 *this, S.getBeginLoc(), LHSs, RHSs, Data); 4702 // Build list of dependences. 4703 buildDependences(S, Data); 4704 // Get list of local vars for untied tasks. 4705 if (!Data.Tied) { 4706 CheckVarsEscapingUntiedTaskDeclContext Checker; 4707 Checker.Visit(S.getInnermostCapturedStmt()->getCapturedStmt()); 4708 Data.PrivateLocals.append(Checker.getPrivateDecls().begin(), 4709 Checker.getPrivateDecls().end()); 4710 } 4711 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 4712 CapturedRegion](CodeGenFunction &CGF, 4713 PrePostActionTy &Action) { 4714 llvm::MapVector<CanonicalDeclPtr<const VarDecl>, 4715 std::pair<Address, Address>> 4716 UntiedLocalVars; 4717 // Set proper addresses for generated private copies. 4718 OMPPrivateScope Scope(CGF); 4719 // Generate debug info for variables present in shared clause. 4720 if (auto *DI = CGF.getDebugInfo()) { 4721 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields = 4722 CGF.CapturedStmtInfo->getCaptureFields(); 4723 llvm::Value *ContextValue = CGF.CapturedStmtInfo->getContextValue(); 4724 if (CaptureFields.size() && ContextValue) { 4725 unsigned CharWidth = CGF.getContext().getCharWidth(); 4726 // The shared variables are packed together as members of structure. 4727 // So the address of each shared variable can be computed by adding 4728 // offset of it (within record) to the base address of record. For each 4729 // shared variable, debug intrinsic llvm.dbg.declare is generated with 4730 // appropriate expressions (DIExpression). 4731 // Ex: 4732 // %12 = load %struct.anon*, %struct.anon** %__context.addr.i 4733 // call void @llvm.dbg.declare(metadata %struct.anon* %12, 4734 // metadata !svar1, 4735 // metadata !DIExpression(DW_OP_deref)) 4736 // call void @llvm.dbg.declare(metadata %struct.anon* %12, 4737 // metadata !svar2, 4738 // metadata !DIExpression(DW_OP_plus_uconst, 8, DW_OP_deref)) 4739 for (auto It = CaptureFields.begin(); It != CaptureFields.end(); ++It) { 4740 const VarDecl *SharedVar = It->first; 4741 RecordDecl *CaptureRecord = It->second->getParent(); 4742 const ASTRecordLayout &Layout = 4743 CGF.getContext().getASTRecordLayout(CaptureRecord); 4744 unsigned Offset = 4745 Layout.getFieldOffset(It->second->getFieldIndex()) / CharWidth; 4746 if (CGF.CGM.getCodeGenOpts().hasReducedDebugInfo()) 4747 (void)DI->EmitDeclareOfAutoVariable(SharedVar, ContextValue, 4748 CGF.Builder, false); 4749 llvm::Instruction &Last = CGF.Builder.GetInsertBlock()->back(); 4750 // Get the call dbg.declare instruction we just created and update 4751 // its DIExpression to add offset to base address. 4752 if (auto DDI = dyn_cast<llvm::DbgVariableIntrinsic>(&Last)) { 4753 SmallVector<uint64_t, 8> Ops; 4754 // Add offset to the base address if non zero. 4755 if (Offset) { 4756 Ops.push_back(llvm::dwarf::DW_OP_plus_uconst); 4757 Ops.push_back(Offset); 4758 } 4759 Ops.push_back(llvm::dwarf::DW_OP_deref); 4760 auto &Ctx = DDI->getContext(); 4761 llvm::DIExpression *DIExpr = llvm::DIExpression::get(Ctx, Ops); 4762 Last.setOperand(2, llvm::MetadataAsValue::get(Ctx, DIExpr)); 4763 } 4764 } 4765 } 4766 } 4767 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> FirstprivatePtrs; 4768 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 4769 !Data.LastprivateVars.empty() || !Data.PrivateLocals.empty()) { 4770 enum { PrivatesParam = 2, CopyFnParam = 3 }; 4771 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 4772 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 4773 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 4774 CS->getCapturedDecl()->getParam(PrivatesParam))); 4775 // Map privates. 4776 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 4777 llvm::SmallVector<llvm::Value *, 16> CallArgs; 4778 llvm::SmallVector<llvm::Type *, 4> ParamTypes; 4779 CallArgs.push_back(PrivatesPtr); 4780 ParamTypes.push_back(PrivatesPtr->getType()); 4781 for (const Expr *E : Data.PrivateVars) { 4782 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4783 Address PrivatePtr = CGF.CreateMemTemp( 4784 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 4785 PrivatePtrs.emplace_back(VD, PrivatePtr); 4786 CallArgs.push_back(PrivatePtr.getPointer()); 4787 ParamTypes.push_back(PrivatePtr.getType()); 4788 } 4789 for (const Expr *E : Data.FirstprivateVars) { 4790 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4791 Address PrivatePtr = 4792 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4793 ".firstpriv.ptr.addr"); 4794 PrivatePtrs.emplace_back(VD, PrivatePtr); 4795 FirstprivatePtrs.emplace_back(VD, PrivatePtr); 4796 CallArgs.push_back(PrivatePtr.getPointer()); 4797 ParamTypes.push_back(PrivatePtr.getType()); 4798 } 4799 for (const Expr *E : Data.LastprivateVars) { 4800 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4801 Address PrivatePtr = 4802 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4803 ".lastpriv.ptr.addr"); 4804 PrivatePtrs.emplace_back(VD, PrivatePtr); 4805 CallArgs.push_back(PrivatePtr.getPointer()); 4806 ParamTypes.push_back(PrivatePtr.getType()); 4807 } 4808 for (const VarDecl *VD : Data.PrivateLocals) { 4809 QualType Ty = VD->getType().getNonReferenceType(); 4810 if (VD->getType()->isLValueReferenceType()) 4811 Ty = CGF.getContext().getPointerType(Ty); 4812 if (isAllocatableDecl(VD)) 4813 Ty = CGF.getContext().getPointerType(Ty); 4814 Address PrivatePtr = CGF.CreateMemTemp( 4815 CGF.getContext().getPointerType(Ty), ".local.ptr.addr"); 4816 auto Result = UntiedLocalVars.insert( 4817 std::make_pair(VD, std::make_pair(PrivatePtr, Address::invalid()))); 4818 // If key exists update in place. 4819 if (Result.second == false) 4820 *Result.first = std::make_pair( 4821 VD, std::make_pair(PrivatePtr, Address::invalid())); 4822 CallArgs.push_back(PrivatePtr.getPointer()); 4823 ParamTypes.push_back(PrivatePtr.getType()); 4824 } 4825 auto *CopyFnTy = llvm::FunctionType::get(CGF.Builder.getVoidTy(), 4826 ParamTypes, /*isVarArg=*/false); 4827 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 4828 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 4829 for (const auto &Pair : LastprivateDstsOrigs) { 4830 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 4831 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD), 4832 /*RefersToEnclosingVariableOrCapture=*/ 4833 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 4834 Pair.second->getType(), VK_LValue, 4835 Pair.second->getExprLoc()); 4836 Scope.addPrivate(Pair.first, CGF.EmitLValue(&DRE).getAddress(CGF)); 4837 } 4838 for (const auto &Pair : PrivatePtrs) { 4839 Address Replacement = Address( 4840 CGF.Builder.CreateLoad(Pair.second), 4841 CGF.ConvertTypeForMem(Pair.first->getType().getNonReferenceType()), 4842 CGF.getContext().getDeclAlign(Pair.first)); 4843 Scope.addPrivate(Pair.first, Replacement); 4844 if (auto *DI = CGF.getDebugInfo()) 4845 if (CGF.CGM.getCodeGenOpts().hasReducedDebugInfo()) 4846 (void)DI->EmitDeclareOfAutoVariable( 4847 Pair.first, Pair.second.getPointer(), CGF.Builder, 4848 /*UsePointerValue*/ true); 4849 } 4850 // Adjust mapping for internal locals by mapping actual memory instead of 4851 // a pointer to this memory. 4852 for (auto &Pair : UntiedLocalVars) { 4853 QualType VDType = Pair.first->getType().getNonReferenceType(); 4854 if (Pair.first->getType()->isLValueReferenceType()) 4855 VDType = CGF.getContext().getPointerType(VDType); 4856 if (isAllocatableDecl(Pair.first)) { 4857 llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first); 4858 Address Replacement( 4859 Ptr, 4860 CGF.ConvertTypeForMem(CGF.getContext().getPointerType(VDType)), 4861 CGF.getPointerAlign()); 4862 Pair.second.first = Replacement; 4863 Ptr = CGF.Builder.CreateLoad(Replacement); 4864 Replacement = Address(Ptr, CGF.ConvertTypeForMem(VDType), 4865 CGF.getContext().getDeclAlign(Pair.first)); 4866 Pair.second.second = Replacement; 4867 } else { 4868 llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first); 4869 Address Replacement(Ptr, CGF.ConvertTypeForMem(VDType), 4870 CGF.getContext().getDeclAlign(Pair.first)); 4871 Pair.second.first = Replacement; 4872 } 4873 } 4874 } 4875 if (Data.Reductions) { 4876 OMPPrivateScope FirstprivateScope(CGF); 4877 for (const auto &Pair : FirstprivatePtrs) { 4878 Address Replacement( 4879 CGF.Builder.CreateLoad(Pair.second), 4880 CGF.ConvertTypeForMem(Pair.first->getType().getNonReferenceType()), 4881 CGF.getContext().getDeclAlign(Pair.first)); 4882 FirstprivateScope.addPrivate(Pair.first, Replacement); 4883 } 4884 (void)FirstprivateScope.Privatize(); 4885 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 4886 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionVars, 4887 Data.ReductionCopies, Data.ReductionOps); 4888 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 4889 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 4890 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 4891 RedCG.emitSharedOrigLValue(CGF, Cnt); 4892 RedCG.emitAggregateType(CGF, Cnt); 4893 // FIXME: This must removed once the runtime library is fixed. 4894 // Emit required threadprivate variables for 4895 // initializer/combiner/finalizer. 4896 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 4897 RedCG, Cnt); 4898 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 4899 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 4900 Replacement = 4901 Address(CGF.EmitScalarConversion( 4902 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 4903 CGF.getContext().getPointerType( 4904 Data.ReductionCopies[Cnt]->getType()), 4905 Data.ReductionCopies[Cnt]->getExprLoc()), 4906 CGF.ConvertTypeForMem(Data.ReductionCopies[Cnt]->getType()), 4907 Replacement.getAlignment()); 4908 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 4909 Scope.addPrivate(RedCG.getBaseDecl(Cnt), Replacement); 4910 } 4911 } 4912 // Privatize all private variables except for in_reduction items. 4913 (void)Scope.Privatize(); 4914 SmallVector<const Expr *, 4> InRedVars; 4915 SmallVector<const Expr *, 4> InRedPrivs; 4916 SmallVector<const Expr *, 4> InRedOps; 4917 SmallVector<const Expr *, 4> TaskgroupDescriptors; 4918 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 4919 auto IPriv = C->privates().begin(); 4920 auto IRed = C->reduction_ops().begin(); 4921 auto ITD = C->taskgroup_descriptors().begin(); 4922 for (const Expr *Ref : C->varlists()) { 4923 InRedVars.emplace_back(Ref); 4924 InRedPrivs.emplace_back(*IPriv); 4925 InRedOps.emplace_back(*IRed); 4926 TaskgroupDescriptors.emplace_back(*ITD); 4927 std::advance(IPriv, 1); 4928 std::advance(IRed, 1); 4929 std::advance(ITD, 1); 4930 } 4931 } 4932 // Privatize in_reduction items here, because taskgroup descriptors must be 4933 // privatized earlier. 4934 OMPPrivateScope InRedScope(CGF); 4935 if (!InRedVars.empty()) { 4936 ReductionCodeGen RedCG(InRedVars, InRedVars, InRedPrivs, InRedOps); 4937 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 4938 RedCG.emitSharedOrigLValue(CGF, Cnt); 4939 RedCG.emitAggregateType(CGF, Cnt); 4940 // The taskgroup descriptor variable is always implicit firstprivate and 4941 // privatized already during processing of the firstprivates. 4942 // FIXME: This must removed once the runtime library is fixed. 4943 // Emit required threadprivate variables for 4944 // initializer/combiner/finalizer. 4945 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 4946 RedCG, Cnt); 4947 llvm::Value *ReductionsPtr; 4948 if (const Expr *TRExpr = TaskgroupDescriptors[Cnt]) { 4949 ReductionsPtr = CGF.EmitLoadOfScalar(CGF.EmitLValue(TRExpr), 4950 TRExpr->getExprLoc()); 4951 } else { 4952 ReductionsPtr = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); 4953 } 4954 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 4955 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 4956 Replacement = Address( 4957 CGF.EmitScalarConversion( 4958 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 4959 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 4960 InRedPrivs[Cnt]->getExprLoc()), 4961 CGF.ConvertTypeForMem(InRedPrivs[Cnt]->getType()), 4962 Replacement.getAlignment()); 4963 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 4964 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), Replacement); 4965 } 4966 } 4967 (void)InRedScope.Privatize(); 4968 4969 CGOpenMPRuntime::UntiedTaskLocalDeclsRAII LocalVarsScope(CGF, 4970 UntiedLocalVars); 4971 Action.Enter(CGF); 4972 BodyGen(CGF); 4973 }; 4974 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 4975 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 4976 Data.NumberOfParts); 4977 OMPLexicalScope Scope(*this, S, std::nullopt, 4978 !isOpenMPParallelDirective(S.getDirectiveKind()) && 4979 !isOpenMPSimdDirective(S.getDirectiveKind())); 4980 TaskGen(*this, OutlinedFn, Data); 4981 } 4982 4983 static ImplicitParamDecl * 4984 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 4985 QualType Ty, CapturedDecl *CD, 4986 SourceLocation Loc) { 4987 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 4988 ImplicitParamKind::Other); 4989 auto *OrigRef = DeclRefExpr::Create( 4990 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 4991 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 4992 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 4993 ImplicitParamKind::Other); 4994 auto *PrivateRef = DeclRefExpr::Create( 4995 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 4996 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 4997 QualType ElemType = C.getBaseElementType(Ty); 4998 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 4999 ImplicitParamKind::Other); 5000 auto *InitRef = DeclRefExpr::Create( 5001 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 5002 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 5003 PrivateVD->setInitStyle(VarDecl::CInit); 5004 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 5005 InitRef, /*BasePath=*/nullptr, 5006 VK_PRValue, FPOptionsOverride())); 5007 Data.FirstprivateVars.emplace_back(OrigRef); 5008 Data.FirstprivateCopies.emplace_back(PrivateRef); 5009 Data.FirstprivateInits.emplace_back(InitRef); 5010 return OrigVD; 5011 } 5012 5013 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 5014 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 5015 OMPTargetDataInfo &InputInfo) { 5016 // Emit outlined function for task construct. 5017 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 5018 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 5019 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 5020 auto I = CS->getCapturedDecl()->param_begin(); 5021 auto PartId = std::next(I); 5022 auto TaskT = std::next(I, 4); 5023 OMPTaskDataTy Data; 5024 // The task is not final. 5025 Data.Final.setInt(/*IntVal=*/false); 5026 // Get list of firstprivate variables. 5027 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 5028 auto IRef = C->varlist_begin(); 5029 auto IElemInitRef = C->inits().begin(); 5030 for (auto *IInit : C->private_copies()) { 5031 Data.FirstprivateVars.push_back(*IRef); 5032 Data.FirstprivateCopies.push_back(IInit); 5033 Data.FirstprivateInits.push_back(*IElemInitRef); 5034 ++IRef; 5035 ++IElemInitRef; 5036 } 5037 } 5038 SmallVector<const Expr *, 4> LHSs; 5039 SmallVector<const Expr *, 4> RHSs; 5040 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 5041 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 5042 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 5043 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 5044 Data.ReductionOps.append(C->reduction_ops().begin(), 5045 C->reduction_ops().end()); 5046 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 5047 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 5048 } 5049 OMPPrivateScope TargetScope(*this); 5050 VarDecl *BPVD = nullptr; 5051 VarDecl *PVD = nullptr; 5052 VarDecl *SVD = nullptr; 5053 VarDecl *MVD = nullptr; 5054 if (InputInfo.NumberOfTargetItems > 0) { 5055 auto *CD = CapturedDecl::Create( 5056 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 5057 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 5058 QualType BaseAndPointerAndMapperType = getContext().getConstantArrayType( 5059 getContext().VoidPtrTy, ArrSize, nullptr, ArraySizeModifier::Normal, 5060 /*IndexTypeQuals=*/0); 5061 BPVD = createImplicitFirstprivateForType( 5062 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 5063 PVD = createImplicitFirstprivateForType( 5064 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 5065 QualType SizesType = getContext().getConstantArrayType( 5066 getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1), 5067 ArrSize, nullptr, ArraySizeModifier::Normal, 5068 /*IndexTypeQuals=*/0); 5069 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 5070 S.getBeginLoc()); 5071 TargetScope.addPrivate(BPVD, InputInfo.BasePointersArray); 5072 TargetScope.addPrivate(PVD, InputInfo.PointersArray); 5073 TargetScope.addPrivate(SVD, InputInfo.SizesArray); 5074 // If there is no user-defined mapper, the mapper array will be nullptr. In 5075 // this case, we don't need to privatize it. 5076 if (!isa_and_nonnull<llvm::ConstantPointerNull>( 5077 InputInfo.MappersArray.getPointer())) { 5078 MVD = createImplicitFirstprivateForType( 5079 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 5080 TargetScope.addPrivate(MVD, InputInfo.MappersArray); 5081 } 5082 } 5083 (void)TargetScope.Privatize(); 5084 buildDependences(S, Data); 5085 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, MVD, 5086 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 5087 // Set proper addresses for generated private copies. 5088 OMPPrivateScope Scope(CGF); 5089 if (!Data.FirstprivateVars.empty()) { 5090 enum { PrivatesParam = 2, CopyFnParam = 3 }; 5091 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 5092 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 5093 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 5094 CS->getCapturedDecl()->getParam(PrivatesParam))); 5095 // Map privates. 5096 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 5097 llvm::SmallVector<llvm::Value *, 16> CallArgs; 5098 llvm::SmallVector<llvm::Type *, 4> ParamTypes; 5099 CallArgs.push_back(PrivatesPtr); 5100 ParamTypes.push_back(PrivatesPtr->getType()); 5101 for (const Expr *E : Data.FirstprivateVars) { 5102 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 5103 Address PrivatePtr = 5104 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 5105 ".firstpriv.ptr.addr"); 5106 PrivatePtrs.emplace_back(VD, PrivatePtr); 5107 CallArgs.push_back(PrivatePtr.getPointer()); 5108 ParamTypes.push_back(PrivatePtr.getType()); 5109 } 5110 auto *CopyFnTy = llvm::FunctionType::get(CGF.Builder.getVoidTy(), 5111 ParamTypes, /*isVarArg=*/false); 5112 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 5113 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 5114 for (const auto &Pair : PrivatePtrs) { 5115 Address Replacement( 5116 CGF.Builder.CreateLoad(Pair.second), 5117 CGF.ConvertTypeForMem(Pair.first->getType().getNonReferenceType()), 5118 CGF.getContext().getDeclAlign(Pair.first)); 5119 Scope.addPrivate(Pair.first, Replacement); 5120 } 5121 } 5122 CGF.processInReduction(S, Data, CGF, CS, Scope); 5123 if (InputInfo.NumberOfTargetItems > 0) { 5124 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 5125 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0); 5126 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 5127 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0); 5128 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 5129 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0); 5130 // If MVD is nullptr, the mapper array is not privatized 5131 if (MVD) 5132 InputInfo.MappersArray = CGF.Builder.CreateConstArrayGEP( 5133 CGF.GetAddrOfLocalVar(MVD), /*Index=*/0); 5134 } 5135 5136 Action.Enter(CGF); 5137 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 5138 auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 5139 if (CGF.CGM.getLangOpts().OpenMP >= 51 && 5140 needsTaskBasedThreadLimit(S.getDirectiveKind()) && TL) { 5141 // Emit __kmpc_set_thread_limit() to set the thread_limit for the task 5142 // enclosing this target region. This will indirectly set the thread_limit 5143 // for every applicable construct within target region. 5144 CGF.CGM.getOpenMPRuntime().emitThreadLimitClause( 5145 CGF, TL->getThreadLimit(), S.getBeginLoc()); 5146 } 5147 BodyGen(CGF); 5148 }; 5149 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 5150 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 5151 Data.NumberOfParts); 5152 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 5153 IntegerLiteral IfCond(getContext(), TrueOrFalse, 5154 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 5155 SourceLocation()); 5156 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 5157 SharedsTy, CapturedStruct, &IfCond, Data); 5158 } 5159 5160 void CodeGenFunction::processInReduction(const OMPExecutableDirective &S, 5161 OMPTaskDataTy &Data, 5162 CodeGenFunction &CGF, 5163 const CapturedStmt *CS, 5164 OMPPrivateScope &Scope) { 5165 if (Data.Reductions) { 5166 OpenMPDirectiveKind CapturedRegion = S.getDirectiveKind(); 5167 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 5168 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionVars, 5169 Data.ReductionCopies, Data.ReductionOps); 5170 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 5171 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(4))); 5172 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 5173 RedCG.emitSharedOrigLValue(CGF, Cnt); 5174 RedCG.emitAggregateType(CGF, Cnt); 5175 // FIXME: This must removed once the runtime library is fixed. 5176 // Emit required threadprivate variables for 5177 // initializer/combiner/finalizer. 5178 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 5179 RedCG, Cnt); 5180 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 5181 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 5182 Replacement = 5183 Address(CGF.EmitScalarConversion( 5184 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 5185 CGF.getContext().getPointerType( 5186 Data.ReductionCopies[Cnt]->getType()), 5187 Data.ReductionCopies[Cnt]->getExprLoc()), 5188 CGF.ConvertTypeForMem(Data.ReductionCopies[Cnt]->getType()), 5189 Replacement.getAlignment()); 5190 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 5191 Scope.addPrivate(RedCG.getBaseDecl(Cnt), Replacement); 5192 } 5193 } 5194 (void)Scope.Privatize(); 5195 SmallVector<const Expr *, 4> InRedVars; 5196 SmallVector<const Expr *, 4> InRedPrivs; 5197 SmallVector<const Expr *, 4> InRedOps; 5198 SmallVector<const Expr *, 4> TaskgroupDescriptors; 5199 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 5200 auto IPriv = C->privates().begin(); 5201 auto IRed = C->reduction_ops().begin(); 5202 auto ITD = C->taskgroup_descriptors().begin(); 5203 for (const Expr *Ref : C->varlists()) { 5204 InRedVars.emplace_back(Ref); 5205 InRedPrivs.emplace_back(*IPriv); 5206 InRedOps.emplace_back(*IRed); 5207 TaskgroupDescriptors.emplace_back(*ITD); 5208 std::advance(IPriv, 1); 5209 std::advance(IRed, 1); 5210 std::advance(ITD, 1); 5211 } 5212 } 5213 OMPPrivateScope InRedScope(CGF); 5214 if (!InRedVars.empty()) { 5215 ReductionCodeGen RedCG(InRedVars, InRedVars, InRedPrivs, InRedOps); 5216 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 5217 RedCG.emitSharedOrigLValue(CGF, Cnt); 5218 RedCG.emitAggregateType(CGF, Cnt); 5219 // FIXME: This must removed once the runtime library is fixed. 5220 // Emit required threadprivate variables for 5221 // initializer/combiner/finalizer. 5222 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 5223 RedCG, Cnt); 5224 llvm::Value *ReductionsPtr; 5225 if (const Expr *TRExpr = TaskgroupDescriptors[Cnt]) { 5226 ReductionsPtr = 5227 CGF.EmitLoadOfScalar(CGF.EmitLValue(TRExpr), TRExpr->getExprLoc()); 5228 } else { 5229 ReductionsPtr = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); 5230 } 5231 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 5232 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 5233 Replacement = Address( 5234 CGF.EmitScalarConversion( 5235 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 5236 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 5237 InRedPrivs[Cnt]->getExprLoc()), 5238 CGF.ConvertTypeForMem(InRedPrivs[Cnt]->getType()), 5239 Replacement.getAlignment()); 5240 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 5241 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), Replacement); 5242 } 5243 } 5244 (void)InRedScope.Privatize(); 5245 } 5246 5247 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 5248 // Emit outlined function for task construct. 5249 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 5250 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 5251 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 5252 const Expr *IfCond = nullptr; 5253 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 5254 if (C->getNameModifier() == OMPD_unknown || 5255 C->getNameModifier() == OMPD_task) { 5256 IfCond = C->getCondition(); 5257 break; 5258 } 5259 } 5260 5261 OMPTaskDataTy Data; 5262 // Check if we should emit tied or untied task. 5263 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 5264 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 5265 CGF.EmitStmt(CS->getCapturedStmt()); 5266 }; 5267 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 5268 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 5269 const OMPTaskDataTy &Data) { 5270 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 5271 SharedsTy, CapturedStruct, IfCond, 5272 Data); 5273 }; 5274 auto LPCRegion = 5275 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 5276 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 5277 } 5278 5279 void CodeGenFunction::EmitOMPTaskyieldDirective( 5280 const OMPTaskyieldDirective &S) { 5281 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 5282 } 5283 5284 void CodeGenFunction::EmitOMPErrorDirective(const OMPErrorDirective &S) { 5285 const OMPMessageClause *MC = S.getSingleClause<OMPMessageClause>(); 5286 Expr *ME = MC ? MC->getMessageString() : nullptr; 5287 const OMPSeverityClause *SC = S.getSingleClause<OMPSeverityClause>(); 5288 bool IsFatal = false; 5289 if (!SC || SC->getSeverityKind() == OMPC_SEVERITY_fatal) 5290 IsFatal = true; 5291 CGM.getOpenMPRuntime().emitErrorCall(*this, S.getBeginLoc(), ME, IsFatal); 5292 } 5293 5294 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 5295 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 5296 } 5297 5298 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 5299 OMPTaskDataTy Data; 5300 // Build list of dependences 5301 buildDependences(S, Data); 5302 Data.HasNowaitClause = S.hasClausesOfKind<OMPNowaitClause>(); 5303 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc(), Data); 5304 } 5305 5306 bool isSupportedByOpenMPIRBuilder(const OMPTaskgroupDirective &T) { 5307 return T.clauses().empty(); 5308 } 5309 5310 void CodeGenFunction::EmitOMPTaskgroupDirective( 5311 const OMPTaskgroupDirective &S) { 5312 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5313 if (CGM.getLangOpts().OpenMPIRBuilder && isSupportedByOpenMPIRBuilder(S)) { 5314 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 5315 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 5316 InsertPointTy AllocaIP(AllocaInsertPt->getParent(), 5317 AllocaInsertPt->getIterator()); 5318 5319 auto BodyGenCB = [&, this](InsertPointTy AllocaIP, 5320 InsertPointTy CodeGenIP) { 5321 Builder.restoreIP(CodeGenIP); 5322 EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 5323 }; 5324 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 5325 if (!CapturedStmtInfo) 5326 CapturedStmtInfo = &CapStmtInfo; 5327 Builder.restoreIP(OMPBuilder.createTaskgroup(Builder, AllocaIP, BodyGenCB)); 5328 return; 5329 } 5330 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 5331 Action.Enter(CGF); 5332 if (const Expr *E = S.getReductionRef()) { 5333 SmallVector<const Expr *, 4> LHSs; 5334 SmallVector<const Expr *, 4> RHSs; 5335 OMPTaskDataTy Data; 5336 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 5337 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 5338 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 5339 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 5340 Data.ReductionOps.append(C->reduction_ops().begin(), 5341 C->reduction_ops().end()); 5342 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 5343 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 5344 } 5345 llvm::Value *ReductionDesc = 5346 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 5347 LHSs, RHSs, Data); 5348 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 5349 CGF.EmitVarDecl(*VD); 5350 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 5351 /*Volatile=*/false, E->getType()); 5352 } 5353 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 5354 }; 5355 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 5356 } 5357 5358 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 5359 llvm::AtomicOrdering AO = S.getSingleClause<OMPFlushClause>() 5360 ? llvm::AtomicOrdering::NotAtomic 5361 : llvm::AtomicOrdering::AcquireRelease; 5362 CGM.getOpenMPRuntime().emitFlush( 5363 *this, 5364 [&S]() -> ArrayRef<const Expr *> { 5365 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 5366 return llvm::ArrayRef(FlushClause->varlist_begin(), 5367 FlushClause->varlist_end()); 5368 return std::nullopt; 5369 }(), 5370 S.getBeginLoc(), AO); 5371 } 5372 5373 void CodeGenFunction::EmitOMPDepobjDirective(const OMPDepobjDirective &S) { 5374 const auto *DO = S.getSingleClause<OMPDepobjClause>(); 5375 LValue DOLVal = EmitLValue(DO->getDepobj()); 5376 if (const auto *DC = S.getSingleClause<OMPDependClause>()) { 5377 OMPTaskDataTy::DependData Dependencies(DC->getDependencyKind(), 5378 DC->getModifier()); 5379 Dependencies.DepExprs.append(DC->varlist_begin(), DC->varlist_end()); 5380 Address DepAddr = CGM.getOpenMPRuntime().emitDepobjDependClause( 5381 *this, Dependencies, DC->getBeginLoc()); 5382 EmitStoreOfScalar(DepAddr.getPointer(), DOLVal); 5383 return; 5384 } 5385 if (const auto *DC = S.getSingleClause<OMPDestroyClause>()) { 5386 CGM.getOpenMPRuntime().emitDestroyClause(*this, DOLVal, DC->getBeginLoc()); 5387 return; 5388 } 5389 if (const auto *UC = S.getSingleClause<OMPUpdateClause>()) { 5390 CGM.getOpenMPRuntime().emitUpdateClause( 5391 *this, DOLVal, UC->getDependencyKind(), UC->getBeginLoc()); 5392 return; 5393 } 5394 } 5395 5396 void CodeGenFunction::EmitOMPScanDirective(const OMPScanDirective &S) { 5397 if (!OMPParentLoopDirectiveForScan) 5398 return; 5399 const OMPExecutableDirective &ParentDir = *OMPParentLoopDirectiveForScan; 5400 bool IsInclusive = S.hasClausesOfKind<OMPInclusiveClause>(); 5401 SmallVector<const Expr *, 4> Shareds; 5402 SmallVector<const Expr *, 4> Privates; 5403 SmallVector<const Expr *, 4> LHSs; 5404 SmallVector<const Expr *, 4> RHSs; 5405 SmallVector<const Expr *, 4> ReductionOps; 5406 SmallVector<const Expr *, 4> CopyOps; 5407 SmallVector<const Expr *, 4> CopyArrayTemps; 5408 SmallVector<const Expr *, 4> CopyArrayElems; 5409 for (const auto *C : ParentDir.getClausesOfKind<OMPReductionClause>()) { 5410 if (C->getModifier() != OMPC_REDUCTION_inscan) 5411 continue; 5412 Shareds.append(C->varlist_begin(), C->varlist_end()); 5413 Privates.append(C->privates().begin(), C->privates().end()); 5414 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 5415 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 5416 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 5417 CopyOps.append(C->copy_ops().begin(), C->copy_ops().end()); 5418 CopyArrayTemps.append(C->copy_array_temps().begin(), 5419 C->copy_array_temps().end()); 5420 CopyArrayElems.append(C->copy_array_elems().begin(), 5421 C->copy_array_elems().end()); 5422 } 5423 if (ParentDir.getDirectiveKind() == OMPD_simd || 5424 (getLangOpts().OpenMPSimd && 5425 isOpenMPSimdDirective(ParentDir.getDirectiveKind()))) { 5426 // For simd directive and simd-based directives in simd only mode, use the 5427 // following codegen: 5428 // int x = 0; 5429 // #pragma omp simd reduction(inscan, +: x) 5430 // for (..) { 5431 // <first part> 5432 // #pragma omp scan inclusive(x) 5433 // <second part> 5434 // } 5435 // is transformed to: 5436 // int x = 0; 5437 // for (..) { 5438 // int x_priv = 0; 5439 // <first part> 5440 // x = x_priv + x; 5441 // x_priv = x; 5442 // <second part> 5443 // } 5444 // and 5445 // int x = 0; 5446 // #pragma omp simd reduction(inscan, +: x) 5447 // for (..) { 5448 // <first part> 5449 // #pragma omp scan exclusive(x) 5450 // <second part> 5451 // } 5452 // to 5453 // int x = 0; 5454 // for (..) { 5455 // int x_priv = 0; 5456 // <second part> 5457 // int temp = x; 5458 // x = x_priv + x; 5459 // x_priv = temp; 5460 // <first part> 5461 // } 5462 llvm::BasicBlock *OMPScanReduce = createBasicBlock("omp.inscan.reduce"); 5463 EmitBranch(IsInclusive 5464 ? OMPScanReduce 5465 : BreakContinueStack.back().ContinueBlock.getBlock()); 5466 EmitBlock(OMPScanDispatch); 5467 { 5468 // New scope for correct construction/destruction of temp variables for 5469 // exclusive scan. 5470 LexicalScope Scope(*this, S.getSourceRange()); 5471 EmitBranch(IsInclusive ? OMPBeforeScanBlock : OMPAfterScanBlock); 5472 EmitBlock(OMPScanReduce); 5473 if (!IsInclusive) { 5474 // Create temp var and copy LHS value to this temp value. 5475 // TMP = LHS; 5476 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5477 const Expr *PrivateExpr = Privates[I]; 5478 const Expr *TempExpr = CopyArrayTemps[I]; 5479 EmitAutoVarDecl( 5480 *cast<VarDecl>(cast<DeclRefExpr>(TempExpr)->getDecl())); 5481 LValue DestLVal = EmitLValue(TempExpr); 5482 LValue SrcLVal = EmitLValue(LHSs[I]); 5483 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5484 SrcLVal.getAddress(*this), 5485 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5486 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5487 CopyOps[I]); 5488 } 5489 } 5490 CGM.getOpenMPRuntime().emitReduction( 5491 *this, ParentDir.getEndLoc(), Privates, LHSs, RHSs, ReductionOps, 5492 {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_simd}); 5493 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5494 const Expr *PrivateExpr = Privates[I]; 5495 LValue DestLVal; 5496 LValue SrcLVal; 5497 if (IsInclusive) { 5498 DestLVal = EmitLValue(RHSs[I]); 5499 SrcLVal = EmitLValue(LHSs[I]); 5500 } else { 5501 const Expr *TempExpr = CopyArrayTemps[I]; 5502 DestLVal = EmitLValue(RHSs[I]); 5503 SrcLVal = EmitLValue(TempExpr); 5504 } 5505 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5506 SrcLVal.getAddress(*this), 5507 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5508 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5509 CopyOps[I]); 5510 } 5511 } 5512 EmitBranch(IsInclusive ? OMPAfterScanBlock : OMPBeforeScanBlock); 5513 OMPScanExitBlock = IsInclusive 5514 ? BreakContinueStack.back().ContinueBlock.getBlock() 5515 : OMPScanReduce; 5516 EmitBlock(OMPAfterScanBlock); 5517 return; 5518 } 5519 if (!IsInclusive) { 5520 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 5521 EmitBlock(OMPScanExitBlock); 5522 } 5523 if (OMPFirstScanLoop) { 5524 // Emit buffer[i] = red; at the end of the input phase. 5525 const auto *IVExpr = cast<OMPLoopDirective>(ParentDir) 5526 .getIterationVariable() 5527 ->IgnoreParenImpCasts(); 5528 LValue IdxLVal = EmitLValue(IVExpr); 5529 llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc()); 5530 IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false); 5531 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5532 const Expr *PrivateExpr = Privates[I]; 5533 const Expr *OrigExpr = Shareds[I]; 5534 const Expr *CopyArrayElem = CopyArrayElems[I]; 5535 OpaqueValueMapping IdxMapping( 5536 *this, 5537 cast<OpaqueValueExpr>( 5538 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 5539 RValue::get(IdxVal)); 5540 LValue DestLVal = EmitLValue(CopyArrayElem); 5541 LValue SrcLVal = EmitLValue(OrigExpr); 5542 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5543 SrcLVal.getAddress(*this), 5544 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5545 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5546 CopyOps[I]); 5547 } 5548 } 5549 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 5550 if (IsInclusive) { 5551 EmitBlock(OMPScanExitBlock); 5552 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 5553 } 5554 EmitBlock(OMPScanDispatch); 5555 if (!OMPFirstScanLoop) { 5556 // Emit red = buffer[i]; at the entrance to the scan phase. 5557 const auto *IVExpr = cast<OMPLoopDirective>(ParentDir) 5558 .getIterationVariable() 5559 ->IgnoreParenImpCasts(); 5560 LValue IdxLVal = EmitLValue(IVExpr); 5561 llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc()); 5562 IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false); 5563 llvm::BasicBlock *ExclusiveExitBB = nullptr; 5564 if (!IsInclusive) { 5565 llvm::BasicBlock *ContBB = createBasicBlock("omp.exclusive.dec"); 5566 ExclusiveExitBB = createBasicBlock("omp.exclusive.copy.exit"); 5567 llvm::Value *Cmp = Builder.CreateIsNull(IdxVal); 5568 Builder.CreateCondBr(Cmp, ExclusiveExitBB, ContBB); 5569 EmitBlock(ContBB); 5570 // Use idx - 1 iteration for exclusive scan. 5571 IdxVal = Builder.CreateNUWSub(IdxVal, llvm::ConstantInt::get(SizeTy, 1)); 5572 } 5573 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5574 const Expr *PrivateExpr = Privates[I]; 5575 const Expr *OrigExpr = Shareds[I]; 5576 const Expr *CopyArrayElem = CopyArrayElems[I]; 5577 OpaqueValueMapping IdxMapping( 5578 *this, 5579 cast<OpaqueValueExpr>( 5580 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 5581 RValue::get(IdxVal)); 5582 LValue SrcLVal = EmitLValue(CopyArrayElem); 5583 LValue DestLVal = EmitLValue(OrigExpr); 5584 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5585 SrcLVal.getAddress(*this), 5586 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5587 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5588 CopyOps[I]); 5589 } 5590 if (!IsInclusive) { 5591 EmitBlock(ExclusiveExitBB); 5592 } 5593 } 5594 EmitBranch((OMPFirstScanLoop == IsInclusive) ? OMPBeforeScanBlock 5595 : OMPAfterScanBlock); 5596 EmitBlock(OMPAfterScanBlock); 5597 } 5598 5599 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 5600 const CodeGenLoopTy &CodeGenLoop, 5601 Expr *IncExpr) { 5602 // Emit the loop iteration variable. 5603 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 5604 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 5605 EmitVarDecl(*IVDecl); 5606 5607 // Emit the iterations count variable. 5608 // If it is not a variable, Sema decided to calculate iterations count on each 5609 // iteration (e.g., it is foldable into a constant). 5610 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 5611 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 5612 // Emit calculation of the iterations count. 5613 EmitIgnoredExpr(S.getCalcLastIteration()); 5614 } 5615 5616 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 5617 5618 bool HasLastprivateClause = false; 5619 // Check pre-condition. 5620 { 5621 OMPLoopScope PreInitScope(*this, S); 5622 // Skip the entire loop if we don't meet the precondition. 5623 // If the condition constant folds and can be elided, avoid emitting the 5624 // whole loop. 5625 bool CondConstant; 5626 llvm::BasicBlock *ContBlock = nullptr; 5627 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 5628 if (!CondConstant) 5629 return; 5630 } else { 5631 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 5632 ContBlock = createBasicBlock("omp.precond.end"); 5633 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 5634 getProfileCount(&S)); 5635 EmitBlock(ThenBlock); 5636 incrementProfileCounter(&S); 5637 } 5638 5639 emitAlignedClause(*this, S); 5640 // Emit 'then' code. 5641 { 5642 // Emit helper vars inits. 5643 5644 LValue LB = EmitOMPHelperVar( 5645 *this, cast<DeclRefExpr>( 5646 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5647 ? S.getCombinedLowerBoundVariable() 5648 : S.getLowerBoundVariable()))); 5649 LValue UB = EmitOMPHelperVar( 5650 *this, cast<DeclRefExpr>( 5651 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5652 ? S.getCombinedUpperBoundVariable() 5653 : S.getUpperBoundVariable()))); 5654 LValue ST = 5655 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 5656 LValue IL = 5657 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 5658 5659 OMPPrivateScope LoopScope(*this); 5660 if (EmitOMPFirstprivateClause(S, LoopScope)) { 5661 // Emit implicit barrier to synchronize threads and avoid data races 5662 // on initialization of firstprivate variables and post-update of 5663 // lastprivate variables. 5664 CGM.getOpenMPRuntime().emitBarrierCall( 5665 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 5666 /*ForceSimpleCall=*/true); 5667 } 5668 EmitOMPPrivateClause(S, LoopScope); 5669 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 5670 !isOpenMPParallelDirective(S.getDirectiveKind()) && 5671 !isOpenMPTeamsDirective(S.getDirectiveKind())) 5672 EmitOMPReductionClauseInit(S, LoopScope); 5673 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 5674 EmitOMPPrivateLoopCounters(S, LoopScope); 5675 (void)LoopScope.Privatize(); 5676 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 5677 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 5678 5679 // Detect the distribute schedule kind and chunk. 5680 llvm::Value *Chunk = nullptr; 5681 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 5682 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 5683 ScheduleKind = C->getDistScheduleKind(); 5684 if (const Expr *Ch = C->getChunkSize()) { 5685 Chunk = EmitScalarExpr(Ch); 5686 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 5687 S.getIterationVariable()->getType(), 5688 S.getBeginLoc()); 5689 } 5690 } else { 5691 // Default behaviour for dist_schedule clause. 5692 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 5693 *this, S, ScheduleKind, Chunk); 5694 } 5695 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 5696 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 5697 5698 // OpenMP [2.10.8, distribute Construct, Description] 5699 // If dist_schedule is specified, kind must be static. If specified, 5700 // iterations are divided into chunks of size chunk_size, chunks are 5701 // assigned to the teams of the league in a round-robin fashion in the 5702 // order of the team number. When no chunk_size is specified, the 5703 // iteration space is divided into chunks that are approximately equal 5704 // in size, and at most one chunk is distributed to each team of the 5705 // league. The size of the chunks is unspecified in this case. 5706 bool StaticChunked = 5707 RT.isStaticChunked(ScheduleKind, /* Chunked */ Chunk != nullptr) && 5708 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 5709 if (RT.isStaticNonchunked(ScheduleKind, 5710 /* Chunked */ Chunk != nullptr) || 5711 StaticChunked) { 5712 CGOpenMPRuntime::StaticRTInput StaticInit( 5713 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(*this), 5714 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 5715 StaticChunked ? Chunk : nullptr); 5716 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 5717 StaticInit); 5718 JumpDest LoopExit = 5719 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 5720 // UB = min(UB, GlobalUB); 5721 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5722 ? S.getCombinedEnsureUpperBound() 5723 : S.getEnsureUpperBound()); 5724 // IV = LB; 5725 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5726 ? S.getCombinedInit() 5727 : S.getInit()); 5728 5729 const Expr *Cond = 5730 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5731 ? S.getCombinedCond() 5732 : S.getCond(); 5733 5734 if (StaticChunked) 5735 Cond = S.getCombinedDistCond(); 5736 5737 // For static unchunked schedules generate: 5738 // 5739 // 1. For distribute alone, codegen 5740 // while (idx <= UB) { 5741 // BODY; 5742 // ++idx; 5743 // } 5744 // 5745 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 5746 // while (idx <= UB) { 5747 // <CodeGen rest of pragma>(LB, UB); 5748 // idx += ST; 5749 // } 5750 // 5751 // For static chunk one schedule generate: 5752 // 5753 // while (IV <= GlobalUB) { 5754 // <CodeGen rest of pragma>(LB, UB); 5755 // LB += ST; 5756 // UB += ST; 5757 // UB = min(UB, GlobalUB); 5758 // IV = LB; 5759 // } 5760 // 5761 emitCommonSimdLoop( 5762 *this, S, 5763 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5764 if (isOpenMPSimdDirective(S.getDirectiveKind())) 5765 CGF.EmitOMPSimdInit(S); 5766 }, 5767 [&S, &LoopScope, Cond, IncExpr, LoopExit, &CodeGenLoop, 5768 StaticChunked](CodeGenFunction &CGF, PrePostActionTy &) { 5769 CGF.EmitOMPInnerLoop( 5770 S, LoopScope.requiresCleanups(), Cond, IncExpr, 5771 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 5772 CodeGenLoop(CGF, S, LoopExit); 5773 }, 5774 [&S, StaticChunked](CodeGenFunction &CGF) { 5775 if (StaticChunked) { 5776 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 5777 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 5778 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 5779 CGF.EmitIgnoredExpr(S.getCombinedInit()); 5780 } 5781 }); 5782 }); 5783 EmitBlock(LoopExit.getBlock()); 5784 // Tell the runtime we are done. 5785 RT.emitForStaticFinish(*this, S.getEndLoc(), S.getDirectiveKind()); 5786 } else { 5787 // Emit the outer loop, which requests its work chunk [LB..UB] from 5788 // runtime and runs the inner loop to process it. 5789 const OMPLoopArguments LoopArguments = { 5790 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 5791 IL.getAddress(*this), Chunk}; 5792 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 5793 CodeGenLoop); 5794 } 5795 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 5796 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 5797 return CGF.Builder.CreateIsNotNull( 5798 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 5799 }); 5800 } 5801 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 5802 !isOpenMPParallelDirective(S.getDirectiveKind()) && 5803 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 5804 EmitOMPReductionClauseFinal(S, OMPD_simd); 5805 // Emit post-update of the reduction variables if IsLastIter != 0. 5806 emitPostUpdateForReductionClause( 5807 *this, S, [IL, &S](CodeGenFunction &CGF) { 5808 return CGF.Builder.CreateIsNotNull( 5809 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 5810 }); 5811 } 5812 // Emit final copy of the lastprivate variables if IsLastIter != 0. 5813 if (HasLastprivateClause) { 5814 EmitOMPLastprivateClauseFinal( 5815 S, /*NoFinals=*/false, 5816 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 5817 } 5818 } 5819 5820 // We're now done with the loop, so jump to the continuation block. 5821 if (ContBlock) { 5822 EmitBranch(ContBlock); 5823 EmitBlock(ContBlock, true); 5824 } 5825 } 5826 } 5827 5828 void CodeGenFunction::EmitOMPDistributeDirective( 5829 const OMPDistributeDirective &S) { 5830 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5831 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5832 }; 5833 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5834 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 5835 } 5836 5837 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 5838 const CapturedStmt *S, 5839 SourceLocation Loc) { 5840 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 5841 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 5842 CGF.CapturedStmtInfo = &CapStmtInfo; 5843 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S, Loc); 5844 Fn->setDoesNotRecurse(); 5845 return Fn; 5846 } 5847 5848 template <typename T> 5849 static void emitRestoreIP(CodeGenFunction &CGF, const T *C, 5850 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP, 5851 llvm::OpenMPIRBuilder &OMPBuilder) { 5852 5853 unsigned NumLoops = C->getNumLoops(); 5854 QualType Int64Ty = CGF.CGM.getContext().getIntTypeForBitwidth( 5855 /*DestWidth=*/64, /*Signed=*/1); 5856 llvm::SmallVector<llvm::Value *> StoreValues; 5857 for (unsigned I = 0; I < NumLoops; I++) { 5858 const Expr *CounterVal = C->getLoopData(I); 5859 assert(CounterVal); 5860 llvm::Value *StoreValue = CGF.EmitScalarConversion( 5861 CGF.EmitScalarExpr(CounterVal), CounterVal->getType(), Int64Ty, 5862 CounterVal->getExprLoc()); 5863 StoreValues.emplace_back(StoreValue); 5864 } 5865 OMPDoacrossKind<T> ODK; 5866 bool IsDependSource = ODK.isSource(C); 5867 CGF.Builder.restoreIP( 5868 OMPBuilder.createOrderedDepend(CGF.Builder, AllocaIP, NumLoops, 5869 StoreValues, ".cnt.addr", IsDependSource)); 5870 } 5871 5872 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 5873 if (CGM.getLangOpts().OpenMPIRBuilder) { 5874 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 5875 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 5876 5877 if (S.hasClausesOfKind<OMPDependClause>() || 5878 S.hasClausesOfKind<OMPDoacrossClause>()) { 5879 // The ordered directive with depend clause. 5880 assert(!S.hasAssociatedStmt() && "No associated statement must be in " 5881 "ordered depend|doacross construct."); 5882 InsertPointTy AllocaIP(AllocaInsertPt->getParent(), 5883 AllocaInsertPt->getIterator()); 5884 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 5885 emitRestoreIP(*this, DC, AllocaIP, OMPBuilder); 5886 for (const auto *DC : S.getClausesOfKind<OMPDoacrossClause>()) 5887 emitRestoreIP(*this, DC, AllocaIP, OMPBuilder); 5888 } else { 5889 // The ordered directive with threads or simd clause, or without clause. 5890 // Without clause, it behaves as if the threads clause is specified. 5891 const auto *C = S.getSingleClause<OMPSIMDClause>(); 5892 5893 auto FiniCB = [this](InsertPointTy IP) { 5894 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 5895 }; 5896 5897 auto BodyGenCB = [&S, C, this](InsertPointTy AllocaIP, 5898 InsertPointTy CodeGenIP) { 5899 Builder.restoreIP(CodeGenIP); 5900 5901 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 5902 if (C) { 5903 llvm::BasicBlock *FiniBB = splitBBWithSuffix( 5904 Builder, /*CreateBranch=*/false, ".ordered.after"); 5905 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 5906 GenerateOpenMPCapturedVars(*CS, CapturedVars); 5907 llvm::Function *OutlinedFn = 5908 emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc()); 5909 assert(S.getBeginLoc().isValid() && 5910 "Outlined function call location must be valid."); 5911 ApplyDebugLocation::CreateDefaultArtificial(*this, S.getBeginLoc()); 5912 OMPBuilderCBHelpers::EmitCaptureStmt(*this, CodeGenIP, *FiniBB, 5913 OutlinedFn, CapturedVars); 5914 } else { 5915 OMPBuilderCBHelpers::EmitOMPInlinedRegionBody( 5916 *this, CS->getCapturedStmt(), AllocaIP, CodeGenIP, "ordered"); 5917 } 5918 }; 5919 5920 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5921 Builder.restoreIP( 5922 OMPBuilder.createOrderedThreadsSimd(Builder, BodyGenCB, FiniCB, !C)); 5923 } 5924 return; 5925 } 5926 5927 if (S.hasClausesOfKind<OMPDependClause>()) { 5928 assert(!S.hasAssociatedStmt() && 5929 "No associated statement must be in ordered depend construct."); 5930 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 5931 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 5932 return; 5933 } 5934 if (S.hasClausesOfKind<OMPDoacrossClause>()) { 5935 assert(!S.hasAssociatedStmt() && 5936 "No associated statement must be in ordered doacross construct."); 5937 for (const auto *DC : S.getClausesOfKind<OMPDoacrossClause>()) 5938 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 5939 return; 5940 } 5941 const auto *C = S.getSingleClause<OMPSIMDClause>(); 5942 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 5943 PrePostActionTy &Action) { 5944 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 5945 if (C) { 5946 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 5947 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 5948 llvm::Function *OutlinedFn = 5949 emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc()); 5950 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 5951 OutlinedFn, CapturedVars); 5952 } else { 5953 Action.Enter(CGF); 5954 CGF.EmitStmt(CS->getCapturedStmt()); 5955 } 5956 }; 5957 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5958 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 5959 } 5960 5961 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 5962 QualType SrcType, QualType DestType, 5963 SourceLocation Loc) { 5964 assert(CGF.hasScalarEvaluationKind(DestType) && 5965 "DestType must have scalar evaluation kind."); 5966 assert(!Val.isAggregate() && "Must be a scalar or complex."); 5967 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 5968 DestType, Loc) 5969 : CGF.EmitComplexToScalarConversion( 5970 Val.getComplexVal(), SrcType, DestType, Loc); 5971 } 5972 5973 static CodeGenFunction::ComplexPairTy 5974 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 5975 QualType DestType, SourceLocation Loc) { 5976 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 5977 "DestType must have complex evaluation kind."); 5978 CodeGenFunction::ComplexPairTy ComplexVal; 5979 if (Val.isScalar()) { 5980 // Convert the input element to the element type of the complex. 5981 QualType DestElementType = 5982 DestType->castAs<ComplexType>()->getElementType(); 5983 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 5984 Val.getScalarVal(), SrcType, DestElementType, Loc); 5985 ComplexVal = CodeGenFunction::ComplexPairTy( 5986 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 5987 } else { 5988 assert(Val.isComplex() && "Must be a scalar or complex."); 5989 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 5990 QualType DestElementType = 5991 DestType->castAs<ComplexType>()->getElementType(); 5992 ComplexVal.first = CGF.EmitScalarConversion( 5993 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 5994 ComplexVal.second = CGF.EmitScalarConversion( 5995 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 5996 } 5997 return ComplexVal; 5998 } 5999 6000 static void emitSimpleAtomicStore(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 6001 LValue LVal, RValue RVal) { 6002 if (LVal.isGlobalReg()) 6003 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 6004 else 6005 CGF.EmitAtomicStore(RVal, LVal, AO, LVal.isVolatile(), /*isInit=*/false); 6006 } 6007 6008 static RValue emitSimpleAtomicLoad(CodeGenFunction &CGF, 6009 llvm::AtomicOrdering AO, LValue LVal, 6010 SourceLocation Loc) { 6011 if (LVal.isGlobalReg()) 6012 return CGF.EmitLoadOfLValue(LVal, Loc); 6013 return CGF.EmitAtomicLoad( 6014 LVal, Loc, llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO), 6015 LVal.isVolatile()); 6016 } 6017 6018 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 6019 QualType RValTy, SourceLocation Loc) { 6020 switch (getEvaluationKind(LVal.getType())) { 6021 case TEK_Scalar: 6022 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 6023 *this, RVal, RValTy, LVal.getType(), Loc)), 6024 LVal); 6025 break; 6026 case TEK_Complex: 6027 EmitStoreOfComplex( 6028 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 6029 /*isInit=*/false); 6030 break; 6031 case TEK_Aggregate: 6032 llvm_unreachable("Must be a scalar or complex."); 6033 } 6034 } 6035 6036 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 6037 const Expr *X, const Expr *V, 6038 SourceLocation Loc) { 6039 // v = x; 6040 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 6041 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 6042 LValue XLValue = CGF.EmitLValue(X); 6043 LValue VLValue = CGF.EmitLValue(V); 6044 RValue Res = emitSimpleAtomicLoad(CGF, AO, XLValue, Loc); 6045 // OpenMP, 2.17.7, atomic Construct 6046 // If the read or capture clause is specified and the acquire, acq_rel, or 6047 // seq_cst clause is specified then the strong flush on exit from the atomic 6048 // operation is also an acquire flush. 6049 switch (AO) { 6050 case llvm::AtomicOrdering::Acquire: 6051 case llvm::AtomicOrdering::AcquireRelease: 6052 case llvm::AtomicOrdering::SequentiallyConsistent: 6053 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, std::nullopt, Loc, 6054 llvm::AtomicOrdering::Acquire); 6055 break; 6056 case llvm::AtomicOrdering::Monotonic: 6057 case llvm::AtomicOrdering::Release: 6058 break; 6059 case llvm::AtomicOrdering::NotAtomic: 6060 case llvm::AtomicOrdering::Unordered: 6061 llvm_unreachable("Unexpected ordering."); 6062 } 6063 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 6064 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 6065 } 6066 6067 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, 6068 llvm::AtomicOrdering AO, const Expr *X, 6069 const Expr *E, SourceLocation Loc) { 6070 // x = expr; 6071 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 6072 emitSimpleAtomicStore(CGF, AO, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 6073 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 6074 // OpenMP, 2.17.7, atomic Construct 6075 // If the write, update, or capture clause is specified and the release, 6076 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 6077 // the atomic operation is also a release flush. 6078 switch (AO) { 6079 case llvm::AtomicOrdering::Release: 6080 case llvm::AtomicOrdering::AcquireRelease: 6081 case llvm::AtomicOrdering::SequentiallyConsistent: 6082 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, std::nullopt, Loc, 6083 llvm::AtomicOrdering::Release); 6084 break; 6085 case llvm::AtomicOrdering::Acquire: 6086 case llvm::AtomicOrdering::Monotonic: 6087 break; 6088 case llvm::AtomicOrdering::NotAtomic: 6089 case llvm::AtomicOrdering::Unordered: 6090 llvm_unreachable("Unexpected ordering."); 6091 } 6092 } 6093 6094 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 6095 RValue Update, 6096 BinaryOperatorKind BO, 6097 llvm::AtomicOrdering AO, 6098 bool IsXLHSInRHSPart) { 6099 ASTContext &Context = CGF.getContext(); 6100 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 6101 // expression is simple and atomic is allowed for the given type for the 6102 // target platform. 6103 if (BO == BO_Comma || !Update.isScalar() || !X.isSimple() || 6104 (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 6105 (Update.getScalarVal()->getType() != 6106 X.getAddress(CGF).getElementType())) || 6107 !Context.getTargetInfo().hasBuiltinAtomic( 6108 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 6109 return std::make_pair(false, RValue::get(nullptr)); 6110 6111 auto &&CheckAtomicSupport = [&CGF](llvm::Type *T, BinaryOperatorKind BO) { 6112 if (T->isIntegerTy()) 6113 return true; 6114 6115 if (T->isFloatingPointTy() && (BO == BO_Add || BO == BO_Sub)) 6116 return llvm::isPowerOf2_64(CGF.CGM.getDataLayout().getTypeStoreSize(T)); 6117 6118 return false; 6119 }; 6120 6121 if (!CheckAtomicSupport(Update.getScalarVal()->getType(), BO) || 6122 !CheckAtomicSupport(X.getAddress(CGF).getElementType(), BO)) 6123 return std::make_pair(false, RValue::get(nullptr)); 6124 6125 bool IsInteger = X.getAddress(CGF).getElementType()->isIntegerTy(); 6126 llvm::AtomicRMWInst::BinOp RMWOp; 6127 switch (BO) { 6128 case BO_Add: 6129 RMWOp = IsInteger ? llvm::AtomicRMWInst::Add : llvm::AtomicRMWInst::FAdd; 6130 break; 6131 case BO_Sub: 6132 if (!IsXLHSInRHSPart) 6133 return std::make_pair(false, RValue::get(nullptr)); 6134 RMWOp = IsInteger ? llvm::AtomicRMWInst::Sub : llvm::AtomicRMWInst::FSub; 6135 break; 6136 case BO_And: 6137 RMWOp = llvm::AtomicRMWInst::And; 6138 break; 6139 case BO_Or: 6140 RMWOp = llvm::AtomicRMWInst::Or; 6141 break; 6142 case BO_Xor: 6143 RMWOp = llvm::AtomicRMWInst::Xor; 6144 break; 6145 case BO_LT: 6146 if (IsInteger) 6147 RMWOp = X.getType()->hasSignedIntegerRepresentation() 6148 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 6149 : llvm::AtomicRMWInst::Max) 6150 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 6151 : llvm::AtomicRMWInst::UMax); 6152 else 6153 RMWOp = IsXLHSInRHSPart ? llvm::AtomicRMWInst::FMin 6154 : llvm::AtomicRMWInst::FMax; 6155 break; 6156 case BO_GT: 6157 if (IsInteger) 6158 RMWOp = X.getType()->hasSignedIntegerRepresentation() 6159 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 6160 : llvm::AtomicRMWInst::Min) 6161 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 6162 : llvm::AtomicRMWInst::UMin); 6163 else 6164 RMWOp = IsXLHSInRHSPart ? llvm::AtomicRMWInst::FMax 6165 : llvm::AtomicRMWInst::FMin; 6166 break; 6167 case BO_Assign: 6168 RMWOp = llvm::AtomicRMWInst::Xchg; 6169 break; 6170 case BO_Mul: 6171 case BO_Div: 6172 case BO_Rem: 6173 case BO_Shl: 6174 case BO_Shr: 6175 case BO_LAnd: 6176 case BO_LOr: 6177 return std::make_pair(false, RValue::get(nullptr)); 6178 case BO_PtrMemD: 6179 case BO_PtrMemI: 6180 case BO_LE: 6181 case BO_GE: 6182 case BO_EQ: 6183 case BO_NE: 6184 case BO_Cmp: 6185 case BO_AddAssign: 6186 case BO_SubAssign: 6187 case BO_AndAssign: 6188 case BO_OrAssign: 6189 case BO_XorAssign: 6190 case BO_MulAssign: 6191 case BO_DivAssign: 6192 case BO_RemAssign: 6193 case BO_ShlAssign: 6194 case BO_ShrAssign: 6195 case BO_Comma: 6196 llvm_unreachable("Unsupported atomic update operation"); 6197 } 6198 llvm::Value *UpdateVal = Update.getScalarVal(); 6199 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 6200 if (IsInteger) 6201 UpdateVal = CGF.Builder.CreateIntCast( 6202 IC, X.getAddress(CGF).getElementType(), 6203 X.getType()->hasSignedIntegerRepresentation()); 6204 else 6205 UpdateVal = CGF.Builder.CreateCast(llvm::Instruction::CastOps::UIToFP, IC, 6206 X.getAddress(CGF).getElementType()); 6207 } 6208 llvm::Value *Res = 6209 CGF.Builder.CreateAtomicRMW(RMWOp, X.getAddress(CGF), UpdateVal, AO); 6210 return std::make_pair(true, RValue::get(Res)); 6211 } 6212 6213 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 6214 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 6215 llvm::AtomicOrdering AO, SourceLocation Loc, 6216 const llvm::function_ref<RValue(RValue)> CommonGen) { 6217 // Update expressions are allowed to have the following forms: 6218 // x binop= expr; -> xrval + expr; 6219 // x++, ++x -> xrval + 1; 6220 // x--, --x -> xrval - 1; 6221 // x = x binop expr; -> xrval binop expr 6222 // x = expr Op x; - > expr binop xrval; 6223 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 6224 if (!Res.first) { 6225 if (X.isGlobalReg()) { 6226 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 6227 // 'xrval'. 6228 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 6229 } else { 6230 // Perform compare-and-swap procedure. 6231 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 6232 } 6233 } 6234 return Res; 6235 } 6236 6237 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, 6238 llvm::AtomicOrdering AO, const Expr *X, 6239 const Expr *E, const Expr *UE, 6240 bool IsXLHSInRHSPart, SourceLocation Loc) { 6241 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 6242 "Update expr in 'atomic update' must be a binary operator."); 6243 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 6244 // Update expressions are allowed to have the following forms: 6245 // x binop= expr; -> xrval + expr; 6246 // x++, ++x -> xrval + 1; 6247 // x--, --x -> xrval - 1; 6248 // x = x binop expr; -> xrval binop expr 6249 // x = expr Op x; - > expr binop xrval; 6250 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 6251 LValue XLValue = CGF.EmitLValue(X); 6252 RValue ExprRValue = CGF.EmitAnyExpr(E); 6253 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 6254 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 6255 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 6256 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 6257 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 6258 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 6259 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 6260 return CGF.EmitAnyExpr(UE); 6261 }; 6262 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 6263 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 6264 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 6265 // OpenMP, 2.17.7, atomic Construct 6266 // If the write, update, or capture clause is specified and the release, 6267 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 6268 // the atomic operation is also a release flush. 6269 switch (AO) { 6270 case llvm::AtomicOrdering::Release: 6271 case llvm::AtomicOrdering::AcquireRelease: 6272 case llvm::AtomicOrdering::SequentiallyConsistent: 6273 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, std::nullopt, Loc, 6274 llvm::AtomicOrdering::Release); 6275 break; 6276 case llvm::AtomicOrdering::Acquire: 6277 case llvm::AtomicOrdering::Monotonic: 6278 break; 6279 case llvm::AtomicOrdering::NotAtomic: 6280 case llvm::AtomicOrdering::Unordered: 6281 llvm_unreachable("Unexpected ordering."); 6282 } 6283 } 6284 6285 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 6286 QualType SourceType, QualType ResType, 6287 SourceLocation Loc) { 6288 switch (CGF.getEvaluationKind(ResType)) { 6289 case TEK_Scalar: 6290 return RValue::get( 6291 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 6292 case TEK_Complex: { 6293 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 6294 return RValue::getComplex(Res.first, Res.second); 6295 } 6296 case TEK_Aggregate: 6297 break; 6298 } 6299 llvm_unreachable("Must be a scalar or complex."); 6300 } 6301 6302 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, 6303 llvm::AtomicOrdering AO, 6304 bool IsPostfixUpdate, const Expr *V, 6305 const Expr *X, const Expr *E, 6306 const Expr *UE, bool IsXLHSInRHSPart, 6307 SourceLocation Loc) { 6308 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 6309 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 6310 RValue NewVVal; 6311 LValue VLValue = CGF.EmitLValue(V); 6312 LValue XLValue = CGF.EmitLValue(X); 6313 RValue ExprRValue = CGF.EmitAnyExpr(E); 6314 QualType NewVValType; 6315 if (UE) { 6316 // 'x' is updated with some additional value. 6317 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 6318 "Update expr in 'atomic capture' must be a binary operator."); 6319 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 6320 // Update expressions are allowed to have the following forms: 6321 // x binop= expr; -> xrval + expr; 6322 // x++, ++x -> xrval + 1; 6323 // x--, --x -> xrval - 1; 6324 // x = x binop expr; -> xrval binop expr 6325 // x = expr Op x; - > expr binop xrval; 6326 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 6327 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 6328 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 6329 NewVValType = XRValExpr->getType(); 6330 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 6331 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 6332 IsPostfixUpdate](RValue XRValue) { 6333 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 6334 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 6335 RValue Res = CGF.EmitAnyExpr(UE); 6336 NewVVal = IsPostfixUpdate ? XRValue : Res; 6337 return Res; 6338 }; 6339 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 6340 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 6341 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 6342 if (Res.first) { 6343 // 'atomicrmw' instruction was generated. 6344 if (IsPostfixUpdate) { 6345 // Use old value from 'atomicrmw'. 6346 NewVVal = Res.second; 6347 } else { 6348 // 'atomicrmw' does not provide new value, so evaluate it using old 6349 // value of 'x'. 6350 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 6351 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 6352 NewVVal = CGF.EmitAnyExpr(UE); 6353 } 6354 } 6355 } else { 6356 // 'x' is simply rewritten with some 'expr'. 6357 NewVValType = X->getType().getNonReferenceType(); 6358 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 6359 X->getType().getNonReferenceType(), Loc); 6360 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 6361 NewVVal = XRValue; 6362 return ExprRValue; 6363 }; 6364 // Try to perform atomicrmw xchg, otherwise simple exchange. 6365 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 6366 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 6367 Loc, Gen); 6368 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 6369 if (Res.first) { 6370 // 'atomicrmw' instruction was generated. 6371 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 6372 } 6373 } 6374 // Emit post-update store to 'v' of old/new 'x' value. 6375 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 6376 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 6377 // OpenMP 5.1 removes the required flush for capture clause. 6378 if (CGF.CGM.getLangOpts().OpenMP < 51) { 6379 // OpenMP, 2.17.7, atomic Construct 6380 // If the write, update, or capture clause is specified and the release, 6381 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 6382 // the atomic operation is also a release flush. 6383 // If the read or capture clause is specified and the acquire, acq_rel, or 6384 // seq_cst clause is specified then the strong flush on exit from the atomic 6385 // operation is also an acquire flush. 6386 switch (AO) { 6387 case llvm::AtomicOrdering::Release: 6388 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, std::nullopt, Loc, 6389 llvm::AtomicOrdering::Release); 6390 break; 6391 case llvm::AtomicOrdering::Acquire: 6392 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, std::nullopt, Loc, 6393 llvm::AtomicOrdering::Acquire); 6394 break; 6395 case llvm::AtomicOrdering::AcquireRelease: 6396 case llvm::AtomicOrdering::SequentiallyConsistent: 6397 CGF.CGM.getOpenMPRuntime().emitFlush( 6398 CGF, std::nullopt, Loc, llvm::AtomicOrdering::AcquireRelease); 6399 break; 6400 case llvm::AtomicOrdering::Monotonic: 6401 break; 6402 case llvm::AtomicOrdering::NotAtomic: 6403 case llvm::AtomicOrdering::Unordered: 6404 llvm_unreachable("Unexpected ordering."); 6405 } 6406 } 6407 } 6408 6409 static void emitOMPAtomicCompareExpr( 6410 CodeGenFunction &CGF, llvm::AtomicOrdering AO, llvm::AtomicOrdering FailAO, 6411 const Expr *X, const Expr *V, const Expr *R, const Expr *E, const Expr *D, 6412 const Expr *CE, bool IsXBinopExpr, bool IsPostfixUpdate, bool IsFailOnly, 6413 SourceLocation Loc) { 6414 llvm::OpenMPIRBuilder &OMPBuilder = 6415 CGF.CGM.getOpenMPRuntime().getOMPBuilder(); 6416 6417 OMPAtomicCompareOp Op; 6418 assert(isa<BinaryOperator>(CE) && "CE is not a BinaryOperator"); 6419 switch (cast<BinaryOperator>(CE)->getOpcode()) { 6420 case BO_EQ: 6421 Op = OMPAtomicCompareOp::EQ; 6422 break; 6423 case BO_LT: 6424 Op = OMPAtomicCompareOp::MIN; 6425 break; 6426 case BO_GT: 6427 Op = OMPAtomicCompareOp::MAX; 6428 break; 6429 default: 6430 llvm_unreachable("unsupported atomic compare binary operator"); 6431 } 6432 6433 LValue XLVal = CGF.EmitLValue(X); 6434 Address XAddr = XLVal.getAddress(CGF); 6435 6436 auto EmitRValueWithCastIfNeeded = [&CGF, Loc](const Expr *X, const Expr *E) { 6437 if (X->getType() == E->getType()) 6438 return CGF.EmitScalarExpr(E); 6439 const Expr *NewE = E->IgnoreImplicitAsWritten(); 6440 llvm::Value *V = CGF.EmitScalarExpr(NewE); 6441 if (NewE->getType() == X->getType()) 6442 return V; 6443 return CGF.EmitScalarConversion(V, NewE->getType(), X->getType(), Loc); 6444 }; 6445 6446 llvm::Value *EVal = EmitRValueWithCastIfNeeded(X, E); 6447 llvm::Value *DVal = D ? EmitRValueWithCastIfNeeded(X, D) : nullptr; 6448 if (auto *CI = dyn_cast<llvm::ConstantInt>(EVal)) 6449 EVal = CGF.Builder.CreateIntCast( 6450 CI, XLVal.getAddress(CGF).getElementType(), 6451 E->getType()->hasSignedIntegerRepresentation()); 6452 if (DVal) 6453 if (auto *CI = dyn_cast<llvm::ConstantInt>(DVal)) 6454 DVal = CGF.Builder.CreateIntCast( 6455 CI, XLVal.getAddress(CGF).getElementType(), 6456 D->getType()->hasSignedIntegerRepresentation()); 6457 6458 llvm::OpenMPIRBuilder::AtomicOpValue XOpVal{ 6459 XAddr.getPointer(), XAddr.getElementType(), 6460 X->getType()->hasSignedIntegerRepresentation(), 6461 X->getType().isVolatileQualified()}; 6462 llvm::OpenMPIRBuilder::AtomicOpValue VOpVal, ROpVal; 6463 if (V) { 6464 LValue LV = CGF.EmitLValue(V); 6465 Address Addr = LV.getAddress(CGF); 6466 VOpVal = {Addr.getPointer(), Addr.getElementType(), 6467 V->getType()->hasSignedIntegerRepresentation(), 6468 V->getType().isVolatileQualified()}; 6469 } 6470 if (R) { 6471 LValue LV = CGF.EmitLValue(R); 6472 Address Addr = LV.getAddress(CGF); 6473 ROpVal = {Addr.getPointer(), Addr.getElementType(), 6474 R->getType()->hasSignedIntegerRepresentation(), 6475 R->getType().isVolatileQualified()}; 6476 } 6477 6478 if (FailAO == llvm::AtomicOrdering::NotAtomic) { 6479 // fail clause was not mentionend on the 6480 // "#pragma omp atomic compare" construct. 6481 CGF.Builder.restoreIP(OMPBuilder.createAtomicCompare( 6482 CGF.Builder, XOpVal, VOpVal, ROpVal, EVal, DVal, AO, Op, IsXBinopExpr, 6483 IsPostfixUpdate, IsFailOnly)); 6484 } else 6485 CGF.Builder.restoreIP(OMPBuilder.createAtomicCompare( 6486 CGF.Builder, XOpVal, VOpVal, ROpVal, EVal, DVal, AO, Op, IsXBinopExpr, 6487 IsPostfixUpdate, IsFailOnly, FailAO)); 6488 } 6489 6490 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 6491 llvm::AtomicOrdering AO, 6492 llvm::AtomicOrdering FailAO, bool IsPostfixUpdate, 6493 const Expr *X, const Expr *V, const Expr *R, 6494 const Expr *E, const Expr *UE, const Expr *D, 6495 const Expr *CE, bool IsXLHSInRHSPart, 6496 bool IsFailOnly, SourceLocation Loc) { 6497 switch (Kind) { 6498 case OMPC_read: 6499 emitOMPAtomicReadExpr(CGF, AO, X, V, Loc); 6500 break; 6501 case OMPC_write: 6502 emitOMPAtomicWriteExpr(CGF, AO, X, E, Loc); 6503 break; 6504 case OMPC_unknown: 6505 case OMPC_update: 6506 emitOMPAtomicUpdateExpr(CGF, AO, X, E, UE, IsXLHSInRHSPart, Loc); 6507 break; 6508 case OMPC_capture: 6509 emitOMPAtomicCaptureExpr(CGF, AO, IsPostfixUpdate, V, X, E, UE, 6510 IsXLHSInRHSPart, Loc); 6511 break; 6512 case OMPC_compare: { 6513 emitOMPAtomicCompareExpr(CGF, AO, FailAO, X, V, R, E, D, CE, 6514 IsXLHSInRHSPart, IsPostfixUpdate, IsFailOnly, Loc); 6515 break; 6516 } 6517 default: 6518 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 6519 } 6520 } 6521 6522 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 6523 llvm::AtomicOrdering AO = llvm::AtomicOrdering::Monotonic; 6524 // Fail Memory Clause Ordering. 6525 llvm::AtomicOrdering FailAO = llvm::AtomicOrdering::NotAtomic; 6526 bool MemOrderingSpecified = false; 6527 if (S.getSingleClause<OMPSeqCstClause>()) { 6528 AO = llvm::AtomicOrdering::SequentiallyConsistent; 6529 MemOrderingSpecified = true; 6530 } else if (S.getSingleClause<OMPAcqRelClause>()) { 6531 AO = llvm::AtomicOrdering::AcquireRelease; 6532 MemOrderingSpecified = true; 6533 } else if (S.getSingleClause<OMPAcquireClause>()) { 6534 AO = llvm::AtomicOrdering::Acquire; 6535 MemOrderingSpecified = true; 6536 } else if (S.getSingleClause<OMPReleaseClause>()) { 6537 AO = llvm::AtomicOrdering::Release; 6538 MemOrderingSpecified = true; 6539 } else if (S.getSingleClause<OMPRelaxedClause>()) { 6540 AO = llvm::AtomicOrdering::Monotonic; 6541 MemOrderingSpecified = true; 6542 } 6543 llvm::SmallSet<OpenMPClauseKind, 2> KindsEncountered; 6544 OpenMPClauseKind Kind = OMPC_unknown; 6545 for (const OMPClause *C : S.clauses()) { 6546 // Find first clause (skip seq_cst|acq_rel|aqcuire|release|relaxed clause, 6547 // if it is first). 6548 OpenMPClauseKind K = C->getClauseKind(); 6549 if (K == OMPC_seq_cst || K == OMPC_acq_rel || K == OMPC_acquire || 6550 K == OMPC_release || K == OMPC_relaxed || K == OMPC_hint) 6551 continue; 6552 Kind = K; 6553 KindsEncountered.insert(K); 6554 } 6555 // We just need to correct Kind here. No need to set a bool saying it is 6556 // actually compare capture because we can tell from whether V and R are 6557 // nullptr. 6558 if (KindsEncountered.contains(OMPC_compare) && 6559 KindsEncountered.contains(OMPC_capture)) 6560 Kind = OMPC_compare; 6561 if (!MemOrderingSpecified) { 6562 llvm::AtomicOrdering DefaultOrder = 6563 CGM.getOpenMPRuntime().getDefaultMemoryOrdering(); 6564 if (DefaultOrder == llvm::AtomicOrdering::Monotonic || 6565 DefaultOrder == llvm::AtomicOrdering::SequentiallyConsistent || 6566 (DefaultOrder == llvm::AtomicOrdering::AcquireRelease && 6567 Kind == OMPC_capture)) { 6568 AO = DefaultOrder; 6569 } else if (DefaultOrder == llvm::AtomicOrdering::AcquireRelease) { 6570 if (Kind == OMPC_unknown || Kind == OMPC_update || Kind == OMPC_write) { 6571 AO = llvm::AtomicOrdering::Release; 6572 } else if (Kind == OMPC_read) { 6573 assert(Kind == OMPC_read && "Unexpected atomic kind."); 6574 AO = llvm::AtomicOrdering::Acquire; 6575 } 6576 } 6577 } 6578 6579 if (KindsEncountered.contains(OMPC_compare) && 6580 KindsEncountered.contains(OMPC_fail)) { 6581 Kind = OMPC_compare; 6582 const auto *FailClause = S.getSingleClause<OMPFailClause>(); 6583 if (FailClause) { 6584 OpenMPClauseKind FailParameter = FailClause->getFailParameter(); 6585 if (FailParameter == llvm::omp::OMPC_relaxed) 6586 FailAO = llvm::AtomicOrdering::Monotonic; 6587 else if (FailParameter == llvm::omp::OMPC_acquire) 6588 FailAO = llvm::AtomicOrdering::Acquire; 6589 else if (FailParameter == llvm::omp::OMPC_seq_cst) 6590 FailAO = llvm::AtomicOrdering::SequentiallyConsistent; 6591 } 6592 } 6593 6594 LexicalScope Scope(*this, S.getSourceRange()); 6595 EmitStopPoint(S.getAssociatedStmt()); 6596 emitOMPAtomicExpr(*this, Kind, AO, FailAO, S.isPostfixUpdate(), S.getX(), 6597 S.getV(), S.getR(), S.getExpr(), S.getUpdateExpr(), 6598 S.getD(), S.getCondExpr(), S.isXLHSInRHSPart(), 6599 S.isFailOnly(), S.getBeginLoc()); 6600 } 6601 6602 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 6603 const OMPExecutableDirective &S, 6604 const RegionCodeGenTy &CodeGen) { 6605 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 6606 CodeGenModule &CGM = CGF.CGM; 6607 6608 // On device emit this construct as inlined code. 6609 if (CGM.getLangOpts().OpenMPIsTargetDevice) { 6610 OMPLexicalScope Scope(CGF, S, OMPD_target); 6611 CGM.getOpenMPRuntime().emitInlinedDirective( 6612 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6613 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 6614 }); 6615 return; 6616 } 6617 6618 auto LPCRegion = CGOpenMPRuntime::LastprivateConditionalRAII::disable(CGF, S); 6619 llvm::Function *Fn = nullptr; 6620 llvm::Constant *FnID = nullptr; 6621 6622 const Expr *IfCond = nullptr; 6623 // Check for the at most one if clause associated with the target region. 6624 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 6625 if (C->getNameModifier() == OMPD_unknown || 6626 C->getNameModifier() == OMPD_target) { 6627 IfCond = C->getCondition(); 6628 break; 6629 } 6630 } 6631 6632 // Check if we have any device clause associated with the directive. 6633 llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device( 6634 nullptr, OMPC_DEVICE_unknown); 6635 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 6636 Device.setPointerAndInt(C->getDevice(), C->getModifier()); 6637 6638 // Check if we have an if clause whose conditional always evaluates to false 6639 // or if we do not have any targets specified. If so the target region is not 6640 // an offload entry point. 6641 bool IsOffloadEntry = true; 6642 if (IfCond) { 6643 bool Val; 6644 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 6645 IsOffloadEntry = false; 6646 } 6647 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6648 IsOffloadEntry = false; 6649 6650 if (CGM.getLangOpts().OpenMPOffloadMandatory && !IsOffloadEntry) { 6651 unsigned DiagID = CGM.getDiags().getCustomDiagID( 6652 DiagnosticsEngine::Error, 6653 "No offloading entry generated while offloading is mandatory."); 6654 CGM.getDiags().Report(DiagID); 6655 } 6656 6657 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 6658 StringRef ParentName; 6659 // In case we have Ctors/Dtors we use the complete type variant to produce 6660 // the mangling of the device outlined kernel. 6661 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 6662 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 6663 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 6664 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 6665 else 6666 ParentName = 6667 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 6668 6669 // Emit target region as a standalone region. 6670 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 6671 IsOffloadEntry, CodeGen); 6672 OMPLexicalScope Scope(CGF, S, OMPD_task); 6673 auto &&SizeEmitter = 6674 [IsOffloadEntry](CodeGenFunction &CGF, 6675 const OMPLoopDirective &D) -> llvm::Value * { 6676 if (IsOffloadEntry) { 6677 OMPLoopScope(CGF, D); 6678 // Emit calculation of the iterations count. 6679 llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations()); 6680 NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty, 6681 /*isSigned=*/false); 6682 return NumIterations; 6683 } 6684 return nullptr; 6685 }; 6686 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device, 6687 SizeEmitter); 6688 } 6689 6690 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 6691 PrePostActionTy &Action) { 6692 Action.Enter(CGF); 6693 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6694 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6695 CGF.EmitOMPPrivateClause(S, PrivateScope); 6696 (void)PrivateScope.Privatize(); 6697 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6698 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6699 6700 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 6701 CGF.EnsureInsertPoint(); 6702 } 6703 6704 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 6705 StringRef ParentName, 6706 const OMPTargetDirective &S) { 6707 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6708 emitTargetRegion(CGF, S, Action); 6709 }; 6710 llvm::Function *Fn; 6711 llvm::Constant *Addr; 6712 // Emit target region as a standalone region. 6713 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6714 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6715 assert(Fn && Addr && "Target device function emission failed."); 6716 } 6717 6718 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 6719 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6720 emitTargetRegion(CGF, S, Action); 6721 }; 6722 emitCommonOMPTargetDirective(*this, S, CodeGen); 6723 } 6724 6725 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 6726 const OMPExecutableDirective &S, 6727 OpenMPDirectiveKind InnermostKind, 6728 const RegionCodeGenTy &CodeGen) { 6729 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 6730 llvm::Function *OutlinedFn = 6731 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 6732 CGF, S, *CS->getCapturedDecl()->param_begin(), InnermostKind, 6733 CodeGen); 6734 6735 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 6736 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 6737 if (NT || TL) { 6738 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 6739 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 6740 6741 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 6742 S.getBeginLoc()); 6743 } 6744 6745 OMPTeamsScope Scope(CGF, S); 6746 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 6747 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 6748 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 6749 CapturedVars); 6750 } 6751 6752 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 6753 // Emit teams region as a standalone region. 6754 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6755 Action.Enter(CGF); 6756 OMPPrivateScope PrivateScope(CGF); 6757 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6758 CGF.EmitOMPPrivateClause(S, PrivateScope); 6759 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6760 (void)PrivateScope.Privatize(); 6761 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 6762 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6763 }; 6764 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 6765 emitPostUpdateForReductionClause(*this, S, 6766 [](CodeGenFunction &) { return nullptr; }); 6767 } 6768 6769 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 6770 const OMPTargetTeamsDirective &S) { 6771 auto *CS = S.getCapturedStmt(OMPD_teams); 6772 Action.Enter(CGF); 6773 // Emit teams region as a standalone region. 6774 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 6775 Action.Enter(CGF); 6776 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6777 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6778 CGF.EmitOMPPrivateClause(S, PrivateScope); 6779 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6780 (void)PrivateScope.Privatize(); 6781 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6782 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6783 CGF.EmitStmt(CS->getCapturedStmt()); 6784 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6785 }; 6786 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 6787 emitPostUpdateForReductionClause(CGF, S, 6788 [](CodeGenFunction &) { return nullptr; }); 6789 } 6790 6791 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 6792 CodeGenModule &CGM, StringRef ParentName, 6793 const OMPTargetTeamsDirective &S) { 6794 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6795 emitTargetTeamsRegion(CGF, Action, S); 6796 }; 6797 llvm::Function *Fn; 6798 llvm::Constant *Addr; 6799 // Emit target region as a standalone region. 6800 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6801 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6802 assert(Fn && Addr && "Target device function emission failed."); 6803 } 6804 6805 void CodeGenFunction::EmitOMPTargetTeamsDirective( 6806 const OMPTargetTeamsDirective &S) { 6807 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6808 emitTargetTeamsRegion(CGF, Action, S); 6809 }; 6810 emitCommonOMPTargetDirective(*this, S, CodeGen); 6811 } 6812 6813 static void 6814 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 6815 const OMPTargetTeamsDistributeDirective &S) { 6816 Action.Enter(CGF); 6817 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6818 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6819 }; 6820 6821 // Emit teams region as a standalone region. 6822 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6823 PrePostActionTy &Action) { 6824 Action.Enter(CGF); 6825 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6826 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6827 (void)PrivateScope.Privatize(); 6828 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6829 CodeGenDistribute); 6830 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6831 }; 6832 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 6833 emitPostUpdateForReductionClause(CGF, S, 6834 [](CodeGenFunction &) { return nullptr; }); 6835 } 6836 6837 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 6838 CodeGenModule &CGM, StringRef ParentName, 6839 const OMPTargetTeamsDistributeDirective &S) { 6840 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6841 emitTargetTeamsDistributeRegion(CGF, Action, S); 6842 }; 6843 llvm::Function *Fn; 6844 llvm::Constant *Addr; 6845 // Emit target region as a standalone region. 6846 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6847 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6848 assert(Fn && Addr && "Target device function emission failed."); 6849 } 6850 6851 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 6852 const OMPTargetTeamsDistributeDirective &S) { 6853 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6854 emitTargetTeamsDistributeRegion(CGF, Action, S); 6855 }; 6856 emitCommonOMPTargetDirective(*this, S, CodeGen); 6857 } 6858 6859 static void emitTargetTeamsDistributeSimdRegion( 6860 CodeGenFunction &CGF, PrePostActionTy &Action, 6861 const OMPTargetTeamsDistributeSimdDirective &S) { 6862 Action.Enter(CGF); 6863 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6864 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6865 }; 6866 6867 // Emit teams region as a standalone region. 6868 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6869 PrePostActionTy &Action) { 6870 Action.Enter(CGF); 6871 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6872 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6873 (void)PrivateScope.Privatize(); 6874 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6875 CodeGenDistribute); 6876 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6877 }; 6878 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 6879 emitPostUpdateForReductionClause(CGF, S, 6880 [](CodeGenFunction &) { return nullptr; }); 6881 } 6882 6883 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 6884 CodeGenModule &CGM, StringRef ParentName, 6885 const OMPTargetTeamsDistributeSimdDirective &S) { 6886 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6887 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 6888 }; 6889 llvm::Function *Fn; 6890 llvm::Constant *Addr; 6891 // Emit target region as a standalone region. 6892 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6893 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6894 assert(Fn && Addr && "Target device function emission failed."); 6895 } 6896 6897 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 6898 const OMPTargetTeamsDistributeSimdDirective &S) { 6899 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6900 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 6901 }; 6902 emitCommonOMPTargetDirective(*this, S, CodeGen); 6903 } 6904 6905 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 6906 const OMPTeamsDistributeDirective &S) { 6907 6908 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6909 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6910 }; 6911 6912 // Emit teams region as a standalone region. 6913 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6914 PrePostActionTy &Action) { 6915 Action.Enter(CGF); 6916 OMPPrivateScope PrivateScope(CGF); 6917 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6918 (void)PrivateScope.Privatize(); 6919 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6920 CodeGenDistribute); 6921 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6922 }; 6923 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 6924 emitPostUpdateForReductionClause(*this, S, 6925 [](CodeGenFunction &) { return nullptr; }); 6926 } 6927 6928 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 6929 const OMPTeamsDistributeSimdDirective &S) { 6930 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6931 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6932 }; 6933 6934 // Emit teams region as a standalone region. 6935 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6936 PrePostActionTy &Action) { 6937 Action.Enter(CGF); 6938 OMPPrivateScope PrivateScope(CGF); 6939 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6940 (void)PrivateScope.Privatize(); 6941 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 6942 CodeGenDistribute); 6943 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6944 }; 6945 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 6946 emitPostUpdateForReductionClause(*this, S, 6947 [](CodeGenFunction &) { return nullptr; }); 6948 } 6949 6950 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 6951 const OMPTeamsDistributeParallelForDirective &S) { 6952 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6953 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6954 S.getDistInc()); 6955 }; 6956 6957 // Emit teams region as a standalone region. 6958 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6959 PrePostActionTy &Action) { 6960 Action.Enter(CGF); 6961 OMPPrivateScope PrivateScope(CGF); 6962 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6963 (void)PrivateScope.Privatize(); 6964 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6965 CodeGenDistribute); 6966 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6967 }; 6968 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 6969 emitPostUpdateForReductionClause(*this, S, 6970 [](CodeGenFunction &) { return nullptr; }); 6971 } 6972 6973 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 6974 const OMPTeamsDistributeParallelForSimdDirective &S) { 6975 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6976 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6977 S.getDistInc()); 6978 }; 6979 6980 // Emit teams region as a standalone region. 6981 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6982 PrePostActionTy &Action) { 6983 Action.Enter(CGF); 6984 OMPPrivateScope PrivateScope(CGF); 6985 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6986 (void)PrivateScope.Privatize(); 6987 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 6988 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 6989 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6990 }; 6991 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for_simd, 6992 CodeGen); 6993 emitPostUpdateForReductionClause(*this, S, 6994 [](CodeGenFunction &) { return nullptr; }); 6995 } 6996 6997 void CodeGenFunction::EmitOMPInteropDirective(const OMPInteropDirective &S) { 6998 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 6999 llvm::Value *Device = nullptr; 7000 llvm::Value *NumDependences = nullptr; 7001 llvm::Value *DependenceList = nullptr; 7002 7003 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 7004 Device = EmitScalarExpr(C->getDevice()); 7005 7006 // Build list and emit dependences 7007 OMPTaskDataTy Data; 7008 buildDependences(S, Data); 7009 if (!Data.Dependences.empty()) { 7010 Address DependenciesArray = Address::invalid(); 7011 std::tie(NumDependences, DependenciesArray) = 7012 CGM.getOpenMPRuntime().emitDependClause(*this, Data.Dependences, 7013 S.getBeginLoc()); 7014 DependenceList = DependenciesArray.getPointer(); 7015 } 7016 Data.HasNowaitClause = S.hasClausesOfKind<OMPNowaitClause>(); 7017 7018 assert(!(Data.HasNowaitClause && !(S.getSingleClause<OMPInitClause>() || 7019 S.getSingleClause<OMPDestroyClause>() || 7020 S.getSingleClause<OMPUseClause>())) && 7021 "OMPNowaitClause clause is used separately in OMPInteropDirective."); 7022 7023 if (const auto *C = S.getSingleClause<OMPInitClause>()) { 7024 llvm::Value *InteropvarPtr = 7025 EmitLValue(C->getInteropVar()).getPointer(*this); 7026 llvm::omp::OMPInteropType InteropType = llvm::omp::OMPInteropType::Unknown; 7027 if (C->getIsTarget()) { 7028 InteropType = llvm::omp::OMPInteropType::Target; 7029 } else { 7030 assert(C->getIsTargetSync() && "Expected interop-type target/targetsync"); 7031 InteropType = llvm::omp::OMPInteropType::TargetSync; 7032 } 7033 OMPBuilder.createOMPInteropInit(Builder, InteropvarPtr, InteropType, Device, 7034 NumDependences, DependenceList, 7035 Data.HasNowaitClause); 7036 } else if (const auto *C = S.getSingleClause<OMPDestroyClause>()) { 7037 llvm::Value *InteropvarPtr = 7038 EmitLValue(C->getInteropVar()).getPointer(*this); 7039 OMPBuilder.createOMPInteropDestroy(Builder, InteropvarPtr, Device, 7040 NumDependences, DependenceList, 7041 Data.HasNowaitClause); 7042 } else if (const auto *C = S.getSingleClause<OMPUseClause>()) { 7043 llvm::Value *InteropvarPtr = 7044 EmitLValue(C->getInteropVar()).getPointer(*this); 7045 OMPBuilder.createOMPInteropUse(Builder, InteropvarPtr, Device, 7046 NumDependences, DependenceList, 7047 Data.HasNowaitClause); 7048 } 7049 } 7050 7051 static void emitTargetTeamsDistributeParallelForRegion( 7052 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 7053 PrePostActionTy &Action) { 7054 Action.Enter(CGF); 7055 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 7056 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 7057 S.getDistInc()); 7058 }; 7059 7060 // Emit teams region as a standalone region. 7061 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 7062 PrePostActionTy &Action) { 7063 Action.Enter(CGF); 7064 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 7065 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 7066 (void)PrivateScope.Privatize(); 7067 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 7068 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 7069 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 7070 }; 7071 7072 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 7073 CodeGenTeams); 7074 emitPostUpdateForReductionClause(CGF, S, 7075 [](CodeGenFunction &) { return nullptr; }); 7076 } 7077 7078 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 7079 CodeGenModule &CGM, StringRef ParentName, 7080 const OMPTargetTeamsDistributeParallelForDirective &S) { 7081 // Emit SPMD target teams distribute parallel for region as a standalone 7082 // region. 7083 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7084 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 7085 }; 7086 llvm::Function *Fn; 7087 llvm::Constant *Addr; 7088 // Emit target region as a standalone region. 7089 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 7090 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 7091 assert(Fn && Addr && "Target device function emission failed."); 7092 } 7093 7094 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 7095 const OMPTargetTeamsDistributeParallelForDirective &S) { 7096 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7097 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 7098 }; 7099 emitCommonOMPTargetDirective(*this, S, CodeGen); 7100 } 7101 7102 static void emitTargetTeamsDistributeParallelForSimdRegion( 7103 CodeGenFunction &CGF, 7104 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 7105 PrePostActionTy &Action) { 7106 Action.Enter(CGF); 7107 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 7108 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 7109 S.getDistInc()); 7110 }; 7111 7112 // Emit teams region as a standalone region. 7113 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 7114 PrePostActionTy &Action) { 7115 Action.Enter(CGF); 7116 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 7117 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 7118 (void)PrivateScope.Privatize(); 7119 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 7120 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 7121 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 7122 }; 7123 7124 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 7125 CodeGenTeams); 7126 emitPostUpdateForReductionClause(CGF, S, 7127 [](CodeGenFunction &) { return nullptr; }); 7128 } 7129 7130 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 7131 CodeGenModule &CGM, StringRef ParentName, 7132 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 7133 // Emit SPMD target teams distribute parallel for simd region as a standalone 7134 // region. 7135 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7136 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 7137 }; 7138 llvm::Function *Fn; 7139 llvm::Constant *Addr; 7140 // Emit target region as a standalone region. 7141 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 7142 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 7143 assert(Fn && Addr && "Target device function emission failed."); 7144 } 7145 7146 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 7147 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 7148 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7149 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 7150 }; 7151 emitCommonOMPTargetDirective(*this, S, CodeGen); 7152 } 7153 7154 void CodeGenFunction::EmitOMPCancellationPointDirective( 7155 const OMPCancellationPointDirective &S) { 7156 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 7157 S.getCancelRegion()); 7158 } 7159 7160 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 7161 const Expr *IfCond = nullptr; 7162 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 7163 if (C->getNameModifier() == OMPD_unknown || 7164 C->getNameModifier() == OMPD_cancel) { 7165 IfCond = C->getCondition(); 7166 break; 7167 } 7168 } 7169 if (CGM.getLangOpts().OpenMPIRBuilder) { 7170 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 7171 // TODO: This check is necessary as we only generate `omp parallel` through 7172 // the OpenMPIRBuilder for now. 7173 if (S.getCancelRegion() == OMPD_parallel || 7174 S.getCancelRegion() == OMPD_sections || 7175 S.getCancelRegion() == OMPD_section) { 7176 llvm::Value *IfCondition = nullptr; 7177 if (IfCond) 7178 IfCondition = EmitScalarExpr(IfCond, 7179 /*IgnoreResultAssign=*/true); 7180 return Builder.restoreIP( 7181 OMPBuilder.createCancel(Builder, IfCondition, S.getCancelRegion())); 7182 } 7183 } 7184 7185 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 7186 S.getCancelRegion()); 7187 } 7188 7189 CodeGenFunction::JumpDest 7190 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 7191 if (Kind == OMPD_parallel || Kind == OMPD_task || 7192 Kind == OMPD_target_parallel || Kind == OMPD_taskloop || 7193 Kind == OMPD_master_taskloop || Kind == OMPD_parallel_master_taskloop) 7194 return ReturnBlock; 7195 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 7196 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 7197 Kind == OMPD_distribute_parallel_for || 7198 Kind == OMPD_target_parallel_for || 7199 Kind == OMPD_teams_distribute_parallel_for || 7200 Kind == OMPD_target_teams_distribute_parallel_for); 7201 return OMPCancelStack.getExitBlock(); 7202 } 7203 7204 void CodeGenFunction::EmitOMPUseDevicePtrClause( 7205 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 7206 const llvm::DenseMap<const ValueDecl *, llvm::Value *> 7207 CaptureDeviceAddrMap) { 7208 llvm::SmallDenseSet<CanonicalDeclPtr<const Decl>, 4> Processed; 7209 for (const Expr *OrigVarIt : C.varlists()) { 7210 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(OrigVarIt)->getDecl()); 7211 if (!Processed.insert(OrigVD).second) 7212 continue; 7213 7214 // In order to identify the right initializer we need to match the 7215 // declaration used by the mapping logic. In some cases we may get 7216 // OMPCapturedExprDecl that refers to the original declaration. 7217 const ValueDecl *MatchingVD = OrigVD; 7218 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 7219 // OMPCapturedExprDecl are used to privative fields of the current 7220 // structure. 7221 const auto *ME = cast<MemberExpr>(OED->getInit()); 7222 assert(isa<CXXThisExpr>(ME->getBase()->IgnoreImpCasts()) && 7223 "Base should be the current struct!"); 7224 MatchingVD = ME->getMemberDecl(); 7225 } 7226 7227 // If we don't have information about the current list item, move on to 7228 // the next one. 7229 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 7230 if (InitAddrIt == CaptureDeviceAddrMap.end()) 7231 continue; 7232 7233 llvm::Type *Ty = ConvertTypeForMem(OrigVD->getType().getNonReferenceType()); 7234 7235 // Return the address of the private variable. 7236 bool IsRegistered = PrivateScope.addPrivate( 7237 OrigVD, 7238 Address(InitAddrIt->second, Ty, 7239 getContext().getTypeAlignInChars(getContext().VoidPtrTy))); 7240 assert(IsRegistered && "firstprivate var already registered as private"); 7241 // Silence the warning about unused variable. 7242 (void)IsRegistered; 7243 } 7244 } 7245 7246 static const VarDecl *getBaseDecl(const Expr *Ref) { 7247 const Expr *Base = Ref->IgnoreParenImpCasts(); 7248 while (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Base)) 7249 Base = OASE->getBase()->IgnoreParenImpCasts(); 7250 while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Base)) 7251 Base = ASE->getBase()->IgnoreParenImpCasts(); 7252 return cast<VarDecl>(cast<DeclRefExpr>(Base)->getDecl()); 7253 } 7254 7255 void CodeGenFunction::EmitOMPUseDeviceAddrClause( 7256 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 7257 const llvm::DenseMap<const ValueDecl *, llvm::Value *> 7258 CaptureDeviceAddrMap) { 7259 llvm::SmallDenseSet<CanonicalDeclPtr<const Decl>, 4> Processed; 7260 for (const Expr *Ref : C.varlists()) { 7261 const VarDecl *OrigVD = getBaseDecl(Ref); 7262 if (!Processed.insert(OrigVD).second) 7263 continue; 7264 // In order to identify the right initializer we need to match the 7265 // declaration used by the mapping logic. In some cases we may get 7266 // OMPCapturedExprDecl that refers to the original declaration. 7267 const ValueDecl *MatchingVD = OrigVD; 7268 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 7269 // OMPCapturedExprDecl are used to privative fields of the current 7270 // structure. 7271 const auto *ME = cast<MemberExpr>(OED->getInit()); 7272 assert(isa<CXXThisExpr>(ME->getBase()) && 7273 "Base should be the current struct!"); 7274 MatchingVD = ME->getMemberDecl(); 7275 } 7276 7277 // If we don't have information about the current list item, move on to 7278 // the next one. 7279 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 7280 if (InitAddrIt == CaptureDeviceAddrMap.end()) 7281 continue; 7282 7283 llvm::Type *Ty = ConvertTypeForMem(OrigVD->getType().getNonReferenceType()); 7284 7285 Address PrivAddr = 7286 Address(InitAddrIt->second, Ty, 7287 getContext().getTypeAlignInChars(getContext().VoidPtrTy)); 7288 // For declrefs and variable length array need to load the pointer for 7289 // correct mapping, since the pointer to the data was passed to the runtime. 7290 if (isa<DeclRefExpr>(Ref->IgnoreParenImpCasts()) || 7291 MatchingVD->getType()->isArrayType()) { 7292 QualType PtrTy = getContext().getPointerType( 7293 OrigVD->getType().getNonReferenceType()); 7294 PrivAddr = 7295 EmitLoadOfPointer(PrivAddr.withElementType(ConvertTypeForMem(PtrTy)), 7296 PtrTy->castAs<PointerType>()); 7297 } 7298 7299 (void)PrivateScope.addPrivate(OrigVD, PrivAddr); 7300 } 7301 } 7302 7303 // Generate the instructions for '#pragma omp target data' directive. 7304 void CodeGenFunction::EmitOMPTargetDataDirective( 7305 const OMPTargetDataDirective &S) { 7306 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true, 7307 /*SeparateBeginEndCalls=*/true); 7308 7309 // Create a pre/post action to signal the privatization of the device pointer. 7310 // This action can be replaced by the OpenMP runtime code generation to 7311 // deactivate privatization. 7312 bool PrivatizeDevicePointers = false; 7313 class DevicePointerPrivActionTy : public PrePostActionTy { 7314 bool &PrivatizeDevicePointers; 7315 7316 public: 7317 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 7318 : PrivatizeDevicePointers(PrivatizeDevicePointers) {} 7319 void Enter(CodeGenFunction &CGF) override { 7320 PrivatizeDevicePointers = true; 7321 } 7322 }; 7323 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 7324 7325 auto &&CodeGen = [&](CodeGenFunction &CGF, PrePostActionTy &Action) { 7326 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 7327 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 7328 }; 7329 7330 // Codegen that selects whether to generate the privatization code or not. 7331 auto &&PrivCodeGen = [&](CodeGenFunction &CGF, PrePostActionTy &Action) { 7332 RegionCodeGenTy RCG(InnermostCodeGen); 7333 PrivatizeDevicePointers = false; 7334 7335 // Call the pre-action to change the status of PrivatizeDevicePointers if 7336 // needed. 7337 Action.Enter(CGF); 7338 7339 if (PrivatizeDevicePointers) { 7340 OMPPrivateScope PrivateScope(CGF); 7341 // Emit all instances of the use_device_ptr clause. 7342 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 7343 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 7344 Info.CaptureDeviceAddrMap); 7345 for (const auto *C : S.getClausesOfKind<OMPUseDeviceAddrClause>()) 7346 CGF.EmitOMPUseDeviceAddrClause(*C, PrivateScope, 7347 Info.CaptureDeviceAddrMap); 7348 (void)PrivateScope.Privatize(); 7349 RCG(CGF); 7350 } else { 7351 // If we don't have target devices, don't bother emitting the data 7352 // mapping code. 7353 std::optional<OpenMPDirectiveKind> CaptureRegion; 7354 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 7355 // Emit helper decls of the use_device_ptr/use_device_addr clauses. 7356 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 7357 for (const Expr *E : C->varlists()) { 7358 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 7359 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 7360 CGF.EmitVarDecl(*OED); 7361 } 7362 for (const auto *C : S.getClausesOfKind<OMPUseDeviceAddrClause>()) 7363 for (const Expr *E : C->varlists()) { 7364 const Decl *D = getBaseDecl(E); 7365 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 7366 CGF.EmitVarDecl(*OED); 7367 } 7368 } else { 7369 CaptureRegion = OMPD_unknown; 7370 } 7371 7372 OMPLexicalScope Scope(CGF, S, CaptureRegion); 7373 RCG(CGF); 7374 } 7375 }; 7376 7377 // Forward the provided action to the privatization codegen. 7378 RegionCodeGenTy PrivRCG(PrivCodeGen); 7379 PrivRCG.setAction(Action); 7380 7381 // Notwithstanding the body of the region is emitted as inlined directive, 7382 // we don't use an inline scope as changes in the references inside the 7383 // region are expected to be visible outside, so we do not privative them. 7384 OMPLexicalScope Scope(CGF, S); 7385 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 7386 PrivRCG); 7387 }; 7388 7389 RegionCodeGenTy RCG(CodeGen); 7390 7391 // If we don't have target devices, don't bother emitting the data mapping 7392 // code. 7393 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 7394 RCG(*this); 7395 return; 7396 } 7397 7398 // Check if we have any if clause associated with the directive. 7399 const Expr *IfCond = nullptr; 7400 if (const auto *C = S.getSingleClause<OMPIfClause>()) 7401 IfCond = C->getCondition(); 7402 7403 // Check if we have any device clause associated with the directive. 7404 const Expr *Device = nullptr; 7405 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 7406 Device = C->getDevice(); 7407 7408 // Set the action to signal privatization of device pointers. 7409 RCG.setAction(PrivAction); 7410 7411 // Emit region code. 7412 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 7413 Info); 7414 } 7415 7416 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 7417 const OMPTargetEnterDataDirective &S) { 7418 // If we don't have target devices, don't bother emitting the data mapping 7419 // code. 7420 if (CGM.getLangOpts().OMPTargetTriples.empty()) 7421 return; 7422 7423 // Check if we have any if clause associated with the directive. 7424 const Expr *IfCond = nullptr; 7425 if (const auto *C = S.getSingleClause<OMPIfClause>()) 7426 IfCond = C->getCondition(); 7427 7428 // Check if we have any device clause associated with the directive. 7429 const Expr *Device = nullptr; 7430 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 7431 Device = C->getDevice(); 7432 7433 OMPLexicalScope Scope(*this, S, OMPD_task); 7434 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 7435 } 7436 7437 void CodeGenFunction::EmitOMPTargetExitDataDirective( 7438 const OMPTargetExitDataDirective &S) { 7439 // If we don't have target devices, don't bother emitting the data mapping 7440 // code. 7441 if (CGM.getLangOpts().OMPTargetTriples.empty()) 7442 return; 7443 7444 // Check if we have any if clause associated with the directive. 7445 const Expr *IfCond = nullptr; 7446 if (const auto *C = S.getSingleClause<OMPIfClause>()) 7447 IfCond = C->getCondition(); 7448 7449 // Check if we have any device clause associated with the directive. 7450 const Expr *Device = nullptr; 7451 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 7452 Device = C->getDevice(); 7453 7454 OMPLexicalScope Scope(*this, S, OMPD_task); 7455 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 7456 } 7457 7458 static void emitTargetParallelRegion(CodeGenFunction &CGF, 7459 const OMPTargetParallelDirective &S, 7460 PrePostActionTy &Action) { 7461 // Get the captured statement associated with the 'parallel' region. 7462 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 7463 Action.Enter(CGF); 7464 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 7465 Action.Enter(CGF); 7466 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 7467 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 7468 CGF.EmitOMPPrivateClause(S, PrivateScope); 7469 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 7470 (void)PrivateScope.Privatize(); 7471 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 7472 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 7473 // TODO: Add support for clauses. 7474 CGF.EmitStmt(CS->getCapturedStmt()); 7475 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 7476 }; 7477 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 7478 emitEmptyBoundParameters); 7479 emitPostUpdateForReductionClause(CGF, S, 7480 [](CodeGenFunction &) { return nullptr; }); 7481 } 7482 7483 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 7484 CodeGenModule &CGM, StringRef ParentName, 7485 const OMPTargetParallelDirective &S) { 7486 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7487 emitTargetParallelRegion(CGF, S, Action); 7488 }; 7489 llvm::Function *Fn; 7490 llvm::Constant *Addr; 7491 // Emit target region as a standalone region. 7492 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 7493 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 7494 assert(Fn && Addr && "Target device function emission failed."); 7495 } 7496 7497 void CodeGenFunction::EmitOMPTargetParallelDirective( 7498 const OMPTargetParallelDirective &S) { 7499 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7500 emitTargetParallelRegion(CGF, S, Action); 7501 }; 7502 emitCommonOMPTargetDirective(*this, S, CodeGen); 7503 } 7504 7505 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 7506 const OMPTargetParallelForDirective &S, 7507 PrePostActionTy &Action) { 7508 Action.Enter(CGF); 7509 // Emit directive as a combined directive that consists of two implicit 7510 // directives: 'parallel' with 'for' directive. 7511 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7512 Action.Enter(CGF); 7513 CodeGenFunction::OMPCancelStackRAII CancelRegion( 7514 CGF, OMPD_target_parallel_for, S.hasCancel()); 7515 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 7516 emitDispatchForLoopBounds); 7517 }; 7518 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 7519 emitEmptyBoundParameters); 7520 } 7521 7522 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 7523 CodeGenModule &CGM, StringRef ParentName, 7524 const OMPTargetParallelForDirective &S) { 7525 // Emit SPMD target parallel for region as a standalone region. 7526 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7527 emitTargetParallelForRegion(CGF, S, Action); 7528 }; 7529 llvm::Function *Fn; 7530 llvm::Constant *Addr; 7531 // Emit target region as a standalone region. 7532 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 7533 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 7534 assert(Fn && Addr && "Target device function emission failed."); 7535 } 7536 7537 void CodeGenFunction::EmitOMPTargetParallelForDirective( 7538 const OMPTargetParallelForDirective &S) { 7539 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7540 emitTargetParallelForRegion(CGF, S, Action); 7541 }; 7542 emitCommonOMPTargetDirective(*this, S, CodeGen); 7543 } 7544 7545 static void 7546 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 7547 const OMPTargetParallelForSimdDirective &S, 7548 PrePostActionTy &Action) { 7549 Action.Enter(CGF); 7550 // Emit directive as a combined directive that consists of two implicit 7551 // directives: 'parallel' with 'for' directive. 7552 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7553 Action.Enter(CGF); 7554 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 7555 emitDispatchForLoopBounds); 7556 }; 7557 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 7558 emitEmptyBoundParameters); 7559 } 7560 7561 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 7562 CodeGenModule &CGM, StringRef ParentName, 7563 const OMPTargetParallelForSimdDirective &S) { 7564 // Emit SPMD target parallel for region as a standalone region. 7565 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7566 emitTargetParallelForSimdRegion(CGF, S, Action); 7567 }; 7568 llvm::Function *Fn; 7569 llvm::Constant *Addr; 7570 // Emit target region as a standalone region. 7571 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 7572 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 7573 assert(Fn && Addr && "Target device function emission failed."); 7574 } 7575 7576 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 7577 const OMPTargetParallelForSimdDirective &S) { 7578 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7579 emitTargetParallelForSimdRegion(CGF, S, Action); 7580 }; 7581 emitCommonOMPTargetDirective(*this, S, CodeGen); 7582 } 7583 7584 /// Emit a helper variable and return corresponding lvalue. 7585 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 7586 const ImplicitParamDecl *PVD, 7587 CodeGenFunction::OMPPrivateScope &Privates) { 7588 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 7589 Privates.addPrivate(VDecl, CGF.GetAddrOfLocalVar(PVD)); 7590 } 7591 7592 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 7593 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 7594 // Emit outlined function for task construct. 7595 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 7596 Address CapturedStruct = Address::invalid(); 7597 { 7598 OMPLexicalScope Scope(*this, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 7599 CapturedStruct = GenerateCapturedStmtArgument(*CS); 7600 } 7601 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 7602 const Expr *IfCond = nullptr; 7603 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 7604 if (C->getNameModifier() == OMPD_unknown || 7605 C->getNameModifier() == OMPD_taskloop) { 7606 IfCond = C->getCondition(); 7607 break; 7608 } 7609 } 7610 7611 OMPTaskDataTy Data; 7612 // Check if taskloop must be emitted without taskgroup. 7613 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 7614 // TODO: Check if we should emit tied or untied task. 7615 Data.Tied = true; 7616 // Set scheduling for taskloop 7617 if (const auto *Clause = S.getSingleClause<OMPGrainsizeClause>()) { 7618 // grainsize clause 7619 Data.Schedule.setInt(/*IntVal=*/false); 7620 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 7621 } else if (const auto *Clause = S.getSingleClause<OMPNumTasksClause>()) { 7622 // num_tasks clause 7623 Data.Schedule.setInt(/*IntVal=*/true); 7624 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 7625 } 7626 7627 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 7628 // if (PreCond) { 7629 // for (IV in 0..LastIteration) BODY; 7630 // <Final counter/linear vars updates>; 7631 // } 7632 // 7633 7634 // Emit: if (PreCond) - begin. 7635 // If the condition constant folds and can be elided, avoid emitting the 7636 // whole loop. 7637 bool CondConstant; 7638 llvm::BasicBlock *ContBlock = nullptr; 7639 OMPLoopScope PreInitScope(CGF, S); 7640 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 7641 if (!CondConstant) 7642 return; 7643 } else { 7644 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 7645 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 7646 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 7647 CGF.getProfileCount(&S)); 7648 CGF.EmitBlock(ThenBlock); 7649 CGF.incrementProfileCounter(&S); 7650 } 7651 7652 (void)CGF.EmitOMPLinearClauseInit(S); 7653 7654 OMPPrivateScope LoopScope(CGF); 7655 // Emit helper vars inits. 7656 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 7657 auto *I = CS->getCapturedDecl()->param_begin(); 7658 auto *LBP = std::next(I, LowerBound); 7659 auto *UBP = std::next(I, UpperBound); 7660 auto *STP = std::next(I, Stride); 7661 auto *LIP = std::next(I, LastIter); 7662 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 7663 LoopScope); 7664 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 7665 LoopScope); 7666 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 7667 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 7668 LoopScope); 7669 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 7670 CGF.EmitOMPLinearClause(S, LoopScope); 7671 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 7672 (void)LoopScope.Privatize(); 7673 // Emit the loop iteration variable. 7674 const Expr *IVExpr = S.getIterationVariable(); 7675 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 7676 CGF.EmitVarDecl(*IVDecl); 7677 CGF.EmitIgnoredExpr(S.getInit()); 7678 7679 // Emit the iterations count variable. 7680 // If it is not a variable, Sema decided to calculate iterations count on 7681 // each iteration (e.g., it is foldable into a constant). 7682 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 7683 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 7684 // Emit calculation of the iterations count. 7685 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 7686 } 7687 7688 { 7689 OMPLexicalScope Scope(CGF, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 7690 emitCommonSimdLoop( 7691 CGF, S, 7692 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 7693 if (isOpenMPSimdDirective(S.getDirectiveKind())) 7694 CGF.EmitOMPSimdInit(S); 7695 }, 7696 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 7697 CGF.EmitOMPInnerLoop( 7698 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 7699 [&S](CodeGenFunction &CGF) { 7700 emitOMPLoopBodyWithStopPoint(CGF, S, 7701 CodeGenFunction::JumpDest()); 7702 }, 7703 [](CodeGenFunction &) {}); 7704 }); 7705 } 7706 // Emit: if (PreCond) - end. 7707 if (ContBlock) { 7708 CGF.EmitBranch(ContBlock); 7709 CGF.EmitBlock(ContBlock, true); 7710 } 7711 // Emit final copy of the lastprivate variables if IsLastIter != 0. 7712 if (HasLastprivateClause) { 7713 CGF.EmitOMPLastprivateClauseFinal( 7714 S, isOpenMPSimdDirective(S.getDirectiveKind()), 7715 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 7716 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 7717 (*LIP)->getType(), S.getBeginLoc()))); 7718 } 7719 LoopScope.restoreMap(); 7720 CGF.EmitOMPLinearClauseFinal(S, [LIP, &S](CodeGenFunction &CGF) { 7721 return CGF.Builder.CreateIsNotNull( 7722 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 7723 (*LIP)->getType(), S.getBeginLoc())); 7724 }); 7725 }; 7726 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 7727 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 7728 const OMPTaskDataTy &Data) { 7729 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 7730 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 7731 OMPLoopScope PreInitScope(CGF, S); 7732 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 7733 OutlinedFn, SharedsTy, 7734 CapturedStruct, IfCond, Data); 7735 }; 7736 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 7737 CodeGen); 7738 }; 7739 if (Data.Nogroup) { 7740 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 7741 } else { 7742 CGM.getOpenMPRuntime().emitTaskgroupRegion( 7743 *this, 7744 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 7745 PrePostActionTy &Action) { 7746 Action.Enter(CGF); 7747 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 7748 Data); 7749 }, 7750 S.getBeginLoc()); 7751 } 7752 } 7753 7754 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 7755 auto LPCRegion = 7756 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7757 EmitOMPTaskLoopBasedDirective(S); 7758 } 7759 7760 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 7761 const OMPTaskLoopSimdDirective &S) { 7762 auto LPCRegion = 7763 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7764 OMPLexicalScope Scope(*this, S); 7765 EmitOMPTaskLoopBasedDirective(S); 7766 } 7767 7768 void CodeGenFunction::EmitOMPMasterTaskLoopDirective( 7769 const OMPMasterTaskLoopDirective &S) { 7770 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7771 Action.Enter(CGF); 7772 EmitOMPTaskLoopBasedDirective(S); 7773 }; 7774 auto LPCRegion = 7775 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7776 OMPLexicalScope Scope(*this, S, std::nullopt, /*EmitPreInitStmt=*/false); 7777 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 7778 } 7779 7780 void CodeGenFunction::EmitOMPMasterTaskLoopSimdDirective( 7781 const OMPMasterTaskLoopSimdDirective &S) { 7782 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7783 Action.Enter(CGF); 7784 EmitOMPTaskLoopBasedDirective(S); 7785 }; 7786 auto LPCRegion = 7787 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7788 OMPLexicalScope Scope(*this, S); 7789 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 7790 } 7791 7792 void CodeGenFunction::EmitOMPParallelMasterTaskLoopDirective( 7793 const OMPParallelMasterTaskLoopDirective &S) { 7794 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7795 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 7796 PrePostActionTy &Action) { 7797 Action.Enter(CGF); 7798 CGF.EmitOMPTaskLoopBasedDirective(S); 7799 }; 7800 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 7801 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 7802 S.getBeginLoc()); 7803 }; 7804 auto LPCRegion = 7805 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7806 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop, CodeGen, 7807 emitEmptyBoundParameters); 7808 } 7809 7810 void CodeGenFunction::EmitOMPParallelMasterTaskLoopSimdDirective( 7811 const OMPParallelMasterTaskLoopSimdDirective &S) { 7812 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7813 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 7814 PrePostActionTy &Action) { 7815 Action.Enter(CGF); 7816 CGF.EmitOMPTaskLoopBasedDirective(S); 7817 }; 7818 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 7819 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 7820 S.getBeginLoc()); 7821 }; 7822 auto LPCRegion = 7823 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7824 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop_simd, CodeGen, 7825 emitEmptyBoundParameters); 7826 } 7827 7828 // Generate the instructions for '#pragma omp target update' directive. 7829 void CodeGenFunction::EmitOMPTargetUpdateDirective( 7830 const OMPTargetUpdateDirective &S) { 7831 // If we don't have target devices, don't bother emitting the data mapping 7832 // code. 7833 if (CGM.getLangOpts().OMPTargetTriples.empty()) 7834 return; 7835 7836 // Check if we have any if clause associated with the directive. 7837 const Expr *IfCond = nullptr; 7838 if (const auto *C = S.getSingleClause<OMPIfClause>()) 7839 IfCond = C->getCondition(); 7840 7841 // Check if we have any device clause associated with the directive. 7842 const Expr *Device = nullptr; 7843 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 7844 Device = C->getDevice(); 7845 7846 OMPLexicalScope Scope(*this, S, OMPD_task); 7847 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 7848 } 7849 7850 void CodeGenFunction::EmitOMPGenericLoopDirective( 7851 const OMPGenericLoopDirective &S) { 7852 // Unimplemented, just inline the underlying statement for now. 7853 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7854 // Emit the loop iteration variable. 7855 const Stmt *CS = 7856 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt(); 7857 const auto *ForS = dyn_cast<ForStmt>(CS); 7858 if (ForS && !isa<DeclStmt>(ForS->getInit())) { 7859 OMPPrivateScope LoopScope(CGF); 7860 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 7861 (void)LoopScope.Privatize(); 7862 CGF.EmitStmt(CS); 7863 LoopScope.restoreMap(); 7864 } else { 7865 CGF.EmitStmt(CS); 7866 } 7867 }; 7868 OMPLexicalScope Scope(*this, S, OMPD_unknown); 7869 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_loop, CodeGen); 7870 } 7871 7872 void CodeGenFunction::EmitOMPParallelGenericLoopDirective( 7873 const OMPLoopDirective &S) { 7874 // Emit combined directive as if its consituent constructs are 'parallel' 7875 // and 'for'. 7876 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7877 Action.Enter(CGF); 7878 emitOMPCopyinClause(CGF, S); 7879 (void)emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 7880 }; 7881 { 7882 auto LPCRegion = 7883 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7884 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 7885 emitEmptyBoundParameters); 7886 } 7887 // Check for outer lastprivate conditional update. 7888 checkForLastprivateConditionalUpdate(*this, S); 7889 } 7890 7891 void CodeGenFunction::EmitOMPTeamsGenericLoopDirective( 7892 const OMPTeamsGenericLoopDirective &S) { 7893 // To be consistent with current behavior of 'target teams loop', emit 7894 // 'teams loop' as if its constituent constructs are 'distribute, 7895 // 'parallel, and 'for'. 7896 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 7897 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 7898 S.getDistInc()); 7899 }; 7900 7901 // Emit teams region as a standalone region. 7902 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 7903 PrePostActionTy &Action) { 7904 Action.Enter(CGF); 7905 OMPPrivateScope PrivateScope(CGF); 7906 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 7907 (void)PrivateScope.Privatize(); 7908 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 7909 CodeGenDistribute); 7910 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 7911 }; 7912 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 7913 emitPostUpdateForReductionClause(*this, S, 7914 [](CodeGenFunction &) { return nullptr; }); 7915 } 7916 7917 static void 7918 emitTargetTeamsGenericLoopRegion(CodeGenFunction &CGF, 7919 const OMPTargetTeamsGenericLoopDirective &S, 7920 PrePostActionTy &Action) { 7921 Action.Enter(CGF); 7922 // Emit 'teams loop' as if its constituent constructs are 'distribute, 7923 // 'parallel, and 'for'. 7924 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 7925 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 7926 S.getDistInc()); 7927 }; 7928 7929 // Emit teams region as a standalone region. 7930 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 7931 PrePostActionTy &Action) { 7932 Action.Enter(CGF); 7933 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 7934 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 7935 (void)PrivateScope.Privatize(); 7936 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 7937 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 7938 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 7939 }; 7940 7941 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 7942 CodeGenTeams); 7943 emitPostUpdateForReductionClause(CGF, S, 7944 [](CodeGenFunction &) { return nullptr; }); 7945 } 7946 7947 /// Emit combined directive 'target teams loop' as if its constituent 7948 /// constructs are 'target', 'teams', 'distribute', 'parallel', and 'for'. 7949 void CodeGenFunction::EmitOMPTargetTeamsGenericLoopDirective( 7950 const OMPTargetTeamsGenericLoopDirective &S) { 7951 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7952 emitTargetTeamsGenericLoopRegion(CGF, S, Action); 7953 }; 7954 emitCommonOMPTargetDirective(*this, S, CodeGen); 7955 } 7956 7957 void CodeGenFunction::EmitOMPTargetTeamsGenericLoopDeviceFunction( 7958 CodeGenModule &CGM, StringRef ParentName, 7959 const OMPTargetTeamsGenericLoopDirective &S) { 7960 // Emit SPMD target parallel loop region as a standalone region. 7961 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7962 emitTargetTeamsGenericLoopRegion(CGF, S, Action); 7963 }; 7964 llvm::Function *Fn; 7965 llvm::Constant *Addr; 7966 // Emit target region as a standalone region. 7967 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 7968 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 7969 assert(Fn && Addr && 7970 "Target device function emission failed for 'target teams loop'."); 7971 } 7972 7973 static void emitTargetParallelGenericLoopRegion( 7974 CodeGenFunction &CGF, const OMPTargetParallelGenericLoopDirective &S, 7975 PrePostActionTy &Action) { 7976 Action.Enter(CGF); 7977 // Emit as 'parallel for'. 7978 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7979 Action.Enter(CGF); 7980 CodeGenFunction::OMPCancelStackRAII CancelRegion( 7981 CGF, OMPD_target_parallel_loop, /*hasCancel=*/false); 7982 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 7983 emitDispatchForLoopBounds); 7984 }; 7985 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 7986 emitEmptyBoundParameters); 7987 } 7988 7989 void CodeGenFunction::EmitOMPTargetParallelGenericLoopDeviceFunction( 7990 CodeGenModule &CGM, StringRef ParentName, 7991 const OMPTargetParallelGenericLoopDirective &S) { 7992 // Emit target parallel loop region as a standalone region. 7993 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7994 emitTargetParallelGenericLoopRegion(CGF, S, Action); 7995 }; 7996 llvm::Function *Fn; 7997 llvm::Constant *Addr; 7998 // Emit target region as a standalone region. 7999 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 8000 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 8001 assert(Fn && Addr && "Target device function emission failed."); 8002 } 8003 8004 /// Emit combined directive 'target parallel loop' as if its constituent 8005 /// constructs are 'target', 'parallel', and 'for'. 8006 void CodeGenFunction::EmitOMPTargetParallelGenericLoopDirective( 8007 const OMPTargetParallelGenericLoopDirective &S) { 8008 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 8009 emitTargetParallelGenericLoopRegion(CGF, S, Action); 8010 }; 8011 emitCommonOMPTargetDirective(*this, S, CodeGen); 8012 } 8013 8014 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 8015 const OMPExecutableDirective &D) { 8016 if (const auto *SD = dyn_cast<OMPScanDirective>(&D)) { 8017 EmitOMPScanDirective(*SD); 8018 return; 8019 } 8020 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 8021 return; 8022 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 8023 OMPPrivateScope GlobalsScope(CGF); 8024 if (isOpenMPTaskingDirective(D.getDirectiveKind())) { 8025 // Capture global firstprivates to avoid crash. 8026 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 8027 for (const Expr *Ref : C->varlists()) { 8028 const auto *DRE = cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 8029 if (!DRE) 8030 continue; 8031 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 8032 if (!VD || VD->hasLocalStorage()) 8033 continue; 8034 if (!CGF.LocalDeclMap.count(VD)) { 8035 LValue GlobLVal = CGF.EmitLValue(Ref); 8036 GlobalsScope.addPrivate(VD, GlobLVal.getAddress(CGF)); 8037 } 8038 } 8039 } 8040 } 8041 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 8042 (void)GlobalsScope.Privatize(); 8043 ParentLoopDirectiveForScanRegion ScanRegion(CGF, D); 8044 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 8045 } else { 8046 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 8047 for (const Expr *E : LD->counters()) { 8048 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 8049 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 8050 LValue GlobLVal = CGF.EmitLValue(E); 8051 GlobalsScope.addPrivate(VD, GlobLVal.getAddress(CGF)); 8052 } 8053 if (isa<OMPCapturedExprDecl>(VD)) { 8054 // Emit only those that were not explicitly referenced in clauses. 8055 if (!CGF.LocalDeclMap.count(VD)) 8056 CGF.EmitVarDecl(*VD); 8057 } 8058 } 8059 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 8060 if (!C->getNumForLoops()) 8061 continue; 8062 for (unsigned I = LD->getLoopsNumber(), 8063 E = C->getLoopNumIterations().size(); 8064 I < E; ++I) { 8065 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 8066 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 8067 // Emit only those that were not explicitly referenced in clauses. 8068 if (!CGF.LocalDeclMap.count(VD)) 8069 CGF.EmitVarDecl(*VD); 8070 } 8071 } 8072 } 8073 } 8074 (void)GlobalsScope.Privatize(); 8075 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 8076 } 8077 }; 8078 if (D.getDirectiveKind() == OMPD_atomic || 8079 D.getDirectiveKind() == OMPD_critical || 8080 D.getDirectiveKind() == OMPD_section || 8081 D.getDirectiveKind() == OMPD_master || 8082 D.getDirectiveKind() == OMPD_masked || 8083 D.getDirectiveKind() == OMPD_unroll) { 8084 EmitStmt(D.getAssociatedStmt()); 8085 } else { 8086 auto LPCRegion = 8087 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, D); 8088 OMPSimdLexicalScope Scope(*this, D); 8089 CGM.getOpenMPRuntime().emitInlinedDirective( 8090 *this, 8091 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 8092 : D.getDirectiveKind(), 8093 CodeGen); 8094 } 8095 // Check for outer lastprivate conditional update. 8096 checkForLastprivateConditionalUpdate(*this, D); 8097 } 8098