xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGStmt.cpp (revision f05948d4e98d3abd0965a2994e9e42add6908ff3)
1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Stmt nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGDebugInfo.h"
14 #include "CGOpenMPRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/Stmt.h"
21 #include "clang/AST/StmtVisitor.h"
22 #include "clang/Basic/Builtins.h"
23 #include "clang/Basic/DiagnosticSema.h"
24 #include "clang/Basic/PrettyStackTrace.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/IR/Assumptions.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/InlineAsm.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/MDBuilder.h"
34 #include "llvm/Support/SaveAndRestore.h"
35 #include <optional>
36 
37 using namespace clang;
38 using namespace CodeGen;
39 
40 //===----------------------------------------------------------------------===//
41 //                              Statement Emission
42 //===----------------------------------------------------------------------===//
43 
44 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
45   if (CGDebugInfo *DI = getDebugInfo()) {
46     SourceLocation Loc;
47     Loc = S->getBeginLoc();
48     DI->EmitLocation(Builder, Loc);
49 
50     LastStopPoint = Loc;
51   }
52 }
53 
54 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) {
55   assert(S && "Null statement?");
56   PGO.setCurrentStmt(S);
57 
58   // These statements have their own debug info handling.
59   if (EmitSimpleStmt(S, Attrs))
60     return;
61 
62   // Check if we are generating unreachable code.
63   if (!HaveInsertPoint()) {
64     // If so, and the statement doesn't contain a label, then we do not need to
65     // generate actual code. This is safe because (1) the current point is
66     // unreachable, so we don't need to execute the code, and (2) we've already
67     // handled the statements which update internal data structures (like the
68     // local variable map) which could be used by subsequent statements.
69     if (!ContainsLabel(S)) {
70       // Verify that any decl statements were handled as simple, they may be in
71       // scope of subsequent reachable statements.
72       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
73       return;
74     }
75 
76     // Otherwise, make a new block to hold the code.
77     EnsureInsertPoint();
78   }
79 
80   // Generate a stoppoint if we are emitting debug info.
81   EmitStopPoint(S);
82 
83   // Ignore all OpenMP directives except for simd if OpenMP with Simd is
84   // enabled.
85   if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) {
86     if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) {
87       EmitSimpleOMPExecutableDirective(*D);
88       return;
89     }
90   }
91 
92   switch (S->getStmtClass()) {
93   case Stmt::NoStmtClass:
94   case Stmt::CXXCatchStmtClass:
95   case Stmt::SEHExceptStmtClass:
96   case Stmt::SEHFinallyStmtClass:
97   case Stmt::MSDependentExistsStmtClass:
98     llvm_unreachable("invalid statement class to emit generically");
99   case Stmt::NullStmtClass:
100   case Stmt::CompoundStmtClass:
101   case Stmt::DeclStmtClass:
102   case Stmt::LabelStmtClass:
103   case Stmt::AttributedStmtClass:
104   case Stmt::GotoStmtClass:
105   case Stmt::BreakStmtClass:
106   case Stmt::ContinueStmtClass:
107   case Stmt::DefaultStmtClass:
108   case Stmt::CaseStmtClass:
109   case Stmt::SEHLeaveStmtClass:
110     llvm_unreachable("should have emitted these statements as simple");
111 
112 #define STMT(Type, Base)
113 #define ABSTRACT_STMT(Op)
114 #define EXPR(Type, Base) \
115   case Stmt::Type##Class:
116 #include "clang/AST/StmtNodes.inc"
117   {
118     // Remember the block we came in on.
119     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
120     assert(incoming && "expression emission must have an insertion point");
121 
122     EmitIgnoredExpr(cast<Expr>(S));
123 
124     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
125     assert(outgoing && "expression emission cleared block!");
126 
127     // The expression emitters assume (reasonably!) that the insertion
128     // point is always set.  To maintain that, the call-emission code
129     // for noreturn functions has to enter a new block with no
130     // predecessors.  We want to kill that block and mark the current
131     // insertion point unreachable in the common case of a call like
132     // "exit();".  Since expression emission doesn't otherwise create
133     // blocks with no predecessors, we can just test for that.
134     // However, we must be careful not to do this to our incoming
135     // block, because *statement* emission does sometimes create
136     // reachable blocks which will have no predecessors until later in
137     // the function.  This occurs with, e.g., labels that are not
138     // reachable by fallthrough.
139     if (incoming != outgoing && outgoing->use_empty()) {
140       outgoing->eraseFromParent();
141       Builder.ClearInsertionPoint();
142     }
143     break;
144   }
145 
146   case Stmt::IndirectGotoStmtClass:
147     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
148 
149   case Stmt::IfStmtClass:      EmitIfStmt(cast<IfStmt>(*S));              break;
150   case Stmt::WhileStmtClass:   EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break;
151   case Stmt::DoStmtClass:      EmitDoStmt(cast<DoStmt>(*S), Attrs);       break;
152   case Stmt::ForStmtClass:     EmitForStmt(cast<ForStmt>(*S), Attrs);     break;
153 
154   case Stmt::ReturnStmtClass:  EmitReturnStmt(cast<ReturnStmt>(*S));      break;
155 
156   case Stmt::SwitchStmtClass:  EmitSwitchStmt(cast<SwitchStmt>(*S));      break;
157   case Stmt::GCCAsmStmtClass:  // Intentional fall-through.
158   case Stmt::MSAsmStmtClass:   EmitAsmStmt(cast<AsmStmt>(*S));            break;
159   case Stmt::CoroutineBodyStmtClass:
160     EmitCoroutineBody(cast<CoroutineBodyStmt>(*S));
161     break;
162   case Stmt::CoreturnStmtClass:
163     EmitCoreturnStmt(cast<CoreturnStmt>(*S));
164     break;
165   case Stmt::CapturedStmtClass: {
166     const CapturedStmt *CS = cast<CapturedStmt>(S);
167     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
168     }
169     break;
170   case Stmt::ObjCAtTryStmtClass:
171     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
172     break;
173   case Stmt::ObjCAtCatchStmtClass:
174     llvm_unreachable(
175                     "@catch statements should be handled by EmitObjCAtTryStmt");
176   case Stmt::ObjCAtFinallyStmtClass:
177     llvm_unreachable(
178                   "@finally statements should be handled by EmitObjCAtTryStmt");
179   case Stmt::ObjCAtThrowStmtClass:
180     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
181     break;
182   case Stmt::ObjCAtSynchronizedStmtClass:
183     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
184     break;
185   case Stmt::ObjCForCollectionStmtClass:
186     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
187     break;
188   case Stmt::ObjCAutoreleasePoolStmtClass:
189     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
190     break;
191 
192   case Stmt::CXXTryStmtClass:
193     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
194     break;
195   case Stmt::CXXForRangeStmtClass:
196     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs);
197     break;
198   case Stmt::SEHTryStmtClass:
199     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
200     break;
201   case Stmt::OMPMetaDirectiveClass:
202     EmitOMPMetaDirective(cast<OMPMetaDirective>(*S));
203     break;
204   case Stmt::OMPCanonicalLoopClass:
205     EmitOMPCanonicalLoop(cast<OMPCanonicalLoop>(S));
206     break;
207   case Stmt::OMPParallelDirectiveClass:
208     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
209     break;
210   case Stmt::OMPSimdDirectiveClass:
211     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
212     break;
213   case Stmt::OMPTileDirectiveClass:
214     EmitOMPTileDirective(cast<OMPTileDirective>(*S));
215     break;
216   case Stmt::OMPUnrollDirectiveClass:
217     EmitOMPUnrollDirective(cast<OMPUnrollDirective>(*S));
218     break;
219   case Stmt::OMPForDirectiveClass:
220     EmitOMPForDirective(cast<OMPForDirective>(*S));
221     break;
222   case Stmt::OMPForSimdDirectiveClass:
223     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
224     break;
225   case Stmt::OMPSectionsDirectiveClass:
226     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
227     break;
228   case Stmt::OMPSectionDirectiveClass:
229     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
230     break;
231   case Stmt::OMPSingleDirectiveClass:
232     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
233     break;
234   case Stmt::OMPMasterDirectiveClass:
235     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
236     break;
237   case Stmt::OMPCriticalDirectiveClass:
238     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
239     break;
240   case Stmt::OMPParallelForDirectiveClass:
241     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
242     break;
243   case Stmt::OMPParallelForSimdDirectiveClass:
244     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
245     break;
246   case Stmt::OMPParallelMasterDirectiveClass:
247     EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S));
248     break;
249   case Stmt::OMPParallelSectionsDirectiveClass:
250     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
251     break;
252   case Stmt::OMPTaskDirectiveClass:
253     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
254     break;
255   case Stmt::OMPTaskyieldDirectiveClass:
256     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
257     break;
258   case Stmt::OMPErrorDirectiveClass:
259     EmitOMPErrorDirective(cast<OMPErrorDirective>(*S));
260     break;
261   case Stmt::OMPBarrierDirectiveClass:
262     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
263     break;
264   case Stmt::OMPTaskwaitDirectiveClass:
265     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
266     break;
267   case Stmt::OMPTaskgroupDirectiveClass:
268     EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
269     break;
270   case Stmt::OMPFlushDirectiveClass:
271     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
272     break;
273   case Stmt::OMPDepobjDirectiveClass:
274     EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S));
275     break;
276   case Stmt::OMPScanDirectiveClass:
277     EmitOMPScanDirective(cast<OMPScanDirective>(*S));
278     break;
279   case Stmt::OMPOrderedDirectiveClass:
280     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
281     break;
282   case Stmt::OMPAtomicDirectiveClass:
283     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
284     break;
285   case Stmt::OMPTargetDirectiveClass:
286     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
287     break;
288   case Stmt::OMPTeamsDirectiveClass:
289     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
290     break;
291   case Stmt::OMPCancellationPointDirectiveClass:
292     EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
293     break;
294   case Stmt::OMPCancelDirectiveClass:
295     EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
296     break;
297   case Stmt::OMPTargetDataDirectiveClass:
298     EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
299     break;
300   case Stmt::OMPTargetEnterDataDirectiveClass:
301     EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
302     break;
303   case Stmt::OMPTargetExitDataDirectiveClass:
304     EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
305     break;
306   case Stmt::OMPTargetParallelDirectiveClass:
307     EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
308     break;
309   case Stmt::OMPTargetParallelForDirectiveClass:
310     EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S));
311     break;
312   case Stmt::OMPTaskLoopDirectiveClass:
313     EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
314     break;
315   case Stmt::OMPTaskLoopSimdDirectiveClass:
316     EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
317     break;
318   case Stmt::OMPMasterTaskLoopDirectiveClass:
319     EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S));
320     break;
321   case Stmt::OMPMaskedTaskLoopDirectiveClass:
322     llvm_unreachable("masked taskloop directive not supported yet.");
323     break;
324   case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
325     EmitOMPMasterTaskLoopSimdDirective(
326         cast<OMPMasterTaskLoopSimdDirective>(*S));
327     break;
328   case Stmt::OMPMaskedTaskLoopSimdDirectiveClass:
329     llvm_unreachable("masked taskloop simd directive not supported yet.");
330     break;
331   case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
332     EmitOMPParallelMasterTaskLoopDirective(
333         cast<OMPParallelMasterTaskLoopDirective>(*S));
334     break;
335   case Stmt::OMPParallelMaskedTaskLoopDirectiveClass:
336     llvm_unreachable("parallel masked taskloop directive not supported yet.");
337     break;
338   case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass:
339     EmitOMPParallelMasterTaskLoopSimdDirective(
340         cast<OMPParallelMasterTaskLoopSimdDirective>(*S));
341     break;
342   case Stmt::OMPParallelMaskedTaskLoopSimdDirectiveClass:
343     llvm_unreachable(
344         "parallel masked taskloop simd directive not supported yet.");
345     break;
346   case Stmt::OMPDistributeDirectiveClass:
347     EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
348     break;
349   case Stmt::OMPTargetUpdateDirectiveClass:
350     EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S));
351     break;
352   case Stmt::OMPDistributeParallelForDirectiveClass:
353     EmitOMPDistributeParallelForDirective(
354         cast<OMPDistributeParallelForDirective>(*S));
355     break;
356   case Stmt::OMPDistributeParallelForSimdDirectiveClass:
357     EmitOMPDistributeParallelForSimdDirective(
358         cast<OMPDistributeParallelForSimdDirective>(*S));
359     break;
360   case Stmt::OMPDistributeSimdDirectiveClass:
361     EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S));
362     break;
363   case Stmt::OMPTargetParallelForSimdDirectiveClass:
364     EmitOMPTargetParallelForSimdDirective(
365         cast<OMPTargetParallelForSimdDirective>(*S));
366     break;
367   case Stmt::OMPTargetSimdDirectiveClass:
368     EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S));
369     break;
370   case Stmt::OMPTeamsDistributeDirectiveClass:
371     EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S));
372     break;
373   case Stmt::OMPTeamsDistributeSimdDirectiveClass:
374     EmitOMPTeamsDistributeSimdDirective(
375         cast<OMPTeamsDistributeSimdDirective>(*S));
376     break;
377   case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
378     EmitOMPTeamsDistributeParallelForSimdDirective(
379         cast<OMPTeamsDistributeParallelForSimdDirective>(*S));
380     break;
381   case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
382     EmitOMPTeamsDistributeParallelForDirective(
383         cast<OMPTeamsDistributeParallelForDirective>(*S));
384     break;
385   case Stmt::OMPTargetTeamsDirectiveClass:
386     EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S));
387     break;
388   case Stmt::OMPTargetTeamsDistributeDirectiveClass:
389     EmitOMPTargetTeamsDistributeDirective(
390         cast<OMPTargetTeamsDistributeDirective>(*S));
391     break;
392   case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
393     EmitOMPTargetTeamsDistributeParallelForDirective(
394         cast<OMPTargetTeamsDistributeParallelForDirective>(*S));
395     break;
396   case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
397     EmitOMPTargetTeamsDistributeParallelForSimdDirective(
398         cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S));
399     break;
400   case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
401     EmitOMPTargetTeamsDistributeSimdDirective(
402         cast<OMPTargetTeamsDistributeSimdDirective>(*S));
403     break;
404   case Stmt::OMPInteropDirectiveClass:
405     EmitOMPInteropDirective(cast<OMPInteropDirective>(*S));
406     break;
407   case Stmt::OMPDispatchDirectiveClass:
408     llvm_unreachable("Dispatch directive not supported yet.");
409     break;
410   case Stmt::OMPMaskedDirectiveClass:
411     EmitOMPMaskedDirective(cast<OMPMaskedDirective>(*S));
412     break;
413   case Stmt::OMPGenericLoopDirectiveClass:
414     EmitOMPGenericLoopDirective(cast<OMPGenericLoopDirective>(*S));
415     break;
416   case Stmt::OMPTeamsGenericLoopDirectiveClass:
417     llvm_unreachable("teams loop directive not supported yet.");
418     break;
419   case Stmt::OMPTargetTeamsGenericLoopDirectiveClass:
420     llvm_unreachable("target teams loop directive not supported yet.");
421     break;
422   case Stmt::OMPParallelGenericLoopDirectiveClass:
423     llvm_unreachable("parallel loop directive not supported yet.");
424     break;
425   case Stmt::OMPTargetParallelGenericLoopDirectiveClass:
426     llvm_unreachable("target parallel loop directive not supported yet.");
427     break;
428   case Stmt::OMPParallelMaskedDirectiveClass:
429     llvm_unreachable("parallel masked directive not supported yet.");
430     break;
431   }
432 }
433 
434 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S,
435                                      ArrayRef<const Attr *> Attrs) {
436   switch (S->getStmtClass()) {
437   default:
438     return false;
439   case Stmt::NullStmtClass:
440     break;
441   case Stmt::CompoundStmtClass:
442     EmitCompoundStmt(cast<CompoundStmt>(*S));
443     break;
444   case Stmt::DeclStmtClass:
445     EmitDeclStmt(cast<DeclStmt>(*S));
446     break;
447   case Stmt::LabelStmtClass:
448     EmitLabelStmt(cast<LabelStmt>(*S));
449     break;
450   case Stmt::AttributedStmtClass:
451     EmitAttributedStmt(cast<AttributedStmt>(*S));
452     break;
453   case Stmt::GotoStmtClass:
454     EmitGotoStmt(cast<GotoStmt>(*S));
455     break;
456   case Stmt::BreakStmtClass:
457     EmitBreakStmt(cast<BreakStmt>(*S));
458     break;
459   case Stmt::ContinueStmtClass:
460     EmitContinueStmt(cast<ContinueStmt>(*S));
461     break;
462   case Stmt::DefaultStmtClass:
463     EmitDefaultStmt(cast<DefaultStmt>(*S), Attrs);
464     break;
465   case Stmt::CaseStmtClass:
466     EmitCaseStmt(cast<CaseStmt>(*S), Attrs);
467     break;
468   case Stmt::SEHLeaveStmtClass:
469     EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S));
470     break;
471   }
472   return true;
473 }
474 
475 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
476 /// this captures the expression result of the last sub-statement and returns it
477 /// (for use by the statement expression extension).
478 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
479                                           AggValueSlot AggSlot) {
480   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
481                              "LLVM IR generation of compound statement ('{}')");
482 
483   // Keep track of the current cleanup stack depth, including debug scopes.
484   LexicalScope Scope(*this, S.getSourceRange());
485 
486   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
487 }
488 
489 Address
490 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
491                                               bool GetLast,
492                                               AggValueSlot AggSlot) {
493 
494   const Stmt *ExprResult = S.getStmtExprResult();
495   assert((!GetLast || (GetLast && ExprResult)) &&
496          "If GetLast is true then the CompoundStmt must have a StmtExprResult");
497 
498   Address RetAlloca = Address::invalid();
499 
500   for (auto *CurStmt : S.body()) {
501     if (GetLast && ExprResult == CurStmt) {
502       // We have to special case labels here.  They are statements, but when put
503       // at the end of a statement expression, they yield the value of their
504       // subexpression.  Handle this by walking through all labels we encounter,
505       // emitting them before we evaluate the subexpr.
506       // Similar issues arise for attributed statements.
507       while (!isa<Expr>(ExprResult)) {
508         if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) {
509           EmitLabel(LS->getDecl());
510           ExprResult = LS->getSubStmt();
511         } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) {
512           // FIXME: Update this if we ever have attributes that affect the
513           // semantics of an expression.
514           ExprResult = AS->getSubStmt();
515         } else {
516           llvm_unreachable("unknown value statement");
517         }
518       }
519 
520       EnsureInsertPoint();
521 
522       const Expr *E = cast<Expr>(ExprResult);
523       QualType ExprTy = E->getType();
524       if (hasAggregateEvaluationKind(ExprTy)) {
525         EmitAggExpr(E, AggSlot);
526       } else {
527         // We can't return an RValue here because there might be cleanups at
528         // the end of the StmtExpr.  Because of that, we have to emit the result
529         // here into a temporary alloca.
530         RetAlloca = CreateMemTemp(ExprTy);
531         EmitAnyExprToMem(E, RetAlloca, Qualifiers(),
532                          /*IsInit*/ false);
533       }
534     } else {
535       EmitStmt(CurStmt);
536     }
537   }
538 
539   return RetAlloca;
540 }
541 
542 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
543   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
544 
545   // If there is a cleanup stack, then we it isn't worth trying to
546   // simplify this block (we would need to remove it from the scope map
547   // and cleanup entry).
548   if (!EHStack.empty())
549     return;
550 
551   // Can only simplify direct branches.
552   if (!BI || !BI->isUnconditional())
553     return;
554 
555   // Can only simplify empty blocks.
556   if (BI->getIterator() != BB->begin())
557     return;
558 
559   BB->replaceAllUsesWith(BI->getSuccessor(0));
560   BI->eraseFromParent();
561   BB->eraseFromParent();
562 }
563 
564 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
565   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
566 
567   // Fall out of the current block (if necessary).
568   EmitBranch(BB);
569 
570   if (IsFinished && BB->use_empty()) {
571     delete BB;
572     return;
573   }
574 
575   // Place the block after the current block, if possible, or else at
576   // the end of the function.
577   if (CurBB && CurBB->getParent())
578     CurFn->insert(std::next(CurBB->getIterator()), BB);
579   else
580     CurFn->insert(CurFn->end(), BB);
581   Builder.SetInsertPoint(BB);
582 }
583 
584 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
585   // Emit a branch from the current block to the target one if this
586   // was a real block.  If this was just a fall-through block after a
587   // terminator, don't emit it.
588   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
589 
590   if (!CurBB || CurBB->getTerminator()) {
591     // If there is no insert point or the previous block is already
592     // terminated, don't touch it.
593   } else {
594     // Otherwise, create a fall-through branch.
595     Builder.CreateBr(Target);
596   }
597 
598   Builder.ClearInsertionPoint();
599 }
600 
601 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
602   bool inserted = false;
603   for (llvm::User *u : block->users()) {
604     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
605       CurFn->insert(std::next(insn->getParent()->getIterator()), block);
606       inserted = true;
607       break;
608     }
609   }
610 
611   if (!inserted)
612     CurFn->insert(CurFn->end(), block);
613 
614   Builder.SetInsertPoint(block);
615 }
616 
617 CodeGenFunction::JumpDest
618 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
619   JumpDest &Dest = LabelMap[D];
620   if (Dest.isValid()) return Dest;
621 
622   // Create, but don't insert, the new block.
623   Dest = JumpDest(createBasicBlock(D->getName()),
624                   EHScopeStack::stable_iterator::invalid(),
625                   NextCleanupDestIndex++);
626   return Dest;
627 }
628 
629 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
630   // Add this label to the current lexical scope if we're within any
631   // normal cleanups.  Jumps "in" to this label --- when permitted by
632   // the language --- may need to be routed around such cleanups.
633   if (EHStack.hasNormalCleanups() && CurLexicalScope)
634     CurLexicalScope->addLabel(D);
635 
636   JumpDest &Dest = LabelMap[D];
637 
638   // If we didn't need a forward reference to this label, just go
639   // ahead and create a destination at the current scope.
640   if (!Dest.isValid()) {
641     Dest = getJumpDestInCurrentScope(D->getName());
642 
643   // Otherwise, we need to give this label a target depth and remove
644   // it from the branch-fixups list.
645   } else {
646     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
647     Dest.setScopeDepth(EHStack.stable_begin());
648     ResolveBranchFixups(Dest.getBlock());
649   }
650 
651   EmitBlock(Dest.getBlock());
652 
653   // Emit debug info for labels.
654   if (CGDebugInfo *DI = getDebugInfo()) {
655     if (CGM.getCodeGenOpts().hasReducedDebugInfo()) {
656       DI->setLocation(D->getLocation());
657       DI->EmitLabel(D, Builder);
658     }
659   }
660 
661   incrementProfileCounter(D->getStmt());
662 }
663 
664 /// Change the cleanup scope of the labels in this lexical scope to
665 /// match the scope of the enclosing context.
666 void CodeGenFunction::LexicalScope::rescopeLabels() {
667   assert(!Labels.empty());
668   EHScopeStack::stable_iterator innermostScope
669     = CGF.EHStack.getInnermostNormalCleanup();
670 
671   // Change the scope depth of all the labels.
672   for (SmallVectorImpl<const LabelDecl*>::const_iterator
673          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
674     assert(CGF.LabelMap.count(*i));
675     JumpDest &dest = CGF.LabelMap.find(*i)->second;
676     assert(dest.getScopeDepth().isValid());
677     assert(innermostScope.encloses(dest.getScopeDepth()));
678     dest.setScopeDepth(innermostScope);
679   }
680 
681   // Reparent the labels if the new scope also has cleanups.
682   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
683     ParentScope->Labels.append(Labels.begin(), Labels.end());
684   }
685 }
686 
687 
688 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
689   EmitLabel(S.getDecl());
690 
691   // IsEHa - emit eha.scope.begin if it's a side entry of a scope
692   if (getLangOpts().EHAsynch && S.isSideEntry())
693     EmitSehCppScopeBegin();
694 
695   EmitStmt(S.getSubStmt());
696 }
697 
698 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
699   bool nomerge = false;
700   bool noinline = false;
701   bool alwaysinline = false;
702   const CallExpr *musttail = nullptr;
703 
704   for (const auto *A : S.getAttrs()) {
705     switch (A->getKind()) {
706     default:
707       break;
708     case attr::NoMerge:
709       nomerge = true;
710       break;
711     case attr::NoInline:
712       noinline = true;
713       break;
714     case attr::AlwaysInline:
715       alwaysinline = true;
716       break;
717     case attr::MustTail:
718       const Stmt *Sub = S.getSubStmt();
719       const ReturnStmt *R = cast<ReturnStmt>(Sub);
720       musttail = cast<CallExpr>(R->getRetValue()->IgnoreParens());
721       break;
722     }
723   }
724   SaveAndRestore save_nomerge(InNoMergeAttributedStmt, nomerge);
725   SaveAndRestore save_noinline(InNoInlineAttributedStmt, noinline);
726   SaveAndRestore save_alwaysinline(InAlwaysInlineAttributedStmt, alwaysinline);
727   SaveAndRestore save_musttail(MustTailCall, musttail);
728   EmitStmt(S.getSubStmt(), S.getAttrs());
729 }
730 
731 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
732   // If this code is reachable then emit a stop point (if generating
733   // debug info). We have to do this ourselves because we are on the
734   // "simple" statement path.
735   if (HaveInsertPoint())
736     EmitStopPoint(&S);
737 
738   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
739 }
740 
741 
742 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
743   if (const LabelDecl *Target = S.getConstantTarget()) {
744     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
745     return;
746   }
747 
748   // Ensure that we have an i8* for our PHI node.
749   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
750                                          Int8PtrTy, "addr");
751   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
752 
753   // Get the basic block for the indirect goto.
754   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
755 
756   // The first instruction in the block has to be the PHI for the switch dest,
757   // add an entry for this branch.
758   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
759 
760   EmitBranch(IndGotoBB);
761 }
762 
763 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
764   // The else branch of a consteval if statement is always the only branch that
765   // can be runtime evaluated.
766   if (S.isConsteval()) {
767     const Stmt *Executed = S.isNegatedConsteval() ? S.getThen() : S.getElse();
768     if (Executed) {
769       RunCleanupsScope ExecutedScope(*this);
770       EmitStmt(Executed);
771     }
772     return;
773   }
774 
775   // C99 6.8.4.1: The first substatement is executed if the expression compares
776   // unequal to 0.  The condition must be a scalar type.
777   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
778 
779   if (S.getInit())
780     EmitStmt(S.getInit());
781 
782   if (S.getConditionVariable())
783     EmitDecl(*S.getConditionVariable());
784 
785   // If the condition constant folds and can be elided, try to avoid emitting
786   // the condition and the dead arm of the if/else.
787   bool CondConstant;
788   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant,
789                                    S.isConstexpr())) {
790     // Figure out which block (then or else) is executed.
791     const Stmt *Executed = S.getThen();
792     const Stmt *Skipped  = S.getElse();
793     if (!CondConstant)  // Condition false?
794       std::swap(Executed, Skipped);
795 
796     // If the skipped block has no labels in it, just emit the executed block.
797     // This avoids emitting dead code and simplifies the CFG substantially.
798     if (S.isConstexpr() || !ContainsLabel(Skipped)) {
799       if (CondConstant)
800         incrementProfileCounter(&S);
801       if (Executed) {
802         RunCleanupsScope ExecutedScope(*this);
803         EmitStmt(Executed);
804       }
805       return;
806     }
807   }
808 
809   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
810   // the conditional branch.
811   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
812   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
813   llvm::BasicBlock *ElseBlock = ContBlock;
814   if (S.getElse())
815     ElseBlock = createBasicBlock("if.else");
816 
817   // Prefer the PGO based weights over the likelihood attribute.
818   // When the build isn't optimized the metadata isn't used, so don't generate
819   // it.
820   // Also, differentiate between disabled PGO and a never executed branch with
821   // PGO. Assuming PGO is in use:
822   // - we want to ignore the [[likely]] attribute if the branch is never
823   // executed,
824   // - assuming the profile is poor, preserving the attribute may still be
825   // beneficial.
826   // As an approximation, preserve the attribute only if both the branch and the
827   // parent context were not executed.
828   Stmt::Likelihood LH = Stmt::LH_None;
829   uint64_t ThenCount = getProfileCount(S.getThen());
830   if (!ThenCount && !getCurrentProfileCount() &&
831       CGM.getCodeGenOpts().OptimizationLevel)
832     LH = Stmt::getLikelihood(S.getThen(), S.getElse());
833   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, ThenCount, LH);
834 
835   // Emit the 'then' code.
836   EmitBlock(ThenBlock);
837   incrementProfileCounter(&S);
838   {
839     RunCleanupsScope ThenScope(*this);
840     EmitStmt(S.getThen());
841   }
842   EmitBranch(ContBlock);
843 
844   // Emit the 'else' code if present.
845   if (const Stmt *Else = S.getElse()) {
846     {
847       // There is no need to emit line number for an unconditional branch.
848       auto NL = ApplyDebugLocation::CreateEmpty(*this);
849       EmitBlock(ElseBlock);
850     }
851     {
852       RunCleanupsScope ElseScope(*this);
853       EmitStmt(Else);
854     }
855     {
856       // There is no need to emit line number for an unconditional branch.
857       auto NL = ApplyDebugLocation::CreateEmpty(*this);
858       EmitBranch(ContBlock);
859     }
860   }
861 
862   // Emit the continuation block for code after the if.
863   EmitBlock(ContBlock, true);
864 }
865 
866 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
867                                     ArrayRef<const Attr *> WhileAttrs) {
868   // Emit the header for the loop, which will also become
869   // the continue target.
870   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
871   EmitBlock(LoopHeader.getBlock());
872 
873   // Create an exit block for when the condition fails, which will
874   // also become the break target.
875   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
876 
877   // Store the blocks to use for break and continue.
878   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
879 
880   // C++ [stmt.while]p2:
881   //   When the condition of a while statement is a declaration, the
882   //   scope of the variable that is declared extends from its point
883   //   of declaration (3.3.2) to the end of the while statement.
884   //   [...]
885   //   The object created in a condition is destroyed and created
886   //   with each iteration of the loop.
887   RunCleanupsScope ConditionScope(*this);
888 
889   if (S.getConditionVariable())
890     EmitDecl(*S.getConditionVariable());
891 
892   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
893   // evaluation of the controlling expression takes place before each
894   // execution of the loop body.
895   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
896 
897   // while(1) is common, avoid extra exit blocks.  Be sure
898   // to correctly handle break/continue though.
899   llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal);
900   bool CondIsConstInt = C != nullptr;
901   bool EmitBoolCondBranch = !CondIsConstInt || !C->isOne();
902   const SourceRange &R = S.getSourceRange();
903   LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(),
904                  WhileAttrs, SourceLocToDebugLoc(R.getBegin()),
905                  SourceLocToDebugLoc(R.getEnd()),
906                  checkIfLoopMustProgress(CondIsConstInt));
907 
908   // As long as the condition is true, go to the loop body.
909   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
910   if (EmitBoolCondBranch) {
911     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
912     if (ConditionScope.requiresCleanups())
913       ExitBlock = createBasicBlock("while.exit");
914     llvm::MDNode *Weights =
915         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
916     if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
917       BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
918           BoolCondVal, Stmt::getLikelihood(S.getBody()));
919     Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, Weights);
920 
921     if (ExitBlock != LoopExit.getBlock()) {
922       EmitBlock(ExitBlock);
923       EmitBranchThroughCleanup(LoopExit);
924     }
925   } else if (const Attr *A = Stmt::getLikelihoodAttr(S.getBody())) {
926     CGM.getDiags().Report(A->getLocation(),
927                           diag::warn_attribute_has_no_effect_on_infinite_loop)
928         << A << A->getRange();
929     CGM.getDiags().Report(
930         S.getWhileLoc(),
931         diag::note_attribute_has_no_effect_on_infinite_loop_here)
932         << SourceRange(S.getWhileLoc(), S.getRParenLoc());
933   }
934 
935   // Emit the loop body.  We have to emit this in a cleanup scope
936   // because it might be a singleton DeclStmt.
937   {
938     RunCleanupsScope BodyScope(*this);
939     EmitBlock(LoopBody);
940     incrementProfileCounter(&S);
941     EmitStmt(S.getBody());
942   }
943 
944   BreakContinueStack.pop_back();
945 
946   // Immediately force cleanup.
947   ConditionScope.ForceCleanup();
948 
949   EmitStopPoint(&S);
950   // Branch to the loop header again.
951   EmitBranch(LoopHeader.getBlock());
952 
953   LoopStack.pop();
954 
955   // Emit the exit block.
956   EmitBlock(LoopExit.getBlock(), true);
957 
958   // The LoopHeader typically is just a branch if we skipped emitting
959   // a branch, try to erase it.
960   if (!EmitBoolCondBranch)
961     SimplifyForwardingBlocks(LoopHeader.getBlock());
962 }
963 
964 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
965                                  ArrayRef<const Attr *> DoAttrs) {
966   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
967   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
968 
969   uint64_t ParentCount = getCurrentProfileCount();
970 
971   // Store the blocks to use for break and continue.
972   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
973 
974   // Emit the body of the loop.
975   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
976 
977   EmitBlockWithFallThrough(LoopBody, &S);
978   {
979     RunCleanupsScope BodyScope(*this);
980     EmitStmt(S.getBody());
981   }
982 
983   EmitBlock(LoopCond.getBlock());
984 
985   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
986   // after each execution of the loop body."
987 
988   // Evaluate the conditional in the while header.
989   // C99 6.8.5p2/p4: The first substatement is executed if the expression
990   // compares unequal to 0.  The condition must be a scalar type.
991   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
992 
993   BreakContinueStack.pop_back();
994 
995   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
996   // to correctly handle break/continue though.
997   llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal);
998   bool CondIsConstInt = C;
999   bool EmitBoolCondBranch = !C || !C->isZero();
1000 
1001   const SourceRange &R = S.getSourceRange();
1002   LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs,
1003                  SourceLocToDebugLoc(R.getBegin()),
1004                  SourceLocToDebugLoc(R.getEnd()),
1005                  checkIfLoopMustProgress(CondIsConstInt));
1006 
1007   // As long as the condition is true, iterate the loop.
1008   if (EmitBoolCondBranch) {
1009     uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
1010     Builder.CreateCondBr(
1011         BoolCondVal, LoopBody, LoopExit.getBlock(),
1012         createProfileWeightsForLoop(S.getCond(), BackedgeCount));
1013   }
1014 
1015   LoopStack.pop();
1016 
1017   // Emit the exit block.
1018   EmitBlock(LoopExit.getBlock());
1019 
1020   // The DoCond block typically is just a branch if we skipped
1021   // emitting a branch, try to erase it.
1022   if (!EmitBoolCondBranch)
1023     SimplifyForwardingBlocks(LoopCond.getBlock());
1024 }
1025 
1026 void CodeGenFunction::EmitForStmt(const ForStmt &S,
1027                                   ArrayRef<const Attr *> ForAttrs) {
1028   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
1029 
1030   LexicalScope ForScope(*this, S.getSourceRange());
1031 
1032   // Evaluate the first part before the loop.
1033   if (S.getInit())
1034     EmitStmt(S.getInit());
1035 
1036   // Start the loop with a block that tests the condition.
1037   // If there's an increment, the continue scope will be overwritten
1038   // later.
1039   JumpDest CondDest = getJumpDestInCurrentScope("for.cond");
1040   llvm::BasicBlock *CondBlock = CondDest.getBlock();
1041   EmitBlock(CondBlock);
1042 
1043   Expr::EvalResult Result;
1044   bool CondIsConstInt =
1045       !S.getCond() || S.getCond()->EvaluateAsInt(Result, getContext());
1046 
1047   const SourceRange &R = S.getSourceRange();
1048   LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
1049                  SourceLocToDebugLoc(R.getBegin()),
1050                  SourceLocToDebugLoc(R.getEnd()),
1051                  checkIfLoopMustProgress(CondIsConstInt));
1052 
1053   // Create a cleanup scope for the condition variable cleanups.
1054   LexicalScope ConditionScope(*this, S.getSourceRange());
1055 
1056   // If the for loop doesn't have an increment we can just use the condition as
1057   // the continue block. Otherwise, if there is no condition variable, we can
1058   // form the continue block now. If there is a condition variable, we can't
1059   // form the continue block until after we've emitted the condition, because
1060   // the condition is in scope in the increment, but Sema's jump diagnostics
1061   // ensure that there are no continues from the condition variable that jump
1062   // to the loop increment.
1063   JumpDest Continue;
1064   if (!S.getInc())
1065     Continue = CondDest;
1066   else if (!S.getConditionVariable())
1067     Continue = getJumpDestInCurrentScope("for.inc");
1068   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1069 
1070   if (S.getCond()) {
1071     // If the for statement has a condition scope, emit the local variable
1072     // declaration.
1073     if (S.getConditionVariable()) {
1074       EmitDecl(*S.getConditionVariable());
1075 
1076       // We have entered the condition variable's scope, so we're now able to
1077       // jump to the continue block.
1078       Continue = S.getInc() ? getJumpDestInCurrentScope("for.inc") : CondDest;
1079       BreakContinueStack.back().ContinueBlock = Continue;
1080     }
1081 
1082     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1083     // If there are any cleanups between here and the loop-exit scope,
1084     // create a block to stage a loop exit along.
1085     if (ForScope.requiresCleanups())
1086       ExitBlock = createBasicBlock("for.cond.cleanup");
1087 
1088     // As long as the condition is true, iterate the loop.
1089     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
1090 
1091     // C99 6.8.5p2/p4: The first substatement is executed if the expression
1092     // compares unequal to 0.  The condition must be a scalar type.
1093     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1094     llvm::MDNode *Weights =
1095         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
1096     if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
1097       BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
1098           BoolCondVal, Stmt::getLikelihood(S.getBody()));
1099 
1100     Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights);
1101 
1102     if (ExitBlock != LoopExit.getBlock()) {
1103       EmitBlock(ExitBlock);
1104       EmitBranchThroughCleanup(LoopExit);
1105     }
1106 
1107     EmitBlock(ForBody);
1108   } else {
1109     // Treat it as a non-zero constant.  Don't even create a new block for the
1110     // body, just fall into it.
1111   }
1112   incrementProfileCounter(&S);
1113 
1114   {
1115     // Create a separate cleanup scope for the body, in case it is not
1116     // a compound statement.
1117     RunCleanupsScope BodyScope(*this);
1118     EmitStmt(S.getBody());
1119   }
1120 
1121   // If there is an increment, emit it next.
1122   if (S.getInc()) {
1123     EmitBlock(Continue.getBlock());
1124     EmitStmt(S.getInc());
1125   }
1126 
1127   BreakContinueStack.pop_back();
1128 
1129   ConditionScope.ForceCleanup();
1130 
1131   EmitStopPoint(&S);
1132   EmitBranch(CondBlock);
1133 
1134   ForScope.ForceCleanup();
1135 
1136   LoopStack.pop();
1137 
1138   // Emit the fall-through block.
1139   EmitBlock(LoopExit.getBlock(), true);
1140 }
1141 
1142 void
1143 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
1144                                      ArrayRef<const Attr *> ForAttrs) {
1145   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
1146 
1147   LexicalScope ForScope(*this, S.getSourceRange());
1148 
1149   // Evaluate the first pieces before the loop.
1150   if (S.getInit())
1151     EmitStmt(S.getInit());
1152   EmitStmt(S.getRangeStmt());
1153   EmitStmt(S.getBeginStmt());
1154   EmitStmt(S.getEndStmt());
1155 
1156   // Start the loop with a block that tests the condition.
1157   // If there's an increment, the continue scope will be overwritten
1158   // later.
1159   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
1160   EmitBlock(CondBlock);
1161 
1162   const SourceRange &R = S.getSourceRange();
1163   LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
1164                  SourceLocToDebugLoc(R.getBegin()),
1165                  SourceLocToDebugLoc(R.getEnd()));
1166 
1167   // If there are any cleanups between here and the loop-exit scope,
1168   // create a block to stage a loop exit along.
1169   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1170   if (ForScope.requiresCleanups())
1171     ExitBlock = createBasicBlock("for.cond.cleanup");
1172 
1173   // The loop body, consisting of the specified body and the loop variable.
1174   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
1175 
1176   // The body is executed if the expression, contextually converted
1177   // to bool, is true.
1178   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1179   llvm::MDNode *Weights =
1180       createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
1181   if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
1182     BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
1183         BoolCondVal, Stmt::getLikelihood(S.getBody()));
1184   Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights);
1185 
1186   if (ExitBlock != LoopExit.getBlock()) {
1187     EmitBlock(ExitBlock);
1188     EmitBranchThroughCleanup(LoopExit);
1189   }
1190 
1191   EmitBlock(ForBody);
1192   incrementProfileCounter(&S);
1193 
1194   // Create a block for the increment. In case of a 'continue', we jump there.
1195   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
1196 
1197   // Store the blocks to use for break and continue.
1198   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1199 
1200   {
1201     // Create a separate cleanup scope for the loop variable and body.
1202     LexicalScope BodyScope(*this, S.getSourceRange());
1203     EmitStmt(S.getLoopVarStmt());
1204     EmitStmt(S.getBody());
1205   }
1206 
1207   EmitStopPoint(&S);
1208   // If there is an increment, emit it next.
1209   EmitBlock(Continue.getBlock());
1210   EmitStmt(S.getInc());
1211 
1212   BreakContinueStack.pop_back();
1213 
1214   EmitBranch(CondBlock);
1215 
1216   ForScope.ForceCleanup();
1217 
1218   LoopStack.pop();
1219 
1220   // Emit the fall-through block.
1221   EmitBlock(LoopExit.getBlock(), true);
1222 }
1223 
1224 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
1225   if (RV.isScalar()) {
1226     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
1227   } else if (RV.isAggregate()) {
1228     LValue Dest = MakeAddrLValue(ReturnValue, Ty);
1229     LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty);
1230     EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue());
1231   } else {
1232     EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
1233                        /*init*/ true);
1234   }
1235   EmitBranchThroughCleanup(ReturnBlock);
1236 }
1237 
1238 namespace {
1239 // RAII struct used to save and restore a return statment's result expression.
1240 struct SaveRetExprRAII {
1241   SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF)
1242       : OldRetExpr(CGF.RetExpr), CGF(CGF) {
1243     CGF.RetExpr = RetExpr;
1244   }
1245   ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; }
1246   const Expr *OldRetExpr;
1247   CodeGenFunction &CGF;
1248 };
1249 } // namespace
1250 
1251 /// If we have 'return f(...);', where both caller and callee are SwiftAsync,
1252 /// codegen it as 'tail call ...; ret void;'.
1253 static void makeTailCallIfSwiftAsync(const CallExpr *CE, CGBuilderTy &Builder,
1254                                      const CGFunctionInfo *CurFnInfo) {
1255   auto calleeQualType = CE->getCallee()->getType();
1256   const FunctionType *calleeType = nullptr;
1257   if (calleeQualType->isFunctionPointerType() ||
1258       calleeQualType->isFunctionReferenceType() ||
1259       calleeQualType->isBlockPointerType() ||
1260       calleeQualType->isMemberFunctionPointerType()) {
1261     calleeType = calleeQualType->getPointeeType()->castAs<FunctionType>();
1262   } else if (auto *ty = dyn_cast<FunctionType>(calleeQualType)) {
1263     calleeType = ty;
1264   } else if (auto CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
1265     if (auto methodDecl = CMCE->getMethodDecl()) {
1266       // getMethodDecl() doesn't handle member pointers at the moment.
1267       calleeType = methodDecl->getType()->castAs<FunctionType>();
1268     } else {
1269       return;
1270     }
1271   } else {
1272     return;
1273   }
1274   if (calleeType->getCallConv() == CallingConv::CC_SwiftAsync &&
1275       (CurFnInfo->getASTCallingConvention() == CallingConv::CC_SwiftAsync)) {
1276     auto CI = cast<llvm::CallInst>(&Builder.GetInsertBlock()->back());
1277     CI->setTailCallKind(llvm::CallInst::TCK_MustTail);
1278     Builder.CreateRetVoid();
1279     Builder.ClearInsertionPoint();
1280   }
1281 }
1282 
1283 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
1284 /// if the function returns void, or may be missing one if the function returns
1285 /// non-void.  Fun stuff :).
1286 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
1287   if (requiresReturnValueCheck()) {
1288     llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc());
1289     auto *SLocPtr =
1290         new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false,
1291                                  llvm::GlobalVariable::PrivateLinkage, SLoc);
1292     SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1293     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr);
1294     assert(ReturnLocation.isValid() && "No valid return location");
1295     Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy),
1296                         ReturnLocation);
1297   }
1298 
1299   // Returning from an outlined SEH helper is UB, and we already warn on it.
1300   if (IsOutlinedSEHHelper) {
1301     Builder.CreateUnreachable();
1302     Builder.ClearInsertionPoint();
1303   }
1304 
1305   // Emit the result value, even if unused, to evaluate the side effects.
1306   const Expr *RV = S.getRetValue();
1307 
1308   // Record the result expression of the return statement. The recorded
1309   // expression is used to determine whether a block capture's lifetime should
1310   // end at the end of the full expression as opposed to the end of the scope
1311   // enclosing the block expression.
1312   //
1313   // This permits a small, easily-implemented exception to our over-conservative
1314   // rules about not jumping to statements following block literals with
1315   // non-trivial cleanups.
1316   SaveRetExprRAII SaveRetExpr(RV, *this);
1317 
1318   RunCleanupsScope cleanupScope(*this);
1319   if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV))
1320     RV = EWC->getSubExpr();
1321   // FIXME: Clean this up by using an LValue for ReturnTemp,
1322   // EmitStoreThroughLValue, and EmitAnyExpr.
1323   // Check if the NRVO candidate was not globalized in OpenMP mode.
1324   if (getLangOpts().ElideConstructors && S.getNRVOCandidate() &&
1325       S.getNRVOCandidate()->isNRVOVariable() &&
1326       (!getLangOpts().OpenMP ||
1327        !CGM.getOpenMPRuntime()
1328             .getAddressOfLocalVariable(*this, S.getNRVOCandidate())
1329             .isValid())) {
1330     // Apply the named return value optimization for this return statement,
1331     // which means doing nothing: the appropriate result has already been
1332     // constructed into the NRVO variable.
1333 
1334     // If there is an NRVO flag for this variable, set it to 1 into indicate
1335     // that the cleanup code should not destroy the variable.
1336     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
1337       Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
1338   } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
1339     // Make sure not to return anything, but evaluate the expression
1340     // for side effects.
1341     if (RV) {
1342       EmitAnyExpr(RV);
1343       if (auto *CE = dyn_cast<CallExpr>(RV))
1344         makeTailCallIfSwiftAsync(CE, Builder, CurFnInfo);
1345     }
1346   } else if (!RV) {
1347     // Do nothing (return value is left uninitialized)
1348   } else if (FnRetTy->isReferenceType()) {
1349     // If this function returns a reference, take the address of the expression
1350     // rather than the value.
1351     RValue Result = EmitReferenceBindingToExpr(RV);
1352     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
1353   } else {
1354     switch (getEvaluationKind(RV->getType())) {
1355     case TEK_Scalar:
1356       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
1357       break;
1358     case TEK_Complex:
1359       EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
1360                                 /*isInit*/ true);
1361       break;
1362     case TEK_Aggregate:
1363       EmitAggExpr(RV, AggValueSlot::forAddr(
1364                           ReturnValue, Qualifiers(),
1365                           AggValueSlot::IsDestructed,
1366                           AggValueSlot::DoesNotNeedGCBarriers,
1367                           AggValueSlot::IsNotAliased,
1368                           getOverlapForReturnValue()));
1369       break;
1370     }
1371   }
1372 
1373   ++NumReturnExprs;
1374   if (!RV || RV->isEvaluatable(getContext()))
1375     ++NumSimpleReturnExprs;
1376 
1377   cleanupScope.ForceCleanup();
1378   EmitBranchThroughCleanup(ReturnBlock);
1379 }
1380 
1381 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1382   // As long as debug info is modeled with instructions, we have to ensure we
1383   // have a place to insert here and write the stop point here.
1384   if (HaveInsertPoint())
1385     EmitStopPoint(&S);
1386 
1387   for (const auto *I : S.decls())
1388     EmitDecl(*I);
1389 }
1390 
1391 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1392   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1393 
1394   // If this code is reachable then emit a stop point (if generating
1395   // debug info). We have to do this ourselves because we are on the
1396   // "simple" statement path.
1397   if (HaveInsertPoint())
1398     EmitStopPoint(&S);
1399 
1400   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1401 }
1402 
1403 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1404   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1405 
1406   // If this code is reachable then emit a stop point (if generating
1407   // debug info). We have to do this ourselves because we are on the
1408   // "simple" statement path.
1409   if (HaveInsertPoint())
1410     EmitStopPoint(&S);
1411 
1412   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1413 }
1414 
1415 /// EmitCaseStmtRange - If case statement range is not too big then
1416 /// add multiple cases to switch instruction, one for each value within
1417 /// the range. If range is too big then emit "if" condition check.
1418 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S,
1419                                         ArrayRef<const Attr *> Attrs) {
1420   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1421 
1422   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1423   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1424 
1425   // Emit the code for this case. We do this first to make sure it is
1426   // properly chained from our predecessor before generating the
1427   // switch machinery to enter this block.
1428   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1429   EmitBlockWithFallThrough(CaseDest, &S);
1430   EmitStmt(S.getSubStmt());
1431 
1432   // If range is empty, do nothing.
1433   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1434     return;
1435 
1436   Stmt::Likelihood LH = Stmt::getLikelihood(Attrs);
1437   llvm::APInt Range = RHS - LHS;
1438   // FIXME: parameters such as this should not be hardcoded.
1439   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1440     // Range is small enough to add multiple switch instruction cases.
1441     uint64_t Total = getProfileCount(&S);
1442     unsigned NCases = Range.getZExtValue() + 1;
1443     // We only have one region counter for the entire set of cases here, so we
1444     // need to divide the weights evenly between the generated cases, ensuring
1445     // that the total weight is preserved. E.g., a weight of 5 over three cases
1446     // will be distributed as weights of 2, 2, and 1.
1447     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1448     for (unsigned I = 0; I != NCases; ++I) {
1449       if (SwitchWeights)
1450         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1451       else if (SwitchLikelihood)
1452         SwitchLikelihood->push_back(LH);
1453 
1454       if (Rem)
1455         Rem--;
1456       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1457       ++LHS;
1458     }
1459     return;
1460   }
1461 
1462   // The range is too big. Emit "if" condition into a new block,
1463   // making sure to save and restore the current insertion point.
1464   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1465 
1466   // Push this test onto the chain of range checks (which terminates
1467   // in the default basic block). The switch's default will be changed
1468   // to the top of this chain after switch emission is complete.
1469   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1470   CaseRangeBlock = createBasicBlock("sw.caserange");
1471 
1472   CurFn->insert(CurFn->end(), CaseRangeBlock);
1473   Builder.SetInsertPoint(CaseRangeBlock);
1474 
1475   // Emit range check.
1476   llvm::Value *Diff =
1477     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1478   llvm::Value *Cond =
1479     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1480 
1481   llvm::MDNode *Weights = nullptr;
1482   if (SwitchWeights) {
1483     uint64_t ThisCount = getProfileCount(&S);
1484     uint64_t DefaultCount = (*SwitchWeights)[0];
1485     Weights = createProfileWeights(ThisCount, DefaultCount);
1486 
1487     // Since we're chaining the switch default through each large case range, we
1488     // need to update the weight for the default, ie, the first case, to include
1489     // this case.
1490     (*SwitchWeights)[0] += ThisCount;
1491   } else if (SwitchLikelihood)
1492     Cond = emitCondLikelihoodViaExpectIntrinsic(Cond, LH);
1493 
1494   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1495 
1496   // Restore the appropriate insertion point.
1497   if (RestoreBB)
1498     Builder.SetInsertPoint(RestoreBB);
1499   else
1500     Builder.ClearInsertionPoint();
1501 }
1502 
1503 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S,
1504                                    ArrayRef<const Attr *> Attrs) {
1505   // If there is no enclosing switch instance that we're aware of, then this
1506   // case statement and its block can be elided.  This situation only happens
1507   // when we've constant-folded the switch, are emitting the constant case,
1508   // and part of the constant case includes another case statement.  For
1509   // instance: switch (4) { case 4: do { case 5: } while (1); }
1510   if (!SwitchInsn) {
1511     EmitStmt(S.getSubStmt());
1512     return;
1513   }
1514 
1515   // Handle case ranges.
1516   if (S.getRHS()) {
1517     EmitCaseStmtRange(S, Attrs);
1518     return;
1519   }
1520 
1521   llvm::ConstantInt *CaseVal =
1522     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1523 
1524   // Emit debuginfo for the case value if it is an enum value.
1525   const ConstantExpr *CE;
1526   if (auto ICE = dyn_cast<ImplicitCastExpr>(S.getLHS()))
1527     CE = dyn_cast<ConstantExpr>(ICE->getSubExpr());
1528   else
1529     CE = dyn_cast<ConstantExpr>(S.getLHS());
1530   if (CE) {
1531     if (auto DE = dyn_cast<DeclRefExpr>(CE->getSubExpr()))
1532       if (CGDebugInfo *Dbg = getDebugInfo())
1533         if (CGM.getCodeGenOpts().hasReducedDebugInfo())
1534           Dbg->EmitGlobalVariable(DE->getDecl(),
1535               APValue(llvm::APSInt(CaseVal->getValue())));
1536   }
1537 
1538   if (SwitchLikelihood)
1539     SwitchLikelihood->push_back(Stmt::getLikelihood(Attrs));
1540 
1541   // If the body of the case is just a 'break', try to not emit an empty block.
1542   // If we're profiling or we're not optimizing, leave the block in for better
1543   // debug and coverage analysis.
1544   if (!CGM.getCodeGenOpts().hasProfileClangInstr() &&
1545       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1546       isa<BreakStmt>(S.getSubStmt())) {
1547     JumpDest Block = BreakContinueStack.back().BreakBlock;
1548 
1549     // Only do this optimization if there are no cleanups that need emitting.
1550     if (isObviouslyBranchWithoutCleanups(Block)) {
1551       if (SwitchWeights)
1552         SwitchWeights->push_back(getProfileCount(&S));
1553       SwitchInsn->addCase(CaseVal, Block.getBlock());
1554 
1555       // If there was a fallthrough into this case, make sure to redirect it to
1556       // the end of the switch as well.
1557       if (Builder.GetInsertBlock()) {
1558         Builder.CreateBr(Block.getBlock());
1559         Builder.ClearInsertionPoint();
1560       }
1561       return;
1562     }
1563   }
1564 
1565   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1566   EmitBlockWithFallThrough(CaseDest, &S);
1567   if (SwitchWeights)
1568     SwitchWeights->push_back(getProfileCount(&S));
1569   SwitchInsn->addCase(CaseVal, CaseDest);
1570 
1571   // Recursively emitting the statement is acceptable, but is not wonderful for
1572   // code where we have many case statements nested together, i.e.:
1573   //  case 1:
1574   //    case 2:
1575   //      case 3: etc.
1576   // Handling this recursively will create a new block for each case statement
1577   // that falls through to the next case which is IR intensive.  It also causes
1578   // deep recursion which can run into stack depth limitations.  Handle
1579   // sequential non-range case statements specially.
1580   //
1581   // TODO When the next case has a likelihood attribute the code returns to the
1582   // recursive algorithm. Maybe improve this case if it becomes common practice
1583   // to use a lot of attributes.
1584   const CaseStmt *CurCase = &S;
1585   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1586 
1587   // Otherwise, iteratively add consecutive cases to this switch stmt.
1588   while (NextCase && NextCase->getRHS() == nullptr) {
1589     CurCase = NextCase;
1590     llvm::ConstantInt *CaseVal =
1591       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1592 
1593     if (SwitchWeights)
1594       SwitchWeights->push_back(getProfileCount(NextCase));
1595     if (CGM.getCodeGenOpts().hasProfileClangInstr()) {
1596       CaseDest = createBasicBlock("sw.bb");
1597       EmitBlockWithFallThrough(CaseDest, CurCase);
1598     }
1599     // Since this loop is only executed when the CaseStmt has no attributes
1600     // use a hard-coded value.
1601     if (SwitchLikelihood)
1602       SwitchLikelihood->push_back(Stmt::LH_None);
1603 
1604     SwitchInsn->addCase(CaseVal, CaseDest);
1605     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1606   }
1607 
1608   // Generate a stop point for debug info if the case statement is
1609   // followed by a default statement. A fallthrough case before a
1610   // default case gets its own branch target.
1611   if (CurCase->getSubStmt()->getStmtClass() == Stmt::DefaultStmtClass)
1612     EmitStopPoint(CurCase);
1613 
1614   // Normal default recursion for non-cases.
1615   EmitStmt(CurCase->getSubStmt());
1616 }
1617 
1618 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S,
1619                                       ArrayRef<const Attr *> Attrs) {
1620   // If there is no enclosing switch instance that we're aware of, then this
1621   // default statement can be elided. This situation only happens when we've
1622   // constant-folded the switch.
1623   if (!SwitchInsn) {
1624     EmitStmt(S.getSubStmt());
1625     return;
1626   }
1627 
1628   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1629   assert(DefaultBlock->empty() &&
1630          "EmitDefaultStmt: Default block already defined?");
1631 
1632   if (SwitchLikelihood)
1633     SwitchLikelihood->front() = Stmt::getLikelihood(Attrs);
1634 
1635   EmitBlockWithFallThrough(DefaultBlock, &S);
1636 
1637   EmitStmt(S.getSubStmt());
1638 }
1639 
1640 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1641 /// constant value that is being switched on, see if we can dead code eliminate
1642 /// the body of the switch to a simple series of statements to emit.  Basically,
1643 /// on a switch (5) we want to find these statements:
1644 ///    case 5:
1645 ///      printf(...);    <--
1646 ///      ++i;            <--
1647 ///      break;
1648 ///
1649 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1650 /// transformation (for example, one of the elided statements contains a label
1651 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1652 /// should include statements after it (e.g. the printf() line is a substmt of
1653 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1654 /// statement, then return CSFC_Success.
1655 ///
1656 /// If Case is non-null, then we are looking for the specified case, checking
1657 /// that nothing we jump over contains labels.  If Case is null, then we found
1658 /// the case and are looking for the break.
1659 ///
1660 /// If the recursive walk actually finds our Case, then we set FoundCase to
1661 /// true.
1662 ///
1663 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1664 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1665                                             const SwitchCase *Case,
1666                                             bool &FoundCase,
1667                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1668   // If this is a null statement, just succeed.
1669   if (!S)
1670     return Case ? CSFC_Success : CSFC_FallThrough;
1671 
1672   // If this is the switchcase (case 4: or default) that we're looking for, then
1673   // we're in business.  Just add the substatement.
1674   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1675     if (S == Case) {
1676       FoundCase = true;
1677       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1678                                       ResultStmts);
1679     }
1680 
1681     // Otherwise, this is some other case or default statement, just ignore it.
1682     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1683                                     ResultStmts);
1684   }
1685 
1686   // If we are in the live part of the code and we found our break statement,
1687   // return a success!
1688   if (!Case && isa<BreakStmt>(S))
1689     return CSFC_Success;
1690 
1691   // If this is a switch statement, then it might contain the SwitchCase, the
1692   // break, or neither.
1693   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1694     // Handle this as two cases: we might be looking for the SwitchCase (if so
1695     // the skipped statements must be skippable) or we might already have it.
1696     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1697     bool StartedInLiveCode = FoundCase;
1698     unsigned StartSize = ResultStmts.size();
1699 
1700     // If we've not found the case yet, scan through looking for it.
1701     if (Case) {
1702       // Keep track of whether we see a skipped declaration.  The code could be
1703       // using the declaration even if it is skipped, so we can't optimize out
1704       // the decl if the kept statements might refer to it.
1705       bool HadSkippedDecl = false;
1706 
1707       // If we're looking for the case, just see if we can skip each of the
1708       // substatements.
1709       for (; Case && I != E; ++I) {
1710         HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I);
1711 
1712         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1713         case CSFC_Failure: return CSFC_Failure;
1714         case CSFC_Success:
1715           // A successful result means that either 1) that the statement doesn't
1716           // have the case and is skippable, or 2) does contain the case value
1717           // and also contains the break to exit the switch.  In the later case,
1718           // we just verify the rest of the statements are elidable.
1719           if (FoundCase) {
1720             // If we found the case and skipped declarations, we can't do the
1721             // optimization.
1722             if (HadSkippedDecl)
1723               return CSFC_Failure;
1724 
1725             for (++I; I != E; ++I)
1726               if (CodeGenFunction::ContainsLabel(*I, true))
1727                 return CSFC_Failure;
1728             return CSFC_Success;
1729           }
1730           break;
1731         case CSFC_FallThrough:
1732           // If we have a fallthrough condition, then we must have found the
1733           // case started to include statements.  Consider the rest of the
1734           // statements in the compound statement as candidates for inclusion.
1735           assert(FoundCase && "Didn't find case but returned fallthrough?");
1736           // We recursively found Case, so we're not looking for it anymore.
1737           Case = nullptr;
1738 
1739           // If we found the case and skipped declarations, we can't do the
1740           // optimization.
1741           if (HadSkippedDecl)
1742             return CSFC_Failure;
1743           break;
1744         }
1745       }
1746 
1747       if (!FoundCase)
1748         return CSFC_Success;
1749 
1750       assert(!HadSkippedDecl && "fallthrough after skipping decl");
1751     }
1752 
1753     // If we have statements in our range, then we know that the statements are
1754     // live and need to be added to the set of statements we're tracking.
1755     bool AnyDecls = false;
1756     for (; I != E; ++I) {
1757       AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I);
1758 
1759       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1760       case CSFC_Failure: return CSFC_Failure;
1761       case CSFC_FallThrough:
1762         // A fallthrough result means that the statement was simple and just
1763         // included in ResultStmt, keep adding them afterwards.
1764         break;
1765       case CSFC_Success:
1766         // A successful result means that we found the break statement and
1767         // stopped statement inclusion.  We just ensure that any leftover stmts
1768         // are skippable and return success ourselves.
1769         for (++I; I != E; ++I)
1770           if (CodeGenFunction::ContainsLabel(*I, true))
1771             return CSFC_Failure;
1772         return CSFC_Success;
1773       }
1774     }
1775 
1776     // If we're about to fall out of a scope without hitting a 'break;', we
1777     // can't perform the optimization if there were any decls in that scope
1778     // (we'd lose their end-of-lifetime).
1779     if (AnyDecls) {
1780       // If the entire compound statement was live, there's one more thing we
1781       // can try before giving up: emit the whole thing as a single statement.
1782       // We can do that unless the statement contains a 'break;'.
1783       // FIXME: Such a break must be at the end of a construct within this one.
1784       // We could emit this by just ignoring the BreakStmts entirely.
1785       if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) {
1786         ResultStmts.resize(StartSize);
1787         ResultStmts.push_back(S);
1788       } else {
1789         return CSFC_Failure;
1790       }
1791     }
1792 
1793     return CSFC_FallThrough;
1794   }
1795 
1796   // Okay, this is some other statement that we don't handle explicitly, like a
1797   // for statement or increment etc.  If we are skipping over this statement,
1798   // just verify it doesn't have labels, which would make it invalid to elide.
1799   if (Case) {
1800     if (CodeGenFunction::ContainsLabel(S, true))
1801       return CSFC_Failure;
1802     return CSFC_Success;
1803   }
1804 
1805   // Otherwise, we want to include this statement.  Everything is cool with that
1806   // so long as it doesn't contain a break out of the switch we're in.
1807   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1808 
1809   // Otherwise, everything is great.  Include the statement and tell the caller
1810   // that we fall through and include the next statement as well.
1811   ResultStmts.push_back(S);
1812   return CSFC_FallThrough;
1813 }
1814 
1815 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1816 /// then invoke CollectStatementsForCase to find the list of statements to emit
1817 /// for a switch on constant.  See the comment above CollectStatementsForCase
1818 /// for more details.
1819 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1820                                        const llvm::APSInt &ConstantCondValue,
1821                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1822                                        ASTContext &C,
1823                                        const SwitchCase *&ResultCase) {
1824   // First step, find the switch case that is being branched to.  We can do this
1825   // efficiently by scanning the SwitchCase list.
1826   const SwitchCase *Case = S.getSwitchCaseList();
1827   const DefaultStmt *DefaultCase = nullptr;
1828 
1829   for (; Case; Case = Case->getNextSwitchCase()) {
1830     // It's either a default or case.  Just remember the default statement in
1831     // case we're not jumping to any numbered cases.
1832     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1833       DefaultCase = DS;
1834       continue;
1835     }
1836 
1837     // Check to see if this case is the one we're looking for.
1838     const CaseStmt *CS = cast<CaseStmt>(Case);
1839     // Don't handle case ranges yet.
1840     if (CS->getRHS()) return false;
1841 
1842     // If we found our case, remember it as 'case'.
1843     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1844       break;
1845   }
1846 
1847   // If we didn't find a matching case, we use a default if it exists, or we
1848   // elide the whole switch body!
1849   if (!Case) {
1850     // It is safe to elide the body of the switch if it doesn't contain labels
1851     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1852     if (!DefaultCase)
1853       return !CodeGenFunction::ContainsLabel(&S);
1854     Case = DefaultCase;
1855   }
1856 
1857   // Ok, we know which case is being jumped to, try to collect all the
1858   // statements that follow it.  This can fail for a variety of reasons.  Also,
1859   // check to see that the recursive walk actually found our case statement.
1860   // Insane cases like this can fail to find it in the recursive walk since we
1861   // don't handle every stmt kind:
1862   // switch (4) {
1863   //   while (1) {
1864   //     case 4: ...
1865   bool FoundCase = false;
1866   ResultCase = Case;
1867   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1868                                   ResultStmts) != CSFC_Failure &&
1869          FoundCase;
1870 }
1871 
1872 static std::optional<SmallVector<uint64_t, 16>>
1873 getLikelihoodWeights(ArrayRef<Stmt::Likelihood> Likelihoods) {
1874   // Are there enough branches to weight them?
1875   if (Likelihoods.size() <= 1)
1876     return std::nullopt;
1877 
1878   uint64_t NumUnlikely = 0;
1879   uint64_t NumNone = 0;
1880   uint64_t NumLikely = 0;
1881   for (const auto LH : Likelihoods) {
1882     switch (LH) {
1883     case Stmt::LH_Unlikely:
1884       ++NumUnlikely;
1885       break;
1886     case Stmt::LH_None:
1887       ++NumNone;
1888       break;
1889     case Stmt::LH_Likely:
1890       ++NumLikely;
1891       break;
1892     }
1893   }
1894 
1895   // Is there a likelihood attribute used?
1896   if (NumUnlikely == 0 && NumLikely == 0)
1897     return std::nullopt;
1898 
1899   // When multiple cases share the same code they can be combined during
1900   // optimization. In that case the weights of the branch will be the sum of
1901   // the individual weights. Make sure the combined sum of all neutral cases
1902   // doesn't exceed the value of a single likely attribute.
1903   // The additions both avoid divisions by 0 and make sure the weights of None
1904   // don't exceed the weight of Likely.
1905   const uint64_t Likely = INT32_MAX / (NumLikely + 2);
1906   const uint64_t None = Likely / (NumNone + 1);
1907   const uint64_t Unlikely = 0;
1908 
1909   SmallVector<uint64_t, 16> Result;
1910   Result.reserve(Likelihoods.size());
1911   for (const auto LH : Likelihoods) {
1912     switch (LH) {
1913     case Stmt::LH_Unlikely:
1914       Result.push_back(Unlikely);
1915       break;
1916     case Stmt::LH_None:
1917       Result.push_back(None);
1918       break;
1919     case Stmt::LH_Likely:
1920       Result.push_back(Likely);
1921       break;
1922     }
1923   }
1924 
1925   return Result;
1926 }
1927 
1928 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1929   // Handle nested switch statements.
1930   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1931   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1932   SmallVector<Stmt::Likelihood, 16> *SavedSwitchLikelihood = SwitchLikelihood;
1933   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1934 
1935   // See if we can constant fold the condition of the switch and therefore only
1936   // emit the live case statement (if any) of the switch.
1937   llvm::APSInt ConstantCondValue;
1938   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1939     SmallVector<const Stmt*, 4> CaseStmts;
1940     const SwitchCase *Case = nullptr;
1941     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1942                                    getContext(), Case)) {
1943       if (Case)
1944         incrementProfileCounter(Case);
1945       RunCleanupsScope ExecutedScope(*this);
1946 
1947       if (S.getInit())
1948         EmitStmt(S.getInit());
1949 
1950       // Emit the condition variable if needed inside the entire cleanup scope
1951       // used by this special case for constant folded switches.
1952       if (S.getConditionVariable())
1953         EmitDecl(*S.getConditionVariable());
1954 
1955       // At this point, we are no longer "within" a switch instance, so
1956       // we can temporarily enforce this to ensure that any embedded case
1957       // statements are not emitted.
1958       SwitchInsn = nullptr;
1959 
1960       // Okay, we can dead code eliminate everything except this case.  Emit the
1961       // specified series of statements and we're good.
1962       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1963         EmitStmt(CaseStmts[i]);
1964       incrementProfileCounter(&S);
1965 
1966       // Now we want to restore the saved switch instance so that nested
1967       // switches continue to function properly
1968       SwitchInsn = SavedSwitchInsn;
1969 
1970       return;
1971     }
1972   }
1973 
1974   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1975 
1976   RunCleanupsScope ConditionScope(*this);
1977 
1978   if (S.getInit())
1979     EmitStmt(S.getInit());
1980 
1981   if (S.getConditionVariable())
1982     EmitDecl(*S.getConditionVariable());
1983   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1984 
1985   // Create basic block to hold stuff that comes after switch
1986   // statement. We also need to create a default block now so that
1987   // explicit case ranges tests can have a place to jump to on
1988   // failure.
1989   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1990   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1991   if (PGO.haveRegionCounts()) {
1992     // Walk the SwitchCase list to find how many there are.
1993     uint64_t DefaultCount = 0;
1994     unsigned NumCases = 0;
1995     for (const SwitchCase *Case = S.getSwitchCaseList();
1996          Case;
1997          Case = Case->getNextSwitchCase()) {
1998       if (isa<DefaultStmt>(Case))
1999         DefaultCount = getProfileCount(Case);
2000       NumCases += 1;
2001     }
2002     SwitchWeights = new SmallVector<uint64_t, 16>();
2003     SwitchWeights->reserve(NumCases);
2004     // The default needs to be first. We store the edge count, so we already
2005     // know the right weight.
2006     SwitchWeights->push_back(DefaultCount);
2007   } else if (CGM.getCodeGenOpts().OptimizationLevel) {
2008     SwitchLikelihood = new SmallVector<Stmt::Likelihood, 16>();
2009     // Initialize the default case.
2010     SwitchLikelihood->push_back(Stmt::LH_None);
2011   }
2012 
2013   CaseRangeBlock = DefaultBlock;
2014 
2015   // Clear the insertion point to indicate we are in unreachable code.
2016   Builder.ClearInsertionPoint();
2017 
2018   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
2019   // then reuse last ContinueBlock.
2020   JumpDest OuterContinue;
2021   if (!BreakContinueStack.empty())
2022     OuterContinue = BreakContinueStack.back().ContinueBlock;
2023 
2024   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
2025 
2026   // Emit switch body.
2027   EmitStmt(S.getBody());
2028 
2029   BreakContinueStack.pop_back();
2030 
2031   // Update the default block in case explicit case range tests have
2032   // been chained on top.
2033   SwitchInsn->setDefaultDest(CaseRangeBlock);
2034 
2035   // If a default was never emitted:
2036   if (!DefaultBlock->getParent()) {
2037     // If we have cleanups, emit the default block so that there's a
2038     // place to jump through the cleanups from.
2039     if (ConditionScope.requiresCleanups()) {
2040       EmitBlock(DefaultBlock);
2041 
2042     // Otherwise, just forward the default block to the switch end.
2043     } else {
2044       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
2045       delete DefaultBlock;
2046     }
2047   }
2048 
2049   ConditionScope.ForceCleanup();
2050 
2051   // Emit continuation.
2052   EmitBlock(SwitchExit.getBlock(), true);
2053   incrementProfileCounter(&S);
2054 
2055   // If the switch has a condition wrapped by __builtin_unpredictable,
2056   // create metadata that specifies that the switch is unpredictable.
2057   // Don't bother if not optimizing because that metadata would not be used.
2058   auto *Call = dyn_cast<CallExpr>(S.getCond());
2059   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
2060     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
2061     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
2062       llvm::MDBuilder MDHelper(getLLVMContext());
2063       SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
2064                               MDHelper.createUnpredictable());
2065     }
2066   }
2067 
2068   if (SwitchWeights) {
2069     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
2070            "switch weights do not match switch cases");
2071     // If there's only one jump destination there's no sense weighting it.
2072     if (SwitchWeights->size() > 1)
2073       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
2074                               createProfileWeights(*SwitchWeights));
2075     delete SwitchWeights;
2076   } else if (SwitchLikelihood) {
2077     assert(SwitchLikelihood->size() == 1 + SwitchInsn->getNumCases() &&
2078            "switch likelihoods do not match switch cases");
2079     std::optional<SmallVector<uint64_t, 16>> LHW =
2080         getLikelihoodWeights(*SwitchLikelihood);
2081     if (LHW) {
2082       llvm::MDBuilder MDHelper(CGM.getLLVMContext());
2083       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
2084                               createProfileWeights(*LHW));
2085     }
2086     delete SwitchLikelihood;
2087   }
2088   SwitchInsn = SavedSwitchInsn;
2089   SwitchWeights = SavedSwitchWeights;
2090   SwitchLikelihood = SavedSwitchLikelihood;
2091   CaseRangeBlock = SavedCRBlock;
2092 }
2093 
2094 static std::string
2095 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
2096                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
2097   std::string Result;
2098 
2099   while (*Constraint) {
2100     switch (*Constraint) {
2101     default:
2102       Result += Target.convertConstraint(Constraint);
2103       break;
2104     // Ignore these
2105     case '*':
2106     case '?':
2107     case '!':
2108     case '=': // Will see this and the following in mult-alt constraints.
2109     case '+':
2110       break;
2111     case '#': // Ignore the rest of the constraint alternative.
2112       while (Constraint[1] && Constraint[1] != ',')
2113         Constraint++;
2114       break;
2115     case '&':
2116     case '%':
2117       Result += *Constraint;
2118       while (Constraint[1] && Constraint[1] == *Constraint)
2119         Constraint++;
2120       break;
2121     case ',':
2122       Result += "|";
2123       break;
2124     case 'g':
2125       Result += "imr";
2126       break;
2127     case '[': {
2128       assert(OutCons &&
2129              "Must pass output names to constraints with a symbolic name");
2130       unsigned Index;
2131       bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
2132       assert(result && "Could not resolve symbolic name"); (void)result;
2133       Result += llvm::utostr(Index);
2134       break;
2135     }
2136     }
2137 
2138     Constraint++;
2139   }
2140 
2141   return Result;
2142 }
2143 
2144 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
2145 /// as using a particular register add that as a constraint that will be used
2146 /// in this asm stmt.
2147 static std::string
2148 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
2149                        const TargetInfo &Target, CodeGenModule &CGM,
2150                        const AsmStmt &Stmt, const bool EarlyClobber,
2151                        std::string *GCCReg = nullptr) {
2152   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
2153   if (!AsmDeclRef)
2154     return Constraint;
2155   const ValueDecl &Value = *AsmDeclRef->getDecl();
2156   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
2157   if (!Variable)
2158     return Constraint;
2159   if (Variable->getStorageClass() != SC_Register)
2160     return Constraint;
2161   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
2162   if (!Attr)
2163     return Constraint;
2164   StringRef Register = Attr->getLabel();
2165   assert(Target.isValidGCCRegisterName(Register));
2166   // We're using validateOutputConstraint here because we only care if
2167   // this is a register constraint.
2168   TargetInfo::ConstraintInfo Info(Constraint, "");
2169   if (Target.validateOutputConstraint(Info) &&
2170       !Info.allowsRegister()) {
2171     CGM.ErrorUnsupported(&Stmt, "__asm__");
2172     return Constraint;
2173   }
2174   // Canonicalize the register here before returning it.
2175   Register = Target.getNormalizedGCCRegisterName(Register);
2176   if (GCCReg != nullptr)
2177     *GCCReg = Register.str();
2178   return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
2179 }
2180 
2181 std::pair<llvm::Value*, llvm::Type *> CodeGenFunction::EmitAsmInputLValue(
2182     const TargetInfo::ConstraintInfo &Info, LValue InputValue,
2183     QualType InputType, std::string &ConstraintStr, SourceLocation Loc) {
2184   if (Info.allowsRegister() || !Info.allowsMemory()) {
2185     if (CodeGenFunction::hasScalarEvaluationKind(InputType))
2186       return {EmitLoadOfLValue(InputValue, Loc).getScalarVal(), nullptr};
2187 
2188     llvm::Type *Ty = ConvertType(InputType);
2189     uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
2190     if ((Size <= 64 && llvm::isPowerOf2_64(Size)) ||
2191         getTargetHooks().isScalarizableAsmOperand(*this, Ty)) {
2192       Ty = llvm::IntegerType::get(getLLVMContext(), Size);
2193 
2194       return {Builder.CreateLoad(Builder.CreateElementBitCast(
2195                   InputValue.getAddress(*this), Ty)),
2196               nullptr};
2197     }
2198   }
2199 
2200   Address Addr = InputValue.getAddress(*this);
2201   ConstraintStr += '*';
2202   return {Addr.getPointer(), Addr.getElementType()};
2203 }
2204 
2205 std::pair<llvm::Value *, llvm::Type *>
2206 CodeGenFunction::EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2207                               const Expr *InputExpr,
2208                               std::string &ConstraintStr) {
2209   // If this can't be a register or memory, i.e., has to be a constant
2210   // (immediate or symbolic), try to emit it as such.
2211   if (!Info.allowsRegister() && !Info.allowsMemory()) {
2212     if (Info.requiresImmediateConstant()) {
2213       Expr::EvalResult EVResult;
2214       InputExpr->EvaluateAsRValue(EVResult, getContext(), true);
2215 
2216       llvm::APSInt IntResult;
2217       if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(),
2218                                           getContext()))
2219         return {llvm::ConstantInt::get(getLLVMContext(), IntResult), nullptr};
2220     }
2221 
2222     Expr::EvalResult Result;
2223     if (InputExpr->EvaluateAsInt(Result, getContext()))
2224       return {llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt()),
2225               nullptr};
2226   }
2227 
2228   if (Info.allowsRegister() || !Info.allowsMemory())
2229     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
2230       return {EmitScalarExpr(InputExpr), nullptr};
2231   if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
2232     return {EmitScalarExpr(InputExpr), nullptr};
2233   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
2234   LValue Dest = EmitLValue(InputExpr);
2235   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
2236                             InputExpr->getExprLoc());
2237 }
2238 
2239 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
2240 /// asm call instruction.  The !srcloc MDNode contains a list of constant
2241 /// integers which are the source locations of the start of each line in the
2242 /// asm.
2243 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
2244                                       CodeGenFunction &CGF) {
2245   SmallVector<llvm::Metadata *, 8> Locs;
2246   // Add the location of the first line to the MDNode.
2247   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2248       CGF.Int64Ty, Str->getBeginLoc().getRawEncoding())));
2249   StringRef StrVal = Str->getString();
2250   if (!StrVal.empty()) {
2251     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
2252     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
2253     unsigned StartToken = 0;
2254     unsigned ByteOffset = 0;
2255 
2256     // Add the location of the start of each subsequent line of the asm to the
2257     // MDNode.
2258     for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
2259       if (StrVal[i] != '\n') continue;
2260       SourceLocation LineLoc = Str->getLocationOfByte(
2261           i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
2262       Locs.push_back(llvm::ConstantAsMetadata::get(
2263           llvm::ConstantInt::get(CGF.Int64Ty, LineLoc.getRawEncoding())));
2264     }
2265   }
2266 
2267   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
2268 }
2269 
2270 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect,
2271                               bool HasUnwindClobber, bool ReadOnly,
2272                               bool ReadNone, bool NoMerge, const AsmStmt &S,
2273                               const std::vector<llvm::Type *> &ResultRegTypes,
2274                               const std::vector<llvm::Type *> &ArgElemTypes,
2275                               CodeGenFunction &CGF,
2276                               std::vector<llvm::Value *> &RegResults) {
2277   if (!HasUnwindClobber)
2278     Result.addFnAttr(llvm::Attribute::NoUnwind);
2279 
2280   if (NoMerge)
2281     Result.addFnAttr(llvm::Attribute::NoMerge);
2282   // Attach readnone and readonly attributes.
2283   if (!HasSideEffect) {
2284     if (ReadNone)
2285       Result.setDoesNotAccessMemory();
2286     else if (ReadOnly)
2287       Result.setOnlyReadsMemory();
2288   }
2289 
2290   // Add elementtype attribute for indirect constraints.
2291   for (auto Pair : llvm::enumerate(ArgElemTypes)) {
2292     if (Pair.value()) {
2293       auto Attr = llvm::Attribute::get(
2294           CGF.getLLVMContext(), llvm::Attribute::ElementType, Pair.value());
2295       Result.addParamAttr(Pair.index(), Attr);
2296     }
2297   }
2298 
2299   // Slap the source location of the inline asm into a !srcloc metadata on the
2300   // call.
2301   if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
2302     Result.setMetadata("srcloc",
2303                        getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF));
2304   else {
2305     // At least put the line number on MS inline asm blobs.
2306     llvm::Constant *Loc =
2307         llvm::ConstantInt::get(CGF.Int64Ty, S.getAsmLoc().getRawEncoding());
2308     Result.setMetadata("srcloc",
2309                        llvm::MDNode::get(CGF.getLLVMContext(),
2310                                          llvm::ConstantAsMetadata::get(Loc)));
2311   }
2312 
2313   if (CGF.getLangOpts().assumeFunctionsAreConvergent())
2314     // Conservatively, mark all inline asm blocks in CUDA or OpenCL as
2315     // convergent (meaning, they may call an intrinsically convergent op, such
2316     // as bar.sync, and so can't have certain optimizations applied around
2317     // them).
2318     Result.addFnAttr(llvm::Attribute::Convergent);
2319   // Extract all of the register value results from the asm.
2320   if (ResultRegTypes.size() == 1) {
2321     RegResults.push_back(&Result);
2322   } else {
2323     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2324       llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult");
2325       RegResults.push_back(Tmp);
2326     }
2327   }
2328 }
2329 
2330 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
2331   // Pop all cleanup blocks at the end of the asm statement.
2332   CodeGenFunction::RunCleanupsScope Cleanups(*this);
2333 
2334   // Assemble the final asm string.
2335   std::string AsmString = S.generateAsmString(getContext());
2336 
2337   // Get all the output and input constraints together.
2338   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2339   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2340 
2341   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2342     StringRef Name;
2343     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2344       Name = GAS->getOutputName(i);
2345     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
2346     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
2347     assert(IsValid && "Failed to parse output constraint");
2348     OutputConstraintInfos.push_back(Info);
2349   }
2350 
2351   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2352     StringRef Name;
2353     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2354       Name = GAS->getInputName(i);
2355     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
2356     bool IsValid =
2357       getTarget().validateInputConstraint(OutputConstraintInfos, Info);
2358     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
2359     InputConstraintInfos.push_back(Info);
2360   }
2361 
2362   std::string Constraints;
2363 
2364   std::vector<LValue> ResultRegDests;
2365   std::vector<QualType> ResultRegQualTys;
2366   std::vector<llvm::Type *> ResultRegTypes;
2367   std::vector<llvm::Type *> ResultTruncRegTypes;
2368   std::vector<llvm::Type *> ArgTypes;
2369   std::vector<llvm::Type *> ArgElemTypes;
2370   std::vector<llvm::Value*> Args;
2371   llvm::BitVector ResultTypeRequiresCast;
2372   llvm::BitVector ResultRegIsFlagReg;
2373 
2374   // Keep track of inout constraints.
2375   std::string InOutConstraints;
2376   std::vector<llvm::Value*> InOutArgs;
2377   std::vector<llvm::Type*> InOutArgTypes;
2378   std::vector<llvm::Type*> InOutArgElemTypes;
2379 
2380   // Keep track of out constraints for tied input operand.
2381   std::vector<std::string> OutputConstraints;
2382 
2383   // Keep track of defined physregs.
2384   llvm::SmallSet<std::string, 8> PhysRegOutputs;
2385 
2386   // An inline asm can be marked readonly if it meets the following conditions:
2387   //  - it doesn't have any sideeffects
2388   //  - it doesn't clobber memory
2389   //  - it doesn't return a value by-reference
2390   // It can be marked readnone if it doesn't have any input memory constraints
2391   // in addition to meeting the conditions listed above.
2392   bool ReadOnly = true, ReadNone = true;
2393 
2394   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2395     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
2396 
2397     // Simplify the output constraint.
2398     std::string OutputConstraint(S.getOutputConstraint(i));
2399     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
2400                                           getTarget(), &OutputConstraintInfos);
2401 
2402     const Expr *OutExpr = S.getOutputExpr(i);
2403     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
2404 
2405     std::string GCCReg;
2406     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
2407                                               getTarget(), CGM, S,
2408                                               Info.earlyClobber(),
2409                                               &GCCReg);
2410     // Give an error on multiple outputs to same physreg.
2411     if (!GCCReg.empty() && !PhysRegOutputs.insert(GCCReg).second)
2412       CGM.Error(S.getAsmLoc(), "multiple outputs to hard register: " + GCCReg);
2413 
2414     OutputConstraints.push_back(OutputConstraint);
2415     LValue Dest = EmitLValue(OutExpr);
2416     if (!Constraints.empty())
2417       Constraints += ',';
2418 
2419     // If this is a register output, then make the inline asm return it
2420     // by-value.  If this is a memory result, return the value by-reference.
2421     QualType QTy = OutExpr->getType();
2422     const bool IsScalarOrAggregate = hasScalarEvaluationKind(QTy) ||
2423                                      hasAggregateEvaluationKind(QTy);
2424     if (!Info.allowsMemory() && IsScalarOrAggregate) {
2425 
2426       Constraints += "=" + OutputConstraint;
2427       ResultRegQualTys.push_back(QTy);
2428       ResultRegDests.push_back(Dest);
2429 
2430       bool IsFlagReg = llvm::StringRef(OutputConstraint).startswith("{@cc");
2431       ResultRegIsFlagReg.push_back(IsFlagReg);
2432 
2433       llvm::Type *Ty = ConvertTypeForMem(QTy);
2434       const bool RequiresCast = Info.allowsRegister() &&
2435           (getTargetHooks().isScalarizableAsmOperand(*this, Ty) ||
2436            Ty->isAggregateType());
2437 
2438       ResultTruncRegTypes.push_back(Ty);
2439       ResultTypeRequiresCast.push_back(RequiresCast);
2440 
2441       if (RequiresCast) {
2442         unsigned Size = getContext().getTypeSize(QTy);
2443         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
2444       }
2445       ResultRegTypes.push_back(Ty);
2446       // If this output is tied to an input, and if the input is larger, then
2447       // we need to set the actual result type of the inline asm node to be the
2448       // same as the input type.
2449       if (Info.hasMatchingInput()) {
2450         unsigned InputNo;
2451         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
2452           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
2453           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
2454             break;
2455         }
2456         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
2457 
2458         QualType InputTy = S.getInputExpr(InputNo)->getType();
2459         QualType OutputType = OutExpr->getType();
2460 
2461         uint64_t InputSize = getContext().getTypeSize(InputTy);
2462         if (getContext().getTypeSize(OutputType) < InputSize) {
2463           // Form the asm to return the value as a larger integer or fp type.
2464           ResultRegTypes.back() = ConvertType(InputTy);
2465         }
2466       }
2467       if (llvm::Type* AdjTy =
2468             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2469                                                  ResultRegTypes.back()))
2470         ResultRegTypes.back() = AdjTy;
2471       else {
2472         CGM.getDiags().Report(S.getAsmLoc(),
2473                               diag::err_asm_invalid_type_in_input)
2474             << OutExpr->getType() << OutputConstraint;
2475       }
2476 
2477       // Update largest vector width for any vector types.
2478       if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back()))
2479         LargestVectorWidth =
2480             std::max((uint64_t)LargestVectorWidth,
2481                      VT->getPrimitiveSizeInBits().getKnownMinValue());
2482     } else {
2483       Address DestAddr = Dest.getAddress(*this);
2484       // Matrix types in memory are represented by arrays, but accessed through
2485       // vector pointers, with the alignment specified on the access operation.
2486       // For inline assembly, update pointer arguments to use vector pointers.
2487       // Otherwise there will be a mis-match if the matrix is also an
2488       // input-argument which is represented as vector.
2489       if (isa<MatrixType>(OutExpr->getType().getCanonicalType()))
2490         DestAddr = Builder.CreateElementBitCast(
2491             DestAddr, ConvertType(OutExpr->getType()));
2492 
2493       ArgTypes.push_back(DestAddr.getType());
2494       ArgElemTypes.push_back(DestAddr.getElementType());
2495       Args.push_back(DestAddr.getPointer());
2496       Constraints += "=*";
2497       Constraints += OutputConstraint;
2498       ReadOnly = ReadNone = false;
2499     }
2500 
2501     if (Info.isReadWrite()) {
2502       InOutConstraints += ',';
2503 
2504       const Expr *InputExpr = S.getOutputExpr(i);
2505       llvm::Value *Arg;
2506       llvm::Type *ArgElemType;
2507       std::tie(Arg, ArgElemType) = EmitAsmInputLValue(
2508           Info, Dest, InputExpr->getType(), InOutConstraints,
2509           InputExpr->getExprLoc());
2510 
2511       if (llvm::Type* AdjTy =
2512           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2513                                                Arg->getType()))
2514         Arg = Builder.CreateBitCast(Arg, AdjTy);
2515 
2516       // Update largest vector width for any vector types.
2517       if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2518         LargestVectorWidth =
2519             std::max((uint64_t)LargestVectorWidth,
2520                      VT->getPrimitiveSizeInBits().getKnownMinValue());
2521       // Only tie earlyclobber physregs.
2522       if (Info.allowsRegister() && (GCCReg.empty() || Info.earlyClobber()))
2523         InOutConstraints += llvm::utostr(i);
2524       else
2525         InOutConstraints += OutputConstraint;
2526 
2527       InOutArgTypes.push_back(Arg->getType());
2528       InOutArgElemTypes.push_back(ArgElemType);
2529       InOutArgs.push_back(Arg);
2530     }
2531   }
2532 
2533   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
2534   // to the return value slot. Only do this when returning in registers.
2535   if (isa<MSAsmStmt>(&S)) {
2536     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
2537     if (RetAI.isDirect() || RetAI.isExtend()) {
2538       // Make a fake lvalue for the return value slot.
2539       LValue ReturnSlot = MakeAddrLValueWithoutTBAA(ReturnValue, FnRetTy);
2540       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
2541           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
2542           ResultRegDests, AsmString, S.getNumOutputs());
2543       SawAsmBlock = true;
2544     }
2545   }
2546 
2547   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2548     const Expr *InputExpr = S.getInputExpr(i);
2549 
2550     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2551 
2552     if (Info.allowsMemory())
2553       ReadNone = false;
2554 
2555     if (!Constraints.empty())
2556       Constraints += ',';
2557 
2558     // Simplify the input constraint.
2559     std::string InputConstraint(S.getInputConstraint(i));
2560     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
2561                                          &OutputConstraintInfos);
2562 
2563     InputConstraint = AddVariableConstraints(
2564         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
2565         getTarget(), CGM, S, false /* No EarlyClobber */);
2566 
2567     std::string ReplaceConstraint (InputConstraint);
2568     llvm::Value *Arg;
2569     llvm::Type *ArgElemType;
2570     std::tie(Arg, ArgElemType) = EmitAsmInput(Info, InputExpr, Constraints);
2571 
2572     // If this input argument is tied to a larger output result, extend the
2573     // input to be the same size as the output.  The LLVM backend wants to see
2574     // the input and output of a matching constraint be the same size.  Note
2575     // that GCC does not define what the top bits are here.  We use zext because
2576     // that is usually cheaper, but LLVM IR should really get an anyext someday.
2577     if (Info.hasTiedOperand()) {
2578       unsigned Output = Info.getTiedOperand();
2579       QualType OutputType = S.getOutputExpr(Output)->getType();
2580       QualType InputTy = InputExpr->getType();
2581 
2582       if (getContext().getTypeSize(OutputType) >
2583           getContext().getTypeSize(InputTy)) {
2584         // Use ptrtoint as appropriate so that we can do our extension.
2585         if (isa<llvm::PointerType>(Arg->getType()))
2586           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
2587         llvm::Type *OutputTy = ConvertType(OutputType);
2588         if (isa<llvm::IntegerType>(OutputTy))
2589           Arg = Builder.CreateZExt(Arg, OutputTy);
2590         else if (isa<llvm::PointerType>(OutputTy))
2591           Arg = Builder.CreateZExt(Arg, IntPtrTy);
2592         else if (OutputTy->isFloatingPointTy())
2593           Arg = Builder.CreateFPExt(Arg, OutputTy);
2594       }
2595       // Deal with the tied operands' constraint code in adjustInlineAsmType.
2596       ReplaceConstraint = OutputConstraints[Output];
2597     }
2598     if (llvm::Type* AdjTy =
2599           getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint,
2600                                                    Arg->getType()))
2601       Arg = Builder.CreateBitCast(Arg, AdjTy);
2602     else
2603       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
2604           << InputExpr->getType() << InputConstraint;
2605 
2606     // Update largest vector width for any vector types.
2607     if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2608       LargestVectorWidth =
2609           std::max((uint64_t)LargestVectorWidth,
2610                    VT->getPrimitiveSizeInBits().getKnownMinValue());
2611 
2612     ArgTypes.push_back(Arg->getType());
2613     ArgElemTypes.push_back(ArgElemType);
2614     Args.push_back(Arg);
2615     Constraints += InputConstraint;
2616   }
2617 
2618   // Append the "input" part of inout constraints.
2619   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
2620     ArgTypes.push_back(InOutArgTypes[i]);
2621     ArgElemTypes.push_back(InOutArgElemTypes[i]);
2622     Args.push_back(InOutArgs[i]);
2623   }
2624   Constraints += InOutConstraints;
2625 
2626   // Labels
2627   SmallVector<llvm::BasicBlock *, 16> Transfer;
2628   llvm::BasicBlock *Fallthrough = nullptr;
2629   bool IsGCCAsmGoto = false;
2630   if (const auto *GS =  dyn_cast<GCCAsmStmt>(&S)) {
2631     IsGCCAsmGoto = GS->isAsmGoto();
2632     if (IsGCCAsmGoto) {
2633       for (const auto *E : GS->labels()) {
2634         JumpDest Dest = getJumpDestForLabel(E->getLabel());
2635         Transfer.push_back(Dest.getBlock());
2636         if (!Constraints.empty())
2637           Constraints += ',';
2638         Constraints += "!i";
2639       }
2640       Fallthrough = createBasicBlock("asm.fallthrough");
2641     }
2642   }
2643 
2644   bool HasUnwindClobber = false;
2645 
2646   // Clobbers
2647   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
2648     StringRef Clobber = S.getClobber(i);
2649 
2650     if (Clobber == "memory")
2651       ReadOnly = ReadNone = false;
2652     else if (Clobber == "unwind") {
2653       HasUnwindClobber = true;
2654       continue;
2655     } else if (Clobber != "cc") {
2656       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
2657       if (CGM.getCodeGenOpts().StackClashProtector &&
2658           getTarget().isSPRegName(Clobber)) {
2659         CGM.getDiags().Report(S.getAsmLoc(),
2660                               diag::warn_stack_clash_protection_inline_asm);
2661       }
2662     }
2663 
2664     if (isa<MSAsmStmt>(&S)) {
2665       if (Clobber == "eax" || Clobber == "edx") {
2666         if (Constraints.find("=&A") != std::string::npos)
2667           continue;
2668         std::string::size_type position1 =
2669             Constraints.find("={" + Clobber.str() + "}");
2670         if (position1 != std::string::npos) {
2671           Constraints.insert(position1 + 1, "&");
2672           continue;
2673         }
2674         std::string::size_type position2 = Constraints.find("=A");
2675         if (position2 != std::string::npos) {
2676           Constraints.insert(position2 + 1, "&");
2677           continue;
2678         }
2679       }
2680     }
2681     if (!Constraints.empty())
2682       Constraints += ',';
2683 
2684     Constraints += "~{";
2685     Constraints += Clobber;
2686     Constraints += '}';
2687   }
2688 
2689   assert(!(HasUnwindClobber && IsGCCAsmGoto) &&
2690          "unwind clobber can't be used with asm goto");
2691 
2692   // Add machine specific clobbers
2693   std::string MachineClobbers = getTarget().getClobbers();
2694   if (!MachineClobbers.empty()) {
2695     if (!Constraints.empty())
2696       Constraints += ',';
2697     Constraints += MachineClobbers;
2698   }
2699 
2700   llvm::Type *ResultType;
2701   if (ResultRegTypes.empty())
2702     ResultType = VoidTy;
2703   else if (ResultRegTypes.size() == 1)
2704     ResultType = ResultRegTypes[0];
2705   else
2706     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
2707 
2708   llvm::FunctionType *FTy =
2709     llvm::FunctionType::get(ResultType, ArgTypes, false);
2710 
2711   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
2712 
2713   llvm::InlineAsm::AsmDialect GnuAsmDialect =
2714       CGM.getCodeGenOpts().getInlineAsmDialect() == CodeGenOptions::IAD_ATT
2715           ? llvm::InlineAsm::AD_ATT
2716           : llvm::InlineAsm::AD_Intel;
2717   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
2718     llvm::InlineAsm::AD_Intel : GnuAsmDialect;
2719 
2720   llvm::InlineAsm *IA = llvm::InlineAsm::get(
2721       FTy, AsmString, Constraints, HasSideEffect,
2722       /* IsAlignStack */ false, AsmDialect, HasUnwindClobber);
2723   std::vector<llvm::Value*> RegResults;
2724   if (IsGCCAsmGoto) {
2725     llvm::CallBrInst *Result =
2726         Builder.CreateCallBr(IA, Fallthrough, Transfer, Args);
2727     EmitBlock(Fallthrough);
2728     UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false,
2729                       ReadOnly, ReadNone, InNoMergeAttributedStmt, S,
2730                       ResultRegTypes, ArgElemTypes, *this, RegResults);
2731   } else if (HasUnwindClobber) {
2732     llvm::CallBase *Result = EmitCallOrInvoke(IA, Args, "");
2733     UpdateAsmCallInst(*Result, HasSideEffect, true, ReadOnly, ReadNone,
2734                       InNoMergeAttributedStmt, S, ResultRegTypes, ArgElemTypes,
2735                       *this, RegResults);
2736   } else {
2737     llvm::CallInst *Result =
2738         Builder.CreateCall(IA, Args, getBundlesForFunclet(IA));
2739     UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false,
2740                       ReadOnly, ReadNone, InNoMergeAttributedStmt, S,
2741                       ResultRegTypes, ArgElemTypes, *this, RegResults);
2742   }
2743 
2744   assert(RegResults.size() == ResultRegTypes.size());
2745   assert(RegResults.size() == ResultTruncRegTypes.size());
2746   assert(RegResults.size() == ResultRegDests.size());
2747   // ResultRegDests can be also populated by addReturnRegisterOutputs() above,
2748   // in which case its size may grow.
2749   assert(ResultTypeRequiresCast.size() <= ResultRegDests.size());
2750   assert(ResultRegIsFlagReg.size() <= ResultRegDests.size());
2751   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2752     llvm::Value *Tmp = RegResults[i];
2753     llvm::Type *TruncTy = ResultTruncRegTypes[i];
2754 
2755     if ((i < ResultRegIsFlagReg.size()) && ResultRegIsFlagReg[i]) {
2756       // Target must guarantee the Value `Tmp` here is lowered to a boolean
2757       // value.
2758       llvm::Constant *Two = llvm::ConstantInt::get(Tmp->getType(), 2);
2759       llvm::Value *IsBooleanValue =
2760           Builder.CreateCmp(llvm::CmpInst::ICMP_ULT, Tmp, Two);
2761       llvm::Function *FnAssume = CGM.getIntrinsic(llvm::Intrinsic::assume);
2762       Builder.CreateCall(FnAssume, IsBooleanValue);
2763     }
2764 
2765     // If the result type of the LLVM IR asm doesn't match the result type of
2766     // the expression, do the conversion.
2767     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2768 
2769       // Truncate the integer result to the right size, note that TruncTy can be
2770       // a pointer.
2771       if (TruncTy->isFloatingPointTy())
2772         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2773       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2774         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2775         Tmp = Builder.CreateTrunc(Tmp,
2776                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2777         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2778       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2779         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2780         Tmp = Builder.CreatePtrToInt(Tmp,
2781                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2782         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2783       } else if (TruncTy->isIntegerTy()) {
2784         Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy);
2785       } else if (TruncTy->isVectorTy()) {
2786         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2787       }
2788     }
2789 
2790     LValue Dest = ResultRegDests[i];
2791     // ResultTypeRequiresCast elements correspond to the first
2792     // ResultTypeRequiresCast.size() elements of RegResults.
2793     if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) {
2794       unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]);
2795       Address A = Builder.CreateElementBitCast(Dest.getAddress(*this),
2796                                                ResultRegTypes[i]);
2797       if (getTargetHooks().isScalarizableAsmOperand(*this, TruncTy)) {
2798         Builder.CreateStore(Tmp, A);
2799         continue;
2800       }
2801 
2802       QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false);
2803       if (Ty.isNull()) {
2804         const Expr *OutExpr = S.getOutputExpr(i);
2805         CGM.getDiags().Report(OutExpr->getExprLoc(),
2806                               diag::err_store_value_to_reg);
2807         return;
2808       }
2809       Dest = MakeAddrLValue(A, Ty);
2810     }
2811     EmitStoreThroughLValue(RValue::get(Tmp), Dest);
2812   }
2813 }
2814 
2815 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
2816   const RecordDecl *RD = S.getCapturedRecordDecl();
2817   QualType RecordTy = getContext().getRecordType(RD);
2818 
2819   // Initialize the captured struct.
2820   LValue SlotLV =
2821     MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2822 
2823   RecordDecl::field_iterator CurField = RD->field_begin();
2824   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
2825                                                  E = S.capture_init_end();
2826        I != E; ++I, ++CurField) {
2827     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2828     if (CurField->hasCapturedVLAType()) {
2829       EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
2830     } else {
2831       EmitInitializerForField(*CurField, LV, *I);
2832     }
2833   }
2834 
2835   return SlotLV;
2836 }
2837 
2838 /// Generate an outlined function for the body of a CapturedStmt, store any
2839 /// captured variables into the captured struct, and call the outlined function.
2840 llvm::Function *
2841 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2842   LValue CapStruct = InitCapturedStruct(S);
2843 
2844   // Emit the CapturedDecl
2845   CodeGenFunction CGF(CGM, true);
2846   CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2847   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2848   delete CGF.CapturedStmtInfo;
2849 
2850   // Emit call to the helper function.
2851   EmitCallOrInvoke(F, CapStruct.getPointer(*this));
2852 
2853   return F;
2854 }
2855 
2856 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2857   LValue CapStruct = InitCapturedStruct(S);
2858   return CapStruct.getAddress(*this);
2859 }
2860 
2861 /// Creates the outlined function for a CapturedStmt.
2862 llvm::Function *
2863 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2864   assert(CapturedStmtInfo &&
2865     "CapturedStmtInfo should be set when generating the captured function");
2866   const CapturedDecl *CD = S.getCapturedDecl();
2867   const RecordDecl *RD = S.getCapturedRecordDecl();
2868   SourceLocation Loc = S.getBeginLoc();
2869   assert(CD->hasBody() && "missing CapturedDecl body");
2870 
2871   // Build the argument list.
2872   ASTContext &Ctx = CGM.getContext();
2873   FunctionArgList Args;
2874   Args.append(CD->param_begin(), CD->param_end());
2875 
2876   // Create the function declaration.
2877   const CGFunctionInfo &FuncInfo =
2878     CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
2879   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2880 
2881   llvm::Function *F =
2882     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2883                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2884   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2885   if (CD->isNothrow())
2886     F->addFnAttr(llvm::Attribute::NoUnwind);
2887 
2888   // Generate the function.
2889   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
2890                 CD->getBody()->getBeginLoc());
2891   // Set the context parameter in CapturedStmtInfo.
2892   Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
2893   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2894 
2895   // Initialize variable-length arrays.
2896   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2897                                            Ctx.getTagDeclType(RD));
2898   for (auto *FD : RD->fields()) {
2899     if (FD->hasCapturedVLAType()) {
2900       auto *ExprArg =
2901           EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc())
2902               .getScalarVal();
2903       auto VAT = FD->getCapturedVLAType();
2904       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2905     }
2906   }
2907 
2908   // If 'this' is captured, load it into CXXThisValue.
2909   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2910     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2911     LValue ThisLValue = EmitLValueForField(Base, FD);
2912     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2913   }
2914 
2915   PGO.assignRegionCounters(GlobalDecl(CD), F);
2916   CapturedStmtInfo->EmitBody(*this, CD->getBody());
2917   FinishFunction(CD->getBodyRBrace());
2918 
2919   return F;
2920 }
2921