xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGStmt.cpp (revision c57c26179033f64c2011a2d2a904ee3fa62e826a)
1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Stmt nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGDebugInfo.h"
14 #include "CGOpenMPRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/Stmt.h"
21 #include "clang/AST/StmtVisitor.h"
22 #include "clang/Basic/Builtins.h"
23 #include "clang/Basic/DiagnosticSema.h"
24 #include "clang/Basic/PrettyStackTrace.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/IR/Assumptions.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/Support/SaveAndRestore.h"
37 #include <optional>
38 
39 using namespace clang;
40 using namespace CodeGen;
41 
42 //===----------------------------------------------------------------------===//
43 //                              Statement Emission
44 //===----------------------------------------------------------------------===//
45 
46 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
47   if (CGDebugInfo *DI = getDebugInfo()) {
48     SourceLocation Loc;
49     Loc = S->getBeginLoc();
50     DI->EmitLocation(Builder, Loc);
51 
52     LastStopPoint = Loc;
53   }
54 }
55 
56 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) {
57   assert(S && "Null statement?");
58   PGO.setCurrentStmt(S);
59 
60   // These statements have their own debug info handling.
61   if (EmitSimpleStmt(S, Attrs))
62     return;
63 
64   // Check if we are generating unreachable code.
65   if (!HaveInsertPoint()) {
66     // If so, and the statement doesn't contain a label, then we do not need to
67     // generate actual code. This is safe because (1) the current point is
68     // unreachable, so we don't need to execute the code, and (2) we've already
69     // handled the statements which update internal data structures (like the
70     // local variable map) which could be used by subsequent statements.
71     if (!ContainsLabel(S)) {
72       // Verify that any decl statements were handled as simple, they may be in
73       // scope of subsequent reachable statements.
74       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
75       return;
76     }
77 
78     // Otherwise, make a new block to hold the code.
79     EnsureInsertPoint();
80   }
81 
82   // Generate a stoppoint if we are emitting debug info.
83   EmitStopPoint(S);
84 
85   // Ignore all OpenMP directives except for simd if OpenMP with Simd is
86   // enabled.
87   if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) {
88     if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) {
89       EmitSimpleOMPExecutableDirective(*D);
90       return;
91     }
92   }
93 
94   switch (S->getStmtClass()) {
95   case Stmt::NoStmtClass:
96   case Stmt::CXXCatchStmtClass:
97   case Stmt::SEHExceptStmtClass:
98   case Stmt::SEHFinallyStmtClass:
99   case Stmt::MSDependentExistsStmtClass:
100     llvm_unreachable("invalid statement class to emit generically");
101   case Stmt::NullStmtClass:
102   case Stmt::CompoundStmtClass:
103   case Stmt::DeclStmtClass:
104   case Stmt::LabelStmtClass:
105   case Stmt::AttributedStmtClass:
106   case Stmt::GotoStmtClass:
107   case Stmt::BreakStmtClass:
108   case Stmt::ContinueStmtClass:
109   case Stmt::DefaultStmtClass:
110   case Stmt::CaseStmtClass:
111   case Stmt::SEHLeaveStmtClass:
112     llvm_unreachable("should have emitted these statements as simple");
113 
114 #define STMT(Type, Base)
115 #define ABSTRACT_STMT(Op)
116 #define EXPR(Type, Base) \
117   case Stmt::Type##Class:
118 #include "clang/AST/StmtNodes.inc"
119   {
120     // Remember the block we came in on.
121     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
122     assert(incoming && "expression emission must have an insertion point");
123 
124     EmitIgnoredExpr(cast<Expr>(S));
125 
126     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
127     assert(outgoing && "expression emission cleared block!");
128 
129     // The expression emitters assume (reasonably!) that the insertion
130     // point is always set.  To maintain that, the call-emission code
131     // for noreturn functions has to enter a new block with no
132     // predecessors.  We want to kill that block and mark the current
133     // insertion point unreachable in the common case of a call like
134     // "exit();".  Since expression emission doesn't otherwise create
135     // blocks with no predecessors, we can just test for that.
136     // However, we must be careful not to do this to our incoming
137     // block, because *statement* emission does sometimes create
138     // reachable blocks which will have no predecessors until later in
139     // the function.  This occurs with, e.g., labels that are not
140     // reachable by fallthrough.
141     if (incoming != outgoing && outgoing->use_empty()) {
142       outgoing->eraseFromParent();
143       Builder.ClearInsertionPoint();
144     }
145     break;
146   }
147 
148   case Stmt::IndirectGotoStmtClass:
149     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
150 
151   case Stmt::IfStmtClass:      EmitIfStmt(cast<IfStmt>(*S));              break;
152   case Stmt::WhileStmtClass:   EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break;
153   case Stmt::DoStmtClass:      EmitDoStmt(cast<DoStmt>(*S), Attrs);       break;
154   case Stmt::ForStmtClass:     EmitForStmt(cast<ForStmt>(*S), Attrs);     break;
155 
156   case Stmt::ReturnStmtClass:  EmitReturnStmt(cast<ReturnStmt>(*S));      break;
157 
158   case Stmt::SwitchStmtClass:  EmitSwitchStmt(cast<SwitchStmt>(*S));      break;
159   case Stmt::GCCAsmStmtClass:  // Intentional fall-through.
160   case Stmt::MSAsmStmtClass:   EmitAsmStmt(cast<AsmStmt>(*S));            break;
161   case Stmt::CoroutineBodyStmtClass:
162     EmitCoroutineBody(cast<CoroutineBodyStmt>(*S));
163     break;
164   case Stmt::CoreturnStmtClass:
165     EmitCoreturnStmt(cast<CoreturnStmt>(*S));
166     break;
167   case Stmt::CapturedStmtClass: {
168     const CapturedStmt *CS = cast<CapturedStmt>(S);
169     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
170     }
171     break;
172   case Stmt::ObjCAtTryStmtClass:
173     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
174     break;
175   case Stmt::ObjCAtCatchStmtClass:
176     llvm_unreachable(
177                     "@catch statements should be handled by EmitObjCAtTryStmt");
178   case Stmt::ObjCAtFinallyStmtClass:
179     llvm_unreachable(
180                   "@finally statements should be handled by EmitObjCAtTryStmt");
181   case Stmt::ObjCAtThrowStmtClass:
182     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
183     break;
184   case Stmt::ObjCAtSynchronizedStmtClass:
185     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
186     break;
187   case Stmt::ObjCForCollectionStmtClass:
188     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
189     break;
190   case Stmt::ObjCAutoreleasePoolStmtClass:
191     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
192     break;
193 
194   case Stmt::CXXTryStmtClass:
195     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
196     break;
197   case Stmt::CXXForRangeStmtClass:
198     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs);
199     break;
200   case Stmt::SEHTryStmtClass:
201     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
202     break;
203   case Stmt::OMPMetaDirectiveClass:
204     EmitOMPMetaDirective(cast<OMPMetaDirective>(*S));
205     break;
206   case Stmt::OMPCanonicalLoopClass:
207     EmitOMPCanonicalLoop(cast<OMPCanonicalLoop>(S));
208     break;
209   case Stmt::OMPParallelDirectiveClass:
210     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
211     break;
212   case Stmt::OMPSimdDirectiveClass:
213     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
214     break;
215   case Stmt::OMPTileDirectiveClass:
216     EmitOMPTileDirective(cast<OMPTileDirective>(*S));
217     break;
218   case Stmt::OMPUnrollDirectiveClass:
219     EmitOMPUnrollDirective(cast<OMPUnrollDirective>(*S));
220     break;
221   case Stmt::OMPForDirectiveClass:
222     EmitOMPForDirective(cast<OMPForDirective>(*S));
223     break;
224   case Stmt::OMPForSimdDirectiveClass:
225     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
226     break;
227   case Stmt::OMPSectionsDirectiveClass:
228     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
229     break;
230   case Stmt::OMPSectionDirectiveClass:
231     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
232     break;
233   case Stmt::OMPSingleDirectiveClass:
234     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
235     break;
236   case Stmt::OMPMasterDirectiveClass:
237     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
238     break;
239   case Stmt::OMPCriticalDirectiveClass:
240     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
241     break;
242   case Stmt::OMPParallelForDirectiveClass:
243     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
244     break;
245   case Stmt::OMPParallelForSimdDirectiveClass:
246     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
247     break;
248   case Stmt::OMPParallelMasterDirectiveClass:
249     EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S));
250     break;
251   case Stmt::OMPParallelSectionsDirectiveClass:
252     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
253     break;
254   case Stmt::OMPTaskDirectiveClass:
255     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
256     break;
257   case Stmt::OMPTaskyieldDirectiveClass:
258     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
259     break;
260   case Stmt::OMPErrorDirectiveClass:
261     EmitOMPErrorDirective(cast<OMPErrorDirective>(*S));
262     break;
263   case Stmt::OMPBarrierDirectiveClass:
264     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
265     break;
266   case Stmt::OMPTaskwaitDirectiveClass:
267     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
268     break;
269   case Stmt::OMPTaskgroupDirectiveClass:
270     EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
271     break;
272   case Stmt::OMPFlushDirectiveClass:
273     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
274     break;
275   case Stmt::OMPDepobjDirectiveClass:
276     EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S));
277     break;
278   case Stmt::OMPScanDirectiveClass:
279     EmitOMPScanDirective(cast<OMPScanDirective>(*S));
280     break;
281   case Stmt::OMPOrderedDirectiveClass:
282     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
283     break;
284   case Stmt::OMPAtomicDirectiveClass:
285     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
286     break;
287   case Stmt::OMPTargetDirectiveClass:
288     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
289     break;
290   case Stmt::OMPTeamsDirectiveClass:
291     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
292     break;
293   case Stmt::OMPCancellationPointDirectiveClass:
294     EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
295     break;
296   case Stmt::OMPCancelDirectiveClass:
297     EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
298     break;
299   case Stmt::OMPTargetDataDirectiveClass:
300     EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
301     break;
302   case Stmt::OMPTargetEnterDataDirectiveClass:
303     EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
304     break;
305   case Stmt::OMPTargetExitDataDirectiveClass:
306     EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
307     break;
308   case Stmt::OMPTargetParallelDirectiveClass:
309     EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
310     break;
311   case Stmt::OMPTargetParallelForDirectiveClass:
312     EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S));
313     break;
314   case Stmt::OMPTaskLoopDirectiveClass:
315     EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
316     break;
317   case Stmt::OMPTaskLoopSimdDirectiveClass:
318     EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
319     break;
320   case Stmt::OMPMasterTaskLoopDirectiveClass:
321     EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S));
322     break;
323   case Stmt::OMPMaskedTaskLoopDirectiveClass:
324     llvm_unreachable("masked taskloop directive not supported yet.");
325     break;
326   case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
327     EmitOMPMasterTaskLoopSimdDirective(
328         cast<OMPMasterTaskLoopSimdDirective>(*S));
329     break;
330   case Stmt::OMPMaskedTaskLoopSimdDirectiveClass:
331     llvm_unreachable("masked taskloop simd directive not supported yet.");
332     break;
333   case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
334     EmitOMPParallelMasterTaskLoopDirective(
335         cast<OMPParallelMasterTaskLoopDirective>(*S));
336     break;
337   case Stmt::OMPParallelMaskedTaskLoopDirectiveClass:
338     llvm_unreachable("parallel masked taskloop directive not supported yet.");
339     break;
340   case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass:
341     EmitOMPParallelMasterTaskLoopSimdDirective(
342         cast<OMPParallelMasterTaskLoopSimdDirective>(*S));
343     break;
344   case Stmt::OMPParallelMaskedTaskLoopSimdDirectiveClass:
345     llvm_unreachable(
346         "parallel masked taskloop simd directive not supported yet.");
347     break;
348   case Stmt::OMPDistributeDirectiveClass:
349     EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
350     break;
351   case Stmt::OMPTargetUpdateDirectiveClass:
352     EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S));
353     break;
354   case Stmt::OMPDistributeParallelForDirectiveClass:
355     EmitOMPDistributeParallelForDirective(
356         cast<OMPDistributeParallelForDirective>(*S));
357     break;
358   case Stmt::OMPDistributeParallelForSimdDirectiveClass:
359     EmitOMPDistributeParallelForSimdDirective(
360         cast<OMPDistributeParallelForSimdDirective>(*S));
361     break;
362   case Stmt::OMPDistributeSimdDirectiveClass:
363     EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S));
364     break;
365   case Stmt::OMPTargetParallelForSimdDirectiveClass:
366     EmitOMPTargetParallelForSimdDirective(
367         cast<OMPTargetParallelForSimdDirective>(*S));
368     break;
369   case Stmt::OMPTargetSimdDirectiveClass:
370     EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S));
371     break;
372   case Stmt::OMPTeamsDistributeDirectiveClass:
373     EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S));
374     break;
375   case Stmt::OMPTeamsDistributeSimdDirectiveClass:
376     EmitOMPTeamsDistributeSimdDirective(
377         cast<OMPTeamsDistributeSimdDirective>(*S));
378     break;
379   case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
380     EmitOMPTeamsDistributeParallelForSimdDirective(
381         cast<OMPTeamsDistributeParallelForSimdDirective>(*S));
382     break;
383   case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
384     EmitOMPTeamsDistributeParallelForDirective(
385         cast<OMPTeamsDistributeParallelForDirective>(*S));
386     break;
387   case Stmt::OMPTargetTeamsDirectiveClass:
388     EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S));
389     break;
390   case Stmt::OMPTargetTeamsDistributeDirectiveClass:
391     EmitOMPTargetTeamsDistributeDirective(
392         cast<OMPTargetTeamsDistributeDirective>(*S));
393     break;
394   case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
395     EmitOMPTargetTeamsDistributeParallelForDirective(
396         cast<OMPTargetTeamsDistributeParallelForDirective>(*S));
397     break;
398   case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
399     EmitOMPTargetTeamsDistributeParallelForSimdDirective(
400         cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S));
401     break;
402   case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
403     EmitOMPTargetTeamsDistributeSimdDirective(
404         cast<OMPTargetTeamsDistributeSimdDirective>(*S));
405     break;
406   case Stmt::OMPInteropDirectiveClass:
407     EmitOMPInteropDirective(cast<OMPInteropDirective>(*S));
408     break;
409   case Stmt::OMPDispatchDirectiveClass:
410     CGM.ErrorUnsupported(S, "OpenMP dispatch directive");
411     break;
412   case Stmt::OMPScopeDirectiveClass:
413     llvm_unreachable("scope not supported with FE outlining");
414   case Stmt::OMPMaskedDirectiveClass:
415     EmitOMPMaskedDirective(cast<OMPMaskedDirective>(*S));
416     break;
417   case Stmt::OMPGenericLoopDirectiveClass:
418     EmitOMPGenericLoopDirective(cast<OMPGenericLoopDirective>(*S));
419     break;
420   case Stmt::OMPTeamsGenericLoopDirectiveClass:
421     EmitOMPTeamsGenericLoopDirective(cast<OMPTeamsGenericLoopDirective>(*S));
422     break;
423   case Stmt::OMPTargetTeamsGenericLoopDirectiveClass:
424     EmitOMPTargetTeamsGenericLoopDirective(
425         cast<OMPTargetTeamsGenericLoopDirective>(*S));
426     break;
427   case Stmt::OMPParallelGenericLoopDirectiveClass:
428     EmitOMPParallelGenericLoopDirective(
429         cast<OMPParallelGenericLoopDirective>(*S));
430     break;
431   case Stmt::OMPTargetParallelGenericLoopDirectiveClass:
432     EmitOMPTargetParallelGenericLoopDirective(
433         cast<OMPTargetParallelGenericLoopDirective>(*S));
434     break;
435   case Stmt::OMPParallelMaskedDirectiveClass:
436     EmitOMPParallelMaskedDirective(cast<OMPParallelMaskedDirective>(*S));
437     break;
438   }
439 }
440 
441 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S,
442                                      ArrayRef<const Attr *> Attrs) {
443   switch (S->getStmtClass()) {
444   default:
445     return false;
446   case Stmt::NullStmtClass:
447     break;
448   case Stmt::CompoundStmtClass:
449     EmitCompoundStmt(cast<CompoundStmt>(*S));
450     break;
451   case Stmt::DeclStmtClass:
452     EmitDeclStmt(cast<DeclStmt>(*S));
453     break;
454   case Stmt::LabelStmtClass:
455     EmitLabelStmt(cast<LabelStmt>(*S));
456     break;
457   case Stmt::AttributedStmtClass:
458     EmitAttributedStmt(cast<AttributedStmt>(*S));
459     break;
460   case Stmt::GotoStmtClass:
461     EmitGotoStmt(cast<GotoStmt>(*S));
462     break;
463   case Stmt::BreakStmtClass:
464     EmitBreakStmt(cast<BreakStmt>(*S));
465     break;
466   case Stmt::ContinueStmtClass:
467     EmitContinueStmt(cast<ContinueStmt>(*S));
468     break;
469   case Stmt::DefaultStmtClass:
470     EmitDefaultStmt(cast<DefaultStmt>(*S), Attrs);
471     break;
472   case Stmt::CaseStmtClass:
473     EmitCaseStmt(cast<CaseStmt>(*S), Attrs);
474     break;
475   case Stmt::SEHLeaveStmtClass:
476     EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S));
477     break;
478   }
479   return true;
480 }
481 
482 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
483 /// this captures the expression result of the last sub-statement and returns it
484 /// (for use by the statement expression extension).
485 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
486                                           AggValueSlot AggSlot) {
487   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
488                              "LLVM IR generation of compound statement ('{}')");
489 
490   // Keep track of the current cleanup stack depth, including debug scopes.
491   LexicalScope Scope(*this, S.getSourceRange());
492 
493   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
494 }
495 
496 Address
497 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
498                                               bool GetLast,
499                                               AggValueSlot AggSlot) {
500 
501   const Stmt *ExprResult = S.getStmtExprResult();
502   assert((!GetLast || (GetLast && ExprResult)) &&
503          "If GetLast is true then the CompoundStmt must have a StmtExprResult");
504 
505   Address RetAlloca = Address::invalid();
506 
507   for (auto *CurStmt : S.body()) {
508     if (GetLast && ExprResult == CurStmt) {
509       // We have to special case labels here.  They are statements, but when put
510       // at the end of a statement expression, they yield the value of their
511       // subexpression.  Handle this by walking through all labels we encounter,
512       // emitting them before we evaluate the subexpr.
513       // Similar issues arise for attributed statements.
514       while (!isa<Expr>(ExprResult)) {
515         if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) {
516           EmitLabel(LS->getDecl());
517           ExprResult = LS->getSubStmt();
518         } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) {
519           // FIXME: Update this if we ever have attributes that affect the
520           // semantics of an expression.
521           ExprResult = AS->getSubStmt();
522         } else {
523           llvm_unreachable("unknown value statement");
524         }
525       }
526 
527       EnsureInsertPoint();
528 
529       const Expr *E = cast<Expr>(ExprResult);
530       QualType ExprTy = E->getType();
531       if (hasAggregateEvaluationKind(ExprTy)) {
532         EmitAggExpr(E, AggSlot);
533       } else {
534         // We can't return an RValue here because there might be cleanups at
535         // the end of the StmtExpr.  Because of that, we have to emit the result
536         // here into a temporary alloca.
537         RetAlloca = CreateMemTemp(ExprTy);
538         EmitAnyExprToMem(E, RetAlloca, Qualifiers(),
539                          /*IsInit*/ false);
540       }
541     } else {
542       EmitStmt(CurStmt);
543     }
544   }
545 
546   return RetAlloca;
547 }
548 
549 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
550   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
551 
552   // If there is a cleanup stack, then we it isn't worth trying to
553   // simplify this block (we would need to remove it from the scope map
554   // and cleanup entry).
555   if (!EHStack.empty())
556     return;
557 
558   // Can only simplify direct branches.
559   if (!BI || !BI->isUnconditional())
560     return;
561 
562   // Can only simplify empty blocks.
563   if (BI->getIterator() != BB->begin())
564     return;
565 
566   BB->replaceAllUsesWith(BI->getSuccessor(0));
567   BI->eraseFromParent();
568   BB->eraseFromParent();
569 }
570 
571 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
572   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
573 
574   // Fall out of the current block (if necessary).
575   EmitBranch(BB);
576 
577   if (IsFinished && BB->use_empty()) {
578     delete BB;
579     return;
580   }
581 
582   // Place the block after the current block, if possible, or else at
583   // the end of the function.
584   if (CurBB && CurBB->getParent())
585     CurFn->insert(std::next(CurBB->getIterator()), BB);
586   else
587     CurFn->insert(CurFn->end(), BB);
588   Builder.SetInsertPoint(BB);
589 }
590 
591 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
592   // Emit a branch from the current block to the target one if this
593   // was a real block.  If this was just a fall-through block after a
594   // terminator, don't emit it.
595   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
596 
597   if (!CurBB || CurBB->getTerminator()) {
598     // If there is no insert point or the previous block is already
599     // terminated, don't touch it.
600   } else {
601     // Otherwise, create a fall-through branch.
602     Builder.CreateBr(Target);
603   }
604 
605   Builder.ClearInsertionPoint();
606 }
607 
608 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
609   bool inserted = false;
610   for (llvm::User *u : block->users()) {
611     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
612       CurFn->insert(std::next(insn->getParent()->getIterator()), block);
613       inserted = true;
614       break;
615     }
616   }
617 
618   if (!inserted)
619     CurFn->insert(CurFn->end(), block);
620 
621   Builder.SetInsertPoint(block);
622 }
623 
624 CodeGenFunction::JumpDest
625 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
626   JumpDest &Dest = LabelMap[D];
627   if (Dest.isValid()) return Dest;
628 
629   // Create, but don't insert, the new block.
630   Dest = JumpDest(createBasicBlock(D->getName()),
631                   EHScopeStack::stable_iterator::invalid(),
632                   NextCleanupDestIndex++);
633   return Dest;
634 }
635 
636 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
637   // Add this label to the current lexical scope if we're within any
638   // normal cleanups.  Jumps "in" to this label --- when permitted by
639   // the language --- may need to be routed around such cleanups.
640   if (EHStack.hasNormalCleanups() && CurLexicalScope)
641     CurLexicalScope->addLabel(D);
642 
643   JumpDest &Dest = LabelMap[D];
644 
645   // If we didn't need a forward reference to this label, just go
646   // ahead and create a destination at the current scope.
647   if (!Dest.isValid()) {
648     Dest = getJumpDestInCurrentScope(D->getName());
649 
650   // Otherwise, we need to give this label a target depth and remove
651   // it from the branch-fixups list.
652   } else {
653     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
654     Dest.setScopeDepth(EHStack.stable_begin());
655     ResolveBranchFixups(Dest.getBlock());
656   }
657 
658   EmitBlock(Dest.getBlock());
659 
660   // Emit debug info for labels.
661   if (CGDebugInfo *DI = getDebugInfo()) {
662     if (CGM.getCodeGenOpts().hasReducedDebugInfo()) {
663       DI->setLocation(D->getLocation());
664       DI->EmitLabel(D, Builder);
665     }
666   }
667 
668   incrementProfileCounter(D->getStmt());
669 }
670 
671 /// Change the cleanup scope of the labels in this lexical scope to
672 /// match the scope of the enclosing context.
673 void CodeGenFunction::LexicalScope::rescopeLabels() {
674   assert(!Labels.empty());
675   EHScopeStack::stable_iterator innermostScope
676     = CGF.EHStack.getInnermostNormalCleanup();
677 
678   // Change the scope depth of all the labels.
679   for (SmallVectorImpl<const LabelDecl*>::const_iterator
680          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
681     assert(CGF.LabelMap.count(*i));
682     JumpDest &dest = CGF.LabelMap.find(*i)->second;
683     assert(dest.getScopeDepth().isValid());
684     assert(innermostScope.encloses(dest.getScopeDepth()));
685     dest.setScopeDepth(innermostScope);
686   }
687 
688   // Reparent the labels if the new scope also has cleanups.
689   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
690     ParentScope->Labels.append(Labels.begin(), Labels.end());
691   }
692 }
693 
694 
695 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
696   EmitLabel(S.getDecl());
697 
698   // IsEHa - emit eha.scope.begin if it's a side entry of a scope
699   if (getLangOpts().EHAsynch && S.isSideEntry())
700     EmitSehCppScopeBegin();
701 
702   EmitStmt(S.getSubStmt());
703 }
704 
705 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
706   bool nomerge = false;
707   bool noinline = false;
708   bool alwaysinline = false;
709   const CallExpr *musttail = nullptr;
710 
711   for (const auto *A : S.getAttrs()) {
712     switch (A->getKind()) {
713     default:
714       break;
715     case attr::NoMerge:
716       nomerge = true;
717       break;
718     case attr::NoInline:
719       noinline = true;
720       break;
721     case attr::AlwaysInline:
722       alwaysinline = true;
723       break;
724     case attr::MustTail:
725       const Stmt *Sub = S.getSubStmt();
726       const ReturnStmt *R = cast<ReturnStmt>(Sub);
727       musttail = cast<CallExpr>(R->getRetValue()->IgnoreParens());
728       break;
729     }
730   }
731   SaveAndRestore save_nomerge(InNoMergeAttributedStmt, nomerge);
732   SaveAndRestore save_noinline(InNoInlineAttributedStmt, noinline);
733   SaveAndRestore save_alwaysinline(InAlwaysInlineAttributedStmt, alwaysinline);
734   SaveAndRestore save_musttail(MustTailCall, musttail);
735   EmitStmt(S.getSubStmt(), S.getAttrs());
736 }
737 
738 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
739   // If this code is reachable then emit a stop point (if generating
740   // debug info). We have to do this ourselves because we are on the
741   // "simple" statement path.
742   if (HaveInsertPoint())
743     EmitStopPoint(&S);
744 
745   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
746 }
747 
748 
749 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
750   if (const LabelDecl *Target = S.getConstantTarget()) {
751     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
752     return;
753   }
754 
755   // Ensure that we have an i8* for our PHI node.
756   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
757                                          Int8PtrTy, "addr");
758   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
759 
760   // Get the basic block for the indirect goto.
761   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
762 
763   // The first instruction in the block has to be the PHI for the switch dest,
764   // add an entry for this branch.
765   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
766 
767   EmitBranch(IndGotoBB);
768 }
769 
770 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
771   // The else branch of a consteval if statement is always the only branch that
772   // can be runtime evaluated.
773   if (S.isConsteval()) {
774     const Stmt *Executed = S.isNegatedConsteval() ? S.getThen() : S.getElse();
775     if (Executed) {
776       RunCleanupsScope ExecutedScope(*this);
777       EmitStmt(Executed);
778     }
779     return;
780   }
781 
782   // C99 6.8.4.1: The first substatement is executed if the expression compares
783   // unequal to 0.  The condition must be a scalar type.
784   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
785 
786   if (S.getInit())
787     EmitStmt(S.getInit());
788 
789   if (S.getConditionVariable())
790     EmitDecl(*S.getConditionVariable());
791 
792   // If the condition constant folds and can be elided, try to avoid emitting
793   // the condition and the dead arm of the if/else.
794   bool CondConstant;
795   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant,
796                                    S.isConstexpr())) {
797     // Figure out which block (then or else) is executed.
798     const Stmt *Executed = S.getThen();
799     const Stmt *Skipped  = S.getElse();
800     if (!CondConstant)  // Condition false?
801       std::swap(Executed, Skipped);
802 
803     // If the skipped block has no labels in it, just emit the executed block.
804     // This avoids emitting dead code and simplifies the CFG substantially.
805     if (S.isConstexpr() || !ContainsLabel(Skipped)) {
806       if (CondConstant)
807         incrementProfileCounter(&S);
808       if (Executed) {
809         RunCleanupsScope ExecutedScope(*this);
810         EmitStmt(Executed);
811       }
812       return;
813     }
814   }
815 
816   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
817   // the conditional branch.
818   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
819   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
820   llvm::BasicBlock *ElseBlock = ContBlock;
821   if (S.getElse())
822     ElseBlock = createBasicBlock("if.else");
823 
824   // Prefer the PGO based weights over the likelihood attribute.
825   // When the build isn't optimized the metadata isn't used, so don't generate
826   // it.
827   // Also, differentiate between disabled PGO and a never executed branch with
828   // PGO. Assuming PGO is in use:
829   // - we want to ignore the [[likely]] attribute if the branch is never
830   // executed,
831   // - assuming the profile is poor, preserving the attribute may still be
832   // beneficial.
833   // As an approximation, preserve the attribute only if both the branch and the
834   // parent context were not executed.
835   Stmt::Likelihood LH = Stmt::LH_None;
836   uint64_t ThenCount = getProfileCount(S.getThen());
837   if (!ThenCount && !getCurrentProfileCount() &&
838       CGM.getCodeGenOpts().OptimizationLevel)
839     LH = Stmt::getLikelihood(S.getThen(), S.getElse());
840 
841   // When measuring MC/DC, always fully evaluate the condition up front using
842   // EvaluateExprAsBool() so that the test vector bitmap can be updated prior to
843   // executing the body of the if.then or if.else. This is useful for when
844   // there is a 'return' within the body, but this is particularly beneficial
845   // when one if-stmt is nested within another if-stmt so that all of the MC/DC
846   // updates are kept linear and consistent.
847   if (!CGM.getCodeGenOpts().MCDCCoverage)
848     EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, ThenCount, LH);
849   else {
850     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
851     Builder.CreateCondBr(BoolCondVal, ThenBlock, ElseBlock);
852   }
853 
854   // Emit the 'then' code.
855   EmitBlock(ThenBlock);
856   incrementProfileCounter(&S);
857   {
858     RunCleanupsScope ThenScope(*this);
859     EmitStmt(S.getThen());
860   }
861   EmitBranch(ContBlock);
862 
863   // Emit the 'else' code if present.
864   if (const Stmt *Else = S.getElse()) {
865     {
866       // There is no need to emit line number for an unconditional branch.
867       auto NL = ApplyDebugLocation::CreateEmpty(*this);
868       EmitBlock(ElseBlock);
869     }
870     {
871       RunCleanupsScope ElseScope(*this);
872       EmitStmt(Else);
873     }
874     {
875       // There is no need to emit line number for an unconditional branch.
876       auto NL = ApplyDebugLocation::CreateEmpty(*this);
877       EmitBranch(ContBlock);
878     }
879   }
880 
881   // Emit the continuation block for code after the if.
882   EmitBlock(ContBlock, true);
883 }
884 
885 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
886                                     ArrayRef<const Attr *> WhileAttrs) {
887   // Emit the header for the loop, which will also become
888   // the continue target.
889   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
890   EmitBlock(LoopHeader.getBlock());
891 
892   // Create an exit block for when the condition fails, which will
893   // also become the break target.
894   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
895 
896   // Store the blocks to use for break and continue.
897   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
898 
899   // C++ [stmt.while]p2:
900   //   When the condition of a while statement is a declaration, the
901   //   scope of the variable that is declared extends from its point
902   //   of declaration (3.3.2) to the end of the while statement.
903   //   [...]
904   //   The object created in a condition is destroyed and created
905   //   with each iteration of the loop.
906   RunCleanupsScope ConditionScope(*this);
907 
908   if (S.getConditionVariable())
909     EmitDecl(*S.getConditionVariable());
910 
911   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
912   // evaluation of the controlling expression takes place before each
913   // execution of the loop body.
914   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
915 
916   // while(1) is common, avoid extra exit blocks.  Be sure
917   // to correctly handle break/continue though.
918   llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal);
919   bool CondIsConstInt = C != nullptr;
920   bool EmitBoolCondBranch = !CondIsConstInt || !C->isOne();
921   const SourceRange &R = S.getSourceRange();
922   LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(),
923                  WhileAttrs, SourceLocToDebugLoc(R.getBegin()),
924                  SourceLocToDebugLoc(R.getEnd()),
925                  checkIfLoopMustProgress(CondIsConstInt));
926 
927   // As long as the condition is true, go to the loop body.
928   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
929   if (EmitBoolCondBranch) {
930     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
931     if (ConditionScope.requiresCleanups())
932       ExitBlock = createBasicBlock("while.exit");
933     llvm::MDNode *Weights =
934         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
935     if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
936       BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
937           BoolCondVal, Stmt::getLikelihood(S.getBody()));
938     Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, Weights);
939 
940     if (ExitBlock != LoopExit.getBlock()) {
941       EmitBlock(ExitBlock);
942       EmitBranchThroughCleanup(LoopExit);
943     }
944   } else if (const Attr *A = Stmt::getLikelihoodAttr(S.getBody())) {
945     CGM.getDiags().Report(A->getLocation(),
946                           diag::warn_attribute_has_no_effect_on_infinite_loop)
947         << A << A->getRange();
948     CGM.getDiags().Report(
949         S.getWhileLoc(),
950         diag::note_attribute_has_no_effect_on_infinite_loop_here)
951         << SourceRange(S.getWhileLoc(), S.getRParenLoc());
952   }
953 
954   // Emit the loop body.  We have to emit this in a cleanup scope
955   // because it might be a singleton DeclStmt.
956   {
957     RunCleanupsScope BodyScope(*this);
958     EmitBlock(LoopBody);
959     incrementProfileCounter(&S);
960     EmitStmt(S.getBody());
961   }
962 
963   BreakContinueStack.pop_back();
964 
965   // Immediately force cleanup.
966   ConditionScope.ForceCleanup();
967 
968   EmitStopPoint(&S);
969   // Branch to the loop header again.
970   EmitBranch(LoopHeader.getBlock());
971 
972   LoopStack.pop();
973 
974   // Emit the exit block.
975   EmitBlock(LoopExit.getBlock(), true);
976 
977   // The LoopHeader typically is just a branch if we skipped emitting
978   // a branch, try to erase it.
979   if (!EmitBoolCondBranch)
980     SimplifyForwardingBlocks(LoopHeader.getBlock());
981 }
982 
983 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
984                                  ArrayRef<const Attr *> DoAttrs) {
985   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
986   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
987 
988   uint64_t ParentCount = getCurrentProfileCount();
989 
990   // Store the blocks to use for break and continue.
991   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
992 
993   // Emit the body of the loop.
994   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
995 
996   EmitBlockWithFallThrough(LoopBody, &S);
997   {
998     RunCleanupsScope BodyScope(*this);
999     EmitStmt(S.getBody());
1000   }
1001 
1002   EmitBlock(LoopCond.getBlock());
1003 
1004   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
1005   // after each execution of the loop body."
1006 
1007   // Evaluate the conditional in the while header.
1008   // C99 6.8.5p2/p4: The first substatement is executed if the expression
1009   // compares unequal to 0.  The condition must be a scalar type.
1010   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1011 
1012   BreakContinueStack.pop_back();
1013 
1014   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
1015   // to correctly handle break/continue though.
1016   llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal);
1017   bool CondIsConstInt = C;
1018   bool EmitBoolCondBranch = !C || !C->isZero();
1019 
1020   const SourceRange &R = S.getSourceRange();
1021   LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs,
1022                  SourceLocToDebugLoc(R.getBegin()),
1023                  SourceLocToDebugLoc(R.getEnd()),
1024                  checkIfLoopMustProgress(CondIsConstInt));
1025 
1026   // As long as the condition is true, iterate the loop.
1027   if (EmitBoolCondBranch) {
1028     uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
1029     Builder.CreateCondBr(
1030         BoolCondVal, LoopBody, LoopExit.getBlock(),
1031         createProfileWeightsForLoop(S.getCond(), BackedgeCount));
1032   }
1033 
1034   LoopStack.pop();
1035 
1036   // Emit the exit block.
1037   EmitBlock(LoopExit.getBlock());
1038 
1039   // The DoCond block typically is just a branch if we skipped
1040   // emitting a branch, try to erase it.
1041   if (!EmitBoolCondBranch)
1042     SimplifyForwardingBlocks(LoopCond.getBlock());
1043 }
1044 
1045 void CodeGenFunction::EmitForStmt(const ForStmt &S,
1046                                   ArrayRef<const Attr *> ForAttrs) {
1047   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
1048 
1049   LexicalScope ForScope(*this, S.getSourceRange());
1050 
1051   // Evaluate the first part before the loop.
1052   if (S.getInit())
1053     EmitStmt(S.getInit());
1054 
1055   // Start the loop with a block that tests the condition.
1056   // If there's an increment, the continue scope will be overwritten
1057   // later.
1058   JumpDest CondDest = getJumpDestInCurrentScope("for.cond");
1059   llvm::BasicBlock *CondBlock = CondDest.getBlock();
1060   EmitBlock(CondBlock);
1061 
1062   Expr::EvalResult Result;
1063   bool CondIsConstInt =
1064       !S.getCond() || S.getCond()->EvaluateAsInt(Result, getContext());
1065 
1066   const SourceRange &R = S.getSourceRange();
1067   LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
1068                  SourceLocToDebugLoc(R.getBegin()),
1069                  SourceLocToDebugLoc(R.getEnd()),
1070                  checkIfLoopMustProgress(CondIsConstInt));
1071 
1072   // Create a cleanup scope for the condition variable cleanups.
1073   LexicalScope ConditionScope(*this, S.getSourceRange());
1074 
1075   // If the for loop doesn't have an increment we can just use the condition as
1076   // the continue block. Otherwise, if there is no condition variable, we can
1077   // form the continue block now. If there is a condition variable, we can't
1078   // form the continue block until after we've emitted the condition, because
1079   // the condition is in scope in the increment, but Sema's jump diagnostics
1080   // ensure that there are no continues from the condition variable that jump
1081   // to the loop increment.
1082   JumpDest Continue;
1083   if (!S.getInc())
1084     Continue = CondDest;
1085   else if (!S.getConditionVariable())
1086     Continue = getJumpDestInCurrentScope("for.inc");
1087   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1088 
1089   if (S.getCond()) {
1090     // If the for statement has a condition scope, emit the local variable
1091     // declaration.
1092     if (S.getConditionVariable()) {
1093       EmitDecl(*S.getConditionVariable());
1094 
1095       // We have entered the condition variable's scope, so we're now able to
1096       // jump to the continue block.
1097       Continue = S.getInc() ? getJumpDestInCurrentScope("for.inc") : CondDest;
1098       BreakContinueStack.back().ContinueBlock = Continue;
1099     }
1100 
1101     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1102     // If there are any cleanups between here and the loop-exit scope,
1103     // create a block to stage a loop exit along.
1104     if (ForScope.requiresCleanups())
1105       ExitBlock = createBasicBlock("for.cond.cleanup");
1106 
1107     // As long as the condition is true, iterate the loop.
1108     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
1109 
1110     // C99 6.8.5p2/p4: The first substatement is executed if the expression
1111     // compares unequal to 0.  The condition must be a scalar type.
1112     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1113     llvm::MDNode *Weights =
1114         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
1115     if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
1116       BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
1117           BoolCondVal, Stmt::getLikelihood(S.getBody()));
1118 
1119     Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights);
1120 
1121     if (ExitBlock != LoopExit.getBlock()) {
1122       EmitBlock(ExitBlock);
1123       EmitBranchThroughCleanup(LoopExit);
1124     }
1125 
1126     EmitBlock(ForBody);
1127   } else {
1128     // Treat it as a non-zero constant.  Don't even create a new block for the
1129     // body, just fall into it.
1130   }
1131   incrementProfileCounter(&S);
1132 
1133   {
1134     // Create a separate cleanup scope for the body, in case it is not
1135     // a compound statement.
1136     RunCleanupsScope BodyScope(*this);
1137     EmitStmt(S.getBody());
1138   }
1139 
1140   // If there is an increment, emit it next.
1141   if (S.getInc()) {
1142     EmitBlock(Continue.getBlock());
1143     EmitStmt(S.getInc());
1144   }
1145 
1146   BreakContinueStack.pop_back();
1147 
1148   ConditionScope.ForceCleanup();
1149 
1150   EmitStopPoint(&S);
1151   EmitBranch(CondBlock);
1152 
1153   ForScope.ForceCleanup();
1154 
1155   LoopStack.pop();
1156 
1157   // Emit the fall-through block.
1158   EmitBlock(LoopExit.getBlock(), true);
1159 }
1160 
1161 void
1162 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
1163                                      ArrayRef<const Attr *> ForAttrs) {
1164   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
1165 
1166   LexicalScope ForScope(*this, S.getSourceRange());
1167 
1168   // Evaluate the first pieces before the loop.
1169   if (S.getInit())
1170     EmitStmt(S.getInit());
1171   EmitStmt(S.getRangeStmt());
1172   EmitStmt(S.getBeginStmt());
1173   EmitStmt(S.getEndStmt());
1174 
1175   // Start the loop with a block that tests the condition.
1176   // If there's an increment, the continue scope will be overwritten
1177   // later.
1178   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
1179   EmitBlock(CondBlock);
1180 
1181   const SourceRange &R = S.getSourceRange();
1182   LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
1183                  SourceLocToDebugLoc(R.getBegin()),
1184                  SourceLocToDebugLoc(R.getEnd()));
1185 
1186   // If there are any cleanups between here and the loop-exit scope,
1187   // create a block to stage a loop exit along.
1188   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1189   if (ForScope.requiresCleanups())
1190     ExitBlock = createBasicBlock("for.cond.cleanup");
1191 
1192   // The loop body, consisting of the specified body and the loop variable.
1193   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
1194 
1195   // The body is executed if the expression, contextually converted
1196   // to bool, is true.
1197   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1198   llvm::MDNode *Weights =
1199       createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
1200   if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
1201     BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
1202         BoolCondVal, Stmt::getLikelihood(S.getBody()));
1203   Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights);
1204 
1205   if (ExitBlock != LoopExit.getBlock()) {
1206     EmitBlock(ExitBlock);
1207     EmitBranchThroughCleanup(LoopExit);
1208   }
1209 
1210   EmitBlock(ForBody);
1211   incrementProfileCounter(&S);
1212 
1213   // Create a block for the increment. In case of a 'continue', we jump there.
1214   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
1215 
1216   // Store the blocks to use for break and continue.
1217   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1218 
1219   {
1220     // Create a separate cleanup scope for the loop variable and body.
1221     LexicalScope BodyScope(*this, S.getSourceRange());
1222     EmitStmt(S.getLoopVarStmt());
1223     EmitStmt(S.getBody());
1224   }
1225 
1226   EmitStopPoint(&S);
1227   // If there is an increment, emit it next.
1228   EmitBlock(Continue.getBlock());
1229   EmitStmt(S.getInc());
1230 
1231   BreakContinueStack.pop_back();
1232 
1233   EmitBranch(CondBlock);
1234 
1235   ForScope.ForceCleanup();
1236 
1237   LoopStack.pop();
1238 
1239   // Emit the fall-through block.
1240   EmitBlock(LoopExit.getBlock(), true);
1241 }
1242 
1243 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
1244   if (RV.isScalar()) {
1245     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
1246   } else if (RV.isAggregate()) {
1247     LValue Dest = MakeAddrLValue(ReturnValue, Ty);
1248     LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty);
1249     EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue());
1250   } else {
1251     EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
1252                        /*init*/ true);
1253   }
1254   EmitBranchThroughCleanup(ReturnBlock);
1255 }
1256 
1257 namespace {
1258 // RAII struct used to save and restore a return statment's result expression.
1259 struct SaveRetExprRAII {
1260   SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF)
1261       : OldRetExpr(CGF.RetExpr), CGF(CGF) {
1262     CGF.RetExpr = RetExpr;
1263   }
1264   ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; }
1265   const Expr *OldRetExpr;
1266   CodeGenFunction &CGF;
1267 };
1268 } // namespace
1269 
1270 /// If we have 'return f(...);', where both caller and callee are SwiftAsync,
1271 /// codegen it as 'tail call ...; ret void;'.
1272 static void makeTailCallIfSwiftAsync(const CallExpr *CE, CGBuilderTy &Builder,
1273                                      const CGFunctionInfo *CurFnInfo) {
1274   auto calleeQualType = CE->getCallee()->getType();
1275   const FunctionType *calleeType = nullptr;
1276   if (calleeQualType->isFunctionPointerType() ||
1277       calleeQualType->isFunctionReferenceType() ||
1278       calleeQualType->isBlockPointerType() ||
1279       calleeQualType->isMemberFunctionPointerType()) {
1280     calleeType = calleeQualType->getPointeeType()->castAs<FunctionType>();
1281   } else if (auto *ty = dyn_cast<FunctionType>(calleeQualType)) {
1282     calleeType = ty;
1283   } else if (auto CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
1284     if (auto methodDecl = CMCE->getMethodDecl()) {
1285       // getMethodDecl() doesn't handle member pointers at the moment.
1286       calleeType = methodDecl->getType()->castAs<FunctionType>();
1287     } else {
1288       return;
1289     }
1290   } else {
1291     return;
1292   }
1293   if (calleeType->getCallConv() == CallingConv::CC_SwiftAsync &&
1294       (CurFnInfo->getASTCallingConvention() == CallingConv::CC_SwiftAsync)) {
1295     auto CI = cast<llvm::CallInst>(&Builder.GetInsertBlock()->back());
1296     CI->setTailCallKind(llvm::CallInst::TCK_MustTail);
1297     Builder.CreateRetVoid();
1298     Builder.ClearInsertionPoint();
1299   }
1300 }
1301 
1302 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
1303 /// if the function returns void, or may be missing one if the function returns
1304 /// non-void.  Fun stuff :).
1305 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
1306   if (requiresReturnValueCheck()) {
1307     llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc());
1308     auto *SLocPtr =
1309         new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false,
1310                                  llvm::GlobalVariable::PrivateLinkage, SLoc);
1311     SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1312     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr);
1313     assert(ReturnLocation.isValid() && "No valid return location");
1314     Builder.CreateStore(SLocPtr, ReturnLocation);
1315   }
1316 
1317   // Returning from an outlined SEH helper is UB, and we already warn on it.
1318   if (IsOutlinedSEHHelper) {
1319     Builder.CreateUnreachable();
1320     Builder.ClearInsertionPoint();
1321   }
1322 
1323   // Emit the result value, even if unused, to evaluate the side effects.
1324   const Expr *RV = S.getRetValue();
1325 
1326   // Record the result expression of the return statement. The recorded
1327   // expression is used to determine whether a block capture's lifetime should
1328   // end at the end of the full expression as opposed to the end of the scope
1329   // enclosing the block expression.
1330   //
1331   // This permits a small, easily-implemented exception to our over-conservative
1332   // rules about not jumping to statements following block literals with
1333   // non-trivial cleanups.
1334   SaveRetExprRAII SaveRetExpr(RV, *this);
1335 
1336   RunCleanupsScope cleanupScope(*this);
1337   if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV))
1338     RV = EWC->getSubExpr();
1339   // FIXME: Clean this up by using an LValue for ReturnTemp,
1340   // EmitStoreThroughLValue, and EmitAnyExpr.
1341   // Check if the NRVO candidate was not globalized in OpenMP mode.
1342   if (getLangOpts().ElideConstructors && S.getNRVOCandidate() &&
1343       S.getNRVOCandidate()->isNRVOVariable() &&
1344       (!getLangOpts().OpenMP ||
1345        !CGM.getOpenMPRuntime()
1346             .getAddressOfLocalVariable(*this, S.getNRVOCandidate())
1347             .isValid())) {
1348     // Apply the named return value optimization for this return statement,
1349     // which means doing nothing: the appropriate result has already been
1350     // constructed into the NRVO variable.
1351 
1352     // If there is an NRVO flag for this variable, set it to 1 into indicate
1353     // that the cleanup code should not destroy the variable.
1354     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
1355       Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
1356   } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
1357     // Make sure not to return anything, but evaluate the expression
1358     // for side effects.
1359     if (RV) {
1360       EmitAnyExpr(RV);
1361       if (auto *CE = dyn_cast<CallExpr>(RV))
1362         makeTailCallIfSwiftAsync(CE, Builder, CurFnInfo);
1363     }
1364   } else if (!RV) {
1365     // Do nothing (return value is left uninitialized)
1366   } else if (FnRetTy->isReferenceType()) {
1367     // If this function returns a reference, take the address of the expression
1368     // rather than the value.
1369     RValue Result = EmitReferenceBindingToExpr(RV);
1370     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
1371   } else {
1372     switch (getEvaluationKind(RV->getType())) {
1373     case TEK_Scalar:
1374       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
1375       break;
1376     case TEK_Complex:
1377       EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
1378                                 /*isInit*/ true);
1379       break;
1380     case TEK_Aggregate:
1381       EmitAggExpr(RV, AggValueSlot::forAddr(
1382                           ReturnValue, Qualifiers(),
1383                           AggValueSlot::IsDestructed,
1384                           AggValueSlot::DoesNotNeedGCBarriers,
1385                           AggValueSlot::IsNotAliased,
1386                           getOverlapForReturnValue()));
1387       break;
1388     }
1389   }
1390 
1391   ++NumReturnExprs;
1392   if (!RV || RV->isEvaluatable(getContext()))
1393     ++NumSimpleReturnExprs;
1394 
1395   cleanupScope.ForceCleanup();
1396   EmitBranchThroughCleanup(ReturnBlock);
1397 }
1398 
1399 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1400   // As long as debug info is modeled with instructions, we have to ensure we
1401   // have a place to insert here and write the stop point here.
1402   if (HaveInsertPoint())
1403     EmitStopPoint(&S);
1404 
1405   for (const auto *I : S.decls())
1406     EmitDecl(*I);
1407 }
1408 
1409 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1410   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1411 
1412   // If this code is reachable then emit a stop point (if generating
1413   // debug info). We have to do this ourselves because we are on the
1414   // "simple" statement path.
1415   if (HaveInsertPoint())
1416     EmitStopPoint(&S);
1417 
1418   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1419 }
1420 
1421 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1422   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1423 
1424   // If this code is reachable then emit a stop point (if generating
1425   // debug info). We have to do this ourselves because we are on the
1426   // "simple" statement path.
1427   if (HaveInsertPoint())
1428     EmitStopPoint(&S);
1429 
1430   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1431 }
1432 
1433 /// EmitCaseStmtRange - If case statement range is not too big then
1434 /// add multiple cases to switch instruction, one for each value within
1435 /// the range. If range is too big then emit "if" condition check.
1436 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S,
1437                                         ArrayRef<const Attr *> Attrs) {
1438   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1439 
1440   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1441   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1442 
1443   // Emit the code for this case. We do this first to make sure it is
1444   // properly chained from our predecessor before generating the
1445   // switch machinery to enter this block.
1446   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1447   EmitBlockWithFallThrough(CaseDest, &S);
1448   EmitStmt(S.getSubStmt());
1449 
1450   // If range is empty, do nothing.
1451   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1452     return;
1453 
1454   Stmt::Likelihood LH = Stmt::getLikelihood(Attrs);
1455   llvm::APInt Range = RHS - LHS;
1456   // FIXME: parameters such as this should not be hardcoded.
1457   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1458     // Range is small enough to add multiple switch instruction cases.
1459     uint64_t Total = getProfileCount(&S);
1460     unsigned NCases = Range.getZExtValue() + 1;
1461     // We only have one region counter for the entire set of cases here, so we
1462     // need to divide the weights evenly between the generated cases, ensuring
1463     // that the total weight is preserved. E.g., a weight of 5 over three cases
1464     // will be distributed as weights of 2, 2, and 1.
1465     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1466     for (unsigned I = 0; I != NCases; ++I) {
1467       if (SwitchWeights)
1468         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1469       else if (SwitchLikelihood)
1470         SwitchLikelihood->push_back(LH);
1471 
1472       if (Rem)
1473         Rem--;
1474       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1475       ++LHS;
1476     }
1477     return;
1478   }
1479 
1480   // The range is too big. Emit "if" condition into a new block,
1481   // making sure to save and restore the current insertion point.
1482   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1483 
1484   // Push this test onto the chain of range checks (which terminates
1485   // in the default basic block). The switch's default will be changed
1486   // to the top of this chain after switch emission is complete.
1487   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1488   CaseRangeBlock = createBasicBlock("sw.caserange");
1489 
1490   CurFn->insert(CurFn->end(), CaseRangeBlock);
1491   Builder.SetInsertPoint(CaseRangeBlock);
1492 
1493   // Emit range check.
1494   llvm::Value *Diff =
1495     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1496   llvm::Value *Cond =
1497     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1498 
1499   llvm::MDNode *Weights = nullptr;
1500   if (SwitchWeights) {
1501     uint64_t ThisCount = getProfileCount(&S);
1502     uint64_t DefaultCount = (*SwitchWeights)[0];
1503     Weights = createProfileWeights(ThisCount, DefaultCount);
1504 
1505     // Since we're chaining the switch default through each large case range, we
1506     // need to update the weight for the default, ie, the first case, to include
1507     // this case.
1508     (*SwitchWeights)[0] += ThisCount;
1509   } else if (SwitchLikelihood)
1510     Cond = emitCondLikelihoodViaExpectIntrinsic(Cond, LH);
1511 
1512   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1513 
1514   // Restore the appropriate insertion point.
1515   if (RestoreBB)
1516     Builder.SetInsertPoint(RestoreBB);
1517   else
1518     Builder.ClearInsertionPoint();
1519 }
1520 
1521 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S,
1522                                    ArrayRef<const Attr *> Attrs) {
1523   // If there is no enclosing switch instance that we're aware of, then this
1524   // case statement and its block can be elided.  This situation only happens
1525   // when we've constant-folded the switch, are emitting the constant case,
1526   // and part of the constant case includes another case statement.  For
1527   // instance: switch (4) { case 4: do { case 5: } while (1); }
1528   if (!SwitchInsn) {
1529     EmitStmt(S.getSubStmt());
1530     return;
1531   }
1532 
1533   // Handle case ranges.
1534   if (S.getRHS()) {
1535     EmitCaseStmtRange(S, Attrs);
1536     return;
1537   }
1538 
1539   llvm::ConstantInt *CaseVal =
1540     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1541 
1542   // Emit debuginfo for the case value if it is an enum value.
1543   const ConstantExpr *CE;
1544   if (auto ICE = dyn_cast<ImplicitCastExpr>(S.getLHS()))
1545     CE = dyn_cast<ConstantExpr>(ICE->getSubExpr());
1546   else
1547     CE = dyn_cast<ConstantExpr>(S.getLHS());
1548   if (CE) {
1549     if (auto DE = dyn_cast<DeclRefExpr>(CE->getSubExpr()))
1550       if (CGDebugInfo *Dbg = getDebugInfo())
1551         if (CGM.getCodeGenOpts().hasReducedDebugInfo())
1552           Dbg->EmitGlobalVariable(DE->getDecl(),
1553               APValue(llvm::APSInt(CaseVal->getValue())));
1554   }
1555 
1556   if (SwitchLikelihood)
1557     SwitchLikelihood->push_back(Stmt::getLikelihood(Attrs));
1558 
1559   // If the body of the case is just a 'break', try to not emit an empty block.
1560   // If we're profiling or we're not optimizing, leave the block in for better
1561   // debug and coverage analysis.
1562   if (!CGM.getCodeGenOpts().hasProfileClangInstr() &&
1563       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1564       isa<BreakStmt>(S.getSubStmt())) {
1565     JumpDest Block = BreakContinueStack.back().BreakBlock;
1566 
1567     // Only do this optimization if there are no cleanups that need emitting.
1568     if (isObviouslyBranchWithoutCleanups(Block)) {
1569       if (SwitchWeights)
1570         SwitchWeights->push_back(getProfileCount(&S));
1571       SwitchInsn->addCase(CaseVal, Block.getBlock());
1572 
1573       // If there was a fallthrough into this case, make sure to redirect it to
1574       // the end of the switch as well.
1575       if (Builder.GetInsertBlock()) {
1576         Builder.CreateBr(Block.getBlock());
1577         Builder.ClearInsertionPoint();
1578       }
1579       return;
1580     }
1581   }
1582 
1583   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1584   EmitBlockWithFallThrough(CaseDest, &S);
1585   if (SwitchWeights)
1586     SwitchWeights->push_back(getProfileCount(&S));
1587   SwitchInsn->addCase(CaseVal, CaseDest);
1588 
1589   // Recursively emitting the statement is acceptable, but is not wonderful for
1590   // code where we have many case statements nested together, i.e.:
1591   //  case 1:
1592   //    case 2:
1593   //      case 3: etc.
1594   // Handling this recursively will create a new block for each case statement
1595   // that falls through to the next case which is IR intensive.  It also causes
1596   // deep recursion which can run into stack depth limitations.  Handle
1597   // sequential non-range case statements specially.
1598   //
1599   // TODO When the next case has a likelihood attribute the code returns to the
1600   // recursive algorithm. Maybe improve this case if it becomes common practice
1601   // to use a lot of attributes.
1602   const CaseStmt *CurCase = &S;
1603   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1604 
1605   // Otherwise, iteratively add consecutive cases to this switch stmt.
1606   while (NextCase && NextCase->getRHS() == nullptr) {
1607     CurCase = NextCase;
1608     llvm::ConstantInt *CaseVal =
1609       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1610 
1611     if (SwitchWeights)
1612       SwitchWeights->push_back(getProfileCount(NextCase));
1613     if (CGM.getCodeGenOpts().hasProfileClangInstr()) {
1614       CaseDest = createBasicBlock("sw.bb");
1615       EmitBlockWithFallThrough(CaseDest, CurCase);
1616     }
1617     // Since this loop is only executed when the CaseStmt has no attributes
1618     // use a hard-coded value.
1619     if (SwitchLikelihood)
1620       SwitchLikelihood->push_back(Stmt::LH_None);
1621 
1622     SwitchInsn->addCase(CaseVal, CaseDest);
1623     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1624   }
1625 
1626   // Generate a stop point for debug info if the case statement is
1627   // followed by a default statement. A fallthrough case before a
1628   // default case gets its own branch target.
1629   if (CurCase->getSubStmt()->getStmtClass() == Stmt::DefaultStmtClass)
1630     EmitStopPoint(CurCase);
1631 
1632   // Normal default recursion for non-cases.
1633   EmitStmt(CurCase->getSubStmt());
1634 }
1635 
1636 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S,
1637                                       ArrayRef<const Attr *> Attrs) {
1638   // If there is no enclosing switch instance that we're aware of, then this
1639   // default statement can be elided. This situation only happens when we've
1640   // constant-folded the switch.
1641   if (!SwitchInsn) {
1642     EmitStmt(S.getSubStmt());
1643     return;
1644   }
1645 
1646   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1647   assert(DefaultBlock->empty() &&
1648          "EmitDefaultStmt: Default block already defined?");
1649 
1650   if (SwitchLikelihood)
1651     SwitchLikelihood->front() = Stmt::getLikelihood(Attrs);
1652 
1653   EmitBlockWithFallThrough(DefaultBlock, &S);
1654 
1655   EmitStmt(S.getSubStmt());
1656 }
1657 
1658 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1659 /// constant value that is being switched on, see if we can dead code eliminate
1660 /// the body of the switch to a simple series of statements to emit.  Basically,
1661 /// on a switch (5) we want to find these statements:
1662 ///    case 5:
1663 ///      printf(...);    <--
1664 ///      ++i;            <--
1665 ///      break;
1666 ///
1667 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1668 /// transformation (for example, one of the elided statements contains a label
1669 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1670 /// should include statements after it (e.g. the printf() line is a substmt of
1671 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1672 /// statement, then return CSFC_Success.
1673 ///
1674 /// If Case is non-null, then we are looking for the specified case, checking
1675 /// that nothing we jump over contains labels.  If Case is null, then we found
1676 /// the case and are looking for the break.
1677 ///
1678 /// If the recursive walk actually finds our Case, then we set FoundCase to
1679 /// true.
1680 ///
1681 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1682 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1683                                             const SwitchCase *Case,
1684                                             bool &FoundCase,
1685                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1686   // If this is a null statement, just succeed.
1687   if (!S)
1688     return Case ? CSFC_Success : CSFC_FallThrough;
1689 
1690   // If this is the switchcase (case 4: or default) that we're looking for, then
1691   // we're in business.  Just add the substatement.
1692   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1693     if (S == Case) {
1694       FoundCase = true;
1695       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1696                                       ResultStmts);
1697     }
1698 
1699     // Otherwise, this is some other case or default statement, just ignore it.
1700     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1701                                     ResultStmts);
1702   }
1703 
1704   // If we are in the live part of the code and we found our break statement,
1705   // return a success!
1706   if (!Case && isa<BreakStmt>(S))
1707     return CSFC_Success;
1708 
1709   // If this is a switch statement, then it might contain the SwitchCase, the
1710   // break, or neither.
1711   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1712     // Handle this as two cases: we might be looking for the SwitchCase (if so
1713     // the skipped statements must be skippable) or we might already have it.
1714     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1715     bool StartedInLiveCode = FoundCase;
1716     unsigned StartSize = ResultStmts.size();
1717 
1718     // If we've not found the case yet, scan through looking for it.
1719     if (Case) {
1720       // Keep track of whether we see a skipped declaration.  The code could be
1721       // using the declaration even if it is skipped, so we can't optimize out
1722       // the decl if the kept statements might refer to it.
1723       bool HadSkippedDecl = false;
1724 
1725       // If we're looking for the case, just see if we can skip each of the
1726       // substatements.
1727       for (; Case && I != E; ++I) {
1728         HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I);
1729 
1730         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1731         case CSFC_Failure: return CSFC_Failure;
1732         case CSFC_Success:
1733           // A successful result means that either 1) that the statement doesn't
1734           // have the case and is skippable, or 2) does contain the case value
1735           // and also contains the break to exit the switch.  In the later case,
1736           // we just verify the rest of the statements are elidable.
1737           if (FoundCase) {
1738             // If we found the case and skipped declarations, we can't do the
1739             // optimization.
1740             if (HadSkippedDecl)
1741               return CSFC_Failure;
1742 
1743             for (++I; I != E; ++I)
1744               if (CodeGenFunction::ContainsLabel(*I, true))
1745                 return CSFC_Failure;
1746             return CSFC_Success;
1747           }
1748           break;
1749         case CSFC_FallThrough:
1750           // If we have a fallthrough condition, then we must have found the
1751           // case started to include statements.  Consider the rest of the
1752           // statements in the compound statement as candidates for inclusion.
1753           assert(FoundCase && "Didn't find case but returned fallthrough?");
1754           // We recursively found Case, so we're not looking for it anymore.
1755           Case = nullptr;
1756 
1757           // If we found the case and skipped declarations, we can't do the
1758           // optimization.
1759           if (HadSkippedDecl)
1760             return CSFC_Failure;
1761           break;
1762         }
1763       }
1764 
1765       if (!FoundCase)
1766         return CSFC_Success;
1767 
1768       assert(!HadSkippedDecl && "fallthrough after skipping decl");
1769     }
1770 
1771     // If we have statements in our range, then we know that the statements are
1772     // live and need to be added to the set of statements we're tracking.
1773     bool AnyDecls = false;
1774     for (; I != E; ++I) {
1775       AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I);
1776 
1777       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1778       case CSFC_Failure: return CSFC_Failure;
1779       case CSFC_FallThrough:
1780         // A fallthrough result means that the statement was simple and just
1781         // included in ResultStmt, keep adding them afterwards.
1782         break;
1783       case CSFC_Success:
1784         // A successful result means that we found the break statement and
1785         // stopped statement inclusion.  We just ensure that any leftover stmts
1786         // are skippable and return success ourselves.
1787         for (++I; I != E; ++I)
1788           if (CodeGenFunction::ContainsLabel(*I, true))
1789             return CSFC_Failure;
1790         return CSFC_Success;
1791       }
1792     }
1793 
1794     // If we're about to fall out of a scope without hitting a 'break;', we
1795     // can't perform the optimization if there were any decls in that scope
1796     // (we'd lose their end-of-lifetime).
1797     if (AnyDecls) {
1798       // If the entire compound statement was live, there's one more thing we
1799       // can try before giving up: emit the whole thing as a single statement.
1800       // We can do that unless the statement contains a 'break;'.
1801       // FIXME: Such a break must be at the end of a construct within this one.
1802       // We could emit this by just ignoring the BreakStmts entirely.
1803       if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) {
1804         ResultStmts.resize(StartSize);
1805         ResultStmts.push_back(S);
1806       } else {
1807         return CSFC_Failure;
1808       }
1809     }
1810 
1811     return CSFC_FallThrough;
1812   }
1813 
1814   // Okay, this is some other statement that we don't handle explicitly, like a
1815   // for statement or increment etc.  If we are skipping over this statement,
1816   // just verify it doesn't have labels, which would make it invalid to elide.
1817   if (Case) {
1818     if (CodeGenFunction::ContainsLabel(S, true))
1819       return CSFC_Failure;
1820     return CSFC_Success;
1821   }
1822 
1823   // Otherwise, we want to include this statement.  Everything is cool with that
1824   // so long as it doesn't contain a break out of the switch we're in.
1825   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1826 
1827   // Otherwise, everything is great.  Include the statement and tell the caller
1828   // that we fall through and include the next statement as well.
1829   ResultStmts.push_back(S);
1830   return CSFC_FallThrough;
1831 }
1832 
1833 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1834 /// then invoke CollectStatementsForCase to find the list of statements to emit
1835 /// for a switch on constant.  See the comment above CollectStatementsForCase
1836 /// for more details.
1837 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1838                                        const llvm::APSInt &ConstantCondValue,
1839                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1840                                        ASTContext &C,
1841                                        const SwitchCase *&ResultCase) {
1842   // First step, find the switch case that is being branched to.  We can do this
1843   // efficiently by scanning the SwitchCase list.
1844   const SwitchCase *Case = S.getSwitchCaseList();
1845   const DefaultStmt *DefaultCase = nullptr;
1846 
1847   for (; Case; Case = Case->getNextSwitchCase()) {
1848     // It's either a default or case.  Just remember the default statement in
1849     // case we're not jumping to any numbered cases.
1850     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1851       DefaultCase = DS;
1852       continue;
1853     }
1854 
1855     // Check to see if this case is the one we're looking for.
1856     const CaseStmt *CS = cast<CaseStmt>(Case);
1857     // Don't handle case ranges yet.
1858     if (CS->getRHS()) return false;
1859 
1860     // If we found our case, remember it as 'case'.
1861     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1862       break;
1863   }
1864 
1865   // If we didn't find a matching case, we use a default if it exists, or we
1866   // elide the whole switch body!
1867   if (!Case) {
1868     // It is safe to elide the body of the switch if it doesn't contain labels
1869     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1870     if (!DefaultCase)
1871       return !CodeGenFunction::ContainsLabel(&S);
1872     Case = DefaultCase;
1873   }
1874 
1875   // Ok, we know which case is being jumped to, try to collect all the
1876   // statements that follow it.  This can fail for a variety of reasons.  Also,
1877   // check to see that the recursive walk actually found our case statement.
1878   // Insane cases like this can fail to find it in the recursive walk since we
1879   // don't handle every stmt kind:
1880   // switch (4) {
1881   //   while (1) {
1882   //     case 4: ...
1883   bool FoundCase = false;
1884   ResultCase = Case;
1885   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1886                                   ResultStmts) != CSFC_Failure &&
1887          FoundCase;
1888 }
1889 
1890 static std::optional<SmallVector<uint64_t, 16>>
1891 getLikelihoodWeights(ArrayRef<Stmt::Likelihood> Likelihoods) {
1892   // Are there enough branches to weight them?
1893   if (Likelihoods.size() <= 1)
1894     return std::nullopt;
1895 
1896   uint64_t NumUnlikely = 0;
1897   uint64_t NumNone = 0;
1898   uint64_t NumLikely = 0;
1899   for (const auto LH : Likelihoods) {
1900     switch (LH) {
1901     case Stmt::LH_Unlikely:
1902       ++NumUnlikely;
1903       break;
1904     case Stmt::LH_None:
1905       ++NumNone;
1906       break;
1907     case Stmt::LH_Likely:
1908       ++NumLikely;
1909       break;
1910     }
1911   }
1912 
1913   // Is there a likelihood attribute used?
1914   if (NumUnlikely == 0 && NumLikely == 0)
1915     return std::nullopt;
1916 
1917   // When multiple cases share the same code they can be combined during
1918   // optimization. In that case the weights of the branch will be the sum of
1919   // the individual weights. Make sure the combined sum of all neutral cases
1920   // doesn't exceed the value of a single likely attribute.
1921   // The additions both avoid divisions by 0 and make sure the weights of None
1922   // don't exceed the weight of Likely.
1923   const uint64_t Likely = INT32_MAX / (NumLikely + 2);
1924   const uint64_t None = Likely / (NumNone + 1);
1925   const uint64_t Unlikely = 0;
1926 
1927   SmallVector<uint64_t, 16> Result;
1928   Result.reserve(Likelihoods.size());
1929   for (const auto LH : Likelihoods) {
1930     switch (LH) {
1931     case Stmt::LH_Unlikely:
1932       Result.push_back(Unlikely);
1933       break;
1934     case Stmt::LH_None:
1935       Result.push_back(None);
1936       break;
1937     case Stmt::LH_Likely:
1938       Result.push_back(Likely);
1939       break;
1940     }
1941   }
1942 
1943   return Result;
1944 }
1945 
1946 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1947   // Handle nested switch statements.
1948   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1949   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1950   SmallVector<Stmt::Likelihood, 16> *SavedSwitchLikelihood = SwitchLikelihood;
1951   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1952 
1953   // See if we can constant fold the condition of the switch and therefore only
1954   // emit the live case statement (if any) of the switch.
1955   llvm::APSInt ConstantCondValue;
1956   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1957     SmallVector<const Stmt*, 4> CaseStmts;
1958     const SwitchCase *Case = nullptr;
1959     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1960                                    getContext(), Case)) {
1961       if (Case)
1962         incrementProfileCounter(Case);
1963       RunCleanupsScope ExecutedScope(*this);
1964 
1965       if (S.getInit())
1966         EmitStmt(S.getInit());
1967 
1968       // Emit the condition variable if needed inside the entire cleanup scope
1969       // used by this special case for constant folded switches.
1970       if (S.getConditionVariable())
1971         EmitDecl(*S.getConditionVariable());
1972 
1973       // At this point, we are no longer "within" a switch instance, so
1974       // we can temporarily enforce this to ensure that any embedded case
1975       // statements are not emitted.
1976       SwitchInsn = nullptr;
1977 
1978       // Okay, we can dead code eliminate everything except this case.  Emit the
1979       // specified series of statements and we're good.
1980       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1981         EmitStmt(CaseStmts[i]);
1982       incrementProfileCounter(&S);
1983 
1984       // Now we want to restore the saved switch instance so that nested
1985       // switches continue to function properly
1986       SwitchInsn = SavedSwitchInsn;
1987 
1988       return;
1989     }
1990   }
1991 
1992   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1993 
1994   RunCleanupsScope ConditionScope(*this);
1995 
1996   if (S.getInit())
1997     EmitStmt(S.getInit());
1998 
1999   if (S.getConditionVariable())
2000     EmitDecl(*S.getConditionVariable());
2001   llvm::Value *CondV = EmitScalarExpr(S.getCond());
2002 
2003   // Create basic block to hold stuff that comes after switch
2004   // statement. We also need to create a default block now so that
2005   // explicit case ranges tests can have a place to jump to on
2006   // failure.
2007   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
2008   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
2009   if (PGO.haveRegionCounts()) {
2010     // Walk the SwitchCase list to find how many there are.
2011     uint64_t DefaultCount = 0;
2012     unsigned NumCases = 0;
2013     for (const SwitchCase *Case = S.getSwitchCaseList();
2014          Case;
2015          Case = Case->getNextSwitchCase()) {
2016       if (isa<DefaultStmt>(Case))
2017         DefaultCount = getProfileCount(Case);
2018       NumCases += 1;
2019     }
2020     SwitchWeights = new SmallVector<uint64_t, 16>();
2021     SwitchWeights->reserve(NumCases);
2022     // The default needs to be first. We store the edge count, so we already
2023     // know the right weight.
2024     SwitchWeights->push_back(DefaultCount);
2025   } else if (CGM.getCodeGenOpts().OptimizationLevel) {
2026     SwitchLikelihood = new SmallVector<Stmt::Likelihood, 16>();
2027     // Initialize the default case.
2028     SwitchLikelihood->push_back(Stmt::LH_None);
2029   }
2030 
2031   CaseRangeBlock = DefaultBlock;
2032 
2033   // Clear the insertion point to indicate we are in unreachable code.
2034   Builder.ClearInsertionPoint();
2035 
2036   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
2037   // then reuse last ContinueBlock.
2038   JumpDest OuterContinue;
2039   if (!BreakContinueStack.empty())
2040     OuterContinue = BreakContinueStack.back().ContinueBlock;
2041 
2042   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
2043 
2044   // Emit switch body.
2045   EmitStmt(S.getBody());
2046 
2047   BreakContinueStack.pop_back();
2048 
2049   // Update the default block in case explicit case range tests have
2050   // been chained on top.
2051   SwitchInsn->setDefaultDest(CaseRangeBlock);
2052 
2053   // If a default was never emitted:
2054   if (!DefaultBlock->getParent()) {
2055     // If we have cleanups, emit the default block so that there's a
2056     // place to jump through the cleanups from.
2057     if (ConditionScope.requiresCleanups()) {
2058       EmitBlock(DefaultBlock);
2059 
2060     // Otherwise, just forward the default block to the switch end.
2061     } else {
2062       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
2063       delete DefaultBlock;
2064     }
2065   }
2066 
2067   ConditionScope.ForceCleanup();
2068 
2069   // Emit continuation.
2070   EmitBlock(SwitchExit.getBlock(), true);
2071   incrementProfileCounter(&S);
2072 
2073   // If the switch has a condition wrapped by __builtin_unpredictable,
2074   // create metadata that specifies that the switch is unpredictable.
2075   // Don't bother if not optimizing because that metadata would not be used.
2076   auto *Call = dyn_cast<CallExpr>(S.getCond());
2077   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
2078     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
2079     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
2080       llvm::MDBuilder MDHelper(getLLVMContext());
2081       SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
2082                               MDHelper.createUnpredictable());
2083     }
2084   }
2085 
2086   if (SwitchWeights) {
2087     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
2088            "switch weights do not match switch cases");
2089     // If there's only one jump destination there's no sense weighting it.
2090     if (SwitchWeights->size() > 1)
2091       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
2092                               createProfileWeights(*SwitchWeights));
2093     delete SwitchWeights;
2094   } else if (SwitchLikelihood) {
2095     assert(SwitchLikelihood->size() == 1 + SwitchInsn->getNumCases() &&
2096            "switch likelihoods do not match switch cases");
2097     std::optional<SmallVector<uint64_t, 16>> LHW =
2098         getLikelihoodWeights(*SwitchLikelihood);
2099     if (LHW) {
2100       llvm::MDBuilder MDHelper(CGM.getLLVMContext());
2101       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
2102                               createProfileWeights(*LHW));
2103     }
2104     delete SwitchLikelihood;
2105   }
2106   SwitchInsn = SavedSwitchInsn;
2107   SwitchWeights = SavedSwitchWeights;
2108   SwitchLikelihood = SavedSwitchLikelihood;
2109   CaseRangeBlock = SavedCRBlock;
2110 }
2111 
2112 static std::string
2113 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
2114                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
2115   std::string Result;
2116 
2117   while (*Constraint) {
2118     switch (*Constraint) {
2119     default:
2120       Result += Target.convertConstraint(Constraint);
2121       break;
2122     // Ignore these
2123     case '*':
2124     case '?':
2125     case '!':
2126     case '=': // Will see this and the following in mult-alt constraints.
2127     case '+':
2128       break;
2129     case '#': // Ignore the rest of the constraint alternative.
2130       while (Constraint[1] && Constraint[1] != ',')
2131         Constraint++;
2132       break;
2133     case '&':
2134     case '%':
2135       Result += *Constraint;
2136       while (Constraint[1] && Constraint[1] == *Constraint)
2137         Constraint++;
2138       break;
2139     case ',':
2140       Result += "|";
2141       break;
2142     case 'g':
2143       Result += "imr";
2144       break;
2145     case '[': {
2146       assert(OutCons &&
2147              "Must pass output names to constraints with a symbolic name");
2148       unsigned Index;
2149       bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
2150       assert(result && "Could not resolve symbolic name"); (void)result;
2151       Result += llvm::utostr(Index);
2152       break;
2153     }
2154     }
2155 
2156     Constraint++;
2157   }
2158 
2159   return Result;
2160 }
2161 
2162 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
2163 /// as using a particular register add that as a constraint that will be used
2164 /// in this asm stmt.
2165 static std::string
2166 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
2167                        const TargetInfo &Target, CodeGenModule &CGM,
2168                        const AsmStmt &Stmt, const bool EarlyClobber,
2169                        std::string *GCCReg = nullptr) {
2170   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
2171   if (!AsmDeclRef)
2172     return Constraint;
2173   const ValueDecl &Value = *AsmDeclRef->getDecl();
2174   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
2175   if (!Variable)
2176     return Constraint;
2177   if (Variable->getStorageClass() != SC_Register)
2178     return Constraint;
2179   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
2180   if (!Attr)
2181     return Constraint;
2182   StringRef Register = Attr->getLabel();
2183   assert(Target.isValidGCCRegisterName(Register));
2184   // We're using validateOutputConstraint here because we only care if
2185   // this is a register constraint.
2186   TargetInfo::ConstraintInfo Info(Constraint, "");
2187   if (Target.validateOutputConstraint(Info) &&
2188       !Info.allowsRegister()) {
2189     CGM.ErrorUnsupported(&Stmt, "__asm__");
2190     return Constraint;
2191   }
2192   // Canonicalize the register here before returning it.
2193   Register = Target.getNormalizedGCCRegisterName(Register);
2194   if (GCCReg != nullptr)
2195     *GCCReg = Register.str();
2196   return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
2197 }
2198 
2199 std::pair<llvm::Value*, llvm::Type *> CodeGenFunction::EmitAsmInputLValue(
2200     const TargetInfo::ConstraintInfo &Info, LValue InputValue,
2201     QualType InputType, std::string &ConstraintStr, SourceLocation Loc) {
2202   if (Info.allowsRegister() || !Info.allowsMemory()) {
2203     if (CodeGenFunction::hasScalarEvaluationKind(InputType))
2204       return {EmitLoadOfLValue(InputValue, Loc).getScalarVal(), nullptr};
2205 
2206     llvm::Type *Ty = ConvertType(InputType);
2207     uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
2208     if ((Size <= 64 && llvm::isPowerOf2_64(Size)) ||
2209         getTargetHooks().isScalarizableAsmOperand(*this, Ty)) {
2210       Ty = llvm::IntegerType::get(getLLVMContext(), Size);
2211 
2212       return {
2213           Builder.CreateLoad(InputValue.getAddress(*this).withElementType(Ty)),
2214           nullptr};
2215     }
2216   }
2217 
2218   Address Addr = InputValue.getAddress(*this);
2219   ConstraintStr += '*';
2220   return {Addr.getPointer(), Addr.getElementType()};
2221 }
2222 
2223 std::pair<llvm::Value *, llvm::Type *>
2224 CodeGenFunction::EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2225                               const Expr *InputExpr,
2226                               std::string &ConstraintStr) {
2227   // If this can't be a register or memory, i.e., has to be a constant
2228   // (immediate or symbolic), try to emit it as such.
2229   if (!Info.allowsRegister() && !Info.allowsMemory()) {
2230     if (Info.requiresImmediateConstant()) {
2231       Expr::EvalResult EVResult;
2232       InputExpr->EvaluateAsRValue(EVResult, getContext(), true);
2233 
2234       llvm::APSInt IntResult;
2235       if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(),
2236                                           getContext()))
2237         return {llvm::ConstantInt::get(getLLVMContext(), IntResult), nullptr};
2238     }
2239 
2240     Expr::EvalResult Result;
2241     if (InputExpr->EvaluateAsInt(Result, getContext()))
2242       return {llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt()),
2243               nullptr};
2244   }
2245 
2246   if (Info.allowsRegister() || !Info.allowsMemory())
2247     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
2248       return {EmitScalarExpr(InputExpr), nullptr};
2249   if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
2250     return {EmitScalarExpr(InputExpr), nullptr};
2251   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
2252   LValue Dest = EmitLValue(InputExpr);
2253   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
2254                             InputExpr->getExprLoc());
2255 }
2256 
2257 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
2258 /// asm call instruction.  The !srcloc MDNode contains a list of constant
2259 /// integers which are the source locations of the start of each line in the
2260 /// asm.
2261 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
2262                                       CodeGenFunction &CGF) {
2263   SmallVector<llvm::Metadata *, 8> Locs;
2264   // Add the location of the first line to the MDNode.
2265   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2266       CGF.Int64Ty, Str->getBeginLoc().getRawEncoding())));
2267   StringRef StrVal = Str->getString();
2268   if (!StrVal.empty()) {
2269     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
2270     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
2271     unsigned StartToken = 0;
2272     unsigned ByteOffset = 0;
2273 
2274     // Add the location of the start of each subsequent line of the asm to the
2275     // MDNode.
2276     for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
2277       if (StrVal[i] != '\n') continue;
2278       SourceLocation LineLoc = Str->getLocationOfByte(
2279           i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
2280       Locs.push_back(llvm::ConstantAsMetadata::get(
2281           llvm::ConstantInt::get(CGF.Int64Ty, LineLoc.getRawEncoding())));
2282     }
2283   }
2284 
2285   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
2286 }
2287 
2288 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect,
2289                               bool HasUnwindClobber, bool ReadOnly,
2290                               bool ReadNone, bool NoMerge, const AsmStmt &S,
2291                               const std::vector<llvm::Type *> &ResultRegTypes,
2292                               const std::vector<llvm::Type *> &ArgElemTypes,
2293                               CodeGenFunction &CGF,
2294                               std::vector<llvm::Value *> &RegResults) {
2295   if (!HasUnwindClobber)
2296     Result.addFnAttr(llvm::Attribute::NoUnwind);
2297 
2298   if (NoMerge)
2299     Result.addFnAttr(llvm::Attribute::NoMerge);
2300   // Attach readnone and readonly attributes.
2301   if (!HasSideEffect) {
2302     if (ReadNone)
2303       Result.setDoesNotAccessMemory();
2304     else if (ReadOnly)
2305       Result.setOnlyReadsMemory();
2306   }
2307 
2308   // Add elementtype attribute for indirect constraints.
2309   for (auto Pair : llvm::enumerate(ArgElemTypes)) {
2310     if (Pair.value()) {
2311       auto Attr = llvm::Attribute::get(
2312           CGF.getLLVMContext(), llvm::Attribute::ElementType, Pair.value());
2313       Result.addParamAttr(Pair.index(), Attr);
2314     }
2315   }
2316 
2317   // Slap the source location of the inline asm into a !srcloc metadata on the
2318   // call.
2319   if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
2320     Result.setMetadata("srcloc",
2321                        getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF));
2322   else {
2323     // At least put the line number on MS inline asm blobs.
2324     llvm::Constant *Loc =
2325         llvm::ConstantInt::get(CGF.Int64Ty, S.getAsmLoc().getRawEncoding());
2326     Result.setMetadata("srcloc",
2327                        llvm::MDNode::get(CGF.getLLVMContext(),
2328                                          llvm::ConstantAsMetadata::get(Loc)));
2329   }
2330 
2331   if (CGF.getLangOpts().assumeFunctionsAreConvergent())
2332     // Conservatively, mark all inline asm blocks in CUDA or OpenCL as
2333     // convergent (meaning, they may call an intrinsically convergent op, such
2334     // as bar.sync, and so can't have certain optimizations applied around
2335     // them).
2336     Result.addFnAttr(llvm::Attribute::Convergent);
2337   // Extract all of the register value results from the asm.
2338   if (ResultRegTypes.size() == 1) {
2339     RegResults.push_back(&Result);
2340   } else {
2341     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2342       llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult");
2343       RegResults.push_back(Tmp);
2344     }
2345   }
2346 }
2347 
2348 static void
2349 EmitAsmStores(CodeGenFunction &CGF, const AsmStmt &S,
2350               const llvm::ArrayRef<llvm::Value *> RegResults,
2351               const llvm::ArrayRef<llvm::Type *> ResultRegTypes,
2352               const llvm::ArrayRef<llvm::Type *> ResultTruncRegTypes,
2353               const llvm::ArrayRef<LValue> ResultRegDests,
2354               const llvm::ArrayRef<QualType> ResultRegQualTys,
2355               const llvm::BitVector &ResultTypeRequiresCast,
2356               const llvm::BitVector &ResultRegIsFlagReg) {
2357   CGBuilderTy &Builder = CGF.Builder;
2358   CodeGenModule &CGM = CGF.CGM;
2359   llvm::LLVMContext &CTX = CGF.getLLVMContext();
2360 
2361   assert(RegResults.size() == ResultRegTypes.size());
2362   assert(RegResults.size() == ResultTruncRegTypes.size());
2363   assert(RegResults.size() == ResultRegDests.size());
2364   // ResultRegDests can be also populated by addReturnRegisterOutputs() above,
2365   // in which case its size may grow.
2366   assert(ResultTypeRequiresCast.size() <= ResultRegDests.size());
2367   assert(ResultRegIsFlagReg.size() <= ResultRegDests.size());
2368 
2369   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2370     llvm::Value *Tmp = RegResults[i];
2371     llvm::Type *TruncTy = ResultTruncRegTypes[i];
2372 
2373     if ((i < ResultRegIsFlagReg.size()) && ResultRegIsFlagReg[i]) {
2374       // Target must guarantee the Value `Tmp` here is lowered to a boolean
2375       // value.
2376       llvm::Constant *Two = llvm::ConstantInt::get(Tmp->getType(), 2);
2377       llvm::Value *IsBooleanValue =
2378           Builder.CreateCmp(llvm::CmpInst::ICMP_ULT, Tmp, Two);
2379       llvm::Function *FnAssume = CGM.getIntrinsic(llvm::Intrinsic::assume);
2380       Builder.CreateCall(FnAssume, IsBooleanValue);
2381     }
2382 
2383     // If the result type of the LLVM IR asm doesn't match the result type of
2384     // the expression, do the conversion.
2385     if (ResultRegTypes[i] != TruncTy) {
2386 
2387       // Truncate the integer result to the right size, note that TruncTy can be
2388       // a pointer.
2389       if (TruncTy->isFloatingPointTy())
2390         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2391       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2392         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2393         Tmp = Builder.CreateTrunc(
2394             Tmp, llvm::IntegerType::get(CTX, (unsigned)ResSize));
2395         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2396       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2397         uint64_t TmpSize =
2398             CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2399         Tmp = Builder.CreatePtrToInt(
2400             Tmp, llvm::IntegerType::get(CTX, (unsigned)TmpSize));
2401         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2402       } else if (Tmp->getType()->isIntegerTy() && TruncTy->isIntegerTy()) {
2403         Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy);
2404       } else if (Tmp->getType()->isVectorTy() || TruncTy->isVectorTy()) {
2405         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2406       }
2407     }
2408 
2409     LValue Dest = ResultRegDests[i];
2410     // ResultTypeRequiresCast elements correspond to the first
2411     // ResultTypeRequiresCast.size() elements of RegResults.
2412     if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) {
2413       unsigned Size = CGF.getContext().getTypeSize(ResultRegQualTys[i]);
2414       Address A = Dest.getAddress(CGF).withElementType(ResultRegTypes[i]);
2415       if (CGF.getTargetHooks().isScalarizableAsmOperand(CGF, TruncTy)) {
2416         Builder.CreateStore(Tmp, A);
2417         continue;
2418       }
2419 
2420       QualType Ty =
2421           CGF.getContext().getIntTypeForBitwidth(Size, /*Signed=*/false);
2422       if (Ty.isNull()) {
2423         const Expr *OutExpr = S.getOutputExpr(i);
2424         CGM.getDiags().Report(OutExpr->getExprLoc(),
2425                               diag::err_store_value_to_reg);
2426         return;
2427       }
2428       Dest = CGF.MakeAddrLValue(A, Ty);
2429     }
2430     CGF.EmitStoreThroughLValue(RValue::get(Tmp), Dest);
2431   }
2432 }
2433 
2434 static void EmitHipStdParUnsupportedAsm(CodeGenFunction *CGF,
2435                                         const AsmStmt &S) {
2436   constexpr auto Name = "__ASM__hipstdpar_unsupported";
2437 
2438   StringRef Asm;
2439   if (auto GCCAsm = dyn_cast<GCCAsmStmt>(&S))
2440     Asm = GCCAsm->getAsmString()->getString();
2441 
2442   auto &Ctx = CGF->CGM.getLLVMContext();
2443 
2444   auto StrTy = llvm::ConstantDataArray::getString(Ctx, Asm);
2445   auto FnTy = llvm::FunctionType::get(llvm::Type::getVoidTy(Ctx),
2446                                       {StrTy->getType()}, false);
2447   auto UBF = CGF->CGM.getModule().getOrInsertFunction(Name, FnTy);
2448 
2449   CGF->Builder.CreateCall(UBF, {StrTy});
2450 }
2451 
2452 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
2453   // Pop all cleanup blocks at the end of the asm statement.
2454   CodeGenFunction::RunCleanupsScope Cleanups(*this);
2455 
2456   // Assemble the final asm string.
2457   std::string AsmString = S.generateAsmString(getContext());
2458 
2459   // Get all the output and input constraints together.
2460   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2461   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2462 
2463   bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice;
2464   bool IsValidTargetAsm = true;
2465   for (unsigned i = 0, e = S.getNumOutputs(); i != e && IsValidTargetAsm; i++) {
2466     StringRef Name;
2467     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2468       Name = GAS->getOutputName(i);
2469     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
2470     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
2471     if (IsHipStdPar && !IsValid)
2472       IsValidTargetAsm = false;
2473     else
2474       assert(IsValid && "Failed to parse output constraint");
2475     OutputConstraintInfos.push_back(Info);
2476   }
2477 
2478   for (unsigned i = 0, e = S.getNumInputs(); i != e && IsValidTargetAsm; i++) {
2479     StringRef Name;
2480     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2481       Name = GAS->getInputName(i);
2482     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
2483     bool IsValid =
2484       getTarget().validateInputConstraint(OutputConstraintInfos, Info);
2485     if (IsHipStdPar && !IsValid)
2486       IsValidTargetAsm = false;
2487     else
2488       assert(IsValid && "Failed to parse input constraint");
2489     InputConstraintInfos.push_back(Info);
2490   }
2491 
2492   if (!IsValidTargetAsm)
2493     return EmitHipStdParUnsupportedAsm(this, S);
2494 
2495   std::string Constraints;
2496 
2497   std::vector<LValue> ResultRegDests;
2498   std::vector<QualType> ResultRegQualTys;
2499   std::vector<llvm::Type *> ResultRegTypes;
2500   std::vector<llvm::Type *> ResultTruncRegTypes;
2501   std::vector<llvm::Type *> ArgTypes;
2502   std::vector<llvm::Type *> ArgElemTypes;
2503   std::vector<llvm::Value*> Args;
2504   llvm::BitVector ResultTypeRequiresCast;
2505   llvm::BitVector ResultRegIsFlagReg;
2506 
2507   // Keep track of inout constraints.
2508   std::string InOutConstraints;
2509   std::vector<llvm::Value*> InOutArgs;
2510   std::vector<llvm::Type*> InOutArgTypes;
2511   std::vector<llvm::Type*> InOutArgElemTypes;
2512 
2513   // Keep track of out constraints for tied input operand.
2514   std::vector<std::string> OutputConstraints;
2515 
2516   // Keep track of defined physregs.
2517   llvm::SmallSet<std::string, 8> PhysRegOutputs;
2518 
2519   // An inline asm can be marked readonly if it meets the following conditions:
2520   //  - it doesn't have any sideeffects
2521   //  - it doesn't clobber memory
2522   //  - it doesn't return a value by-reference
2523   // It can be marked readnone if it doesn't have any input memory constraints
2524   // in addition to meeting the conditions listed above.
2525   bool ReadOnly = true, ReadNone = true;
2526 
2527   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2528     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
2529 
2530     // Simplify the output constraint.
2531     std::string OutputConstraint(S.getOutputConstraint(i));
2532     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
2533                                           getTarget(), &OutputConstraintInfos);
2534 
2535     const Expr *OutExpr = S.getOutputExpr(i);
2536     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
2537 
2538     std::string GCCReg;
2539     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
2540                                               getTarget(), CGM, S,
2541                                               Info.earlyClobber(),
2542                                               &GCCReg);
2543     // Give an error on multiple outputs to same physreg.
2544     if (!GCCReg.empty() && !PhysRegOutputs.insert(GCCReg).second)
2545       CGM.Error(S.getAsmLoc(), "multiple outputs to hard register: " + GCCReg);
2546 
2547     OutputConstraints.push_back(OutputConstraint);
2548     LValue Dest = EmitLValue(OutExpr);
2549     if (!Constraints.empty())
2550       Constraints += ',';
2551 
2552     // If this is a register output, then make the inline asm return it
2553     // by-value.  If this is a memory result, return the value by-reference.
2554     QualType QTy = OutExpr->getType();
2555     const bool IsScalarOrAggregate = hasScalarEvaluationKind(QTy) ||
2556                                      hasAggregateEvaluationKind(QTy);
2557     if (!Info.allowsMemory() && IsScalarOrAggregate) {
2558 
2559       Constraints += "=" + OutputConstraint;
2560       ResultRegQualTys.push_back(QTy);
2561       ResultRegDests.push_back(Dest);
2562 
2563       bool IsFlagReg = llvm::StringRef(OutputConstraint).starts_with("{@cc");
2564       ResultRegIsFlagReg.push_back(IsFlagReg);
2565 
2566       llvm::Type *Ty = ConvertTypeForMem(QTy);
2567       const bool RequiresCast = Info.allowsRegister() &&
2568           (getTargetHooks().isScalarizableAsmOperand(*this, Ty) ||
2569            Ty->isAggregateType());
2570 
2571       ResultTruncRegTypes.push_back(Ty);
2572       ResultTypeRequiresCast.push_back(RequiresCast);
2573 
2574       if (RequiresCast) {
2575         unsigned Size = getContext().getTypeSize(QTy);
2576         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
2577       }
2578       ResultRegTypes.push_back(Ty);
2579       // If this output is tied to an input, and if the input is larger, then
2580       // we need to set the actual result type of the inline asm node to be the
2581       // same as the input type.
2582       if (Info.hasMatchingInput()) {
2583         unsigned InputNo;
2584         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
2585           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
2586           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
2587             break;
2588         }
2589         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
2590 
2591         QualType InputTy = S.getInputExpr(InputNo)->getType();
2592         QualType OutputType = OutExpr->getType();
2593 
2594         uint64_t InputSize = getContext().getTypeSize(InputTy);
2595         if (getContext().getTypeSize(OutputType) < InputSize) {
2596           // Form the asm to return the value as a larger integer or fp type.
2597           ResultRegTypes.back() = ConvertType(InputTy);
2598         }
2599       }
2600       if (llvm::Type* AdjTy =
2601             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2602                                                  ResultRegTypes.back()))
2603         ResultRegTypes.back() = AdjTy;
2604       else {
2605         CGM.getDiags().Report(S.getAsmLoc(),
2606                               diag::err_asm_invalid_type_in_input)
2607             << OutExpr->getType() << OutputConstraint;
2608       }
2609 
2610       // Update largest vector width for any vector types.
2611       if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back()))
2612         LargestVectorWidth =
2613             std::max((uint64_t)LargestVectorWidth,
2614                      VT->getPrimitiveSizeInBits().getKnownMinValue());
2615     } else {
2616       Address DestAddr = Dest.getAddress(*this);
2617       // Matrix types in memory are represented by arrays, but accessed through
2618       // vector pointers, with the alignment specified on the access operation.
2619       // For inline assembly, update pointer arguments to use vector pointers.
2620       // Otherwise there will be a mis-match if the matrix is also an
2621       // input-argument which is represented as vector.
2622       if (isa<MatrixType>(OutExpr->getType().getCanonicalType()))
2623         DestAddr = DestAddr.withElementType(ConvertType(OutExpr->getType()));
2624 
2625       ArgTypes.push_back(DestAddr.getType());
2626       ArgElemTypes.push_back(DestAddr.getElementType());
2627       Args.push_back(DestAddr.getPointer());
2628       Constraints += "=*";
2629       Constraints += OutputConstraint;
2630       ReadOnly = ReadNone = false;
2631     }
2632 
2633     if (Info.isReadWrite()) {
2634       InOutConstraints += ',';
2635 
2636       const Expr *InputExpr = S.getOutputExpr(i);
2637       llvm::Value *Arg;
2638       llvm::Type *ArgElemType;
2639       std::tie(Arg, ArgElemType) = EmitAsmInputLValue(
2640           Info, Dest, InputExpr->getType(), InOutConstraints,
2641           InputExpr->getExprLoc());
2642 
2643       if (llvm::Type* AdjTy =
2644           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2645                                                Arg->getType()))
2646         Arg = Builder.CreateBitCast(Arg, AdjTy);
2647 
2648       // Update largest vector width for any vector types.
2649       if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2650         LargestVectorWidth =
2651             std::max((uint64_t)LargestVectorWidth,
2652                      VT->getPrimitiveSizeInBits().getKnownMinValue());
2653       // Only tie earlyclobber physregs.
2654       if (Info.allowsRegister() && (GCCReg.empty() || Info.earlyClobber()))
2655         InOutConstraints += llvm::utostr(i);
2656       else
2657         InOutConstraints += OutputConstraint;
2658 
2659       InOutArgTypes.push_back(Arg->getType());
2660       InOutArgElemTypes.push_back(ArgElemType);
2661       InOutArgs.push_back(Arg);
2662     }
2663   }
2664 
2665   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
2666   // to the return value slot. Only do this when returning in registers.
2667   if (isa<MSAsmStmt>(&S)) {
2668     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
2669     if (RetAI.isDirect() || RetAI.isExtend()) {
2670       // Make a fake lvalue for the return value slot.
2671       LValue ReturnSlot = MakeAddrLValueWithoutTBAA(ReturnValue, FnRetTy);
2672       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
2673           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
2674           ResultRegDests, AsmString, S.getNumOutputs());
2675       SawAsmBlock = true;
2676     }
2677   }
2678 
2679   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2680     const Expr *InputExpr = S.getInputExpr(i);
2681 
2682     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2683 
2684     if (Info.allowsMemory())
2685       ReadNone = false;
2686 
2687     if (!Constraints.empty())
2688       Constraints += ',';
2689 
2690     // Simplify the input constraint.
2691     std::string InputConstraint(S.getInputConstraint(i));
2692     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
2693                                          &OutputConstraintInfos);
2694 
2695     InputConstraint = AddVariableConstraints(
2696         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
2697         getTarget(), CGM, S, false /* No EarlyClobber */);
2698 
2699     std::string ReplaceConstraint (InputConstraint);
2700     llvm::Value *Arg;
2701     llvm::Type *ArgElemType;
2702     std::tie(Arg, ArgElemType) = EmitAsmInput(Info, InputExpr, Constraints);
2703 
2704     // If this input argument is tied to a larger output result, extend the
2705     // input to be the same size as the output.  The LLVM backend wants to see
2706     // the input and output of a matching constraint be the same size.  Note
2707     // that GCC does not define what the top bits are here.  We use zext because
2708     // that is usually cheaper, but LLVM IR should really get an anyext someday.
2709     if (Info.hasTiedOperand()) {
2710       unsigned Output = Info.getTiedOperand();
2711       QualType OutputType = S.getOutputExpr(Output)->getType();
2712       QualType InputTy = InputExpr->getType();
2713 
2714       if (getContext().getTypeSize(OutputType) >
2715           getContext().getTypeSize(InputTy)) {
2716         // Use ptrtoint as appropriate so that we can do our extension.
2717         if (isa<llvm::PointerType>(Arg->getType()))
2718           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
2719         llvm::Type *OutputTy = ConvertType(OutputType);
2720         if (isa<llvm::IntegerType>(OutputTy))
2721           Arg = Builder.CreateZExt(Arg, OutputTy);
2722         else if (isa<llvm::PointerType>(OutputTy))
2723           Arg = Builder.CreateZExt(Arg, IntPtrTy);
2724         else if (OutputTy->isFloatingPointTy())
2725           Arg = Builder.CreateFPExt(Arg, OutputTy);
2726       }
2727       // Deal with the tied operands' constraint code in adjustInlineAsmType.
2728       ReplaceConstraint = OutputConstraints[Output];
2729     }
2730     if (llvm::Type* AdjTy =
2731           getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint,
2732                                                    Arg->getType()))
2733       Arg = Builder.CreateBitCast(Arg, AdjTy);
2734     else
2735       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
2736           << InputExpr->getType() << InputConstraint;
2737 
2738     // Update largest vector width for any vector types.
2739     if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2740       LargestVectorWidth =
2741           std::max((uint64_t)LargestVectorWidth,
2742                    VT->getPrimitiveSizeInBits().getKnownMinValue());
2743 
2744     ArgTypes.push_back(Arg->getType());
2745     ArgElemTypes.push_back(ArgElemType);
2746     Args.push_back(Arg);
2747     Constraints += InputConstraint;
2748   }
2749 
2750   // Append the "input" part of inout constraints.
2751   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
2752     ArgTypes.push_back(InOutArgTypes[i]);
2753     ArgElemTypes.push_back(InOutArgElemTypes[i]);
2754     Args.push_back(InOutArgs[i]);
2755   }
2756   Constraints += InOutConstraints;
2757 
2758   // Labels
2759   SmallVector<llvm::BasicBlock *, 16> Transfer;
2760   llvm::BasicBlock *Fallthrough = nullptr;
2761   bool IsGCCAsmGoto = false;
2762   if (const auto *GS = dyn_cast<GCCAsmStmt>(&S)) {
2763     IsGCCAsmGoto = GS->isAsmGoto();
2764     if (IsGCCAsmGoto) {
2765       for (const auto *E : GS->labels()) {
2766         JumpDest Dest = getJumpDestForLabel(E->getLabel());
2767         Transfer.push_back(Dest.getBlock());
2768         if (!Constraints.empty())
2769           Constraints += ',';
2770         Constraints += "!i";
2771       }
2772       Fallthrough = createBasicBlock("asm.fallthrough");
2773     }
2774   }
2775 
2776   bool HasUnwindClobber = false;
2777 
2778   // Clobbers
2779   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
2780     StringRef Clobber = S.getClobber(i);
2781 
2782     if (Clobber == "memory")
2783       ReadOnly = ReadNone = false;
2784     else if (Clobber == "unwind") {
2785       HasUnwindClobber = true;
2786       continue;
2787     } else if (Clobber != "cc") {
2788       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
2789       if (CGM.getCodeGenOpts().StackClashProtector &&
2790           getTarget().isSPRegName(Clobber)) {
2791         CGM.getDiags().Report(S.getAsmLoc(),
2792                               diag::warn_stack_clash_protection_inline_asm);
2793       }
2794     }
2795 
2796     if (isa<MSAsmStmt>(&S)) {
2797       if (Clobber == "eax" || Clobber == "edx") {
2798         if (Constraints.find("=&A") != std::string::npos)
2799           continue;
2800         std::string::size_type position1 =
2801             Constraints.find("={" + Clobber.str() + "}");
2802         if (position1 != std::string::npos) {
2803           Constraints.insert(position1 + 1, "&");
2804           continue;
2805         }
2806         std::string::size_type position2 = Constraints.find("=A");
2807         if (position2 != std::string::npos) {
2808           Constraints.insert(position2 + 1, "&");
2809           continue;
2810         }
2811       }
2812     }
2813     if (!Constraints.empty())
2814       Constraints += ',';
2815 
2816     Constraints += "~{";
2817     Constraints += Clobber;
2818     Constraints += '}';
2819   }
2820 
2821   assert(!(HasUnwindClobber && IsGCCAsmGoto) &&
2822          "unwind clobber can't be used with asm goto");
2823 
2824   // Add machine specific clobbers
2825   std::string_view MachineClobbers = getTarget().getClobbers();
2826   if (!MachineClobbers.empty()) {
2827     if (!Constraints.empty())
2828       Constraints += ',';
2829     Constraints += MachineClobbers;
2830   }
2831 
2832   llvm::Type *ResultType;
2833   if (ResultRegTypes.empty())
2834     ResultType = VoidTy;
2835   else if (ResultRegTypes.size() == 1)
2836     ResultType = ResultRegTypes[0];
2837   else
2838     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
2839 
2840   llvm::FunctionType *FTy =
2841     llvm::FunctionType::get(ResultType, ArgTypes, false);
2842 
2843   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
2844 
2845   llvm::InlineAsm::AsmDialect GnuAsmDialect =
2846       CGM.getCodeGenOpts().getInlineAsmDialect() == CodeGenOptions::IAD_ATT
2847           ? llvm::InlineAsm::AD_ATT
2848           : llvm::InlineAsm::AD_Intel;
2849   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
2850     llvm::InlineAsm::AD_Intel : GnuAsmDialect;
2851 
2852   llvm::InlineAsm *IA = llvm::InlineAsm::get(
2853       FTy, AsmString, Constraints, HasSideEffect,
2854       /* IsAlignStack */ false, AsmDialect, HasUnwindClobber);
2855   std::vector<llvm::Value*> RegResults;
2856   llvm::CallBrInst *CBR;
2857   llvm::DenseMap<llvm::BasicBlock *, SmallVector<llvm::Value *, 4>>
2858       CBRRegResults;
2859   if (IsGCCAsmGoto) {
2860     CBR = Builder.CreateCallBr(IA, Fallthrough, Transfer, Args);
2861     EmitBlock(Fallthrough);
2862     UpdateAsmCallInst(*CBR, HasSideEffect, false, ReadOnly, ReadNone,
2863                       InNoMergeAttributedStmt, S, ResultRegTypes, ArgElemTypes,
2864                       *this, RegResults);
2865     // Because we are emitting code top to bottom, we don't have enough
2866     // information at this point to know precisely whether we have a critical
2867     // edge. If we have outputs, split all indirect destinations.
2868     if (!RegResults.empty()) {
2869       unsigned i = 0;
2870       for (llvm::BasicBlock *Dest : CBR->getIndirectDests()) {
2871         llvm::Twine SynthName = Dest->getName() + ".split";
2872         llvm::BasicBlock *SynthBB = createBasicBlock(SynthName);
2873         llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
2874         Builder.SetInsertPoint(SynthBB);
2875 
2876         if (ResultRegTypes.size() == 1) {
2877           CBRRegResults[SynthBB].push_back(CBR);
2878         } else {
2879           for (unsigned j = 0, e = ResultRegTypes.size(); j != e; ++j) {
2880             llvm::Value *Tmp = Builder.CreateExtractValue(CBR, j, "asmresult");
2881             CBRRegResults[SynthBB].push_back(Tmp);
2882           }
2883         }
2884 
2885         EmitBranch(Dest);
2886         EmitBlock(SynthBB);
2887         CBR->setIndirectDest(i++, SynthBB);
2888       }
2889     }
2890   } else if (HasUnwindClobber) {
2891     llvm::CallBase *Result = EmitCallOrInvoke(IA, Args, "");
2892     UpdateAsmCallInst(*Result, HasSideEffect, true, ReadOnly, ReadNone,
2893                       InNoMergeAttributedStmt, S, ResultRegTypes, ArgElemTypes,
2894                       *this, RegResults);
2895   } else {
2896     llvm::CallInst *Result =
2897         Builder.CreateCall(IA, Args, getBundlesForFunclet(IA));
2898     UpdateAsmCallInst(*Result, HasSideEffect, false, ReadOnly, ReadNone,
2899                       InNoMergeAttributedStmt, S, ResultRegTypes, ArgElemTypes,
2900                       *this, RegResults);
2901   }
2902 
2903   EmitAsmStores(*this, S, RegResults, ResultRegTypes, ResultTruncRegTypes,
2904                 ResultRegDests, ResultRegQualTys, ResultTypeRequiresCast,
2905                 ResultRegIsFlagReg);
2906 
2907   // If this is an asm goto with outputs, repeat EmitAsmStores, but with a
2908   // different insertion point; one for each indirect destination and with
2909   // CBRRegResults rather than RegResults.
2910   if (IsGCCAsmGoto && !CBRRegResults.empty()) {
2911     for (llvm::BasicBlock *Succ : CBR->getIndirectDests()) {
2912       llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
2913       Builder.SetInsertPoint(Succ, --(Succ->end()));
2914       EmitAsmStores(*this, S, CBRRegResults[Succ], ResultRegTypes,
2915                     ResultTruncRegTypes, ResultRegDests, ResultRegQualTys,
2916                     ResultTypeRequiresCast, ResultRegIsFlagReg);
2917     }
2918   }
2919 }
2920 
2921 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
2922   const RecordDecl *RD = S.getCapturedRecordDecl();
2923   QualType RecordTy = getContext().getRecordType(RD);
2924 
2925   // Initialize the captured struct.
2926   LValue SlotLV =
2927     MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2928 
2929   RecordDecl::field_iterator CurField = RD->field_begin();
2930   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
2931                                                  E = S.capture_init_end();
2932        I != E; ++I, ++CurField) {
2933     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2934     if (CurField->hasCapturedVLAType()) {
2935       EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
2936     } else {
2937       EmitInitializerForField(*CurField, LV, *I);
2938     }
2939   }
2940 
2941   return SlotLV;
2942 }
2943 
2944 /// Generate an outlined function for the body of a CapturedStmt, store any
2945 /// captured variables into the captured struct, and call the outlined function.
2946 llvm::Function *
2947 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2948   LValue CapStruct = InitCapturedStruct(S);
2949 
2950   // Emit the CapturedDecl
2951   CodeGenFunction CGF(CGM, true);
2952   CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2953   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2954   delete CGF.CapturedStmtInfo;
2955 
2956   // Emit call to the helper function.
2957   EmitCallOrInvoke(F, CapStruct.getPointer(*this));
2958 
2959   return F;
2960 }
2961 
2962 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2963   LValue CapStruct = InitCapturedStruct(S);
2964   return CapStruct.getAddress(*this);
2965 }
2966 
2967 /// Creates the outlined function for a CapturedStmt.
2968 llvm::Function *
2969 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2970   assert(CapturedStmtInfo &&
2971     "CapturedStmtInfo should be set when generating the captured function");
2972   const CapturedDecl *CD = S.getCapturedDecl();
2973   const RecordDecl *RD = S.getCapturedRecordDecl();
2974   SourceLocation Loc = S.getBeginLoc();
2975   assert(CD->hasBody() && "missing CapturedDecl body");
2976 
2977   // Build the argument list.
2978   ASTContext &Ctx = CGM.getContext();
2979   FunctionArgList Args;
2980   Args.append(CD->param_begin(), CD->param_end());
2981 
2982   // Create the function declaration.
2983   const CGFunctionInfo &FuncInfo =
2984     CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
2985   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2986 
2987   llvm::Function *F =
2988     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2989                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2990   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2991   if (CD->isNothrow())
2992     F->addFnAttr(llvm::Attribute::NoUnwind);
2993 
2994   // Generate the function.
2995   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
2996                 CD->getBody()->getBeginLoc());
2997   // Set the context parameter in CapturedStmtInfo.
2998   Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
2999   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
3000 
3001   // Initialize variable-length arrays.
3002   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
3003                                            Ctx.getTagDeclType(RD));
3004   for (auto *FD : RD->fields()) {
3005     if (FD->hasCapturedVLAType()) {
3006       auto *ExprArg =
3007           EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc())
3008               .getScalarVal();
3009       auto VAT = FD->getCapturedVLAType();
3010       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
3011     }
3012   }
3013 
3014   // If 'this' is captured, load it into CXXThisValue.
3015   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
3016     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
3017     LValue ThisLValue = EmitLValueForField(Base, FD);
3018     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
3019   }
3020 
3021   PGO.assignRegionCounters(GlobalDecl(CD), F);
3022   CapturedStmtInfo->EmitBody(*this, CD->getBody());
3023   FinishFunction(CD->getBodyRBrace());
3024 
3025   return F;
3026 }
3027