xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGStmt.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Stmt nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGDebugInfo.h"
15 #include "CodeGenModule.h"
16 #include "TargetInfo.h"
17 #include "clang/AST/StmtVisitor.h"
18 #include "clang/Basic/Builtins.h"
19 #include "clang/Basic/PrettyStackTrace.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/InlineAsm.h"
24 #include "llvm/IR/Intrinsics.h"
25 #include "llvm/IR/MDBuilder.h"
26 
27 using namespace clang;
28 using namespace CodeGen;
29 
30 //===----------------------------------------------------------------------===//
31 //                              Statement Emission
32 //===----------------------------------------------------------------------===//
33 
34 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
35   if (CGDebugInfo *DI = getDebugInfo()) {
36     SourceLocation Loc;
37     Loc = S->getBeginLoc();
38     DI->EmitLocation(Builder, Loc);
39 
40     LastStopPoint = Loc;
41   }
42 }
43 
44 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) {
45   assert(S && "Null statement?");
46   PGO.setCurrentStmt(S);
47 
48   // These statements have their own debug info handling.
49   if (EmitSimpleStmt(S))
50     return;
51 
52   // Check if we are generating unreachable code.
53   if (!HaveInsertPoint()) {
54     // If so, and the statement doesn't contain a label, then we do not need to
55     // generate actual code. This is safe because (1) the current point is
56     // unreachable, so we don't need to execute the code, and (2) we've already
57     // handled the statements which update internal data structures (like the
58     // local variable map) which could be used by subsequent statements.
59     if (!ContainsLabel(S)) {
60       // Verify that any decl statements were handled as simple, they may be in
61       // scope of subsequent reachable statements.
62       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
63       return;
64     }
65 
66     // Otherwise, make a new block to hold the code.
67     EnsureInsertPoint();
68   }
69 
70   // Generate a stoppoint if we are emitting debug info.
71   EmitStopPoint(S);
72 
73   // Ignore all OpenMP directives except for simd if OpenMP with Simd is
74   // enabled.
75   if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) {
76     if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) {
77       EmitSimpleOMPExecutableDirective(*D);
78       return;
79     }
80   }
81 
82   switch (S->getStmtClass()) {
83   case Stmt::NoStmtClass:
84   case Stmt::CXXCatchStmtClass:
85   case Stmt::SEHExceptStmtClass:
86   case Stmt::SEHFinallyStmtClass:
87   case Stmt::MSDependentExistsStmtClass:
88     llvm_unreachable("invalid statement class to emit generically");
89   case Stmt::NullStmtClass:
90   case Stmt::CompoundStmtClass:
91   case Stmt::DeclStmtClass:
92   case Stmt::LabelStmtClass:
93   case Stmt::AttributedStmtClass:
94   case Stmt::GotoStmtClass:
95   case Stmt::BreakStmtClass:
96   case Stmt::ContinueStmtClass:
97   case Stmt::DefaultStmtClass:
98   case Stmt::CaseStmtClass:
99   case Stmt::SEHLeaveStmtClass:
100     llvm_unreachable("should have emitted these statements as simple");
101 
102 #define STMT(Type, Base)
103 #define ABSTRACT_STMT(Op)
104 #define EXPR(Type, Base) \
105   case Stmt::Type##Class:
106 #include "clang/AST/StmtNodes.inc"
107   {
108     // Remember the block we came in on.
109     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
110     assert(incoming && "expression emission must have an insertion point");
111 
112     EmitIgnoredExpr(cast<Expr>(S));
113 
114     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
115     assert(outgoing && "expression emission cleared block!");
116 
117     // The expression emitters assume (reasonably!) that the insertion
118     // point is always set.  To maintain that, the call-emission code
119     // for noreturn functions has to enter a new block with no
120     // predecessors.  We want to kill that block and mark the current
121     // insertion point unreachable in the common case of a call like
122     // "exit();".  Since expression emission doesn't otherwise create
123     // blocks with no predecessors, we can just test for that.
124     // However, we must be careful not to do this to our incoming
125     // block, because *statement* emission does sometimes create
126     // reachable blocks which will have no predecessors until later in
127     // the function.  This occurs with, e.g., labels that are not
128     // reachable by fallthrough.
129     if (incoming != outgoing && outgoing->use_empty()) {
130       outgoing->eraseFromParent();
131       Builder.ClearInsertionPoint();
132     }
133     break;
134   }
135 
136   case Stmt::IndirectGotoStmtClass:
137     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
138 
139   case Stmt::IfStmtClass:      EmitIfStmt(cast<IfStmt>(*S));              break;
140   case Stmt::WhileStmtClass:   EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break;
141   case Stmt::DoStmtClass:      EmitDoStmt(cast<DoStmt>(*S), Attrs);       break;
142   case Stmt::ForStmtClass:     EmitForStmt(cast<ForStmt>(*S), Attrs);     break;
143 
144   case Stmt::ReturnStmtClass:  EmitReturnStmt(cast<ReturnStmt>(*S));      break;
145 
146   case Stmt::SwitchStmtClass:  EmitSwitchStmt(cast<SwitchStmt>(*S));      break;
147   case Stmt::GCCAsmStmtClass:  // Intentional fall-through.
148   case Stmt::MSAsmStmtClass:   EmitAsmStmt(cast<AsmStmt>(*S));            break;
149   case Stmt::CoroutineBodyStmtClass:
150     EmitCoroutineBody(cast<CoroutineBodyStmt>(*S));
151     break;
152   case Stmt::CoreturnStmtClass:
153     EmitCoreturnStmt(cast<CoreturnStmt>(*S));
154     break;
155   case Stmt::CapturedStmtClass: {
156     const CapturedStmt *CS = cast<CapturedStmt>(S);
157     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
158     }
159     break;
160   case Stmt::ObjCAtTryStmtClass:
161     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
162     break;
163   case Stmt::ObjCAtCatchStmtClass:
164     llvm_unreachable(
165                     "@catch statements should be handled by EmitObjCAtTryStmt");
166   case Stmt::ObjCAtFinallyStmtClass:
167     llvm_unreachable(
168                   "@finally statements should be handled by EmitObjCAtTryStmt");
169   case Stmt::ObjCAtThrowStmtClass:
170     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
171     break;
172   case Stmt::ObjCAtSynchronizedStmtClass:
173     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
174     break;
175   case Stmt::ObjCForCollectionStmtClass:
176     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
177     break;
178   case Stmt::ObjCAutoreleasePoolStmtClass:
179     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
180     break;
181 
182   case Stmt::CXXTryStmtClass:
183     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
184     break;
185   case Stmt::CXXForRangeStmtClass:
186     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs);
187     break;
188   case Stmt::SEHTryStmtClass:
189     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
190     break;
191   case Stmt::OMPParallelDirectiveClass:
192     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
193     break;
194   case Stmt::OMPSimdDirectiveClass:
195     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
196     break;
197   case Stmt::OMPForDirectiveClass:
198     EmitOMPForDirective(cast<OMPForDirective>(*S));
199     break;
200   case Stmt::OMPForSimdDirectiveClass:
201     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
202     break;
203   case Stmt::OMPSectionsDirectiveClass:
204     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
205     break;
206   case Stmt::OMPSectionDirectiveClass:
207     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
208     break;
209   case Stmt::OMPSingleDirectiveClass:
210     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
211     break;
212   case Stmt::OMPMasterDirectiveClass:
213     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
214     break;
215   case Stmt::OMPCriticalDirectiveClass:
216     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
217     break;
218   case Stmt::OMPParallelForDirectiveClass:
219     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
220     break;
221   case Stmt::OMPParallelForSimdDirectiveClass:
222     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
223     break;
224   case Stmt::OMPParallelSectionsDirectiveClass:
225     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
226     break;
227   case Stmt::OMPTaskDirectiveClass:
228     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
229     break;
230   case Stmt::OMPTaskyieldDirectiveClass:
231     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
232     break;
233   case Stmt::OMPBarrierDirectiveClass:
234     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
235     break;
236   case Stmt::OMPTaskwaitDirectiveClass:
237     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
238     break;
239   case Stmt::OMPTaskgroupDirectiveClass:
240     EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
241     break;
242   case Stmt::OMPFlushDirectiveClass:
243     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
244     break;
245   case Stmt::OMPOrderedDirectiveClass:
246     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
247     break;
248   case Stmt::OMPAtomicDirectiveClass:
249     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
250     break;
251   case Stmt::OMPTargetDirectiveClass:
252     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
253     break;
254   case Stmt::OMPTeamsDirectiveClass:
255     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
256     break;
257   case Stmt::OMPCancellationPointDirectiveClass:
258     EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
259     break;
260   case Stmt::OMPCancelDirectiveClass:
261     EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
262     break;
263   case Stmt::OMPTargetDataDirectiveClass:
264     EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
265     break;
266   case Stmt::OMPTargetEnterDataDirectiveClass:
267     EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
268     break;
269   case Stmt::OMPTargetExitDataDirectiveClass:
270     EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
271     break;
272   case Stmt::OMPTargetParallelDirectiveClass:
273     EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
274     break;
275   case Stmt::OMPTargetParallelForDirectiveClass:
276     EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S));
277     break;
278   case Stmt::OMPTaskLoopDirectiveClass:
279     EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
280     break;
281   case Stmt::OMPTaskLoopSimdDirectiveClass:
282     EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
283     break;
284   case Stmt::OMPMasterTaskLoopDirectiveClass:
285     EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S));
286     break;
287   case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
288     EmitOMPMasterTaskLoopSimdDirective(
289         cast<OMPMasterTaskLoopSimdDirective>(*S));
290     break;
291   case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
292     EmitOMPParallelMasterTaskLoopDirective(
293         cast<OMPParallelMasterTaskLoopDirective>(*S));
294     break;
295   case Stmt::OMPDistributeDirectiveClass:
296     EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
297     break;
298   case Stmt::OMPTargetUpdateDirectiveClass:
299     EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S));
300     break;
301   case Stmt::OMPDistributeParallelForDirectiveClass:
302     EmitOMPDistributeParallelForDirective(
303         cast<OMPDistributeParallelForDirective>(*S));
304     break;
305   case Stmt::OMPDistributeParallelForSimdDirectiveClass:
306     EmitOMPDistributeParallelForSimdDirective(
307         cast<OMPDistributeParallelForSimdDirective>(*S));
308     break;
309   case Stmt::OMPDistributeSimdDirectiveClass:
310     EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S));
311     break;
312   case Stmt::OMPTargetParallelForSimdDirectiveClass:
313     EmitOMPTargetParallelForSimdDirective(
314         cast<OMPTargetParallelForSimdDirective>(*S));
315     break;
316   case Stmt::OMPTargetSimdDirectiveClass:
317     EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S));
318     break;
319   case Stmt::OMPTeamsDistributeDirectiveClass:
320     EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S));
321     break;
322   case Stmt::OMPTeamsDistributeSimdDirectiveClass:
323     EmitOMPTeamsDistributeSimdDirective(
324         cast<OMPTeamsDistributeSimdDirective>(*S));
325     break;
326   case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
327     EmitOMPTeamsDistributeParallelForSimdDirective(
328         cast<OMPTeamsDistributeParallelForSimdDirective>(*S));
329     break;
330   case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
331     EmitOMPTeamsDistributeParallelForDirective(
332         cast<OMPTeamsDistributeParallelForDirective>(*S));
333     break;
334   case Stmt::OMPTargetTeamsDirectiveClass:
335     EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S));
336     break;
337   case Stmt::OMPTargetTeamsDistributeDirectiveClass:
338     EmitOMPTargetTeamsDistributeDirective(
339         cast<OMPTargetTeamsDistributeDirective>(*S));
340     break;
341   case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
342     EmitOMPTargetTeamsDistributeParallelForDirective(
343         cast<OMPTargetTeamsDistributeParallelForDirective>(*S));
344     break;
345   case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
346     EmitOMPTargetTeamsDistributeParallelForSimdDirective(
347         cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S));
348     break;
349   case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
350     EmitOMPTargetTeamsDistributeSimdDirective(
351         cast<OMPTargetTeamsDistributeSimdDirective>(*S));
352     break;
353   }
354 }
355 
356 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
357   switch (S->getStmtClass()) {
358   default: return false;
359   case Stmt::NullStmtClass: break;
360   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
361   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
362   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
363   case Stmt::AttributedStmtClass:
364                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
365   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
366   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
367   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
368   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
369   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
370   case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break;
371   }
372 
373   return true;
374 }
375 
376 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
377 /// this captures the expression result of the last sub-statement and returns it
378 /// (for use by the statement expression extension).
379 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
380                                           AggValueSlot AggSlot) {
381   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
382                              "LLVM IR generation of compound statement ('{}')");
383 
384   // Keep track of the current cleanup stack depth, including debug scopes.
385   LexicalScope Scope(*this, S.getSourceRange());
386 
387   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
388 }
389 
390 Address
391 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
392                                               bool GetLast,
393                                               AggValueSlot AggSlot) {
394 
395   const Stmt *ExprResult = S.getStmtExprResult();
396   assert((!GetLast || (GetLast && ExprResult)) &&
397          "If GetLast is true then the CompoundStmt must have a StmtExprResult");
398 
399   Address RetAlloca = Address::invalid();
400 
401   for (auto *CurStmt : S.body()) {
402     if (GetLast && ExprResult == CurStmt) {
403       // We have to special case labels here.  They are statements, but when put
404       // at the end of a statement expression, they yield the value of their
405       // subexpression.  Handle this by walking through all labels we encounter,
406       // emitting them before we evaluate the subexpr.
407       // Similar issues arise for attributed statements.
408       while (!isa<Expr>(ExprResult)) {
409         if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) {
410           EmitLabel(LS->getDecl());
411           ExprResult = LS->getSubStmt();
412         } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) {
413           // FIXME: Update this if we ever have attributes that affect the
414           // semantics of an expression.
415           ExprResult = AS->getSubStmt();
416         } else {
417           llvm_unreachable("unknown value statement");
418         }
419       }
420 
421       EnsureInsertPoint();
422 
423       const Expr *E = cast<Expr>(ExprResult);
424       QualType ExprTy = E->getType();
425       if (hasAggregateEvaluationKind(ExprTy)) {
426         EmitAggExpr(E, AggSlot);
427       } else {
428         // We can't return an RValue here because there might be cleanups at
429         // the end of the StmtExpr.  Because of that, we have to emit the result
430         // here into a temporary alloca.
431         RetAlloca = CreateMemTemp(ExprTy);
432         EmitAnyExprToMem(E, RetAlloca, Qualifiers(),
433                          /*IsInit*/ false);
434       }
435     } else {
436       EmitStmt(CurStmt);
437     }
438   }
439 
440   return RetAlloca;
441 }
442 
443 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
444   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
445 
446   // If there is a cleanup stack, then we it isn't worth trying to
447   // simplify this block (we would need to remove it from the scope map
448   // and cleanup entry).
449   if (!EHStack.empty())
450     return;
451 
452   // Can only simplify direct branches.
453   if (!BI || !BI->isUnconditional())
454     return;
455 
456   // Can only simplify empty blocks.
457   if (BI->getIterator() != BB->begin())
458     return;
459 
460   BB->replaceAllUsesWith(BI->getSuccessor(0));
461   BI->eraseFromParent();
462   BB->eraseFromParent();
463 }
464 
465 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
466   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
467 
468   // Fall out of the current block (if necessary).
469   EmitBranch(BB);
470 
471   if (IsFinished && BB->use_empty()) {
472     delete BB;
473     return;
474   }
475 
476   // Place the block after the current block, if possible, or else at
477   // the end of the function.
478   if (CurBB && CurBB->getParent())
479     CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
480   else
481     CurFn->getBasicBlockList().push_back(BB);
482   Builder.SetInsertPoint(BB);
483 }
484 
485 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
486   // Emit a branch from the current block to the target one if this
487   // was a real block.  If this was just a fall-through block after a
488   // terminator, don't emit it.
489   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
490 
491   if (!CurBB || CurBB->getTerminator()) {
492     // If there is no insert point or the previous block is already
493     // terminated, don't touch it.
494   } else {
495     // Otherwise, create a fall-through branch.
496     Builder.CreateBr(Target);
497   }
498 
499   Builder.ClearInsertionPoint();
500 }
501 
502 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
503   bool inserted = false;
504   for (llvm::User *u : block->users()) {
505     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
506       CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
507                                              block);
508       inserted = true;
509       break;
510     }
511   }
512 
513   if (!inserted)
514     CurFn->getBasicBlockList().push_back(block);
515 
516   Builder.SetInsertPoint(block);
517 }
518 
519 CodeGenFunction::JumpDest
520 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
521   JumpDest &Dest = LabelMap[D];
522   if (Dest.isValid()) return Dest;
523 
524   // Create, but don't insert, the new block.
525   Dest = JumpDest(createBasicBlock(D->getName()),
526                   EHScopeStack::stable_iterator::invalid(),
527                   NextCleanupDestIndex++);
528   return Dest;
529 }
530 
531 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
532   // Add this label to the current lexical scope if we're within any
533   // normal cleanups.  Jumps "in" to this label --- when permitted by
534   // the language --- may need to be routed around such cleanups.
535   if (EHStack.hasNormalCleanups() && CurLexicalScope)
536     CurLexicalScope->addLabel(D);
537 
538   JumpDest &Dest = LabelMap[D];
539 
540   // If we didn't need a forward reference to this label, just go
541   // ahead and create a destination at the current scope.
542   if (!Dest.isValid()) {
543     Dest = getJumpDestInCurrentScope(D->getName());
544 
545   // Otherwise, we need to give this label a target depth and remove
546   // it from the branch-fixups list.
547   } else {
548     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
549     Dest.setScopeDepth(EHStack.stable_begin());
550     ResolveBranchFixups(Dest.getBlock());
551   }
552 
553   EmitBlock(Dest.getBlock());
554 
555   // Emit debug info for labels.
556   if (CGDebugInfo *DI = getDebugInfo()) {
557     if (CGM.getCodeGenOpts().getDebugInfo() >=
558         codegenoptions::LimitedDebugInfo) {
559       DI->setLocation(D->getLocation());
560       DI->EmitLabel(D, Builder);
561     }
562   }
563 
564   incrementProfileCounter(D->getStmt());
565 }
566 
567 /// Change the cleanup scope of the labels in this lexical scope to
568 /// match the scope of the enclosing context.
569 void CodeGenFunction::LexicalScope::rescopeLabels() {
570   assert(!Labels.empty());
571   EHScopeStack::stable_iterator innermostScope
572     = CGF.EHStack.getInnermostNormalCleanup();
573 
574   // Change the scope depth of all the labels.
575   for (SmallVectorImpl<const LabelDecl*>::const_iterator
576          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
577     assert(CGF.LabelMap.count(*i));
578     JumpDest &dest = CGF.LabelMap.find(*i)->second;
579     assert(dest.getScopeDepth().isValid());
580     assert(innermostScope.encloses(dest.getScopeDepth()));
581     dest.setScopeDepth(innermostScope);
582   }
583 
584   // Reparent the labels if the new scope also has cleanups.
585   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
586     ParentScope->Labels.append(Labels.begin(), Labels.end());
587   }
588 }
589 
590 
591 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
592   EmitLabel(S.getDecl());
593   EmitStmt(S.getSubStmt());
594 }
595 
596 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
597   EmitStmt(S.getSubStmt(), S.getAttrs());
598 }
599 
600 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
601   // If this code is reachable then emit a stop point (if generating
602   // debug info). We have to do this ourselves because we are on the
603   // "simple" statement path.
604   if (HaveInsertPoint())
605     EmitStopPoint(&S);
606 
607   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
608 }
609 
610 
611 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
612   if (const LabelDecl *Target = S.getConstantTarget()) {
613     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
614     return;
615   }
616 
617   // Ensure that we have an i8* for our PHI node.
618   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
619                                          Int8PtrTy, "addr");
620   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
621 
622   // Get the basic block for the indirect goto.
623   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
624 
625   // The first instruction in the block has to be the PHI for the switch dest,
626   // add an entry for this branch.
627   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
628 
629   EmitBranch(IndGotoBB);
630 }
631 
632 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
633   // C99 6.8.4.1: The first substatement is executed if the expression compares
634   // unequal to 0.  The condition must be a scalar type.
635   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
636 
637   if (S.getInit())
638     EmitStmt(S.getInit());
639 
640   if (S.getConditionVariable())
641     EmitDecl(*S.getConditionVariable());
642 
643   // If the condition constant folds and can be elided, try to avoid emitting
644   // the condition and the dead arm of the if/else.
645   bool CondConstant;
646   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant,
647                                    S.isConstexpr())) {
648     // Figure out which block (then or else) is executed.
649     const Stmt *Executed = S.getThen();
650     const Stmt *Skipped  = S.getElse();
651     if (!CondConstant)  // Condition false?
652       std::swap(Executed, Skipped);
653 
654     // If the skipped block has no labels in it, just emit the executed block.
655     // This avoids emitting dead code and simplifies the CFG substantially.
656     if (S.isConstexpr() || !ContainsLabel(Skipped)) {
657       if (CondConstant)
658         incrementProfileCounter(&S);
659       if (Executed) {
660         RunCleanupsScope ExecutedScope(*this);
661         EmitStmt(Executed);
662       }
663       return;
664     }
665   }
666 
667   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
668   // the conditional branch.
669   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
670   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
671   llvm::BasicBlock *ElseBlock = ContBlock;
672   if (S.getElse())
673     ElseBlock = createBasicBlock("if.else");
674 
675   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock,
676                        getProfileCount(S.getThen()));
677 
678   // Emit the 'then' code.
679   EmitBlock(ThenBlock);
680   incrementProfileCounter(&S);
681   {
682     RunCleanupsScope ThenScope(*this);
683     EmitStmt(S.getThen());
684   }
685   EmitBranch(ContBlock);
686 
687   // Emit the 'else' code if present.
688   if (const Stmt *Else = S.getElse()) {
689     {
690       // There is no need to emit line number for an unconditional branch.
691       auto NL = ApplyDebugLocation::CreateEmpty(*this);
692       EmitBlock(ElseBlock);
693     }
694     {
695       RunCleanupsScope ElseScope(*this);
696       EmitStmt(Else);
697     }
698     {
699       // There is no need to emit line number for an unconditional branch.
700       auto NL = ApplyDebugLocation::CreateEmpty(*this);
701       EmitBranch(ContBlock);
702     }
703   }
704 
705   // Emit the continuation block for code after the if.
706   EmitBlock(ContBlock, true);
707 }
708 
709 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
710                                     ArrayRef<const Attr *> WhileAttrs) {
711   // Emit the header for the loop, which will also become
712   // the continue target.
713   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
714   EmitBlock(LoopHeader.getBlock());
715 
716   const SourceRange &R = S.getSourceRange();
717   LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs,
718                  SourceLocToDebugLoc(R.getBegin()),
719                  SourceLocToDebugLoc(R.getEnd()));
720 
721   // Create an exit block for when the condition fails, which will
722   // also become the break target.
723   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
724 
725   // Store the blocks to use for break and continue.
726   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
727 
728   // C++ [stmt.while]p2:
729   //   When the condition of a while statement is a declaration, the
730   //   scope of the variable that is declared extends from its point
731   //   of declaration (3.3.2) to the end of the while statement.
732   //   [...]
733   //   The object created in a condition is destroyed and created
734   //   with each iteration of the loop.
735   RunCleanupsScope ConditionScope(*this);
736 
737   if (S.getConditionVariable())
738     EmitDecl(*S.getConditionVariable());
739 
740   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
741   // evaluation of the controlling expression takes place before each
742   // execution of the loop body.
743   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
744 
745   // while(1) is common, avoid extra exit blocks.  Be sure
746   // to correctly handle break/continue though.
747   bool EmitBoolCondBranch = true;
748   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
749     if (C->isOne())
750       EmitBoolCondBranch = false;
751 
752   // As long as the condition is true, go to the loop body.
753   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
754   if (EmitBoolCondBranch) {
755     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
756     if (ConditionScope.requiresCleanups())
757       ExitBlock = createBasicBlock("while.exit");
758     Builder.CreateCondBr(
759         BoolCondVal, LoopBody, ExitBlock,
760         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
761 
762     if (ExitBlock != LoopExit.getBlock()) {
763       EmitBlock(ExitBlock);
764       EmitBranchThroughCleanup(LoopExit);
765     }
766   }
767 
768   // Emit the loop body.  We have to emit this in a cleanup scope
769   // because it might be a singleton DeclStmt.
770   {
771     RunCleanupsScope BodyScope(*this);
772     EmitBlock(LoopBody);
773     incrementProfileCounter(&S);
774     EmitStmt(S.getBody());
775   }
776 
777   BreakContinueStack.pop_back();
778 
779   // Immediately force cleanup.
780   ConditionScope.ForceCleanup();
781 
782   EmitStopPoint(&S);
783   // Branch to the loop header again.
784   EmitBranch(LoopHeader.getBlock());
785 
786   LoopStack.pop();
787 
788   // Emit the exit block.
789   EmitBlock(LoopExit.getBlock(), true);
790 
791   // The LoopHeader typically is just a branch if we skipped emitting
792   // a branch, try to erase it.
793   if (!EmitBoolCondBranch)
794     SimplifyForwardingBlocks(LoopHeader.getBlock());
795 }
796 
797 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
798                                  ArrayRef<const Attr *> DoAttrs) {
799   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
800   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
801 
802   uint64_t ParentCount = getCurrentProfileCount();
803 
804   // Store the blocks to use for break and continue.
805   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
806 
807   // Emit the body of the loop.
808   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
809 
810   EmitBlockWithFallThrough(LoopBody, &S);
811   {
812     RunCleanupsScope BodyScope(*this);
813     EmitStmt(S.getBody());
814   }
815 
816   EmitBlock(LoopCond.getBlock());
817 
818   const SourceRange &R = S.getSourceRange();
819   LoopStack.push(LoopBody, CGM.getContext(), DoAttrs,
820                  SourceLocToDebugLoc(R.getBegin()),
821                  SourceLocToDebugLoc(R.getEnd()));
822 
823   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
824   // after each execution of the loop body."
825 
826   // Evaluate the conditional in the while header.
827   // C99 6.8.5p2/p4: The first substatement is executed if the expression
828   // compares unequal to 0.  The condition must be a scalar type.
829   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
830 
831   BreakContinueStack.pop_back();
832 
833   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
834   // to correctly handle break/continue though.
835   bool EmitBoolCondBranch = true;
836   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
837     if (C->isZero())
838       EmitBoolCondBranch = false;
839 
840   // As long as the condition is true, iterate the loop.
841   if (EmitBoolCondBranch) {
842     uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
843     Builder.CreateCondBr(
844         BoolCondVal, LoopBody, LoopExit.getBlock(),
845         createProfileWeightsForLoop(S.getCond(), BackedgeCount));
846   }
847 
848   LoopStack.pop();
849 
850   // Emit the exit block.
851   EmitBlock(LoopExit.getBlock());
852 
853   // The DoCond block typically is just a branch if we skipped
854   // emitting a branch, try to erase it.
855   if (!EmitBoolCondBranch)
856     SimplifyForwardingBlocks(LoopCond.getBlock());
857 }
858 
859 void CodeGenFunction::EmitForStmt(const ForStmt &S,
860                                   ArrayRef<const Attr *> ForAttrs) {
861   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
862 
863   LexicalScope ForScope(*this, S.getSourceRange());
864 
865   // Evaluate the first part before the loop.
866   if (S.getInit())
867     EmitStmt(S.getInit());
868 
869   // Start the loop with a block that tests the condition.
870   // If there's an increment, the continue scope will be overwritten
871   // later.
872   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
873   llvm::BasicBlock *CondBlock = Continue.getBlock();
874   EmitBlock(CondBlock);
875 
876   const SourceRange &R = S.getSourceRange();
877   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs,
878                  SourceLocToDebugLoc(R.getBegin()),
879                  SourceLocToDebugLoc(R.getEnd()));
880 
881   // If the for loop doesn't have an increment we can just use the
882   // condition as the continue block.  Otherwise we'll need to create
883   // a block for it (in the current scope, i.e. in the scope of the
884   // condition), and that we will become our continue block.
885   if (S.getInc())
886     Continue = getJumpDestInCurrentScope("for.inc");
887 
888   // Store the blocks to use for break and continue.
889   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
890 
891   // Create a cleanup scope for the condition variable cleanups.
892   LexicalScope ConditionScope(*this, S.getSourceRange());
893 
894   if (S.getCond()) {
895     // If the for statement has a condition scope, emit the local variable
896     // declaration.
897     if (S.getConditionVariable()) {
898       EmitDecl(*S.getConditionVariable());
899     }
900 
901     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
902     // If there are any cleanups between here and the loop-exit scope,
903     // create a block to stage a loop exit along.
904     if (ForScope.requiresCleanups())
905       ExitBlock = createBasicBlock("for.cond.cleanup");
906 
907     // As long as the condition is true, iterate the loop.
908     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
909 
910     // C99 6.8.5p2/p4: The first substatement is executed if the expression
911     // compares unequal to 0.  The condition must be a scalar type.
912     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
913     Builder.CreateCondBr(
914         BoolCondVal, ForBody, ExitBlock,
915         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
916 
917     if (ExitBlock != LoopExit.getBlock()) {
918       EmitBlock(ExitBlock);
919       EmitBranchThroughCleanup(LoopExit);
920     }
921 
922     EmitBlock(ForBody);
923   } else {
924     // Treat it as a non-zero constant.  Don't even create a new block for the
925     // body, just fall into it.
926   }
927   incrementProfileCounter(&S);
928 
929   {
930     // Create a separate cleanup scope for the body, in case it is not
931     // a compound statement.
932     RunCleanupsScope BodyScope(*this);
933     EmitStmt(S.getBody());
934   }
935 
936   // If there is an increment, emit it next.
937   if (S.getInc()) {
938     EmitBlock(Continue.getBlock());
939     EmitStmt(S.getInc());
940   }
941 
942   BreakContinueStack.pop_back();
943 
944   ConditionScope.ForceCleanup();
945 
946   EmitStopPoint(&S);
947   EmitBranch(CondBlock);
948 
949   ForScope.ForceCleanup();
950 
951   LoopStack.pop();
952 
953   // Emit the fall-through block.
954   EmitBlock(LoopExit.getBlock(), true);
955 }
956 
957 void
958 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
959                                      ArrayRef<const Attr *> ForAttrs) {
960   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
961 
962   LexicalScope ForScope(*this, S.getSourceRange());
963 
964   // Evaluate the first pieces before the loop.
965   if (S.getInit())
966     EmitStmt(S.getInit());
967   EmitStmt(S.getRangeStmt());
968   EmitStmt(S.getBeginStmt());
969   EmitStmt(S.getEndStmt());
970 
971   // Start the loop with a block that tests the condition.
972   // If there's an increment, the continue scope will be overwritten
973   // later.
974   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
975   EmitBlock(CondBlock);
976 
977   const SourceRange &R = S.getSourceRange();
978   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs,
979                  SourceLocToDebugLoc(R.getBegin()),
980                  SourceLocToDebugLoc(R.getEnd()));
981 
982   // If there are any cleanups between here and the loop-exit scope,
983   // create a block to stage a loop exit along.
984   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
985   if (ForScope.requiresCleanups())
986     ExitBlock = createBasicBlock("for.cond.cleanup");
987 
988   // The loop body, consisting of the specified body and the loop variable.
989   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
990 
991   // The body is executed if the expression, contextually converted
992   // to bool, is true.
993   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
994   Builder.CreateCondBr(
995       BoolCondVal, ForBody, ExitBlock,
996       createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
997 
998   if (ExitBlock != LoopExit.getBlock()) {
999     EmitBlock(ExitBlock);
1000     EmitBranchThroughCleanup(LoopExit);
1001   }
1002 
1003   EmitBlock(ForBody);
1004   incrementProfileCounter(&S);
1005 
1006   // Create a block for the increment. In case of a 'continue', we jump there.
1007   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
1008 
1009   // Store the blocks to use for break and continue.
1010   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1011 
1012   {
1013     // Create a separate cleanup scope for the loop variable and body.
1014     LexicalScope BodyScope(*this, S.getSourceRange());
1015     EmitStmt(S.getLoopVarStmt());
1016     EmitStmt(S.getBody());
1017   }
1018 
1019   EmitStopPoint(&S);
1020   // If there is an increment, emit it next.
1021   EmitBlock(Continue.getBlock());
1022   EmitStmt(S.getInc());
1023 
1024   BreakContinueStack.pop_back();
1025 
1026   EmitBranch(CondBlock);
1027 
1028   ForScope.ForceCleanup();
1029 
1030   LoopStack.pop();
1031 
1032   // Emit the fall-through block.
1033   EmitBlock(LoopExit.getBlock(), true);
1034 }
1035 
1036 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
1037   if (RV.isScalar()) {
1038     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
1039   } else if (RV.isAggregate()) {
1040     LValue Dest = MakeAddrLValue(ReturnValue, Ty);
1041     LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty);
1042     EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue());
1043   } else {
1044     EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
1045                        /*init*/ true);
1046   }
1047   EmitBranchThroughCleanup(ReturnBlock);
1048 }
1049 
1050 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
1051 /// if the function returns void, or may be missing one if the function returns
1052 /// non-void.  Fun stuff :).
1053 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
1054   if (requiresReturnValueCheck()) {
1055     llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc());
1056     auto *SLocPtr =
1057         new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false,
1058                                  llvm::GlobalVariable::PrivateLinkage, SLoc);
1059     SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1060     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr);
1061     assert(ReturnLocation.isValid() && "No valid return location");
1062     Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy),
1063                         ReturnLocation);
1064   }
1065 
1066   // Returning from an outlined SEH helper is UB, and we already warn on it.
1067   if (IsOutlinedSEHHelper) {
1068     Builder.CreateUnreachable();
1069     Builder.ClearInsertionPoint();
1070   }
1071 
1072   // Emit the result value, even if unused, to evaluate the side effects.
1073   const Expr *RV = S.getRetValue();
1074 
1075   // Treat block literals in a return expression as if they appeared
1076   // in their own scope.  This permits a small, easily-implemented
1077   // exception to our over-conservative rules about not jumping to
1078   // statements following block literals with non-trivial cleanups.
1079   RunCleanupsScope cleanupScope(*this);
1080   if (const FullExpr *fe = dyn_cast_or_null<FullExpr>(RV)) {
1081     enterFullExpression(fe);
1082     RV = fe->getSubExpr();
1083   }
1084 
1085   // FIXME: Clean this up by using an LValue for ReturnTemp,
1086   // EmitStoreThroughLValue, and EmitAnyExpr.
1087   if (getLangOpts().ElideConstructors &&
1088       S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
1089     // Apply the named return value optimization for this return statement,
1090     // which means doing nothing: the appropriate result has already been
1091     // constructed into the NRVO variable.
1092 
1093     // If there is an NRVO flag for this variable, set it to 1 into indicate
1094     // that the cleanup code should not destroy the variable.
1095     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
1096       Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
1097   } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
1098     // Make sure not to return anything, but evaluate the expression
1099     // for side effects.
1100     if (RV)
1101       EmitAnyExpr(RV);
1102   } else if (!RV) {
1103     // Do nothing (return value is left uninitialized)
1104   } else if (FnRetTy->isReferenceType()) {
1105     // If this function returns a reference, take the address of the expression
1106     // rather than the value.
1107     RValue Result = EmitReferenceBindingToExpr(RV);
1108     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
1109   } else {
1110     switch (getEvaluationKind(RV->getType())) {
1111     case TEK_Scalar:
1112       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
1113       break;
1114     case TEK_Complex:
1115       EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
1116                                 /*isInit*/ true);
1117       break;
1118     case TEK_Aggregate:
1119       EmitAggExpr(RV, AggValueSlot::forAddr(
1120                           ReturnValue, Qualifiers(),
1121                           AggValueSlot::IsDestructed,
1122                           AggValueSlot::DoesNotNeedGCBarriers,
1123                           AggValueSlot::IsNotAliased,
1124                           getOverlapForReturnValue()));
1125       break;
1126     }
1127   }
1128 
1129   ++NumReturnExprs;
1130   if (!RV || RV->isEvaluatable(getContext()))
1131     ++NumSimpleReturnExprs;
1132 
1133   cleanupScope.ForceCleanup();
1134   EmitBranchThroughCleanup(ReturnBlock);
1135 }
1136 
1137 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1138   // As long as debug info is modeled with instructions, we have to ensure we
1139   // have a place to insert here and write the stop point here.
1140   if (HaveInsertPoint())
1141     EmitStopPoint(&S);
1142 
1143   for (const auto *I : S.decls())
1144     EmitDecl(*I);
1145 }
1146 
1147 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1148   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1149 
1150   // If this code is reachable then emit a stop point (if generating
1151   // debug info). We have to do this ourselves because we are on the
1152   // "simple" statement path.
1153   if (HaveInsertPoint())
1154     EmitStopPoint(&S);
1155 
1156   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1157 }
1158 
1159 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1160   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1161 
1162   // If this code is reachable then emit a stop point (if generating
1163   // debug info). We have to do this ourselves because we are on the
1164   // "simple" statement path.
1165   if (HaveInsertPoint())
1166     EmitStopPoint(&S);
1167 
1168   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1169 }
1170 
1171 /// EmitCaseStmtRange - If case statement range is not too big then
1172 /// add multiple cases to switch instruction, one for each value within
1173 /// the range. If range is too big then emit "if" condition check.
1174 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
1175   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1176 
1177   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1178   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1179 
1180   // Emit the code for this case. We do this first to make sure it is
1181   // properly chained from our predecessor before generating the
1182   // switch machinery to enter this block.
1183   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1184   EmitBlockWithFallThrough(CaseDest, &S);
1185   EmitStmt(S.getSubStmt());
1186 
1187   // If range is empty, do nothing.
1188   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1189     return;
1190 
1191   llvm::APInt Range = RHS - LHS;
1192   // FIXME: parameters such as this should not be hardcoded.
1193   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1194     // Range is small enough to add multiple switch instruction cases.
1195     uint64_t Total = getProfileCount(&S);
1196     unsigned NCases = Range.getZExtValue() + 1;
1197     // We only have one region counter for the entire set of cases here, so we
1198     // need to divide the weights evenly between the generated cases, ensuring
1199     // that the total weight is preserved. E.g., a weight of 5 over three cases
1200     // will be distributed as weights of 2, 2, and 1.
1201     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1202     for (unsigned I = 0; I != NCases; ++I) {
1203       if (SwitchWeights)
1204         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1205       if (Rem)
1206         Rem--;
1207       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1208       ++LHS;
1209     }
1210     return;
1211   }
1212 
1213   // The range is too big. Emit "if" condition into a new block,
1214   // making sure to save and restore the current insertion point.
1215   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1216 
1217   // Push this test onto the chain of range checks (which terminates
1218   // in the default basic block). The switch's default will be changed
1219   // to the top of this chain after switch emission is complete.
1220   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1221   CaseRangeBlock = createBasicBlock("sw.caserange");
1222 
1223   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1224   Builder.SetInsertPoint(CaseRangeBlock);
1225 
1226   // Emit range check.
1227   llvm::Value *Diff =
1228     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1229   llvm::Value *Cond =
1230     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1231 
1232   llvm::MDNode *Weights = nullptr;
1233   if (SwitchWeights) {
1234     uint64_t ThisCount = getProfileCount(&S);
1235     uint64_t DefaultCount = (*SwitchWeights)[0];
1236     Weights = createProfileWeights(ThisCount, DefaultCount);
1237 
1238     // Since we're chaining the switch default through each large case range, we
1239     // need to update the weight for the default, ie, the first case, to include
1240     // this case.
1241     (*SwitchWeights)[0] += ThisCount;
1242   }
1243   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1244 
1245   // Restore the appropriate insertion point.
1246   if (RestoreBB)
1247     Builder.SetInsertPoint(RestoreBB);
1248   else
1249     Builder.ClearInsertionPoint();
1250 }
1251 
1252 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
1253   // If there is no enclosing switch instance that we're aware of, then this
1254   // case statement and its block can be elided.  This situation only happens
1255   // when we've constant-folded the switch, are emitting the constant case,
1256   // and part of the constant case includes another case statement.  For
1257   // instance: switch (4) { case 4: do { case 5: } while (1); }
1258   if (!SwitchInsn) {
1259     EmitStmt(S.getSubStmt());
1260     return;
1261   }
1262 
1263   // Handle case ranges.
1264   if (S.getRHS()) {
1265     EmitCaseStmtRange(S);
1266     return;
1267   }
1268 
1269   llvm::ConstantInt *CaseVal =
1270     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1271 
1272   // If the body of the case is just a 'break', try to not emit an empty block.
1273   // If we're profiling or we're not optimizing, leave the block in for better
1274   // debug and coverage analysis.
1275   if (!CGM.getCodeGenOpts().hasProfileClangInstr() &&
1276       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1277       isa<BreakStmt>(S.getSubStmt())) {
1278     JumpDest Block = BreakContinueStack.back().BreakBlock;
1279 
1280     // Only do this optimization if there are no cleanups that need emitting.
1281     if (isObviouslyBranchWithoutCleanups(Block)) {
1282       if (SwitchWeights)
1283         SwitchWeights->push_back(getProfileCount(&S));
1284       SwitchInsn->addCase(CaseVal, Block.getBlock());
1285 
1286       // If there was a fallthrough into this case, make sure to redirect it to
1287       // the end of the switch as well.
1288       if (Builder.GetInsertBlock()) {
1289         Builder.CreateBr(Block.getBlock());
1290         Builder.ClearInsertionPoint();
1291       }
1292       return;
1293     }
1294   }
1295 
1296   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1297   EmitBlockWithFallThrough(CaseDest, &S);
1298   if (SwitchWeights)
1299     SwitchWeights->push_back(getProfileCount(&S));
1300   SwitchInsn->addCase(CaseVal, CaseDest);
1301 
1302   // Recursively emitting the statement is acceptable, but is not wonderful for
1303   // code where we have many case statements nested together, i.e.:
1304   //  case 1:
1305   //    case 2:
1306   //      case 3: etc.
1307   // Handling this recursively will create a new block for each case statement
1308   // that falls through to the next case which is IR intensive.  It also causes
1309   // deep recursion which can run into stack depth limitations.  Handle
1310   // sequential non-range case statements specially.
1311   const CaseStmt *CurCase = &S;
1312   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1313 
1314   // Otherwise, iteratively add consecutive cases to this switch stmt.
1315   while (NextCase && NextCase->getRHS() == nullptr) {
1316     CurCase = NextCase;
1317     llvm::ConstantInt *CaseVal =
1318       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1319 
1320     if (SwitchWeights)
1321       SwitchWeights->push_back(getProfileCount(NextCase));
1322     if (CGM.getCodeGenOpts().hasProfileClangInstr()) {
1323       CaseDest = createBasicBlock("sw.bb");
1324       EmitBlockWithFallThrough(CaseDest, &S);
1325     }
1326 
1327     SwitchInsn->addCase(CaseVal, CaseDest);
1328     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1329   }
1330 
1331   // Normal default recursion for non-cases.
1332   EmitStmt(CurCase->getSubStmt());
1333 }
1334 
1335 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
1336   // If there is no enclosing switch instance that we're aware of, then this
1337   // default statement can be elided. This situation only happens when we've
1338   // constant-folded the switch.
1339   if (!SwitchInsn) {
1340     EmitStmt(S.getSubStmt());
1341     return;
1342   }
1343 
1344   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1345   assert(DefaultBlock->empty() &&
1346          "EmitDefaultStmt: Default block already defined?");
1347 
1348   EmitBlockWithFallThrough(DefaultBlock, &S);
1349 
1350   EmitStmt(S.getSubStmt());
1351 }
1352 
1353 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1354 /// constant value that is being switched on, see if we can dead code eliminate
1355 /// the body of the switch to a simple series of statements to emit.  Basically,
1356 /// on a switch (5) we want to find these statements:
1357 ///    case 5:
1358 ///      printf(...);    <--
1359 ///      ++i;            <--
1360 ///      break;
1361 ///
1362 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1363 /// transformation (for example, one of the elided statements contains a label
1364 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1365 /// should include statements after it (e.g. the printf() line is a substmt of
1366 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1367 /// statement, then return CSFC_Success.
1368 ///
1369 /// If Case is non-null, then we are looking for the specified case, checking
1370 /// that nothing we jump over contains labels.  If Case is null, then we found
1371 /// the case and are looking for the break.
1372 ///
1373 /// If the recursive walk actually finds our Case, then we set FoundCase to
1374 /// true.
1375 ///
1376 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1377 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1378                                             const SwitchCase *Case,
1379                                             bool &FoundCase,
1380                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1381   // If this is a null statement, just succeed.
1382   if (!S)
1383     return Case ? CSFC_Success : CSFC_FallThrough;
1384 
1385   // If this is the switchcase (case 4: or default) that we're looking for, then
1386   // we're in business.  Just add the substatement.
1387   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1388     if (S == Case) {
1389       FoundCase = true;
1390       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1391                                       ResultStmts);
1392     }
1393 
1394     // Otherwise, this is some other case or default statement, just ignore it.
1395     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1396                                     ResultStmts);
1397   }
1398 
1399   // If we are in the live part of the code and we found our break statement,
1400   // return a success!
1401   if (!Case && isa<BreakStmt>(S))
1402     return CSFC_Success;
1403 
1404   // If this is a switch statement, then it might contain the SwitchCase, the
1405   // break, or neither.
1406   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1407     // Handle this as two cases: we might be looking for the SwitchCase (if so
1408     // the skipped statements must be skippable) or we might already have it.
1409     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1410     bool StartedInLiveCode = FoundCase;
1411     unsigned StartSize = ResultStmts.size();
1412 
1413     // If we've not found the case yet, scan through looking for it.
1414     if (Case) {
1415       // Keep track of whether we see a skipped declaration.  The code could be
1416       // using the declaration even if it is skipped, so we can't optimize out
1417       // the decl if the kept statements might refer to it.
1418       bool HadSkippedDecl = false;
1419 
1420       // If we're looking for the case, just see if we can skip each of the
1421       // substatements.
1422       for (; Case && I != E; ++I) {
1423         HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I);
1424 
1425         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1426         case CSFC_Failure: return CSFC_Failure;
1427         case CSFC_Success:
1428           // A successful result means that either 1) that the statement doesn't
1429           // have the case and is skippable, or 2) does contain the case value
1430           // and also contains the break to exit the switch.  In the later case,
1431           // we just verify the rest of the statements are elidable.
1432           if (FoundCase) {
1433             // If we found the case and skipped declarations, we can't do the
1434             // optimization.
1435             if (HadSkippedDecl)
1436               return CSFC_Failure;
1437 
1438             for (++I; I != E; ++I)
1439               if (CodeGenFunction::ContainsLabel(*I, true))
1440                 return CSFC_Failure;
1441             return CSFC_Success;
1442           }
1443           break;
1444         case CSFC_FallThrough:
1445           // If we have a fallthrough condition, then we must have found the
1446           // case started to include statements.  Consider the rest of the
1447           // statements in the compound statement as candidates for inclusion.
1448           assert(FoundCase && "Didn't find case but returned fallthrough?");
1449           // We recursively found Case, so we're not looking for it anymore.
1450           Case = nullptr;
1451 
1452           // If we found the case and skipped declarations, we can't do the
1453           // optimization.
1454           if (HadSkippedDecl)
1455             return CSFC_Failure;
1456           break;
1457         }
1458       }
1459 
1460       if (!FoundCase)
1461         return CSFC_Success;
1462 
1463       assert(!HadSkippedDecl && "fallthrough after skipping decl");
1464     }
1465 
1466     // If we have statements in our range, then we know that the statements are
1467     // live and need to be added to the set of statements we're tracking.
1468     bool AnyDecls = false;
1469     for (; I != E; ++I) {
1470       AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I);
1471 
1472       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1473       case CSFC_Failure: return CSFC_Failure;
1474       case CSFC_FallThrough:
1475         // A fallthrough result means that the statement was simple and just
1476         // included in ResultStmt, keep adding them afterwards.
1477         break;
1478       case CSFC_Success:
1479         // A successful result means that we found the break statement and
1480         // stopped statement inclusion.  We just ensure that any leftover stmts
1481         // are skippable and return success ourselves.
1482         for (++I; I != E; ++I)
1483           if (CodeGenFunction::ContainsLabel(*I, true))
1484             return CSFC_Failure;
1485         return CSFC_Success;
1486       }
1487     }
1488 
1489     // If we're about to fall out of a scope without hitting a 'break;', we
1490     // can't perform the optimization if there were any decls in that scope
1491     // (we'd lose their end-of-lifetime).
1492     if (AnyDecls) {
1493       // If the entire compound statement was live, there's one more thing we
1494       // can try before giving up: emit the whole thing as a single statement.
1495       // We can do that unless the statement contains a 'break;'.
1496       // FIXME: Such a break must be at the end of a construct within this one.
1497       // We could emit this by just ignoring the BreakStmts entirely.
1498       if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) {
1499         ResultStmts.resize(StartSize);
1500         ResultStmts.push_back(S);
1501       } else {
1502         return CSFC_Failure;
1503       }
1504     }
1505 
1506     return CSFC_FallThrough;
1507   }
1508 
1509   // Okay, this is some other statement that we don't handle explicitly, like a
1510   // for statement or increment etc.  If we are skipping over this statement,
1511   // just verify it doesn't have labels, which would make it invalid to elide.
1512   if (Case) {
1513     if (CodeGenFunction::ContainsLabel(S, true))
1514       return CSFC_Failure;
1515     return CSFC_Success;
1516   }
1517 
1518   // Otherwise, we want to include this statement.  Everything is cool with that
1519   // so long as it doesn't contain a break out of the switch we're in.
1520   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1521 
1522   // Otherwise, everything is great.  Include the statement and tell the caller
1523   // that we fall through and include the next statement as well.
1524   ResultStmts.push_back(S);
1525   return CSFC_FallThrough;
1526 }
1527 
1528 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1529 /// then invoke CollectStatementsForCase to find the list of statements to emit
1530 /// for a switch on constant.  See the comment above CollectStatementsForCase
1531 /// for more details.
1532 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1533                                        const llvm::APSInt &ConstantCondValue,
1534                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1535                                        ASTContext &C,
1536                                        const SwitchCase *&ResultCase) {
1537   // First step, find the switch case that is being branched to.  We can do this
1538   // efficiently by scanning the SwitchCase list.
1539   const SwitchCase *Case = S.getSwitchCaseList();
1540   const DefaultStmt *DefaultCase = nullptr;
1541 
1542   for (; Case; Case = Case->getNextSwitchCase()) {
1543     // It's either a default or case.  Just remember the default statement in
1544     // case we're not jumping to any numbered cases.
1545     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1546       DefaultCase = DS;
1547       continue;
1548     }
1549 
1550     // Check to see if this case is the one we're looking for.
1551     const CaseStmt *CS = cast<CaseStmt>(Case);
1552     // Don't handle case ranges yet.
1553     if (CS->getRHS()) return false;
1554 
1555     // If we found our case, remember it as 'case'.
1556     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1557       break;
1558   }
1559 
1560   // If we didn't find a matching case, we use a default if it exists, or we
1561   // elide the whole switch body!
1562   if (!Case) {
1563     // It is safe to elide the body of the switch if it doesn't contain labels
1564     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1565     if (!DefaultCase)
1566       return !CodeGenFunction::ContainsLabel(&S);
1567     Case = DefaultCase;
1568   }
1569 
1570   // Ok, we know which case is being jumped to, try to collect all the
1571   // statements that follow it.  This can fail for a variety of reasons.  Also,
1572   // check to see that the recursive walk actually found our case statement.
1573   // Insane cases like this can fail to find it in the recursive walk since we
1574   // don't handle every stmt kind:
1575   // switch (4) {
1576   //   while (1) {
1577   //     case 4: ...
1578   bool FoundCase = false;
1579   ResultCase = Case;
1580   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1581                                   ResultStmts) != CSFC_Failure &&
1582          FoundCase;
1583 }
1584 
1585 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1586   // Handle nested switch statements.
1587   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1588   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1589   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1590 
1591   // See if we can constant fold the condition of the switch and therefore only
1592   // emit the live case statement (if any) of the switch.
1593   llvm::APSInt ConstantCondValue;
1594   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1595     SmallVector<const Stmt*, 4> CaseStmts;
1596     const SwitchCase *Case = nullptr;
1597     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1598                                    getContext(), Case)) {
1599       if (Case)
1600         incrementProfileCounter(Case);
1601       RunCleanupsScope ExecutedScope(*this);
1602 
1603       if (S.getInit())
1604         EmitStmt(S.getInit());
1605 
1606       // Emit the condition variable if needed inside the entire cleanup scope
1607       // used by this special case for constant folded switches.
1608       if (S.getConditionVariable())
1609         EmitDecl(*S.getConditionVariable());
1610 
1611       // At this point, we are no longer "within" a switch instance, so
1612       // we can temporarily enforce this to ensure that any embedded case
1613       // statements are not emitted.
1614       SwitchInsn = nullptr;
1615 
1616       // Okay, we can dead code eliminate everything except this case.  Emit the
1617       // specified series of statements and we're good.
1618       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1619         EmitStmt(CaseStmts[i]);
1620       incrementProfileCounter(&S);
1621 
1622       // Now we want to restore the saved switch instance so that nested
1623       // switches continue to function properly
1624       SwitchInsn = SavedSwitchInsn;
1625 
1626       return;
1627     }
1628   }
1629 
1630   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1631 
1632   RunCleanupsScope ConditionScope(*this);
1633 
1634   if (S.getInit())
1635     EmitStmt(S.getInit());
1636 
1637   if (S.getConditionVariable())
1638     EmitDecl(*S.getConditionVariable());
1639   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1640 
1641   // Create basic block to hold stuff that comes after switch
1642   // statement. We also need to create a default block now so that
1643   // explicit case ranges tests can have a place to jump to on
1644   // failure.
1645   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1646   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1647   if (PGO.haveRegionCounts()) {
1648     // Walk the SwitchCase list to find how many there are.
1649     uint64_t DefaultCount = 0;
1650     unsigned NumCases = 0;
1651     for (const SwitchCase *Case = S.getSwitchCaseList();
1652          Case;
1653          Case = Case->getNextSwitchCase()) {
1654       if (isa<DefaultStmt>(Case))
1655         DefaultCount = getProfileCount(Case);
1656       NumCases += 1;
1657     }
1658     SwitchWeights = new SmallVector<uint64_t, 16>();
1659     SwitchWeights->reserve(NumCases);
1660     // The default needs to be first. We store the edge count, so we already
1661     // know the right weight.
1662     SwitchWeights->push_back(DefaultCount);
1663   }
1664   CaseRangeBlock = DefaultBlock;
1665 
1666   // Clear the insertion point to indicate we are in unreachable code.
1667   Builder.ClearInsertionPoint();
1668 
1669   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1670   // then reuse last ContinueBlock.
1671   JumpDest OuterContinue;
1672   if (!BreakContinueStack.empty())
1673     OuterContinue = BreakContinueStack.back().ContinueBlock;
1674 
1675   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1676 
1677   // Emit switch body.
1678   EmitStmt(S.getBody());
1679 
1680   BreakContinueStack.pop_back();
1681 
1682   // Update the default block in case explicit case range tests have
1683   // been chained on top.
1684   SwitchInsn->setDefaultDest(CaseRangeBlock);
1685 
1686   // If a default was never emitted:
1687   if (!DefaultBlock->getParent()) {
1688     // If we have cleanups, emit the default block so that there's a
1689     // place to jump through the cleanups from.
1690     if (ConditionScope.requiresCleanups()) {
1691       EmitBlock(DefaultBlock);
1692 
1693     // Otherwise, just forward the default block to the switch end.
1694     } else {
1695       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1696       delete DefaultBlock;
1697     }
1698   }
1699 
1700   ConditionScope.ForceCleanup();
1701 
1702   // Emit continuation.
1703   EmitBlock(SwitchExit.getBlock(), true);
1704   incrementProfileCounter(&S);
1705 
1706   // If the switch has a condition wrapped by __builtin_unpredictable,
1707   // create metadata that specifies that the switch is unpredictable.
1708   // Don't bother if not optimizing because that metadata would not be used.
1709   auto *Call = dyn_cast<CallExpr>(S.getCond());
1710   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1711     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1712     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1713       llvm::MDBuilder MDHelper(getLLVMContext());
1714       SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
1715                               MDHelper.createUnpredictable());
1716     }
1717   }
1718 
1719   if (SwitchWeights) {
1720     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1721            "switch weights do not match switch cases");
1722     // If there's only one jump destination there's no sense weighting it.
1723     if (SwitchWeights->size() > 1)
1724       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1725                               createProfileWeights(*SwitchWeights));
1726     delete SwitchWeights;
1727   }
1728   SwitchInsn = SavedSwitchInsn;
1729   SwitchWeights = SavedSwitchWeights;
1730   CaseRangeBlock = SavedCRBlock;
1731 }
1732 
1733 static std::string
1734 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1735                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
1736   std::string Result;
1737 
1738   while (*Constraint) {
1739     switch (*Constraint) {
1740     default:
1741       Result += Target.convertConstraint(Constraint);
1742       break;
1743     // Ignore these
1744     case '*':
1745     case '?':
1746     case '!':
1747     case '=': // Will see this and the following in mult-alt constraints.
1748     case '+':
1749       break;
1750     case '#': // Ignore the rest of the constraint alternative.
1751       while (Constraint[1] && Constraint[1] != ',')
1752         Constraint++;
1753       break;
1754     case '&':
1755     case '%':
1756       Result += *Constraint;
1757       while (Constraint[1] && Constraint[1] == *Constraint)
1758         Constraint++;
1759       break;
1760     case ',':
1761       Result += "|";
1762       break;
1763     case 'g':
1764       Result += "imr";
1765       break;
1766     case '[': {
1767       assert(OutCons &&
1768              "Must pass output names to constraints with a symbolic name");
1769       unsigned Index;
1770       bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
1771       assert(result && "Could not resolve symbolic name"); (void)result;
1772       Result += llvm::utostr(Index);
1773       break;
1774     }
1775     }
1776 
1777     Constraint++;
1778   }
1779 
1780   return Result;
1781 }
1782 
1783 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1784 /// as using a particular register add that as a constraint that will be used
1785 /// in this asm stmt.
1786 static std::string
1787 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1788                        const TargetInfo &Target, CodeGenModule &CGM,
1789                        const AsmStmt &Stmt, const bool EarlyClobber) {
1790   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1791   if (!AsmDeclRef)
1792     return Constraint;
1793   const ValueDecl &Value = *AsmDeclRef->getDecl();
1794   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1795   if (!Variable)
1796     return Constraint;
1797   if (Variable->getStorageClass() != SC_Register)
1798     return Constraint;
1799   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1800   if (!Attr)
1801     return Constraint;
1802   StringRef Register = Attr->getLabel();
1803   assert(Target.isValidGCCRegisterName(Register));
1804   // We're using validateOutputConstraint here because we only care if
1805   // this is a register constraint.
1806   TargetInfo::ConstraintInfo Info(Constraint, "");
1807   if (Target.validateOutputConstraint(Info) &&
1808       !Info.allowsRegister()) {
1809     CGM.ErrorUnsupported(&Stmt, "__asm__");
1810     return Constraint;
1811   }
1812   // Canonicalize the register here before returning it.
1813   Register = Target.getNormalizedGCCRegisterName(Register);
1814   return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
1815 }
1816 
1817 llvm::Value*
1818 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1819                                     LValue InputValue, QualType InputType,
1820                                     std::string &ConstraintStr,
1821                                     SourceLocation Loc) {
1822   llvm::Value *Arg;
1823   if (Info.allowsRegister() || !Info.allowsMemory()) {
1824     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
1825       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
1826     } else {
1827       llvm::Type *Ty = ConvertType(InputType);
1828       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1829       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1830         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1831         Ty = llvm::PointerType::getUnqual(Ty);
1832 
1833         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1834                                                        Ty));
1835       } else {
1836         Arg = InputValue.getPointer();
1837         ConstraintStr += '*';
1838       }
1839     }
1840   } else {
1841     Arg = InputValue.getPointer();
1842     ConstraintStr += '*';
1843   }
1844 
1845   return Arg;
1846 }
1847 
1848 llvm::Value* CodeGenFunction::EmitAsmInput(
1849                                          const TargetInfo::ConstraintInfo &Info,
1850                                            const Expr *InputExpr,
1851                                            std::string &ConstraintStr) {
1852   // If this can't be a register or memory, i.e., has to be a constant
1853   // (immediate or symbolic), try to emit it as such.
1854   if (!Info.allowsRegister() && !Info.allowsMemory()) {
1855     if (Info.requiresImmediateConstant()) {
1856       Expr::EvalResult EVResult;
1857       InputExpr->EvaluateAsRValue(EVResult, getContext(), true);
1858 
1859       llvm::APSInt IntResult;
1860       if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(),
1861                                           getContext()))
1862         return llvm::ConstantInt::get(getLLVMContext(), IntResult);
1863     }
1864 
1865     Expr::EvalResult Result;
1866     if (InputExpr->EvaluateAsInt(Result, getContext()))
1867       return llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt());
1868   }
1869 
1870   if (Info.allowsRegister() || !Info.allowsMemory())
1871     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
1872       return EmitScalarExpr(InputExpr);
1873   if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
1874     return EmitScalarExpr(InputExpr);
1875   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1876   LValue Dest = EmitLValue(InputExpr);
1877   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
1878                             InputExpr->getExprLoc());
1879 }
1880 
1881 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1882 /// asm call instruction.  The !srcloc MDNode contains a list of constant
1883 /// integers which are the source locations of the start of each line in the
1884 /// asm.
1885 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1886                                       CodeGenFunction &CGF) {
1887   SmallVector<llvm::Metadata *, 8> Locs;
1888   // Add the location of the first line to the MDNode.
1889   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1890       CGF.Int32Ty, Str->getBeginLoc().getRawEncoding())));
1891   StringRef StrVal = Str->getString();
1892   if (!StrVal.empty()) {
1893     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1894     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1895     unsigned StartToken = 0;
1896     unsigned ByteOffset = 0;
1897 
1898     // Add the location of the start of each subsequent line of the asm to the
1899     // MDNode.
1900     for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
1901       if (StrVal[i] != '\n') continue;
1902       SourceLocation LineLoc = Str->getLocationOfByte(
1903           i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
1904       Locs.push_back(llvm::ConstantAsMetadata::get(
1905           llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding())));
1906     }
1907   }
1908 
1909   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1910 }
1911 
1912 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect,
1913                               bool ReadOnly, bool ReadNone, const AsmStmt &S,
1914                               const std::vector<llvm::Type *> &ResultRegTypes,
1915                               CodeGenFunction &CGF,
1916                               std::vector<llvm::Value *> &RegResults) {
1917   Result.addAttribute(llvm::AttributeList::FunctionIndex,
1918                       llvm::Attribute::NoUnwind);
1919   // Attach readnone and readonly attributes.
1920   if (!HasSideEffect) {
1921     if (ReadNone)
1922       Result.addAttribute(llvm::AttributeList::FunctionIndex,
1923                           llvm::Attribute::ReadNone);
1924     else if (ReadOnly)
1925       Result.addAttribute(llvm::AttributeList::FunctionIndex,
1926                           llvm::Attribute::ReadOnly);
1927   }
1928 
1929   // Slap the source location of the inline asm into a !srcloc metadata on the
1930   // call.
1931   if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
1932     Result.setMetadata("srcloc",
1933                        getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF));
1934   else {
1935     // At least put the line number on MS inline asm blobs.
1936     llvm::Constant *Loc = llvm::ConstantInt::get(CGF.Int32Ty,
1937                                         S.getAsmLoc().getRawEncoding());
1938     Result.setMetadata("srcloc",
1939                        llvm::MDNode::get(CGF.getLLVMContext(),
1940                                          llvm::ConstantAsMetadata::get(Loc)));
1941   }
1942 
1943   if (CGF.getLangOpts().assumeFunctionsAreConvergent())
1944     // Conservatively, mark all inline asm blocks in CUDA or OpenCL as
1945     // convergent (meaning, they may call an intrinsically convergent op, such
1946     // as bar.sync, and so can't have certain optimizations applied around
1947     // them).
1948     Result.addAttribute(llvm::AttributeList::FunctionIndex,
1949                         llvm::Attribute::Convergent);
1950   // Extract all of the register value results from the asm.
1951   if (ResultRegTypes.size() == 1) {
1952     RegResults.push_back(&Result);
1953   } else {
1954     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
1955       llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult");
1956       RegResults.push_back(Tmp);
1957     }
1958   }
1959 }
1960 
1961 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1962   // Assemble the final asm string.
1963   std::string AsmString = S.generateAsmString(getContext());
1964 
1965   // Get all the output and input constraints together.
1966   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1967   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1968 
1969   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1970     StringRef Name;
1971     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1972       Name = GAS->getOutputName(i);
1973     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
1974     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
1975     assert(IsValid && "Failed to parse output constraint");
1976     OutputConstraintInfos.push_back(Info);
1977   }
1978 
1979   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1980     StringRef Name;
1981     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1982       Name = GAS->getInputName(i);
1983     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
1984     bool IsValid =
1985       getTarget().validateInputConstraint(OutputConstraintInfos, Info);
1986     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1987     InputConstraintInfos.push_back(Info);
1988   }
1989 
1990   std::string Constraints;
1991 
1992   std::vector<LValue> ResultRegDests;
1993   std::vector<QualType> ResultRegQualTys;
1994   std::vector<llvm::Type *> ResultRegTypes;
1995   std::vector<llvm::Type *> ResultTruncRegTypes;
1996   std::vector<llvm::Type *> ArgTypes;
1997   std::vector<llvm::Value*> Args;
1998   llvm::BitVector ResultTypeRequiresCast;
1999 
2000   // Keep track of inout constraints.
2001   std::string InOutConstraints;
2002   std::vector<llvm::Value*> InOutArgs;
2003   std::vector<llvm::Type*> InOutArgTypes;
2004 
2005   // Keep track of out constraints for tied input operand.
2006   std::vector<std::string> OutputConstraints;
2007 
2008   // An inline asm can be marked readonly if it meets the following conditions:
2009   //  - it doesn't have any sideeffects
2010   //  - it doesn't clobber memory
2011   //  - it doesn't return a value by-reference
2012   // It can be marked readnone if it doesn't have any input memory constraints
2013   // in addition to meeting the conditions listed above.
2014   bool ReadOnly = true, ReadNone = true;
2015 
2016   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2017     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
2018 
2019     // Simplify the output constraint.
2020     std::string OutputConstraint(S.getOutputConstraint(i));
2021     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
2022                                           getTarget(), &OutputConstraintInfos);
2023 
2024     const Expr *OutExpr = S.getOutputExpr(i);
2025     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
2026 
2027     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
2028                                               getTarget(), CGM, S,
2029                                               Info.earlyClobber());
2030     OutputConstraints.push_back(OutputConstraint);
2031     LValue Dest = EmitLValue(OutExpr);
2032     if (!Constraints.empty())
2033       Constraints += ',';
2034 
2035     // If this is a register output, then make the inline asm return it
2036     // by-value.  If this is a memory result, return the value by-reference.
2037     bool isScalarizableAggregate =
2038         hasAggregateEvaluationKind(OutExpr->getType());
2039     if (!Info.allowsMemory() && (hasScalarEvaluationKind(OutExpr->getType()) ||
2040                                  isScalarizableAggregate)) {
2041       Constraints += "=" + OutputConstraint;
2042       ResultRegQualTys.push_back(OutExpr->getType());
2043       ResultRegDests.push_back(Dest);
2044       ResultTruncRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
2045       if (Info.allowsRegister() && isScalarizableAggregate) {
2046         ResultTypeRequiresCast.push_back(true);
2047         unsigned Size = getContext().getTypeSize(OutExpr->getType());
2048         llvm::Type *ConvTy = llvm::IntegerType::get(getLLVMContext(), Size);
2049         ResultRegTypes.push_back(ConvTy);
2050       } else {
2051         ResultTypeRequiresCast.push_back(false);
2052         ResultRegTypes.push_back(ResultTruncRegTypes.back());
2053       }
2054       // If this output is tied to an input, and if the input is larger, then
2055       // we need to set the actual result type of the inline asm node to be the
2056       // same as the input type.
2057       if (Info.hasMatchingInput()) {
2058         unsigned InputNo;
2059         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
2060           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
2061           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
2062             break;
2063         }
2064         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
2065 
2066         QualType InputTy = S.getInputExpr(InputNo)->getType();
2067         QualType OutputType = OutExpr->getType();
2068 
2069         uint64_t InputSize = getContext().getTypeSize(InputTy);
2070         if (getContext().getTypeSize(OutputType) < InputSize) {
2071           // Form the asm to return the value as a larger integer or fp type.
2072           ResultRegTypes.back() = ConvertType(InputTy);
2073         }
2074       }
2075       if (llvm::Type* AdjTy =
2076             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2077                                                  ResultRegTypes.back()))
2078         ResultRegTypes.back() = AdjTy;
2079       else {
2080         CGM.getDiags().Report(S.getAsmLoc(),
2081                               diag::err_asm_invalid_type_in_input)
2082             << OutExpr->getType() << OutputConstraint;
2083       }
2084 
2085       // Update largest vector width for any vector types.
2086       if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back()))
2087         LargestVectorWidth = std::max((uint64_t)LargestVectorWidth,
2088                                    VT->getPrimitiveSizeInBits().getFixedSize());
2089     } else {
2090       ArgTypes.push_back(Dest.getAddress().getType());
2091       Args.push_back(Dest.getPointer());
2092       Constraints += "=*";
2093       Constraints += OutputConstraint;
2094       ReadOnly = ReadNone = false;
2095     }
2096 
2097     if (Info.isReadWrite()) {
2098       InOutConstraints += ',';
2099 
2100       const Expr *InputExpr = S.getOutputExpr(i);
2101       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
2102                                             InOutConstraints,
2103                                             InputExpr->getExprLoc());
2104 
2105       if (llvm::Type* AdjTy =
2106           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2107                                                Arg->getType()))
2108         Arg = Builder.CreateBitCast(Arg, AdjTy);
2109 
2110       // Update largest vector width for any vector types.
2111       if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2112         LargestVectorWidth = std::max((uint64_t)LargestVectorWidth,
2113                                    VT->getPrimitiveSizeInBits().getFixedSize());
2114       if (Info.allowsRegister())
2115         InOutConstraints += llvm::utostr(i);
2116       else
2117         InOutConstraints += OutputConstraint;
2118 
2119       InOutArgTypes.push_back(Arg->getType());
2120       InOutArgs.push_back(Arg);
2121     }
2122   }
2123 
2124   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
2125   // to the return value slot. Only do this when returning in registers.
2126   if (isa<MSAsmStmt>(&S)) {
2127     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
2128     if (RetAI.isDirect() || RetAI.isExtend()) {
2129       // Make a fake lvalue for the return value slot.
2130       LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
2131       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
2132           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
2133           ResultRegDests, AsmString, S.getNumOutputs());
2134       SawAsmBlock = true;
2135     }
2136   }
2137 
2138   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2139     const Expr *InputExpr = S.getInputExpr(i);
2140 
2141     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2142 
2143     if (Info.allowsMemory())
2144       ReadNone = false;
2145 
2146     if (!Constraints.empty())
2147       Constraints += ',';
2148 
2149     // Simplify the input constraint.
2150     std::string InputConstraint(S.getInputConstraint(i));
2151     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
2152                                          &OutputConstraintInfos);
2153 
2154     InputConstraint = AddVariableConstraints(
2155         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
2156         getTarget(), CGM, S, false /* No EarlyClobber */);
2157 
2158     std::string ReplaceConstraint (InputConstraint);
2159     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
2160 
2161     // If this input argument is tied to a larger output result, extend the
2162     // input to be the same size as the output.  The LLVM backend wants to see
2163     // the input and output of a matching constraint be the same size.  Note
2164     // that GCC does not define what the top bits are here.  We use zext because
2165     // that is usually cheaper, but LLVM IR should really get an anyext someday.
2166     if (Info.hasTiedOperand()) {
2167       unsigned Output = Info.getTiedOperand();
2168       QualType OutputType = S.getOutputExpr(Output)->getType();
2169       QualType InputTy = InputExpr->getType();
2170 
2171       if (getContext().getTypeSize(OutputType) >
2172           getContext().getTypeSize(InputTy)) {
2173         // Use ptrtoint as appropriate so that we can do our extension.
2174         if (isa<llvm::PointerType>(Arg->getType()))
2175           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
2176         llvm::Type *OutputTy = ConvertType(OutputType);
2177         if (isa<llvm::IntegerType>(OutputTy))
2178           Arg = Builder.CreateZExt(Arg, OutputTy);
2179         else if (isa<llvm::PointerType>(OutputTy))
2180           Arg = Builder.CreateZExt(Arg, IntPtrTy);
2181         else {
2182           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
2183           Arg = Builder.CreateFPExt(Arg, OutputTy);
2184         }
2185       }
2186       // Deal with the tied operands' constraint code in adjustInlineAsmType.
2187       ReplaceConstraint = OutputConstraints[Output];
2188     }
2189     if (llvm::Type* AdjTy =
2190           getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint,
2191                                                    Arg->getType()))
2192       Arg = Builder.CreateBitCast(Arg, AdjTy);
2193     else
2194       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
2195           << InputExpr->getType() << InputConstraint;
2196 
2197     // Update largest vector width for any vector types.
2198     if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2199       LargestVectorWidth = std::max((uint64_t)LargestVectorWidth,
2200                                    VT->getPrimitiveSizeInBits().getFixedSize());
2201 
2202     ArgTypes.push_back(Arg->getType());
2203     Args.push_back(Arg);
2204     Constraints += InputConstraint;
2205   }
2206 
2207   // Append the "input" part of inout constraints last.
2208   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
2209     ArgTypes.push_back(InOutArgTypes[i]);
2210     Args.push_back(InOutArgs[i]);
2211   }
2212   Constraints += InOutConstraints;
2213 
2214   // Labels
2215   SmallVector<llvm::BasicBlock *, 16> Transfer;
2216   llvm::BasicBlock *Fallthrough = nullptr;
2217   bool IsGCCAsmGoto = false;
2218   if (const auto *GS =  dyn_cast<GCCAsmStmt>(&S)) {
2219     IsGCCAsmGoto = GS->isAsmGoto();
2220     if (IsGCCAsmGoto) {
2221       for (auto *E : GS->labels()) {
2222         JumpDest Dest = getJumpDestForLabel(E->getLabel());
2223         Transfer.push_back(Dest.getBlock());
2224         llvm::BlockAddress *BA =
2225             llvm::BlockAddress::get(CurFn, Dest.getBlock());
2226         Args.push_back(BA);
2227         ArgTypes.push_back(BA->getType());
2228         if (!Constraints.empty())
2229           Constraints += ',';
2230         Constraints += 'X';
2231       }
2232       StringRef Name = "asm.fallthrough";
2233       Fallthrough = createBasicBlock(Name);
2234     }
2235   }
2236 
2237   // Clobbers
2238   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
2239     StringRef Clobber = S.getClobber(i);
2240 
2241     if (Clobber == "memory")
2242       ReadOnly = ReadNone = false;
2243     else if (Clobber != "cc")
2244       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
2245 
2246     if (!Constraints.empty())
2247       Constraints += ',';
2248 
2249     Constraints += "~{";
2250     Constraints += Clobber;
2251     Constraints += '}';
2252   }
2253 
2254   // Add machine specific clobbers
2255   std::string MachineClobbers = getTarget().getClobbers();
2256   if (!MachineClobbers.empty()) {
2257     if (!Constraints.empty())
2258       Constraints += ',';
2259     Constraints += MachineClobbers;
2260   }
2261 
2262   llvm::Type *ResultType;
2263   if (ResultRegTypes.empty())
2264     ResultType = VoidTy;
2265   else if (ResultRegTypes.size() == 1)
2266     ResultType = ResultRegTypes[0];
2267   else
2268     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
2269 
2270   llvm::FunctionType *FTy =
2271     llvm::FunctionType::get(ResultType, ArgTypes, false);
2272 
2273   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
2274   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
2275     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
2276   llvm::InlineAsm *IA =
2277     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
2278                          /* IsAlignStack */ false, AsmDialect);
2279   std::vector<llvm::Value*> RegResults;
2280   if (IsGCCAsmGoto) {
2281     llvm::CallBrInst *Result =
2282         Builder.CreateCallBr(IA, Fallthrough, Transfer, Args);
2283     UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly,
2284                       ReadNone, S, ResultRegTypes, *this, RegResults);
2285     EmitBlock(Fallthrough);
2286   } else {
2287     llvm::CallInst *Result =
2288         Builder.CreateCall(IA, Args, getBundlesForFunclet(IA));
2289     UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly,
2290                       ReadNone, S, ResultRegTypes, *this, RegResults);
2291   }
2292 
2293   assert(RegResults.size() == ResultRegTypes.size());
2294   assert(RegResults.size() == ResultTruncRegTypes.size());
2295   assert(RegResults.size() == ResultRegDests.size());
2296   // ResultRegDests can be also populated by addReturnRegisterOutputs() above,
2297   // in which case its size may grow.
2298   assert(ResultTypeRequiresCast.size() <= ResultRegDests.size());
2299   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2300     llvm::Value *Tmp = RegResults[i];
2301 
2302     // If the result type of the LLVM IR asm doesn't match the result type of
2303     // the expression, do the conversion.
2304     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2305       llvm::Type *TruncTy = ResultTruncRegTypes[i];
2306 
2307       // Truncate the integer result to the right size, note that TruncTy can be
2308       // a pointer.
2309       if (TruncTy->isFloatingPointTy())
2310         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2311       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2312         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2313         Tmp = Builder.CreateTrunc(Tmp,
2314                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2315         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2316       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2317         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2318         Tmp = Builder.CreatePtrToInt(Tmp,
2319                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2320         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2321       } else if (TruncTy->isIntegerTy()) {
2322         Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy);
2323       } else if (TruncTy->isVectorTy()) {
2324         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2325       }
2326     }
2327 
2328     LValue Dest = ResultRegDests[i];
2329     // ResultTypeRequiresCast elements correspond to the first
2330     // ResultTypeRequiresCast.size() elements of RegResults.
2331     if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) {
2332       unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]);
2333       Address A = Builder.CreateBitCast(Dest.getAddress(),
2334                                         ResultRegTypes[i]->getPointerTo());
2335       QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false);
2336       if (Ty.isNull()) {
2337         const Expr *OutExpr = S.getOutputExpr(i);
2338         CGM.Error(
2339             OutExpr->getExprLoc(),
2340             "impossible constraint in asm: can't store value into a register");
2341         return;
2342       }
2343       Dest = MakeAddrLValue(A, Ty);
2344     }
2345     EmitStoreThroughLValue(RValue::get(Tmp), Dest);
2346   }
2347 }
2348 
2349 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
2350   const RecordDecl *RD = S.getCapturedRecordDecl();
2351   QualType RecordTy = getContext().getRecordType(RD);
2352 
2353   // Initialize the captured struct.
2354   LValue SlotLV =
2355     MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2356 
2357   RecordDecl::field_iterator CurField = RD->field_begin();
2358   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
2359                                                  E = S.capture_init_end();
2360        I != E; ++I, ++CurField) {
2361     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2362     if (CurField->hasCapturedVLAType()) {
2363       auto VAT = CurField->getCapturedVLAType();
2364       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2365     } else {
2366       EmitInitializerForField(*CurField, LV, *I);
2367     }
2368   }
2369 
2370   return SlotLV;
2371 }
2372 
2373 /// Generate an outlined function for the body of a CapturedStmt, store any
2374 /// captured variables into the captured struct, and call the outlined function.
2375 llvm::Function *
2376 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2377   LValue CapStruct = InitCapturedStruct(S);
2378 
2379   // Emit the CapturedDecl
2380   CodeGenFunction CGF(CGM, true);
2381   CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2382   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2383   delete CGF.CapturedStmtInfo;
2384 
2385   // Emit call to the helper function.
2386   EmitCallOrInvoke(F, CapStruct.getPointer());
2387 
2388   return F;
2389 }
2390 
2391 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2392   LValue CapStruct = InitCapturedStruct(S);
2393   return CapStruct.getAddress();
2394 }
2395 
2396 /// Creates the outlined function for a CapturedStmt.
2397 llvm::Function *
2398 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2399   assert(CapturedStmtInfo &&
2400     "CapturedStmtInfo should be set when generating the captured function");
2401   const CapturedDecl *CD = S.getCapturedDecl();
2402   const RecordDecl *RD = S.getCapturedRecordDecl();
2403   SourceLocation Loc = S.getBeginLoc();
2404   assert(CD->hasBody() && "missing CapturedDecl body");
2405 
2406   // Build the argument list.
2407   ASTContext &Ctx = CGM.getContext();
2408   FunctionArgList Args;
2409   Args.append(CD->param_begin(), CD->param_end());
2410 
2411   // Create the function declaration.
2412   const CGFunctionInfo &FuncInfo =
2413     CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
2414   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2415 
2416   llvm::Function *F =
2417     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2418                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2419   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2420   if (CD->isNothrow())
2421     F->addFnAttr(llvm::Attribute::NoUnwind);
2422 
2423   // Generate the function.
2424   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
2425                 CD->getBody()->getBeginLoc());
2426   // Set the context parameter in CapturedStmtInfo.
2427   Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
2428   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2429 
2430   // Initialize variable-length arrays.
2431   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2432                                            Ctx.getTagDeclType(RD));
2433   for (auto *FD : RD->fields()) {
2434     if (FD->hasCapturedVLAType()) {
2435       auto *ExprArg =
2436           EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc())
2437               .getScalarVal();
2438       auto VAT = FD->getCapturedVLAType();
2439       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2440     }
2441   }
2442 
2443   // If 'this' is captured, load it into CXXThisValue.
2444   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2445     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2446     LValue ThisLValue = EmitLValueForField(Base, FD);
2447     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2448   }
2449 
2450   PGO.assignRegionCounters(GlobalDecl(CD), F);
2451   CapturedStmtInfo->EmitBody(*this, CD->getBody());
2452   FinishFunction(CD->getBodyRBrace());
2453 
2454   return F;
2455 }
2456