1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Stmt nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "clang/Basic/Builtins.h" 21 #include "clang/Basic/PrettyStackTrace.h" 22 #include "clang/Basic/SourceManager.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/InlineAsm.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/MDBuilder.h" 29 #include "llvm/Support/SaveAndRestore.h" 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 //===----------------------------------------------------------------------===// 35 // Statement Emission 36 //===----------------------------------------------------------------------===// 37 38 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 39 if (CGDebugInfo *DI = getDebugInfo()) { 40 SourceLocation Loc; 41 Loc = S->getBeginLoc(); 42 DI->EmitLocation(Builder, Loc); 43 44 LastStopPoint = Loc; 45 } 46 } 47 48 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) { 49 assert(S && "Null statement?"); 50 PGO.setCurrentStmt(S); 51 52 // These statements have their own debug info handling. 53 if (EmitSimpleStmt(S)) 54 return; 55 56 // Check if we are generating unreachable code. 57 if (!HaveInsertPoint()) { 58 // If so, and the statement doesn't contain a label, then we do not need to 59 // generate actual code. This is safe because (1) the current point is 60 // unreachable, so we don't need to execute the code, and (2) we've already 61 // handled the statements which update internal data structures (like the 62 // local variable map) which could be used by subsequent statements. 63 if (!ContainsLabel(S)) { 64 // Verify that any decl statements were handled as simple, they may be in 65 // scope of subsequent reachable statements. 66 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 67 return; 68 } 69 70 // Otherwise, make a new block to hold the code. 71 EnsureInsertPoint(); 72 } 73 74 // Generate a stoppoint if we are emitting debug info. 75 EmitStopPoint(S); 76 77 // Ignore all OpenMP directives except for simd if OpenMP with Simd is 78 // enabled. 79 if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) { 80 if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) { 81 EmitSimpleOMPExecutableDirective(*D); 82 return; 83 } 84 } 85 86 switch (S->getStmtClass()) { 87 case Stmt::NoStmtClass: 88 case Stmt::CXXCatchStmtClass: 89 case Stmt::SEHExceptStmtClass: 90 case Stmt::SEHFinallyStmtClass: 91 case Stmt::MSDependentExistsStmtClass: 92 llvm_unreachable("invalid statement class to emit generically"); 93 case Stmt::NullStmtClass: 94 case Stmt::CompoundStmtClass: 95 case Stmt::DeclStmtClass: 96 case Stmt::LabelStmtClass: 97 case Stmt::AttributedStmtClass: 98 case Stmt::GotoStmtClass: 99 case Stmt::BreakStmtClass: 100 case Stmt::ContinueStmtClass: 101 case Stmt::DefaultStmtClass: 102 case Stmt::CaseStmtClass: 103 case Stmt::SEHLeaveStmtClass: 104 llvm_unreachable("should have emitted these statements as simple"); 105 106 #define STMT(Type, Base) 107 #define ABSTRACT_STMT(Op) 108 #define EXPR(Type, Base) \ 109 case Stmt::Type##Class: 110 #include "clang/AST/StmtNodes.inc" 111 { 112 // Remember the block we came in on. 113 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 114 assert(incoming && "expression emission must have an insertion point"); 115 116 EmitIgnoredExpr(cast<Expr>(S)); 117 118 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 119 assert(outgoing && "expression emission cleared block!"); 120 121 // The expression emitters assume (reasonably!) that the insertion 122 // point is always set. To maintain that, the call-emission code 123 // for noreturn functions has to enter a new block with no 124 // predecessors. We want to kill that block and mark the current 125 // insertion point unreachable in the common case of a call like 126 // "exit();". Since expression emission doesn't otherwise create 127 // blocks with no predecessors, we can just test for that. 128 // However, we must be careful not to do this to our incoming 129 // block, because *statement* emission does sometimes create 130 // reachable blocks which will have no predecessors until later in 131 // the function. This occurs with, e.g., labels that are not 132 // reachable by fallthrough. 133 if (incoming != outgoing && outgoing->use_empty()) { 134 outgoing->eraseFromParent(); 135 Builder.ClearInsertionPoint(); 136 } 137 break; 138 } 139 140 case Stmt::IndirectGotoStmtClass: 141 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 142 143 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 144 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break; 145 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S), Attrs); break; 146 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S), Attrs); break; 147 148 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 149 150 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 151 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 152 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 153 case Stmt::CoroutineBodyStmtClass: 154 EmitCoroutineBody(cast<CoroutineBodyStmt>(*S)); 155 break; 156 case Stmt::CoreturnStmtClass: 157 EmitCoreturnStmt(cast<CoreturnStmt>(*S)); 158 break; 159 case Stmt::CapturedStmtClass: { 160 const CapturedStmt *CS = cast<CapturedStmt>(S); 161 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 162 } 163 break; 164 case Stmt::ObjCAtTryStmtClass: 165 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 166 break; 167 case Stmt::ObjCAtCatchStmtClass: 168 llvm_unreachable( 169 "@catch statements should be handled by EmitObjCAtTryStmt"); 170 case Stmt::ObjCAtFinallyStmtClass: 171 llvm_unreachable( 172 "@finally statements should be handled by EmitObjCAtTryStmt"); 173 case Stmt::ObjCAtThrowStmtClass: 174 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 175 break; 176 case Stmt::ObjCAtSynchronizedStmtClass: 177 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 178 break; 179 case Stmt::ObjCForCollectionStmtClass: 180 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 181 break; 182 case Stmt::ObjCAutoreleasePoolStmtClass: 183 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 184 break; 185 186 case Stmt::CXXTryStmtClass: 187 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 188 break; 189 case Stmt::CXXForRangeStmtClass: 190 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs); 191 break; 192 case Stmt::SEHTryStmtClass: 193 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 194 break; 195 case Stmt::OMPParallelDirectiveClass: 196 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 197 break; 198 case Stmt::OMPSimdDirectiveClass: 199 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 200 break; 201 case Stmt::OMPForDirectiveClass: 202 EmitOMPForDirective(cast<OMPForDirective>(*S)); 203 break; 204 case Stmt::OMPForSimdDirectiveClass: 205 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 206 break; 207 case Stmt::OMPSectionsDirectiveClass: 208 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 209 break; 210 case Stmt::OMPSectionDirectiveClass: 211 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 212 break; 213 case Stmt::OMPSingleDirectiveClass: 214 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 215 break; 216 case Stmt::OMPMasterDirectiveClass: 217 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 218 break; 219 case Stmt::OMPCriticalDirectiveClass: 220 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 221 break; 222 case Stmt::OMPParallelForDirectiveClass: 223 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 224 break; 225 case Stmt::OMPParallelForSimdDirectiveClass: 226 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 227 break; 228 case Stmt::OMPParallelMasterDirectiveClass: 229 EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S)); 230 break; 231 case Stmt::OMPParallelSectionsDirectiveClass: 232 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 233 break; 234 case Stmt::OMPTaskDirectiveClass: 235 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 236 break; 237 case Stmt::OMPTaskyieldDirectiveClass: 238 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 239 break; 240 case Stmt::OMPBarrierDirectiveClass: 241 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 242 break; 243 case Stmt::OMPTaskwaitDirectiveClass: 244 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 245 break; 246 case Stmt::OMPTaskgroupDirectiveClass: 247 EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); 248 break; 249 case Stmt::OMPFlushDirectiveClass: 250 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 251 break; 252 case Stmt::OMPDepobjDirectiveClass: 253 EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S)); 254 break; 255 case Stmt::OMPScanDirectiveClass: 256 EmitOMPScanDirective(cast<OMPScanDirective>(*S)); 257 break; 258 case Stmt::OMPOrderedDirectiveClass: 259 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 260 break; 261 case Stmt::OMPAtomicDirectiveClass: 262 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 263 break; 264 case Stmt::OMPTargetDirectiveClass: 265 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 266 break; 267 case Stmt::OMPTeamsDirectiveClass: 268 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 269 break; 270 case Stmt::OMPCancellationPointDirectiveClass: 271 EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); 272 break; 273 case Stmt::OMPCancelDirectiveClass: 274 EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); 275 break; 276 case Stmt::OMPTargetDataDirectiveClass: 277 EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); 278 break; 279 case Stmt::OMPTargetEnterDataDirectiveClass: 280 EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S)); 281 break; 282 case Stmt::OMPTargetExitDataDirectiveClass: 283 EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S)); 284 break; 285 case Stmt::OMPTargetParallelDirectiveClass: 286 EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S)); 287 break; 288 case Stmt::OMPTargetParallelForDirectiveClass: 289 EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S)); 290 break; 291 case Stmt::OMPTaskLoopDirectiveClass: 292 EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S)); 293 break; 294 case Stmt::OMPTaskLoopSimdDirectiveClass: 295 EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S)); 296 break; 297 case Stmt::OMPMasterTaskLoopDirectiveClass: 298 EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S)); 299 break; 300 case Stmt::OMPMasterTaskLoopSimdDirectiveClass: 301 EmitOMPMasterTaskLoopSimdDirective( 302 cast<OMPMasterTaskLoopSimdDirective>(*S)); 303 break; 304 case Stmt::OMPParallelMasterTaskLoopDirectiveClass: 305 EmitOMPParallelMasterTaskLoopDirective( 306 cast<OMPParallelMasterTaskLoopDirective>(*S)); 307 break; 308 case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass: 309 EmitOMPParallelMasterTaskLoopSimdDirective( 310 cast<OMPParallelMasterTaskLoopSimdDirective>(*S)); 311 break; 312 case Stmt::OMPDistributeDirectiveClass: 313 EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S)); 314 break; 315 case Stmt::OMPTargetUpdateDirectiveClass: 316 EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S)); 317 break; 318 case Stmt::OMPDistributeParallelForDirectiveClass: 319 EmitOMPDistributeParallelForDirective( 320 cast<OMPDistributeParallelForDirective>(*S)); 321 break; 322 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 323 EmitOMPDistributeParallelForSimdDirective( 324 cast<OMPDistributeParallelForSimdDirective>(*S)); 325 break; 326 case Stmt::OMPDistributeSimdDirectiveClass: 327 EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S)); 328 break; 329 case Stmt::OMPTargetParallelForSimdDirectiveClass: 330 EmitOMPTargetParallelForSimdDirective( 331 cast<OMPTargetParallelForSimdDirective>(*S)); 332 break; 333 case Stmt::OMPTargetSimdDirectiveClass: 334 EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S)); 335 break; 336 case Stmt::OMPTeamsDistributeDirectiveClass: 337 EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S)); 338 break; 339 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 340 EmitOMPTeamsDistributeSimdDirective( 341 cast<OMPTeamsDistributeSimdDirective>(*S)); 342 break; 343 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: 344 EmitOMPTeamsDistributeParallelForSimdDirective( 345 cast<OMPTeamsDistributeParallelForSimdDirective>(*S)); 346 break; 347 case Stmt::OMPTeamsDistributeParallelForDirectiveClass: 348 EmitOMPTeamsDistributeParallelForDirective( 349 cast<OMPTeamsDistributeParallelForDirective>(*S)); 350 break; 351 case Stmt::OMPTargetTeamsDirectiveClass: 352 EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S)); 353 break; 354 case Stmt::OMPTargetTeamsDistributeDirectiveClass: 355 EmitOMPTargetTeamsDistributeDirective( 356 cast<OMPTargetTeamsDistributeDirective>(*S)); 357 break; 358 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: 359 EmitOMPTargetTeamsDistributeParallelForDirective( 360 cast<OMPTargetTeamsDistributeParallelForDirective>(*S)); 361 break; 362 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: 363 EmitOMPTargetTeamsDistributeParallelForSimdDirective( 364 cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S)); 365 break; 366 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: 367 EmitOMPTargetTeamsDistributeSimdDirective( 368 cast<OMPTargetTeamsDistributeSimdDirective>(*S)); 369 break; 370 } 371 } 372 373 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 374 switch (S->getStmtClass()) { 375 default: return false; 376 case Stmt::NullStmtClass: break; 377 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 378 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 379 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 380 case Stmt::AttributedStmtClass: 381 EmitAttributedStmt(cast<AttributedStmt>(*S)); break; 382 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 383 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 384 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 385 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 386 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 387 case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break; 388 } 389 390 return true; 391 } 392 393 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 394 /// this captures the expression result of the last sub-statement and returns it 395 /// (for use by the statement expression extension). 396 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 397 AggValueSlot AggSlot) { 398 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 399 "LLVM IR generation of compound statement ('{}')"); 400 401 // Keep track of the current cleanup stack depth, including debug scopes. 402 LexicalScope Scope(*this, S.getSourceRange()); 403 404 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 405 } 406 407 Address 408 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 409 bool GetLast, 410 AggValueSlot AggSlot) { 411 412 const Stmt *ExprResult = S.getStmtExprResult(); 413 assert((!GetLast || (GetLast && ExprResult)) && 414 "If GetLast is true then the CompoundStmt must have a StmtExprResult"); 415 416 Address RetAlloca = Address::invalid(); 417 418 for (auto *CurStmt : S.body()) { 419 if (GetLast && ExprResult == CurStmt) { 420 // We have to special case labels here. They are statements, but when put 421 // at the end of a statement expression, they yield the value of their 422 // subexpression. Handle this by walking through all labels we encounter, 423 // emitting them before we evaluate the subexpr. 424 // Similar issues arise for attributed statements. 425 while (!isa<Expr>(ExprResult)) { 426 if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) { 427 EmitLabel(LS->getDecl()); 428 ExprResult = LS->getSubStmt(); 429 } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) { 430 // FIXME: Update this if we ever have attributes that affect the 431 // semantics of an expression. 432 ExprResult = AS->getSubStmt(); 433 } else { 434 llvm_unreachable("unknown value statement"); 435 } 436 } 437 438 EnsureInsertPoint(); 439 440 const Expr *E = cast<Expr>(ExprResult); 441 QualType ExprTy = E->getType(); 442 if (hasAggregateEvaluationKind(ExprTy)) { 443 EmitAggExpr(E, AggSlot); 444 } else { 445 // We can't return an RValue here because there might be cleanups at 446 // the end of the StmtExpr. Because of that, we have to emit the result 447 // here into a temporary alloca. 448 RetAlloca = CreateMemTemp(ExprTy); 449 EmitAnyExprToMem(E, RetAlloca, Qualifiers(), 450 /*IsInit*/ false); 451 } 452 } else { 453 EmitStmt(CurStmt); 454 } 455 } 456 457 return RetAlloca; 458 } 459 460 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 461 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 462 463 // If there is a cleanup stack, then we it isn't worth trying to 464 // simplify this block (we would need to remove it from the scope map 465 // and cleanup entry). 466 if (!EHStack.empty()) 467 return; 468 469 // Can only simplify direct branches. 470 if (!BI || !BI->isUnconditional()) 471 return; 472 473 // Can only simplify empty blocks. 474 if (BI->getIterator() != BB->begin()) 475 return; 476 477 BB->replaceAllUsesWith(BI->getSuccessor(0)); 478 BI->eraseFromParent(); 479 BB->eraseFromParent(); 480 } 481 482 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 483 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 484 485 // Fall out of the current block (if necessary). 486 EmitBranch(BB); 487 488 if (IsFinished && BB->use_empty()) { 489 delete BB; 490 return; 491 } 492 493 // Place the block after the current block, if possible, or else at 494 // the end of the function. 495 if (CurBB && CurBB->getParent()) 496 CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB); 497 else 498 CurFn->getBasicBlockList().push_back(BB); 499 Builder.SetInsertPoint(BB); 500 } 501 502 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 503 // Emit a branch from the current block to the target one if this 504 // was a real block. If this was just a fall-through block after a 505 // terminator, don't emit it. 506 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 507 508 if (!CurBB || CurBB->getTerminator()) { 509 // If there is no insert point or the previous block is already 510 // terminated, don't touch it. 511 } else { 512 // Otherwise, create a fall-through branch. 513 Builder.CreateBr(Target); 514 } 515 516 Builder.ClearInsertionPoint(); 517 } 518 519 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 520 bool inserted = false; 521 for (llvm::User *u : block->users()) { 522 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 523 CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(), 524 block); 525 inserted = true; 526 break; 527 } 528 } 529 530 if (!inserted) 531 CurFn->getBasicBlockList().push_back(block); 532 533 Builder.SetInsertPoint(block); 534 } 535 536 CodeGenFunction::JumpDest 537 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 538 JumpDest &Dest = LabelMap[D]; 539 if (Dest.isValid()) return Dest; 540 541 // Create, but don't insert, the new block. 542 Dest = JumpDest(createBasicBlock(D->getName()), 543 EHScopeStack::stable_iterator::invalid(), 544 NextCleanupDestIndex++); 545 return Dest; 546 } 547 548 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 549 // Add this label to the current lexical scope if we're within any 550 // normal cleanups. Jumps "in" to this label --- when permitted by 551 // the language --- may need to be routed around such cleanups. 552 if (EHStack.hasNormalCleanups() && CurLexicalScope) 553 CurLexicalScope->addLabel(D); 554 555 JumpDest &Dest = LabelMap[D]; 556 557 // If we didn't need a forward reference to this label, just go 558 // ahead and create a destination at the current scope. 559 if (!Dest.isValid()) { 560 Dest = getJumpDestInCurrentScope(D->getName()); 561 562 // Otherwise, we need to give this label a target depth and remove 563 // it from the branch-fixups list. 564 } else { 565 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 566 Dest.setScopeDepth(EHStack.stable_begin()); 567 ResolveBranchFixups(Dest.getBlock()); 568 } 569 570 EmitBlock(Dest.getBlock()); 571 572 // Emit debug info for labels. 573 if (CGDebugInfo *DI = getDebugInfo()) { 574 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) { 575 DI->setLocation(D->getLocation()); 576 DI->EmitLabel(D, Builder); 577 } 578 } 579 580 incrementProfileCounter(D->getStmt()); 581 } 582 583 /// Change the cleanup scope of the labels in this lexical scope to 584 /// match the scope of the enclosing context. 585 void CodeGenFunction::LexicalScope::rescopeLabels() { 586 assert(!Labels.empty()); 587 EHScopeStack::stable_iterator innermostScope 588 = CGF.EHStack.getInnermostNormalCleanup(); 589 590 // Change the scope depth of all the labels. 591 for (SmallVectorImpl<const LabelDecl*>::const_iterator 592 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 593 assert(CGF.LabelMap.count(*i)); 594 JumpDest &dest = CGF.LabelMap.find(*i)->second; 595 assert(dest.getScopeDepth().isValid()); 596 assert(innermostScope.encloses(dest.getScopeDepth())); 597 dest.setScopeDepth(innermostScope); 598 } 599 600 // Reparent the labels if the new scope also has cleanups. 601 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 602 ParentScope->Labels.append(Labels.begin(), Labels.end()); 603 } 604 } 605 606 607 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 608 EmitLabel(S.getDecl()); 609 EmitStmt(S.getSubStmt()); 610 } 611 612 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 613 bool nomerge = false; 614 for (const auto *A : S.getAttrs()) 615 if (A->getKind() == attr::NoMerge) { 616 nomerge = true; 617 break; 618 } 619 SaveAndRestore<bool> save_nomerge(InNoMergeAttributedStmt, nomerge); 620 EmitStmt(S.getSubStmt(), S.getAttrs()); 621 } 622 623 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 624 // If this code is reachable then emit a stop point (if generating 625 // debug info). We have to do this ourselves because we are on the 626 // "simple" statement path. 627 if (HaveInsertPoint()) 628 EmitStopPoint(&S); 629 630 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 631 } 632 633 634 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 635 if (const LabelDecl *Target = S.getConstantTarget()) { 636 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 637 return; 638 } 639 640 // Ensure that we have an i8* for our PHI node. 641 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 642 Int8PtrTy, "addr"); 643 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 644 645 // Get the basic block for the indirect goto. 646 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 647 648 // The first instruction in the block has to be the PHI for the switch dest, 649 // add an entry for this branch. 650 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 651 652 EmitBranch(IndGotoBB); 653 } 654 655 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 656 // C99 6.8.4.1: The first substatement is executed if the expression compares 657 // unequal to 0. The condition must be a scalar type. 658 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 659 660 if (S.getInit()) 661 EmitStmt(S.getInit()); 662 663 if (S.getConditionVariable()) 664 EmitDecl(*S.getConditionVariable()); 665 666 // If the condition constant folds and can be elided, try to avoid emitting 667 // the condition and the dead arm of the if/else. 668 bool CondConstant; 669 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant, 670 S.isConstexpr())) { 671 // Figure out which block (then or else) is executed. 672 const Stmt *Executed = S.getThen(); 673 const Stmt *Skipped = S.getElse(); 674 if (!CondConstant) // Condition false? 675 std::swap(Executed, Skipped); 676 677 // If the skipped block has no labels in it, just emit the executed block. 678 // This avoids emitting dead code and simplifies the CFG substantially. 679 if (S.isConstexpr() || !ContainsLabel(Skipped)) { 680 if (CondConstant) 681 incrementProfileCounter(&S); 682 if (Executed) { 683 RunCleanupsScope ExecutedScope(*this); 684 EmitStmt(Executed); 685 } 686 return; 687 } 688 } 689 690 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 691 // the conditional branch. 692 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 693 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 694 llvm::BasicBlock *ElseBlock = ContBlock; 695 if (S.getElse()) 696 ElseBlock = createBasicBlock("if.else"); 697 698 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, 699 getProfileCount(S.getThen())); 700 701 // Emit the 'then' code. 702 EmitBlock(ThenBlock); 703 incrementProfileCounter(&S); 704 { 705 RunCleanupsScope ThenScope(*this); 706 EmitStmt(S.getThen()); 707 } 708 EmitBranch(ContBlock); 709 710 // Emit the 'else' code if present. 711 if (const Stmt *Else = S.getElse()) { 712 { 713 // There is no need to emit line number for an unconditional branch. 714 auto NL = ApplyDebugLocation::CreateEmpty(*this); 715 EmitBlock(ElseBlock); 716 } 717 { 718 RunCleanupsScope ElseScope(*this); 719 EmitStmt(Else); 720 } 721 { 722 // There is no need to emit line number for an unconditional branch. 723 auto NL = ApplyDebugLocation::CreateEmpty(*this); 724 EmitBranch(ContBlock); 725 } 726 } 727 728 // Emit the continuation block for code after the if. 729 EmitBlock(ContBlock, true); 730 } 731 732 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 733 ArrayRef<const Attr *> WhileAttrs) { 734 // Emit the header for the loop, which will also become 735 // the continue target. 736 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 737 EmitBlock(LoopHeader.getBlock()); 738 739 const SourceRange &R = S.getSourceRange(); 740 LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(), 741 WhileAttrs, SourceLocToDebugLoc(R.getBegin()), 742 SourceLocToDebugLoc(R.getEnd())); 743 744 // Create an exit block for when the condition fails, which will 745 // also become the break target. 746 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 747 748 // Store the blocks to use for break and continue. 749 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 750 751 // C++ [stmt.while]p2: 752 // When the condition of a while statement is a declaration, the 753 // scope of the variable that is declared extends from its point 754 // of declaration (3.3.2) to the end of the while statement. 755 // [...] 756 // The object created in a condition is destroyed and created 757 // with each iteration of the loop. 758 RunCleanupsScope ConditionScope(*this); 759 760 if (S.getConditionVariable()) 761 EmitDecl(*S.getConditionVariable()); 762 763 // Evaluate the conditional in the while header. C99 6.8.5.1: The 764 // evaluation of the controlling expression takes place before each 765 // execution of the loop body. 766 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 767 768 // while(1) is common, avoid extra exit blocks. Be sure 769 // to correctly handle break/continue though. 770 bool EmitBoolCondBranch = true; 771 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 772 if (C->isOne()) 773 EmitBoolCondBranch = false; 774 775 // As long as the condition is true, go to the loop body. 776 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 777 if (EmitBoolCondBranch) { 778 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 779 if (ConditionScope.requiresCleanups()) 780 ExitBlock = createBasicBlock("while.exit"); 781 Builder.CreateCondBr( 782 BoolCondVal, LoopBody, ExitBlock, 783 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 784 785 if (ExitBlock != LoopExit.getBlock()) { 786 EmitBlock(ExitBlock); 787 EmitBranchThroughCleanup(LoopExit); 788 } 789 } 790 791 // Emit the loop body. We have to emit this in a cleanup scope 792 // because it might be a singleton DeclStmt. 793 { 794 RunCleanupsScope BodyScope(*this); 795 EmitBlock(LoopBody); 796 incrementProfileCounter(&S); 797 EmitStmt(S.getBody()); 798 } 799 800 BreakContinueStack.pop_back(); 801 802 // Immediately force cleanup. 803 ConditionScope.ForceCleanup(); 804 805 EmitStopPoint(&S); 806 // Branch to the loop header again. 807 EmitBranch(LoopHeader.getBlock()); 808 809 LoopStack.pop(); 810 811 // Emit the exit block. 812 EmitBlock(LoopExit.getBlock(), true); 813 814 // The LoopHeader typically is just a branch if we skipped emitting 815 // a branch, try to erase it. 816 if (!EmitBoolCondBranch) 817 SimplifyForwardingBlocks(LoopHeader.getBlock()); 818 } 819 820 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 821 ArrayRef<const Attr *> DoAttrs) { 822 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 823 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 824 825 uint64_t ParentCount = getCurrentProfileCount(); 826 827 // Store the blocks to use for break and continue. 828 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 829 830 // Emit the body of the loop. 831 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 832 833 EmitBlockWithFallThrough(LoopBody, &S); 834 { 835 RunCleanupsScope BodyScope(*this); 836 EmitStmt(S.getBody()); 837 } 838 839 EmitBlock(LoopCond.getBlock()); 840 841 const SourceRange &R = S.getSourceRange(); 842 LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs, 843 SourceLocToDebugLoc(R.getBegin()), 844 SourceLocToDebugLoc(R.getEnd())); 845 846 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 847 // after each execution of the loop body." 848 849 // Evaluate the conditional in the while header. 850 // C99 6.8.5p2/p4: The first substatement is executed if the expression 851 // compares unequal to 0. The condition must be a scalar type. 852 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 853 854 BreakContinueStack.pop_back(); 855 856 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 857 // to correctly handle break/continue though. 858 bool EmitBoolCondBranch = true; 859 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 860 if (C->isZero()) 861 EmitBoolCondBranch = false; 862 863 // As long as the condition is true, iterate the loop. 864 if (EmitBoolCondBranch) { 865 uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; 866 Builder.CreateCondBr( 867 BoolCondVal, LoopBody, LoopExit.getBlock(), 868 createProfileWeightsForLoop(S.getCond(), BackedgeCount)); 869 } 870 871 LoopStack.pop(); 872 873 // Emit the exit block. 874 EmitBlock(LoopExit.getBlock()); 875 876 // The DoCond block typically is just a branch if we skipped 877 // emitting a branch, try to erase it. 878 if (!EmitBoolCondBranch) 879 SimplifyForwardingBlocks(LoopCond.getBlock()); 880 } 881 882 void CodeGenFunction::EmitForStmt(const ForStmt &S, 883 ArrayRef<const Attr *> ForAttrs) { 884 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 885 886 LexicalScope ForScope(*this, S.getSourceRange()); 887 888 // Evaluate the first part before the loop. 889 if (S.getInit()) 890 EmitStmt(S.getInit()); 891 892 // Start the loop with a block that tests the condition. 893 // If there's an increment, the continue scope will be overwritten 894 // later. 895 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 896 llvm::BasicBlock *CondBlock = Continue.getBlock(); 897 EmitBlock(CondBlock); 898 899 const SourceRange &R = S.getSourceRange(); 900 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs, 901 SourceLocToDebugLoc(R.getBegin()), 902 SourceLocToDebugLoc(R.getEnd())); 903 904 // If the for loop doesn't have an increment we can just use the 905 // condition as the continue block. Otherwise we'll need to create 906 // a block for it (in the current scope, i.e. in the scope of the 907 // condition), and that we will become our continue block. 908 if (S.getInc()) 909 Continue = getJumpDestInCurrentScope("for.inc"); 910 911 // Store the blocks to use for break and continue. 912 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 913 914 // Create a cleanup scope for the condition variable cleanups. 915 LexicalScope ConditionScope(*this, S.getSourceRange()); 916 917 if (S.getCond()) { 918 // If the for statement has a condition scope, emit the local variable 919 // declaration. 920 if (S.getConditionVariable()) { 921 EmitDecl(*S.getConditionVariable()); 922 } 923 924 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 925 // If there are any cleanups between here and the loop-exit scope, 926 // create a block to stage a loop exit along. 927 if (ForScope.requiresCleanups()) 928 ExitBlock = createBasicBlock("for.cond.cleanup"); 929 930 // As long as the condition is true, iterate the loop. 931 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 932 933 // C99 6.8.5p2/p4: The first substatement is executed if the expression 934 // compares unequal to 0. The condition must be a scalar type. 935 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 936 Builder.CreateCondBr( 937 BoolCondVal, ForBody, ExitBlock, 938 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 939 940 if (ExitBlock != LoopExit.getBlock()) { 941 EmitBlock(ExitBlock); 942 EmitBranchThroughCleanup(LoopExit); 943 } 944 945 EmitBlock(ForBody); 946 } else { 947 // Treat it as a non-zero constant. Don't even create a new block for the 948 // body, just fall into it. 949 } 950 incrementProfileCounter(&S); 951 952 { 953 // Create a separate cleanup scope for the body, in case it is not 954 // a compound statement. 955 RunCleanupsScope BodyScope(*this); 956 EmitStmt(S.getBody()); 957 } 958 959 // If there is an increment, emit it next. 960 if (S.getInc()) { 961 EmitBlock(Continue.getBlock()); 962 EmitStmt(S.getInc()); 963 } 964 965 BreakContinueStack.pop_back(); 966 967 ConditionScope.ForceCleanup(); 968 969 EmitStopPoint(&S); 970 EmitBranch(CondBlock); 971 972 ForScope.ForceCleanup(); 973 974 LoopStack.pop(); 975 976 // Emit the fall-through block. 977 EmitBlock(LoopExit.getBlock(), true); 978 } 979 980 void 981 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 982 ArrayRef<const Attr *> ForAttrs) { 983 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 984 985 LexicalScope ForScope(*this, S.getSourceRange()); 986 987 // Evaluate the first pieces before the loop. 988 if (S.getInit()) 989 EmitStmt(S.getInit()); 990 EmitStmt(S.getRangeStmt()); 991 EmitStmt(S.getBeginStmt()); 992 EmitStmt(S.getEndStmt()); 993 994 // Start the loop with a block that tests the condition. 995 // If there's an increment, the continue scope will be overwritten 996 // later. 997 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 998 EmitBlock(CondBlock); 999 1000 const SourceRange &R = S.getSourceRange(); 1001 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs, 1002 SourceLocToDebugLoc(R.getBegin()), 1003 SourceLocToDebugLoc(R.getEnd())); 1004 1005 // If there are any cleanups between here and the loop-exit scope, 1006 // create a block to stage a loop exit along. 1007 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1008 if (ForScope.requiresCleanups()) 1009 ExitBlock = createBasicBlock("for.cond.cleanup"); 1010 1011 // The loop body, consisting of the specified body and the loop variable. 1012 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 1013 1014 // The body is executed if the expression, contextually converted 1015 // to bool, is true. 1016 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 1017 Builder.CreateCondBr( 1018 BoolCondVal, ForBody, ExitBlock, 1019 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 1020 1021 if (ExitBlock != LoopExit.getBlock()) { 1022 EmitBlock(ExitBlock); 1023 EmitBranchThroughCleanup(LoopExit); 1024 } 1025 1026 EmitBlock(ForBody); 1027 incrementProfileCounter(&S); 1028 1029 // Create a block for the increment. In case of a 'continue', we jump there. 1030 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 1031 1032 // Store the blocks to use for break and continue. 1033 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1034 1035 { 1036 // Create a separate cleanup scope for the loop variable and body. 1037 LexicalScope BodyScope(*this, S.getSourceRange()); 1038 EmitStmt(S.getLoopVarStmt()); 1039 EmitStmt(S.getBody()); 1040 } 1041 1042 EmitStopPoint(&S); 1043 // If there is an increment, emit it next. 1044 EmitBlock(Continue.getBlock()); 1045 EmitStmt(S.getInc()); 1046 1047 BreakContinueStack.pop_back(); 1048 1049 EmitBranch(CondBlock); 1050 1051 ForScope.ForceCleanup(); 1052 1053 LoopStack.pop(); 1054 1055 // Emit the fall-through block. 1056 EmitBlock(LoopExit.getBlock(), true); 1057 } 1058 1059 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 1060 if (RV.isScalar()) { 1061 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 1062 } else if (RV.isAggregate()) { 1063 LValue Dest = MakeAddrLValue(ReturnValue, Ty); 1064 LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty); 1065 EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue()); 1066 } else { 1067 EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty), 1068 /*init*/ true); 1069 } 1070 EmitBranchThroughCleanup(ReturnBlock); 1071 } 1072 1073 namespace { 1074 // RAII struct used to save and restore a return statment's result expression. 1075 struct SaveRetExprRAII { 1076 SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF) 1077 : OldRetExpr(CGF.RetExpr), CGF(CGF) { 1078 CGF.RetExpr = RetExpr; 1079 } 1080 ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; } 1081 const Expr *OldRetExpr; 1082 CodeGenFunction &CGF; 1083 }; 1084 } // namespace 1085 1086 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 1087 /// if the function returns void, or may be missing one if the function returns 1088 /// non-void. Fun stuff :). 1089 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 1090 if (requiresReturnValueCheck()) { 1091 llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc()); 1092 auto *SLocPtr = 1093 new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false, 1094 llvm::GlobalVariable::PrivateLinkage, SLoc); 1095 SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1096 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr); 1097 assert(ReturnLocation.isValid() && "No valid return location"); 1098 Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy), 1099 ReturnLocation); 1100 } 1101 1102 // Returning from an outlined SEH helper is UB, and we already warn on it. 1103 if (IsOutlinedSEHHelper) { 1104 Builder.CreateUnreachable(); 1105 Builder.ClearInsertionPoint(); 1106 } 1107 1108 // Emit the result value, even if unused, to evaluate the side effects. 1109 const Expr *RV = S.getRetValue(); 1110 1111 // Record the result expression of the return statement. The recorded 1112 // expression is used to determine whether a block capture's lifetime should 1113 // end at the end of the full expression as opposed to the end of the scope 1114 // enclosing the block expression. 1115 // 1116 // This permits a small, easily-implemented exception to our over-conservative 1117 // rules about not jumping to statements following block literals with 1118 // non-trivial cleanups. 1119 SaveRetExprRAII SaveRetExpr(RV, *this); 1120 1121 RunCleanupsScope cleanupScope(*this); 1122 if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV)) 1123 RV = EWC->getSubExpr(); 1124 // FIXME: Clean this up by using an LValue for ReturnTemp, 1125 // EmitStoreThroughLValue, and EmitAnyExpr. 1126 // Check if the NRVO candidate was not globalized in OpenMP mode. 1127 if (getLangOpts().ElideConstructors && S.getNRVOCandidate() && 1128 S.getNRVOCandidate()->isNRVOVariable() && 1129 (!getLangOpts().OpenMP || 1130 !CGM.getOpenMPRuntime() 1131 .getAddressOfLocalVariable(*this, S.getNRVOCandidate()) 1132 .isValid())) { 1133 // Apply the named return value optimization for this return statement, 1134 // which means doing nothing: the appropriate result has already been 1135 // constructed into the NRVO variable. 1136 1137 // If there is an NRVO flag for this variable, set it to 1 into indicate 1138 // that the cleanup code should not destroy the variable. 1139 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1140 Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag); 1141 } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) { 1142 // Make sure not to return anything, but evaluate the expression 1143 // for side effects. 1144 if (RV) 1145 EmitAnyExpr(RV); 1146 } else if (!RV) { 1147 // Do nothing (return value is left uninitialized) 1148 } else if (FnRetTy->isReferenceType()) { 1149 // If this function returns a reference, take the address of the expression 1150 // rather than the value. 1151 RValue Result = EmitReferenceBindingToExpr(RV); 1152 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1153 } else { 1154 switch (getEvaluationKind(RV->getType())) { 1155 case TEK_Scalar: 1156 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1157 break; 1158 case TEK_Complex: 1159 EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()), 1160 /*isInit*/ true); 1161 break; 1162 case TEK_Aggregate: 1163 EmitAggExpr(RV, AggValueSlot::forAddr( 1164 ReturnValue, Qualifiers(), 1165 AggValueSlot::IsDestructed, 1166 AggValueSlot::DoesNotNeedGCBarriers, 1167 AggValueSlot::IsNotAliased, 1168 getOverlapForReturnValue())); 1169 break; 1170 } 1171 } 1172 1173 ++NumReturnExprs; 1174 if (!RV || RV->isEvaluatable(getContext())) 1175 ++NumSimpleReturnExprs; 1176 1177 cleanupScope.ForceCleanup(); 1178 EmitBranchThroughCleanup(ReturnBlock); 1179 } 1180 1181 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1182 // As long as debug info is modeled with instructions, we have to ensure we 1183 // have a place to insert here and write the stop point here. 1184 if (HaveInsertPoint()) 1185 EmitStopPoint(&S); 1186 1187 for (const auto *I : S.decls()) 1188 EmitDecl(*I); 1189 } 1190 1191 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1192 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1193 1194 // If this code is reachable then emit a stop point (if generating 1195 // debug info). We have to do this ourselves because we are on the 1196 // "simple" statement path. 1197 if (HaveInsertPoint()) 1198 EmitStopPoint(&S); 1199 1200 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1201 } 1202 1203 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1204 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1205 1206 // If this code is reachable then emit a stop point (if generating 1207 // debug info). We have to do this ourselves because we are on the 1208 // "simple" statement path. 1209 if (HaveInsertPoint()) 1210 EmitStopPoint(&S); 1211 1212 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1213 } 1214 1215 /// EmitCaseStmtRange - If case statement range is not too big then 1216 /// add multiple cases to switch instruction, one for each value within 1217 /// the range. If range is too big then emit "if" condition check. 1218 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 1219 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1220 1221 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1222 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1223 1224 // Emit the code for this case. We do this first to make sure it is 1225 // properly chained from our predecessor before generating the 1226 // switch machinery to enter this block. 1227 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1228 EmitBlockWithFallThrough(CaseDest, &S); 1229 EmitStmt(S.getSubStmt()); 1230 1231 // If range is empty, do nothing. 1232 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1233 return; 1234 1235 llvm::APInt Range = RHS - LHS; 1236 // FIXME: parameters such as this should not be hardcoded. 1237 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1238 // Range is small enough to add multiple switch instruction cases. 1239 uint64_t Total = getProfileCount(&S); 1240 unsigned NCases = Range.getZExtValue() + 1; 1241 // We only have one region counter for the entire set of cases here, so we 1242 // need to divide the weights evenly between the generated cases, ensuring 1243 // that the total weight is preserved. E.g., a weight of 5 over three cases 1244 // will be distributed as weights of 2, 2, and 1. 1245 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1246 for (unsigned I = 0; I != NCases; ++I) { 1247 if (SwitchWeights) 1248 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1249 if (Rem) 1250 Rem--; 1251 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1252 ++LHS; 1253 } 1254 return; 1255 } 1256 1257 // The range is too big. Emit "if" condition into a new block, 1258 // making sure to save and restore the current insertion point. 1259 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1260 1261 // Push this test onto the chain of range checks (which terminates 1262 // in the default basic block). The switch's default will be changed 1263 // to the top of this chain after switch emission is complete. 1264 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1265 CaseRangeBlock = createBasicBlock("sw.caserange"); 1266 1267 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1268 Builder.SetInsertPoint(CaseRangeBlock); 1269 1270 // Emit range check. 1271 llvm::Value *Diff = 1272 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1273 llvm::Value *Cond = 1274 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1275 1276 llvm::MDNode *Weights = nullptr; 1277 if (SwitchWeights) { 1278 uint64_t ThisCount = getProfileCount(&S); 1279 uint64_t DefaultCount = (*SwitchWeights)[0]; 1280 Weights = createProfileWeights(ThisCount, DefaultCount); 1281 1282 // Since we're chaining the switch default through each large case range, we 1283 // need to update the weight for the default, ie, the first case, to include 1284 // this case. 1285 (*SwitchWeights)[0] += ThisCount; 1286 } 1287 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1288 1289 // Restore the appropriate insertion point. 1290 if (RestoreBB) 1291 Builder.SetInsertPoint(RestoreBB); 1292 else 1293 Builder.ClearInsertionPoint(); 1294 } 1295 1296 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 1297 // If there is no enclosing switch instance that we're aware of, then this 1298 // case statement and its block can be elided. This situation only happens 1299 // when we've constant-folded the switch, are emitting the constant case, 1300 // and part of the constant case includes another case statement. For 1301 // instance: switch (4) { case 4: do { case 5: } while (1); } 1302 if (!SwitchInsn) { 1303 EmitStmt(S.getSubStmt()); 1304 return; 1305 } 1306 1307 // Handle case ranges. 1308 if (S.getRHS()) { 1309 EmitCaseStmtRange(S); 1310 return; 1311 } 1312 1313 llvm::ConstantInt *CaseVal = 1314 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1315 1316 // If the body of the case is just a 'break', try to not emit an empty block. 1317 // If we're profiling or we're not optimizing, leave the block in for better 1318 // debug and coverage analysis. 1319 if (!CGM.getCodeGenOpts().hasProfileClangInstr() && 1320 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1321 isa<BreakStmt>(S.getSubStmt())) { 1322 JumpDest Block = BreakContinueStack.back().BreakBlock; 1323 1324 // Only do this optimization if there are no cleanups that need emitting. 1325 if (isObviouslyBranchWithoutCleanups(Block)) { 1326 if (SwitchWeights) 1327 SwitchWeights->push_back(getProfileCount(&S)); 1328 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1329 1330 // If there was a fallthrough into this case, make sure to redirect it to 1331 // the end of the switch as well. 1332 if (Builder.GetInsertBlock()) { 1333 Builder.CreateBr(Block.getBlock()); 1334 Builder.ClearInsertionPoint(); 1335 } 1336 return; 1337 } 1338 } 1339 1340 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1341 EmitBlockWithFallThrough(CaseDest, &S); 1342 if (SwitchWeights) 1343 SwitchWeights->push_back(getProfileCount(&S)); 1344 SwitchInsn->addCase(CaseVal, CaseDest); 1345 1346 // Recursively emitting the statement is acceptable, but is not wonderful for 1347 // code where we have many case statements nested together, i.e.: 1348 // case 1: 1349 // case 2: 1350 // case 3: etc. 1351 // Handling this recursively will create a new block for each case statement 1352 // that falls through to the next case which is IR intensive. It also causes 1353 // deep recursion which can run into stack depth limitations. Handle 1354 // sequential non-range case statements specially. 1355 const CaseStmt *CurCase = &S; 1356 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1357 1358 // Otherwise, iteratively add consecutive cases to this switch stmt. 1359 while (NextCase && NextCase->getRHS() == nullptr) { 1360 CurCase = NextCase; 1361 llvm::ConstantInt *CaseVal = 1362 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1363 1364 if (SwitchWeights) 1365 SwitchWeights->push_back(getProfileCount(NextCase)); 1366 if (CGM.getCodeGenOpts().hasProfileClangInstr()) { 1367 CaseDest = createBasicBlock("sw.bb"); 1368 EmitBlockWithFallThrough(CaseDest, &S); 1369 } 1370 1371 SwitchInsn->addCase(CaseVal, CaseDest); 1372 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1373 } 1374 1375 // Normal default recursion for non-cases. 1376 EmitStmt(CurCase->getSubStmt()); 1377 } 1378 1379 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 1380 // If there is no enclosing switch instance that we're aware of, then this 1381 // default statement can be elided. This situation only happens when we've 1382 // constant-folded the switch. 1383 if (!SwitchInsn) { 1384 EmitStmt(S.getSubStmt()); 1385 return; 1386 } 1387 1388 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1389 assert(DefaultBlock->empty() && 1390 "EmitDefaultStmt: Default block already defined?"); 1391 1392 EmitBlockWithFallThrough(DefaultBlock, &S); 1393 1394 EmitStmt(S.getSubStmt()); 1395 } 1396 1397 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1398 /// constant value that is being switched on, see if we can dead code eliminate 1399 /// the body of the switch to a simple series of statements to emit. Basically, 1400 /// on a switch (5) we want to find these statements: 1401 /// case 5: 1402 /// printf(...); <-- 1403 /// ++i; <-- 1404 /// break; 1405 /// 1406 /// and add them to the ResultStmts vector. If it is unsafe to do this 1407 /// transformation (for example, one of the elided statements contains a label 1408 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1409 /// should include statements after it (e.g. the printf() line is a substmt of 1410 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1411 /// statement, then return CSFC_Success. 1412 /// 1413 /// If Case is non-null, then we are looking for the specified case, checking 1414 /// that nothing we jump over contains labels. If Case is null, then we found 1415 /// the case and are looking for the break. 1416 /// 1417 /// If the recursive walk actually finds our Case, then we set FoundCase to 1418 /// true. 1419 /// 1420 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1421 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1422 const SwitchCase *Case, 1423 bool &FoundCase, 1424 SmallVectorImpl<const Stmt*> &ResultStmts) { 1425 // If this is a null statement, just succeed. 1426 if (!S) 1427 return Case ? CSFC_Success : CSFC_FallThrough; 1428 1429 // If this is the switchcase (case 4: or default) that we're looking for, then 1430 // we're in business. Just add the substatement. 1431 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1432 if (S == Case) { 1433 FoundCase = true; 1434 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1435 ResultStmts); 1436 } 1437 1438 // Otherwise, this is some other case or default statement, just ignore it. 1439 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1440 ResultStmts); 1441 } 1442 1443 // If we are in the live part of the code and we found our break statement, 1444 // return a success! 1445 if (!Case && isa<BreakStmt>(S)) 1446 return CSFC_Success; 1447 1448 // If this is a switch statement, then it might contain the SwitchCase, the 1449 // break, or neither. 1450 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1451 // Handle this as two cases: we might be looking for the SwitchCase (if so 1452 // the skipped statements must be skippable) or we might already have it. 1453 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1454 bool StartedInLiveCode = FoundCase; 1455 unsigned StartSize = ResultStmts.size(); 1456 1457 // If we've not found the case yet, scan through looking for it. 1458 if (Case) { 1459 // Keep track of whether we see a skipped declaration. The code could be 1460 // using the declaration even if it is skipped, so we can't optimize out 1461 // the decl if the kept statements might refer to it. 1462 bool HadSkippedDecl = false; 1463 1464 // If we're looking for the case, just see if we can skip each of the 1465 // substatements. 1466 for (; Case && I != E; ++I) { 1467 HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I); 1468 1469 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1470 case CSFC_Failure: return CSFC_Failure; 1471 case CSFC_Success: 1472 // A successful result means that either 1) that the statement doesn't 1473 // have the case and is skippable, or 2) does contain the case value 1474 // and also contains the break to exit the switch. In the later case, 1475 // we just verify the rest of the statements are elidable. 1476 if (FoundCase) { 1477 // If we found the case and skipped declarations, we can't do the 1478 // optimization. 1479 if (HadSkippedDecl) 1480 return CSFC_Failure; 1481 1482 for (++I; I != E; ++I) 1483 if (CodeGenFunction::ContainsLabel(*I, true)) 1484 return CSFC_Failure; 1485 return CSFC_Success; 1486 } 1487 break; 1488 case CSFC_FallThrough: 1489 // If we have a fallthrough condition, then we must have found the 1490 // case started to include statements. Consider the rest of the 1491 // statements in the compound statement as candidates for inclusion. 1492 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1493 // We recursively found Case, so we're not looking for it anymore. 1494 Case = nullptr; 1495 1496 // If we found the case and skipped declarations, we can't do the 1497 // optimization. 1498 if (HadSkippedDecl) 1499 return CSFC_Failure; 1500 break; 1501 } 1502 } 1503 1504 if (!FoundCase) 1505 return CSFC_Success; 1506 1507 assert(!HadSkippedDecl && "fallthrough after skipping decl"); 1508 } 1509 1510 // If we have statements in our range, then we know that the statements are 1511 // live and need to be added to the set of statements we're tracking. 1512 bool AnyDecls = false; 1513 for (; I != E; ++I) { 1514 AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I); 1515 1516 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1517 case CSFC_Failure: return CSFC_Failure; 1518 case CSFC_FallThrough: 1519 // A fallthrough result means that the statement was simple and just 1520 // included in ResultStmt, keep adding them afterwards. 1521 break; 1522 case CSFC_Success: 1523 // A successful result means that we found the break statement and 1524 // stopped statement inclusion. We just ensure that any leftover stmts 1525 // are skippable and return success ourselves. 1526 for (++I; I != E; ++I) 1527 if (CodeGenFunction::ContainsLabel(*I, true)) 1528 return CSFC_Failure; 1529 return CSFC_Success; 1530 } 1531 } 1532 1533 // If we're about to fall out of a scope without hitting a 'break;', we 1534 // can't perform the optimization if there were any decls in that scope 1535 // (we'd lose their end-of-lifetime). 1536 if (AnyDecls) { 1537 // If the entire compound statement was live, there's one more thing we 1538 // can try before giving up: emit the whole thing as a single statement. 1539 // We can do that unless the statement contains a 'break;'. 1540 // FIXME: Such a break must be at the end of a construct within this one. 1541 // We could emit this by just ignoring the BreakStmts entirely. 1542 if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) { 1543 ResultStmts.resize(StartSize); 1544 ResultStmts.push_back(S); 1545 } else { 1546 return CSFC_Failure; 1547 } 1548 } 1549 1550 return CSFC_FallThrough; 1551 } 1552 1553 // Okay, this is some other statement that we don't handle explicitly, like a 1554 // for statement or increment etc. If we are skipping over this statement, 1555 // just verify it doesn't have labels, which would make it invalid to elide. 1556 if (Case) { 1557 if (CodeGenFunction::ContainsLabel(S, true)) 1558 return CSFC_Failure; 1559 return CSFC_Success; 1560 } 1561 1562 // Otherwise, we want to include this statement. Everything is cool with that 1563 // so long as it doesn't contain a break out of the switch we're in. 1564 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1565 1566 // Otherwise, everything is great. Include the statement and tell the caller 1567 // that we fall through and include the next statement as well. 1568 ResultStmts.push_back(S); 1569 return CSFC_FallThrough; 1570 } 1571 1572 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1573 /// then invoke CollectStatementsForCase to find the list of statements to emit 1574 /// for a switch on constant. See the comment above CollectStatementsForCase 1575 /// for more details. 1576 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1577 const llvm::APSInt &ConstantCondValue, 1578 SmallVectorImpl<const Stmt*> &ResultStmts, 1579 ASTContext &C, 1580 const SwitchCase *&ResultCase) { 1581 // First step, find the switch case that is being branched to. We can do this 1582 // efficiently by scanning the SwitchCase list. 1583 const SwitchCase *Case = S.getSwitchCaseList(); 1584 const DefaultStmt *DefaultCase = nullptr; 1585 1586 for (; Case; Case = Case->getNextSwitchCase()) { 1587 // It's either a default or case. Just remember the default statement in 1588 // case we're not jumping to any numbered cases. 1589 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1590 DefaultCase = DS; 1591 continue; 1592 } 1593 1594 // Check to see if this case is the one we're looking for. 1595 const CaseStmt *CS = cast<CaseStmt>(Case); 1596 // Don't handle case ranges yet. 1597 if (CS->getRHS()) return false; 1598 1599 // If we found our case, remember it as 'case'. 1600 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1601 break; 1602 } 1603 1604 // If we didn't find a matching case, we use a default if it exists, or we 1605 // elide the whole switch body! 1606 if (!Case) { 1607 // It is safe to elide the body of the switch if it doesn't contain labels 1608 // etc. If it is safe, return successfully with an empty ResultStmts list. 1609 if (!DefaultCase) 1610 return !CodeGenFunction::ContainsLabel(&S); 1611 Case = DefaultCase; 1612 } 1613 1614 // Ok, we know which case is being jumped to, try to collect all the 1615 // statements that follow it. This can fail for a variety of reasons. Also, 1616 // check to see that the recursive walk actually found our case statement. 1617 // Insane cases like this can fail to find it in the recursive walk since we 1618 // don't handle every stmt kind: 1619 // switch (4) { 1620 // while (1) { 1621 // case 4: ... 1622 bool FoundCase = false; 1623 ResultCase = Case; 1624 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1625 ResultStmts) != CSFC_Failure && 1626 FoundCase; 1627 } 1628 1629 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1630 // Handle nested switch statements. 1631 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1632 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1633 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1634 1635 // See if we can constant fold the condition of the switch and therefore only 1636 // emit the live case statement (if any) of the switch. 1637 llvm::APSInt ConstantCondValue; 1638 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1639 SmallVector<const Stmt*, 4> CaseStmts; 1640 const SwitchCase *Case = nullptr; 1641 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1642 getContext(), Case)) { 1643 if (Case) 1644 incrementProfileCounter(Case); 1645 RunCleanupsScope ExecutedScope(*this); 1646 1647 if (S.getInit()) 1648 EmitStmt(S.getInit()); 1649 1650 // Emit the condition variable if needed inside the entire cleanup scope 1651 // used by this special case for constant folded switches. 1652 if (S.getConditionVariable()) 1653 EmitDecl(*S.getConditionVariable()); 1654 1655 // At this point, we are no longer "within" a switch instance, so 1656 // we can temporarily enforce this to ensure that any embedded case 1657 // statements are not emitted. 1658 SwitchInsn = nullptr; 1659 1660 // Okay, we can dead code eliminate everything except this case. Emit the 1661 // specified series of statements and we're good. 1662 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1663 EmitStmt(CaseStmts[i]); 1664 incrementProfileCounter(&S); 1665 1666 // Now we want to restore the saved switch instance so that nested 1667 // switches continue to function properly 1668 SwitchInsn = SavedSwitchInsn; 1669 1670 return; 1671 } 1672 } 1673 1674 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1675 1676 RunCleanupsScope ConditionScope(*this); 1677 1678 if (S.getInit()) 1679 EmitStmt(S.getInit()); 1680 1681 if (S.getConditionVariable()) 1682 EmitDecl(*S.getConditionVariable()); 1683 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1684 1685 // Create basic block to hold stuff that comes after switch 1686 // statement. We also need to create a default block now so that 1687 // explicit case ranges tests can have a place to jump to on 1688 // failure. 1689 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1690 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1691 if (PGO.haveRegionCounts()) { 1692 // Walk the SwitchCase list to find how many there are. 1693 uint64_t DefaultCount = 0; 1694 unsigned NumCases = 0; 1695 for (const SwitchCase *Case = S.getSwitchCaseList(); 1696 Case; 1697 Case = Case->getNextSwitchCase()) { 1698 if (isa<DefaultStmt>(Case)) 1699 DefaultCount = getProfileCount(Case); 1700 NumCases += 1; 1701 } 1702 SwitchWeights = new SmallVector<uint64_t, 16>(); 1703 SwitchWeights->reserve(NumCases); 1704 // The default needs to be first. We store the edge count, so we already 1705 // know the right weight. 1706 SwitchWeights->push_back(DefaultCount); 1707 } 1708 CaseRangeBlock = DefaultBlock; 1709 1710 // Clear the insertion point to indicate we are in unreachable code. 1711 Builder.ClearInsertionPoint(); 1712 1713 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1714 // then reuse last ContinueBlock. 1715 JumpDest OuterContinue; 1716 if (!BreakContinueStack.empty()) 1717 OuterContinue = BreakContinueStack.back().ContinueBlock; 1718 1719 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1720 1721 // Emit switch body. 1722 EmitStmt(S.getBody()); 1723 1724 BreakContinueStack.pop_back(); 1725 1726 // Update the default block in case explicit case range tests have 1727 // been chained on top. 1728 SwitchInsn->setDefaultDest(CaseRangeBlock); 1729 1730 // If a default was never emitted: 1731 if (!DefaultBlock->getParent()) { 1732 // If we have cleanups, emit the default block so that there's a 1733 // place to jump through the cleanups from. 1734 if (ConditionScope.requiresCleanups()) { 1735 EmitBlock(DefaultBlock); 1736 1737 // Otherwise, just forward the default block to the switch end. 1738 } else { 1739 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1740 delete DefaultBlock; 1741 } 1742 } 1743 1744 ConditionScope.ForceCleanup(); 1745 1746 // Emit continuation. 1747 EmitBlock(SwitchExit.getBlock(), true); 1748 incrementProfileCounter(&S); 1749 1750 // If the switch has a condition wrapped by __builtin_unpredictable, 1751 // create metadata that specifies that the switch is unpredictable. 1752 // Don't bother if not optimizing because that metadata would not be used. 1753 auto *Call = dyn_cast<CallExpr>(S.getCond()); 1754 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1755 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1756 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1757 llvm::MDBuilder MDHelper(getLLVMContext()); 1758 SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable, 1759 MDHelper.createUnpredictable()); 1760 } 1761 } 1762 1763 if (SwitchWeights) { 1764 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1765 "switch weights do not match switch cases"); 1766 // If there's only one jump destination there's no sense weighting it. 1767 if (SwitchWeights->size() > 1) 1768 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1769 createProfileWeights(*SwitchWeights)); 1770 delete SwitchWeights; 1771 } 1772 SwitchInsn = SavedSwitchInsn; 1773 SwitchWeights = SavedSwitchWeights; 1774 CaseRangeBlock = SavedCRBlock; 1775 } 1776 1777 static std::string 1778 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1779 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 1780 std::string Result; 1781 1782 while (*Constraint) { 1783 switch (*Constraint) { 1784 default: 1785 Result += Target.convertConstraint(Constraint); 1786 break; 1787 // Ignore these 1788 case '*': 1789 case '?': 1790 case '!': 1791 case '=': // Will see this and the following in mult-alt constraints. 1792 case '+': 1793 break; 1794 case '#': // Ignore the rest of the constraint alternative. 1795 while (Constraint[1] && Constraint[1] != ',') 1796 Constraint++; 1797 break; 1798 case '&': 1799 case '%': 1800 Result += *Constraint; 1801 while (Constraint[1] && Constraint[1] == *Constraint) 1802 Constraint++; 1803 break; 1804 case ',': 1805 Result += "|"; 1806 break; 1807 case 'g': 1808 Result += "imr"; 1809 break; 1810 case '[': { 1811 assert(OutCons && 1812 "Must pass output names to constraints with a symbolic name"); 1813 unsigned Index; 1814 bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index); 1815 assert(result && "Could not resolve symbolic name"); (void)result; 1816 Result += llvm::utostr(Index); 1817 break; 1818 } 1819 } 1820 1821 Constraint++; 1822 } 1823 1824 return Result; 1825 } 1826 1827 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1828 /// as using a particular register add that as a constraint that will be used 1829 /// in this asm stmt. 1830 static std::string 1831 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1832 const TargetInfo &Target, CodeGenModule &CGM, 1833 const AsmStmt &Stmt, const bool EarlyClobber) { 1834 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1835 if (!AsmDeclRef) 1836 return Constraint; 1837 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1838 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1839 if (!Variable) 1840 return Constraint; 1841 if (Variable->getStorageClass() != SC_Register) 1842 return Constraint; 1843 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1844 if (!Attr) 1845 return Constraint; 1846 StringRef Register = Attr->getLabel(); 1847 assert(Target.isValidGCCRegisterName(Register)); 1848 // We're using validateOutputConstraint here because we only care if 1849 // this is a register constraint. 1850 TargetInfo::ConstraintInfo Info(Constraint, ""); 1851 if (Target.validateOutputConstraint(Info) && 1852 !Info.allowsRegister()) { 1853 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1854 return Constraint; 1855 } 1856 // Canonicalize the register here before returning it. 1857 Register = Target.getNormalizedGCCRegisterName(Register); 1858 return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; 1859 } 1860 1861 llvm::Value* 1862 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 1863 LValue InputValue, QualType InputType, 1864 std::string &ConstraintStr, 1865 SourceLocation Loc) { 1866 llvm::Value *Arg; 1867 if (Info.allowsRegister() || !Info.allowsMemory()) { 1868 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 1869 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 1870 } else { 1871 llvm::Type *Ty = ConvertType(InputType); 1872 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 1873 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1874 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1875 Ty = llvm::PointerType::getUnqual(Ty); 1876 1877 Arg = Builder.CreateLoad( 1878 Builder.CreateBitCast(InputValue.getAddress(*this), Ty)); 1879 } else { 1880 Arg = InputValue.getPointer(*this); 1881 ConstraintStr += '*'; 1882 } 1883 } 1884 } else { 1885 Arg = InputValue.getPointer(*this); 1886 ConstraintStr += '*'; 1887 } 1888 1889 return Arg; 1890 } 1891 1892 llvm::Value* CodeGenFunction::EmitAsmInput( 1893 const TargetInfo::ConstraintInfo &Info, 1894 const Expr *InputExpr, 1895 std::string &ConstraintStr) { 1896 // If this can't be a register or memory, i.e., has to be a constant 1897 // (immediate or symbolic), try to emit it as such. 1898 if (!Info.allowsRegister() && !Info.allowsMemory()) { 1899 if (Info.requiresImmediateConstant()) { 1900 Expr::EvalResult EVResult; 1901 InputExpr->EvaluateAsRValue(EVResult, getContext(), true); 1902 1903 llvm::APSInt IntResult; 1904 if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(), 1905 getContext())) 1906 return llvm::ConstantInt::get(getLLVMContext(), IntResult); 1907 } 1908 1909 Expr::EvalResult Result; 1910 if (InputExpr->EvaluateAsInt(Result, getContext())) 1911 return llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt()); 1912 } 1913 1914 if (Info.allowsRegister() || !Info.allowsMemory()) 1915 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 1916 return EmitScalarExpr(InputExpr); 1917 if (InputExpr->getStmtClass() == Expr::CXXThisExprClass) 1918 return EmitScalarExpr(InputExpr); 1919 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1920 LValue Dest = EmitLValue(InputExpr); 1921 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 1922 InputExpr->getExprLoc()); 1923 } 1924 1925 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1926 /// asm call instruction. The !srcloc MDNode contains a list of constant 1927 /// integers which are the source locations of the start of each line in the 1928 /// asm. 1929 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1930 CodeGenFunction &CGF) { 1931 SmallVector<llvm::Metadata *, 8> Locs; 1932 // Add the location of the first line to the MDNode. 1933 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1934 CGF.Int32Ty, Str->getBeginLoc().getRawEncoding()))); 1935 StringRef StrVal = Str->getString(); 1936 if (!StrVal.empty()) { 1937 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1938 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 1939 unsigned StartToken = 0; 1940 unsigned ByteOffset = 0; 1941 1942 // Add the location of the start of each subsequent line of the asm to the 1943 // MDNode. 1944 for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) { 1945 if (StrVal[i] != '\n') continue; 1946 SourceLocation LineLoc = Str->getLocationOfByte( 1947 i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset); 1948 Locs.push_back(llvm::ConstantAsMetadata::get( 1949 llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding()))); 1950 } 1951 } 1952 1953 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1954 } 1955 1956 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect, 1957 bool ReadOnly, bool ReadNone, const AsmStmt &S, 1958 const std::vector<llvm::Type *> &ResultRegTypes, 1959 CodeGenFunction &CGF, 1960 std::vector<llvm::Value *> &RegResults) { 1961 Result.addAttribute(llvm::AttributeList::FunctionIndex, 1962 llvm::Attribute::NoUnwind); 1963 // Attach readnone and readonly attributes. 1964 if (!HasSideEffect) { 1965 if (ReadNone) 1966 Result.addAttribute(llvm::AttributeList::FunctionIndex, 1967 llvm::Attribute::ReadNone); 1968 else if (ReadOnly) 1969 Result.addAttribute(llvm::AttributeList::FunctionIndex, 1970 llvm::Attribute::ReadOnly); 1971 } 1972 1973 // Slap the source location of the inline asm into a !srcloc metadata on the 1974 // call. 1975 if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) 1976 Result.setMetadata("srcloc", 1977 getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF)); 1978 else { 1979 // At least put the line number on MS inline asm blobs. 1980 llvm::Constant *Loc = llvm::ConstantInt::get(CGF.Int32Ty, 1981 S.getAsmLoc().getRawEncoding()); 1982 Result.setMetadata("srcloc", 1983 llvm::MDNode::get(CGF.getLLVMContext(), 1984 llvm::ConstantAsMetadata::get(Loc))); 1985 } 1986 1987 if (CGF.getLangOpts().assumeFunctionsAreConvergent()) 1988 // Conservatively, mark all inline asm blocks in CUDA or OpenCL as 1989 // convergent (meaning, they may call an intrinsically convergent op, such 1990 // as bar.sync, and so can't have certain optimizations applied around 1991 // them). 1992 Result.addAttribute(llvm::AttributeList::FunctionIndex, 1993 llvm::Attribute::Convergent); 1994 // Extract all of the register value results from the asm. 1995 if (ResultRegTypes.size() == 1) { 1996 RegResults.push_back(&Result); 1997 } else { 1998 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 1999 llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult"); 2000 RegResults.push_back(Tmp); 2001 } 2002 } 2003 } 2004 2005 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 2006 // Assemble the final asm string. 2007 std::string AsmString = S.generateAsmString(getContext()); 2008 2009 // Get all the output and input constraints together. 2010 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 2011 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 2012 2013 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 2014 StringRef Name; 2015 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 2016 Name = GAS->getOutputName(i); 2017 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 2018 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 2019 assert(IsValid && "Failed to parse output constraint"); 2020 OutputConstraintInfos.push_back(Info); 2021 } 2022 2023 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2024 StringRef Name; 2025 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 2026 Name = GAS->getInputName(i); 2027 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 2028 bool IsValid = 2029 getTarget().validateInputConstraint(OutputConstraintInfos, Info); 2030 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 2031 InputConstraintInfos.push_back(Info); 2032 } 2033 2034 std::string Constraints; 2035 2036 std::vector<LValue> ResultRegDests; 2037 std::vector<QualType> ResultRegQualTys; 2038 std::vector<llvm::Type *> ResultRegTypes; 2039 std::vector<llvm::Type *> ResultTruncRegTypes; 2040 std::vector<llvm::Type *> ArgTypes; 2041 std::vector<llvm::Value*> Args; 2042 llvm::BitVector ResultTypeRequiresCast; 2043 2044 // Keep track of inout constraints. 2045 std::string InOutConstraints; 2046 std::vector<llvm::Value*> InOutArgs; 2047 std::vector<llvm::Type*> InOutArgTypes; 2048 2049 // Keep track of out constraints for tied input operand. 2050 std::vector<std::string> OutputConstraints; 2051 2052 // An inline asm can be marked readonly if it meets the following conditions: 2053 // - it doesn't have any sideeffects 2054 // - it doesn't clobber memory 2055 // - it doesn't return a value by-reference 2056 // It can be marked readnone if it doesn't have any input memory constraints 2057 // in addition to meeting the conditions listed above. 2058 bool ReadOnly = true, ReadNone = true; 2059 2060 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 2061 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 2062 2063 // Simplify the output constraint. 2064 std::string OutputConstraint(S.getOutputConstraint(i)); 2065 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 2066 getTarget(), &OutputConstraintInfos); 2067 2068 const Expr *OutExpr = S.getOutputExpr(i); 2069 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 2070 2071 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 2072 getTarget(), CGM, S, 2073 Info.earlyClobber()); 2074 OutputConstraints.push_back(OutputConstraint); 2075 LValue Dest = EmitLValue(OutExpr); 2076 if (!Constraints.empty()) 2077 Constraints += ','; 2078 2079 // If this is a register output, then make the inline asm return it 2080 // by-value. If this is a memory result, return the value by-reference. 2081 bool isScalarizableAggregate = 2082 hasAggregateEvaluationKind(OutExpr->getType()); 2083 if (!Info.allowsMemory() && (hasScalarEvaluationKind(OutExpr->getType()) || 2084 isScalarizableAggregate)) { 2085 Constraints += "=" + OutputConstraint; 2086 ResultRegQualTys.push_back(OutExpr->getType()); 2087 ResultRegDests.push_back(Dest); 2088 ResultTruncRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 2089 if (Info.allowsRegister() && isScalarizableAggregate) { 2090 ResultTypeRequiresCast.push_back(true); 2091 unsigned Size = getContext().getTypeSize(OutExpr->getType()); 2092 llvm::Type *ConvTy = llvm::IntegerType::get(getLLVMContext(), Size); 2093 ResultRegTypes.push_back(ConvTy); 2094 } else { 2095 ResultTypeRequiresCast.push_back(false); 2096 ResultRegTypes.push_back(ResultTruncRegTypes.back()); 2097 } 2098 // If this output is tied to an input, and if the input is larger, then 2099 // we need to set the actual result type of the inline asm node to be the 2100 // same as the input type. 2101 if (Info.hasMatchingInput()) { 2102 unsigned InputNo; 2103 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 2104 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 2105 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 2106 break; 2107 } 2108 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 2109 2110 QualType InputTy = S.getInputExpr(InputNo)->getType(); 2111 QualType OutputType = OutExpr->getType(); 2112 2113 uint64_t InputSize = getContext().getTypeSize(InputTy); 2114 if (getContext().getTypeSize(OutputType) < InputSize) { 2115 // Form the asm to return the value as a larger integer or fp type. 2116 ResultRegTypes.back() = ConvertType(InputTy); 2117 } 2118 } 2119 if (llvm::Type* AdjTy = 2120 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2121 ResultRegTypes.back())) 2122 ResultRegTypes.back() = AdjTy; 2123 else { 2124 CGM.getDiags().Report(S.getAsmLoc(), 2125 diag::err_asm_invalid_type_in_input) 2126 << OutExpr->getType() << OutputConstraint; 2127 } 2128 2129 // Update largest vector width for any vector types. 2130 if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back())) 2131 LargestVectorWidth = 2132 std::max((uint64_t)LargestVectorWidth, 2133 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2134 } else { 2135 ArgTypes.push_back(Dest.getAddress(*this).getType()); 2136 Args.push_back(Dest.getPointer(*this)); 2137 Constraints += "=*"; 2138 Constraints += OutputConstraint; 2139 ReadOnly = ReadNone = false; 2140 } 2141 2142 if (Info.isReadWrite()) { 2143 InOutConstraints += ','; 2144 2145 const Expr *InputExpr = S.getOutputExpr(i); 2146 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 2147 InOutConstraints, 2148 InputExpr->getExprLoc()); 2149 2150 if (llvm::Type* AdjTy = 2151 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2152 Arg->getType())) 2153 Arg = Builder.CreateBitCast(Arg, AdjTy); 2154 2155 // Update largest vector width for any vector types. 2156 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2157 LargestVectorWidth = 2158 std::max((uint64_t)LargestVectorWidth, 2159 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2160 if (Info.allowsRegister()) 2161 InOutConstraints += llvm::utostr(i); 2162 else 2163 InOutConstraints += OutputConstraint; 2164 2165 InOutArgTypes.push_back(Arg->getType()); 2166 InOutArgs.push_back(Arg); 2167 } 2168 } 2169 2170 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 2171 // to the return value slot. Only do this when returning in registers. 2172 if (isa<MSAsmStmt>(&S)) { 2173 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 2174 if (RetAI.isDirect() || RetAI.isExtend()) { 2175 // Make a fake lvalue for the return value slot. 2176 LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy); 2177 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 2178 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 2179 ResultRegDests, AsmString, S.getNumOutputs()); 2180 SawAsmBlock = true; 2181 } 2182 } 2183 2184 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2185 const Expr *InputExpr = S.getInputExpr(i); 2186 2187 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 2188 2189 if (Info.allowsMemory()) 2190 ReadNone = false; 2191 2192 if (!Constraints.empty()) 2193 Constraints += ','; 2194 2195 // Simplify the input constraint. 2196 std::string InputConstraint(S.getInputConstraint(i)); 2197 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 2198 &OutputConstraintInfos); 2199 2200 InputConstraint = AddVariableConstraints( 2201 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), 2202 getTarget(), CGM, S, false /* No EarlyClobber */); 2203 2204 std::string ReplaceConstraint (InputConstraint); 2205 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 2206 2207 // If this input argument is tied to a larger output result, extend the 2208 // input to be the same size as the output. The LLVM backend wants to see 2209 // the input and output of a matching constraint be the same size. Note 2210 // that GCC does not define what the top bits are here. We use zext because 2211 // that is usually cheaper, but LLVM IR should really get an anyext someday. 2212 if (Info.hasTiedOperand()) { 2213 unsigned Output = Info.getTiedOperand(); 2214 QualType OutputType = S.getOutputExpr(Output)->getType(); 2215 QualType InputTy = InputExpr->getType(); 2216 2217 if (getContext().getTypeSize(OutputType) > 2218 getContext().getTypeSize(InputTy)) { 2219 // Use ptrtoint as appropriate so that we can do our extension. 2220 if (isa<llvm::PointerType>(Arg->getType())) 2221 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 2222 llvm::Type *OutputTy = ConvertType(OutputType); 2223 if (isa<llvm::IntegerType>(OutputTy)) 2224 Arg = Builder.CreateZExt(Arg, OutputTy); 2225 else if (isa<llvm::PointerType>(OutputTy)) 2226 Arg = Builder.CreateZExt(Arg, IntPtrTy); 2227 else { 2228 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 2229 Arg = Builder.CreateFPExt(Arg, OutputTy); 2230 } 2231 } 2232 // Deal with the tied operands' constraint code in adjustInlineAsmType. 2233 ReplaceConstraint = OutputConstraints[Output]; 2234 } 2235 if (llvm::Type* AdjTy = 2236 getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint, 2237 Arg->getType())) 2238 Arg = Builder.CreateBitCast(Arg, AdjTy); 2239 else 2240 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 2241 << InputExpr->getType() << InputConstraint; 2242 2243 // Update largest vector width for any vector types. 2244 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2245 LargestVectorWidth = 2246 std::max((uint64_t)LargestVectorWidth, 2247 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2248 2249 ArgTypes.push_back(Arg->getType()); 2250 Args.push_back(Arg); 2251 Constraints += InputConstraint; 2252 } 2253 2254 // Labels 2255 SmallVector<llvm::BasicBlock *, 16> Transfer; 2256 llvm::BasicBlock *Fallthrough = nullptr; 2257 bool IsGCCAsmGoto = false; 2258 if (const auto *GS = dyn_cast<GCCAsmStmt>(&S)) { 2259 IsGCCAsmGoto = GS->isAsmGoto(); 2260 if (IsGCCAsmGoto) { 2261 for (const auto *E : GS->labels()) { 2262 JumpDest Dest = getJumpDestForLabel(E->getLabel()); 2263 Transfer.push_back(Dest.getBlock()); 2264 llvm::BlockAddress *BA = 2265 llvm::BlockAddress::get(CurFn, Dest.getBlock()); 2266 Args.push_back(BA); 2267 ArgTypes.push_back(BA->getType()); 2268 if (!Constraints.empty()) 2269 Constraints += ','; 2270 Constraints += 'X'; 2271 } 2272 Fallthrough = createBasicBlock("asm.fallthrough"); 2273 } 2274 } 2275 2276 // Append the "input" part of inout constraints last. 2277 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 2278 ArgTypes.push_back(InOutArgTypes[i]); 2279 Args.push_back(InOutArgs[i]); 2280 } 2281 Constraints += InOutConstraints; 2282 2283 // Clobbers 2284 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 2285 StringRef Clobber = S.getClobber(i); 2286 2287 if (Clobber == "memory") 2288 ReadOnly = ReadNone = false; 2289 else if (Clobber != "cc") { 2290 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 2291 if (CGM.getCodeGenOpts().StackClashProtector && 2292 getTarget().isSPRegName(Clobber)) { 2293 CGM.getDiags().Report(S.getAsmLoc(), 2294 diag::warn_stack_clash_protection_inline_asm); 2295 } 2296 } 2297 2298 if (!Constraints.empty()) 2299 Constraints += ','; 2300 2301 Constraints += "~{"; 2302 Constraints += Clobber; 2303 Constraints += '}'; 2304 } 2305 2306 // Add machine specific clobbers 2307 std::string MachineClobbers = getTarget().getClobbers(); 2308 if (!MachineClobbers.empty()) { 2309 if (!Constraints.empty()) 2310 Constraints += ','; 2311 Constraints += MachineClobbers; 2312 } 2313 2314 llvm::Type *ResultType; 2315 if (ResultRegTypes.empty()) 2316 ResultType = VoidTy; 2317 else if (ResultRegTypes.size() == 1) 2318 ResultType = ResultRegTypes[0]; 2319 else 2320 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2321 2322 llvm::FunctionType *FTy = 2323 llvm::FunctionType::get(ResultType, ArgTypes, false); 2324 2325 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2326 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2327 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 2328 llvm::InlineAsm *IA = 2329 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 2330 /* IsAlignStack */ false, AsmDialect); 2331 std::vector<llvm::Value*> RegResults; 2332 if (IsGCCAsmGoto) { 2333 llvm::CallBrInst *Result = 2334 Builder.CreateCallBr(IA, Fallthrough, Transfer, Args); 2335 EmitBlock(Fallthrough); 2336 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly, 2337 ReadNone, S, ResultRegTypes, *this, RegResults); 2338 } else { 2339 llvm::CallInst *Result = 2340 Builder.CreateCall(IA, Args, getBundlesForFunclet(IA)); 2341 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly, 2342 ReadNone, S, ResultRegTypes, *this, RegResults); 2343 } 2344 2345 assert(RegResults.size() == ResultRegTypes.size()); 2346 assert(RegResults.size() == ResultTruncRegTypes.size()); 2347 assert(RegResults.size() == ResultRegDests.size()); 2348 // ResultRegDests can be also populated by addReturnRegisterOutputs() above, 2349 // in which case its size may grow. 2350 assert(ResultTypeRequiresCast.size() <= ResultRegDests.size()); 2351 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2352 llvm::Value *Tmp = RegResults[i]; 2353 2354 // If the result type of the LLVM IR asm doesn't match the result type of 2355 // the expression, do the conversion. 2356 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2357 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2358 2359 // Truncate the integer result to the right size, note that TruncTy can be 2360 // a pointer. 2361 if (TruncTy->isFloatingPointTy()) 2362 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2363 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2364 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2365 Tmp = Builder.CreateTrunc(Tmp, 2366 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2367 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2368 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2369 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2370 Tmp = Builder.CreatePtrToInt(Tmp, 2371 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2372 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2373 } else if (TruncTy->isIntegerTy()) { 2374 Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy); 2375 } else if (TruncTy->isVectorTy()) { 2376 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2377 } 2378 } 2379 2380 LValue Dest = ResultRegDests[i]; 2381 // ResultTypeRequiresCast elements correspond to the first 2382 // ResultTypeRequiresCast.size() elements of RegResults. 2383 if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) { 2384 unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]); 2385 Address A = Builder.CreateBitCast(Dest.getAddress(*this), 2386 ResultRegTypes[i]->getPointerTo()); 2387 QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false); 2388 if (Ty.isNull()) { 2389 const Expr *OutExpr = S.getOutputExpr(i); 2390 CGM.Error( 2391 OutExpr->getExprLoc(), 2392 "impossible constraint in asm: can't store value into a register"); 2393 return; 2394 } 2395 Dest = MakeAddrLValue(A, Ty); 2396 } 2397 EmitStoreThroughLValue(RValue::get(Tmp), Dest); 2398 } 2399 } 2400 2401 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 2402 const RecordDecl *RD = S.getCapturedRecordDecl(); 2403 QualType RecordTy = getContext().getRecordType(RD); 2404 2405 // Initialize the captured struct. 2406 LValue SlotLV = 2407 MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2408 2409 RecordDecl::field_iterator CurField = RD->field_begin(); 2410 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 2411 E = S.capture_init_end(); 2412 I != E; ++I, ++CurField) { 2413 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2414 if (CurField->hasCapturedVLAType()) { 2415 auto VAT = CurField->getCapturedVLAType(); 2416 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2417 } else { 2418 EmitInitializerForField(*CurField, LV, *I); 2419 } 2420 } 2421 2422 return SlotLV; 2423 } 2424 2425 /// Generate an outlined function for the body of a CapturedStmt, store any 2426 /// captured variables into the captured struct, and call the outlined function. 2427 llvm::Function * 2428 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2429 LValue CapStruct = InitCapturedStruct(S); 2430 2431 // Emit the CapturedDecl 2432 CodeGenFunction CGF(CGM, true); 2433 CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); 2434 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2435 delete CGF.CapturedStmtInfo; 2436 2437 // Emit call to the helper function. 2438 EmitCallOrInvoke(F, CapStruct.getPointer(*this)); 2439 2440 return F; 2441 } 2442 2443 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2444 LValue CapStruct = InitCapturedStruct(S); 2445 return CapStruct.getAddress(*this); 2446 } 2447 2448 /// Creates the outlined function for a CapturedStmt. 2449 llvm::Function * 2450 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2451 assert(CapturedStmtInfo && 2452 "CapturedStmtInfo should be set when generating the captured function"); 2453 const CapturedDecl *CD = S.getCapturedDecl(); 2454 const RecordDecl *RD = S.getCapturedRecordDecl(); 2455 SourceLocation Loc = S.getBeginLoc(); 2456 assert(CD->hasBody() && "missing CapturedDecl body"); 2457 2458 // Build the argument list. 2459 ASTContext &Ctx = CGM.getContext(); 2460 FunctionArgList Args; 2461 Args.append(CD->param_begin(), CD->param_end()); 2462 2463 // Create the function declaration. 2464 const CGFunctionInfo &FuncInfo = 2465 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 2466 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2467 2468 llvm::Function *F = 2469 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2470 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2471 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2472 if (CD->isNothrow()) 2473 F->addFnAttr(llvm::Attribute::NoUnwind); 2474 2475 // Generate the function. 2476 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(), 2477 CD->getBody()->getBeginLoc()); 2478 // Set the context parameter in CapturedStmtInfo. 2479 Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam()); 2480 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2481 2482 // Initialize variable-length arrays. 2483 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2484 Ctx.getTagDeclType(RD)); 2485 for (auto *FD : RD->fields()) { 2486 if (FD->hasCapturedVLAType()) { 2487 auto *ExprArg = 2488 EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc()) 2489 .getScalarVal(); 2490 auto VAT = FD->getCapturedVLAType(); 2491 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 2492 } 2493 } 2494 2495 // If 'this' is captured, load it into CXXThisValue. 2496 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2497 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2498 LValue ThisLValue = EmitLValueForField(Base, FD); 2499 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2500 } 2501 2502 PGO.assignRegionCounters(GlobalDecl(CD), F); 2503 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2504 FinishFunction(CD->getBodyRBrace()); 2505 2506 return F; 2507 } 2508