1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Stmt nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/Expr.h" 20 #include "clang/AST/Stmt.h" 21 #include "clang/AST/StmtVisitor.h" 22 #include "clang/Basic/Builtins.h" 23 #include "clang/Basic/DiagnosticSema.h" 24 #include "clang/Basic/PrettyStackTrace.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/InlineAsm.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/MDBuilder.h" 33 #include "llvm/Support/SaveAndRestore.h" 34 35 using namespace clang; 36 using namespace CodeGen; 37 38 //===----------------------------------------------------------------------===// 39 // Statement Emission 40 //===----------------------------------------------------------------------===// 41 42 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 43 if (CGDebugInfo *DI = getDebugInfo()) { 44 SourceLocation Loc; 45 Loc = S->getBeginLoc(); 46 DI->EmitLocation(Builder, Loc); 47 48 LastStopPoint = Loc; 49 } 50 } 51 52 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) { 53 assert(S && "Null statement?"); 54 PGO.setCurrentStmt(S); 55 56 // These statements have their own debug info handling. 57 if (EmitSimpleStmt(S, Attrs)) 58 return; 59 60 // Check if we are generating unreachable code. 61 if (!HaveInsertPoint()) { 62 // If so, and the statement doesn't contain a label, then we do not need to 63 // generate actual code. This is safe because (1) the current point is 64 // unreachable, so we don't need to execute the code, and (2) we've already 65 // handled the statements which update internal data structures (like the 66 // local variable map) which could be used by subsequent statements. 67 if (!ContainsLabel(S)) { 68 // Verify that any decl statements were handled as simple, they may be in 69 // scope of subsequent reachable statements. 70 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 71 return; 72 } 73 74 // Otherwise, make a new block to hold the code. 75 EnsureInsertPoint(); 76 } 77 78 // Generate a stoppoint if we are emitting debug info. 79 EmitStopPoint(S); 80 81 // Ignore all OpenMP directives except for simd if OpenMP with Simd is 82 // enabled. 83 if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) { 84 if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) { 85 EmitSimpleOMPExecutableDirective(*D); 86 return; 87 } 88 } 89 90 switch (S->getStmtClass()) { 91 case Stmt::NoStmtClass: 92 case Stmt::CXXCatchStmtClass: 93 case Stmt::SEHExceptStmtClass: 94 case Stmt::SEHFinallyStmtClass: 95 case Stmt::MSDependentExistsStmtClass: 96 llvm_unreachable("invalid statement class to emit generically"); 97 case Stmt::NullStmtClass: 98 case Stmt::CompoundStmtClass: 99 case Stmt::DeclStmtClass: 100 case Stmt::LabelStmtClass: 101 case Stmt::AttributedStmtClass: 102 case Stmt::GotoStmtClass: 103 case Stmt::BreakStmtClass: 104 case Stmt::ContinueStmtClass: 105 case Stmt::DefaultStmtClass: 106 case Stmt::CaseStmtClass: 107 case Stmt::SEHLeaveStmtClass: 108 llvm_unreachable("should have emitted these statements as simple"); 109 110 #define STMT(Type, Base) 111 #define ABSTRACT_STMT(Op) 112 #define EXPR(Type, Base) \ 113 case Stmt::Type##Class: 114 #include "clang/AST/StmtNodes.inc" 115 { 116 // Remember the block we came in on. 117 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 118 assert(incoming && "expression emission must have an insertion point"); 119 120 EmitIgnoredExpr(cast<Expr>(S)); 121 122 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 123 assert(outgoing && "expression emission cleared block!"); 124 125 // The expression emitters assume (reasonably!) that the insertion 126 // point is always set. To maintain that, the call-emission code 127 // for noreturn functions has to enter a new block with no 128 // predecessors. We want to kill that block and mark the current 129 // insertion point unreachable in the common case of a call like 130 // "exit();". Since expression emission doesn't otherwise create 131 // blocks with no predecessors, we can just test for that. 132 // However, we must be careful not to do this to our incoming 133 // block, because *statement* emission does sometimes create 134 // reachable blocks which will have no predecessors until later in 135 // the function. This occurs with, e.g., labels that are not 136 // reachable by fallthrough. 137 if (incoming != outgoing && outgoing->use_empty()) { 138 outgoing->eraseFromParent(); 139 Builder.ClearInsertionPoint(); 140 } 141 break; 142 } 143 144 case Stmt::IndirectGotoStmtClass: 145 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 146 147 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 148 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break; 149 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S), Attrs); break; 150 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S), Attrs); break; 151 152 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 153 154 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 155 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 156 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 157 case Stmt::CoroutineBodyStmtClass: 158 EmitCoroutineBody(cast<CoroutineBodyStmt>(*S)); 159 break; 160 case Stmt::CoreturnStmtClass: 161 EmitCoreturnStmt(cast<CoreturnStmt>(*S)); 162 break; 163 case Stmt::CapturedStmtClass: { 164 const CapturedStmt *CS = cast<CapturedStmt>(S); 165 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 166 } 167 break; 168 case Stmt::ObjCAtTryStmtClass: 169 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 170 break; 171 case Stmt::ObjCAtCatchStmtClass: 172 llvm_unreachable( 173 "@catch statements should be handled by EmitObjCAtTryStmt"); 174 case Stmt::ObjCAtFinallyStmtClass: 175 llvm_unreachable( 176 "@finally statements should be handled by EmitObjCAtTryStmt"); 177 case Stmt::ObjCAtThrowStmtClass: 178 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 179 break; 180 case Stmt::ObjCAtSynchronizedStmtClass: 181 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 182 break; 183 case Stmt::ObjCForCollectionStmtClass: 184 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 185 break; 186 case Stmt::ObjCAutoreleasePoolStmtClass: 187 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 188 break; 189 190 case Stmt::CXXTryStmtClass: 191 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 192 break; 193 case Stmt::CXXForRangeStmtClass: 194 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs); 195 break; 196 case Stmt::SEHTryStmtClass: 197 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 198 break; 199 case Stmt::OMPCanonicalLoopClass: 200 EmitOMPCanonicalLoop(cast<OMPCanonicalLoop>(S)); 201 break; 202 case Stmt::OMPParallelDirectiveClass: 203 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 204 break; 205 case Stmt::OMPSimdDirectiveClass: 206 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 207 break; 208 case Stmt::OMPTileDirectiveClass: 209 EmitOMPTileDirective(cast<OMPTileDirective>(*S)); 210 break; 211 case Stmt::OMPUnrollDirectiveClass: 212 EmitOMPUnrollDirective(cast<OMPUnrollDirective>(*S)); 213 break; 214 case Stmt::OMPForDirectiveClass: 215 EmitOMPForDirective(cast<OMPForDirective>(*S)); 216 break; 217 case Stmt::OMPForSimdDirectiveClass: 218 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 219 break; 220 case Stmt::OMPSectionsDirectiveClass: 221 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 222 break; 223 case Stmt::OMPSectionDirectiveClass: 224 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 225 break; 226 case Stmt::OMPSingleDirectiveClass: 227 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 228 break; 229 case Stmt::OMPMasterDirectiveClass: 230 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 231 break; 232 case Stmt::OMPCriticalDirectiveClass: 233 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 234 break; 235 case Stmt::OMPParallelForDirectiveClass: 236 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 237 break; 238 case Stmt::OMPParallelForSimdDirectiveClass: 239 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 240 break; 241 case Stmt::OMPParallelMasterDirectiveClass: 242 EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S)); 243 break; 244 case Stmt::OMPParallelSectionsDirectiveClass: 245 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 246 break; 247 case Stmt::OMPTaskDirectiveClass: 248 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 249 break; 250 case Stmt::OMPTaskyieldDirectiveClass: 251 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 252 break; 253 case Stmt::OMPBarrierDirectiveClass: 254 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 255 break; 256 case Stmt::OMPTaskwaitDirectiveClass: 257 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 258 break; 259 case Stmt::OMPTaskgroupDirectiveClass: 260 EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); 261 break; 262 case Stmt::OMPFlushDirectiveClass: 263 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 264 break; 265 case Stmt::OMPDepobjDirectiveClass: 266 EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S)); 267 break; 268 case Stmt::OMPScanDirectiveClass: 269 EmitOMPScanDirective(cast<OMPScanDirective>(*S)); 270 break; 271 case Stmt::OMPOrderedDirectiveClass: 272 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 273 break; 274 case Stmt::OMPAtomicDirectiveClass: 275 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 276 break; 277 case Stmt::OMPTargetDirectiveClass: 278 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 279 break; 280 case Stmt::OMPTeamsDirectiveClass: 281 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 282 break; 283 case Stmt::OMPCancellationPointDirectiveClass: 284 EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); 285 break; 286 case Stmt::OMPCancelDirectiveClass: 287 EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); 288 break; 289 case Stmt::OMPTargetDataDirectiveClass: 290 EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); 291 break; 292 case Stmt::OMPTargetEnterDataDirectiveClass: 293 EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S)); 294 break; 295 case Stmt::OMPTargetExitDataDirectiveClass: 296 EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S)); 297 break; 298 case Stmt::OMPTargetParallelDirectiveClass: 299 EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S)); 300 break; 301 case Stmt::OMPTargetParallelForDirectiveClass: 302 EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S)); 303 break; 304 case Stmt::OMPTaskLoopDirectiveClass: 305 EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S)); 306 break; 307 case Stmt::OMPTaskLoopSimdDirectiveClass: 308 EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S)); 309 break; 310 case Stmt::OMPMasterTaskLoopDirectiveClass: 311 EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S)); 312 break; 313 case Stmt::OMPMasterTaskLoopSimdDirectiveClass: 314 EmitOMPMasterTaskLoopSimdDirective( 315 cast<OMPMasterTaskLoopSimdDirective>(*S)); 316 break; 317 case Stmt::OMPParallelMasterTaskLoopDirectiveClass: 318 EmitOMPParallelMasterTaskLoopDirective( 319 cast<OMPParallelMasterTaskLoopDirective>(*S)); 320 break; 321 case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass: 322 EmitOMPParallelMasterTaskLoopSimdDirective( 323 cast<OMPParallelMasterTaskLoopSimdDirective>(*S)); 324 break; 325 case Stmt::OMPDistributeDirectiveClass: 326 EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S)); 327 break; 328 case Stmt::OMPTargetUpdateDirectiveClass: 329 EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S)); 330 break; 331 case Stmt::OMPDistributeParallelForDirectiveClass: 332 EmitOMPDistributeParallelForDirective( 333 cast<OMPDistributeParallelForDirective>(*S)); 334 break; 335 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 336 EmitOMPDistributeParallelForSimdDirective( 337 cast<OMPDistributeParallelForSimdDirective>(*S)); 338 break; 339 case Stmt::OMPDistributeSimdDirectiveClass: 340 EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S)); 341 break; 342 case Stmt::OMPTargetParallelForSimdDirectiveClass: 343 EmitOMPTargetParallelForSimdDirective( 344 cast<OMPTargetParallelForSimdDirective>(*S)); 345 break; 346 case Stmt::OMPTargetSimdDirectiveClass: 347 EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S)); 348 break; 349 case Stmt::OMPTeamsDistributeDirectiveClass: 350 EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S)); 351 break; 352 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 353 EmitOMPTeamsDistributeSimdDirective( 354 cast<OMPTeamsDistributeSimdDirective>(*S)); 355 break; 356 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: 357 EmitOMPTeamsDistributeParallelForSimdDirective( 358 cast<OMPTeamsDistributeParallelForSimdDirective>(*S)); 359 break; 360 case Stmt::OMPTeamsDistributeParallelForDirectiveClass: 361 EmitOMPTeamsDistributeParallelForDirective( 362 cast<OMPTeamsDistributeParallelForDirective>(*S)); 363 break; 364 case Stmt::OMPTargetTeamsDirectiveClass: 365 EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S)); 366 break; 367 case Stmt::OMPTargetTeamsDistributeDirectiveClass: 368 EmitOMPTargetTeamsDistributeDirective( 369 cast<OMPTargetTeamsDistributeDirective>(*S)); 370 break; 371 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: 372 EmitOMPTargetTeamsDistributeParallelForDirective( 373 cast<OMPTargetTeamsDistributeParallelForDirective>(*S)); 374 break; 375 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: 376 EmitOMPTargetTeamsDistributeParallelForSimdDirective( 377 cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S)); 378 break; 379 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: 380 EmitOMPTargetTeamsDistributeSimdDirective( 381 cast<OMPTargetTeamsDistributeSimdDirective>(*S)); 382 break; 383 case Stmt::OMPInteropDirectiveClass: 384 llvm_unreachable("Interop directive not supported yet."); 385 break; 386 case Stmt::OMPDispatchDirectiveClass: 387 llvm_unreachable("Dispatch directive not supported yet."); 388 break; 389 case Stmt::OMPMaskedDirectiveClass: 390 EmitOMPMaskedDirective(cast<OMPMaskedDirective>(*S)); 391 break; 392 } 393 } 394 395 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S, 396 ArrayRef<const Attr *> Attrs) { 397 switch (S->getStmtClass()) { 398 default: 399 return false; 400 case Stmt::NullStmtClass: 401 break; 402 case Stmt::CompoundStmtClass: 403 EmitCompoundStmt(cast<CompoundStmt>(*S)); 404 break; 405 case Stmt::DeclStmtClass: 406 EmitDeclStmt(cast<DeclStmt>(*S)); 407 break; 408 case Stmt::LabelStmtClass: 409 EmitLabelStmt(cast<LabelStmt>(*S)); 410 break; 411 case Stmt::AttributedStmtClass: 412 EmitAttributedStmt(cast<AttributedStmt>(*S)); 413 break; 414 case Stmt::GotoStmtClass: 415 EmitGotoStmt(cast<GotoStmt>(*S)); 416 break; 417 case Stmt::BreakStmtClass: 418 EmitBreakStmt(cast<BreakStmt>(*S)); 419 break; 420 case Stmt::ContinueStmtClass: 421 EmitContinueStmt(cast<ContinueStmt>(*S)); 422 break; 423 case Stmt::DefaultStmtClass: 424 EmitDefaultStmt(cast<DefaultStmt>(*S), Attrs); 425 break; 426 case Stmt::CaseStmtClass: 427 EmitCaseStmt(cast<CaseStmt>(*S), Attrs); 428 break; 429 case Stmt::SEHLeaveStmtClass: 430 EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); 431 break; 432 } 433 return true; 434 } 435 436 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 437 /// this captures the expression result of the last sub-statement and returns it 438 /// (for use by the statement expression extension). 439 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 440 AggValueSlot AggSlot) { 441 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 442 "LLVM IR generation of compound statement ('{}')"); 443 444 // Keep track of the current cleanup stack depth, including debug scopes. 445 LexicalScope Scope(*this, S.getSourceRange()); 446 447 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 448 } 449 450 Address 451 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 452 bool GetLast, 453 AggValueSlot AggSlot) { 454 455 const Stmt *ExprResult = S.getStmtExprResult(); 456 assert((!GetLast || (GetLast && ExprResult)) && 457 "If GetLast is true then the CompoundStmt must have a StmtExprResult"); 458 459 Address RetAlloca = Address::invalid(); 460 461 for (auto *CurStmt : S.body()) { 462 if (GetLast && ExprResult == CurStmt) { 463 // We have to special case labels here. They are statements, but when put 464 // at the end of a statement expression, they yield the value of their 465 // subexpression. Handle this by walking through all labels we encounter, 466 // emitting them before we evaluate the subexpr. 467 // Similar issues arise for attributed statements. 468 while (!isa<Expr>(ExprResult)) { 469 if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) { 470 EmitLabel(LS->getDecl()); 471 ExprResult = LS->getSubStmt(); 472 } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) { 473 // FIXME: Update this if we ever have attributes that affect the 474 // semantics of an expression. 475 ExprResult = AS->getSubStmt(); 476 } else { 477 llvm_unreachable("unknown value statement"); 478 } 479 } 480 481 EnsureInsertPoint(); 482 483 const Expr *E = cast<Expr>(ExprResult); 484 QualType ExprTy = E->getType(); 485 if (hasAggregateEvaluationKind(ExprTy)) { 486 EmitAggExpr(E, AggSlot); 487 } else { 488 // We can't return an RValue here because there might be cleanups at 489 // the end of the StmtExpr. Because of that, we have to emit the result 490 // here into a temporary alloca. 491 RetAlloca = CreateMemTemp(ExprTy); 492 EmitAnyExprToMem(E, RetAlloca, Qualifiers(), 493 /*IsInit*/ false); 494 } 495 } else { 496 EmitStmt(CurStmt); 497 } 498 } 499 500 return RetAlloca; 501 } 502 503 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 504 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 505 506 // If there is a cleanup stack, then we it isn't worth trying to 507 // simplify this block (we would need to remove it from the scope map 508 // and cleanup entry). 509 if (!EHStack.empty()) 510 return; 511 512 // Can only simplify direct branches. 513 if (!BI || !BI->isUnconditional()) 514 return; 515 516 // Can only simplify empty blocks. 517 if (BI->getIterator() != BB->begin()) 518 return; 519 520 BB->replaceAllUsesWith(BI->getSuccessor(0)); 521 BI->eraseFromParent(); 522 BB->eraseFromParent(); 523 } 524 525 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 526 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 527 528 // Fall out of the current block (if necessary). 529 EmitBranch(BB); 530 531 if (IsFinished && BB->use_empty()) { 532 delete BB; 533 return; 534 } 535 536 // Place the block after the current block, if possible, or else at 537 // the end of the function. 538 if (CurBB && CurBB->getParent()) 539 CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB); 540 else 541 CurFn->getBasicBlockList().push_back(BB); 542 Builder.SetInsertPoint(BB); 543 } 544 545 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 546 // Emit a branch from the current block to the target one if this 547 // was a real block. If this was just a fall-through block after a 548 // terminator, don't emit it. 549 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 550 551 if (!CurBB || CurBB->getTerminator()) { 552 // If there is no insert point or the previous block is already 553 // terminated, don't touch it. 554 } else { 555 // Otherwise, create a fall-through branch. 556 Builder.CreateBr(Target); 557 } 558 559 Builder.ClearInsertionPoint(); 560 } 561 562 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 563 bool inserted = false; 564 for (llvm::User *u : block->users()) { 565 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 566 CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(), 567 block); 568 inserted = true; 569 break; 570 } 571 } 572 573 if (!inserted) 574 CurFn->getBasicBlockList().push_back(block); 575 576 Builder.SetInsertPoint(block); 577 } 578 579 CodeGenFunction::JumpDest 580 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 581 JumpDest &Dest = LabelMap[D]; 582 if (Dest.isValid()) return Dest; 583 584 // Create, but don't insert, the new block. 585 Dest = JumpDest(createBasicBlock(D->getName()), 586 EHScopeStack::stable_iterator::invalid(), 587 NextCleanupDestIndex++); 588 return Dest; 589 } 590 591 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 592 // Add this label to the current lexical scope if we're within any 593 // normal cleanups. Jumps "in" to this label --- when permitted by 594 // the language --- may need to be routed around such cleanups. 595 if (EHStack.hasNormalCleanups() && CurLexicalScope) 596 CurLexicalScope->addLabel(D); 597 598 JumpDest &Dest = LabelMap[D]; 599 600 // If we didn't need a forward reference to this label, just go 601 // ahead and create a destination at the current scope. 602 if (!Dest.isValid()) { 603 Dest = getJumpDestInCurrentScope(D->getName()); 604 605 // Otherwise, we need to give this label a target depth and remove 606 // it from the branch-fixups list. 607 } else { 608 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 609 Dest.setScopeDepth(EHStack.stable_begin()); 610 ResolveBranchFixups(Dest.getBlock()); 611 } 612 613 EmitBlock(Dest.getBlock()); 614 615 // Emit debug info for labels. 616 if (CGDebugInfo *DI = getDebugInfo()) { 617 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) { 618 DI->setLocation(D->getLocation()); 619 DI->EmitLabel(D, Builder); 620 } 621 } 622 623 incrementProfileCounter(D->getStmt()); 624 } 625 626 /// Change the cleanup scope of the labels in this lexical scope to 627 /// match the scope of the enclosing context. 628 void CodeGenFunction::LexicalScope::rescopeLabels() { 629 assert(!Labels.empty()); 630 EHScopeStack::stable_iterator innermostScope 631 = CGF.EHStack.getInnermostNormalCleanup(); 632 633 // Change the scope depth of all the labels. 634 for (SmallVectorImpl<const LabelDecl*>::const_iterator 635 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 636 assert(CGF.LabelMap.count(*i)); 637 JumpDest &dest = CGF.LabelMap.find(*i)->second; 638 assert(dest.getScopeDepth().isValid()); 639 assert(innermostScope.encloses(dest.getScopeDepth())); 640 dest.setScopeDepth(innermostScope); 641 } 642 643 // Reparent the labels if the new scope also has cleanups. 644 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 645 ParentScope->Labels.append(Labels.begin(), Labels.end()); 646 } 647 } 648 649 650 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 651 EmitLabel(S.getDecl()); 652 653 // IsEHa - emit eha.scope.begin if it's a side entry of a scope 654 if (getLangOpts().EHAsynch && S.isSideEntry()) 655 EmitSehCppScopeBegin(); 656 657 EmitStmt(S.getSubStmt()); 658 } 659 660 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 661 bool nomerge = false; 662 const CallExpr *musttail = nullptr; 663 664 for (const auto *A : S.getAttrs()) { 665 if (A->getKind() == attr::NoMerge) { 666 nomerge = true; 667 } 668 if (A->getKind() == attr::MustTail) { 669 const Stmt *Sub = S.getSubStmt(); 670 const ReturnStmt *R = cast<ReturnStmt>(Sub); 671 musttail = cast<CallExpr>(R->getRetValue()->IgnoreParens()); 672 } 673 } 674 SaveAndRestore<bool> save_nomerge(InNoMergeAttributedStmt, nomerge); 675 SaveAndRestore<const CallExpr *> save_musttail(MustTailCall, musttail); 676 EmitStmt(S.getSubStmt(), S.getAttrs()); 677 } 678 679 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 680 // If this code is reachable then emit a stop point (if generating 681 // debug info). We have to do this ourselves because we are on the 682 // "simple" statement path. 683 if (HaveInsertPoint()) 684 EmitStopPoint(&S); 685 686 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 687 } 688 689 690 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 691 if (const LabelDecl *Target = S.getConstantTarget()) { 692 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 693 return; 694 } 695 696 // Ensure that we have an i8* for our PHI node. 697 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 698 Int8PtrTy, "addr"); 699 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 700 701 // Get the basic block for the indirect goto. 702 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 703 704 // The first instruction in the block has to be the PHI for the switch dest, 705 // add an entry for this branch. 706 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 707 708 EmitBranch(IndGotoBB); 709 } 710 711 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 712 // C99 6.8.4.1: The first substatement is executed if the expression compares 713 // unequal to 0. The condition must be a scalar type. 714 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 715 716 if (S.getInit()) 717 EmitStmt(S.getInit()); 718 719 if (S.getConditionVariable()) 720 EmitDecl(*S.getConditionVariable()); 721 722 // If the condition constant folds and can be elided, try to avoid emitting 723 // the condition and the dead arm of the if/else. 724 bool CondConstant; 725 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant, 726 S.isConstexpr())) { 727 // Figure out which block (then or else) is executed. 728 const Stmt *Executed = S.getThen(); 729 const Stmt *Skipped = S.getElse(); 730 if (!CondConstant) // Condition false? 731 std::swap(Executed, Skipped); 732 733 // If the skipped block has no labels in it, just emit the executed block. 734 // This avoids emitting dead code and simplifies the CFG substantially. 735 if (S.isConstexpr() || !ContainsLabel(Skipped)) { 736 if (CondConstant) 737 incrementProfileCounter(&S); 738 if (Executed) { 739 RunCleanupsScope ExecutedScope(*this); 740 EmitStmt(Executed); 741 } 742 return; 743 } 744 } 745 746 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 747 // the conditional branch. 748 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 749 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 750 llvm::BasicBlock *ElseBlock = ContBlock; 751 if (S.getElse()) 752 ElseBlock = createBasicBlock("if.else"); 753 754 // Prefer the PGO based weights over the likelihood attribute. 755 // When the build isn't optimized the metadata isn't used, so don't generate 756 // it. 757 Stmt::Likelihood LH = Stmt::LH_None; 758 uint64_t Count = getProfileCount(S.getThen()); 759 if (!Count && CGM.getCodeGenOpts().OptimizationLevel) 760 LH = Stmt::getLikelihood(S.getThen(), S.getElse()); 761 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Count, LH); 762 763 // Emit the 'then' code. 764 EmitBlock(ThenBlock); 765 incrementProfileCounter(&S); 766 { 767 RunCleanupsScope ThenScope(*this); 768 EmitStmt(S.getThen()); 769 } 770 EmitBranch(ContBlock); 771 772 // Emit the 'else' code if present. 773 if (const Stmt *Else = S.getElse()) { 774 { 775 // There is no need to emit line number for an unconditional branch. 776 auto NL = ApplyDebugLocation::CreateEmpty(*this); 777 EmitBlock(ElseBlock); 778 } 779 { 780 RunCleanupsScope ElseScope(*this); 781 EmitStmt(Else); 782 } 783 { 784 // There is no need to emit line number for an unconditional branch. 785 auto NL = ApplyDebugLocation::CreateEmpty(*this); 786 EmitBranch(ContBlock); 787 } 788 } 789 790 // Emit the continuation block for code after the if. 791 EmitBlock(ContBlock, true); 792 } 793 794 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 795 ArrayRef<const Attr *> WhileAttrs) { 796 // Emit the header for the loop, which will also become 797 // the continue target. 798 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 799 EmitBlock(LoopHeader.getBlock()); 800 801 // Create an exit block for when the condition fails, which will 802 // also become the break target. 803 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 804 805 // Store the blocks to use for break and continue. 806 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 807 808 // C++ [stmt.while]p2: 809 // When the condition of a while statement is a declaration, the 810 // scope of the variable that is declared extends from its point 811 // of declaration (3.3.2) to the end of the while statement. 812 // [...] 813 // The object created in a condition is destroyed and created 814 // with each iteration of the loop. 815 RunCleanupsScope ConditionScope(*this); 816 817 if (S.getConditionVariable()) 818 EmitDecl(*S.getConditionVariable()); 819 820 // Evaluate the conditional in the while header. C99 6.8.5.1: The 821 // evaluation of the controlling expression takes place before each 822 // execution of the loop body. 823 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 824 825 // while(1) is common, avoid extra exit blocks. Be sure 826 // to correctly handle break/continue though. 827 llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal); 828 bool CondIsConstInt = C != nullptr; 829 bool EmitBoolCondBranch = !CondIsConstInt || !C->isOne(); 830 const SourceRange &R = S.getSourceRange(); 831 LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(), 832 WhileAttrs, SourceLocToDebugLoc(R.getBegin()), 833 SourceLocToDebugLoc(R.getEnd()), 834 checkIfLoopMustProgress(CondIsConstInt)); 835 836 // As long as the condition is true, go to the loop body. 837 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 838 if (EmitBoolCondBranch) { 839 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 840 if (ConditionScope.requiresCleanups()) 841 ExitBlock = createBasicBlock("while.exit"); 842 llvm::MDNode *Weights = 843 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 844 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 845 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 846 BoolCondVal, Stmt::getLikelihood(S.getBody())); 847 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, Weights); 848 849 if (ExitBlock != LoopExit.getBlock()) { 850 EmitBlock(ExitBlock); 851 EmitBranchThroughCleanup(LoopExit); 852 } 853 } else if (const Attr *A = Stmt::getLikelihoodAttr(S.getBody())) { 854 CGM.getDiags().Report(A->getLocation(), 855 diag::warn_attribute_has_no_effect_on_infinite_loop) 856 << A << A->getRange(); 857 CGM.getDiags().Report( 858 S.getWhileLoc(), 859 diag::note_attribute_has_no_effect_on_infinite_loop_here) 860 << SourceRange(S.getWhileLoc(), S.getRParenLoc()); 861 } 862 863 // Emit the loop body. We have to emit this in a cleanup scope 864 // because it might be a singleton DeclStmt. 865 { 866 RunCleanupsScope BodyScope(*this); 867 EmitBlock(LoopBody); 868 incrementProfileCounter(&S); 869 EmitStmt(S.getBody()); 870 } 871 872 BreakContinueStack.pop_back(); 873 874 // Immediately force cleanup. 875 ConditionScope.ForceCleanup(); 876 877 EmitStopPoint(&S); 878 // Branch to the loop header again. 879 EmitBranch(LoopHeader.getBlock()); 880 881 LoopStack.pop(); 882 883 // Emit the exit block. 884 EmitBlock(LoopExit.getBlock(), true); 885 886 // The LoopHeader typically is just a branch if we skipped emitting 887 // a branch, try to erase it. 888 if (!EmitBoolCondBranch) 889 SimplifyForwardingBlocks(LoopHeader.getBlock()); 890 } 891 892 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 893 ArrayRef<const Attr *> DoAttrs) { 894 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 895 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 896 897 uint64_t ParentCount = getCurrentProfileCount(); 898 899 // Store the blocks to use for break and continue. 900 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 901 902 // Emit the body of the loop. 903 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 904 905 EmitBlockWithFallThrough(LoopBody, &S); 906 { 907 RunCleanupsScope BodyScope(*this); 908 EmitStmt(S.getBody()); 909 } 910 911 EmitBlock(LoopCond.getBlock()); 912 913 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 914 // after each execution of the loop body." 915 916 // Evaluate the conditional in the while header. 917 // C99 6.8.5p2/p4: The first substatement is executed if the expression 918 // compares unequal to 0. The condition must be a scalar type. 919 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 920 921 BreakContinueStack.pop_back(); 922 923 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 924 // to correctly handle break/continue though. 925 llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal); 926 bool CondIsConstInt = C; 927 bool EmitBoolCondBranch = !C || !C->isZero(); 928 929 const SourceRange &R = S.getSourceRange(); 930 LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs, 931 SourceLocToDebugLoc(R.getBegin()), 932 SourceLocToDebugLoc(R.getEnd()), 933 checkIfLoopMustProgress(CondIsConstInt)); 934 935 // As long as the condition is true, iterate the loop. 936 if (EmitBoolCondBranch) { 937 uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; 938 Builder.CreateCondBr( 939 BoolCondVal, LoopBody, LoopExit.getBlock(), 940 createProfileWeightsForLoop(S.getCond(), BackedgeCount)); 941 } 942 943 LoopStack.pop(); 944 945 // Emit the exit block. 946 EmitBlock(LoopExit.getBlock()); 947 948 // The DoCond block typically is just a branch if we skipped 949 // emitting a branch, try to erase it. 950 if (!EmitBoolCondBranch) 951 SimplifyForwardingBlocks(LoopCond.getBlock()); 952 } 953 954 void CodeGenFunction::EmitForStmt(const ForStmt &S, 955 ArrayRef<const Attr *> ForAttrs) { 956 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 957 958 LexicalScope ForScope(*this, S.getSourceRange()); 959 960 // Evaluate the first part before the loop. 961 if (S.getInit()) 962 EmitStmt(S.getInit()); 963 964 // Start the loop with a block that tests the condition. 965 // If there's an increment, the continue scope will be overwritten 966 // later. 967 JumpDest CondDest = getJumpDestInCurrentScope("for.cond"); 968 llvm::BasicBlock *CondBlock = CondDest.getBlock(); 969 EmitBlock(CondBlock); 970 971 Expr::EvalResult Result; 972 bool CondIsConstInt = 973 !S.getCond() || S.getCond()->EvaluateAsInt(Result, getContext()); 974 975 const SourceRange &R = S.getSourceRange(); 976 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs, 977 SourceLocToDebugLoc(R.getBegin()), 978 SourceLocToDebugLoc(R.getEnd()), 979 checkIfLoopMustProgress(CondIsConstInt)); 980 981 // Create a cleanup scope for the condition variable cleanups. 982 LexicalScope ConditionScope(*this, S.getSourceRange()); 983 984 // If the for loop doesn't have an increment we can just use the condition as 985 // the continue block. Otherwise, if there is no condition variable, we can 986 // form the continue block now. If there is a condition variable, we can't 987 // form the continue block until after we've emitted the condition, because 988 // the condition is in scope in the increment, but Sema's jump diagnostics 989 // ensure that there are no continues from the condition variable that jump 990 // to the loop increment. 991 JumpDest Continue; 992 if (!S.getInc()) 993 Continue = CondDest; 994 else if (!S.getConditionVariable()) 995 Continue = getJumpDestInCurrentScope("for.inc"); 996 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 997 998 if (S.getCond()) { 999 // If the for statement has a condition scope, emit the local variable 1000 // declaration. 1001 if (S.getConditionVariable()) { 1002 EmitDecl(*S.getConditionVariable()); 1003 1004 // We have entered the condition variable's scope, so we're now able to 1005 // jump to the continue block. 1006 Continue = S.getInc() ? getJumpDestInCurrentScope("for.inc") : CondDest; 1007 BreakContinueStack.back().ContinueBlock = Continue; 1008 } 1009 1010 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1011 // If there are any cleanups between here and the loop-exit scope, 1012 // create a block to stage a loop exit along. 1013 if (ForScope.requiresCleanups()) 1014 ExitBlock = createBasicBlock("for.cond.cleanup"); 1015 1016 // As long as the condition is true, iterate the loop. 1017 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 1018 1019 // C99 6.8.5p2/p4: The first substatement is executed if the expression 1020 // compares unequal to 0. The condition must be a scalar type. 1021 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 1022 llvm::MDNode *Weights = 1023 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 1024 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 1025 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 1026 BoolCondVal, Stmt::getLikelihood(S.getBody())); 1027 1028 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights); 1029 1030 if (ExitBlock != LoopExit.getBlock()) { 1031 EmitBlock(ExitBlock); 1032 EmitBranchThroughCleanup(LoopExit); 1033 } 1034 1035 EmitBlock(ForBody); 1036 } else { 1037 // Treat it as a non-zero constant. Don't even create a new block for the 1038 // body, just fall into it. 1039 } 1040 incrementProfileCounter(&S); 1041 1042 { 1043 // Create a separate cleanup scope for the body, in case it is not 1044 // a compound statement. 1045 RunCleanupsScope BodyScope(*this); 1046 EmitStmt(S.getBody()); 1047 } 1048 1049 // If there is an increment, emit it next. 1050 if (S.getInc()) { 1051 EmitBlock(Continue.getBlock()); 1052 EmitStmt(S.getInc()); 1053 } 1054 1055 BreakContinueStack.pop_back(); 1056 1057 ConditionScope.ForceCleanup(); 1058 1059 EmitStopPoint(&S); 1060 EmitBranch(CondBlock); 1061 1062 ForScope.ForceCleanup(); 1063 1064 LoopStack.pop(); 1065 1066 // Emit the fall-through block. 1067 EmitBlock(LoopExit.getBlock(), true); 1068 } 1069 1070 void 1071 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 1072 ArrayRef<const Attr *> ForAttrs) { 1073 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 1074 1075 LexicalScope ForScope(*this, S.getSourceRange()); 1076 1077 // Evaluate the first pieces before the loop. 1078 if (S.getInit()) 1079 EmitStmt(S.getInit()); 1080 EmitStmt(S.getRangeStmt()); 1081 EmitStmt(S.getBeginStmt()); 1082 EmitStmt(S.getEndStmt()); 1083 1084 // Start the loop with a block that tests the condition. 1085 // If there's an increment, the continue scope will be overwritten 1086 // later. 1087 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 1088 EmitBlock(CondBlock); 1089 1090 const SourceRange &R = S.getSourceRange(); 1091 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs, 1092 SourceLocToDebugLoc(R.getBegin()), 1093 SourceLocToDebugLoc(R.getEnd())); 1094 1095 // If there are any cleanups between here and the loop-exit scope, 1096 // create a block to stage a loop exit along. 1097 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1098 if (ForScope.requiresCleanups()) 1099 ExitBlock = createBasicBlock("for.cond.cleanup"); 1100 1101 // The loop body, consisting of the specified body and the loop variable. 1102 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 1103 1104 // The body is executed if the expression, contextually converted 1105 // to bool, is true. 1106 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 1107 llvm::MDNode *Weights = 1108 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 1109 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 1110 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 1111 BoolCondVal, Stmt::getLikelihood(S.getBody())); 1112 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights); 1113 1114 if (ExitBlock != LoopExit.getBlock()) { 1115 EmitBlock(ExitBlock); 1116 EmitBranchThroughCleanup(LoopExit); 1117 } 1118 1119 EmitBlock(ForBody); 1120 incrementProfileCounter(&S); 1121 1122 // Create a block for the increment. In case of a 'continue', we jump there. 1123 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 1124 1125 // Store the blocks to use for break and continue. 1126 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1127 1128 { 1129 // Create a separate cleanup scope for the loop variable and body. 1130 LexicalScope BodyScope(*this, S.getSourceRange()); 1131 EmitStmt(S.getLoopVarStmt()); 1132 EmitStmt(S.getBody()); 1133 } 1134 1135 EmitStopPoint(&S); 1136 // If there is an increment, emit it next. 1137 EmitBlock(Continue.getBlock()); 1138 EmitStmt(S.getInc()); 1139 1140 BreakContinueStack.pop_back(); 1141 1142 EmitBranch(CondBlock); 1143 1144 ForScope.ForceCleanup(); 1145 1146 LoopStack.pop(); 1147 1148 // Emit the fall-through block. 1149 EmitBlock(LoopExit.getBlock(), true); 1150 } 1151 1152 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 1153 if (RV.isScalar()) { 1154 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 1155 } else if (RV.isAggregate()) { 1156 LValue Dest = MakeAddrLValue(ReturnValue, Ty); 1157 LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty); 1158 EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue()); 1159 } else { 1160 EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty), 1161 /*init*/ true); 1162 } 1163 EmitBranchThroughCleanup(ReturnBlock); 1164 } 1165 1166 namespace { 1167 // RAII struct used to save and restore a return statment's result expression. 1168 struct SaveRetExprRAII { 1169 SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF) 1170 : OldRetExpr(CGF.RetExpr), CGF(CGF) { 1171 CGF.RetExpr = RetExpr; 1172 } 1173 ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; } 1174 const Expr *OldRetExpr; 1175 CodeGenFunction &CGF; 1176 }; 1177 } // namespace 1178 1179 /// If we have 'return f(...);', where both caller and callee are SwiftAsync, 1180 /// codegen it as 'tail call ...; ret void;'. 1181 static void makeTailCallIfSwiftAsync(const CallExpr *CE, CGBuilderTy &Builder, 1182 const CGFunctionInfo *CurFnInfo) { 1183 auto calleeQualType = CE->getCallee()->getType(); 1184 const FunctionType *calleeType = nullptr; 1185 if (calleeQualType->isFunctionPointerType() || 1186 calleeQualType->isFunctionReferenceType() || 1187 calleeQualType->isBlockPointerType() || 1188 calleeQualType->isMemberFunctionPointerType()) { 1189 calleeType = calleeQualType->getPointeeType()->castAs<FunctionType>(); 1190 } else if (auto *ty = dyn_cast<FunctionType>(calleeQualType)) { 1191 calleeType = ty; 1192 } else if (auto CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { 1193 if (auto methodDecl = CMCE->getMethodDecl()) { 1194 // getMethodDecl() doesn't handle member pointers at the moment. 1195 calleeType = methodDecl->getType()->castAs<FunctionType>(); 1196 } else { 1197 return; 1198 } 1199 } else { 1200 return; 1201 } 1202 if (calleeType->getCallConv() == CallingConv::CC_SwiftAsync && 1203 (CurFnInfo->getASTCallingConvention() == CallingConv::CC_SwiftAsync)) { 1204 auto CI = cast<llvm::CallInst>(&Builder.GetInsertBlock()->back()); 1205 CI->setTailCallKind(llvm::CallInst::TCK_MustTail); 1206 Builder.CreateRetVoid(); 1207 Builder.ClearInsertionPoint(); 1208 } 1209 } 1210 1211 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 1212 /// if the function returns void, or may be missing one if the function returns 1213 /// non-void. Fun stuff :). 1214 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 1215 if (requiresReturnValueCheck()) { 1216 llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc()); 1217 auto *SLocPtr = 1218 new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false, 1219 llvm::GlobalVariable::PrivateLinkage, SLoc); 1220 SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1221 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr); 1222 assert(ReturnLocation.isValid() && "No valid return location"); 1223 Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy), 1224 ReturnLocation); 1225 } 1226 1227 // Returning from an outlined SEH helper is UB, and we already warn on it. 1228 if (IsOutlinedSEHHelper) { 1229 Builder.CreateUnreachable(); 1230 Builder.ClearInsertionPoint(); 1231 } 1232 1233 // Emit the result value, even if unused, to evaluate the side effects. 1234 const Expr *RV = S.getRetValue(); 1235 1236 // Record the result expression of the return statement. The recorded 1237 // expression is used to determine whether a block capture's lifetime should 1238 // end at the end of the full expression as opposed to the end of the scope 1239 // enclosing the block expression. 1240 // 1241 // This permits a small, easily-implemented exception to our over-conservative 1242 // rules about not jumping to statements following block literals with 1243 // non-trivial cleanups. 1244 SaveRetExprRAII SaveRetExpr(RV, *this); 1245 1246 RunCleanupsScope cleanupScope(*this); 1247 if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV)) 1248 RV = EWC->getSubExpr(); 1249 // FIXME: Clean this up by using an LValue for ReturnTemp, 1250 // EmitStoreThroughLValue, and EmitAnyExpr. 1251 // Check if the NRVO candidate was not globalized in OpenMP mode. 1252 if (getLangOpts().ElideConstructors && S.getNRVOCandidate() && 1253 S.getNRVOCandidate()->isNRVOVariable() && 1254 (!getLangOpts().OpenMP || 1255 !CGM.getOpenMPRuntime() 1256 .getAddressOfLocalVariable(*this, S.getNRVOCandidate()) 1257 .isValid())) { 1258 // Apply the named return value optimization for this return statement, 1259 // which means doing nothing: the appropriate result has already been 1260 // constructed into the NRVO variable. 1261 1262 // If there is an NRVO flag for this variable, set it to 1 into indicate 1263 // that the cleanup code should not destroy the variable. 1264 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1265 Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag); 1266 } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) { 1267 // Make sure not to return anything, but evaluate the expression 1268 // for side effects. 1269 if (RV) { 1270 EmitAnyExpr(RV); 1271 if (auto *CE = dyn_cast<CallExpr>(RV)) 1272 makeTailCallIfSwiftAsync(CE, Builder, CurFnInfo); 1273 } 1274 } else if (!RV) { 1275 // Do nothing (return value is left uninitialized) 1276 } else if (FnRetTy->isReferenceType()) { 1277 // If this function returns a reference, take the address of the expression 1278 // rather than the value. 1279 RValue Result = EmitReferenceBindingToExpr(RV); 1280 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1281 } else { 1282 switch (getEvaluationKind(RV->getType())) { 1283 case TEK_Scalar: 1284 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1285 break; 1286 case TEK_Complex: 1287 EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()), 1288 /*isInit*/ true); 1289 break; 1290 case TEK_Aggregate: 1291 EmitAggExpr(RV, AggValueSlot::forAddr( 1292 ReturnValue, Qualifiers(), 1293 AggValueSlot::IsDestructed, 1294 AggValueSlot::DoesNotNeedGCBarriers, 1295 AggValueSlot::IsNotAliased, 1296 getOverlapForReturnValue())); 1297 break; 1298 } 1299 } 1300 1301 ++NumReturnExprs; 1302 if (!RV || RV->isEvaluatable(getContext())) 1303 ++NumSimpleReturnExprs; 1304 1305 cleanupScope.ForceCleanup(); 1306 EmitBranchThroughCleanup(ReturnBlock); 1307 } 1308 1309 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1310 // As long as debug info is modeled with instructions, we have to ensure we 1311 // have a place to insert here and write the stop point here. 1312 if (HaveInsertPoint()) 1313 EmitStopPoint(&S); 1314 1315 for (const auto *I : S.decls()) 1316 EmitDecl(*I); 1317 } 1318 1319 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1320 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1321 1322 // If this code is reachable then emit a stop point (if generating 1323 // debug info). We have to do this ourselves because we are on the 1324 // "simple" statement path. 1325 if (HaveInsertPoint()) 1326 EmitStopPoint(&S); 1327 1328 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1329 } 1330 1331 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1332 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1333 1334 // If this code is reachable then emit a stop point (if generating 1335 // debug info). We have to do this ourselves because we are on the 1336 // "simple" statement path. 1337 if (HaveInsertPoint()) 1338 EmitStopPoint(&S); 1339 1340 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1341 } 1342 1343 /// EmitCaseStmtRange - If case statement range is not too big then 1344 /// add multiple cases to switch instruction, one for each value within 1345 /// the range. If range is too big then emit "if" condition check. 1346 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S, 1347 ArrayRef<const Attr *> Attrs) { 1348 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1349 1350 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1351 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1352 1353 // Emit the code for this case. We do this first to make sure it is 1354 // properly chained from our predecessor before generating the 1355 // switch machinery to enter this block. 1356 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1357 EmitBlockWithFallThrough(CaseDest, &S); 1358 EmitStmt(S.getSubStmt()); 1359 1360 // If range is empty, do nothing. 1361 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1362 return; 1363 1364 Stmt::Likelihood LH = Stmt::getLikelihood(Attrs); 1365 llvm::APInt Range = RHS - LHS; 1366 // FIXME: parameters such as this should not be hardcoded. 1367 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1368 // Range is small enough to add multiple switch instruction cases. 1369 uint64_t Total = getProfileCount(&S); 1370 unsigned NCases = Range.getZExtValue() + 1; 1371 // We only have one region counter for the entire set of cases here, so we 1372 // need to divide the weights evenly between the generated cases, ensuring 1373 // that the total weight is preserved. E.g., a weight of 5 over three cases 1374 // will be distributed as weights of 2, 2, and 1. 1375 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1376 for (unsigned I = 0; I != NCases; ++I) { 1377 if (SwitchWeights) 1378 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1379 else if (SwitchLikelihood) 1380 SwitchLikelihood->push_back(LH); 1381 1382 if (Rem) 1383 Rem--; 1384 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1385 ++LHS; 1386 } 1387 return; 1388 } 1389 1390 // The range is too big. Emit "if" condition into a new block, 1391 // making sure to save and restore the current insertion point. 1392 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1393 1394 // Push this test onto the chain of range checks (which terminates 1395 // in the default basic block). The switch's default will be changed 1396 // to the top of this chain after switch emission is complete. 1397 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1398 CaseRangeBlock = createBasicBlock("sw.caserange"); 1399 1400 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1401 Builder.SetInsertPoint(CaseRangeBlock); 1402 1403 // Emit range check. 1404 llvm::Value *Diff = 1405 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1406 llvm::Value *Cond = 1407 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1408 1409 llvm::MDNode *Weights = nullptr; 1410 if (SwitchWeights) { 1411 uint64_t ThisCount = getProfileCount(&S); 1412 uint64_t DefaultCount = (*SwitchWeights)[0]; 1413 Weights = createProfileWeights(ThisCount, DefaultCount); 1414 1415 // Since we're chaining the switch default through each large case range, we 1416 // need to update the weight for the default, ie, the first case, to include 1417 // this case. 1418 (*SwitchWeights)[0] += ThisCount; 1419 } else if (SwitchLikelihood) 1420 Cond = emitCondLikelihoodViaExpectIntrinsic(Cond, LH); 1421 1422 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1423 1424 // Restore the appropriate insertion point. 1425 if (RestoreBB) 1426 Builder.SetInsertPoint(RestoreBB); 1427 else 1428 Builder.ClearInsertionPoint(); 1429 } 1430 1431 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S, 1432 ArrayRef<const Attr *> Attrs) { 1433 // If there is no enclosing switch instance that we're aware of, then this 1434 // case statement and its block can be elided. This situation only happens 1435 // when we've constant-folded the switch, are emitting the constant case, 1436 // and part of the constant case includes another case statement. For 1437 // instance: switch (4) { case 4: do { case 5: } while (1); } 1438 if (!SwitchInsn) { 1439 EmitStmt(S.getSubStmt()); 1440 return; 1441 } 1442 1443 // Handle case ranges. 1444 if (S.getRHS()) { 1445 EmitCaseStmtRange(S, Attrs); 1446 return; 1447 } 1448 1449 llvm::ConstantInt *CaseVal = 1450 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1451 if (SwitchLikelihood) 1452 SwitchLikelihood->push_back(Stmt::getLikelihood(Attrs)); 1453 1454 // If the body of the case is just a 'break', try to not emit an empty block. 1455 // If we're profiling or we're not optimizing, leave the block in for better 1456 // debug and coverage analysis. 1457 if (!CGM.getCodeGenOpts().hasProfileClangInstr() && 1458 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1459 isa<BreakStmt>(S.getSubStmt())) { 1460 JumpDest Block = BreakContinueStack.back().BreakBlock; 1461 1462 // Only do this optimization if there are no cleanups that need emitting. 1463 if (isObviouslyBranchWithoutCleanups(Block)) { 1464 if (SwitchWeights) 1465 SwitchWeights->push_back(getProfileCount(&S)); 1466 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1467 1468 // If there was a fallthrough into this case, make sure to redirect it to 1469 // the end of the switch as well. 1470 if (Builder.GetInsertBlock()) { 1471 Builder.CreateBr(Block.getBlock()); 1472 Builder.ClearInsertionPoint(); 1473 } 1474 return; 1475 } 1476 } 1477 1478 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1479 EmitBlockWithFallThrough(CaseDest, &S); 1480 if (SwitchWeights) 1481 SwitchWeights->push_back(getProfileCount(&S)); 1482 SwitchInsn->addCase(CaseVal, CaseDest); 1483 1484 // Recursively emitting the statement is acceptable, but is not wonderful for 1485 // code where we have many case statements nested together, i.e.: 1486 // case 1: 1487 // case 2: 1488 // case 3: etc. 1489 // Handling this recursively will create a new block for each case statement 1490 // that falls through to the next case which is IR intensive. It also causes 1491 // deep recursion which can run into stack depth limitations. Handle 1492 // sequential non-range case statements specially. 1493 // 1494 // TODO When the next case has a likelihood attribute the code returns to the 1495 // recursive algorithm. Maybe improve this case if it becomes common practice 1496 // to use a lot of attributes. 1497 const CaseStmt *CurCase = &S; 1498 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1499 1500 // Otherwise, iteratively add consecutive cases to this switch stmt. 1501 while (NextCase && NextCase->getRHS() == nullptr) { 1502 CurCase = NextCase; 1503 llvm::ConstantInt *CaseVal = 1504 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1505 1506 if (SwitchWeights) 1507 SwitchWeights->push_back(getProfileCount(NextCase)); 1508 if (CGM.getCodeGenOpts().hasProfileClangInstr()) { 1509 CaseDest = createBasicBlock("sw.bb"); 1510 EmitBlockWithFallThrough(CaseDest, CurCase); 1511 } 1512 // Since this loop is only executed when the CaseStmt has no attributes 1513 // use a hard-coded value. 1514 if (SwitchLikelihood) 1515 SwitchLikelihood->push_back(Stmt::LH_None); 1516 1517 SwitchInsn->addCase(CaseVal, CaseDest); 1518 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1519 } 1520 1521 // Normal default recursion for non-cases. 1522 EmitStmt(CurCase->getSubStmt()); 1523 } 1524 1525 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S, 1526 ArrayRef<const Attr *> Attrs) { 1527 // If there is no enclosing switch instance that we're aware of, then this 1528 // default statement can be elided. This situation only happens when we've 1529 // constant-folded the switch. 1530 if (!SwitchInsn) { 1531 EmitStmt(S.getSubStmt()); 1532 return; 1533 } 1534 1535 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1536 assert(DefaultBlock->empty() && 1537 "EmitDefaultStmt: Default block already defined?"); 1538 1539 if (SwitchLikelihood) 1540 SwitchLikelihood->front() = Stmt::getLikelihood(Attrs); 1541 1542 EmitBlockWithFallThrough(DefaultBlock, &S); 1543 1544 EmitStmt(S.getSubStmt()); 1545 } 1546 1547 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1548 /// constant value that is being switched on, see if we can dead code eliminate 1549 /// the body of the switch to a simple series of statements to emit. Basically, 1550 /// on a switch (5) we want to find these statements: 1551 /// case 5: 1552 /// printf(...); <-- 1553 /// ++i; <-- 1554 /// break; 1555 /// 1556 /// and add them to the ResultStmts vector. If it is unsafe to do this 1557 /// transformation (for example, one of the elided statements contains a label 1558 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1559 /// should include statements after it (e.g. the printf() line is a substmt of 1560 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1561 /// statement, then return CSFC_Success. 1562 /// 1563 /// If Case is non-null, then we are looking for the specified case, checking 1564 /// that nothing we jump over contains labels. If Case is null, then we found 1565 /// the case and are looking for the break. 1566 /// 1567 /// If the recursive walk actually finds our Case, then we set FoundCase to 1568 /// true. 1569 /// 1570 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1571 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1572 const SwitchCase *Case, 1573 bool &FoundCase, 1574 SmallVectorImpl<const Stmt*> &ResultStmts) { 1575 // If this is a null statement, just succeed. 1576 if (!S) 1577 return Case ? CSFC_Success : CSFC_FallThrough; 1578 1579 // If this is the switchcase (case 4: or default) that we're looking for, then 1580 // we're in business. Just add the substatement. 1581 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1582 if (S == Case) { 1583 FoundCase = true; 1584 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1585 ResultStmts); 1586 } 1587 1588 // Otherwise, this is some other case or default statement, just ignore it. 1589 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1590 ResultStmts); 1591 } 1592 1593 // If we are in the live part of the code and we found our break statement, 1594 // return a success! 1595 if (!Case && isa<BreakStmt>(S)) 1596 return CSFC_Success; 1597 1598 // If this is a switch statement, then it might contain the SwitchCase, the 1599 // break, or neither. 1600 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1601 // Handle this as two cases: we might be looking for the SwitchCase (if so 1602 // the skipped statements must be skippable) or we might already have it. 1603 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1604 bool StartedInLiveCode = FoundCase; 1605 unsigned StartSize = ResultStmts.size(); 1606 1607 // If we've not found the case yet, scan through looking for it. 1608 if (Case) { 1609 // Keep track of whether we see a skipped declaration. The code could be 1610 // using the declaration even if it is skipped, so we can't optimize out 1611 // the decl if the kept statements might refer to it. 1612 bool HadSkippedDecl = false; 1613 1614 // If we're looking for the case, just see if we can skip each of the 1615 // substatements. 1616 for (; Case && I != E; ++I) { 1617 HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I); 1618 1619 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1620 case CSFC_Failure: return CSFC_Failure; 1621 case CSFC_Success: 1622 // A successful result means that either 1) that the statement doesn't 1623 // have the case and is skippable, or 2) does contain the case value 1624 // and also contains the break to exit the switch. In the later case, 1625 // we just verify the rest of the statements are elidable. 1626 if (FoundCase) { 1627 // If we found the case and skipped declarations, we can't do the 1628 // optimization. 1629 if (HadSkippedDecl) 1630 return CSFC_Failure; 1631 1632 for (++I; I != E; ++I) 1633 if (CodeGenFunction::ContainsLabel(*I, true)) 1634 return CSFC_Failure; 1635 return CSFC_Success; 1636 } 1637 break; 1638 case CSFC_FallThrough: 1639 // If we have a fallthrough condition, then we must have found the 1640 // case started to include statements. Consider the rest of the 1641 // statements in the compound statement as candidates for inclusion. 1642 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1643 // We recursively found Case, so we're not looking for it anymore. 1644 Case = nullptr; 1645 1646 // If we found the case and skipped declarations, we can't do the 1647 // optimization. 1648 if (HadSkippedDecl) 1649 return CSFC_Failure; 1650 break; 1651 } 1652 } 1653 1654 if (!FoundCase) 1655 return CSFC_Success; 1656 1657 assert(!HadSkippedDecl && "fallthrough after skipping decl"); 1658 } 1659 1660 // If we have statements in our range, then we know that the statements are 1661 // live and need to be added to the set of statements we're tracking. 1662 bool AnyDecls = false; 1663 for (; I != E; ++I) { 1664 AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I); 1665 1666 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1667 case CSFC_Failure: return CSFC_Failure; 1668 case CSFC_FallThrough: 1669 // A fallthrough result means that the statement was simple and just 1670 // included in ResultStmt, keep adding them afterwards. 1671 break; 1672 case CSFC_Success: 1673 // A successful result means that we found the break statement and 1674 // stopped statement inclusion. We just ensure that any leftover stmts 1675 // are skippable and return success ourselves. 1676 for (++I; I != E; ++I) 1677 if (CodeGenFunction::ContainsLabel(*I, true)) 1678 return CSFC_Failure; 1679 return CSFC_Success; 1680 } 1681 } 1682 1683 // If we're about to fall out of a scope without hitting a 'break;', we 1684 // can't perform the optimization if there were any decls in that scope 1685 // (we'd lose their end-of-lifetime). 1686 if (AnyDecls) { 1687 // If the entire compound statement was live, there's one more thing we 1688 // can try before giving up: emit the whole thing as a single statement. 1689 // We can do that unless the statement contains a 'break;'. 1690 // FIXME: Such a break must be at the end of a construct within this one. 1691 // We could emit this by just ignoring the BreakStmts entirely. 1692 if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) { 1693 ResultStmts.resize(StartSize); 1694 ResultStmts.push_back(S); 1695 } else { 1696 return CSFC_Failure; 1697 } 1698 } 1699 1700 return CSFC_FallThrough; 1701 } 1702 1703 // Okay, this is some other statement that we don't handle explicitly, like a 1704 // for statement or increment etc. If we are skipping over this statement, 1705 // just verify it doesn't have labels, which would make it invalid to elide. 1706 if (Case) { 1707 if (CodeGenFunction::ContainsLabel(S, true)) 1708 return CSFC_Failure; 1709 return CSFC_Success; 1710 } 1711 1712 // Otherwise, we want to include this statement. Everything is cool with that 1713 // so long as it doesn't contain a break out of the switch we're in. 1714 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1715 1716 // Otherwise, everything is great. Include the statement and tell the caller 1717 // that we fall through and include the next statement as well. 1718 ResultStmts.push_back(S); 1719 return CSFC_FallThrough; 1720 } 1721 1722 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1723 /// then invoke CollectStatementsForCase to find the list of statements to emit 1724 /// for a switch on constant. See the comment above CollectStatementsForCase 1725 /// for more details. 1726 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1727 const llvm::APSInt &ConstantCondValue, 1728 SmallVectorImpl<const Stmt*> &ResultStmts, 1729 ASTContext &C, 1730 const SwitchCase *&ResultCase) { 1731 // First step, find the switch case that is being branched to. We can do this 1732 // efficiently by scanning the SwitchCase list. 1733 const SwitchCase *Case = S.getSwitchCaseList(); 1734 const DefaultStmt *DefaultCase = nullptr; 1735 1736 for (; Case; Case = Case->getNextSwitchCase()) { 1737 // It's either a default or case. Just remember the default statement in 1738 // case we're not jumping to any numbered cases. 1739 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1740 DefaultCase = DS; 1741 continue; 1742 } 1743 1744 // Check to see if this case is the one we're looking for. 1745 const CaseStmt *CS = cast<CaseStmt>(Case); 1746 // Don't handle case ranges yet. 1747 if (CS->getRHS()) return false; 1748 1749 // If we found our case, remember it as 'case'. 1750 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1751 break; 1752 } 1753 1754 // If we didn't find a matching case, we use a default if it exists, or we 1755 // elide the whole switch body! 1756 if (!Case) { 1757 // It is safe to elide the body of the switch if it doesn't contain labels 1758 // etc. If it is safe, return successfully with an empty ResultStmts list. 1759 if (!DefaultCase) 1760 return !CodeGenFunction::ContainsLabel(&S); 1761 Case = DefaultCase; 1762 } 1763 1764 // Ok, we know which case is being jumped to, try to collect all the 1765 // statements that follow it. This can fail for a variety of reasons. Also, 1766 // check to see that the recursive walk actually found our case statement. 1767 // Insane cases like this can fail to find it in the recursive walk since we 1768 // don't handle every stmt kind: 1769 // switch (4) { 1770 // while (1) { 1771 // case 4: ... 1772 bool FoundCase = false; 1773 ResultCase = Case; 1774 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1775 ResultStmts) != CSFC_Failure && 1776 FoundCase; 1777 } 1778 1779 static Optional<SmallVector<uint64_t, 16>> 1780 getLikelihoodWeights(ArrayRef<Stmt::Likelihood> Likelihoods) { 1781 // Are there enough branches to weight them? 1782 if (Likelihoods.size() <= 1) 1783 return None; 1784 1785 uint64_t NumUnlikely = 0; 1786 uint64_t NumNone = 0; 1787 uint64_t NumLikely = 0; 1788 for (const auto LH : Likelihoods) { 1789 switch (LH) { 1790 case Stmt::LH_Unlikely: 1791 ++NumUnlikely; 1792 break; 1793 case Stmt::LH_None: 1794 ++NumNone; 1795 break; 1796 case Stmt::LH_Likely: 1797 ++NumLikely; 1798 break; 1799 } 1800 } 1801 1802 // Is there a likelihood attribute used? 1803 if (NumUnlikely == 0 && NumLikely == 0) 1804 return None; 1805 1806 // When multiple cases share the same code they can be combined during 1807 // optimization. In that case the weights of the branch will be the sum of 1808 // the individual weights. Make sure the combined sum of all neutral cases 1809 // doesn't exceed the value of a single likely attribute. 1810 // The additions both avoid divisions by 0 and make sure the weights of None 1811 // don't exceed the weight of Likely. 1812 const uint64_t Likely = INT32_MAX / (NumLikely + 2); 1813 const uint64_t None = Likely / (NumNone + 1); 1814 const uint64_t Unlikely = 0; 1815 1816 SmallVector<uint64_t, 16> Result; 1817 Result.reserve(Likelihoods.size()); 1818 for (const auto LH : Likelihoods) { 1819 switch (LH) { 1820 case Stmt::LH_Unlikely: 1821 Result.push_back(Unlikely); 1822 break; 1823 case Stmt::LH_None: 1824 Result.push_back(None); 1825 break; 1826 case Stmt::LH_Likely: 1827 Result.push_back(Likely); 1828 break; 1829 } 1830 } 1831 1832 return Result; 1833 } 1834 1835 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1836 // Handle nested switch statements. 1837 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1838 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1839 SmallVector<Stmt::Likelihood, 16> *SavedSwitchLikelihood = SwitchLikelihood; 1840 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1841 1842 // See if we can constant fold the condition of the switch and therefore only 1843 // emit the live case statement (if any) of the switch. 1844 llvm::APSInt ConstantCondValue; 1845 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1846 SmallVector<const Stmt*, 4> CaseStmts; 1847 const SwitchCase *Case = nullptr; 1848 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1849 getContext(), Case)) { 1850 if (Case) 1851 incrementProfileCounter(Case); 1852 RunCleanupsScope ExecutedScope(*this); 1853 1854 if (S.getInit()) 1855 EmitStmt(S.getInit()); 1856 1857 // Emit the condition variable if needed inside the entire cleanup scope 1858 // used by this special case for constant folded switches. 1859 if (S.getConditionVariable()) 1860 EmitDecl(*S.getConditionVariable()); 1861 1862 // At this point, we are no longer "within" a switch instance, so 1863 // we can temporarily enforce this to ensure that any embedded case 1864 // statements are not emitted. 1865 SwitchInsn = nullptr; 1866 1867 // Okay, we can dead code eliminate everything except this case. Emit the 1868 // specified series of statements and we're good. 1869 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1870 EmitStmt(CaseStmts[i]); 1871 incrementProfileCounter(&S); 1872 1873 // Now we want to restore the saved switch instance so that nested 1874 // switches continue to function properly 1875 SwitchInsn = SavedSwitchInsn; 1876 1877 return; 1878 } 1879 } 1880 1881 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1882 1883 RunCleanupsScope ConditionScope(*this); 1884 1885 if (S.getInit()) 1886 EmitStmt(S.getInit()); 1887 1888 if (S.getConditionVariable()) 1889 EmitDecl(*S.getConditionVariable()); 1890 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1891 1892 // Create basic block to hold stuff that comes after switch 1893 // statement. We also need to create a default block now so that 1894 // explicit case ranges tests can have a place to jump to on 1895 // failure. 1896 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1897 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1898 if (PGO.haveRegionCounts()) { 1899 // Walk the SwitchCase list to find how many there are. 1900 uint64_t DefaultCount = 0; 1901 unsigned NumCases = 0; 1902 for (const SwitchCase *Case = S.getSwitchCaseList(); 1903 Case; 1904 Case = Case->getNextSwitchCase()) { 1905 if (isa<DefaultStmt>(Case)) 1906 DefaultCount = getProfileCount(Case); 1907 NumCases += 1; 1908 } 1909 SwitchWeights = new SmallVector<uint64_t, 16>(); 1910 SwitchWeights->reserve(NumCases); 1911 // The default needs to be first. We store the edge count, so we already 1912 // know the right weight. 1913 SwitchWeights->push_back(DefaultCount); 1914 } else if (CGM.getCodeGenOpts().OptimizationLevel) { 1915 SwitchLikelihood = new SmallVector<Stmt::Likelihood, 16>(); 1916 // Initialize the default case. 1917 SwitchLikelihood->push_back(Stmt::LH_None); 1918 } 1919 1920 CaseRangeBlock = DefaultBlock; 1921 1922 // Clear the insertion point to indicate we are in unreachable code. 1923 Builder.ClearInsertionPoint(); 1924 1925 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1926 // then reuse last ContinueBlock. 1927 JumpDest OuterContinue; 1928 if (!BreakContinueStack.empty()) 1929 OuterContinue = BreakContinueStack.back().ContinueBlock; 1930 1931 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1932 1933 // Emit switch body. 1934 EmitStmt(S.getBody()); 1935 1936 BreakContinueStack.pop_back(); 1937 1938 // Update the default block in case explicit case range tests have 1939 // been chained on top. 1940 SwitchInsn->setDefaultDest(CaseRangeBlock); 1941 1942 // If a default was never emitted: 1943 if (!DefaultBlock->getParent()) { 1944 // If we have cleanups, emit the default block so that there's a 1945 // place to jump through the cleanups from. 1946 if (ConditionScope.requiresCleanups()) { 1947 EmitBlock(DefaultBlock); 1948 1949 // Otherwise, just forward the default block to the switch end. 1950 } else { 1951 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1952 delete DefaultBlock; 1953 } 1954 } 1955 1956 ConditionScope.ForceCleanup(); 1957 1958 // Emit continuation. 1959 EmitBlock(SwitchExit.getBlock(), true); 1960 incrementProfileCounter(&S); 1961 1962 // If the switch has a condition wrapped by __builtin_unpredictable, 1963 // create metadata that specifies that the switch is unpredictable. 1964 // Don't bother if not optimizing because that metadata would not be used. 1965 auto *Call = dyn_cast<CallExpr>(S.getCond()); 1966 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1967 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1968 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1969 llvm::MDBuilder MDHelper(getLLVMContext()); 1970 SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable, 1971 MDHelper.createUnpredictable()); 1972 } 1973 } 1974 1975 if (SwitchWeights) { 1976 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1977 "switch weights do not match switch cases"); 1978 // If there's only one jump destination there's no sense weighting it. 1979 if (SwitchWeights->size() > 1) 1980 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1981 createProfileWeights(*SwitchWeights)); 1982 delete SwitchWeights; 1983 } else if (SwitchLikelihood) { 1984 assert(SwitchLikelihood->size() == 1 + SwitchInsn->getNumCases() && 1985 "switch likelihoods do not match switch cases"); 1986 Optional<SmallVector<uint64_t, 16>> LHW = 1987 getLikelihoodWeights(*SwitchLikelihood); 1988 if (LHW) { 1989 llvm::MDBuilder MDHelper(CGM.getLLVMContext()); 1990 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1991 createProfileWeights(*LHW)); 1992 } 1993 delete SwitchLikelihood; 1994 } 1995 SwitchInsn = SavedSwitchInsn; 1996 SwitchWeights = SavedSwitchWeights; 1997 SwitchLikelihood = SavedSwitchLikelihood; 1998 CaseRangeBlock = SavedCRBlock; 1999 } 2000 2001 static std::string 2002 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 2003 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 2004 std::string Result; 2005 2006 while (*Constraint) { 2007 switch (*Constraint) { 2008 default: 2009 Result += Target.convertConstraint(Constraint); 2010 break; 2011 // Ignore these 2012 case '*': 2013 case '?': 2014 case '!': 2015 case '=': // Will see this and the following in mult-alt constraints. 2016 case '+': 2017 break; 2018 case '#': // Ignore the rest of the constraint alternative. 2019 while (Constraint[1] && Constraint[1] != ',') 2020 Constraint++; 2021 break; 2022 case '&': 2023 case '%': 2024 Result += *Constraint; 2025 while (Constraint[1] && Constraint[1] == *Constraint) 2026 Constraint++; 2027 break; 2028 case ',': 2029 Result += "|"; 2030 break; 2031 case 'g': 2032 Result += "imr"; 2033 break; 2034 case '[': { 2035 assert(OutCons && 2036 "Must pass output names to constraints with a symbolic name"); 2037 unsigned Index; 2038 bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index); 2039 assert(result && "Could not resolve symbolic name"); (void)result; 2040 Result += llvm::utostr(Index); 2041 break; 2042 } 2043 } 2044 2045 Constraint++; 2046 } 2047 2048 return Result; 2049 } 2050 2051 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 2052 /// as using a particular register add that as a constraint that will be used 2053 /// in this asm stmt. 2054 static std::string 2055 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 2056 const TargetInfo &Target, CodeGenModule &CGM, 2057 const AsmStmt &Stmt, const bool EarlyClobber, 2058 std::string *GCCReg = nullptr) { 2059 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 2060 if (!AsmDeclRef) 2061 return Constraint; 2062 const ValueDecl &Value = *AsmDeclRef->getDecl(); 2063 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 2064 if (!Variable) 2065 return Constraint; 2066 if (Variable->getStorageClass() != SC_Register) 2067 return Constraint; 2068 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 2069 if (!Attr) 2070 return Constraint; 2071 StringRef Register = Attr->getLabel(); 2072 assert(Target.isValidGCCRegisterName(Register)); 2073 // We're using validateOutputConstraint here because we only care if 2074 // this is a register constraint. 2075 TargetInfo::ConstraintInfo Info(Constraint, ""); 2076 if (Target.validateOutputConstraint(Info) && 2077 !Info.allowsRegister()) { 2078 CGM.ErrorUnsupported(&Stmt, "__asm__"); 2079 return Constraint; 2080 } 2081 // Canonicalize the register here before returning it. 2082 Register = Target.getNormalizedGCCRegisterName(Register); 2083 if (GCCReg != nullptr) 2084 *GCCReg = Register.str(); 2085 return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; 2086 } 2087 2088 llvm::Value* 2089 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 2090 LValue InputValue, QualType InputType, 2091 std::string &ConstraintStr, 2092 SourceLocation Loc) { 2093 llvm::Value *Arg; 2094 if (Info.allowsRegister() || !Info.allowsMemory()) { 2095 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 2096 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 2097 } else { 2098 llvm::Type *Ty = ConvertType(InputType); 2099 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 2100 if ((Size <= 64 && llvm::isPowerOf2_64(Size)) || 2101 getTargetHooks().isScalarizableAsmOperand(*this, Ty)) { 2102 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 2103 Ty = llvm::PointerType::getUnqual(Ty); 2104 2105 Arg = Builder.CreateLoad( 2106 Builder.CreateBitCast(InputValue.getAddress(*this), Ty)); 2107 } else { 2108 Arg = InputValue.getPointer(*this); 2109 ConstraintStr += '*'; 2110 } 2111 } 2112 } else { 2113 Arg = InputValue.getPointer(*this); 2114 ConstraintStr += '*'; 2115 } 2116 2117 return Arg; 2118 } 2119 2120 llvm::Value* CodeGenFunction::EmitAsmInput( 2121 const TargetInfo::ConstraintInfo &Info, 2122 const Expr *InputExpr, 2123 std::string &ConstraintStr) { 2124 // If this can't be a register or memory, i.e., has to be a constant 2125 // (immediate or symbolic), try to emit it as such. 2126 if (!Info.allowsRegister() && !Info.allowsMemory()) { 2127 if (Info.requiresImmediateConstant()) { 2128 Expr::EvalResult EVResult; 2129 InputExpr->EvaluateAsRValue(EVResult, getContext(), true); 2130 2131 llvm::APSInt IntResult; 2132 if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(), 2133 getContext())) 2134 return llvm::ConstantInt::get(getLLVMContext(), IntResult); 2135 } 2136 2137 Expr::EvalResult Result; 2138 if (InputExpr->EvaluateAsInt(Result, getContext())) 2139 return llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt()); 2140 } 2141 2142 if (Info.allowsRegister() || !Info.allowsMemory()) 2143 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 2144 return EmitScalarExpr(InputExpr); 2145 if (InputExpr->getStmtClass() == Expr::CXXThisExprClass) 2146 return EmitScalarExpr(InputExpr); 2147 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 2148 LValue Dest = EmitLValue(InputExpr); 2149 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 2150 InputExpr->getExprLoc()); 2151 } 2152 2153 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 2154 /// asm call instruction. The !srcloc MDNode contains a list of constant 2155 /// integers which are the source locations of the start of each line in the 2156 /// asm. 2157 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 2158 CodeGenFunction &CGF) { 2159 SmallVector<llvm::Metadata *, 8> Locs; 2160 // Add the location of the first line to the MDNode. 2161 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 2162 CGF.Int64Ty, Str->getBeginLoc().getRawEncoding()))); 2163 StringRef StrVal = Str->getString(); 2164 if (!StrVal.empty()) { 2165 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 2166 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 2167 unsigned StartToken = 0; 2168 unsigned ByteOffset = 0; 2169 2170 // Add the location of the start of each subsequent line of the asm to the 2171 // MDNode. 2172 for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) { 2173 if (StrVal[i] != '\n') continue; 2174 SourceLocation LineLoc = Str->getLocationOfByte( 2175 i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset); 2176 Locs.push_back(llvm::ConstantAsMetadata::get( 2177 llvm::ConstantInt::get(CGF.Int64Ty, LineLoc.getRawEncoding()))); 2178 } 2179 } 2180 2181 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 2182 } 2183 2184 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect, 2185 bool HasUnwindClobber, bool ReadOnly, 2186 bool ReadNone, bool NoMerge, const AsmStmt &S, 2187 const std::vector<llvm::Type *> &ResultRegTypes, 2188 CodeGenFunction &CGF, 2189 std::vector<llvm::Value *> &RegResults) { 2190 if (!HasUnwindClobber) 2191 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2192 llvm::Attribute::NoUnwind); 2193 2194 if (NoMerge) 2195 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2196 llvm::Attribute::NoMerge); 2197 // Attach readnone and readonly attributes. 2198 if (!HasSideEffect) { 2199 if (ReadNone) 2200 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2201 llvm::Attribute::ReadNone); 2202 else if (ReadOnly) 2203 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2204 llvm::Attribute::ReadOnly); 2205 } 2206 2207 // Slap the source location of the inline asm into a !srcloc metadata on the 2208 // call. 2209 if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) 2210 Result.setMetadata("srcloc", 2211 getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF)); 2212 else { 2213 // At least put the line number on MS inline asm blobs. 2214 llvm::Constant *Loc = 2215 llvm::ConstantInt::get(CGF.Int64Ty, S.getAsmLoc().getRawEncoding()); 2216 Result.setMetadata("srcloc", 2217 llvm::MDNode::get(CGF.getLLVMContext(), 2218 llvm::ConstantAsMetadata::get(Loc))); 2219 } 2220 2221 if (CGF.getLangOpts().assumeFunctionsAreConvergent()) 2222 // Conservatively, mark all inline asm blocks in CUDA or OpenCL as 2223 // convergent (meaning, they may call an intrinsically convergent op, such 2224 // as bar.sync, and so can't have certain optimizations applied around 2225 // them). 2226 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2227 llvm::Attribute::Convergent); 2228 // Extract all of the register value results from the asm. 2229 if (ResultRegTypes.size() == 1) { 2230 RegResults.push_back(&Result); 2231 } else { 2232 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2233 llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult"); 2234 RegResults.push_back(Tmp); 2235 } 2236 } 2237 } 2238 2239 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 2240 // Assemble the final asm string. 2241 std::string AsmString = S.generateAsmString(getContext()); 2242 2243 // Get all the output and input constraints together. 2244 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 2245 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 2246 2247 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 2248 StringRef Name; 2249 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 2250 Name = GAS->getOutputName(i); 2251 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 2252 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 2253 assert(IsValid && "Failed to parse output constraint"); 2254 OutputConstraintInfos.push_back(Info); 2255 } 2256 2257 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2258 StringRef Name; 2259 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 2260 Name = GAS->getInputName(i); 2261 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 2262 bool IsValid = 2263 getTarget().validateInputConstraint(OutputConstraintInfos, Info); 2264 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 2265 InputConstraintInfos.push_back(Info); 2266 } 2267 2268 std::string Constraints; 2269 2270 std::vector<LValue> ResultRegDests; 2271 std::vector<QualType> ResultRegQualTys; 2272 std::vector<llvm::Type *> ResultRegTypes; 2273 std::vector<llvm::Type *> ResultTruncRegTypes; 2274 std::vector<llvm::Type *> ArgTypes; 2275 std::vector<llvm::Value*> Args; 2276 llvm::BitVector ResultTypeRequiresCast; 2277 2278 // Keep track of inout constraints. 2279 std::string InOutConstraints; 2280 std::vector<llvm::Value*> InOutArgs; 2281 std::vector<llvm::Type*> InOutArgTypes; 2282 2283 // Keep track of out constraints for tied input operand. 2284 std::vector<std::string> OutputConstraints; 2285 2286 // Keep track of defined physregs. 2287 llvm::SmallSet<std::string, 8> PhysRegOutputs; 2288 2289 // An inline asm can be marked readonly if it meets the following conditions: 2290 // - it doesn't have any sideeffects 2291 // - it doesn't clobber memory 2292 // - it doesn't return a value by-reference 2293 // It can be marked readnone if it doesn't have any input memory constraints 2294 // in addition to meeting the conditions listed above. 2295 bool ReadOnly = true, ReadNone = true; 2296 2297 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 2298 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 2299 2300 // Simplify the output constraint. 2301 std::string OutputConstraint(S.getOutputConstraint(i)); 2302 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 2303 getTarget(), &OutputConstraintInfos); 2304 2305 const Expr *OutExpr = S.getOutputExpr(i); 2306 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 2307 2308 std::string GCCReg; 2309 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 2310 getTarget(), CGM, S, 2311 Info.earlyClobber(), 2312 &GCCReg); 2313 // Give an error on multiple outputs to same physreg. 2314 if (!GCCReg.empty() && !PhysRegOutputs.insert(GCCReg).second) 2315 CGM.Error(S.getAsmLoc(), "multiple outputs to hard register: " + GCCReg); 2316 2317 OutputConstraints.push_back(OutputConstraint); 2318 LValue Dest = EmitLValue(OutExpr); 2319 if (!Constraints.empty()) 2320 Constraints += ','; 2321 2322 // If this is a register output, then make the inline asm return it 2323 // by-value. If this is a memory result, return the value by-reference. 2324 QualType QTy = OutExpr->getType(); 2325 const bool IsScalarOrAggregate = hasScalarEvaluationKind(QTy) || 2326 hasAggregateEvaluationKind(QTy); 2327 if (!Info.allowsMemory() && IsScalarOrAggregate) { 2328 2329 Constraints += "=" + OutputConstraint; 2330 ResultRegQualTys.push_back(QTy); 2331 ResultRegDests.push_back(Dest); 2332 2333 llvm::Type *Ty = ConvertTypeForMem(QTy); 2334 const bool RequiresCast = Info.allowsRegister() && 2335 (getTargetHooks().isScalarizableAsmOperand(*this, Ty) || 2336 Ty->isAggregateType()); 2337 2338 ResultTruncRegTypes.push_back(Ty); 2339 ResultTypeRequiresCast.push_back(RequiresCast); 2340 2341 if (RequiresCast) { 2342 unsigned Size = getContext().getTypeSize(QTy); 2343 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 2344 } 2345 ResultRegTypes.push_back(Ty); 2346 // If this output is tied to an input, and if the input is larger, then 2347 // we need to set the actual result type of the inline asm node to be the 2348 // same as the input type. 2349 if (Info.hasMatchingInput()) { 2350 unsigned InputNo; 2351 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 2352 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 2353 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 2354 break; 2355 } 2356 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 2357 2358 QualType InputTy = S.getInputExpr(InputNo)->getType(); 2359 QualType OutputType = OutExpr->getType(); 2360 2361 uint64_t InputSize = getContext().getTypeSize(InputTy); 2362 if (getContext().getTypeSize(OutputType) < InputSize) { 2363 // Form the asm to return the value as a larger integer or fp type. 2364 ResultRegTypes.back() = ConvertType(InputTy); 2365 } 2366 } 2367 if (llvm::Type* AdjTy = 2368 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2369 ResultRegTypes.back())) 2370 ResultRegTypes.back() = AdjTy; 2371 else { 2372 CGM.getDiags().Report(S.getAsmLoc(), 2373 diag::err_asm_invalid_type_in_input) 2374 << OutExpr->getType() << OutputConstraint; 2375 } 2376 2377 // Update largest vector width for any vector types. 2378 if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back())) 2379 LargestVectorWidth = 2380 std::max((uint64_t)LargestVectorWidth, 2381 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2382 } else { 2383 llvm::Type *DestAddrTy = Dest.getAddress(*this).getType(); 2384 llvm::Value *DestPtr = Dest.getPointer(*this); 2385 // Matrix types in memory are represented by arrays, but accessed through 2386 // vector pointers, with the alignment specified on the access operation. 2387 // For inline assembly, update pointer arguments to use vector pointers. 2388 // Otherwise there will be a mis-match if the matrix is also an 2389 // input-argument which is represented as vector. 2390 if (isa<MatrixType>(OutExpr->getType().getCanonicalType())) { 2391 DestAddrTy = llvm::PointerType::get( 2392 ConvertType(OutExpr->getType()), 2393 cast<llvm::PointerType>(DestAddrTy)->getAddressSpace()); 2394 DestPtr = Builder.CreateBitCast(DestPtr, DestAddrTy); 2395 } 2396 ArgTypes.push_back(DestAddrTy); 2397 Args.push_back(DestPtr); 2398 Constraints += "=*"; 2399 Constraints += OutputConstraint; 2400 ReadOnly = ReadNone = false; 2401 } 2402 2403 if (Info.isReadWrite()) { 2404 InOutConstraints += ','; 2405 2406 const Expr *InputExpr = S.getOutputExpr(i); 2407 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 2408 InOutConstraints, 2409 InputExpr->getExprLoc()); 2410 2411 if (llvm::Type* AdjTy = 2412 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2413 Arg->getType())) 2414 Arg = Builder.CreateBitCast(Arg, AdjTy); 2415 2416 // Update largest vector width for any vector types. 2417 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2418 LargestVectorWidth = 2419 std::max((uint64_t)LargestVectorWidth, 2420 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2421 // Only tie earlyclobber physregs. 2422 if (Info.allowsRegister() && (GCCReg.empty() || Info.earlyClobber())) 2423 InOutConstraints += llvm::utostr(i); 2424 else 2425 InOutConstraints += OutputConstraint; 2426 2427 InOutArgTypes.push_back(Arg->getType()); 2428 InOutArgs.push_back(Arg); 2429 } 2430 } 2431 2432 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 2433 // to the return value slot. Only do this when returning in registers. 2434 if (isa<MSAsmStmt>(&S)) { 2435 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 2436 if (RetAI.isDirect() || RetAI.isExtend()) { 2437 // Make a fake lvalue for the return value slot. 2438 LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy); 2439 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 2440 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 2441 ResultRegDests, AsmString, S.getNumOutputs()); 2442 SawAsmBlock = true; 2443 } 2444 } 2445 2446 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2447 const Expr *InputExpr = S.getInputExpr(i); 2448 2449 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 2450 2451 if (Info.allowsMemory()) 2452 ReadNone = false; 2453 2454 if (!Constraints.empty()) 2455 Constraints += ','; 2456 2457 // Simplify the input constraint. 2458 std::string InputConstraint(S.getInputConstraint(i)); 2459 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 2460 &OutputConstraintInfos); 2461 2462 InputConstraint = AddVariableConstraints( 2463 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), 2464 getTarget(), CGM, S, false /* No EarlyClobber */); 2465 2466 std::string ReplaceConstraint (InputConstraint); 2467 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 2468 2469 // If this input argument is tied to a larger output result, extend the 2470 // input to be the same size as the output. The LLVM backend wants to see 2471 // the input and output of a matching constraint be the same size. Note 2472 // that GCC does not define what the top bits are here. We use zext because 2473 // that is usually cheaper, but LLVM IR should really get an anyext someday. 2474 if (Info.hasTiedOperand()) { 2475 unsigned Output = Info.getTiedOperand(); 2476 QualType OutputType = S.getOutputExpr(Output)->getType(); 2477 QualType InputTy = InputExpr->getType(); 2478 2479 if (getContext().getTypeSize(OutputType) > 2480 getContext().getTypeSize(InputTy)) { 2481 // Use ptrtoint as appropriate so that we can do our extension. 2482 if (isa<llvm::PointerType>(Arg->getType())) 2483 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 2484 llvm::Type *OutputTy = ConvertType(OutputType); 2485 if (isa<llvm::IntegerType>(OutputTy)) 2486 Arg = Builder.CreateZExt(Arg, OutputTy); 2487 else if (isa<llvm::PointerType>(OutputTy)) 2488 Arg = Builder.CreateZExt(Arg, IntPtrTy); 2489 else { 2490 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 2491 Arg = Builder.CreateFPExt(Arg, OutputTy); 2492 } 2493 } 2494 // Deal with the tied operands' constraint code in adjustInlineAsmType. 2495 ReplaceConstraint = OutputConstraints[Output]; 2496 } 2497 if (llvm::Type* AdjTy = 2498 getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint, 2499 Arg->getType())) 2500 Arg = Builder.CreateBitCast(Arg, AdjTy); 2501 else 2502 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 2503 << InputExpr->getType() << InputConstraint; 2504 2505 // Update largest vector width for any vector types. 2506 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2507 LargestVectorWidth = 2508 std::max((uint64_t)LargestVectorWidth, 2509 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2510 2511 ArgTypes.push_back(Arg->getType()); 2512 Args.push_back(Arg); 2513 Constraints += InputConstraint; 2514 } 2515 2516 // Labels 2517 SmallVector<llvm::BasicBlock *, 16> Transfer; 2518 llvm::BasicBlock *Fallthrough = nullptr; 2519 bool IsGCCAsmGoto = false; 2520 if (const auto *GS = dyn_cast<GCCAsmStmt>(&S)) { 2521 IsGCCAsmGoto = GS->isAsmGoto(); 2522 if (IsGCCAsmGoto) { 2523 for (const auto *E : GS->labels()) { 2524 JumpDest Dest = getJumpDestForLabel(E->getLabel()); 2525 Transfer.push_back(Dest.getBlock()); 2526 llvm::BlockAddress *BA = 2527 llvm::BlockAddress::get(CurFn, Dest.getBlock()); 2528 Args.push_back(BA); 2529 ArgTypes.push_back(BA->getType()); 2530 if (!Constraints.empty()) 2531 Constraints += ','; 2532 Constraints += 'X'; 2533 } 2534 Fallthrough = createBasicBlock("asm.fallthrough"); 2535 } 2536 } 2537 2538 // Append the "input" part of inout constraints last. 2539 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 2540 ArgTypes.push_back(InOutArgTypes[i]); 2541 Args.push_back(InOutArgs[i]); 2542 } 2543 Constraints += InOutConstraints; 2544 2545 bool HasUnwindClobber = false; 2546 2547 // Clobbers 2548 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 2549 StringRef Clobber = S.getClobber(i); 2550 2551 if (Clobber == "memory") 2552 ReadOnly = ReadNone = false; 2553 else if (Clobber == "unwind") { 2554 HasUnwindClobber = true; 2555 continue; 2556 } else if (Clobber != "cc") { 2557 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 2558 if (CGM.getCodeGenOpts().StackClashProtector && 2559 getTarget().isSPRegName(Clobber)) { 2560 CGM.getDiags().Report(S.getAsmLoc(), 2561 diag::warn_stack_clash_protection_inline_asm); 2562 } 2563 } 2564 2565 if (isa<MSAsmStmt>(&S)) { 2566 if (Clobber == "eax" || Clobber == "edx") { 2567 if (Constraints.find("=&A") != std::string::npos) 2568 continue; 2569 std::string::size_type position1 = 2570 Constraints.find("={" + Clobber.str() + "}"); 2571 if (position1 != std::string::npos) { 2572 Constraints.insert(position1 + 1, "&"); 2573 continue; 2574 } 2575 std::string::size_type position2 = Constraints.find("=A"); 2576 if (position2 != std::string::npos) { 2577 Constraints.insert(position2 + 1, "&"); 2578 continue; 2579 } 2580 } 2581 } 2582 if (!Constraints.empty()) 2583 Constraints += ','; 2584 2585 Constraints += "~{"; 2586 Constraints += Clobber; 2587 Constraints += '}'; 2588 } 2589 2590 assert(!(HasUnwindClobber && IsGCCAsmGoto) && 2591 "unwind clobber can't be used with asm goto"); 2592 2593 // Add machine specific clobbers 2594 std::string MachineClobbers = getTarget().getClobbers(); 2595 if (!MachineClobbers.empty()) { 2596 if (!Constraints.empty()) 2597 Constraints += ','; 2598 Constraints += MachineClobbers; 2599 } 2600 2601 llvm::Type *ResultType; 2602 if (ResultRegTypes.empty()) 2603 ResultType = VoidTy; 2604 else if (ResultRegTypes.size() == 1) 2605 ResultType = ResultRegTypes[0]; 2606 else 2607 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2608 2609 llvm::FunctionType *FTy = 2610 llvm::FunctionType::get(ResultType, ArgTypes, false); 2611 2612 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2613 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2614 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 2615 llvm::InlineAsm *IA = llvm::InlineAsm::get( 2616 FTy, AsmString, Constraints, HasSideEffect, 2617 /* IsAlignStack */ false, AsmDialect, HasUnwindClobber); 2618 std::vector<llvm::Value*> RegResults; 2619 if (IsGCCAsmGoto) { 2620 llvm::CallBrInst *Result = 2621 Builder.CreateCallBr(IA, Fallthrough, Transfer, Args); 2622 EmitBlock(Fallthrough); 2623 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false, 2624 ReadOnly, ReadNone, InNoMergeAttributedStmt, S, 2625 ResultRegTypes, *this, RegResults); 2626 } else if (HasUnwindClobber) { 2627 llvm::CallBase *Result = EmitCallOrInvoke(IA, Args, ""); 2628 UpdateAsmCallInst(*Result, HasSideEffect, true, ReadOnly, ReadNone, 2629 InNoMergeAttributedStmt, S, ResultRegTypes, *this, 2630 RegResults); 2631 } else { 2632 llvm::CallInst *Result = 2633 Builder.CreateCall(IA, Args, getBundlesForFunclet(IA)); 2634 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false, 2635 ReadOnly, ReadNone, InNoMergeAttributedStmt, S, 2636 ResultRegTypes, *this, RegResults); 2637 } 2638 2639 assert(RegResults.size() == ResultRegTypes.size()); 2640 assert(RegResults.size() == ResultTruncRegTypes.size()); 2641 assert(RegResults.size() == ResultRegDests.size()); 2642 // ResultRegDests can be also populated by addReturnRegisterOutputs() above, 2643 // in which case its size may grow. 2644 assert(ResultTypeRequiresCast.size() <= ResultRegDests.size()); 2645 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2646 llvm::Value *Tmp = RegResults[i]; 2647 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2648 2649 // If the result type of the LLVM IR asm doesn't match the result type of 2650 // the expression, do the conversion. 2651 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2652 2653 // Truncate the integer result to the right size, note that TruncTy can be 2654 // a pointer. 2655 if (TruncTy->isFloatingPointTy()) 2656 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2657 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2658 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2659 Tmp = Builder.CreateTrunc(Tmp, 2660 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2661 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2662 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2663 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2664 Tmp = Builder.CreatePtrToInt(Tmp, 2665 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2666 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2667 } else if (TruncTy->isIntegerTy()) { 2668 Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy); 2669 } else if (TruncTy->isVectorTy()) { 2670 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2671 } 2672 } 2673 2674 LValue Dest = ResultRegDests[i]; 2675 // ResultTypeRequiresCast elements correspond to the first 2676 // ResultTypeRequiresCast.size() elements of RegResults. 2677 if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) { 2678 unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]); 2679 Address A = Builder.CreateBitCast(Dest.getAddress(*this), 2680 ResultRegTypes[i]->getPointerTo()); 2681 if (getTargetHooks().isScalarizableAsmOperand(*this, TruncTy)) { 2682 Builder.CreateStore(Tmp, A); 2683 continue; 2684 } 2685 2686 QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false); 2687 if (Ty.isNull()) { 2688 const Expr *OutExpr = S.getOutputExpr(i); 2689 CGM.Error( 2690 OutExpr->getExprLoc(), 2691 "impossible constraint in asm: can't store value into a register"); 2692 return; 2693 } 2694 Dest = MakeAddrLValue(A, Ty); 2695 } 2696 EmitStoreThroughLValue(RValue::get(Tmp), Dest); 2697 } 2698 } 2699 2700 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 2701 const RecordDecl *RD = S.getCapturedRecordDecl(); 2702 QualType RecordTy = getContext().getRecordType(RD); 2703 2704 // Initialize the captured struct. 2705 LValue SlotLV = 2706 MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2707 2708 RecordDecl::field_iterator CurField = RD->field_begin(); 2709 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 2710 E = S.capture_init_end(); 2711 I != E; ++I, ++CurField) { 2712 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2713 if (CurField->hasCapturedVLAType()) { 2714 EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV); 2715 } else { 2716 EmitInitializerForField(*CurField, LV, *I); 2717 } 2718 } 2719 2720 return SlotLV; 2721 } 2722 2723 /// Generate an outlined function for the body of a CapturedStmt, store any 2724 /// captured variables into the captured struct, and call the outlined function. 2725 llvm::Function * 2726 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2727 LValue CapStruct = InitCapturedStruct(S); 2728 2729 // Emit the CapturedDecl 2730 CodeGenFunction CGF(CGM, true); 2731 CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); 2732 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2733 delete CGF.CapturedStmtInfo; 2734 2735 // Emit call to the helper function. 2736 EmitCallOrInvoke(F, CapStruct.getPointer(*this)); 2737 2738 return F; 2739 } 2740 2741 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2742 LValue CapStruct = InitCapturedStruct(S); 2743 return CapStruct.getAddress(*this); 2744 } 2745 2746 /// Creates the outlined function for a CapturedStmt. 2747 llvm::Function * 2748 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2749 assert(CapturedStmtInfo && 2750 "CapturedStmtInfo should be set when generating the captured function"); 2751 const CapturedDecl *CD = S.getCapturedDecl(); 2752 const RecordDecl *RD = S.getCapturedRecordDecl(); 2753 SourceLocation Loc = S.getBeginLoc(); 2754 assert(CD->hasBody() && "missing CapturedDecl body"); 2755 2756 // Build the argument list. 2757 ASTContext &Ctx = CGM.getContext(); 2758 FunctionArgList Args; 2759 Args.append(CD->param_begin(), CD->param_end()); 2760 2761 // Create the function declaration. 2762 const CGFunctionInfo &FuncInfo = 2763 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 2764 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2765 2766 llvm::Function *F = 2767 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2768 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2769 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2770 if (CD->isNothrow()) 2771 F->addFnAttr(llvm::Attribute::NoUnwind); 2772 2773 // Generate the function. 2774 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(), 2775 CD->getBody()->getBeginLoc()); 2776 // Set the context parameter in CapturedStmtInfo. 2777 Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam()); 2778 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2779 2780 // Initialize variable-length arrays. 2781 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2782 Ctx.getTagDeclType(RD)); 2783 for (auto *FD : RD->fields()) { 2784 if (FD->hasCapturedVLAType()) { 2785 auto *ExprArg = 2786 EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc()) 2787 .getScalarVal(); 2788 auto VAT = FD->getCapturedVLAType(); 2789 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 2790 } 2791 } 2792 2793 // If 'this' is captured, load it into CXXThisValue. 2794 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2795 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2796 LValue ThisLValue = EmitLValueForField(Base, FD); 2797 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2798 } 2799 2800 PGO.assignRegionCounters(GlobalDecl(CD), F); 2801 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2802 FinishFunction(CD->getBodyRBrace()); 2803 2804 return F; 2805 } 2806