1 //===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder ----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Builder implementation for CGRecordLayout objects. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGRecordLayout.h" 14 #include "CGCXXABI.h" 15 #include "CodeGenTypes.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/Attr.h" 18 #include "clang/AST/CXXInheritance.h" 19 #include "clang/AST/DeclCXX.h" 20 #include "clang/AST/Expr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/CodeGenOptions.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Type.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/raw_ostream.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 namespace { 33 /// The CGRecordLowering is responsible for lowering an ASTRecordLayout to an 34 /// llvm::Type. Some of the lowering is straightforward, some is not. Here we 35 /// detail some of the complexities and weirdnesses here. 36 /// * LLVM does not have unions - Unions can, in theory be represented by any 37 /// llvm::Type with correct size. We choose a field via a specific heuristic 38 /// and add padding if necessary. 39 /// * LLVM does not have bitfields - Bitfields are collected into contiguous 40 /// runs and allocated as a single storage type for the run. ASTRecordLayout 41 /// contains enough information to determine where the runs break. Microsoft 42 /// and Itanium follow different rules and use different codepaths. 43 /// * It is desired that, when possible, bitfields use the appropriate iN type 44 /// when lowered to llvm types. For example unsigned x : 24 gets lowered to 45 /// i24. This isn't always possible because i24 has storage size of 32 bit 46 /// and if it is possible to use that extra byte of padding we must use 47 /// [i8 x 3] instead of i24. The function clipTailPadding does this. 48 /// C++ examples that require clipping: 49 /// struct { int a : 24; char b; }; // a must be clipped, b goes at offset 3 50 /// struct A { int a : 24; }; // a must be clipped because a struct like B 51 // could exist: struct B : A { char b; }; // b goes at offset 3 52 /// * Clang ignores 0 sized bitfields and 0 sized bases but *not* zero sized 53 /// fields. The existing asserts suggest that LLVM assumes that *every* field 54 /// has an underlying storage type. Therefore empty structures containing 55 /// zero sized subobjects such as empty records or zero sized arrays still get 56 /// a zero sized (empty struct) storage type. 57 /// * Clang reads the complete type rather than the base type when generating 58 /// code to access fields. Bitfields in tail position with tail padding may 59 /// be clipped in the base class but not the complete class (we may discover 60 /// that the tail padding is not used in the complete class.) However, 61 /// because LLVM reads from the complete type it can generate incorrect code 62 /// if we do not clip the tail padding off of the bitfield in the complete 63 /// layout. This introduces a somewhat awkward extra unnecessary clip stage. 64 /// The location of the clip is stored internally as a sentinel of type 65 /// SCISSOR. If LLVM were updated to read base types (which it probably 66 /// should because locations of things such as VBases are bogus in the llvm 67 /// type anyway) then we could eliminate the SCISSOR. 68 /// * Itanium allows nearly empty primary virtual bases. These bases don't get 69 /// get their own storage because they're laid out as part of another base 70 /// or at the beginning of the structure. Determining if a VBase actually 71 /// gets storage awkwardly involves a walk of all bases. 72 /// * VFPtrs and VBPtrs do *not* make a record NotZeroInitializable. 73 struct CGRecordLowering { 74 // MemberInfo is a helper structure that contains information about a record 75 // member. In additional to the standard member types, there exists a 76 // sentinel member type that ensures correct rounding. 77 struct MemberInfo { 78 CharUnits Offset; 79 enum InfoKind { VFPtr, VBPtr, Field, Base, VBase, Scissor } Kind; 80 llvm::Type *Data; 81 union { 82 const FieldDecl *FD; 83 const CXXRecordDecl *RD; 84 }; 85 MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data, 86 const FieldDecl *FD = nullptr) 87 : Offset(Offset), Kind(Kind), Data(Data), FD(FD) {} 88 MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data, 89 const CXXRecordDecl *RD) 90 : Offset(Offset), Kind(Kind), Data(Data), RD(RD) {} 91 // MemberInfos are sorted so we define a < operator. 92 bool operator <(const MemberInfo& a) const { return Offset < a.Offset; } 93 }; 94 // The constructor. 95 CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D, bool Packed); 96 // Short helper routines. 97 /// Constructs a MemberInfo instance from an offset and llvm::Type *. 98 MemberInfo StorageInfo(CharUnits Offset, llvm::Type *Data) { 99 return MemberInfo(Offset, MemberInfo::Field, Data); 100 } 101 102 /// The Microsoft bitfield layout rule allocates discrete storage 103 /// units of the field's formal type and only combines adjacent 104 /// fields of the same formal type. We want to emit a layout with 105 /// these discrete storage units instead of combining them into a 106 /// continuous run. 107 bool isDiscreteBitFieldABI() { 108 return Context.getTargetInfo().getCXXABI().isMicrosoft() || 109 D->isMsStruct(Context); 110 } 111 112 /// Helper function to check if we are targeting AAPCS. 113 bool isAAPCS() const { 114 return Context.getTargetInfo().getABI().startswith("aapcs"); 115 } 116 117 /// Helper function to check if the target machine is BigEndian. 118 bool isBE() const { return Context.getTargetInfo().isBigEndian(); } 119 120 /// The Itanium base layout rule allows virtual bases to overlap 121 /// other bases, which complicates layout in specific ways. 122 /// 123 /// Note specifically that the ms_struct attribute doesn't change this. 124 bool isOverlappingVBaseABI() { 125 return !Context.getTargetInfo().getCXXABI().isMicrosoft(); 126 } 127 128 /// Wraps llvm::Type::getIntNTy with some implicit arguments. 129 llvm::Type *getIntNType(uint64_t NumBits) { 130 unsigned AlignedBits = llvm::alignTo(NumBits, Context.getCharWidth()); 131 return llvm::Type::getIntNTy(Types.getLLVMContext(), AlignedBits); 132 } 133 /// Get the LLVM type sized as one character unit. 134 llvm::Type *getCharType() { 135 return llvm::Type::getIntNTy(Types.getLLVMContext(), 136 Context.getCharWidth()); 137 } 138 /// Gets an llvm type of size NumChars and alignment 1. 139 llvm::Type *getByteArrayType(CharUnits NumChars) { 140 assert(!NumChars.isZero() && "Empty byte arrays aren't allowed."); 141 llvm::Type *Type = getCharType(); 142 return NumChars == CharUnits::One() ? Type : 143 (llvm::Type *)llvm::ArrayType::get(Type, NumChars.getQuantity()); 144 } 145 /// Gets the storage type for a field decl and handles storage 146 /// for itanium bitfields that are smaller than their declared type. 147 llvm::Type *getStorageType(const FieldDecl *FD) { 148 llvm::Type *Type = Types.ConvertTypeForMem(FD->getType()); 149 if (!FD->isBitField()) return Type; 150 if (isDiscreteBitFieldABI()) return Type; 151 return getIntNType(std::min(FD->getBitWidthValue(Context), 152 (unsigned)Context.toBits(getSize(Type)))); 153 } 154 /// Gets the llvm Basesubobject type from a CXXRecordDecl. 155 llvm::Type *getStorageType(const CXXRecordDecl *RD) { 156 return Types.getCGRecordLayout(RD).getBaseSubobjectLLVMType(); 157 } 158 CharUnits bitsToCharUnits(uint64_t BitOffset) { 159 return Context.toCharUnitsFromBits(BitOffset); 160 } 161 CharUnits getSize(llvm::Type *Type) { 162 return CharUnits::fromQuantity(DataLayout.getTypeAllocSize(Type)); 163 } 164 CharUnits getAlignment(llvm::Type *Type) { 165 return CharUnits::fromQuantity(DataLayout.getABITypeAlign(Type)); 166 } 167 bool isZeroInitializable(const FieldDecl *FD) { 168 return Types.isZeroInitializable(FD->getType()); 169 } 170 bool isZeroInitializable(const RecordDecl *RD) { 171 return Types.isZeroInitializable(RD); 172 } 173 void appendPaddingBytes(CharUnits Size) { 174 if (!Size.isZero()) 175 FieldTypes.push_back(getByteArrayType(Size)); 176 } 177 uint64_t getFieldBitOffset(const FieldDecl *FD) { 178 return Layout.getFieldOffset(FD->getFieldIndex()); 179 } 180 // Layout routines. 181 void setBitFieldInfo(const FieldDecl *FD, CharUnits StartOffset, 182 llvm::Type *StorageType); 183 /// Lowers an ASTRecordLayout to a llvm type. 184 void lower(bool NonVirtualBaseType); 185 void lowerUnion(); 186 void accumulateFields(); 187 void accumulateBitFields(RecordDecl::field_iterator Field, 188 RecordDecl::field_iterator FieldEnd); 189 void computeVolatileBitfields(); 190 void accumulateBases(); 191 void accumulateVPtrs(); 192 void accumulateVBases(); 193 /// Recursively searches all of the bases to find out if a vbase is 194 /// not the primary vbase of some base class. 195 bool hasOwnStorage(const CXXRecordDecl *Decl, const CXXRecordDecl *Query); 196 void calculateZeroInit(); 197 /// Lowers bitfield storage types to I8 arrays for bitfields with tail 198 /// padding that is or can potentially be used. 199 void clipTailPadding(); 200 /// Determines if we need a packed llvm struct. 201 void determinePacked(bool NVBaseType); 202 /// Inserts padding everywhere it's needed. 203 void insertPadding(); 204 /// Fills out the structures that are ultimately consumed. 205 void fillOutputFields(); 206 // Input memoization fields. 207 CodeGenTypes &Types; 208 const ASTContext &Context; 209 const RecordDecl *D; 210 const CXXRecordDecl *RD; 211 const ASTRecordLayout &Layout; 212 const llvm::DataLayout &DataLayout; 213 // Helpful intermediate data-structures. 214 std::vector<MemberInfo> Members; 215 // Output fields, consumed by CodeGenTypes::ComputeRecordLayout. 216 SmallVector<llvm::Type *, 16> FieldTypes; 217 llvm::DenseMap<const FieldDecl *, unsigned> Fields; 218 llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields; 219 llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases; 220 llvm::DenseMap<const CXXRecordDecl *, unsigned> VirtualBases; 221 bool IsZeroInitializable : 1; 222 bool IsZeroInitializableAsBase : 1; 223 bool Packed : 1; 224 private: 225 CGRecordLowering(const CGRecordLowering &) = delete; 226 void operator =(const CGRecordLowering &) = delete; 227 }; 228 } // namespace { 229 230 CGRecordLowering::CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D, 231 bool Packed) 232 : Types(Types), Context(Types.getContext()), D(D), 233 RD(dyn_cast<CXXRecordDecl>(D)), 234 Layout(Types.getContext().getASTRecordLayout(D)), 235 DataLayout(Types.getDataLayout()), IsZeroInitializable(true), 236 IsZeroInitializableAsBase(true), Packed(Packed) {} 237 238 void CGRecordLowering::setBitFieldInfo( 239 const FieldDecl *FD, CharUnits StartOffset, llvm::Type *StorageType) { 240 CGBitFieldInfo &Info = BitFields[FD->getCanonicalDecl()]; 241 Info.IsSigned = FD->getType()->isSignedIntegerOrEnumerationType(); 242 Info.Offset = (unsigned)(getFieldBitOffset(FD) - Context.toBits(StartOffset)); 243 Info.Size = FD->getBitWidthValue(Context); 244 Info.StorageSize = (unsigned)DataLayout.getTypeAllocSizeInBits(StorageType); 245 Info.StorageOffset = StartOffset; 246 if (Info.Size > Info.StorageSize) 247 Info.Size = Info.StorageSize; 248 // Reverse the bit offsets for big endian machines. Because we represent 249 // a bitfield as a single large integer load, we can imagine the bits 250 // counting from the most-significant-bit instead of the 251 // least-significant-bit. 252 if (DataLayout.isBigEndian()) 253 Info.Offset = Info.StorageSize - (Info.Offset + Info.Size); 254 255 Info.VolatileStorageSize = 0; 256 Info.VolatileOffset = 0; 257 Info.VolatileStorageOffset = CharUnits::Zero(); 258 } 259 260 void CGRecordLowering::lower(bool NVBaseType) { 261 // The lowering process implemented in this function takes a variety of 262 // carefully ordered phases. 263 // 1) Store all members (fields and bases) in a list and sort them by offset. 264 // 2) Add a 1-byte capstone member at the Size of the structure. 265 // 3) Clip bitfield storages members if their tail padding is or might be 266 // used by another field or base. The clipping process uses the capstone 267 // by treating it as another object that occurs after the record. 268 // 4) Determine if the llvm-struct requires packing. It's important that this 269 // phase occur after clipping, because clipping changes the llvm type. 270 // This phase reads the offset of the capstone when determining packedness 271 // and updates the alignment of the capstone to be equal of the alignment 272 // of the record after doing so. 273 // 5) Insert padding everywhere it is needed. This phase requires 'Packed' to 274 // have been computed and needs to know the alignment of the record in 275 // order to understand if explicit tail padding is needed. 276 // 6) Remove the capstone, we don't need it anymore. 277 // 7) Determine if this record can be zero-initialized. This phase could have 278 // been placed anywhere after phase 1. 279 // 8) Format the complete list of members in a way that can be consumed by 280 // CodeGenTypes::ComputeRecordLayout. 281 CharUnits Size = NVBaseType ? Layout.getNonVirtualSize() : Layout.getSize(); 282 if (D->isUnion()) { 283 lowerUnion(); 284 computeVolatileBitfields(); 285 return; 286 } 287 accumulateFields(); 288 // RD implies C++. 289 if (RD) { 290 accumulateVPtrs(); 291 accumulateBases(); 292 if (Members.empty()) { 293 appendPaddingBytes(Size); 294 computeVolatileBitfields(); 295 return; 296 } 297 if (!NVBaseType) 298 accumulateVBases(); 299 } 300 llvm::stable_sort(Members); 301 Members.push_back(StorageInfo(Size, getIntNType(8))); 302 clipTailPadding(); 303 determinePacked(NVBaseType); 304 insertPadding(); 305 Members.pop_back(); 306 calculateZeroInit(); 307 fillOutputFields(); 308 computeVolatileBitfields(); 309 } 310 311 void CGRecordLowering::lowerUnion() { 312 CharUnits LayoutSize = Layout.getSize(); 313 llvm::Type *StorageType = nullptr; 314 bool SeenNamedMember = false; 315 // Iterate through the fields setting bitFieldInfo and the Fields array. Also 316 // locate the "most appropriate" storage type. The heuristic for finding the 317 // storage type isn't necessary, the first (non-0-length-bitfield) field's 318 // type would work fine and be simpler but would be different than what we've 319 // been doing and cause lit tests to change. 320 for (const auto *Field : D->fields()) { 321 if (Field->isBitField()) { 322 if (Field->isZeroLengthBitField(Context)) 323 continue; 324 llvm::Type *FieldType = getStorageType(Field); 325 if (LayoutSize < getSize(FieldType)) 326 FieldType = getByteArrayType(LayoutSize); 327 setBitFieldInfo(Field, CharUnits::Zero(), FieldType); 328 } 329 Fields[Field->getCanonicalDecl()] = 0; 330 llvm::Type *FieldType = getStorageType(Field); 331 // Compute zero-initializable status. 332 // This union might not be zero initialized: it may contain a pointer to 333 // data member which might have some exotic initialization sequence. 334 // If this is the case, then we aught not to try and come up with a "better" 335 // type, it might not be very easy to come up with a Constant which 336 // correctly initializes it. 337 if (!SeenNamedMember) { 338 SeenNamedMember = Field->getIdentifier(); 339 if (!SeenNamedMember) 340 if (const auto *FieldRD = Field->getType()->getAsRecordDecl()) 341 SeenNamedMember = FieldRD->findFirstNamedDataMember(); 342 if (SeenNamedMember && !isZeroInitializable(Field)) { 343 IsZeroInitializable = IsZeroInitializableAsBase = false; 344 StorageType = FieldType; 345 } 346 } 347 // Because our union isn't zero initializable, we won't be getting a better 348 // storage type. 349 if (!IsZeroInitializable) 350 continue; 351 // Conditionally update our storage type if we've got a new "better" one. 352 if (!StorageType || 353 getAlignment(FieldType) > getAlignment(StorageType) || 354 (getAlignment(FieldType) == getAlignment(StorageType) && 355 getSize(FieldType) > getSize(StorageType))) 356 StorageType = FieldType; 357 } 358 // If we have no storage type just pad to the appropriate size and return. 359 if (!StorageType) 360 return appendPaddingBytes(LayoutSize); 361 // If our storage size was bigger than our required size (can happen in the 362 // case of packed bitfields on Itanium) then just use an I8 array. 363 if (LayoutSize < getSize(StorageType)) 364 StorageType = getByteArrayType(LayoutSize); 365 FieldTypes.push_back(StorageType); 366 appendPaddingBytes(LayoutSize - getSize(StorageType)); 367 // Set packed if we need it. 368 if (LayoutSize % getAlignment(StorageType)) 369 Packed = true; 370 } 371 372 void CGRecordLowering::accumulateFields() { 373 for (RecordDecl::field_iterator Field = D->field_begin(), 374 FieldEnd = D->field_end(); 375 Field != FieldEnd;) { 376 if (Field->isBitField()) { 377 RecordDecl::field_iterator Start = Field; 378 // Iterate to gather the list of bitfields. 379 for (++Field; Field != FieldEnd && Field->isBitField(); ++Field); 380 accumulateBitFields(Start, Field); 381 } else if (!Field->isZeroSize(Context)) { 382 Members.push_back(MemberInfo( 383 bitsToCharUnits(getFieldBitOffset(*Field)), MemberInfo::Field, 384 getStorageType(*Field), *Field)); 385 ++Field; 386 } else { 387 ++Field; 388 } 389 } 390 } 391 392 void 393 CGRecordLowering::accumulateBitFields(RecordDecl::field_iterator Field, 394 RecordDecl::field_iterator FieldEnd) { 395 // Run stores the first element of the current run of bitfields. FieldEnd is 396 // used as a special value to note that we don't have a current run. A 397 // bitfield run is a contiguous collection of bitfields that can be stored in 398 // the same storage block. Zero-sized bitfields and bitfields that would 399 // cross an alignment boundary break a run and start a new one. 400 RecordDecl::field_iterator Run = FieldEnd; 401 // Tail is the offset of the first bit off the end of the current run. It's 402 // used to determine if the ASTRecordLayout is treating these two bitfields as 403 // contiguous. StartBitOffset is offset of the beginning of the Run. 404 uint64_t StartBitOffset, Tail = 0; 405 if (isDiscreteBitFieldABI()) { 406 for (; Field != FieldEnd; ++Field) { 407 uint64_t BitOffset = getFieldBitOffset(*Field); 408 // Zero-width bitfields end runs. 409 if (Field->isZeroLengthBitField(Context)) { 410 Run = FieldEnd; 411 continue; 412 } 413 llvm::Type *Type = 414 Types.ConvertTypeForMem(Field->getType(), /*ForBitField=*/true); 415 // If we don't have a run yet, or don't live within the previous run's 416 // allocated storage then we allocate some storage and start a new run. 417 if (Run == FieldEnd || BitOffset >= Tail) { 418 Run = Field; 419 StartBitOffset = BitOffset; 420 Tail = StartBitOffset + DataLayout.getTypeAllocSizeInBits(Type); 421 // Add the storage member to the record. This must be added to the 422 // record before the bitfield members so that it gets laid out before 423 // the bitfields it contains get laid out. 424 Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type)); 425 } 426 // Bitfields get the offset of their storage but come afterward and remain 427 // there after a stable sort. 428 Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset), 429 MemberInfo::Field, nullptr, *Field)); 430 } 431 return; 432 } 433 434 // Check if OffsetInRecord (the size in bits of the current run) is better 435 // as a single field run. When OffsetInRecord has legal integer width, and 436 // its bitfield offset is naturally aligned, it is better to make the 437 // bitfield a separate storage component so as it can be accessed directly 438 // with lower cost. 439 auto IsBetterAsSingleFieldRun = [&](uint64_t OffsetInRecord, 440 uint64_t StartBitOffset) { 441 if (!Types.getCodeGenOpts().FineGrainedBitfieldAccesses) 442 return false; 443 if (OffsetInRecord < 8 || !llvm::isPowerOf2_64(OffsetInRecord) || 444 !DataLayout.fitsInLegalInteger(OffsetInRecord)) 445 return false; 446 // Make sure StartBitOffset is naturally aligned if it is treated as an 447 // IType integer. 448 if (StartBitOffset % 449 Context.toBits(getAlignment(getIntNType(OffsetInRecord))) != 450 0) 451 return false; 452 return true; 453 }; 454 455 // The start field is better as a single field run. 456 bool StartFieldAsSingleRun = false; 457 for (;;) { 458 // Check to see if we need to start a new run. 459 if (Run == FieldEnd) { 460 // If we're out of fields, return. 461 if (Field == FieldEnd) 462 break; 463 // Any non-zero-length bitfield can start a new run. 464 if (!Field->isZeroLengthBitField(Context)) { 465 Run = Field; 466 StartBitOffset = getFieldBitOffset(*Field); 467 Tail = StartBitOffset + Field->getBitWidthValue(Context); 468 StartFieldAsSingleRun = IsBetterAsSingleFieldRun(Tail - StartBitOffset, 469 StartBitOffset); 470 } 471 ++Field; 472 continue; 473 } 474 475 // If the start field of a new run is better as a single run, or 476 // if current field (or consecutive fields) is better as a single run, or 477 // if current field has zero width bitfield and either 478 // UseZeroLengthBitfieldAlignment or UseBitFieldTypeAlignment is set to 479 // true, or 480 // if the offset of current field is inconsistent with the offset of 481 // previous field plus its offset, 482 // skip the block below and go ahead to emit the storage. 483 // Otherwise, try to add bitfields to the run. 484 if (!StartFieldAsSingleRun && Field != FieldEnd && 485 !IsBetterAsSingleFieldRun(Tail - StartBitOffset, StartBitOffset) && 486 (!Field->isZeroLengthBitField(Context) || 487 (!Context.getTargetInfo().useZeroLengthBitfieldAlignment() && 488 !Context.getTargetInfo().useBitFieldTypeAlignment())) && 489 Tail == getFieldBitOffset(*Field)) { 490 Tail += Field->getBitWidthValue(Context); 491 ++Field; 492 continue; 493 } 494 495 // We've hit a break-point in the run and need to emit a storage field. 496 llvm::Type *Type = getIntNType(Tail - StartBitOffset); 497 // Add the storage member to the record and set the bitfield info for all of 498 // the bitfields in the run. Bitfields get the offset of their storage but 499 // come afterward and remain there after a stable sort. 500 Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type)); 501 for (; Run != Field; ++Run) 502 Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset), 503 MemberInfo::Field, nullptr, *Run)); 504 Run = FieldEnd; 505 StartFieldAsSingleRun = false; 506 } 507 } 508 509 void CGRecordLowering::accumulateBases() { 510 // If we've got a primary virtual base, we need to add it with the bases. 511 if (Layout.isPrimaryBaseVirtual()) { 512 const CXXRecordDecl *BaseDecl = Layout.getPrimaryBase(); 513 Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::Base, 514 getStorageType(BaseDecl), BaseDecl)); 515 } 516 // Accumulate the non-virtual bases. 517 for (const auto &Base : RD->bases()) { 518 if (Base.isVirtual()) 519 continue; 520 521 // Bases can be zero-sized even if not technically empty if they 522 // contain only a trailing array member. 523 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 524 if (!BaseDecl->isEmpty() && 525 !Context.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero()) 526 Members.push_back(MemberInfo(Layout.getBaseClassOffset(BaseDecl), 527 MemberInfo::Base, getStorageType(BaseDecl), BaseDecl)); 528 } 529 } 530 531 /// The AAPCS that defines that, when possible, bit-fields should 532 /// be accessed using containers of the declared type width: 533 /// When a volatile bit-field is read, and its container does not overlap with 534 /// any non-bit-field member or any zero length bit-field member, its container 535 /// must be read exactly once using the access width appropriate to the type of 536 /// the container. When a volatile bit-field is written, and its container does 537 /// not overlap with any non-bit-field member or any zero-length bit-field 538 /// member, its container must be read exactly once and written exactly once 539 /// using the access width appropriate to the type of the container. The two 540 /// accesses are not atomic. 541 /// 542 /// Enforcing the width restriction can be disabled using 543 /// -fno-aapcs-bitfield-width. 544 void CGRecordLowering::computeVolatileBitfields() { 545 if (!isAAPCS() || !Types.getCodeGenOpts().AAPCSBitfieldWidth) 546 return; 547 548 for (auto &I : BitFields) { 549 const FieldDecl *Field = I.first; 550 CGBitFieldInfo &Info = I.second; 551 llvm::Type *ResLTy = Types.ConvertTypeForMem(Field->getType()); 552 // If the record alignment is less than the type width, we can't enforce a 553 // aligned load, bail out. 554 if ((uint64_t)(Context.toBits(Layout.getAlignment())) < 555 ResLTy->getPrimitiveSizeInBits()) 556 continue; 557 // CGRecordLowering::setBitFieldInfo() pre-adjusts the bit-field offsets 558 // for big-endian targets, but it assumes a container of width 559 // Info.StorageSize. Since AAPCS uses a different container size (width 560 // of the type), we first undo that calculation here and redo it once 561 // the bit-field offset within the new container is calculated. 562 const unsigned OldOffset = 563 isBE() ? Info.StorageSize - (Info.Offset + Info.Size) : Info.Offset; 564 // Offset to the bit-field from the beginning of the struct. 565 const unsigned AbsoluteOffset = 566 Context.toBits(Info.StorageOffset) + OldOffset; 567 568 // Container size is the width of the bit-field type. 569 const unsigned StorageSize = ResLTy->getPrimitiveSizeInBits(); 570 // Nothing to do if the access uses the desired 571 // container width and is naturally aligned. 572 if (Info.StorageSize == StorageSize && (OldOffset % StorageSize == 0)) 573 continue; 574 575 // Offset within the container. 576 unsigned Offset = AbsoluteOffset & (StorageSize - 1); 577 // Bail out if an aligned load of the container cannot cover the entire 578 // bit-field. This can happen for example, if the bit-field is part of a 579 // packed struct. AAPCS does not define access rules for such cases, we let 580 // clang to follow its own rules. 581 if (Offset + Info.Size > StorageSize) 582 continue; 583 584 // Re-adjust offsets for big-endian targets. 585 if (isBE()) 586 Offset = StorageSize - (Offset + Info.Size); 587 588 const CharUnits StorageOffset = 589 Context.toCharUnitsFromBits(AbsoluteOffset & ~(StorageSize - 1)); 590 const CharUnits End = StorageOffset + 591 Context.toCharUnitsFromBits(StorageSize) - 592 CharUnits::One(); 593 594 const ASTRecordLayout &Layout = 595 Context.getASTRecordLayout(Field->getParent()); 596 // If we access outside memory outside the record, than bail out. 597 const CharUnits RecordSize = Layout.getSize(); 598 if (End >= RecordSize) 599 continue; 600 601 // Bail out if performing this load would access non-bit-fields members. 602 bool Conflict = false; 603 for (const auto *F : D->fields()) { 604 // Allow sized bit-fields overlaps. 605 if (F->isBitField() && !F->isZeroLengthBitField(Context)) 606 continue; 607 608 const CharUnits FOffset = Context.toCharUnitsFromBits( 609 Layout.getFieldOffset(F->getFieldIndex())); 610 611 // As C11 defines, a zero sized bit-field defines a barrier, so 612 // fields after and before it should be race condition free. 613 // The AAPCS acknowledges it and imposes no restritions when the 614 // natural container overlaps a zero-length bit-field. 615 if (F->isZeroLengthBitField(Context)) { 616 if (End > FOffset && StorageOffset < FOffset) { 617 Conflict = true; 618 break; 619 } 620 } 621 622 const CharUnits FEnd = 623 FOffset + 624 Context.toCharUnitsFromBits( 625 Types.ConvertTypeForMem(F->getType())->getPrimitiveSizeInBits()) - 626 CharUnits::One(); 627 // If no overlap, continue. 628 if (End < FOffset || FEnd < StorageOffset) 629 continue; 630 631 // The desired load overlaps a non-bit-field member, bail out. 632 Conflict = true; 633 break; 634 } 635 636 if (Conflict) 637 continue; 638 // Write the new bit-field access parameters. 639 // As the storage offset now is defined as the number of elements from the 640 // start of the structure, we should divide the Offset by the element size. 641 Info.VolatileStorageOffset = 642 StorageOffset / Context.toCharUnitsFromBits(StorageSize).getQuantity(); 643 Info.VolatileStorageSize = StorageSize; 644 Info.VolatileOffset = Offset; 645 } 646 } 647 648 void CGRecordLowering::accumulateVPtrs() { 649 if (Layout.hasOwnVFPtr()) 650 Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::VFPtr, 651 llvm::FunctionType::get(getIntNType(32), /*isVarArg=*/true)-> 652 getPointerTo()->getPointerTo())); 653 if (Layout.hasOwnVBPtr()) 654 Members.push_back(MemberInfo(Layout.getVBPtrOffset(), MemberInfo::VBPtr, 655 llvm::Type::getInt32PtrTy(Types.getLLVMContext()))); 656 } 657 658 void CGRecordLowering::accumulateVBases() { 659 CharUnits ScissorOffset = Layout.getNonVirtualSize(); 660 // In the itanium ABI, it's possible to place a vbase at a dsize that is 661 // smaller than the nvsize. Here we check to see if such a base is placed 662 // before the nvsize and set the scissor offset to that, instead of the 663 // nvsize. 664 if (isOverlappingVBaseABI()) 665 for (const auto &Base : RD->vbases()) { 666 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 667 if (BaseDecl->isEmpty()) 668 continue; 669 // If the vbase is a primary virtual base of some base, then it doesn't 670 // get its own storage location but instead lives inside of that base. 671 if (Context.isNearlyEmpty(BaseDecl) && !hasOwnStorage(RD, BaseDecl)) 672 continue; 673 ScissorOffset = std::min(ScissorOffset, 674 Layout.getVBaseClassOffset(BaseDecl)); 675 } 676 Members.push_back(MemberInfo(ScissorOffset, MemberInfo::Scissor, nullptr, 677 RD)); 678 for (const auto &Base : RD->vbases()) { 679 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 680 if (BaseDecl->isEmpty()) 681 continue; 682 CharUnits Offset = Layout.getVBaseClassOffset(BaseDecl); 683 // If the vbase is a primary virtual base of some base, then it doesn't 684 // get its own storage location but instead lives inside of that base. 685 if (isOverlappingVBaseABI() && 686 Context.isNearlyEmpty(BaseDecl) && 687 !hasOwnStorage(RD, BaseDecl)) { 688 Members.push_back(MemberInfo(Offset, MemberInfo::VBase, nullptr, 689 BaseDecl)); 690 continue; 691 } 692 // If we've got a vtordisp, add it as a storage type. 693 if (Layout.getVBaseOffsetsMap().find(BaseDecl)->second.hasVtorDisp()) 694 Members.push_back(StorageInfo(Offset - CharUnits::fromQuantity(4), 695 getIntNType(32))); 696 Members.push_back(MemberInfo(Offset, MemberInfo::VBase, 697 getStorageType(BaseDecl), BaseDecl)); 698 } 699 } 700 701 bool CGRecordLowering::hasOwnStorage(const CXXRecordDecl *Decl, 702 const CXXRecordDecl *Query) { 703 const ASTRecordLayout &DeclLayout = Context.getASTRecordLayout(Decl); 704 if (DeclLayout.isPrimaryBaseVirtual() && DeclLayout.getPrimaryBase() == Query) 705 return false; 706 for (const auto &Base : Decl->bases()) 707 if (!hasOwnStorage(Base.getType()->getAsCXXRecordDecl(), Query)) 708 return false; 709 return true; 710 } 711 712 void CGRecordLowering::calculateZeroInit() { 713 for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), 714 MemberEnd = Members.end(); 715 IsZeroInitializableAsBase && Member != MemberEnd; ++Member) { 716 if (Member->Kind == MemberInfo::Field) { 717 if (!Member->FD || isZeroInitializable(Member->FD)) 718 continue; 719 IsZeroInitializable = IsZeroInitializableAsBase = false; 720 } else if (Member->Kind == MemberInfo::Base || 721 Member->Kind == MemberInfo::VBase) { 722 if (isZeroInitializable(Member->RD)) 723 continue; 724 IsZeroInitializable = false; 725 if (Member->Kind == MemberInfo::Base) 726 IsZeroInitializableAsBase = false; 727 } 728 } 729 } 730 731 void CGRecordLowering::clipTailPadding() { 732 std::vector<MemberInfo>::iterator Prior = Members.begin(); 733 CharUnits Tail = getSize(Prior->Data); 734 for (std::vector<MemberInfo>::iterator Member = Prior + 1, 735 MemberEnd = Members.end(); 736 Member != MemberEnd; ++Member) { 737 // Only members with data and the scissor can cut into tail padding. 738 if (!Member->Data && Member->Kind != MemberInfo::Scissor) 739 continue; 740 if (Member->Offset < Tail) { 741 assert(Prior->Kind == MemberInfo::Field && 742 "Only storage fields have tail padding!"); 743 if (!Prior->FD || Prior->FD->isBitField()) 744 Prior->Data = getByteArrayType(bitsToCharUnits(llvm::alignTo( 745 cast<llvm::IntegerType>(Prior->Data)->getIntegerBitWidth(), 8))); 746 else { 747 assert(Prior->FD->hasAttr<NoUniqueAddressAttr>() && 748 "should not have reused this field's tail padding"); 749 Prior->Data = getByteArrayType( 750 Context.getTypeInfoDataSizeInChars(Prior->FD->getType()).Width); 751 } 752 } 753 if (Member->Data) 754 Prior = Member; 755 Tail = Prior->Offset + getSize(Prior->Data); 756 } 757 } 758 759 void CGRecordLowering::determinePacked(bool NVBaseType) { 760 if (Packed) 761 return; 762 CharUnits Alignment = CharUnits::One(); 763 CharUnits NVAlignment = CharUnits::One(); 764 CharUnits NVSize = 765 !NVBaseType && RD ? Layout.getNonVirtualSize() : CharUnits::Zero(); 766 for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), 767 MemberEnd = Members.end(); 768 Member != MemberEnd; ++Member) { 769 if (!Member->Data) 770 continue; 771 // If any member falls at an offset that it not a multiple of its alignment, 772 // then the entire record must be packed. 773 if (Member->Offset % getAlignment(Member->Data)) 774 Packed = true; 775 if (Member->Offset < NVSize) 776 NVAlignment = std::max(NVAlignment, getAlignment(Member->Data)); 777 Alignment = std::max(Alignment, getAlignment(Member->Data)); 778 } 779 // If the size of the record (the capstone's offset) is not a multiple of the 780 // record's alignment, it must be packed. 781 if (Members.back().Offset % Alignment) 782 Packed = true; 783 // If the non-virtual sub-object is not a multiple of the non-virtual 784 // sub-object's alignment, it must be packed. We cannot have a packed 785 // non-virtual sub-object and an unpacked complete object or vise versa. 786 if (NVSize % NVAlignment) 787 Packed = true; 788 // Update the alignment of the sentinel. 789 if (!Packed) 790 Members.back().Data = getIntNType(Context.toBits(Alignment)); 791 } 792 793 void CGRecordLowering::insertPadding() { 794 std::vector<std::pair<CharUnits, CharUnits> > Padding; 795 CharUnits Size = CharUnits::Zero(); 796 for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), 797 MemberEnd = Members.end(); 798 Member != MemberEnd; ++Member) { 799 if (!Member->Data) 800 continue; 801 CharUnits Offset = Member->Offset; 802 assert(Offset >= Size); 803 // Insert padding if we need to. 804 if (Offset != 805 Size.alignTo(Packed ? CharUnits::One() : getAlignment(Member->Data))) 806 Padding.push_back(std::make_pair(Size, Offset - Size)); 807 Size = Offset + getSize(Member->Data); 808 } 809 if (Padding.empty()) 810 return; 811 // Add the padding to the Members list and sort it. 812 for (std::vector<std::pair<CharUnits, CharUnits> >::const_iterator 813 Pad = Padding.begin(), PadEnd = Padding.end(); 814 Pad != PadEnd; ++Pad) 815 Members.push_back(StorageInfo(Pad->first, getByteArrayType(Pad->second))); 816 llvm::stable_sort(Members); 817 } 818 819 void CGRecordLowering::fillOutputFields() { 820 for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), 821 MemberEnd = Members.end(); 822 Member != MemberEnd; ++Member) { 823 if (Member->Data) 824 FieldTypes.push_back(Member->Data); 825 if (Member->Kind == MemberInfo::Field) { 826 if (Member->FD) 827 Fields[Member->FD->getCanonicalDecl()] = FieldTypes.size() - 1; 828 // A field without storage must be a bitfield. 829 if (!Member->Data) 830 setBitFieldInfo(Member->FD, Member->Offset, FieldTypes.back()); 831 } else if (Member->Kind == MemberInfo::Base) 832 NonVirtualBases[Member->RD] = FieldTypes.size() - 1; 833 else if (Member->Kind == MemberInfo::VBase) 834 VirtualBases[Member->RD] = FieldTypes.size() - 1; 835 } 836 } 837 838 CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types, 839 const FieldDecl *FD, 840 uint64_t Offset, uint64_t Size, 841 uint64_t StorageSize, 842 CharUnits StorageOffset) { 843 // This function is vestigial from CGRecordLayoutBuilder days but is still 844 // used in GCObjCRuntime.cpp. That usage has a "fixme" attached to it that 845 // when addressed will allow for the removal of this function. 846 llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType()); 847 CharUnits TypeSizeInBytes = 848 CharUnits::fromQuantity(Types.getDataLayout().getTypeAllocSize(Ty)); 849 uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes); 850 851 bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType(); 852 853 if (Size > TypeSizeInBits) { 854 // We have a wide bit-field. The extra bits are only used for padding, so 855 // if we have a bitfield of type T, with size N: 856 // 857 // T t : N; 858 // 859 // We can just assume that it's: 860 // 861 // T t : sizeof(T); 862 // 863 Size = TypeSizeInBits; 864 } 865 866 // Reverse the bit offsets for big endian machines. Because we represent 867 // a bitfield as a single large integer load, we can imagine the bits 868 // counting from the most-significant-bit instead of the 869 // least-significant-bit. 870 if (Types.getDataLayout().isBigEndian()) { 871 Offset = StorageSize - (Offset + Size); 872 } 873 874 return CGBitFieldInfo(Offset, Size, IsSigned, StorageSize, StorageOffset); 875 } 876 877 std::unique_ptr<CGRecordLayout> 878 CodeGenTypes::ComputeRecordLayout(const RecordDecl *D, llvm::StructType *Ty) { 879 CGRecordLowering Builder(*this, D, /*Packed=*/false); 880 881 Builder.lower(/*NonVirtualBaseType=*/false); 882 883 // If we're in C++, compute the base subobject type. 884 llvm::StructType *BaseTy = nullptr; 885 if (isa<CXXRecordDecl>(D) && !D->isUnion() && !D->hasAttr<FinalAttr>()) { 886 BaseTy = Ty; 887 if (Builder.Layout.getNonVirtualSize() != Builder.Layout.getSize()) { 888 CGRecordLowering BaseBuilder(*this, D, /*Packed=*/Builder.Packed); 889 BaseBuilder.lower(/*NonVirtualBaseType=*/true); 890 BaseTy = llvm::StructType::create( 891 getLLVMContext(), BaseBuilder.FieldTypes, "", BaseBuilder.Packed); 892 addRecordTypeName(D, BaseTy, ".base"); 893 // BaseTy and Ty must agree on their packedness for getLLVMFieldNo to work 894 // on both of them with the same index. 895 assert(Builder.Packed == BaseBuilder.Packed && 896 "Non-virtual and complete types must agree on packedness"); 897 } 898 } 899 900 // Fill in the struct *after* computing the base type. Filling in the body 901 // signifies that the type is no longer opaque and record layout is complete, 902 // but we may need to recursively layout D while laying D out as a base type. 903 Ty->setBody(Builder.FieldTypes, Builder.Packed); 904 905 auto RL = std::make_unique<CGRecordLayout>( 906 Ty, BaseTy, (bool)Builder.IsZeroInitializable, 907 (bool)Builder.IsZeroInitializableAsBase); 908 909 RL->NonVirtualBases.swap(Builder.NonVirtualBases); 910 RL->CompleteObjectVirtualBases.swap(Builder.VirtualBases); 911 912 // Add all the field numbers. 913 RL->FieldInfo.swap(Builder.Fields); 914 915 // Add bitfield info. 916 RL->BitFields.swap(Builder.BitFields); 917 918 // Dump the layout, if requested. 919 if (getContext().getLangOpts().DumpRecordLayouts) { 920 llvm::outs() << "\n*** Dumping IRgen Record Layout\n"; 921 llvm::outs() << "Record: "; 922 D->dump(llvm::outs()); 923 llvm::outs() << "\nLayout: "; 924 RL->print(llvm::outs()); 925 } 926 927 #ifndef NDEBUG 928 // Verify that the computed LLVM struct size matches the AST layout size. 929 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D); 930 931 uint64_t TypeSizeInBits = getContext().toBits(Layout.getSize()); 932 assert(TypeSizeInBits == getDataLayout().getTypeAllocSizeInBits(Ty) && 933 "Type size mismatch!"); 934 935 if (BaseTy) { 936 CharUnits NonVirtualSize = Layout.getNonVirtualSize(); 937 938 uint64_t AlignedNonVirtualTypeSizeInBits = 939 getContext().toBits(NonVirtualSize); 940 941 assert(AlignedNonVirtualTypeSizeInBits == 942 getDataLayout().getTypeAllocSizeInBits(BaseTy) && 943 "Type size mismatch!"); 944 } 945 946 // Verify that the LLVM and AST field offsets agree. 947 llvm::StructType *ST = RL->getLLVMType(); 948 const llvm::StructLayout *SL = getDataLayout().getStructLayout(ST); 949 950 const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D); 951 RecordDecl::field_iterator it = D->field_begin(); 952 for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) { 953 const FieldDecl *FD = *it; 954 955 // Ignore zero-sized fields. 956 if (FD->isZeroSize(getContext())) 957 continue; 958 959 // For non-bit-fields, just check that the LLVM struct offset matches the 960 // AST offset. 961 if (!FD->isBitField()) { 962 unsigned FieldNo = RL->getLLVMFieldNo(FD); 963 assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) && 964 "Invalid field offset!"); 965 continue; 966 } 967 968 // Ignore unnamed bit-fields. 969 if (!FD->getDeclName()) 970 continue; 971 972 const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD); 973 llvm::Type *ElementTy = ST->getTypeAtIndex(RL->getLLVMFieldNo(FD)); 974 975 // Unions have overlapping elements dictating their layout, but for 976 // non-unions we can verify that this section of the layout is the exact 977 // expected size. 978 if (D->isUnion()) { 979 // For unions we verify that the start is zero and the size 980 // is in-bounds. However, on BE systems, the offset may be non-zero, but 981 // the size + offset should match the storage size in that case as it 982 // "starts" at the back. 983 if (getDataLayout().isBigEndian()) 984 assert(static_cast<unsigned>(Info.Offset + Info.Size) == 985 Info.StorageSize && 986 "Big endian union bitfield does not end at the back"); 987 else 988 assert(Info.Offset == 0 && 989 "Little endian union bitfield with a non-zero offset"); 990 assert(Info.StorageSize <= SL->getSizeInBits() && 991 "Union not large enough for bitfield storage"); 992 } else { 993 assert((Info.StorageSize == 994 getDataLayout().getTypeAllocSizeInBits(ElementTy) || 995 Info.VolatileStorageSize == 996 getDataLayout().getTypeAllocSizeInBits(ElementTy)) && 997 "Storage size does not match the element type size"); 998 } 999 assert(Info.Size > 0 && "Empty bitfield!"); 1000 assert(static_cast<unsigned>(Info.Offset) + Info.Size <= Info.StorageSize && 1001 "Bitfield outside of its allocated storage"); 1002 } 1003 #endif 1004 1005 return RL; 1006 } 1007 1008 void CGRecordLayout::print(raw_ostream &OS) const { 1009 OS << "<CGRecordLayout\n"; 1010 OS << " LLVMType:" << *CompleteObjectType << "\n"; 1011 if (BaseSubobjectType) 1012 OS << " NonVirtualBaseLLVMType:" << *BaseSubobjectType << "\n"; 1013 OS << " IsZeroInitializable:" << IsZeroInitializable << "\n"; 1014 OS << " BitFields:[\n"; 1015 1016 // Print bit-field infos in declaration order. 1017 std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs; 1018 for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator 1019 it = BitFields.begin(), ie = BitFields.end(); 1020 it != ie; ++it) { 1021 const RecordDecl *RD = it->first->getParent(); 1022 unsigned Index = 0; 1023 for (RecordDecl::field_iterator 1024 it2 = RD->field_begin(); *it2 != it->first; ++it2) 1025 ++Index; 1026 BFIs.push_back(std::make_pair(Index, &it->second)); 1027 } 1028 llvm::array_pod_sort(BFIs.begin(), BFIs.end()); 1029 for (unsigned i = 0, e = BFIs.size(); i != e; ++i) { 1030 OS.indent(4); 1031 BFIs[i].second->print(OS); 1032 OS << "\n"; 1033 } 1034 1035 OS << "]>\n"; 1036 } 1037 1038 LLVM_DUMP_METHOD void CGRecordLayout::dump() const { 1039 print(llvm::errs()); 1040 } 1041 1042 void CGBitFieldInfo::print(raw_ostream &OS) const { 1043 OS << "<CGBitFieldInfo" 1044 << " Offset:" << Offset << " Size:" << Size << " IsSigned:" << IsSigned 1045 << " StorageSize:" << StorageSize 1046 << " StorageOffset:" << StorageOffset.getQuantity() 1047 << " VolatileOffset:" << VolatileOffset 1048 << " VolatileStorageSize:" << VolatileStorageSize 1049 << " VolatileStorageOffset:" << VolatileStorageOffset.getQuantity() << ">"; 1050 } 1051 1052 LLVM_DUMP_METHOD void CGBitFieldInfo::dump() const { 1053 print(llvm::errs()); 1054 } 1055