xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGRecordLayoutBuilder.cpp (revision c66a499e037efd268a744e487e7d0c45a4944a9b)
1 //===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder  ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Builder implementation for CGRecordLayout objects.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGRecordLayout.h"
14 #include "CGCXXABI.h"
15 #include "CodeGenTypes.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/CodeGenOptions.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Type.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 using namespace clang;
30 using namespace CodeGen;
31 
32 namespace {
33 /// The CGRecordLowering is responsible for lowering an ASTRecordLayout to an
34 /// llvm::Type.  Some of the lowering is straightforward, some is not.  Here we
35 /// detail some of the complexities and weirdnesses here.
36 /// * LLVM does not have unions - Unions can, in theory be represented by any
37 ///   llvm::Type with correct size.  We choose a field via a specific heuristic
38 ///   and add padding if necessary.
39 /// * LLVM does not have bitfields - Bitfields are collected into contiguous
40 ///   runs and allocated as a single storage type for the run.  ASTRecordLayout
41 ///   contains enough information to determine where the runs break.  Microsoft
42 ///   and Itanium follow different rules and use different codepaths.
43 /// * It is desired that, when possible, bitfields use the appropriate iN type
44 ///   when lowered to llvm types.  For example unsigned x : 24 gets lowered to
45 ///   i24.  This isn't always possible because i24 has storage size of 32 bit
46 ///   and if it is possible to use that extra byte of padding we must use
47 ///   [i8 x 3] instead of i24.  The function clipTailPadding does this.
48 ///   C++ examples that require clipping:
49 ///   struct { int a : 24; char b; }; // a must be clipped, b goes at offset 3
50 ///   struct A { int a : 24; }; // a must be clipped because a struct like B
51 //    could exist: struct B : A { char b; }; // b goes at offset 3
52 /// * Clang ignores 0 sized bitfields and 0 sized bases but *not* zero sized
53 ///   fields.  The existing asserts suggest that LLVM assumes that *every* field
54 ///   has an underlying storage type.  Therefore empty structures containing
55 ///   zero sized subobjects such as empty records or zero sized arrays still get
56 ///   a zero sized (empty struct) storage type.
57 /// * Clang reads the complete type rather than the base type when generating
58 ///   code to access fields.  Bitfields in tail position with tail padding may
59 ///   be clipped in the base class but not the complete class (we may discover
60 ///   that the tail padding is not used in the complete class.) However,
61 ///   because LLVM reads from the complete type it can generate incorrect code
62 ///   if we do not clip the tail padding off of the bitfield in the complete
63 ///   layout.  This introduces a somewhat awkward extra unnecessary clip stage.
64 ///   The location of the clip is stored internally as a sentinel of type
65 ///   SCISSOR.  If LLVM were updated to read base types (which it probably
66 ///   should because locations of things such as VBases are bogus in the llvm
67 ///   type anyway) then we could eliminate the SCISSOR.
68 /// * Itanium allows nearly empty primary virtual bases.  These bases don't get
69 ///   get their own storage because they're laid out as part of another base
70 ///   or at the beginning of the structure.  Determining if a VBase actually
71 ///   gets storage awkwardly involves a walk of all bases.
72 /// * VFPtrs and VBPtrs do *not* make a record NotZeroInitializable.
73 struct CGRecordLowering {
74   // MemberInfo is a helper structure that contains information about a record
75   // member.  In additional to the standard member types, there exists a
76   // sentinel member type that ensures correct rounding.
77   struct MemberInfo {
78     CharUnits Offset;
79     enum InfoKind { VFPtr, VBPtr, Field, Base, VBase, Scissor } Kind;
80     llvm::Type *Data;
81     union {
82       const FieldDecl *FD;
83       const CXXRecordDecl *RD;
84     };
85     MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data,
86                const FieldDecl *FD = nullptr)
87       : Offset(Offset), Kind(Kind), Data(Data), FD(FD) {}
88     MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data,
89                const CXXRecordDecl *RD)
90       : Offset(Offset), Kind(Kind), Data(Data), RD(RD) {}
91     // MemberInfos are sorted so we define a < operator.
92     bool operator <(const MemberInfo& a) const { return Offset < a.Offset; }
93   };
94   // The constructor.
95   CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D, bool Packed);
96   // Short helper routines.
97   /// Constructs a MemberInfo instance from an offset and llvm::Type *.
98   MemberInfo StorageInfo(CharUnits Offset, llvm::Type *Data) {
99     return MemberInfo(Offset, MemberInfo::Field, Data);
100   }
101 
102   /// The Microsoft bitfield layout rule allocates discrete storage
103   /// units of the field's formal type and only combines adjacent
104   /// fields of the same formal type.  We want to emit a layout with
105   /// these discrete storage units instead of combining them into a
106   /// continuous run.
107   bool isDiscreteBitFieldABI() {
108     return Context.getTargetInfo().getCXXABI().isMicrosoft() ||
109            D->isMsStruct(Context);
110   }
111 
112   /// Helper function to check if we are targeting AAPCS.
113   bool isAAPCS() const {
114     return Context.getTargetInfo().getABI().startswith("aapcs");
115   }
116 
117   /// Helper function to check if the target machine is BigEndian.
118   bool isBE() const { return Context.getTargetInfo().isBigEndian(); }
119 
120   /// The Itanium base layout rule allows virtual bases to overlap
121   /// other bases, which complicates layout in specific ways.
122   ///
123   /// Note specifically that the ms_struct attribute doesn't change this.
124   bool isOverlappingVBaseABI() {
125     return !Context.getTargetInfo().getCXXABI().isMicrosoft();
126   }
127 
128   /// Wraps llvm::Type::getIntNTy with some implicit arguments.
129   llvm::Type *getIntNType(uint64_t NumBits) {
130     unsigned AlignedBits = llvm::alignTo(NumBits, Context.getCharWidth());
131     return llvm::Type::getIntNTy(Types.getLLVMContext(), AlignedBits);
132   }
133   /// Get the LLVM type sized as one character unit.
134   llvm::Type *getCharType() {
135     return llvm::Type::getIntNTy(Types.getLLVMContext(),
136                                  Context.getCharWidth());
137   }
138   /// Gets an llvm type of size NumChars and alignment 1.
139   llvm::Type *getByteArrayType(CharUnits NumChars) {
140     assert(!NumChars.isZero() && "Empty byte arrays aren't allowed.");
141     llvm::Type *Type = getCharType();
142     return NumChars == CharUnits::One() ? Type :
143         (llvm::Type *)llvm::ArrayType::get(Type, NumChars.getQuantity());
144   }
145   /// Gets the storage type for a field decl and handles storage
146   /// for itanium bitfields that are smaller than their declared type.
147   llvm::Type *getStorageType(const FieldDecl *FD) {
148     llvm::Type *Type = Types.ConvertTypeForMem(FD->getType());
149     if (!FD->isBitField()) return Type;
150     if (isDiscreteBitFieldABI()) return Type;
151     return getIntNType(std::min(FD->getBitWidthValue(Context),
152                              (unsigned)Context.toBits(getSize(Type))));
153   }
154   /// Gets the llvm Basesubobject type from a CXXRecordDecl.
155   llvm::Type *getStorageType(const CXXRecordDecl *RD) {
156     return Types.getCGRecordLayout(RD).getBaseSubobjectLLVMType();
157   }
158   CharUnits bitsToCharUnits(uint64_t BitOffset) {
159     return Context.toCharUnitsFromBits(BitOffset);
160   }
161   CharUnits getSize(llvm::Type *Type) {
162     return CharUnits::fromQuantity(DataLayout.getTypeAllocSize(Type));
163   }
164   CharUnits getAlignment(llvm::Type *Type) {
165     return CharUnits::fromQuantity(DataLayout.getABITypeAlign(Type));
166   }
167   bool isZeroInitializable(const FieldDecl *FD) {
168     return Types.isZeroInitializable(FD->getType());
169   }
170   bool isZeroInitializable(const RecordDecl *RD) {
171     return Types.isZeroInitializable(RD);
172   }
173   void appendPaddingBytes(CharUnits Size) {
174     if (!Size.isZero())
175       FieldTypes.push_back(getByteArrayType(Size));
176   }
177   uint64_t getFieldBitOffset(const FieldDecl *FD) {
178     return Layout.getFieldOffset(FD->getFieldIndex());
179   }
180   // Layout routines.
181   void setBitFieldInfo(const FieldDecl *FD, CharUnits StartOffset,
182                        llvm::Type *StorageType);
183   /// Lowers an ASTRecordLayout to a llvm type.
184   void lower(bool NonVirtualBaseType);
185   void lowerUnion();
186   void accumulateFields();
187   void accumulateBitFields(RecordDecl::field_iterator Field,
188                            RecordDecl::field_iterator FieldEnd);
189   void computeVolatileBitfields();
190   void accumulateBases();
191   void accumulateVPtrs();
192   void accumulateVBases();
193   /// Recursively searches all of the bases to find out if a vbase is
194   /// not the primary vbase of some base class.
195   bool hasOwnStorage(const CXXRecordDecl *Decl, const CXXRecordDecl *Query);
196   void calculateZeroInit();
197   /// Lowers bitfield storage types to I8 arrays for bitfields with tail
198   /// padding that is or can potentially be used.
199   void clipTailPadding();
200   /// Determines if we need a packed llvm struct.
201   void determinePacked(bool NVBaseType);
202   /// Inserts padding everywhere it's needed.
203   void insertPadding();
204   /// Fills out the structures that are ultimately consumed.
205   void fillOutputFields();
206   // Input memoization fields.
207   CodeGenTypes &Types;
208   const ASTContext &Context;
209   const RecordDecl *D;
210   const CXXRecordDecl *RD;
211   const ASTRecordLayout &Layout;
212   const llvm::DataLayout &DataLayout;
213   // Helpful intermediate data-structures.
214   std::vector<MemberInfo> Members;
215   // Output fields, consumed by CodeGenTypes::ComputeRecordLayout.
216   SmallVector<llvm::Type *, 16> FieldTypes;
217   llvm::DenseMap<const FieldDecl *, unsigned> Fields;
218   llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields;
219   llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases;
220   llvm::DenseMap<const CXXRecordDecl *, unsigned> VirtualBases;
221   bool IsZeroInitializable : 1;
222   bool IsZeroInitializableAsBase : 1;
223   bool Packed : 1;
224 private:
225   CGRecordLowering(const CGRecordLowering &) = delete;
226   void operator =(const CGRecordLowering &) = delete;
227 };
228 } // namespace {
229 
230 CGRecordLowering::CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D,
231                                    bool Packed)
232     : Types(Types), Context(Types.getContext()), D(D),
233       RD(dyn_cast<CXXRecordDecl>(D)),
234       Layout(Types.getContext().getASTRecordLayout(D)),
235       DataLayout(Types.getDataLayout()), IsZeroInitializable(true),
236       IsZeroInitializableAsBase(true), Packed(Packed) {}
237 
238 void CGRecordLowering::setBitFieldInfo(
239     const FieldDecl *FD, CharUnits StartOffset, llvm::Type *StorageType) {
240   CGBitFieldInfo &Info = BitFields[FD->getCanonicalDecl()];
241   Info.IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
242   Info.Offset = (unsigned)(getFieldBitOffset(FD) - Context.toBits(StartOffset));
243   Info.Size = FD->getBitWidthValue(Context);
244   Info.StorageSize = (unsigned)DataLayout.getTypeAllocSizeInBits(StorageType);
245   Info.StorageOffset = StartOffset;
246   if (Info.Size > Info.StorageSize)
247     Info.Size = Info.StorageSize;
248   // Reverse the bit offsets for big endian machines. Because we represent
249   // a bitfield as a single large integer load, we can imagine the bits
250   // counting from the most-significant-bit instead of the
251   // least-significant-bit.
252   if (DataLayout.isBigEndian())
253     Info.Offset = Info.StorageSize - (Info.Offset + Info.Size);
254 
255   Info.VolatileStorageSize = 0;
256   Info.VolatileOffset = 0;
257   Info.VolatileStorageOffset = CharUnits::Zero();
258 }
259 
260 void CGRecordLowering::lower(bool NVBaseType) {
261   // The lowering process implemented in this function takes a variety of
262   // carefully ordered phases.
263   // 1) Store all members (fields and bases) in a list and sort them by offset.
264   // 2) Add a 1-byte capstone member at the Size of the structure.
265   // 3) Clip bitfield storages members if their tail padding is or might be
266   //    used by another field or base.  The clipping process uses the capstone
267   //    by treating it as another object that occurs after the record.
268   // 4) Determine if the llvm-struct requires packing.  It's important that this
269   //    phase occur after clipping, because clipping changes the llvm type.
270   //    This phase reads the offset of the capstone when determining packedness
271   //    and updates the alignment of the capstone to be equal of the alignment
272   //    of the record after doing so.
273   // 5) Insert padding everywhere it is needed.  This phase requires 'Packed' to
274   //    have been computed and needs to know the alignment of the record in
275   //    order to understand if explicit tail padding is needed.
276   // 6) Remove the capstone, we don't need it anymore.
277   // 7) Determine if this record can be zero-initialized.  This phase could have
278   //    been placed anywhere after phase 1.
279   // 8) Format the complete list of members in a way that can be consumed by
280   //    CodeGenTypes::ComputeRecordLayout.
281   CharUnits Size = NVBaseType ? Layout.getNonVirtualSize() : Layout.getSize();
282   if (D->isUnion()) {
283     lowerUnion();
284     computeVolatileBitfields();
285     return;
286   }
287   accumulateFields();
288   // RD implies C++.
289   if (RD) {
290     accumulateVPtrs();
291     accumulateBases();
292     if (Members.empty()) {
293       appendPaddingBytes(Size);
294       computeVolatileBitfields();
295       return;
296     }
297     if (!NVBaseType)
298       accumulateVBases();
299   }
300   llvm::stable_sort(Members);
301   Members.push_back(StorageInfo(Size, getIntNType(8)));
302   clipTailPadding();
303   determinePacked(NVBaseType);
304   insertPadding();
305   Members.pop_back();
306   calculateZeroInit();
307   fillOutputFields();
308   computeVolatileBitfields();
309 }
310 
311 void CGRecordLowering::lowerUnion() {
312   CharUnits LayoutSize = Layout.getSize();
313   llvm::Type *StorageType = nullptr;
314   bool SeenNamedMember = false;
315   // Iterate through the fields setting bitFieldInfo and the Fields array. Also
316   // locate the "most appropriate" storage type.  The heuristic for finding the
317   // storage type isn't necessary, the first (non-0-length-bitfield) field's
318   // type would work fine and be simpler but would be different than what we've
319   // been doing and cause lit tests to change.
320   for (const auto *Field : D->fields()) {
321     if (Field->isBitField()) {
322       if (Field->isZeroLengthBitField(Context))
323         continue;
324       llvm::Type *FieldType = getStorageType(Field);
325       if (LayoutSize < getSize(FieldType))
326         FieldType = getByteArrayType(LayoutSize);
327       setBitFieldInfo(Field, CharUnits::Zero(), FieldType);
328     }
329     Fields[Field->getCanonicalDecl()] = 0;
330     llvm::Type *FieldType = getStorageType(Field);
331     // Compute zero-initializable status.
332     // This union might not be zero initialized: it may contain a pointer to
333     // data member which might have some exotic initialization sequence.
334     // If this is the case, then we aught not to try and come up with a "better"
335     // type, it might not be very easy to come up with a Constant which
336     // correctly initializes it.
337     if (!SeenNamedMember) {
338       SeenNamedMember = Field->getIdentifier();
339       if (!SeenNamedMember)
340         if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
341           SeenNamedMember = FieldRD->findFirstNamedDataMember();
342       if (SeenNamedMember && !isZeroInitializable(Field)) {
343         IsZeroInitializable = IsZeroInitializableAsBase = false;
344         StorageType = FieldType;
345       }
346     }
347     // Because our union isn't zero initializable, we won't be getting a better
348     // storage type.
349     if (!IsZeroInitializable)
350       continue;
351     // Conditionally update our storage type if we've got a new "better" one.
352     if (!StorageType ||
353         getAlignment(FieldType) >  getAlignment(StorageType) ||
354         (getAlignment(FieldType) == getAlignment(StorageType) &&
355         getSize(FieldType) > getSize(StorageType)))
356       StorageType = FieldType;
357   }
358   // If we have no storage type just pad to the appropriate size and return.
359   if (!StorageType)
360     return appendPaddingBytes(LayoutSize);
361   // If our storage size was bigger than our required size (can happen in the
362   // case of packed bitfields on Itanium) then just use an I8 array.
363   if (LayoutSize < getSize(StorageType))
364     StorageType = getByteArrayType(LayoutSize);
365   FieldTypes.push_back(StorageType);
366   appendPaddingBytes(LayoutSize - getSize(StorageType));
367   // Set packed if we need it.
368   if (LayoutSize % getAlignment(StorageType))
369     Packed = true;
370 }
371 
372 void CGRecordLowering::accumulateFields() {
373   for (RecordDecl::field_iterator Field = D->field_begin(),
374                                   FieldEnd = D->field_end();
375     Field != FieldEnd;) {
376     if (Field->isBitField()) {
377       RecordDecl::field_iterator Start = Field;
378       // Iterate to gather the list of bitfields.
379       for (++Field; Field != FieldEnd && Field->isBitField(); ++Field);
380       accumulateBitFields(Start, Field);
381     } else if (!Field->isZeroSize(Context)) {
382       Members.push_back(MemberInfo(
383           bitsToCharUnits(getFieldBitOffset(*Field)), MemberInfo::Field,
384           getStorageType(*Field), *Field));
385       ++Field;
386     } else {
387       ++Field;
388     }
389   }
390 }
391 
392 void
393 CGRecordLowering::accumulateBitFields(RecordDecl::field_iterator Field,
394                                       RecordDecl::field_iterator FieldEnd) {
395   // Run stores the first element of the current run of bitfields.  FieldEnd is
396   // used as a special value to note that we don't have a current run.  A
397   // bitfield run is a contiguous collection of bitfields that can be stored in
398   // the same storage block.  Zero-sized bitfields and bitfields that would
399   // cross an alignment boundary break a run and start a new one.
400   RecordDecl::field_iterator Run = FieldEnd;
401   // Tail is the offset of the first bit off the end of the current run.  It's
402   // used to determine if the ASTRecordLayout is treating these two bitfields as
403   // contiguous.  StartBitOffset is offset of the beginning of the Run.
404   uint64_t StartBitOffset, Tail = 0;
405   if (isDiscreteBitFieldABI()) {
406     for (; Field != FieldEnd; ++Field) {
407       uint64_t BitOffset = getFieldBitOffset(*Field);
408       // Zero-width bitfields end runs.
409       if (Field->isZeroLengthBitField(Context)) {
410         Run = FieldEnd;
411         continue;
412       }
413       llvm::Type *Type =
414           Types.ConvertTypeForMem(Field->getType(), /*ForBitField=*/true);
415       // If we don't have a run yet, or don't live within the previous run's
416       // allocated storage then we allocate some storage and start a new run.
417       if (Run == FieldEnd || BitOffset >= Tail) {
418         Run = Field;
419         StartBitOffset = BitOffset;
420         Tail = StartBitOffset + DataLayout.getTypeAllocSizeInBits(Type);
421         // Add the storage member to the record.  This must be added to the
422         // record before the bitfield members so that it gets laid out before
423         // the bitfields it contains get laid out.
424         Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type));
425       }
426       // Bitfields get the offset of their storage but come afterward and remain
427       // there after a stable sort.
428       Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset),
429                                    MemberInfo::Field, nullptr, *Field));
430     }
431     return;
432   }
433 
434   // Check if OffsetInRecord (the size in bits of the current run) is better
435   // as a single field run. When OffsetInRecord has legal integer width, and
436   // its bitfield offset is naturally aligned, it is better to make the
437   // bitfield a separate storage component so as it can be accessed directly
438   // with lower cost.
439   auto IsBetterAsSingleFieldRun = [&](uint64_t OffsetInRecord,
440                                       uint64_t StartBitOffset) {
441     if (!Types.getCodeGenOpts().FineGrainedBitfieldAccesses)
442       return false;
443     if (OffsetInRecord < 8 || !llvm::isPowerOf2_64(OffsetInRecord) ||
444         !DataLayout.fitsInLegalInteger(OffsetInRecord))
445       return false;
446     // Make sure StartBitOffset is naturally aligned if it is treated as an
447     // IType integer.
448     if (StartBitOffset %
449             Context.toBits(getAlignment(getIntNType(OffsetInRecord))) !=
450         0)
451       return false;
452     return true;
453   };
454 
455   // The start field is better as a single field run.
456   bool StartFieldAsSingleRun = false;
457   for (;;) {
458     // Check to see if we need to start a new run.
459     if (Run == FieldEnd) {
460       // If we're out of fields, return.
461       if (Field == FieldEnd)
462         break;
463       // Any non-zero-length bitfield can start a new run.
464       if (!Field->isZeroLengthBitField(Context)) {
465         Run = Field;
466         StartBitOffset = getFieldBitOffset(*Field);
467         Tail = StartBitOffset + Field->getBitWidthValue(Context);
468         StartFieldAsSingleRun = IsBetterAsSingleFieldRun(Tail - StartBitOffset,
469                                                          StartBitOffset);
470       }
471       ++Field;
472       continue;
473     }
474 
475     // If the start field of a new run is better as a single run, or
476     // if current field (or consecutive fields) is better as a single run, or
477     // if current field has zero width bitfield and either
478     // UseZeroLengthBitfieldAlignment or UseBitFieldTypeAlignment is set to
479     // true, or
480     // if the offset of current field is inconsistent with the offset of
481     // previous field plus its offset,
482     // skip the block below and go ahead to emit the storage.
483     // Otherwise, try to add bitfields to the run.
484     if (!StartFieldAsSingleRun && Field != FieldEnd &&
485         !IsBetterAsSingleFieldRun(Tail - StartBitOffset, StartBitOffset) &&
486         (!Field->isZeroLengthBitField(Context) ||
487          (!Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
488           !Context.getTargetInfo().useBitFieldTypeAlignment())) &&
489         Tail == getFieldBitOffset(*Field)) {
490       Tail += Field->getBitWidthValue(Context);
491       ++Field;
492       continue;
493     }
494 
495     // We've hit a break-point in the run and need to emit a storage field.
496     llvm::Type *Type = getIntNType(Tail - StartBitOffset);
497     // Add the storage member to the record and set the bitfield info for all of
498     // the bitfields in the run.  Bitfields get the offset of their storage but
499     // come afterward and remain there after a stable sort.
500     Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type));
501     for (; Run != Field; ++Run)
502       Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset),
503                                    MemberInfo::Field, nullptr, *Run));
504     Run = FieldEnd;
505     StartFieldAsSingleRun = false;
506   }
507 }
508 
509 void CGRecordLowering::accumulateBases() {
510   // If we've got a primary virtual base, we need to add it with the bases.
511   if (Layout.isPrimaryBaseVirtual()) {
512     const CXXRecordDecl *BaseDecl = Layout.getPrimaryBase();
513     Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::Base,
514                                  getStorageType(BaseDecl), BaseDecl));
515   }
516   // Accumulate the non-virtual bases.
517   for (const auto &Base : RD->bases()) {
518     if (Base.isVirtual())
519       continue;
520 
521     // Bases can be zero-sized even if not technically empty if they
522     // contain only a trailing array member.
523     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
524     if (!BaseDecl->isEmpty() &&
525         !Context.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero())
526       Members.push_back(MemberInfo(Layout.getBaseClassOffset(BaseDecl),
527           MemberInfo::Base, getStorageType(BaseDecl), BaseDecl));
528   }
529 }
530 
531 /// The AAPCS that defines that, when possible, bit-fields should
532 /// be accessed using containers of the declared type width:
533 /// When a volatile bit-field is read, and its container does not overlap with
534 /// any non-bit-field member or any zero length bit-field member, its container
535 /// must be read exactly once using the access width appropriate to the type of
536 /// the container. When a volatile bit-field is written, and its container does
537 /// not overlap with any non-bit-field member or any zero-length bit-field
538 /// member, its container must be read exactly once and written exactly once
539 /// using the access width appropriate to the type of the container. The two
540 /// accesses are not atomic.
541 ///
542 /// Enforcing the width restriction can be disabled using
543 /// -fno-aapcs-bitfield-width.
544 void CGRecordLowering::computeVolatileBitfields() {
545   if (!isAAPCS() || !Types.getCodeGenOpts().AAPCSBitfieldWidth)
546     return;
547 
548   for (auto &I : BitFields) {
549     const FieldDecl *Field = I.first;
550     CGBitFieldInfo &Info = I.second;
551     llvm::Type *ResLTy = Types.ConvertTypeForMem(Field->getType());
552     // If the record alignment is less than the type width, we can't enforce a
553     // aligned load, bail out.
554     if ((uint64_t)(Context.toBits(Layout.getAlignment())) <
555         ResLTy->getPrimitiveSizeInBits())
556       continue;
557     // CGRecordLowering::setBitFieldInfo() pre-adjusts the bit-field offsets
558     // for big-endian targets, but it assumes a container of width
559     // Info.StorageSize. Since AAPCS uses a different container size (width
560     // of the type), we first undo that calculation here and redo it once
561     // the bit-field offset within the new container is calculated.
562     const unsigned OldOffset =
563         isBE() ? Info.StorageSize - (Info.Offset + Info.Size) : Info.Offset;
564     // Offset to the bit-field from the beginning of the struct.
565     const unsigned AbsoluteOffset =
566         Context.toBits(Info.StorageOffset) + OldOffset;
567 
568     // Container size is the width of the bit-field type.
569     const unsigned StorageSize = ResLTy->getPrimitiveSizeInBits();
570     // Nothing to do if the access uses the desired
571     // container width and is naturally aligned.
572     if (Info.StorageSize == StorageSize && (OldOffset % StorageSize == 0))
573       continue;
574 
575     // Offset within the container.
576     unsigned Offset = AbsoluteOffset & (StorageSize - 1);
577     // Bail out if an aligned load of the container cannot cover the entire
578     // bit-field. This can happen for example, if the bit-field is part of a
579     // packed struct. AAPCS does not define access rules for such cases, we let
580     // clang to follow its own rules.
581     if (Offset + Info.Size > StorageSize)
582       continue;
583 
584     // Re-adjust offsets for big-endian targets.
585     if (isBE())
586       Offset = StorageSize - (Offset + Info.Size);
587 
588     const CharUnits StorageOffset =
589         Context.toCharUnitsFromBits(AbsoluteOffset & ~(StorageSize - 1));
590     const CharUnits End = StorageOffset +
591                           Context.toCharUnitsFromBits(StorageSize) -
592                           CharUnits::One();
593 
594     const ASTRecordLayout &Layout =
595         Context.getASTRecordLayout(Field->getParent());
596     // If we access outside memory outside the record, than bail out.
597     const CharUnits RecordSize = Layout.getSize();
598     if (End >= RecordSize)
599       continue;
600 
601     // Bail out if performing this load would access non-bit-fields members.
602     bool Conflict = false;
603     for (const auto *F : D->fields()) {
604       // Allow sized bit-fields overlaps.
605       if (F->isBitField() && !F->isZeroLengthBitField(Context))
606         continue;
607 
608       const CharUnits FOffset = Context.toCharUnitsFromBits(
609           Layout.getFieldOffset(F->getFieldIndex()));
610 
611       // As C11 defines, a zero sized bit-field defines a barrier, so
612       // fields after and before it should be race condition free.
613       // The AAPCS acknowledges it and imposes no restritions when the
614       // natural container overlaps a zero-length bit-field.
615       if (F->isZeroLengthBitField(Context)) {
616         if (End > FOffset && StorageOffset < FOffset) {
617           Conflict = true;
618           break;
619         }
620       }
621 
622       const CharUnits FEnd =
623           FOffset +
624           Context.toCharUnitsFromBits(
625               Types.ConvertTypeForMem(F->getType())->getPrimitiveSizeInBits()) -
626           CharUnits::One();
627       // If no overlap, continue.
628       if (End < FOffset || FEnd < StorageOffset)
629         continue;
630 
631       // The desired load overlaps a non-bit-field member, bail out.
632       Conflict = true;
633       break;
634     }
635 
636     if (Conflict)
637       continue;
638     // Write the new bit-field access parameters.
639     // As the storage offset now is defined as the number of elements from the
640     // start of the structure, we should divide the Offset by the element size.
641     Info.VolatileStorageOffset =
642         StorageOffset / Context.toCharUnitsFromBits(StorageSize).getQuantity();
643     Info.VolatileStorageSize = StorageSize;
644     Info.VolatileOffset = Offset;
645   }
646 }
647 
648 void CGRecordLowering::accumulateVPtrs() {
649   if (Layout.hasOwnVFPtr())
650     Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::VFPtr,
651         llvm::FunctionType::get(getIntNType(32), /*isVarArg=*/true)->
652             getPointerTo()->getPointerTo()));
653   if (Layout.hasOwnVBPtr())
654     Members.push_back(MemberInfo(Layout.getVBPtrOffset(), MemberInfo::VBPtr,
655         llvm::Type::getInt32PtrTy(Types.getLLVMContext())));
656 }
657 
658 void CGRecordLowering::accumulateVBases() {
659   CharUnits ScissorOffset = Layout.getNonVirtualSize();
660   // In the itanium ABI, it's possible to place a vbase at a dsize that is
661   // smaller than the nvsize.  Here we check to see if such a base is placed
662   // before the nvsize and set the scissor offset to that, instead of the
663   // nvsize.
664   if (isOverlappingVBaseABI())
665     for (const auto &Base : RD->vbases()) {
666       const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
667       if (BaseDecl->isEmpty())
668         continue;
669       // If the vbase is a primary virtual base of some base, then it doesn't
670       // get its own storage location but instead lives inside of that base.
671       if (Context.isNearlyEmpty(BaseDecl) && !hasOwnStorage(RD, BaseDecl))
672         continue;
673       ScissorOffset = std::min(ScissorOffset,
674                                Layout.getVBaseClassOffset(BaseDecl));
675     }
676   Members.push_back(MemberInfo(ScissorOffset, MemberInfo::Scissor, nullptr,
677                                RD));
678   for (const auto &Base : RD->vbases()) {
679     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
680     if (BaseDecl->isEmpty())
681       continue;
682     CharUnits Offset = Layout.getVBaseClassOffset(BaseDecl);
683     // If the vbase is a primary virtual base of some base, then it doesn't
684     // get its own storage location but instead lives inside of that base.
685     if (isOverlappingVBaseABI() &&
686         Context.isNearlyEmpty(BaseDecl) &&
687         !hasOwnStorage(RD, BaseDecl)) {
688       Members.push_back(MemberInfo(Offset, MemberInfo::VBase, nullptr,
689                                    BaseDecl));
690       continue;
691     }
692     // If we've got a vtordisp, add it as a storage type.
693     if (Layout.getVBaseOffsetsMap().find(BaseDecl)->second.hasVtorDisp())
694       Members.push_back(StorageInfo(Offset - CharUnits::fromQuantity(4),
695                                     getIntNType(32)));
696     Members.push_back(MemberInfo(Offset, MemberInfo::VBase,
697                                  getStorageType(BaseDecl), BaseDecl));
698   }
699 }
700 
701 bool CGRecordLowering::hasOwnStorage(const CXXRecordDecl *Decl,
702                                      const CXXRecordDecl *Query) {
703   const ASTRecordLayout &DeclLayout = Context.getASTRecordLayout(Decl);
704   if (DeclLayout.isPrimaryBaseVirtual() && DeclLayout.getPrimaryBase() == Query)
705     return false;
706   for (const auto &Base : Decl->bases())
707     if (!hasOwnStorage(Base.getType()->getAsCXXRecordDecl(), Query))
708       return false;
709   return true;
710 }
711 
712 void CGRecordLowering::calculateZeroInit() {
713   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
714                                                MemberEnd = Members.end();
715        IsZeroInitializableAsBase && Member != MemberEnd; ++Member) {
716     if (Member->Kind == MemberInfo::Field) {
717       if (!Member->FD || isZeroInitializable(Member->FD))
718         continue;
719       IsZeroInitializable = IsZeroInitializableAsBase = false;
720     } else if (Member->Kind == MemberInfo::Base ||
721                Member->Kind == MemberInfo::VBase) {
722       if (isZeroInitializable(Member->RD))
723         continue;
724       IsZeroInitializable = false;
725       if (Member->Kind == MemberInfo::Base)
726         IsZeroInitializableAsBase = false;
727     }
728   }
729 }
730 
731 void CGRecordLowering::clipTailPadding() {
732   std::vector<MemberInfo>::iterator Prior = Members.begin();
733   CharUnits Tail = getSize(Prior->Data);
734   for (std::vector<MemberInfo>::iterator Member = Prior + 1,
735                                          MemberEnd = Members.end();
736        Member != MemberEnd; ++Member) {
737     // Only members with data and the scissor can cut into tail padding.
738     if (!Member->Data && Member->Kind != MemberInfo::Scissor)
739       continue;
740     if (Member->Offset < Tail) {
741       assert(Prior->Kind == MemberInfo::Field &&
742              "Only storage fields have tail padding!");
743       if (!Prior->FD || Prior->FD->isBitField())
744         Prior->Data = getByteArrayType(bitsToCharUnits(llvm::alignTo(
745             cast<llvm::IntegerType>(Prior->Data)->getIntegerBitWidth(), 8)));
746       else {
747         assert(Prior->FD->hasAttr<NoUniqueAddressAttr>() &&
748                "should not have reused this field's tail padding");
749         Prior->Data = getByteArrayType(
750             Context.getTypeInfoDataSizeInChars(Prior->FD->getType()).Width);
751       }
752     }
753     if (Member->Data)
754       Prior = Member;
755     Tail = Prior->Offset + getSize(Prior->Data);
756   }
757 }
758 
759 void CGRecordLowering::determinePacked(bool NVBaseType) {
760   if (Packed)
761     return;
762   CharUnits Alignment = CharUnits::One();
763   CharUnits NVAlignment = CharUnits::One();
764   CharUnits NVSize =
765       !NVBaseType && RD ? Layout.getNonVirtualSize() : CharUnits::Zero();
766   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
767                                                MemberEnd = Members.end();
768        Member != MemberEnd; ++Member) {
769     if (!Member->Data)
770       continue;
771     // If any member falls at an offset that it not a multiple of its alignment,
772     // then the entire record must be packed.
773     if (Member->Offset % getAlignment(Member->Data))
774       Packed = true;
775     if (Member->Offset < NVSize)
776       NVAlignment = std::max(NVAlignment, getAlignment(Member->Data));
777     Alignment = std::max(Alignment, getAlignment(Member->Data));
778   }
779   // If the size of the record (the capstone's offset) is not a multiple of the
780   // record's alignment, it must be packed.
781   if (Members.back().Offset % Alignment)
782     Packed = true;
783   // If the non-virtual sub-object is not a multiple of the non-virtual
784   // sub-object's alignment, it must be packed.  We cannot have a packed
785   // non-virtual sub-object and an unpacked complete object or vise versa.
786   if (NVSize % NVAlignment)
787     Packed = true;
788   // Update the alignment of the sentinel.
789   if (!Packed)
790     Members.back().Data = getIntNType(Context.toBits(Alignment));
791 }
792 
793 void CGRecordLowering::insertPadding() {
794   std::vector<std::pair<CharUnits, CharUnits> > Padding;
795   CharUnits Size = CharUnits::Zero();
796   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
797                                                MemberEnd = Members.end();
798        Member != MemberEnd; ++Member) {
799     if (!Member->Data)
800       continue;
801     CharUnits Offset = Member->Offset;
802     assert(Offset >= Size);
803     // Insert padding if we need to.
804     if (Offset !=
805         Size.alignTo(Packed ? CharUnits::One() : getAlignment(Member->Data)))
806       Padding.push_back(std::make_pair(Size, Offset - Size));
807     Size = Offset + getSize(Member->Data);
808   }
809   if (Padding.empty())
810     return;
811   // Add the padding to the Members list and sort it.
812   for (std::vector<std::pair<CharUnits, CharUnits> >::const_iterator
813         Pad = Padding.begin(), PadEnd = Padding.end();
814         Pad != PadEnd; ++Pad)
815     Members.push_back(StorageInfo(Pad->first, getByteArrayType(Pad->second)));
816   llvm::stable_sort(Members);
817 }
818 
819 void CGRecordLowering::fillOutputFields() {
820   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
821                                                MemberEnd = Members.end();
822        Member != MemberEnd; ++Member) {
823     if (Member->Data)
824       FieldTypes.push_back(Member->Data);
825     if (Member->Kind == MemberInfo::Field) {
826       if (Member->FD)
827         Fields[Member->FD->getCanonicalDecl()] = FieldTypes.size() - 1;
828       // A field without storage must be a bitfield.
829       if (!Member->Data)
830         setBitFieldInfo(Member->FD, Member->Offset, FieldTypes.back());
831     } else if (Member->Kind == MemberInfo::Base)
832       NonVirtualBases[Member->RD] = FieldTypes.size() - 1;
833     else if (Member->Kind == MemberInfo::VBase)
834       VirtualBases[Member->RD] = FieldTypes.size() - 1;
835   }
836 }
837 
838 CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
839                                         const FieldDecl *FD,
840                                         uint64_t Offset, uint64_t Size,
841                                         uint64_t StorageSize,
842                                         CharUnits StorageOffset) {
843   // This function is vestigial from CGRecordLayoutBuilder days but is still
844   // used in GCObjCRuntime.cpp.  That usage has a "fixme" attached to it that
845   // when addressed will allow for the removal of this function.
846   llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType());
847   CharUnits TypeSizeInBytes =
848     CharUnits::fromQuantity(Types.getDataLayout().getTypeAllocSize(Ty));
849   uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes);
850 
851   bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
852 
853   if (Size > TypeSizeInBits) {
854     // We have a wide bit-field. The extra bits are only used for padding, so
855     // if we have a bitfield of type T, with size N:
856     //
857     // T t : N;
858     //
859     // We can just assume that it's:
860     //
861     // T t : sizeof(T);
862     //
863     Size = TypeSizeInBits;
864   }
865 
866   // Reverse the bit offsets for big endian machines. Because we represent
867   // a bitfield as a single large integer load, we can imagine the bits
868   // counting from the most-significant-bit instead of the
869   // least-significant-bit.
870   if (Types.getDataLayout().isBigEndian()) {
871     Offset = StorageSize - (Offset + Size);
872   }
873 
874   return CGBitFieldInfo(Offset, Size, IsSigned, StorageSize, StorageOffset);
875 }
876 
877 std::unique_ptr<CGRecordLayout>
878 CodeGenTypes::ComputeRecordLayout(const RecordDecl *D, llvm::StructType *Ty) {
879   CGRecordLowering Builder(*this, D, /*Packed=*/false);
880 
881   Builder.lower(/*NonVirtualBaseType=*/false);
882 
883   // If we're in C++, compute the base subobject type.
884   llvm::StructType *BaseTy = nullptr;
885   if (isa<CXXRecordDecl>(D) && !D->isUnion() && !D->hasAttr<FinalAttr>()) {
886     BaseTy = Ty;
887     if (Builder.Layout.getNonVirtualSize() != Builder.Layout.getSize()) {
888       CGRecordLowering BaseBuilder(*this, D, /*Packed=*/Builder.Packed);
889       BaseBuilder.lower(/*NonVirtualBaseType=*/true);
890       BaseTy = llvm::StructType::create(
891           getLLVMContext(), BaseBuilder.FieldTypes, "", BaseBuilder.Packed);
892       addRecordTypeName(D, BaseTy, ".base");
893       // BaseTy and Ty must agree on their packedness for getLLVMFieldNo to work
894       // on both of them with the same index.
895       assert(Builder.Packed == BaseBuilder.Packed &&
896              "Non-virtual and complete types must agree on packedness");
897     }
898   }
899 
900   // Fill in the struct *after* computing the base type.  Filling in the body
901   // signifies that the type is no longer opaque and record layout is complete,
902   // but we may need to recursively layout D while laying D out as a base type.
903   Ty->setBody(Builder.FieldTypes, Builder.Packed);
904 
905   auto RL = std::make_unique<CGRecordLayout>(
906       Ty, BaseTy, (bool)Builder.IsZeroInitializable,
907       (bool)Builder.IsZeroInitializableAsBase);
908 
909   RL->NonVirtualBases.swap(Builder.NonVirtualBases);
910   RL->CompleteObjectVirtualBases.swap(Builder.VirtualBases);
911 
912   // Add all the field numbers.
913   RL->FieldInfo.swap(Builder.Fields);
914 
915   // Add bitfield info.
916   RL->BitFields.swap(Builder.BitFields);
917 
918   // Dump the layout, if requested.
919   if (getContext().getLangOpts().DumpRecordLayouts) {
920     llvm::outs() << "\n*** Dumping IRgen Record Layout\n";
921     llvm::outs() << "Record: ";
922     D->dump(llvm::outs());
923     llvm::outs() << "\nLayout: ";
924     RL->print(llvm::outs());
925   }
926 
927 #ifndef NDEBUG
928   // Verify that the computed LLVM struct size matches the AST layout size.
929   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D);
930 
931   uint64_t TypeSizeInBits = getContext().toBits(Layout.getSize());
932   assert(TypeSizeInBits == getDataLayout().getTypeAllocSizeInBits(Ty) &&
933          "Type size mismatch!");
934 
935   if (BaseTy) {
936     CharUnits NonVirtualSize  = Layout.getNonVirtualSize();
937 
938     uint64_t AlignedNonVirtualTypeSizeInBits =
939       getContext().toBits(NonVirtualSize);
940 
941     assert(AlignedNonVirtualTypeSizeInBits ==
942            getDataLayout().getTypeAllocSizeInBits(BaseTy) &&
943            "Type size mismatch!");
944   }
945 
946   // Verify that the LLVM and AST field offsets agree.
947   llvm::StructType *ST = RL->getLLVMType();
948   const llvm::StructLayout *SL = getDataLayout().getStructLayout(ST);
949 
950   const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D);
951   RecordDecl::field_iterator it = D->field_begin();
952   for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) {
953     const FieldDecl *FD = *it;
954 
955     // Ignore zero-sized fields.
956     if (FD->isZeroSize(getContext()))
957       continue;
958 
959     // For non-bit-fields, just check that the LLVM struct offset matches the
960     // AST offset.
961     if (!FD->isBitField()) {
962       unsigned FieldNo = RL->getLLVMFieldNo(FD);
963       assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) &&
964              "Invalid field offset!");
965       continue;
966     }
967 
968     // Ignore unnamed bit-fields.
969     if (!FD->getDeclName())
970       continue;
971 
972     const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD);
973     llvm::Type *ElementTy = ST->getTypeAtIndex(RL->getLLVMFieldNo(FD));
974 
975     // Unions have overlapping elements dictating their layout, but for
976     // non-unions we can verify that this section of the layout is the exact
977     // expected size.
978     if (D->isUnion()) {
979       // For unions we verify that the start is zero and the size
980       // is in-bounds. However, on BE systems, the offset may be non-zero, but
981       // the size + offset should match the storage size in that case as it
982       // "starts" at the back.
983       if (getDataLayout().isBigEndian())
984         assert(static_cast<unsigned>(Info.Offset + Info.Size) ==
985                Info.StorageSize &&
986                "Big endian union bitfield does not end at the back");
987       else
988         assert(Info.Offset == 0 &&
989                "Little endian union bitfield with a non-zero offset");
990       assert(Info.StorageSize <= SL->getSizeInBits() &&
991              "Union not large enough for bitfield storage");
992     } else {
993       assert((Info.StorageSize ==
994                   getDataLayout().getTypeAllocSizeInBits(ElementTy) ||
995               Info.VolatileStorageSize ==
996                   getDataLayout().getTypeAllocSizeInBits(ElementTy)) &&
997              "Storage size does not match the element type size");
998     }
999     assert(Info.Size > 0 && "Empty bitfield!");
1000     assert(static_cast<unsigned>(Info.Offset) + Info.Size <= Info.StorageSize &&
1001            "Bitfield outside of its allocated storage");
1002   }
1003 #endif
1004 
1005   return RL;
1006 }
1007 
1008 void CGRecordLayout::print(raw_ostream &OS) const {
1009   OS << "<CGRecordLayout\n";
1010   OS << "  LLVMType:" << *CompleteObjectType << "\n";
1011   if (BaseSubobjectType)
1012     OS << "  NonVirtualBaseLLVMType:" << *BaseSubobjectType << "\n";
1013   OS << "  IsZeroInitializable:" << IsZeroInitializable << "\n";
1014   OS << "  BitFields:[\n";
1015 
1016   // Print bit-field infos in declaration order.
1017   std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs;
1018   for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator
1019          it = BitFields.begin(), ie = BitFields.end();
1020        it != ie; ++it) {
1021     const RecordDecl *RD = it->first->getParent();
1022     unsigned Index = 0;
1023     for (RecordDecl::field_iterator
1024            it2 = RD->field_begin(); *it2 != it->first; ++it2)
1025       ++Index;
1026     BFIs.push_back(std::make_pair(Index, &it->second));
1027   }
1028   llvm::array_pod_sort(BFIs.begin(), BFIs.end());
1029   for (unsigned i = 0, e = BFIs.size(); i != e; ++i) {
1030     OS.indent(4);
1031     BFIs[i].second->print(OS);
1032     OS << "\n";
1033   }
1034 
1035   OS << "]>\n";
1036 }
1037 
1038 LLVM_DUMP_METHOD void CGRecordLayout::dump() const {
1039   print(llvm::errs());
1040 }
1041 
1042 void CGBitFieldInfo::print(raw_ostream &OS) const {
1043   OS << "<CGBitFieldInfo"
1044      << " Offset:" << Offset << " Size:" << Size << " IsSigned:" << IsSigned
1045      << " StorageSize:" << StorageSize
1046      << " StorageOffset:" << StorageOffset.getQuantity()
1047      << " VolatileOffset:" << VolatileOffset
1048      << " VolatileStorageSize:" << VolatileStorageSize
1049      << " VolatileStorageOffset:" << VolatileStorageOffset.getQuantity() << ">";
1050 }
1051 
1052 LLVM_DUMP_METHOD void CGBitFieldInfo::dump() const {
1053   print(llvm::errs());
1054 }
1055