1 //===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder ----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Builder implementation for CGRecordLayout objects. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "ABIInfoImpl.h" 14 #include "CGCXXABI.h" 15 #include "CGRecordLayout.h" 16 #include "CodeGenTypes.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/CXXInheritance.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/Expr.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/Basic/CodeGenOptions.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Type.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/raw_ostream.h" 30 using namespace clang; 31 using namespace CodeGen; 32 33 namespace { 34 /// The CGRecordLowering is responsible for lowering an ASTRecordLayout to an 35 /// llvm::Type. Some of the lowering is straightforward, some is not. Here we 36 /// detail some of the complexities and weirdnesses here. 37 /// * LLVM does not have unions - Unions can, in theory be represented by any 38 /// llvm::Type with correct size. We choose a field via a specific heuristic 39 /// and add padding if necessary. 40 /// * LLVM does not have bitfields - Bitfields are collected into contiguous 41 /// runs and allocated as a single storage type for the run. ASTRecordLayout 42 /// contains enough information to determine where the runs break. Microsoft 43 /// and Itanium follow different rules and use different codepaths. 44 /// * It is desired that, when possible, bitfields use the appropriate iN type 45 /// when lowered to llvm types. For example unsigned x : 24 gets lowered to 46 /// i24. This isn't always possible because i24 has storage size of 32 bit 47 /// and if it is possible to use that extra byte of padding we must use [i8 x 48 /// 3] instead of i24. This is computed when accumulating bitfields in 49 /// accumulateBitfields. 50 /// C++ examples that require clipping: 51 /// struct { int a : 24; char b; }; // a must be clipped, b goes at offset 3 52 /// struct A { int a : 24; ~A(); }; // a must be clipped because: 53 /// struct B : A { char b; }; // b goes at offset 3 54 /// * The allocation of bitfield access units is described in more detail in 55 /// CGRecordLowering::accumulateBitFields. 56 /// * Clang ignores 0 sized bitfields and 0 sized bases but *not* zero sized 57 /// fields. The existing asserts suggest that LLVM assumes that *every* field 58 /// has an underlying storage type. Therefore empty structures containing 59 /// zero sized subobjects such as empty records or zero sized arrays still get 60 /// a zero sized (empty struct) storage type. 61 /// * Clang reads the complete type rather than the base type when generating 62 /// code to access fields. Bitfields in tail position with tail padding may 63 /// be clipped in the base class but not the complete class (we may discover 64 /// that the tail padding is not used in the complete class.) However, 65 /// because LLVM reads from the complete type it can generate incorrect code 66 /// if we do not clip the tail padding off of the bitfield in the complete 67 /// layout. 68 /// * Itanium allows nearly empty primary virtual bases. These bases don't get 69 /// get their own storage because they're laid out as part of another base 70 /// or at the beginning of the structure. Determining if a VBase actually 71 /// gets storage awkwardly involves a walk of all bases. 72 /// * VFPtrs and VBPtrs do *not* make a record NotZeroInitializable. 73 struct CGRecordLowering { 74 // MemberInfo is a helper structure that contains information about a record 75 // member. In additional to the standard member types, there exists a 76 // sentinel member type that ensures correct rounding. 77 struct MemberInfo { 78 CharUnits Offset; 79 enum InfoKind { VFPtr, VBPtr, Field, Base, VBase } Kind; 80 llvm::Type *Data; 81 union { 82 const FieldDecl *FD; 83 const CXXRecordDecl *RD; 84 }; 85 MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data, 86 const FieldDecl *FD = nullptr) 87 : Offset(Offset), Kind(Kind), Data(Data), FD(FD) {} 88 MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data, 89 const CXXRecordDecl *RD) 90 : Offset(Offset), Kind(Kind), Data(Data), RD(RD) {} 91 // MemberInfos are sorted so we define a < operator. 92 bool operator <(const MemberInfo& a) const { return Offset < a.Offset; } 93 }; 94 // The constructor. 95 CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D, bool Packed); 96 // Short helper routines. 97 /// Constructs a MemberInfo instance from an offset and llvm::Type *. 98 static MemberInfo StorageInfo(CharUnits Offset, llvm::Type *Data) { 99 return MemberInfo(Offset, MemberInfo::Field, Data); 100 } 101 102 /// The Microsoft bitfield layout rule allocates discrete storage 103 /// units of the field's formal type and only combines adjacent 104 /// fields of the same formal type. We want to emit a layout with 105 /// these discrete storage units instead of combining them into a 106 /// continuous run. 107 bool isDiscreteBitFieldABI() const { 108 return Context.getTargetInfo().getCXXABI().isMicrosoft() || 109 D->isMsStruct(Context); 110 } 111 112 /// Helper function to check if we are targeting AAPCS. 113 bool isAAPCS() const { 114 return Context.getTargetInfo().getABI().starts_with("aapcs"); 115 } 116 117 /// Helper function to check if the target machine is BigEndian. 118 bool isBE() const { return Context.getTargetInfo().isBigEndian(); } 119 120 /// The Itanium base layout rule allows virtual bases to overlap 121 /// other bases, which complicates layout in specific ways. 122 /// 123 /// Note specifically that the ms_struct attribute doesn't change this. 124 bool isOverlappingVBaseABI() const { 125 return !Context.getTargetInfo().getCXXABI().isMicrosoft(); 126 } 127 128 /// Wraps llvm::Type::getIntNTy with some implicit arguments. 129 llvm::Type *getIntNType(uint64_t NumBits) const { 130 unsigned AlignedBits = llvm::alignTo(NumBits, Context.getCharWidth()); 131 return llvm::Type::getIntNTy(Types.getLLVMContext(), AlignedBits); 132 } 133 /// Get the LLVM type sized as one character unit. 134 llvm::Type *getCharType() const { 135 return llvm::Type::getIntNTy(Types.getLLVMContext(), 136 Context.getCharWidth()); 137 } 138 /// Gets an llvm type of size NumChars and alignment 1. 139 llvm::Type *getByteArrayType(CharUnits NumChars) const { 140 assert(!NumChars.isZero() && "Empty byte arrays aren't allowed."); 141 llvm::Type *Type = getCharType(); 142 return NumChars == CharUnits::One() ? Type : 143 (llvm::Type *)llvm::ArrayType::get(Type, NumChars.getQuantity()); 144 } 145 /// Gets the storage type for a field decl and handles storage 146 /// for itanium bitfields that are smaller than their declared type. 147 llvm::Type *getStorageType(const FieldDecl *FD) const { 148 llvm::Type *Type = Types.ConvertTypeForMem(FD->getType()); 149 if (!FD->isBitField()) return Type; 150 if (isDiscreteBitFieldABI()) return Type; 151 return getIntNType(std::min(FD->getBitWidthValue(Context), 152 (unsigned)Context.toBits(getSize(Type)))); 153 } 154 /// Gets the llvm Basesubobject type from a CXXRecordDecl. 155 llvm::Type *getStorageType(const CXXRecordDecl *RD) const { 156 return Types.getCGRecordLayout(RD).getBaseSubobjectLLVMType(); 157 } 158 CharUnits bitsToCharUnits(uint64_t BitOffset) const { 159 return Context.toCharUnitsFromBits(BitOffset); 160 } 161 CharUnits getSize(llvm::Type *Type) const { 162 return CharUnits::fromQuantity(DataLayout.getTypeAllocSize(Type)); 163 } 164 CharUnits getAlignment(llvm::Type *Type) const { 165 return CharUnits::fromQuantity(DataLayout.getABITypeAlign(Type)); 166 } 167 bool isZeroInitializable(const FieldDecl *FD) const { 168 return Types.isZeroInitializable(FD->getType()); 169 } 170 bool isZeroInitializable(const RecordDecl *RD) const { 171 return Types.isZeroInitializable(RD); 172 } 173 void appendPaddingBytes(CharUnits Size) { 174 if (!Size.isZero()) 175 FieldTypes.push_back(getByteArrayType(Size)); 176 } 177 uint64_t getFieldBitOffset(const FieldDecl *FD) const { 178 return Layout.getFieldOffset(FD->getFieldIndex()); 179 } 180 // Layout routines. 181 void setBitFieldInfo(const FieldDecl *FD, CharUnits StartOffset, 182 llvm::Type *StorageType); 183 /// Lowers an ASTRecordLayout to a llvm type. 184 void lower(bool NonVirtualBaseType); 185 void lowerUnion(bool isNoUniqueAddress); 186 void accumulateFields(bool isNonVirtualBaseType); 187 RecordDecl::field_iterator 188 accumulateBitFields(bool isNonVirtualBaseType, 189 RecordDecl::field_iterator Field, 190 RecordDecl::field_iterator FieldEnd); 191 void computeVolatileBitfields(); 192 void accumulateBases(); 193 void accumulateVPtrs(); 194 void accumulateVBases(); 195 /// Recursively searches all of the bases to find out if a vbase is 196 /// not the primary vbase of some base class. 197 bool hasOwnStorage(const CXXRecordDecl *Decl, 198 const CXXRecordDecl *Query) const; 199 void calculateZeroInit(); 200 CharUnits calculateTailClippingOffset(bool isNonVirtualBaseType) const; 201 void checkBitfieldClipping(bool isNonVirtualBaseType) const; 202 /// Determines if we need a packed llvm struct. 203 void determinePacked(bool NVBaseType); 204 /// Inserts padding everywhere it's needed. 205 void insertPadding(); 206 /// Fills out the structures that are ultimately consumed. 207 void fillOutputFields(); 208 // Input memoization fields. 209 CodeGenTypes &Types; 210 const ASTContext &Context; 211 const RecordDecl *D; 212 const CXXRecordDecl *RD; 213 const ASTRecordLayout &Layout; 214 const llvm::DataLayout &DataLayout; 215 // Helpful intermediate data-structures. 216 std::vector<MemberInfo> Members; 217 // Output fields, consumed by CodeGenTypes::ComputeRecordLayout. 218 SmallVector<llvm::Type *, 16> FieldTypes; 219 llvm::DenseMap<const FieldDecl *, unsigned> Fields; 220 llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields; 221 llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases; 222 llvm::DenseMap<const CXXRecordDecl *, unsigned> VirtualBases; 223 bool IsZeroInitializable : 1; 224 bool IsZeroInitializableAsBase : 1; 225 bool Packed : 1; 226 private: 227 CGRecordLowering(const CGRecordLowering &) = delete; 228 void operator =(const CGRecordLowering &) = delete; 229 }; 230 } // namespace { 231 232 CGRecordLowering::CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D, 233 bool Packed) 234 : Types(Types), Context(Types.getContext()), D(D), 235 RD(dyn_cast<CXXRecordDecl>(D)), 236 Layout(Types.getContext().getASTRecordLayout(D)), 237 DataLayout(Types.getDataLayout()), IsZeroInitializable(true), 238 IsZeroInitializableAsBase(true), Packed(Packed) {} 239 240 void CGRecordLowering::setBitFieldInfo( 241 const FieldDecl *FD, CharUnits StartOffset, llvm::Type *StorageType) { 242 CGBitFieldInfo &Info = BitFields[FD->getCanonicalDecl()]; 243 Info.IsSigned = FD->getType()->isSignedIntegerOrEnumerationType(); 244 Info.Offset = (unsigned)(getFieldBitOffset(FD) - Context.toBits(StartOffset)); 245 Info.Size = FD->getBitWidthValue(Context); 246 Info.StorageSize = (unsigned)DataLayout.getTypeAllocSizeInBits(StorageType); 247 Info.StorageOffset = StartOffset; 248 if (Info.Size > Info.StorageSize) 249 Info.Size = Info.StorageSize; 250 // Reverse the bit offsets for big endian machines. Because we represent 251 // a bitfield as a single large integer load, we can imagine the bits 252 // counting from the most-significant-bit instead of the 253 // least-significant-bit. 254 if (DataLayout.isBigEndian()) 255 Info.Offset = Info.StorageSize - (Info.Offset + Info.Size); 256 257 Info.VolatileStorageSize = 0; 258 Info.VolatileOffset = 0; 259 Info.VolatileStorageOffset = CharUnits::Zero(); 260 } 261 262 void CGRecordLowering::lower(bool NVBaseType) { 263 // The lowering process implemented in this function takes a variety of 264 // carefully ordered phases. 265 // 1) Store all members (fields and bases) in a list and sort them by offset. 266 // 2) Add a 1-byte capstone member at the Size of the structure. 267 // 3) Clip bitfield storages members if their tail padding is or might be 268 // used by another field or base. The clipping process uses the capstone 269 // by treating it as another object that occurs after the record. 270 // 4) Determine if the llvm-struct requires packing. It's important that this 271 // phase occur after clipping, because clipping changes the llvm type. 272 // This phase reads the offset of the capstone when determining packedness 273 // and updates the alignment of the capstone to be equal of the alignment 274 // of the record after doing so. 275 // 5) Insert padding everywhere it is needed. This phase requires 'Packed' to 276 // have been computed and needs to know the alignment of the record in 277 // order to understand if explicit tail padding is needed. 278 // 6) Remove the capstone, we don't need it anymore. 279 // 7) Determine if this record can be zero-initialized. This phase could have 280 // been placed anywhere after phase 1. 281 // 8) Format the complete list of members in a way that can be consumed by 282 // CodeGenTypes::ComputeRecordLayout. 283 CharUnits Size = NVBaseType ? Layout.getNonVirtualSize() : Layout.getSize(); 284 if (D->isUnion()) { 285 lowerUnion(NVBaseType); 286 computeVolatileBitfields(); 287 return; 288 } 289 accumulateFields(NVBaseType); 290 // RD implies C++. 291 if (RD) { 292 accumulateVPtrs(); 293 accumulateBases(); 294 if (Members.empty()) { 295 appendPaddingBytes(Size); 296 computeVolatileBitfields(); 297 return; 298 } 299 if (!NVBaseType) 300 accumulateVBases(); 301 } 302 llvm::stable_sort(Members); 303 checkBitfieldClipping(NVBaseType); 304 Members.push_back(StorageInfo(Size, getIntNType(8))); 305 determinePacked(NVBaseType); 306 insertPadding(); 307 Members.pop_back(); 308 calculateZeroInit(); 309 fillOutputFields(); 310 computeVolatileBitfields(); 311 } 312 313 void CGRecordLowering::lowerUnion(bool isNoUniqueAddress) { 314 CharUnits LayoutSize = 315 isNoUniqueAddress ? Layout.getDataSize() : Layout.getSize(); 316 llvm::Type *StorageType = nullptr; 317 bool SeenNamedMember = false; 318 // Iterate through the fields setting bitFieldInfo and the Fields array. Also 319 // locate the "most appropriate" storage type. The heuristic for finding the 320 // storage type isn't necessary, the first (non-0-length-bitfield) field's 321 // type would work fine and be simpler but would be different than what we've 322 // been doing and cause lit tests to change. 323 for (const auto *Field : D->fields()) { 324 if (Field->isBitField()) { 325 if (Field->isZeroLengthBitField(Context)) 326 continue; 327 llvm::Type *FieldType = getStorageType(Field); 328 if (LayoutSize < getSize(FieldType)) 329 FieldType = getByteArrayType(LayoutSize); 330 setBitFieldInfo(Field, CharUnits::Zero(), FieldType); 331 } 332 Fields[Field->getCanonicalDecl()] = 0; 333 llvm::Type *FieldType = getStorageType(Field); 334 // Compute zero-initializable status. 335 // This union might not be zero initialized: it may contain a pointer to 336 // data member which might have some exotic initialization sequence. 337 // If this is the case, then we aught not to try and come up with a "better" 338 // type, it might not be very easy to come up with a Constant which 339 // correctly initializes it. 340 if (!SeenNamedMember) { 341 SeenNamedMember = Field->getIdentifier(); 342 if (!SeenNamedMember) 343 if (const auto *FieldRD = Field->getType()->getAsRecordDecl()) 344 SeenNamedMember = FieldRD->findFirstNamedDataMember(); 345 if (SeenNamedMember && !isZeroInitializable(Field)) { 346 IsZeroInitializable = IsZeroInitializableAsBase = false; 347 StorageType = FieldType; 348 } 349 } 350 // Because our union isn't zero initializable, we won't be getting a better 351 // storage type. 352 if (!IsZeroInitializable) 353 continue; 354 // Conditionally update our storage type if we've got a new "better" one. 355 if (!StorageType || 356 getAlignment(FieldType) > getAlignment(StorageType) || 357 (getAlignment(FieldType) == getAlignment(StorageType) && 358 getSize(FieldType) > getSize(StorageType))) 359 StorageType = FieldType; 360 } 361 // If we have no storage type just pad to the appropriate size and return. 362 if (!StorageType) 363 return appendPaddingBytes(LayoutSize); 364 // If our storage size was bigger than our required size (can happen in the 365 // case of packed bitfields on Itanium) then just use an I8 array. 366 if (LayoutSize < getSize(StorageType)) 367 StorageType = getByteArrayType(LayoutSize); 368 FieldTypes.push_back(StorageType); 369 appendPaddingBytes(LayoutSize - getSize(StorageType)); 370 // Set packed if we need it. 371 const auto StorageAlignment = getAlignment(StorageType); 372 assert((Layout.getSize() % StorageAlignment == 0 || 373 Layout.getDataSize() % StorageAlignment) && 374 "Union's standard layout and no_unique_address layout must agree on " 375 "packedness"); 376 if (Layout.getDataSize() % StorageAlignment) 377 Packed = true; 378 } 379 380 void CGRecordLowering::accumulateFields(bool isNonVirtualBaseType) { 381 for (RecordDecl::field_iterator Field = D->field_begin(), 382 FieldEnd = D->field_end(); 383 Field != FieldEnd;) { 384 if (Field->isBitField()) { 385 Field = accumulateBitFields(isNonVirtualBaseType, Field, FieldEnd); 386 assert((Field == FieldEnd || !Field->isBitField()) && 387 "Failed to accumulate all the bitfields"); 388 } else if (isEmptyFieldForLayout(Context, *Field)) { 389 // Empty fields have no storage. 390 ++Field; 391 } else { 392 // Use base subobject layout for the potentially-overlapping field, 393 // as it is done in RecordLayoutBuilder 394 Members.push_back(MemberInfo( 395 bitsToCharUnits(getFieldBitOffset(*Field)), MemberInfo::Field, 396 Field->isPotentiallyOverlapping() 397 ? getStorageType(Field->getType()->getAsCXXRecordDecl()) 398 : getStorageType(*Field), 399 *Field)); 400 ++Field; 401 } 402 } 403 } 404 405 // Create members for bitfields. Field is a bitfield, and FieldEnd is the end 406 // iterator of the record. Return the first non-bitfield encountered. We need 407 // to know whether this is the base or complete layout, as virtual bases could 408 // affect the upper bound of bitfield access unit allocation. 409 RecordDecl::field_iterator 410 CGRecordLowering::accumulateBitFields(bool isNonVirtualBaseType, 411 RecordDecl::field_iterator Field, 412 RecordDecl::field_iterator FieldEnd) { 413 if (isDiscreteBitFieldABI()) { 414 // Run stores the first element of the current run of bitfields. FieldEnd is 415 // used as a special value to note that we don't have a current run. A 416 // bitfield run is a contiguous collection of bitfields that can be stored 417 // in the same storage block. Zero-sized bitfields and bitfields that would 418 // cross an alignment boundary break a run and start a new one. 419 RecordDecl::field_iterator Run = FieldEnd; 420 // Tail is the offset of the first bit off the end of the current run. It's 421 // used to determine if the ASTRecordLayout is treating these two bitfields 422 // as contiguous. StartBitOffset is offset of the beginning of the Run. 423 uint64_t StartBitOffset, Tail = 0; 424 for (; Field != FieldEnd && Field->isBitField(); ++Field) { 425 // Zero-width bitfields end runs. 426 if (Field->isZeroLengthBitField(Context)) { 427 Run = FieldEnd; 428 continue; 429 } 430 uint64_t BitOffset = getFieldBitOffset(*Field); 431 llvm::Type *Type = Types.ConvertTypeForMem(Field->getType()); 432 // If we don't have a run yet, or don't live within the previous run's 433 // allocated storage then we allocate some storage and start a new run. 434 if (Run == FieldEnd || BitOffset >= Tail) { 435 Run = Field; 436 StartBitOffset = BitOffset; 437 Tail = StartBitOffset + DataLayout.getTypeAllocSizeInBits(Type); 438 // Add the storage member to the record. This must be added to the 439 // record before the bitfield members so that it gets laid out before 440 // the bitfields it contains get laid out. 441 Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type)); 442 } 443 // Bitfields get the offset of their storage but come afterward and remain 444 // there after a stable sort. 445 Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset), 446 MemberInfo::Field, nullptr, *Field)); 447 } 448 return Field; 449 } 450 451 // The SysV ABI can overlap bitfield storage units with both other bitfield 452 // storage units /and/ other non-bitfield data members. Accessing a sequence 453 // of bitfields mustn't interfere with adjacent non-bitfields -- they're 454 // permitted to be accessed in separate threads for instance. 455 456 // We split runs of bit-fields into a sequence of "access units". When we emit 457 // a load or store of a bit-field, we'll load/store the entire containing 458 // access unit. As mentioned, the standard requires that these loads and 459 // stores must not interfere with accesses to other memory locations, and it 460 // defines the bit-field's memory location as the current run of 461 // non-zero-width bit-fields. So an access unit must never overlap with 462 // non-bit-field storage or cross a zero-width bit-field. Otherwise, we're 463 // free to draw the lines as we see fit. 464 465 // Drawing these lines well can be complicated. LLVM generally can't modify a 466 // program to access memory that it didn't before, so using very narrow access 467 // units can prevent the compiler from using optimal access patterns. For 468 // example, suppose a run of bit-fields occupies four bytes in a struct. If we 469 // split that into four 1-byte access units, then a sequence of assignments 470 // that doesn't touch all four bytes may have to be emitted with multiple 471 // 8-bit stores instead of a single 32-bit store. On the other hand, if we use 472 // very wide access units, we may find ourselves emitting accesses to 473 // bit-fields we didn't really need to touch, just because LLVM was unable to 474 // clean up after us. 475 476 // It is desirable to have access units be aligned powers of 2 no larger than 477 // a register. (On non-strict alignment ISAs, the alignment requirement can be 478 // dropped.) A three byte access unit will be accessed using 2-byte and 1-byte 479 // accesses and bit manipulation. If no bitfield straddles across the two 480 // separate accesses, it is better to have separate 2-byte and 1-byte access 481 // units, as then LLVM will not generate unnecessary memory accesses, or bit 482 // manipulation. Similarly, on a strict-alignment architecture, it is better 483 // to keep access-units naturally aligned, to avoid similar bit 484 // manipulation synthesizing larger unaligned accesses. 485 486 // Bitfields that share parts of a single byte are, of necessity, placed in 487 // the same access unit. That unit will encompass a consecutive run where 488 // adjacent bitfields share parts of a byte. (The first bitfield of such an 489 // access unit will start at the beginning of a byte.) 490 491 // We then try and accumulate adjacent access units when the combined unit is 492 // naturally sized, no larger than a register, and (on a strict alignment 493 // ISA), naturally aligned. Note that this requires lookahead to one or more 494 // subsequent access units. For instance, consider a 2-byte access-unit 495 // followed by 2 1-byte units. We can merge that into a 4-byte access-unit, 496 // but we would not want to merge a 2-byte followed by a single 1-byte (and no 497 // available tail padding). We keep track of the best access unit seen so far, 498 // and use that when we determine we cannot accumulate any more. Then we start 499 // again at the bitfield following that best one. 500 501 // The accumulation is also prevented when: 502 // *) it would cross a character-aigned zero-width bitfield, or 503 // *) fine-grained bitfield access option is in effect. 504 505 CharUnits RegSize = 506 bitsToCharUnits(Context.getTargetInfo().getRegisterWidth()); 507 unsigned CharBits = Context.getCharWidth(); 508 509 // Limit of useable tail padding at end of the record. Computed lazily and 510 // cached here. 511 CharUnits ScissorOffset = CharUnits::Zero(); 512 513 // Data about the start of the span we're accumulating to create an access 514 // unit from. Begin is the first bitfield of the span. If Begin is FieldEnd, 515 // we've not got a current span. The span starts at the BeginOffset character 516 // boundary. BitSizeSinceBegin is the size (in bits) of the span -- this might 517 // include padding when we've advanced to a subsequent bitfield run. 518 RecordDecl::field_iterator Begin = FieldEnd; 519 CharUnits BeginOffset; 520 uint64_t BitSizeSinceBegin; 521 522 // The (non-inclusive) end of the largest acceptable access unit we've found 523 // since Begin. If this is Begin, we're gathering the initial set of bitfields 524 // of a new span. BestEndOffset is the end of that acceptable access unit -- 525 // it might extend beyond the last character of the bitfield run, using 526 // available padding characters. 527 RecordDecl::field_iterator BestEnd = Begin; 528 CharUnits BestEndOffset; 529 bool BestClipped; // Whether the representation must be in a byte array. 530 531 for (;;) { 532 // AtAlignedBoundary is true iff Field is the (potential) start of a new 533 // span (or the end of the bitfields). When true, LimitOffset is the 534 // character offset of that span and Barrier indicates whether the new 535 // span cannot be merged into the current one. 536 bool AtAlignedBoundary = false; 537 bool Barrier = false; 538 539 if (Field != FieldEnd && Field->isBitField()) { 540 uint64_t BitOffset = getFieldBitOffset(*Field); 541 if (Begin == FieldEnd) { 542 // Beginning a new span. 543 Begin = Field; 544 BestEnd = Begin; 545 546 assert((BitOffset % CharBits) == 0 && "Not at start of char"); 547 BeginOffset = bitsToCharUnits(BitOffset); 548 BitSizeSinceBegin = 0; 549 } else if ((BitOffset % CharBits) != 0) { 550 // Bitfield occupies the same character as previous bitfield, it must be 551 // part of the same span. This can include zero-length bitfields, should 552 // the target not align them to character boundaries. Such non-alignment 553 // is at variance with the standards, which require zero-length 554 // bitfields be a barrier between access units. But of course we can't 555 // achieve that in the middle of a character. 556 assert(BitOffset == Context.toBits(BeginOffset) + BitSizeSinceBegin && 557 "Concatenating non-contiguous bitfields"); 558 } else { 559 // Bitfield potentially begins a new span. This includes zero-length 560 // bitfields on non-aligning targets that lie at character boundaries 561 // (those are barriers to merging). 562 if (Field->isZeroLengthBitField(Context)) 563 Barrier = true; 564 AtAlignedBoundary = true; 565 } 566 } else { 567 // We've reached the end of the bitfield run. Either we're done, or this 568 // is a barrier for the current span. 569 if (Begin == FieldEnd) 570 break; 571 572 Barrier = true; 573 AtAlignedBoundary = true; 574 } 575 576 // InstallBest indicates whether we should create an access unit for the 577 // current best span: fields [Begin, BestEnd) occupying characters 578 // [BeginOffset, BestEndOffset). 579 bool InstallBest = false; 580 if (AtAlignedBoundary) { 581 // Field is the start of a new span or the end of the bitfields. The 582 // just-seen span now extends to BitSizeSinceBegin. 583 584 // Determine if we can accumulate that just-seen span into the current 585 // accumulation. 586 CharUnits AccessSize = bitsToCharUnits(BitSizeSinceBegin + CharBits - 1); 587 if (BestEnd == Begin) { 588 // This is the initial run at the start of a new span. By definition, 589 // this is the best seen so far. 590 BestEnd = Field; 591 BestEndOffset = BeginOffset + AccessSize; 592 // Assume clipped until proven not below. 593 BestClipped = true; 594 if (!BitSizeSinceBegin) 595 // A zero-sized initial span -- this will install nothing and reset 596 // for another. 597 InstallBest = true; 598 } else if (AccessSize > RegSize) 599 // Accumulating the just-seen span would create a multi-register access 600 // unit, which would increase register pressure. 601 InstallBest = true; 602 603 if (!InstallBest) { 604 // Determine if accumulating the just-seen span will create an expensive 605 // access unit or not. 606 llvm::Type *Type = getIntNType(Context.toBits(AccessSize)); 607 if (!Context.getTargetInfo().hasCheapUnalignedBitFieldAccess()) { 608 // Unaligned accesses are expensive. Only accumulate if the new unit 609 // is naturally aligned. Otherwise install the best we have, which is 610 // either the initial access unit (can't do better), or a naturally 611 // aligned accumulation (since we would have already installed it if 612 // it wasn't naturally aligned). 613 CharUnits Align = getAlignment(Type); 614 if (Align > Layout.getAlignment()) 615 // The alignment required is greater than the containing structure 616 // itself. 617 InstallBest = true; 618 else if (!BeginOffset.isMultipleOf(Align)) 619 // The access unit is not at a naturally aligned offset within the 620 // structure. 621 InstallBest = true; 622 623 if (InstallBest && BestEnd == Field) 624 // We're installing the first span, whose clipping was presumed 625 // above. Compute it correctly. 626 if (getSize(Type) == AccessSize) 627 BestClipped = false; 628 } 629 630 if (!InstallBest) { 631 // Find the next used storage offset to determine what the limit of 632 // the current span is. That's either the offset of the next field 633 // with storage (which might be Field itself) or the end of the 634 // non-reusable tail padding. 635 CharUnits LimitOffset; 636 for (auto Probe = Field; Probe != FieldEnd; ++Probe) 637 if (!isEmptyFieldForLayout(Context, *Probe)) { 638 // A member with storage sets the limit. 639 assert((getFieldBitOffset(*Probe) % CharBits) == 0 && 640 "Next storage is not byte-aligned"); 641 LimitOffset = bitsToCharUnits(getFieldBitOffset(*Probe)); 642 goto FoundLimit; 643 } 644 // We reached the end of the fields, determine the bounds of useable 645 // tail padding. As this can be complex for C++, we cache the result. 646 if (ScissorOffset.isZero()) { 647 ScissorOffset = calculateTailClippingOffset(isNonVirtualBaseType); 648 assert(!ScissorOffset.isZero() && "Tail clipping at zero"); 649 } 650 651 LimitOffset = ScissorOffset; 652 FoundLimit:; 653 654 CharUnits TypeSize = getSize(Type); 655 if (BeginOffset + TypeSize <= LimitOffset) { 656 // There is space before LimitOffset to create a naturally-sized 657 // access unit. 658 BestEndOffset = BeginOffset + TypeSize; 659 BestEnd = Field; 660 BestClipped = false; 661 } 662 663 if (Barrier) 664 // The next field is a barrier that we cannot merge across. 665 InstallBest = true; 666 else if (Types.getCodeGenOpts().FineGrainedBitfieldAccesses) 667 // Fine-grained access, so no merging of spans. 668 InstallBest = true; 669 else 670 // Otherwise, we're not installing. Update the bit size 671 // of the current span to go all the way to LimitOffset, which is 672 // the (aligned) offset of next bitfield to consider. 673 BitSizeSinceBegin = Context.toBits(LimitOffset - BeginOffset); 674 } 675 } 676 } 677 678 if (InstallBest) { 679 assert((Field == FieldEnd || !Field->isBitField() || 680 (getFieldBitOffset(*Field) % CharBits) == 0) && 681 "Installing but not at an aligned bitfield or limit"); 682 CharUnits AccessSize = BestEndOffset - BeginOffset; 683 if (!AccessSize.isZero()) { 684 // Add the storage member for the access unit to the record. The 685 // bitfields get the offset of their storage but come afterward and 686 // remain there after a stable sort. 687 llvm::Type *Type; 688 if (BestClipped) { 689 assert(getSize(getIntNType(Context.toBits(AccessSize))) > 690 AccessSize && 691 "Clipped access need not be clipped"); 692 Type = getByteArrayType(AccessSize); 693 } else { 694 Type = getIntNType(Context.toBits(AccessSize)); 695 assert(getSize(Type) == AccessSize && 696 "Unclipped access must be clipped"); 697 } 698 Members.push_back(StorageInfo(BeginOffset, Type)); 699 for (; Begin != BestEnd; ++Begin) 700 if (!Begin->isZeroLengthBitField(Context)) 701 Members.push_back( 702 MemberInfo(BeginOffset, MemberInfo::Field, nullptr, *Begin)); 703 } 704 // Reset to start a new span. 705 Field = BestEnd; 706 Begin = FieldEnd; 707 } else { 708 assert(Field != FieldEnd && Field->isBitField() && 709 "Accumulating past end of bitfields"); 710 assert(!Barrier && "Accumulating across barrier"); 711 // Accumulate this bitfield into the current (potential) span. 712 BitSizeSinceBegin += Field->getBitWidthValue(Context); 713 ++Field; 714 } 715 } 716 717 return Field; 718 } 719 720 void CGRecordLowering::accumulateBases() { 721 // If we've got a primary virtual base, we need to add it with the bases. 722 if (Layout.isPrimaryBaseVirtual()) { 723 const CXXRecordDecl *BaseDecl = Layout.getPrimaryBase(); 724 Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::Base, 725 getStorageType(BaseDecl), BaseDecl)); 726 } 727 // Accumulate the non-virtual bases. 728 for (const auto &Base : RD->bases()) { 729 if (Base.isVirtual()) 730 continue; 731 732 // Bases can be zero-sized even if not technically empty if they 733 // contain only a trailing array member. 734 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 735 if (!isEmptyRecordForLayout(Context, Base.getType()) && 736 !Context.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero()) 737 Members.push_back(MemberInfo(Layout.getBaseClassOffset(BaseDecl), 738 MemberInfo::Base, getStorageType(BaseDecl), BaseDecl)); 739 } 740 } 741 742 /// The AAPCS that defines that, when possible, bit-fields should 743 /// be accessed using containers of the declared type width: 744 /// When a volatile bit-field is read, and its container does not overlap with 745 /// any non-bit-field member or any zero length bit-field member, its container 746 /// must be read exactly once using the access width appropriate to the type of 747 /// the container. When a volatile bit-field is written, and its container does 748 /// not overlap with any non-bit-field member or any zero-length bit-field 749 /// member, its container must be read exactly once and written exactly once 750 /// using the access width appropriate to the type of the container. The two 751 /// accesses are not atomic. 752 /// 753 /// Enforcing the width restriction can be disabled using 754 /// -fno-aapcs-bitfield-width. 755 void CGRecordLowering::computeVolatileBitfields() { 756 if (!isAAPCS() || !Types.getCodeGenOpts().AAPCSBitfieldWidth) 757 return; 758 759 for (auto &I : BitFields) { 760 const FieldDecl *Field = I.first; 761 CGBitFieldInfo &Info = I.second; 762 llvm::Type *ResLTy = Types.ConvertTypeForMem(Field->getType()); 763 // If the record alignment is less than the type width, we can't enforce a 764 // aligned load, bail out. 765 if ((uint64_t)(Context.toBits(Layout.getAlignment())) < 766 ResLTy->getPrimitiveSizeInBits()) 767 continue; 768 // CGRecordLowering::setBitFieldInfo() pre-adjusts the bit-field offsets 769 // for big-endian targets, but it assumes a container of width 770 // Info.StorageSize. Since AAPCS uses a different container size (width 771 // of the type), we first undo that calculation here and redo it once 772 // the bit-field offset within the new container is calculated. 773 const unsigned OldOffset = 774 isBE() ? Info.StorageSize - (Info.Offset + Info.Size) : Info.Offset; 775 // Offset to the bit-field from the beginning of the struct. 776 const unsigned AbsoluteOffset = 777 Context.toBits(Info.StorageOffset) + OldOffset; 778 779 // Container size is the width of the bit-field type. 780 const unsigned StorageSize = ResLTy->getPrimitiveSizeInBits(); 781 // Nothing to do if the access uses the desired 782 // container width and is naturally aligned. 783 if (Info.StorageSize == StorageSize && (OldOffset % StorageSize == 0)) 784 continue; 785 786 // Offset within the container. 787 unsigned Offset = AbsoluteOffset & (StorageSize - 1); 788 // Bail out if an aligned load of the container cannot cover the entire 789 // bit-field. This can happen for example, if the bit-field is part of a 790 // packed struct. AAPCS does not define access rules for such cases, we let 791 // clang to follow its own rules. 792 if (Offset + Info.Size > StorageSize) 793 continue; 794 795 // Re-adjust offsets for big-endian targets. 796 if (isBE()) 797 Offset = StorageSize - (Offset + Info.Size); 798 799 const CharUnits StorageOffset = 800 Context.toCharUnitsFromBits(AbsoluteOffset & ~(StorageSize - 1)); 801 const CharUnits End = StorageOffset + 802 Context.toCharUnitsFromBits(StorageSize) - 803 CharUnits::One(); 804 805 const ASTRecordLayout &Layout = 806 Context.getASTRecordLayout(Field->getParent()); 807 // If we access outside memory outside the record, than bail out. 808 const CharUnits RecordSize = Layout.getSize(); 809 if (End >= RecordSize) 810 continue; 811 812 // Bail out if performing this load would access non-bit-fields members. 813 bool Conflict = false; 814 for (const auto *F : D->fields()) { 815 // Allow sized bit-fields overlaps. 816 if (F->isBitField() && !F->isZeroLengthBitField(Context)) 817 continue; 818 819 const CharUnits FOffset = Context.toCharUnitsFromBits( 820 Layout.getFieldOffset(F->getFieldIndex())); 821 822 // As C11 defines, a zero sized bit-field defines a barrier, so 823 // fields after and before it should be race condition free. 824 // The AAPCS acknowledges it and imposes no restritions when the 825 // natural container overlaps a zero-length bit-field. 826 if (F->isZeroLengthBitField(Context)) { 827 if (End > FOffset && StorageOffset < FOffset) { 828 Conflict = true; 829 break; 830 } 831 } 832 833 const CharUnits FEnd = 834 FOffset + 835 Context.toCharUnitsFromBits( 836 Types.ConvertTypeForMem(F->getType())->getPrimitiveSizeInBits()) - 837 CharUnits::One(); 838 // If no overlap, continue. 839 if (End < FOffset || FEnd < StorageOffset) 840 continue; 841 842 // The desired load overlaps a non-bit-field member, bail out. 843 Conflict = true; 844 break; 845 } 846 847 if (Conflict) 848 continue; 849 // Write the new bit-field access parameters. 850 // As the storage offset now is defined as the number of elements from the 851 // start of the structure, we should divide the Offset by the element size. 852 Info.VolatileStorageOffset = 853 StorageOffset / Context.toCharUnitsFromBits(StorageSize).getQuantity(); 854 Info.VolatileStorageSize = StorageSize; 855 Info.VolatileOffset = Offset; 856 } 857 } 858 859 void CGRecordLowering::accumulateVPtrs() { 860 if (Layout.hasOwnVFPtr()) 861 Members.push_back( 862 MemberInfo(CharUnits::Zero(), MemberInfo::VFPtr, 863 llvm::PointerType::getUnqual(Types.getLLVMContext()))); 864 if (Layout.hasOwnVBPtr()) 865 Members.push_back( 866 MemberInfo(Layout.getVBPtrOffset(), MemberInfo::VBPtr, 867 llvm::PointerType::getUnqual(Types.getLLVMContext()))); 868 } 869 870 CharUnits 871 CGRecordLowering::calculateTailClippingOffset(bool isNonVirtualBaseType) const { 872 if (!RD) 873 return Layout.getDataSize(); 874 875 CharUnits ScissorOffset = Layout.getNonVirtualSize(); 876 // In the itanium ABI, it's possible to place a vbase at a dsize that is 877 // smaller than the nvsize. Here we check to see if such a base is placed 878 // before the nvsize and set the scissor offset to that, instead of the 879 // nvsize. 880 if (!isNonVirtualBaseType && isOverlappingVBaseABI()) 881 for (const auto &Base : RD->vbases()) { 882 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 883 if (isEmptyRecordForLayout(Context, Base.getType())) 884 continue; 885 // If the vbase is a primary virtual base of some base, then it doesn't 886 // get its own storage location but instead lives inside of that base. 887 if (Context.isNearlyEmpty(BaseDecl) && !hasOwnStorage(RD, BaseDecl)) 888 continue; 889 ScissorOffset = std::min(ScissorOffset, 890 Layout.getVBaseClassOffset(BaseDecl)); 891 } 892 893 return ScissorOffset; 894 } 895 896 void CGRecordLowering::accumulateVBases() { 897 for (const auto &Base : RD->vbases()) { 898 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 899 if (isEmptyRecordForLayout(Context, Base.getType())) 900 continue; 901 CharUnits Offset = Layout.getVBaseClassOffset(BaseDecl); 902 // If the vbase is a primary virtual base of some base, then it doesn't 903 // get its own storage location but instead lives inside of that base. 904 if (isOverlappingVBaseABI() && 905 Context.isNearlyEmpty(BaseDecl) && 906 !hasOwnStorage(RD, BaseDecl)) { 907 Members.push_back(MemberInfo(Offset, MemberInfo::VBase, nullptr, 908 BaseDecl)); 909 continue; 910 } 911 // If we've got a vtordisp, add it as a storage type. 912 if (Layout.getVBaseOffsetsMap().find(BaseDecl)->second.hasVtorDisp()) 913 Members.push_back(StorageInfo(Offset - CharUnits::fromQuantity(4), 914 getIntNType(32))); 915 Members.push_back(MemberInfo(Offset, MemberInfo::VBase, 916 getStorageType(BaseDecl), BaseDecl)); 917 } 918 } 919 920 bool CGRecordLowering::hasOwnStorage(const CXXRecordDecl *Decl, 921 const CXXRecordDecl *Query) const { 922 const ASTRecordLayout &DeclLayout = Context.getASTRecordLayout(Decl); 923 if (DeclLayout.isPrimaryBaseVirtual() && DeclLayout.getPrimaryBase() == Query) 924 return false; 925 for (const auto &Base : Decl->bases()) 926 if (!hasOwnStorage(Base.getType()->getAsCXXRecordDecl(), Query)) 927 return false; 928 return true; 929 } 930 931 void CGRecordLowering::calculateZeroInit() { 932 for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), 933 MemberEnd = Members.end(); 934 IsZeroInitializableAsBase && Member != MemberEnd; ++Member) { 935 if (Member->Kind == MemberInfo::Field) { 936 if (!Member->FD || isZeroInitializable(Member->FD)) 937 continue; 938 IsZeroInitializable = IsZeroInitializableAsBase = false; 939 } else if (Member->Kind == MemberInfo::Base || 940 Member->Kind == MemberInfo::VBase) { 941 if (isZeroInitializable(Member->RD)) 942 continue; 943 IsZeroInitializable = false; 944 if (Member->Kind == MemberInfo::Base) 945 IsZeroInitializableAsBase = false; 946 } 947 } 948 } 949 950 // Verify accumulateBitfields computed the correct storage representations. 951 void CGRecordLowering::checkBitfieldClipping(bool IsNonVirtualBaseType) const { 952 #ifndef NDEBUG 953 auto ScissorOffset = calculateTailClippingOffset(IsNonVirtualBaseType); 954 auto Tail = CharUnits::Zero(); 955 for (const auto &M : Members) { 956 // Only members with data could possibly overlap. 957 if (!M.Data) 958 continue; 959 960 assert(M.Offset >= Tail && "Bitfield access unit is not clipped"); 961 Tail = M.Offset + getSize(M.Data); 962 assert((Tail <= ScissorOffset || M.Offset >= ScissorOffset) && 963 "Bitfield straddles scissor offset"); 964 } 965 #endif 966 } 967 968 void CGRecordLowering::determinePacked(bool NVBaseType) { 969 if (Packed) 970 return; 971 CharUnits Alignment = CharUnits::One(); 972 CharUnits NVAlignment = CharUnits::One(); 973 CharUnits NVSize = 974 !NVBaseType && RD ? Layout.getNonVirtualSize() : CharUnits::Zero(); 975 for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), 976 MemberEnd = Members.end(); 977 Member != MemberEnd; ++Member) { 978 if (!Member->Data) 979 continue; 980 // If any member falls at an offset that it not a multiple of its alignment, 981 // then the entire record must be packed. 982 if (Member->Offset % getAlignment(Member->Data)) 983 Packed = true; 984 if (Member->Offset < NVSize) 985 NVAlignment = std::max(NVAlignment, getAlignment(Member->Data)); 986 Alignment = std::max(Alignment, getAlignment(Member->Data)); 987 } 988 // If the size of the record (the capstone's offset) is not a multiple of the 989 // record's alignment, it must be packed. 990 if (Members.back().Offset % Alignment) 991 Packed = true; 992 // If the non-virtual sub-object is not a multiple of the non-virtual 993 // sub-object's alignment, it must be packed. We cannot have a packed 994 // non-virtual sub-object and an unpacked complete object or vise versa. 995 if (NVSize % NVAlignment) 996 Packed = true; 997 // Update the alignment of the sentinel. 998 if (!Packed) 999 Members.back().Data = getIntNType(Context.toBits(Alignment)); 1000 } 1001 1002 void CGRecordLowering::insertPadding() { 1003 std::vector<std::pair<CharUnits, CharUnits> > Padding; 1004 CharUnits Size = CharUnits::Zero(); 1005 for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), 1006 MemberEnd = Members.end(); 1007 Member != MemberEnd; ++Member) { 1008 if (!Member->Data) 1009 continue; 1010 CharUnits Offset = Member->Offset; 1011 assert(Offset >= Size); 1012 // Insert padding if we need to. 1013 if (Offset != 1014 Size.alignTo(Packed ? CharUnits::One() : getAlignment(Member->Data))) 1015 Padding.push_back(std::make_pair(Size, Offset - Size)); 1016 Size = Offset + getSize(Member->Data); 1017 } 1018 if (Padding.empty()) 1019 return; 1020 // Add the padding to the Members list and sort it. 1021 for (std::vector<std::pair<CharUnits, CharUnits> >::const_iterator 1022 Pad = Padding.begin(), PadEnd = Padding.end(); 1023 Pad != PadEnd; ++Pad) 1024 Members.push_back(StorageInfo(Pad->first, getByteArrayType(Pad->second))); 1025 llvm::stable_sort(Members); 1026 } 1027 1028 void CGRecordLowering::fillOutputFields() { 1029 for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), 1030 MemberEnd = Members.end(); 1031 Member != MemberEnd; ++Member) { 1032 if (Member->Data) 1033 FieldTypes.push_back(Member->Data); 1034 if (Member->Kind == MemberInfo::Field) { 1035 if (Member->FD) 1036 Fields[Member->FD->getCanonicalDecl()] = FieldTypes.size() - 1; 1037 // A field without storage must be a bitfield. 1038 if (!Member->Data) 1039 setBitFieldInfo(Member->FD, Member->Offset, FieldTypes.back()); 1040 } else if (Member->Kind == MemberInfo::Base) 1041 NonVirtualBases[Member->RD] = FieldTypes.size() - 1; 1042 else if (Member->Kind == MemberInfo::VBase) 1043 VirtualBases[Member->RD] = FieldTypes.size() - 1; 1044 } 1045 } 1046 1047 CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types, 1048 const FieldDecl *FD, 1049 uint64_t Offset, uint64_t Size, 1050 uint64_t StorageSize, 1051 CharUnits StorageOffset) { 1052 // This function is vestigial from CGRecordLayoutBuilder days but is still 1053 // used in GCObjCRuntime.cpp. That usage has a "fixme" attached to it that 1054 // when addressed will allow for the removal of this function. 1055 llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType()); 1056 CharUnits TypeSizeInBytes = 1057 CharUnits::fromQuantity(Types.getDataLayout().getTypeAllocSize(Ty)); 1058 uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes); 1059 1060 bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType(); 1061 1062 if (Size > TypeSizeInBits) { 1063 // We have a wide bit-field. The extra bits are only used for padding, so 1064 // if we have a bitfield of type T, with size N: 1065 // 1066 // T t : N; 1067 // 1068 // We can just assume that it's: 1069 // 1070 // T t : sizeof(T); 1071 // 1072 Size = TypeSizeInBits; 1073 } 1074 1075 // Reverse the bit offsets for big endian machines. Because we represent 1076 // a bitfield as a single large integer load, we can imagine the bits 1077 // counting from the most-significant-bit instead of the 1078 // least-significant-bit. 1079 if (Types.getDataLayout().isBigEndian()) { 1080 Offset = StorageSize - (Offset + Size); 1081 } 1082 1083 return CGBitFieldInfo(Offset, Size, IsSigned, StorageSize, StorageOffset); 1084 } 1085 1086 std::unique_ptr<CGRecordLayout> 1087 CodeGenTypes::ComputeRecordLayout(const RecordDecl *D, llvm::StructType *Ty) { 1088 CGRecordLowering Builder(*this, D, /*Packed=*/false); 1089 1090 Builder.lower(/*NonVirtualBaseType=*/false); 1091 1092 // If we're in C++, compute the base subobject type. 1093 llvm::StructType *BaseTy = nullptr; 1094 if (isa<CXXRecordDecl>(D)) { 1095 BaseTy = Ty; 1096 if (Builder.Layout.getNonVirtualSize() != Builder.Layout.getSize()) { 1097 CGRecordLowering BaseBuilder(*this, D, /*Packed=*/Builder.Packed); 1098 BaseBuilder.lower(/*NonVirtualBaseType=*/true); 1099 BaseTy = llvm::StructType::create( 1100 getLLVMContext(), BaseBuilder.FieldTypes, "", BaseBuilder.Packed); 1101 addRecordTypeName(D, BaseTy, ".base"); 1102 // BaseTy and Ty must agree on their packedness for getLLVMFieldNo to work 1103 // on both of them with the same index. 1104 assert(Builder.Packed == BaseBuilder.Packed && 1105 "Non-virtual and complete types must agree on packedness"); 1106 } 1107 } 1108 1109 // Fill in the struct *after* computing the base type. Filling in the body 1110 // signifies that the type is no longer opaque and record layout is complete, 1111 // but we may need to recursively layout D while laying D out as a base type. 1112 Ty->setBody(Builder.FieldTypes, Builder.Packed); 1113 1114 auto RL = std::make_unique<CGRecordLayout>( 1115 Ty, BaseTy, (bool)Builder.IsZeroInitializable, 1116 (bool)Builder.IsZeroInitializableAsBase); 1117 1118 RL->NonVirtualBases.swap(Builder.NonVirtualBases); 1119 RL->CompleteObjectVirtualBases.swap(Builder.VirtualBases); 1120 1121 // Add all the field numbers. 1122 RL->FieldInfo.swap(Builder.Fields); 1123 1124 // Add bitfield info. 1125 RL->BitFields.swap(Builder.BitFields); 1126 1127 // Dump the layout, if requested. 1128 if (getContext().getLangOpts().DumpRecordLayouts) { 1129 llvm::outs() << "\n*** Dumping IRgen Record Layout\n"; 1130 llvm::outs() << "Record: "; 1131 D->dump(llvm::outs()); 1132 llvm::outs() << "\nLayout: "; 1133 RL->print(llvm::outs()); 1134 } 1135 1136 #ifndef NDEBUG 1137 // Verify that the computed LLVM struct size matches the AST layout size. 1138 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D); 1139 1140 uint64_t TypeSizeInBits = getContext().toBits(Layout.getSize()); 1141 assert(TypeSizeInBits == getDataLayout().getTypeAllocSizeInBits(Ty) && 1142 "Type size mismatch!"); 1143 1144 if (BaseTy) { 1145 CharUnits NonVirtualSize = Layout.getNonVirtualSize(); 1146 1147 uint64_t AlignedNonVirtualTypeSizeInBits = 1148 getContext().toBits(NonVirtualSize); 1149 1150 assert(AlignedNonVirtualTypeSizeInBits == 1151 getDataLayout().getTypeAllocSizeInBits(BaseTy) && 1152 "Type size mismatch!"); 1153 } 1154 1155 // Verify that the LLVM and AST field offsets agree. 1156 llvm::StructType *ST = RL->getLLVMType(); 1157 const llvm::StructLayout *SL = getDataLayout().getStructLayout(ST); 1158 1159 const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D); 1160 RecordDecl::field_iterator it = D->field_begin(); 1161 for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) { 1162 const FieldDecl *FD = *it; 1163 1164 // Ignore zero-sized fields. 1165 if (isEmptyFieldForLayout(getContext(), FD)) 1166 continue; 1167 1168 // For non-bit-fields, just check that the LLVM struct offset matches the 1169 // AST offset. 1170 if (!FD->isBitField()) { 1171 unsigned FieldNo = RL->getLLVMFieldNo(FD); 1172 assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) && 1173 "Invalid field offset!"); 1174 continue; 1175 } 1176 1177 // Ignore unnamed bit-fields. 1178 if (!FD->getDeclName()) 1179 continue; 1180 1181 const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD); 1182 llvm::Type *ElementTy = ST->getTypeAtIndex(RL->getLLVMFieldNo(FD)); 1183 1184 // Unions have overlapping elements dictating their layout, but for 1185 // non-unions we can verify that this section of the layout is the exact 1186 // expected size. 1187 if (D->isUnion()) { 1188 // For unions we verify that the start is zero and the size 1189 // is in-bounds. However, on BE systems, the offset may be non-zero, but 1190 // the size + offset should match the storage size in that case as it 1191 // "starts" at the back. 1192 if (getDataLayout().isBigEndian()) 1193 assert(static_cast<unsigned>(Info.Offset + Info.Size) == 1194 Info.StorageSize && 1195 "Big endian union bitfield does not end at the back"); 1196 else 1197 assert(Info.Offset == 0 && 1198 "Little endian union bitfield with a non-zero offset"); 1199 assert(Info.StorageSize <= SL->getSizeInBits() && 1200 "Union not large enough for bitfield storage"); 1201 } else { 1202 assert((Info.StorageSize == 1203 getDataLayout().getTypeAllocSizeInBits(ElementTy) || 1204 Info.VolatileStorageSize == 1205 getDataLayout().getTypeAllocSizeInBits(ElementTy)) && 1206 "Storage size does not match the element type size"); 1207 } 1208 assert(Info.Size > 0 && "Empty bitfield!"); 1209 assert(static_cast<unsigned>(Info.Offset) + Info.Size <= Info.StorageSize && 1210 "Bitfield outside of its allocated storage"); 1211 } 1212 #endif 1213 1214 return RL; 1215 } 1216 1217 void CGRecordLayout::print(raw_ostream &OS) const { 1218 OS << "<CGRecordLayout\n"; 1219 OS << " LLVMType:" << *CompleteObjectType << "\n"; 1220 if (BaseSubobjectType) 1221 OS << " NonVirtualBaseLLVMType:" << *BaseSubobjectType << "\n"; 1222 OS << " IsZeroInitializable:" << IsZeroInitializable << "\n"; 1223 OS << " BitFields:[\n"; 1224 1225 // Print bit-field infos in declaration order. 1226 std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs; 1227 for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator 1228 it = BitFields.begin(), ie = BitFields.end(); 1229 it != ie; ++it) { 1230 const RecordDecl *RD = it->first->getParent(); 1231 unsigned Index = 0; 1232 for (RecordDecl::field_iterator 1233 it2 = RD->field_begin(); *it2 != it->first; ++it2) 1234 ++Index; 1235 BFIs.push_back(std::make_pair(Index, &it->second)); 1236 } 1237 llvm::array_pod_sort(BFIs.begin(), BFIs.end()); 1238 for (unsigned i = 0, e = BFIs.size(); i != e; ++i) { 1239 OS.indent(4); 1240 BFIs[i].second->print(OS); 1241 OS << "\n"; 1242 } 1243 1244 OS << "]>\n"; 1245 } 1246 1247 LLVM_DUMP_METHOD void CGRecordLayout::dump() const { 1248 print(llvm::errs()); 1249 } 1250 1251 void CGBitFieldInfo::print(raw_ostream &OS) const { 1252 OS << "<CGBitFieldInfo" 1253 << " Offset:" << Offset << " Size:" << Size << " IsSigned:" << IsSigned 1254 << " StorageSize:" << StorageSize 1255 << " StorageOffset:" << StorageOffset.getQuantity() 1256 << " VolatileOffset:" << VolatileOffset 1257 << " VolatileStorageSize:" << VolatileStorageSize 1258 << " VolatileStorageOffset:" << VolatileStorageOffset.getQuantity() << ">"; 1259 } 1260 1261 LLVM_DUMP_METHOD void CGBitFieldInfo::dump() const { 1262 print(llvm::errs()); 1263 } 1264