1 //===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder ----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Builder implementation for CGRecordLayout objects. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGRecordLayout.h" 14 #include "CGCXXABI.h" 15 #include "CodeGenTypes.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/Attr.h" 18 #include "clang/AST/CXXInheritance.h" 19 #include "clang/AST/DeclCXX.h" 20 #include "clang/AST/Expr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/CodeGenOptions.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Type.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/raw_ostream.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 namespace { 33 /// The CGRecordLowering is responsible for lowering an ASTRecordLayout to an 34 /// llvm::Type. Some of the lowering is straightforward, some is not. Here we 35 /// detail some of the complexities and weirdnesses here. 36 /// * LLVM does not have unions - Unions can, in theory be represented by any 37 /// llvm::Type with correct size. We choose a field via a specific heuristic 38 /// and add padding if necessary. 39 /// * LLVM does not have bitfields - Bitfields are collected into contiguous 40 /// runs and allocated as a single storage type for the run. ASTRecordLayout 41 /// contains enough information to determine where the runs break. Microsoft 42 /// and Itanium follow different rules and use different codepaths. 43 /// * It is desired that, when possible, bitfields use the appropriate iN type 44 /// when lowered to llvm types. For example unsigned x : 24 gets lowered to 45 /// i24. This isn't always possible because i24 has storage size of 32 bit 46 /// and if it is possible to use that extra byte of padding we must use 47 /// [i8 x 3] instead of i24. The function clipTailPadding does this. 48 /// C++ examples that require clipping: 49 /// struct { int a : 24; char b; }; // a must be clipped, b goes at offset 3 50 /// struct A { int a : 24; }; // a must be clipped because a struct like B 51 // could exist: struct B : A { char b; }; // b goes at offset 3 52 /// * Clang ignores 0 sized bitfields and 0 sized bases but *not* zero sized 53 /// fields. The existing asserts suggest that LLVM assumes that *every* field 54 /// has an underlying storage type. Therefore empty structures containing 55 /// zero sized subobjects such as empty records or zero sized arrays still get 56 /// a zero sized (empty struct) storage type. 57 /// * Clang reads the complete type rather than the base type when generating 58 /// code to access fields. Bitfields in tail position with tail padding may 59 /// be clipped in the base class but not the complete class (we may discover 60 /// that the tail padding is not used in the complete class.) However, 61 /// because LLVM reads from the complete type it can generate incorrect code 62 /// if we do not clip the tail padding off of the bitfield in the complete 63 /// layout. This introduces a somewhat awkward extra unnecessary clip stage. 64 /// The location of the clip is stored internally as a sentinel of type 65 /// SCISSOR. If LLVM were updated to read base types (which it probably 66 /// should because locations of things such as VBases are bogus in the llvm 67 /// type anyway) then we could eliminate the SCISSOR. 68 /// * Itanium allows nearly empty primary virtual bases. These bases don't get 69 /// get their own storage because they're laid out as part of another base 70 /// or at the beginning of the structure. Determining if a VBase actually 71 /// gets storage awkwardly involves a walk of all bases. 72 /// * VFPtrs and VBPtrs do *not* make a record NotZeroInitializable. 73 struct CGRecordLowering { 74 // MemberInfo is a helper structure that contains information about a record 75 // member. In additional to the standard member types, there exists a 76 // sentinel member type that ensures correct rounding. 77 struct MemberInfo { 78 CharUnits Offset; 79 enum InfoKind { VFPtr, VBPtr, Field, Base, VBase, Scissor } Kind; 80 llvm::Type *Data; 81 union { 82 const FieldDecl *FD; 83 const CXXRecordDecl *RD; 84 }; 85 MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data, 86 const FieldDecl *FD = nullptr) 87 : Offset(Offset), Kind(Kind), Data(Data), FD(FD) {} 88 MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data, 89 const CXXRecordDecl *RD) 90 : Offset(Offset), Kind(Kind), Data(Data), RD(RD) {} 91 // MemberInfos are sorted so we define a < operator. 92 bool operator <(const MemberInfo& a) const { return Offset < a.Offset; } 93 }; 94 // The constructor. 95 CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D, bool Packed); 96 // Short helper routines. 97 /// Constructs a MemberInfo instance from an offset and llvm::Type *. 98 MemberInfo StorageInfo(CharUnits Offset, llvm::Type *Data) { 99 return MemberInfo(Offset, MemberInfo::Field, Data); 100 } 101 102 /// The Microsoft bitfield layout rule allocates discrete storage 103 /// units of the field's formal type and only combines adjacent 104 /// fields of the same formal type. We want to emit a layout with 105 /// these discrete storage units instead of combining them into a 106 /// continuous run. 107 bool isDiscreteBitFieldABI() { 108 return Context.getTargetInfo().getCXXABI().isMicrosoft() || 109 D->isMsStruct(Context); 110 } 111 112 /// The Itanium base layout rule allows virtual bases to overlap 113 /// other bases, which complicates layout in specific ways. 114 /// 115 /// Note specifically that the ms_struct attribute doesn't change this. 116 bool isOverlappingVBaseABI() { 117 return !Context.getTargetInfo().getCXXABI().isMicrosoft(); 118 } 119 120 /// Wraps llvm::Type::getIntNTy with some implicit arguments. 121 llvm::Type *getIntNType(uint64_t NumBits) { 122 return llvm::Type::getIntNTy(Types.getLLVMContext(), 123 (unsigned)llvm::alignTo(NumBits, 8)); 124 } 125 /// Gets an llvm type of size NumBytes and alignment 1. 126 llvm::Type *getByteArrayType(CharUnits NumBytes) { 127 assert(!NumBytes.isZero() && "Empty byte arrays aren't allowed."); 128 llvm::Type *Type = llvm::Type::getInt8Ty(Types.getLLVMContext()); 129 return NumBytes == CharUnits::One() ? Type : 130 (llvm::Type *)llvm::ArrayType::get(Type, NumBytes.getQuantity()); 131 } 132 /// Gets the storage type for a field decl and handles storage 133 /// for itanium bitfields that are smaller than their declared type. 134 llvm::Type *getStorageType(const FieldDecl *FD) { 135 llvm::Type *Type = Types.ConvertTypeForMem(FD->getType()); 136 if (!FD->isBitField()) return Type; 137 if (isDiscreteBitFieldABI()) return Type; 138 return getIntNType(std::min(FD->getBitWidthValue(Context), 139 (unsigned)Context.toBits(getSize(Type)))); 140 } 141 /// Gets the llvm Basesubobject type from a CXXRecordDecl. 142 llvm::Type *getStorageType(const CXXRecordDecl *RD) { 143 return Types.getCGRecordLayout(RD).getBaseSubobjectLLVMType(); 144 } 145 CharUnits bitsToCharUnits(uint64_t BitOffset) { 146 return Context.toCharUnitsFromBits(BitOffset); 147 } 148 CharUnits getSize(llvm::Type *Type) { 149 return CharUnits::fromQuantity(DataLayout.getTypeAllocSize(Type)); 150 } 151 CharUnits getAlignment(llvm::Type *Type) { 152 return CharUnits::fromQuantity(DataLayout.getABITypeAlignment(Type)); 153 } 154 bool isZeroInitializable(const FieldDecl *FD) { 155 return Types.isZeroInitializable(FD->getType()); 156 } 157 bool isZeroInitializable(const RecordDecl *RD) { 158 return Types.isZeroInitializable(RD); 159 } 160 void appendPaddingBytes(CharUnits Size) { 161 if (!Size.isZero()) 162 FieldTypes.push_back(getByteArrayType(Size)); 163 } 164 uint64_t getFieldBitOffset(const FieldDecl *FD) { 165 return Layout.getFieldOffset(FD->getFieldIndex()); 166 } 167 // Layout routines. 168 void setBitFieldInfo(const FieldDecl *FD, CharUnits StartOffset, 169 llvm::Type *StorageType); 170 /// Lowers an ASTRecordLayout to a llvm type. 171 void lower(bool NonVirtualBaseType); 172 void lowerUnion(); 173 void accumulateFields(); 174 void accumulateBitFields(RecordDecl::field_iterator Field, 175 RecordDecl::field_iterator FieldEnd); 176 void accumulateBases(); 177 void accumulateVPtrs(); 178 void accumulateVBases(); 179 /// Recursively searches all of the bases to find out if a vbase is 180 /// not the primary vbase of some base class. 181 bool hasOwnStorage(const CXXRecordDecl *Decl, const CXXRecordDecl *Query); 182 void calculateZeroInit(); 183 /// Lowers bitfield storage types to I8 arrays for bitfields with tail 184 /// padding that is or can potentially be used. 185 void clipTailPadding(); 186 /// Determines if we need a packed llvm struct. 187 void determinePacked(bool NVBaseType); 188 /// Inserts padding everywhere it's needed. 189 void insertPadding(); 190 /// Fills out the structures that are ultimately consumed. 191 void fillOutputFields(); 192 // Input memoization fields. 193 CodeGenTypes &Types; 194 const ASTContext &Context; 195 const RecordDecl *D; 196 const CXXRecordDecl *RD; 197 const ASTRecordLayout &Layout; 198 const llvm::DataLayout &DataLayout; 199 // Helpful intermediate data-structures. 200 std::vector<MemberInfo> Members; 201 // Output fields, consumed by CodeGenTypes::ComputeRecordLayout. 202 SmallVector<llvm::Type *, 16> FieldTypes; 203 llvm::DenseMap<const FieldDecl *, unsigned> Fields; 204 llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields; 205 llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases; 206 llvm::DenseMap<const CXXRecordDecl *, unsigned> VirtualBases; 207 bool IsZeroInitializable : 1; 208 bool IsZeroInitializableAsBase : 1; 209 bool Packed : 1; 210 private: 211 CGRecordLowering(const CGRecordLowering &) = delete; 212 void operator =(const CGRecordLowering &) = delete; 213 }; 214 } // namespace { 215 216 CGRecordLowering::CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D, 217 bool Packed) 218 : Types(Types), Context(Types.getContext()), D(D), 219 RD(dyn_cast<CXXRecordDecl>(D)), 220 Layout(Types.getContext().getASTRecordLayout(D)), 221 DataLayout(Types.getDataLayout()), IsZeroInitializable(true), 222 IsZeroInitializableAsBase(true), Packed(Packed) {} 223 224 void CGRecordLowering::setBitFieldInfo( 225 const FieldDecl *FD, CharUnits StartOffset, llvm::Type *StorageType) { 226 CGBitFieldInfo &Info = BitFields[FD->getCanonicalDecl()]; 227 Info.IsSigned = FD->getType()->isSignedIntegerOrEnumerationType(); 228 Info.Offset = (unsigned)(getFieldBitOffset(FD) - Context.toBits(StartOffset)); 229 Info.Size = FD->getBitWidthValue(Context); 230 Info.StorageSize = (unsigned)DataLayout.getTypeAllocSizeInBits(StorageType); 231 Info.StorageOffset = StartOffset; 232 if (Info.Size > Info.StorageSize) 233 Info.Size = Info.StorageSize; 234 // Reverse the bit offsets for big endian machines. Because we represent 235 // a bitfield as a single large integer load, we can imagine the bits 236 // counting from the most-significant-bit instead of the 237 // least-significant-bit. 238 if (DataLayout.isBigEndian()) 239 Info.Offset = Info.StorageSize - (Info.Offset + Info.Size); 240 } 241 242 void CGRecordLowering::lower(bool NVBaseType) { 243 // The lowering process implemented in this function takes a variety of 244 // carefully ordered phases. 245 // 1) Store all members (fields and bases) in a list and sort them by offset. 246 // 2) Add a 1-byte capstone member at the Size of the structure. 247 // 3) Clip bitfield storages members if their tail padding is or might be 248 // used by another field or base. The clipping process uses the capstone 249 // by treating it as another object that occurs after the record. 250 // 4) Determine if the llvm-struct requires packing. It's important that this 251 // phase occur after clipping, because clipping changes the llvm type. 252 // This phase reads the offset of the capstone when determining packedness 253 // and updates the alignment of the capstone to be equal of the alignment 254 // of the record after doing so. 255 // 5) Insert padding everywhere it is needed. This phase requires 'Packed' to 256 // have been computed and needs to know the alignment of the record in 257 // order to understand if explicit tail padding is needed. 258 // 6) Remove the capstone, we don't need it anymore. 259 // 7) Determine if this record can be zero-initialized. This phase could have 260 // been placed anywhere after phase 1. 261 // 8) Format the complete list of members in a way that can be consumed by 262 // CodeGenTypes::ComputeRecordLayout. 263 CharUnits Size = NVBaseType ? Layout.getNonVirtualSize() : Layout.getSize(); 264 if (D->isUnion()) 265 return lowerUnion(); 266 accumulateFields(); 267 // RD implies C++. 268 if (RD) { 269 accumulateVPtrs(); 270 accumulateBases(); 271 if (Members.empty()) 272 return appendPaddingBytes(Size); 273 if (!NVBaseType) 274 accumulateVBases(); 275 } 276 llvm::stable_sort(Members); 277 Members.push_back(StorageInfo(Size, getIntNType(8))); 278 clipTailPadding(); 279 determinePacked(NVBaseType); 280 insertPadding(); 281 Members.pop_back(); 282 calculateZeroInit(); 283 fillOutputFields(); 284 } 285 286 void CGRecordLowering::lowerUnion() { 287 CharUnits LayoutSize = Layout.getSize(); 288 llvm::Type *StorageType = nullptr; 289 bool SeenNamedMember = false; 290 // Iterate through the fields setting bitFieldInfo and the Fields array. Also 291 // locate the "most appropriate" storage type. The heuristic for finding the 292 // storage type isn't necessary, the first (non-0-length-bitfield) field's 293 // type would work fine and be simpler but would be different than what we've 294 // been doing and cause lit tests to change. 295 for (const auto *Field : D->fields()) { 296 if (Field->isBitField()) { 297 if (Field->isZeroLengthBitField(Context)) 298 continue; 299 llvm::Type *FieldType = getStorageType(Field); 300 if (LayoutSize < getSize(FieldType)) 301 FieldType = getByteArrayType(LayoutSize); 302 setBitFieldInfo(Field, CharUnits::Zero(), FieldType); 303 } 304 Fields[Field->getCanonicalDecl()] = 0; 305 llvm::Type *FieldType = getStorageType(Field); 306 // Compute zero-initializable status. 307 // This union might not be zero initialized: it may contain a pointer to 308 // data member which might have some exotic initialization sequence. 309 // If this is the case, then we aught not to try and come up with a "better" 310 // type, it might not be very easy to come up with a Constant which 311 // correctly initializes it. 312 if (!SeenNamedMember) { 313 SeenNamedMember = Field->getIdentifier(); 314 if (!SeenNamedMember) 315 if (const auto *FieldRD = Field->getType()->getAsRecordDecl()) 316 SeenNamedMember = FieldRD->findFirstNamedDataMember(); 317 if (SeenNamedMember && !isZeroInitializable(Field)) { 318 IsZeroInitializable = IsZeroInitializableAsBase = false; 319 StorageType = FieldType; 320 } 321 } 322 // Because our union isn't zero initializable, we won't be getting a better 323 // storage type. 324 if (!IsZeroInitializable) 325 continue; 326 // Conditionally update our storage type if we've got a new "better" one. 327 if (!StorageType || 328 getAlignment(FieldType) > getAlignment(StorageType) || 329 (getAlignment(FieldType) == getAlignment(StorageType) && 330 getSize(FieldType) > getSize(StorageType))) 331 StorageType = FieldType; 332 } 333 // If we have no storage type just pad to the appropriate size and return. 334 if (!StorageType) 335 return appendPaddingBytes(LayoutSize); 336 // If our storage size was bigger than our required size (can happen in the 337 // case of packed bitfields on Itanium) then just use an I8 array. 338 if (LayoutSize < getSize(StorageType)) 339 StorageType = getByteArrayType(LayoutSize); 340 FieldTypes.push_back(StorageType); 341 appendPaddingBytes(LayoutSize - getSize(StorageType)); 342 // Set packed if we need it. 343 if (LayoutSize % getAlignment(StorageType)) 344 Packed = true; 345 } 346 347 void CGRecordLowering::accumulateFields() { 348 for (RecordDecl::field_iterator Field = D->field_begin(), 349 FieldEnd = D->field_end(); 350 Field != FieldEnd;) { 351 if (Field->isBitField()) { 352 RecordDecl::field_iterator Start = Field; 353 // Iterate to gather the list of bitfields. 354 for (++Field; Field != FieldEnd && Field->isBitField(); ++Field); 355 accumulateBitFields(Start, Field); 356 } else if (!Field->isZeroSize(Context)) { 357 Members.push_back(MemberInfo( 358 bitsToCharUnits(getFieldBitOffset(*Field)), MemberInfo::Field, 359 getStorageType(*Field), *Field)); 360 ++Field; 361 } else { 362 ++Field; 363 } 364 } 365 } 366 367 void 368 CGRecordLowering::accumulateBitFields(RecordDecl::field_iterator Field, 369 RecordDecl::field_iterator FieldEnd) { 370 // Run stores the first element of the current run of bitfields. FieldEnd is 371 // used as a special value to note that we don't have a current run. A 372 // bitfield run is a contiguous collection of bitfields that can be stored in 373 // the same storage block. Zero-sized bitfields and bitfields that would 374 // cross an alignment boundary break a run and start a new one. 375 RecordDecl::field_iterator Run = FieldEnd; 376 // Tail is the offset of the first bit off the end of the current run. It's 377 // used to determine if the ASTRecordLayout is treating these two bitfields as 378 // contiguous. StartBitOffset is offset of the beginning of the Run. 379 uint64_t StartBitOffset, Tail = 0; 380 if (isDiscreteBitFieldABI()) { 381 for (; Field != FieldEnd; ++Field) { 382 uint64_t BitOffset = getFieldBitOffset(*Field); 383 // Zero-width bitfields end runs. 384 if (Field->isZeroLengthBitField(Context)) { 385 Run = FieldEnd; 386 continue; 387 } 388 llvm::Type *Type = Types.ConvertTypeForMem(Field->getType()); 389 // If we don't have a run yet, or don't live within the previous run's 390 // allocated storage then we allocate some storage and start a new run. 391 if (Run == FieldEnd || BitOffset >= Tail) { 392 Run = Field; 393 StartBitOffset = BitOffset; 394 Tail = StartBitOffset + DataLayout.getTypeAllocSizeInBits(Type); 395 // Add the storage member to the record. This must be added to the 396 // record before the bitfield members so that it gets laid out before 397 // the bitfields it contains get laid out. 398 Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type)); 399 } 400 // Bitfields get the offset of their storage but come afterward and remain 401 // there after a stable sort. 402 Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset), 403 MemberInfo::Field, nullptr, *Field)); 404 } 405 return; 406 } 407 408 // Check if OffsetInRecord is better as a single field run. When OffsetInRecord 409 // has legal integer width, and its bitfield offset is naturally aligned, it 410 // is better to make the bitfield a separate storage component so as it can be 411 // accessed directly with lower cost. 412 auto IsBetterAsSingleFieldRun = [&](uint64_t OffsetInRecord, 413 uint64_t StartBitOffset) { 414 if (!Types.getCodeGenOpts().FineGrainedBitfieldAccesses) 415 return false; 416 if (!DataLayout.isLegalInteger(OffsetInRecord)) 417 return false; 418 // Make sure StartBitOffset is natually aligned if it is treated as an 419 // IType integer. 420 if (StartBitOffset % 421 Context.toBits(getAlignment(getIntNType(OffsetInRecord))) != 422 0) 423 return false; 424 return true; 425 }; 426 427 // The start field is better as a single field run. 428 bool StartFieldAsSingleRun = false; 429 for (;;) { 430 // Check to see if we need to start a new run. 431 if (Run == FieldEnd) { 432 // If we're out of fields, return. 433 if (Field == FieldEnd) 434 break; 435 // Any non-zero-length bitfield can start a new run. 436 if (!Field->isZeroLengthBitField(Context)) { 437 Run = Field; 438 StartBitOffset = getFieldBitOffset(*Field); 439 Tail = StartBitOffset + Field->getBitWidthValue(Context); 440 StartFieldAsSingleRun = IsBetterAsSingleFieldRun(Tail - StartBitOffset, 441 StartBitOffset); 442 } 443 ++Field; 444 continue; 445 } 446 447 // If the start field of a new run is better as a single run, or 448 // if current field (or consecutive fields) is better as a single run, or 449 // if current field has zero width bitfield and either 450 // UseZeroLengthBitfieldAlignment or UseBitFieldTypeAlignment is set to 451 // true, or 452 // if the offset of current field is inconsistent with the offset of 453 // previous field plus its offset, 454 // skip the block below and go ahead to emit the storage. 455 // Otherwise, try to add bitfields to the run. 456 if (!StartFieldAsSingleRun && Field != FieldEnd && 457 !IsBetterAsSingleFieldRun(Tail - StartBitOffset, StartBitOffset) && 458 (!Field->isZeroLengthBitField(Context) || 459 (!Context.getTargetInfo().useZeroLengthBitfieldAlignment() && 460 !Context.getTargetInfo().useBitFieldTypeAlignment())) && 461 Tail == getFieldBitOffset(*Field)) { 462 Tail += Field->getBitWidthValue(Context); 463 ++Field; 464 continue; 465 } 466 467 // We've hit a break-point in the run and need to emit a storage field. 468 llvm::Type *Type = getIntNType(Tail - StartBitOffset); 469 // Add the storage member to the record and set the bitfield info for all of 470 // the bitfields in the run. Bitfields get the offset of their storage but 471 // come afterward and remain there after a stable sort. 472 Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type)); 473 for (; Run != Field; ++Run) 474 Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset), 475 MemberInfo::Field, nullptr, *Run)); 476 Run = FieldEnd; 477 StartFieldAsSingleRun = false; 478 } 479 } 480 481 void CGRecordLowering::accumulateBases() { 482 // If we've got a primary virtual base, we need to add it with the bases. 483 if (Layout.isPrimaryBaseVirtual()) { 484 const CXXRecordDecl *BaseDecl = Layout.getPrimaryBase(); 485 Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::Base, 486 getStorageType(BaseDecl), BaseDecl)); 487 } 488 // Accumulate the non-virtual bases. 489 for (const auto &Base : RD->bases()) { 490 if (Base.isVirtual()) 491 continue; 492 493 // Bases can be zero-sized even if not technically empty if they 494 // contain only a trailing array member. 495 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 496 if (!BaseDecl->isEmpty() && 497 !Context.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero()) 498 Members.push_back(MemberInfo(Layout.getBaseClassOffset(BaseDecl), 499 MemberInfo::Base, getStorageType(BaseDecl), BaseDecl)); 500 } 501 } 502 503 void CGRecordLowering::accumulateVPtrs() { 504 if (Layout.hasOwnVFPtr()) 505 Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::VFPtr, 506 llvm::FunctionType::get(getIntNType(32), /*isVarArg=*/true)-> 507 getPointerTo()->getPointerTo())); 508 if (Layout.hasOwnVBPtr()) 509 Members.push_back(MemberInfo(Layout.getVBPtrOffset(), MemberInfo::VBPtr, 510 llvm::Type::getInt32PtrTy(Types.getLLVMContext()))); 511 } 512 513 void CGRecordLowering::accumulateVBases() { 514 CharUnits ScissorOffset = Layout.getNonVirtualSize(); 515 // In the itanium ABI, it's possible to place a vbase at a dsize that is 516 // smaller than the nvsize. Here we check to see if such a base is placed 517 // before the nvsize and set the scissor offset to that, instead of the 518 // nvsize. 519 if (isOverlappingVBaseABI()) 520 for (const auto &Base : RD->vbases()) { 521 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 522 if (BaseDecl->isEmpty()) 523 continue; 524 // If the vbase is a primary virtual base of some base, then it doesn't 525 // get its own storage location but instead lives inside of that base. 526 if (Context.isNearlyEmpty(BaseDecl) && !hasOwnStorage(RD, BaseDecl)) 527 continue; 528 ScissorOffset = std::min(ScissorOffset, 529 Layout.getVBaseClassOffset(BaseDecl)); 530 } 531 Members.push_back(MemberInfo(ScissorOffset, MemberInfo::Scissor, nullptr, 532 RD)); 533 for (const auto &Base : RD->vbases()) { 534 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 535 if (BaseDecl->isEmpty()) 536 continue; 537 CharUnits Offset = Layout.getVBaseClassOffset(BaseDecl); 538 // If the vbase is a primary virtual base of some base, then it doesn't 539 // get its own storage location but instead lives inside of that base. 540 if (isOverlappingVBaseABI() && 541 Context.isNearlyEmpty(BaseDecl) && 542 !hasOwnStorage(RD, BaseDecl)) { 543 Members.push_back(MemberInfo(Offset, MemberInfo::VBase, nullptr, 544 BaseDecl)); 545 continue; 546 } 547 // If we've got a vtordisp, add it as a storage type. 548 if (Layout.getVBaseOffsetsMap().find(BaseDecl)->second.hasVtorDisp()) 549 Members.push_back(StorageInfo(Offset - CharUnits::fromQuantity(4), 550 getIntNType(32))); 551 Members.push_back(MemberInfo(Offset, MemberInfo::VBase, 552 getStorageType(BaseDecl), BaseDecl)); 553 } 554 } 555 556 bool CGRecordLowering::hasOwnStorage(const CXXRecordDecl *Decl, 557 const CXXRecordDecl *Query) { 558 const ASTRecordLayout &DeclLayout = Context.getASTRecordLayout(Decl); 559 if (DeclLayout.isPrimaryBaseVirtual() && DeclLayout.getPrimaryBase() == Query) 560 return false; 561 for (const auto &Base : Decl->bases()) 562 if (!hasOwnStorage(Base.getType()->getAsCXXRecordDecl(), Query)) 563 return false; 564 return true; 565 } 566 567 void CGRecordLowering::calculateZeroInit() { 568 for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), 569 MemberEnd = Members.end(); 570 IsZeroInitializableAsBase && Member != MemberEnd; ++Member) { 571 if (Member->Kind == MemberInfo::Field) { 572 if (!Member->FD || isZeroInitializable(Member->FD)) 573 continue; 574 IsZeroInitializable = IsZeroInitializableAsBase = false; 575 } else if (Member->Kind == MemberInfo::Base || 576 Member->Kind == MemberInfo::VBase) { 577 if (isZeroInitializable(Member->RD)) 578 continue; 579 IsZeroInitializable = false; 580 if (Member->Kind == MemberInfo::Base) 581 IsZeroInitializableAsBase = false; 582 } 583 } 584 } 585 586 void CGRecordLowering::clipTailPadding() { 587 std::vector<MemberInfo>::iterator Prior = Members.begin(); 588 CharUnits Tail = getSize(Prior->Data); 589 for (std::vector<MemberInfo>::iterator Member = Prior + 1, 590 MemberEnd = Members.end(); 591 Member != MemberEnd; ++Member) { 592 // Only members with data and the scissor can cut into tail padding. 593 if (!Member->Data && Member->Kind != MemberInfo::Scissor) 594 continue; 595 if (Member->Offset < Tail) { 596 assert(Prior->Kind == MemberInfo::Field && 597 "Only storage fields have tail padding!"); 598 if (!Prior->FD || Prior->FD->isBitField()) 599 Prior->Data = getByteArrayType(bitsToCharUnits(llvm::alignTo( 600 cast<llvm::IntegerType>(Prior->Data)->getIntegerBitWidth(), 8))); 601 else { 602 assert(Prior->FD->hasAttr<NoUniqueAddressAttr>() && 603 "should not have reused this field's tail padding"); 604 Prior->Data = getByteArrayType( 605 Context.getTypeInfoDataSizeInChars(Prior->FD->getType()).first); 606 } 607 } 608 if (Member->Data) 609 Prior = Member; 610 Tail = Prior->Offset + getSize(Prior->Data); 611 } 612 } 613 614 void CGRecordLowering::determinePacked(bool NVBaseType) { 615 if (Packed) 616 return; 617 CharUnits Alignment = CharUnits::One(); 618 CharUnits NVAlignment = CharUnits::One(); 619 CharUnits NVSize = 620 !NVBaseType && RD ? Layout.getNonVirtualSize() : CharUnits::Zero(); 621 for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), 622 MemberEnd = Members.end(); 623 Member != MemberEnd; ++Member) { 624 if (!Member->Data) 625 continue; 626 // If any member falls at an offset that it not a multiple of its alignment, 627 // then the entire record must be packed. 628 if (Member->Offset % getAlignment(Member->Data)) 629 Packed = true; 630 if (Member->Offset < NVSize) 631 NVAlignment = std::max(NVAlignment, getAlignment(Member->Data)); 632 Alignment = std::max(Alignment, getAlignment(Member->Data)); 633 } 634 // If the size of the record (the capstone's offset) is not a multiple of the 635 // record's alignment, it must be packed. 636 if (Members.back().Offset % Alignment) 637 Packed = true; 638 // If the non-virtual sub-object is not a multiple of the non-virtual 639 // sub-object's alignment, it must be packed. We cannot have a packed 640 // non-virtual sub-object and an unpacked complete object or vise versa. 641 if (NVSize % NVAlignment) 642 Packed = true; 643 // Update the alignment of the sentinel. 644 if (!Packed) 645 Members.back().Data = getIntNType(Context.toBits(Alignment)); 646 } 647 648 void CGRecordLowering::insertPadding() { 649 std::vector<std::pair<CharUnits, CharUnits> > Padding; 650 CharUnits Size = CharUnits::Zero(); 651 for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), 652 MemberEnd = Members.end(); 653 Member != MemberEnd; ++Member) { 654 if (!Member->Data) 655 continue; 656 CharUnits Offset = Member->Offset; 657 assert(Offset >= Size); 658 // Insert padding if we need to. 659 if (Offset != 660 Size.alignTo(Packed ? CharUnits::One() : getAlignment(Member->Data))) 661 Padding.push_back(std::make_pair(Size, Offset - Size)); 662 Size = Offset + getSize(Member->Data); 663 } 664 if (Padding.empty()) 665 return; 666 // Add the padding to the Members list and sort it. 667 for (std::vector<std::pair<CharUnits, CharUnits> >::const_iterator 668 Pad = Padding.begin(), PadEnd = Padding.end(); 669 Pad != PadEnd; ++Pad) 670 Members.push_back(StorageInfo(Pad->first, getByteArrayType(Pad->second))); 671 llvm::stable_sort(Members); 672 } 673 674 void CGRecordLowering::fillOutputFields() { 675 for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), 676 MemberEnd = Members.end(); 677 Member != MemberEnd; ++Member) { 678 if (Member->Data) 679 FieldTypes.push_back(Member->Data); 680 if (Member->Kind == MemberInfo::Field) { 681 if (Member->FD) 682 Fields[Member->FD->getCanonicalDecl()] = FieldTypes.size() - 1; 683 // A field without storage must be a bitfield. 684 if (!Member->Data) 685 setBitFieldInfo(Member->FD, Member->Offset, FieldTypes.back()); 686 } else if (Member->Kind == MemberInfo::Base) 687 NonVirtualBases[Member->RD] = FieldTypes.size() - 1; 688 else if (Member->Kind == MemberInfo::VBase) 689 VirtualBases[Member->RD] = FieldTypes.size() - 1; 690 } 691 } 692 693 CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types, 694 const FieldDecl *FD, 695 uint64_t Offset, uint64_t Size, 696 uint64_t StorageSize, 697 CharUnits StorageOffset) { 698 // This function is vestigial from CGRecordLayoutBuilder days but is still 699 // used in GCObjCRuntime.cpp. That usage has a "fixme" attached to it that 700 // when addressed will allow for the removal of this function. 701 llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType()); 702 CharUnits TypeSizeInBytes = 703 CharUnits::fromQuantity(Types.getDataLayout().getTypeAllocSize(Ty)); 704 uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes); 705 706 bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType(); 707 708 if (Size > TypeSizeInBits) { 709 // We have a wide bit-field. The extra bits are only used for padding, so 710 // if we have a bitfield of type T, with size N: 711 // 712 // T t : N; 713 // 714 // We can just assume that it's: 715 // 716 // T t : sizeof(T); 717 // 718 Size = TypeSizeInBits; 719 } 720 721 // Reverse the bit offsets for big endian machines. Because we represent 722 // a bitfield as a single large integer load, we can imagine the bits 723 // counting from the most-significant-bit instead of the 724 // least-significant-bit. 725 if (Types.getDataLayout().isBigEndian()) { 726 Offset = StorageSize - (Offset + Size); 727 } 728 729 return CGBitFieldInfo(Offset, Size, IsSigned, StorageSize, StorageOffset); 730 } 731 732 CGRecordLayout *CodeGenTypes::ComputeRecordLayout(const RecordDecl *D, 733 llvm::StructType *Ty) { 734 CGRecordLowering Builder(*this, D, /*Packed=*/false); 735 736 Builder.lower(/*NonVirtualBaseType=*/false); 737 738 // If we're in C++, compute the base subobject type. 739 llvm::StructType *BaseTy = nullptr; 740 if (isa<CXXRecordDecl>(D) && !D->isUnion() && !D->hasAttr<FinalAttr>()) { 741 BaseTy = Ty; 742 if (Builder.Layout.getNonVirtualSize() != Builder.Layout.getSize()) { 743 CGRecordLowering BaseBuilder(*this, D, /*Packed=*/Builder.Packed); 744 BaseBuilder.lower(/*NonVirtualBaseType=*/true); 745 BaseTy = llvm::StructType::create( 746 getLLVMContext(), BaseBuilder.FieldTypes, "", BaseBuilder.Packed); 747 addRecordTypeName(D, BaseTy, ".base"); 748 // BaseTy and Ty must agree on their packedness for getLLVMFieldNo to work 749 // on both of them with the same index. 750 assert(Builder.Packed == BaseBuilder.Packed && 751 "Non-virtual and complete types must agree on packedness"); 752 } 753 } 754 755 // Fill in the struct *after* computing the base type. Filling in the body 756 // signifies that the type is no longer opaque and record layout is complete, 757 // but we may need to recursively layout D while laying D out as a base type. 758 Ty->setBody(Builder.FieldTypes, Builder.Packed); 759 760 CGRecordLayout *RL = 761 new CGRecordLayout(Ty, BaseTy, Builder.IsZeroInitializable, 762 Builder.IsZeroInitializableAsBase); 763 764 RL->NonVirtualBases.swap(Builder.NonVirtualBases); 765 RL->CompleteObjectVirtualBases.swap(Builder.VirtualBases); 766 767 // Add all the field numbers. 768 RL->FieldInfo.swap(Builder.Fields); 769 770 // Add bitfield info. 771 RL->BitFields.swap(Builder.BitFields); 772 773 // Dump the layout, if requested. 774 if (getContext().getLangOpts().DumpRecordLayouts) { 775 llvm::outs() << "\n*** Dumping IRgen Record Layout\n"; 776 llvm::outs() << "Record: "; 777 D->dump(llvm::outs()); 778 llvm::outs() << "\nLayout: "; 779 RL->print(llvm::outs()); 780 } 781 782 #ifndef NDEBUG 783 // Verify that the computed LLVM struct size matches the AST layout size. 784 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D); 785 786 uint64_t TypeSizeInBits = getContext().toBits(Layout.getSize()); 787 assert(TypeSizeInBits == getDataLayout().getTypeAllocSizeInBits(Ty) && 788 "Type size mismatch!"); 789 790 if (BaseTy) { 791 CharUnits NonVirtualSize = Layout.getNonVirtualSize(); 792 793 uint64_t AlignedNonVirtualTypeSizeInBits = 794 getContext().toBits(NonVirtualSize); 795 796 assert(AlignedNonVirtualTypeSizeInBits == 797 getDataLayout().getTypeAllocSizeInBits(BaseTy) && 798 "Type size mismatch!"); 799 } 800 801 // Verify that the LLVM and AST field offsets agree. 802 llvm::StructType *ST = RL->getLLVMType(); 803 const llvm::StructLayout *SL = getDataLayout().getStructLayout(ST); 804 805 const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D); 806 RecordDecl::field_iterator it = D->field_begin(); 807 for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) { 808 const FieldDecl *FD = *it; 809 810 // Ignore zero-sized fields. 811 if (FD->isZeroSize(getContext())) 812 continue; 813 814 // For non-bit-fields, just check that the LLVM struct offset matches the 815 // AST offset. 816 if (!FD->isBitField()) { 817 unsigned FieldNo = RL->getLLVMFieldNo(FD); 818 assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) && 819 "Invalid field offset!"); 820 continue; 821 } 822 823 // Ignore unnamed bit-fields. 824 if (!FD->getDeclName()) 825 continue; 826 827 const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD); 828 llvm::Type *ElementTy = ST->getTypeAtIndex(RL->getLLVMFieldNo(FD)); 829 830 // Unions have overlapping elements dictating their layout, but for 831 // non-unions we can verify that this section of the layout is the exact 832 // expected size. 833 if (D->isUnion()) { 834 // For unions we verify that the start is zero and the size 835 // is in-bounds. However, on BE systems, the offset may be non-zero, but 836 // the size + offset should match the storage size in that case as it 837 // "starts" at the back. 838 if (getDataLayout().isBigEndian()) 839 assert(static_cast<unsigned>(Info.Offset + Info.Size) == 840 Info.StorageSize && 841 "Big endian union bitfield does not end at the back"); 842 else 843 assert(Info.Offset == 0 && 844 "Little endian union bitfield with a non-zero offset"); 845 assert(Info.StorageSize <= SL->getSizeInBits() && 846 "Union not large enough for bitfield storage"); 847 } else { 848 assert(Info.StorageSize == 849 getDataLayout().getTypeAllocSizeInBits(ElementTy) && 850 "Storage size does not match the element type size"); 851 } 852 assert(Info.Size > 0 && "Empty bitfield!"); 853 assert(static_cast<unsigned>(Info.Offset) + Info.Size <= Info.StorageSize && 854 "Bitfield outside of its allocated storage"); 855 } 856 #endif 857 858 return RL; 859 } 860 861 void CGRecordLayout::print(raw_ostream &OS) const { 862 OS << "<CGRecordLayout\n"; 863 OS << " LLVMType:" << *CompleteObjectType << "\n"; 864 if (BaseSubobjectType) 865 OS << " NonVirtualBaseLLVMType:" << *BaseSubobjectType << "\n"; 866 OS << " IsZeroInitializable:" << IsZeroInitializable << "\n"; 867 OS << " BitFields:[\n"; 868 869 // Print bit-field infos in declaration order. 870 std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs; 871 for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator 872 it = BitFields.begin(), ie = BitFields.end(); 873 it != ie; ++it) { 874 const RecordDecl *RD = it->first->getParent(); 875 unsigned Index = 0; 876 for (RecordDecl::field_iterator 877 it2 = RD->field_begin(); *it2 != it->first; ++it2) 878 ++Index; 879 BFIs.push_back(std::make_pair(Index, &it->second)); 880 } 881 llvm::array_pod_sort(BFIs.begin(), BFIs.end()); 882 for (unsigned i = 0, e = BFIs.size(); i != e; ++i) { 883 OS.indent(4); 884 BFIs[i].second->print(OS); 885 OS << "\n"; 886 } 887 888 OS << "]>\n"; 889 } 890 891 LLVM_DUMP_METHOD void CGRecordLayout::dump() const { 892 print(llvm::errs()); 893 } 894 895 void CGBitFieldInfo::print(raw_ostream &OS) const { 896 OS << "<CGBitFieldInfo" 897 << " Offset:" << Offset 898 << " Size:" << Size 899 << " IsSigned:" << IsSigned 900 << " StorageSize:" << StorageSize 901 << " StorageOffset:" << StorageOffset.getQuantity() << ">"; 902 } 903 904 LLVM_DUMP_METHOD void CGBitFieldInfo::dump() const { 905 print(llvm::errs()); 906 } 907