xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGRecordLayout.h (revision 152382e6613d7998fe6f5233767df54d3fdec329)
1 //===--- CGRecordLayout.h - LLVM Record Layout Information ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLVM_CLANG_LIB_CODEGEN_CGRECORDLAYOUT_H
10 #define LLVM_CLANG_LIB_CODEGEN_CGRECORDLAYOUT_H
11 
12 #include "clang/AST/CharUnits.h"
13 #include "clang/AST/DeclCXX.h"
14 #include "clang/Basic/LLVM.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/IR/DerivedTypes.h"
17 
18 namespace llvm {
19   class StructType;
20 }
21 
22 namespace clang {
23 namespace CodeGen {
24 
25 /// Structure with information about how a bitfield should be accessed.
26 ///
27 /// Often we layout a sequence of bitfields as a contiguous sequence of bits.
28 /// When the AST record layout does this, we represent it in the LLVM IR's type
29 /// as either a sequence of i8 members or a byte array to reserve the number of
30 /// bytes touched without forcing any particular alignment beyond the basic
31 /// character alignment.
32 ///
33 /// Then accessing a particular bitfield involves converting this byte array
34 /// into a single integer of that size (i24 or i40 -- may not be power-of-two
35 /// size), loading it, and shifting and masking to extract the particular
36 /// subsequence of bits which make up that particular bitfield. This structure
37 /// encodes the information used to construct the extraction code sequences.
38 /// The CGRecordLayout also has a field index which encodes which byte-sequence
39 /// this bitfield falls within. Let's assume the following C struct:
40 ///
41 ///   struct S {
42 ///     char a, b, c;
43 ///     unsigned bits : 3;
44 ///     unsigned more_bits : 4;
45 ///     unsigned still_more_bits : 7;
46 ///   };
47 ///
48 /// This will end up as the following LLVM type. The first array is the
49 /// bitfield, and the second is the padding out to a 4-byte alignment.
50 ///
51 ///   %t = type { i8, i8, i8, i8, i8, [3 x i8] }
52 ///
53 /// When generating code to access more_bits, we'll generate something
54 /// essentially like this:
55 ///
56 ///   define i32 @foo(%t* %base) {
57 ///     %0 = gep %t* %base, i32 0, i32 3
58 ///     %2 = load i8* %1
59 ///     %3 = lshr i8 %2, 3
60 ///     %4 = and i8 %3, 15
61 ///     %5 = zext i8 %4 to i32
62 ///     ret i32 %i
63 ///   }
64 ///
65 struct CGBitFieldInfo {
66   /// The offset within a contiguous run of bitfields that are represented as
67   /// a single "field" within the LLVM struct type. This offset is in bits.
68   unsigned Offset : 16;
69 
70   /// The total size of the bit-field, in bits.
71   unsigned Size : 15;
72 
73   /// Whether the bit-field is signed.
74   LLVM_PREFERRED_TYPE(bool)
75   unsigned IsSigned : 1;
76 
77   /// The storage size in bits which should be used when accessing this
78   /// bitfield.
79   unsigned StorageSize;
80 
81   /// The offset of the bitfield storage from the start of the struct.
82   CharUnits StorageOffset;
83 
84   /// The offset within a contiguous run of bitfields that are represented as a
85   /// single "field" within the LLVM struct type, taking into account the AAPCS
86   /// rules for volatile bitfields. This offset is in bits.
87   unsigned VolatileOffset : 16;
88 
89   /// The storage size in bits which should be used when accessing this
90   /// bitfield.
91   unsigned VolatileStorageSize;
92 
93   /// The offset of the bitfield storage from the start of the struct.
94   CharUnits VolatileStorageOffset;
95 
96   CGBitFieldInfo()
97       : Offset(), Size(), IsSigned(), StorageSize(), VolatileOffset(),
98         VolatileStorageSize() {}
99 
100   CGBitFieldInfo(unsigned Offset, unsigned Size, bool IsSigned,
101                  unsigned StorageSize, CharUnits StorageOffset)
102       : Offset(Offset), Size(Size), IsSigned(IsSigned),
103         StorageSize(StorageSize), StorageOffset(StorageOffset) {}
104 
105   void print(raw_ostream &OS) const;
106   void dump() const;
107 
108   /// Given a bit-field decl, build an appropriate helper object for
109   /// accessing that field (which is expected to have the given offset and
110   /// size).
111   static CGBitFieldInfo MakeInfo(class CodeGenTypes &Types,
112                                  const FieldDecl *FD,
113                                  uint64_t Offset, uint64_t Size,
114                                  uint64_t StorageSize,
115                                  CharUnits StorageOffset);
116 };
117 
118 /// CGRecordLayout - This class handles struct and union layout info while
119 /// lowering AST types to LLVM types.
120 ///
121 /// These layout objects are only created on demand as IR generation requires.
122 class CGRecordLayout {
123   friend class CodeGenTypes;
124 
125   CGRecordLayout(const CGRecordLayout &) = delete;
126   void operator=(const CGRecordLayout &) = delete;
127 
128 private:
129   /// The LLVM type corresponding to this record layout; used when
130   /// laying it out as a complete object.
131   llvm::StructType *CompleteObjectType;
132 
133   /// The LLVM type for the non-virtual part of this record layout;
134   /// used when laying it out as a base subobject.
135   llvm::StructType *BaseSubobjectType;
136 
137   /// Map from (non-bit-field) struct field to the corresponding llvm struct
138   /// type field no. This info is populated by record builder.
139   llvm::DenseMap<const FieldDecl *, unsigned> FieldInfo;
140 
141   /// Map from (bit-field) struct field to the corresponding llvm struct type
142   /// field no. This info is populated by record builder.
143   llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields;
144 
145   // FIXME: Maybe we could use a CXXBaseSpecifier as the key and use a single
146   // map for both virtual and non-virtual bases.
147   llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases;
148 
149   /// Map from virtual bases to their field index in the complete object.
150   llvm::DenseMap<const CXXRecordDecl *, unsigned> CompleteObjectVirtualBases;
151 
152   /// False if any direct or indirect subobject of this class, when
153   /// considered as a complete object, requires a non-zero bitpattern
154   /// when zero-initialized.
155   bool IsZeroInitializable : 1;
156 
157   /// False if any direct or indirect subobject of this class, when
158   /// considered as a base subobject, requires a non-zero bitpattern
159   /// when zero-initialized.
160   bool IsZeroInitializableAsBase : 1;
161 
162 public:
163   CGRecordLayout(llvm::StructType *CompleteObjectType,
164                  llvm::StructType *BaseSubobjectType,
165                  bool IsZeroInitializable,
166                  bool IsZeroInitializableAsBase)
167     : CompleteObjectType(CompleteObjectType),
168       BaseSubobjectType(BaseSubobjectType),
169       IsZeroInitializable(IsZeroInitializable),
170       IsZeroInitializableAsBase(IsZeroInitializableAsBase) {}
171 
172   /// Return the "complete object" LLVM type associated with
173   /// this record.
174   llvm::StructType *getLLVMType() const {
175     return CompleteObjectType;
176   }
177 
178   /// Return the "base subobject" LLVM type associated with
179   /// this record.
180   llvm::StructType *getBaseSubobjectLLVMType() const {
181     return BaseSubobjectType;
182   }
183 
184   /// Check whether this struct can be C++ zero-initialized
185   /// with a zeroinitializer.
186   bool isZeroInitializable() const {
187     return IsZeroInitializable;
188   }
189 
190   /// Check whether this struct can be C++ zero-initialized
191   /// with a zeroinitializer when considered as a base subobject.
192   bool isZeroInitializableAsBase() const {
193     return IsZeroInitializableAsBase;
194   }
195 
196   bool containsFieldDecl(const FieldDecl *FD) const {
197     return FieldInfo.count(FD) != 0;
198   }
199 
200   /// Return llvm::StructType element number that corresponds to the
201   /// field FD.
202   unsigned getLLVMFieldNo(const FieldDecl *FD) const {
203     FD = FD->getCanonicalDecl();
204     assert(FieldInfo.count(FD) && "Invalid field for record!");
205     return FieldInfo.lookup(FD);
206   }
207 
208   // Return whether the following non virtual base has a corresponding
209   // entry in the LLVM struct.
210   bool hasNonVirtualBaseLLVMField(const CXXRecordDecl *RD) const {
211     return NonVirtualBases.count(RD);
212   }
213 
214   unsigned getNonVirtualBaseLLVMFieldNo(const CXXRecordDecl *RD) const {
215     assert(NonVirtualBases.count(RD) && "Invalid non-virtual base!");
216     return NonVirtualBases.lookup(RD);
217   }
218 
219   /// Return the LLVM field index corresponding to the given
220   /// virtual base.  Only valid when operating on the complete object.
221   unsigned getVirtualBaseIndex(const CXXRecordDecl *base) const {
222     assert(CompleteObjectVirtualBases.count(base) && "Invalid virtual base!");
223     return CompleteObjectVirtualBases.lookup(base);
224   }
225 
226   /// Return the BitFieldInfo that corresponds to the field FD.
227   const CGBitFieldInfo &getBitFieldInfo(const FieldDecl *FD) const {
228     FD = FD->getCanonicalDecl();
229     assert(FD->isBitField() && "Invalid call for non-bit-field decl!");
230     llvm::DenseMap<const FieldDecl *, CGBitFieldInfo>::const_iterator
231       it = BitFields.find(FD);
232     assert(it != BitFields.end() && "Unable to find bitfield info");
233     return it->second;
234   }
235 
236   void print(raw_ostream &OS) const;
237   void dump() const;
238 };
239 
240 }  // end namespace CodeGen
241 }  // end namespace clang
242 
243 #endif
244