1 //===--- CGRecordLayout.h - LLVM Record Layout Information ------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #ifndef LLVM_CLANG_LIB_CODEGEN_CGRECORDLAYOUT_H 10 #define LLVM_CLANG_LIB_CODEGEN_CGRECORDLAYOUT_H 11 12 #include "clang/AST/CharUnits.h" 13 #include "clang/AST/DeclCXX.h" 14 #include "clang/Basic/LLVM.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/IR/DerivedTypes.h" 17 18 namespace llvm { 19 class StructType; 20 } 21 22 namespace clang { 23 namespace CodeGen { 24 25 /// Structure with information about how a bitfield should be accessed. 26 /// 27 /// Often we layout a sequence of bitfields as a contiguous sequence of bits. 28 /// When the AST record layout does this, we represent it in the LLVM IR's type 29 /// as either a sequence of i8 members or a byte array to reserve the number of 30 /// bytes touched without forcing any particular alignment beyond the basic 31 /// character alignment. 32 /// 33 /// Then accessing a particular bitfield involves converting this byte array 34 /// into a single integer of that size (i24 or i40 -- may not be power-of-two 35 /// size), loading it, and shifting and masking to extract the particular 36 /// subsequence of bits which make up that particular bitfield. This structure 37 /// encodes the information used to construct the extraction code sequences. 38 /// The CGRecordLayout also has a field index which encodes which byte-sequence 39 /// this bitfield falls within. Let's assume the following C struct: 40 /// 41 /// struct S { 42 /// char a, b, c; 43 /// unsigned bits : 3; 44 /// unsigned more_bits : 4; 45 /// unsigned still_more_bits : 7; 46 /// }; 47 /// 48 /// This will end up as the following LLVM type. The first array is the 49 /// bitfield, and the second is the padding out to a 4-byte alignment. 50 /// 51 /// %t = type { i8, i8, i8, i8, i8, [3 x i8] } 52 /// 53 /// When generating code to access more_bits, we'll generate something 54 /// essentially like this: 55 /// 56 /// define i32 @foo(%t* %base) { 57 /// %0 = gep %t* %base, i32 0, i32 3 58 /// %2 = load i8* %1 59 /// %3 = lshr i8 %2, 3 60 /// %4 = and i8 %3, 15 61 /// %5 = zext i8 %4 to i32 62 /// ret i32 %i 63 /// } 64 /// 65 struct CGBitFieldInfo { 66 /// The offset within a contiguous run of bitfields that are represented as 67 /// a single "field" within the LLVM struct type. This offset is in bits. 68 unsigned Offset : 16; 69 70 /// The total size of the bit-field, in bits. 71 unsigned Size : 15; 72 73 /// Whether the bit-field is signed. 74 LLVM_PREFERRED_TYPE(bool) 75 unsigned IsSigned : 1; 76 77 /// The storage size in bits which should be used when accessing this 78 /// bitfield. 79 unsigned StorageSize; 80 81 /// The offset of the bitfield storage from the start of the struct. 82 CharUnits StorageOffset; 83 84 /// The offset within a contiguous run of bitfields that are represented as a 85 /// single "field" within the LLVM struct type, taking into account the AAPCS 86 /// rules for volatile bitfields. This offset is in bits. 87 unsigned VolatileOffset : 16; 88 89 /// The storage size in bits which should be used when accessing this 90 /// bitfield. 91 unsigned VolatileStorageSize; 92 93 /// The offset of the bitfield storage from the start of the struct. 94 CharUnits VolatileStorageOffset; 95 96 CGBitFieldInfo() 97 : Offset(), Size(), IsSigned(), StorageSize(), VolatileOffset(), 98 VolatileStorageSize() {} 99 100 CGBitFieldInfo(unsigned Offset, unsigned Size, bool IsSigned, 101 unsigned StorageSize, CharUnits StorageOffset) 102 : Offset(Offset), Size(Size), IsSigned(IsSigned), 103 StorageSize(StorageSize), StorageOffset(StorageOffset) {} 104 105 void print(raw_ostream &OS) const; 106 void dump() const; 107 108 /// Given a bit-field decl, build an appropriate helper object for 109 /// accessing that field (which is expected to have the given offset and 110 /// size). 111 static CGBitFieldInfo MakeInfo(class CodeGenTypes &Types, 112 const FieldDecl *FD, 113 uint64_t Offset, uint64_t Size, 114 uint64_t StorageSize, 115 CharUnits StorageOffset); 116 }; 117 118 /// CGRecordLayout - This class handles struct and union layout info while 119 /// lowering AST types to LLVM types. 120 /// 121 /// These layout objects are only created on demand as IR generation requires. 122 class CGRecordLayout { 123 friend class CodeGenTypes; 124 125 CGRecordLayout(const CGRecordLayout &) = delete; 126 void operator=(const CGRecordLayout &) = delete; 127 128 private: 129 /// The LLVM type corresponding to this record layout; used when 130 /// laying it out as a complete object. 131 llvm::StructType *CompleteObjectType; 132 133 /// The LLVM type for the non-virtual part of this record layout; 134 /// used when laying it out as a base subobject. 135 llvm::StructType *BaseSubobjectType; 136 137 /// Map from (non-bit-field) struct field to the corresponding llvm struct 138 /// type field no. This info is populated by record builder. 139 llvm::DenseMap<const FieldDecl *, unsigned> FieldInfo; 140 141 /// Map from (bit-field) struct field to the corresponding llvm struct type 142 /// field no. This info is populated by record builder. 143 llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields; 144 145 // FIXME: Maybe we could use a CXXBaseSpecifier as the key and use a single 146 // map for both virtual and non-virtual bases. 147 llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases; 148 149 /// Map from virtual bases to their field index in the complete object. 150 llvm::DenseMap<const CXXRecordDecl *, unsigned> CompleteObjectVirtualBases; 151 152 /// False if any direct or indirect subobject of this class, when 153 /// considered as a complete object, requires a non-zero bitpattern 154 /// when zero-initialized. 155 bool IsZeroInitializable : 1; 156 157 /// False if any direct or indirect subobject of this class, when 158 /// considered as a base subobject, requires a non-zero bitpattern 159 /// when zero-initialized. 160 bool IsZeroInitializableAsBase : 1; 161 162 public: 163 CGRecordLayout(llvm::StructType *CompleteObjectType, 164 llvm::StructType *BaseSubobjectType, 165 bool IsZeroInitializable, 166 bool IsZeroInitializableAsBase) 167 : CompleteObjectType(CompleteObjectType), 168 BaseSubobjectType(BaseSubobjectType), 169 IsZeroInitializable(IsZeroInitializable), 170 IsZeroInitializableAsBase(IsZeroInitializableAsBase) {} 171 172 /// Return the "complete object" LLVM type associated with 173 /// this record. 174 llvm::StructType *getLLVMType() const { 175 return CompleteObjectType; 176 } 177 178 /// Return the "base subobject" LLVM type associated with 179 /// this record. 180 llvm::StructType *getBaseSubobjectLLVMType() const { 181 return BaseSubobjectType; 182 } 183 184 /// Check whether this struct can be C++ zero-initialized 185 /// with a zeroinitializer. 186 bool isZeroInitializable() const { 187 return IsZeroInitializable; 188 } 189 190 /// Check whether this struct can be C++ zero-initialized 191 /// with a zeroinitializer when considered as a base subobject. 192 bool isZeroInitializableAsBase() const { 193 return IsZeroInitializableAsBase; 194 } 195 196 bool containsFieldDecl(const FieldDecl *FD) const { 197 return FieldInfo.count(FD) != 0; 198 } 199 200 /// Return llvm::StructType element number that corresponds to the 201 /// field FD. 202 unsigned getLLVMFieldNo(const FieldDecl *FD) const { 203 FD = FD->getCanonicalDecl(); 204 assert(FieldInfo.count(FD) && "Invalid field for record!"); 205 return FieldInfo.lookup(FD); 206 } 207 208 // Return whether the following non virtual base has a corresponding 209 // entry in the LLVM struct. 210 bool hasNonVirtualBaseLLVMField(const CXXRecordDecl *RD) const { 211 return NonVirtualBases.count(RD); 212 } 213 214 unsigned getNonVirtualBaseLLVMFieldNo(const CXXRecordDecl *RD) const { 215 assert(NonVirtualBases.count(RD) && "Invalid non-virtual base!"); 216 return NonVirtualBases.lookup(RD); 217 } 218 219 /// Return the LLVM field index corresponding to the given 220 /// virtual base. Only valid when operating on the complete object. 221 unsigned getVirtualBaseIndex(const CXXRecordDecl *base) const { 222 assert(CompleteObjectVirtualBases.count(base) && "Invalid virtual base!"); 223 return CompleteObjectVirtualBases.lookup(base); 224 } 225 226 /// Return the BitFieldInfo that corresponds to the field FD. 227 const CGBitFieldInfo &getBitFieldInfo(const FieldDecl *FD) const { 228 FD = FD->getCanonicalDecl(); 229 assert(FD->isBitField() && "Invalid call for non-bit-field decl!"); 230 llvm::DenseMap<const FieldDecl *, CGBitFieldInfo>::const_iterator 231 it = BitFields.find(FD); 232 assert(it != BitFields.end() && "Unable to find bitfield info"); 233 return it->second; 234 } 235 236 void print(raw_ostream &OS) const; 237 void dump() const; 238 }; 239 240 } // end namespace CodeGen 241 } // end namespace clang 242 243 #endif 244