1 //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides a generalized class for OpenMP runtime code generation 10 // specialized by GPU targets NVPTX and AMDGCN. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGOpenMPRuntimeGPU.h" 15 #include "CGOpenMPRuntimeNVPTX.h" 16 #include "CodeGenFunction.h" 17 #include "clang/AST/Attr.h" 18 #include "clang/AST/DeclOpenMP.h" 19 #include "clang/AST/StmtOpenMP.h" 20 #include "clang/AST/StmtVisitor.h" 21 #include "clang/Basic/Cuda.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 24 #include "llvm/IR/IntrinsicsNVPTX.h" 25 26 using namespace clang; 27 using namespace CodeGen; 28 using namespace llvm::omp; 29 30 namespace { 31 /// Pre(post)-action for different OpenMP constructs specialized for NVPTX. 32 class NVPTXActionTy final : public PrePostActionTy { 33 llvm::FunctionCallee EnterCallee = nullptr; 34 ArrayRef<llvm::Value *> EnterArgs; 35 llvm::FunctionCallee ExitCallee = nullptr; 36 ArrayRef<llvm::Value *> ExitArgs; 37 bool Conditional = false; 38 llvm::BasicBlock *ContBlock = nullptr; 39 40 public: 41 NVPTXActionTy(llvm::FunctionCallee EnterCallee, 42 ArrayRef<llvm::Value *> EnterArgs, 43 llvm::FunctionCallee ExitCallee, 44 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false) 45 : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee), 46 ExitArgs(ExitArgs), Conditional(Conditional) {} 47 void Enter(CodeGenFunction &CGF) override { 48 llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs); 49 if (Conditional) { 50 llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes); 51 auto *ThenBlock = CGF.createBasicBlock("omp_if.then"); 52 ContBlock = CGF.createBasicBlock("omp_if.end"); 53 // Generate the branch (If-stmt) 54 CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock); 55 CGF.EmitBlock(ThenBlock); 56 } 57 } 58 void Done(CodeGenFunction &CGF) { 59 // Emit the rest of blocks/branches 60 CGF.EmitBranch(ContBlock); 61 CGF.EmitBlock(ContBlock, true); 62 } 63 void Exit(CodeGenFunction &CGF) override { 64 CGF.EmitRuntimeCall(ExitCallee, ExitArgs); 65 } 66 }; 67 68 /// A class to track the execution mode when codegening directives within 69 /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry 70 /// to the target region and used by containing directives such as 'parallel' 71 /// to emit optimized code. 72 class ExecutionRuntimeModesRAII { 73 private: 74 CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode = 75 CGOpenMPRuntimeGPU::EM_Unknown; 76 CGOpenMPRuntimeGPU::ExecutionMode &ExecMode; 77 bool SavedRuntimeMode = false; 78 bool *RuntimeMode = nullptr; 79 80 public: 81 /// Constructor for Non-SPMD mode. 82 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode) 83 : ExecMode(ExecMode) { 84 SavedExecMode = ExecMode; 85 ExecMode = CGOpenMPRuntimeGPU::EM_NonSPMD; 86 } 87 /// Constructor for SPMD mode. 88 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode, 89 bool &RuntimeMode, bool FullRuntimeMode) 90 : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) { 91 SavedExecMode = ExecMode; 92 SavedRuntimeMode = RuntimeMode; 93 ExecMode = CGOpenMPRuntimeGPU::EM_SPMD; 94 RuntimeMode = FullRuntimeMode; 95 } 96 ~ExecutionRuntimeModesRAII() { 97 ExecMode = SavedExecMode; 98 if (RuntimeMode) 99 *RuntimeMode = SavedRuntimeMode; 100 } 101 }; 102 103 /// GPU Configuration: This information can be derived from cuda registers, 104 /// however, providing compile time constants helps generate more efficient 105 /// code. For all practical purposes this is fine because the configuration 106 /// is the same for all known NVPTX architectures. 107 enum MachineConfiguration : unsigned { 108 /// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target 109 /// specific Grid Values like GV_Warp_Size, GV_Warp_Size_Log2, 110 /// and GV_Warp_Size_Log2_Mask. 111 112 /// Global memory alignment for performance. 113 GlobalMemoryAlignment = 128, 114 115 /// Maximal size of the shared memory buffer. 116 SharedMemorySize = 128, 117 }; 118 119 static const ValueDecl *getPrivateItem(const Expr *RefExpr) { 120 RefExpr = RefExpr->IgnoreParens(); 121 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) { 122 const Expr *Base = ASE->getBase()->IgnoreParenImpCasts(); 123 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 124 Base = TempASE->getBase()->IgnoreParenImpCasts(); 125 RefExpr = Base; 126 } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) { 127 const Expr *Base = OASE->getBase()->IgnoreParenImpCasts(); 128 while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base)) 129 Base = TempOASE->getBase()->IgnoreParenImpCasts(); 130 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 131 Base = TempASE->getBase()->IgnoreParenImpCasts(); 132 RefExpr = Base; 133 } 134 RefExpr = RefExpr->IgnoreParenImpCasts(); 135 if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr)) 136 return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl()); 137 const auto *ME = cast<MemberExpr>(RefExpr); 138 return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl()); 139 } 140 141 142 static RecordDecl *buildRecordForGlobalizedVars( 143 ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls, 144 ArrayRef<const ValueDecl *> EscapedDeclsForTeams, 145 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 146 &MappedDeclsFields, int BufSize) { 147 using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>; 148 if (EscapedDecls.empty() && EscapedDeclsForTeams.empty()) 149 return nullptr; 150 SmallVector<VarsDataTy, 4> GlobalizedVars; 151 for (const ValueDecl *D : EscapedDecls) 152 GlobalizedVars.emplace_back( 153 CharUnits::fromQuantity(std::max( 154 C.getDeclAlign(D).getQuantity(), 155 static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))), 156 D); 157 for (const ValueDecl *D : EscapedDeclsForTeams) 158 GlobalizedVars.emplace_back(C.getDeclAlign(D), D); 159 llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) { 160 return L.first > R.first; 161 }); 162 163 // Build struct _globalized_locals_ty { 164 // /* globalized vars */[WarSize] align (max(decl_align, 165 // GlobalMemoryAlignment)) 166 // /* globalized vars */ for EscapedDeclsForTeams 167 // }; 168 RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty"); 169 GlobalizedRD->startDefinition(); 170 llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped( 171 EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end()); 172 for (const auto &Pair : GlobalizedVars) { 173 const ValueDecl *VD = Pair.second; 174 QualType Type = VD->getType(); 175 if (Type->isLValueReferenceType()) 176 Type = C.getPointerType(Type.getNonReferenceType()); 177 else 178 Type = Type.getNonReferenceType(); 179 SourceLocation Loc = VD->getLocation(); 180 FieldDecl *Field; 181 if (SingleEscaped.count(VD)) { 182 Field = FieldDecl::Create( 183 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, 184 C.getTrivialTypeSourceInfo(Type, SourceLocation()), 185 /*BW=*/nullptr, /*Mutable=*/false, 186 /*InitStyle=*/ICIS_NoInit); 187 Field->setAccess(AS_public); 188 if (VD->hasAttrs()) { 189 for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()), 190 E(VD->getAttrs().end()); 191 I != E; ++I) 192 Field->addAttr(*I); 193 } 194 } else { 195 llvm::APInt ArraySize(32, BufSize); 196 Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal, 197 0); 198 Field = FieldDecl::Create( 199 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, 200 C.getTrivialTypeSourceInfo(Type, SourceLocation()), 201 /*BW=*/nullptr, /*Mutable=*/false, 202 /*InitStyle=*/ICIS_NoInit); 203 Field->setAccess(AS_public); 204 llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(), 205 static_cast<CharUnits::QuantityType>( 206 GlobalMemoryAlignment))); 207 Field->addAttr(AlignedAttr::CreateImplicit( 208 C, /*IsAlignmentExpr=*/true, 209 IntegerLiteral::Create(C, Align, 210 C.getIntTypeForBitwidth(32, /*Signed=*/0), 211 SourceLocation()), 212 {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned)); 213 } 214 GlobalizedRD->addDecl(Field); 215 MappedDeclsFields.try_emplace(VD, Field); 216 } 217 GlobalizedRD->completeDefinition(); 218 return GlobalizedRD; 219 } 220 221 /// Get the list of variables that can escape their declaration context. 222 class CheckVarsEscapingDeclContext final 223 : public ConstStmtVisitor<CheckVarsEscapingDeclContext> { 224 CodeGenFunction &CGF; 225 llvm::SetVector<const ValueDecl *> EscapedDecls; 226 llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls; 227 llvm::SmallPtrSet<const Decl *, 4> EscapedParameters; 228 RecordDecl *GlobalizedRD = nullptr; 229 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; 230 bool AllEscaped = false; 231 bool IsForCombinedParallelRegion = false; 232 233 void markAsEscaped(const ValueDecl *VD) { 234 // Do not globalize declare target variables. 235 if (!isa<VarDecl>(VD) || 236 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) 237 return; 238 VD = cast<ValueDecl>(VD->getCanonicalDecl()); 239 // Use user-specified allocation. 240 if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>()) 241 return; 242 // Variables captured by value must be globalized. 243 if (auto *CSI = CGF.CapturedStmtInfo) { 244 if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) { 245 // Check if need to capture the variable that was already captured by 246 // value in the outer region. 247 if (!IsForCombinedParallelRegion) { 248 if (!FD->hasAttrs()) 249 return; 250 const auto *Attr = FD->getAttr<OMPCaptureKindAttr>(); 251 if (!Attr) 252 return; 253 if (((Attr->getCaptureKind() != OMPC_map) && 254 !isOpenMPPrivate(Attr->getCaptureKind())) || 255 ((Attr->getCaptureKind() == OMPC_map) && 256 !FD->getType()->isAnyPointerType())) 257 return; 258 } 259 if (!FD->getType()->isReferenceType()) { 260 assert(!VD->getType()->isVariablyModifiedType() && 261 "Parameter captured by value with variably modified type"); 262 EscapedParameters.insert(VD); 263 } else if (!IsForCombinedParallelRegion) { 264 return; 265 } 266 } 267 } 268 if ((!CGF.CapturedStmtInfo || 269 (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) && 270 VD->getType()->isReferenceType()) 271 // Do not globalize variables with reference type. 272 return; 273 if (VD->getType()->isVariablyModifiedType()) 274 EscapedVariableLengthDecls.insert(VD); 275 else 276 EscapedDecls.insert(VD); 277 } 278 279 void VisitValueDecl(const ValueDecl *VD) { 280 if (VD->getType()->isLValueReferenceType()) 281 markAsEscaped(VD); 282 if (const auto *VarD = dyn_cast<VarDecl>(VD)) { 283 if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) { 284 const bool SavedAllEscaped = AllEscaped; 285 AllEscaped = VD->getType()->isLValueReferenceType(); 286 Visit(VarD->getInit()); 287 AllEscaped = SavedAllEscaped; 288 } 289 } 290 } 291 void VisitOpenMPCapturedStmt(const CapturedStmt *S, 292 ArrayRef<OMPClause *> Clauses, 293 bool IsCombinedParallelRegion) { 294 if (!S) 295 return; 296 for (const CapturedStmt::Capture &C : S->captures()) { 297 if (C.capturesVariable() && !C.capturesVariableByCopy()) { 298 const ValueDecl *VD = C.getCapturedVar(); 299 bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion; 300 if (IsCombinedParallelRegion) { 301 // Check if the variable is privatized in the combined construct and 302 // those private copies must be shared in the inner parallel 303 // directive. 304 IsForCombinedParallelRegion = false; 305 for (const OMPClause *C : Clauses) { 306 if (!isOpenMPPrivate(C->getClauseKind()) || 307 C->getClauseKind() == OMPC_reduction || 308 C->getClauseKind() == OMPC_linear || 309 C->getClauseKind() == OMPC_private) 310 continue; 311 ArrayRef<const Expr *> Vars; 312 if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C)) 313 Vars = PC->getVarRefs(); 314 else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C)) 315 Vars = PC->getVarRefs(); 316 else 317 llvm_unreachable("Unexpected clause."); 318 for (const auto *E : Vars) { 319 const Decl *D = 320 cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl(); 321 if (D == VD->getCanonicalDecl()) { 322 IsForCombinedParallelRegion = true; 323 break; 324 } 325 } 326 if (IsForCombinedParallelRegion) 327 break; 328 } 329 } 330 markAsEscaped(VD); 331 if (isa<OMPCapturedExprDecl>(VD)) 332 VisitValueDecl(VD); 333 IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion; 334 } 335 } 336 } 337 338 void buildRecordForGlobalizedVars(bool IsInTTDRegion) { 339 assert(!GlobalizedRD && 340 "Record for globalized variables is built already."); 341 ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams; 342 unsigned WarpSize = CGF.getTarget().getGridValue(llvm::omp::GV_Warp_Size); 343 if (IsInTTDRegion) 344 EscapedDeclsForTeams = EscapedDecls.getArrayRef(); 345 else 346 EscapedDeclsForParallel = EscapedDecls.getArrayRef(); 347 GlobalizedRD = ::buildRecordForGlobalizedVars( 348 CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams, 349 MappedDeclsFields, WarpSize); 350 } 351 352 public: 353 CheckVarsEscapingDeclContext(CodeGenFunction &CGF, 354 ArrayRef<const ValueDecl *> TeamsReductions) 355 : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) { 356 } 357 virtual ~CheckVarsEscapingDeclContext() = default; 358 void VisitDeclStmt(const DeclStmt *S) { 359 if (!S) 360 return; 361 for (const Decl *D : S->decls()) 362 if (const auto *VD = dyn_cast_or_null<ValueDecl>(D)) 363 VisitValueDecl(VD); 364 } 365 void VisitOMPExecutableDirective(const OMPExecutableDirective *D) { 366 if (!D) 367 return; 368 if (!D->hasAssociatedStmt()) 369 return; 370 if (const auto *S = 371 dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) { 372 // Do not analyze directives that do not actually require capturing, 373 // like `omp for` or `omp simd` directives. 374 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 375 getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind()); 376 if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) { 377 VisitStmt(S->getCapturedStmt()); 378 return; 379 } 380 VisitOpenMPCapturedStmt( 381 S, D->clauses(), 382 CaptureRegions.back() == OMPD_parallel && 383 isOpenMPDistributeDirective(D->getDirectiveKind())); 384 } 385 } 386 void VisitCapturedStmt(const CapturedStmt *S) { 387 if (!S) 388 return; 389 for (const CapturedStmt::Capture &C : S->captures()) { 390 if (C.capturesVariable() && !C.capturesVariableByCopy()) { 391 const ValueDecl *VD = C.getCapturedVar(); 392 markAsEscaped(VD); 393 if (isa<OMPCapturedExprDecl>(VD)) 394 VisitValueDecl(VD); 395 } 396 } 397 } 398 void VisitLambdaExpr(const LambdaExpr *E) { 399 if (!E) 400 return; 401 for (const LambdaCapture &C : E->captures()) { 402 if (C.capturesVariable()) { 403 if (C.getCaptureKind() == LCK_ByRef) { 404 const ValueDecl *VD = C.getCapturedVar(); 405 markAsEscaped(VD); 406 if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD)) 407 VisitValueDecl(VD); 408 } 409 } 410 } 411 } 412 void VisitBlockExpr(const BlockExpr *E) { 413 if (!E) 414 return; 415 for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) { 416 if (C.isByRef()) { 417 const VarDecl *VD = C.getVariable(); 418 markAsEscaped(VD); 419 if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture()) 420 VisitValueDecl(VD); 421 } 422 } 423 } 424 void VisitCallExpr(const CallExpr *E) { 425 if (!E) 426 return; 427 for (const Expr *Arg : E->arguments()) { 428 if (!Arg) 429 continue; 430 if (Arg->isLValue()) { 431 const bool SavedAllEscaped = AllEscaped; 432 AllEscaped = true; 433 Visit(Arg); 434 AllEscaped = SavedAllEscaped; 435 } else { 436 Visit(Arg); 437 } 438 } 439 Visit(E->getCallee()); 440 } 441 void VisitDeclRefExpr(const DeclRefExpr *E) { 442 if (!E) 443 return; 444 const ValueDecl *VD = E->getDecl(); 445 if (AllEscaped) 446 markAsEscaped(VD); 447 if (isa<OMPCapturedExprDecl>(VD)) 448 VisitValueDecl(VD); 449 else if (const auto *VarD = dyn_cast<VarDecl>(VD)) 450 if (VarD->isInitCapture()) 451 VisitValueDecl(VD); 452 } 453 void VisitUnaryOperator(const UnaryOperator *E) { 454 if (!E) 455 return; 456 if (E->getOpcode() == UO_AddrOf) { 457 const bool SavedAllEscaped = AllEscaped; 458 AllEscaped = true; 459 Visit(E->getSubExpr()); 460 AllEscaped = SavedAllEscaped; 461 } else { 462 Visit(E->getSubExpr()); 463 } 464 } 465 void VisitImplicitCastExpr(const ImplicitCastExpr *E) { 466 if (!E) 467 return; 468 if (E->getCastKind() == CK_ArrayToPointerDecay) { 469 const bool SavedAllEscaped = AllEscaped; 470 AllEscaped = true; 471 Visit(E->getSubExpr()); 472 AllEscaped = SavedAllEscaped; 473 } else { 474 Visit(E->getSubExpr()); 475 } 476 } 477 void VisitExpr(const Expr *E) { 478 if (!E) 479 return; 480 bool SavedAllEscaped = AllEscaped; 481 if (!E->isLValue()) 482 AllEscaped = false; 483 for (const Stmt *Child : E->children()) 484 if (Child) 485 Visit(Child); 486 AllEscaped = SavedAllEscaped; 487 } 488 void VisitStmt(const Stmt *S) { 489 if (!S) 490 return; 491 for (const Stmt *Child : S->children()) 492 if (Child) 493 Visit(Child); 494 } 495 496 /// Returns the record that handles all the escaped local variables and used 497 /// instead of their original storage. 498 const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) { 499 if (!GlobalizedRD) 500 buildRecordForGlobalizedVars(IsInTTDRegion); 501 return GlobalizedRD; 502 } 503 504 /// Returns the field in the globalized record for the escaped variable. 505 const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const { 506 assert(GlobalizedRD && 507 "Record for globalized variables must be generated already."); 508 auto I = MappedDeclsFields.find(VD); 509 if (I == MappedDeclsFields.end()) 510 return nullptr; 511 return I->getSecond(); 512 } 513 514 /// Returns the list of the escaped local variables/parameters. 515 ArrayRef<const ValueDecl *> getEscapedDecls() const { 516 return EscapedDecls.getArrayRef(); 517 } 518 519 /// Checks if the escaped local variable is actually a parameter passed by 520 /// value. 521 const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const { 522 return EscapedParameters; 523 } 524 525 /// Returns the list of the escaped variables with the variably modified 526 /// types. 527 ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const { 528 return EscapedVariableLengthDecls.getArrayRef(); 529 } 530 }; 531 } // anonymous namespace 532 533 /// Get the id of the warp in the block. 534 /// We assume that the warp size is 32, which is always the case 535 /// on the NVPTX device, to generate more efficient code. 536 static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) { 537 CGBuilderTy &Bld = CGF.Builder; 538 unsigned LaneIDBits = 539 CGF.getTarget().getGridValue(llvm::omp::GV_Warp_Size_Log2); 540 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 541 return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id"); 542 } 543 544 /// Get the id of the current lane in the Warp. 545 /// We assume that the warp size is 32, which is always the case 546 /// on the NVPTX device, to generate more efficient code. 547 static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) { 548 CGBuilderTy &Bld = CGF.Builder; 549 unsigned LaneIDMask = CGF.getContext().getTargetInfo().getGridValue( 550 llvm::omp::GV_Warp_Size_Log2_Mask); 551 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 552 return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask), 553 "nvptx_lane_id"); 554 } 555 556 CGOpenMPRuntimeGPU::ExecutionMode 557 CGOpenMPRuntimeGPU::getExecutionMode() const { 558 return CurrentExecutionMode; 559 } 560 561 static CGOpenMPRuntimeGPU::DataSharingMode 562 getDataSharingMode(CodeGenModule &CGM) { 563 return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA 564 : CGOpenMPRuntimeGPU::Generic; 565 } 566 567 /// Check for inner (nested) SPMD construct, if any 568 static bool hasNestedSPMDDirective(ASTContext &Ctx, 569 const OMPExecutableDirective &D) { 570 const auto *CS = D.getInnermostCapturedStmt(); 571 const auto *Body = 572 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 573 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 574 575 if (const auto *NestedDir = 576 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 577 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); 578 switch (D.getDirectiveKind()) { 579 case OMPD_target: 580 if (isOpenMPParallelDirective(DKind)) 581 return true; 582 if (DKind == OMPD_teams) { 583 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 584 /*IgnoreCaptured=*/true); 585 if (!Body) 586 return false; 587 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 588 if (const auto *NND = 589 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 590 DKind = NND->getDirectiveKind(); 591 if (isOpenMPParallelDirective(DKind)) 592 return true; 593 } 594 } 595 return false; 596 case OMPD_target_teams: 597 return isOpenMPParallelDirective(DKind); 598 case OMPD_target_simd: 599 case OMPD_target_parallel: 600 case OMPD_target_parallel_for: 601 case OMPD_target_parallel_for_simd: 602 case OMPD_target_teams_distribute: 603 case OMPD_target_teams_distribute_simd: 604 case OMPD_target_teams_distribute_parallel_for: 605 case OMPD_target_teams_distribute_parallel_for_simd: 606 case OMPD_parallel: 607 case OMPD_for: 608 case OMPD_parallel_for: 609 case OMPD_parallel_master: 610 case OMPD_parallel_sections: 611 case OMPD_for_simd: 612 case OMPD_parallel_for_simd: 613 case OMPD_cancel: 614 case OMPD_cancellation_point: 615 case OMPD_ordered: 616 case OMPD_threadprivate: 617 case OMPD_allocate: 618 case OMPD_task: 619 case OMPD_simd: 620 case OMPD_sections: 621 case OMPD_section: 622 case OMPD_single: 623 case OMPD_master: 624 case OMPD_critical: 625 case OMPD_taskyield: 626 case OMPD_barrier: 627 case OMPD_taskwait: 628 case OMPD_taskgroup: 629 case OMPD_atomic: 630 case OMPD_flush: 631 case OMPD_depobj: 632 case OMPD_scan: 633 case OMPD_teams: 634 case OMPD_target_data: 635 case OMPD_target_exit_data: 636 case OMPD_target_enter_data: 637 case OMPD_distribute: 638 case OMPD_distribute_simd: 639 case OMPD_distribute_parallel_for: 640 case OMPD_distribute_parallel_for_simd: 641 case OMPD_teams_distribute: 642 case OMPD_teams_distribute_simd: 643 case OMPD_teams_distribute_parallel_for: 644 case OMPD_teams_distribute_parallel_for_simd: 645 case OMPD_target_update: 646 case OMPD_declare_simd: 647 case OMPD_declare_variant: 648 case OMPD_begin_declare_variant: 649 case OMPD_end_declare_variant: 650 case OMPD_declare_target: 651 case OMPD_end_declare_target: 652 case OMPD_declare_reduction: 653 case OMPD_declare_mapper: 654 case OMPD_taskloop: 655 case OMPD_taskloop_simd: 656 case OMPD_master_taskloop: 657 case OMPD_master_taskloop_simd: 658 case OMPD_parallel_master_taskloop: 659 case OMPD_parallel_master_taskloop_simd: 660 case OMPD_requires: 661 case OMPD_unknown: 662 default: 663 llvm_unreachable("Unexpected directive."); 664 } 665 } 666 667 return false; 668 } 669 670 static bool supportsSPMDExecutionMode(ASTContext &Ctx, 671 const OMPExecutableDirective &D) { 672 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); 673 switch (DirectiveKind) { 674 case OMPD_target: 675 case OMPD_target_teams: 676 return hasNestedSPMDDirective(Ctx, D); 677 case OMPD_target_parallel: 678 case OMPD_target_parallel_for: 679 case OMPD_target_parallel_for_simd: 680 case OMPD_target_teams_distribute_parallel_for: 681 case OMPD_target_teams_distribute_parallel_for_simd: 682 case OMPD_target_simd: 683 case OMPD_target_teams_distribute_simd: 684 return true; 685 case OMPD_target_teams_distribute: 686 return false; 687 case OMPD_parallel: 688 case OMPD_for: 689 case OMPD_parallel_for: 690 case OMPD_parallel_master: 691 case OMPD_parallel_sections: 692 case OMPD_for_simd: 693 case OMPD_parallel_for_simd: 694 case OMPD_cancel: 695 case OMPD_cancellation_point: 696 case OMPD_ordered: 697 case OMPD_threadprivate: 698 case OMPD_allocate: 699 case OMPD_task: 700 case OMPD_simd: 701 case OMPD_sections: 702 case OMPD_section: 703 case OMPD_single: 704 case OMPD_master: 705 case OMPD_critical: 706 case OMPD_taskyield: 707 case OMPD_barrier: 708 case OMPD_taskwait: 709 case OMPD_taskgroup: 710 case OMPD_atomic: 711 case OMPD_flush: 712 case OMPD_depobj: 713 case OMPD_scan: 714 case OMPD_teams: 715 case OMPD_target_data: 716 case OMPD_target_exit_data: 717 case OMPD_target_enter_data: 718 case OMPD_distribute: 719 case OMPD_distribute_simd: 720 case OMPD_distribute_parallel_for: 721 case OMPD_distribute_parallel_for_simd: 722 case OMPD_teams_distribute: 723 case OMPD_teams_distribute_simd: 724 case OMPD_teams_distribute_parallel_for: 725 case OMPD_teams_distribute_parallel_for_simd: 726 case OMPD_target_update: 727 case OMPD_declare_simd: 728 case OMPD_declare_variant: 729 case OMPD_begin_declare_variant: 730 case OMPD_end_declare_variant: 731 case OMPD_declare_target: 732 case OMPD_end_declare_target: 733 case OMPD_declare_reduction: 734 case OMPD_declare_mapper: 735 case OMPD_taskloop: 736 case OMPD_taskloop_simd: 737 case OMPD_master_taskloop: 738 case OMPD_master_taskloop_simd: 739 case OMPD_parallel_master_taskloop: 740 case OMPD_parallel_master_taskloop_simd: 741 case OMPD_requires: 742 case OMPD_unknown: 743 default: 744 break; 745 } 746 llvm_unreachable( 747 "Unknown programming model for OpenMP directive on NVPTX target."); 748 } 749 750 /// Check if the directive is loops based and has schedule clause at all or has 751 /// static scheduling. 752 static bool hasStaticScheduling(const OMPExecutableDirective &D) { 753 assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) && 754 isOpenMPLoopDirective(D.getDirectiveKind()) && 755 "Expected loop-based directive."); 756 return !D.hasClausesOfKind<OMPOrderedClause>() && 757 (!D.hasClausesOfKind<OMPScheduleClause>() || 758 llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(), 759 [](const OMPScheduleClause *C) { 760 return C->getScheduleKind() == OMPC_SCHEDULE_static; 761 })); 762 } 763 764 /// Check for inner (nested) lightweight runtime construct, if any 765 static bool hasNestedLightweightDirective(ASTContext &Ctx, 766 const OMPExecutableDirective &D) { 767 assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive."); 768 const auto *CS = D.getInnermostCapturedStmt(); 769 const auto *Body = 770 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 771 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 772 773 if (const auto *NestedDir = 774 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 775 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); 776 switch (D.getDirectiveKind()) { 777 case OMPD_target: 778 if (isOpenMPParallelDirective(DKind) && 779 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && 780 hasStaticScheduling(*NestedDir)) 781 return true; 782 if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd) 783 return true; 784 if (DKind == OMPD_parallel) { 785 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 786 /*IgnoreCaptured=*/true); 787 if (!Body) 788 return false; 789 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 790 if (const auto *NND = 791 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 792 DKind = NND->getDirectiveKind(); 793 if (isOpenMPWorksharingDirective(DKind) && 794 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 795 return true; 796 } 797 } else if (DKind == OMPD_teams) { 798 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 799 /*IgnoreCaptured=*/true); 800 if (!Body) 801 return false; 802 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 803 if (const auto *NND = 804 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 805 DKind = NND->getDirectiveKind(); 806 if (isOpenMPParallelDirective(DKind) && 807 isOpenMPWorksharingDirective(DKind) && 808 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 809 return true; 810 if (DKind == OMPD_parallel) { 811 Body = NND->getInnermostCapturedStmt()->IgnoreContainers( 812 /*IgnoreCaptured=*/true); 813 if (!Body) 814 return false; 815 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 816 if (const auto *NND = 817 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 818 DKind = NND->getDirectiveKind(); 819 if (isOpenMPWorksharingDirective(DKind) && 820 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 821 return true; 822 } 823 } 824 } 825 } 826 return false; 827 case OMPD_target_teams: 828 if (isOpenMPParallelDirective(DKind) && 829 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && 830 hasStaticScheduling(*NestedDir)) 831 return true; 832 if (DKind == OMPD_distribute_simd || DKind == OMPD_simd) 833 return true; 834 if (DKind == OMPD_parallel) { 835 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 836 /*IgnoreCaptured=*/true); 837 if (!Body) 838 return false; 839 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 840 if (const auto *NND = 841 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 842 DKind = NND->getDirectiveKind(); 843 if (isOpenMPWorksharingDirective(DKind) && 844 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 845 return true; 846 } 847 } 848 return false; 849 case OMPD_target_parallel: 850 if (DKind == OMPD_simd) 851 return true; 852 return isOpenMPWorksharingDirective(DKind) && 853 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir); 854 case OMPD_target_teams_distribute: 855 case OMPD_target_simd: 856 case OMPD_target_parallel_for: 857 case OMPD_target_parallel_for_simd: 858 case OMPD_target_teams_distribute_simd: 859 case OMPD_target_teams_distribute_parallel_for: 860 case OMPD_target_teams_distribute_parallel_for_simd: 861 case OMPD_parallel: 862 case OMPD_for: 863 case OMPD_parallel_for: 864 case OMPD_parallel_master: 865 case OMPD_parallel_sections: 866 case OMPD_for_simd: 867 case OMPD_parallel_for_simd: 868 case OMPD_cancel: 869 case OMPD_cancellation_point: 870 case OMPD_ordered: 871 case OMPD_threadprivate: 872 case OMPD_allocate: 873 case OMPD_task: 874 case OMPD_simd: 875 case OMPD_sections: 876 case OMPD_section: 877 case OMPD_single: 878 case OMPD_master: 879 case OMPD_critical: 880 case OMPD_taskyield: 881 case OMPD_barrier: 882 case OMPD_taskwait: 883 case OMPD_taskgroup: 884 case OMPD_atomic: 885 case OMPD_flush: 886 case OMPD_depobj: 887 case OMPD_scan: 888 case OMPD_teams: 889 case OMPD_target_data: 890 case OMPD_target_exit_data: 891 case OMPD_target_enter_data: 892 case OMPD_distribute: 893 case OMPD_distribute_simd: 894 case OMPD_distribute_parallel_for: 895 case OMPD_distribute_parallel_for_simd: 896 case OMPD_teams_distribute: 897 case OMPD_teams_distribute_simd: 898 case OMPD_teams_distribute_parallel_for: 899 case OMPD_teams_distribute_parallel_for_simd: 900 case OMPD_target_update: 901 case OMPD_declare_simd: 902 case OMPD_declare_variant: 903 case OMPD_begin_declare_variant: 904 case OMPD_end_declare_variant: 905 case OMPD_declare_target: 906 case OMPD_end_declare_target: 907 case OMPD_declare_reduction: 908 case OMPD_declare_mapper: 909 case OMPD_taskloop: 910 case OMPD_taskloop_simd: 911 case OMPD_master_taskloop: 912 case OMPD_master_taskloop_simd: 913 case OMPD_parallel_master_taskloop: 914 case OMPD_parallel_master_taskloop_simd: 915 case OMPD_requires: 916 case OMPD_unknown: 917 default: 918 llvm_unreachable("Unexpected directive."); 919 } 920 } 921 922 return false; 923 } 924 925 /// Checks if the construct supports lightweight runtime. It must be SPMD 926 /// construct + inner loop-based construct with static scheduling. 927 static bool supportsLightweightRuntime(ASTContext &Ctx, 928 const OMPExecutableDirective &D) { 929 if (!supportsSPMDExecutionMode(Ctx, D)) 930 return false; 931 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); 932 switch (DirectiveKind) { 933 case OMPD_target: 934 case OMPD_target_teams: 935 case OMPD_target_parallel: 936 return hasNestedLightweightDirective(Ctx, D); 937 case OMPD_target_parallel_for: 938 case OMPD_target_parallel_for_simd: 939 case OMPD_target_teams_distribute_parallel_for: 940 case OMPD_target_teams_distribute_parallel_for_simd: 941 // (Last|First)-privates must be shared in parallel region. 942 return hasStaticScheduling(D); 943 case OMPD_target_simd: 944 case OMPD_target_teams_distribute_simd: 945 return true; 946 case OMPD_target_teams_distribute: 947 return false; 948 case OMPD_parallel: 949 case OMPD_for: 950 case OMPD_parallel_for: 951 case OMPD_parallel_master: 952 case OMPD_parallel_sections: 953 case OMPD_for_simd: 954 case OMPD_parallel_for_simd: 955 case OMPD_cancel: 956 case OMPD_cancellation_point: 957 case OMPD_ordered: 958 case OMPD_threadprivate: 959 case OMPD_allocate: 960 case OMPD_task: 961 case OMPD_simd: 962 case OMPD_sections: 963 case OMPD_section: 964 case OMPD_single: 965 case OMPD_master: 966 case OMPD_critical: 967 case OMPD_taskyield: 968 case OMPD_barrier: 969 case OMPD_taskwait: 970 case OMPD_taskgroup: 971 case OMPD_atomic: 972 case OMPD_flush: 973 case OMPD_depobj: 974 case OMPD_scan: 975 case OMPD_teams: 976 case OMPD_target_data: 977 case OMPD_target_exit_data: 978 case OMPD_target_enter_data: 979 case OMPD_distribute: 980 case OMPD_distribute_simd: 981 case OMPD_distribute_parallel_for: 982 case OMPD_distribute_parallel_for_simd: 983 case OMPD_teams_distribute: 984 case OMPD_teams_distribute_simd: 985 case OMPD_teams_distribute_parallel_for: 986 case OMPD_teams_distribute_parallel_for_simd: 987 case OMPD_target_update: 988 case OMPD_declare_simd: 989 case OMPD_declare_variant: 990 case OMPD_begin_declare_variant: 991 case OMPD_end_declare_variant: 992 case OMPD_declare_target: 993 case OMPD_end_declare_target: 994 case OMPD_declare_reduction: 995 case OMPD_declare_mapper: 996 case OMPD_taskloop: 997 case OMPD_taskloop_simd: 998 case OMPD_master_taskloop: 999 case OMPD_master_taskloop_simd: 1000 case OMPD_parallel_master_taskloop: 1001 case OMPD_parallel_master_taskloop_simd: 1002 case OMPD_requires: 1003 case OMPD_unknown: 1004 default: 1005 break; 1006 } 1007 llvm_unreachable( 1008 "Unknown programming model for OpenMP directive on NVPTX target."); 1009 } 1010 1011 void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D, 1012 StringRef ParentName, 1013 llvm::Function *&OutlinedFn, 1014 llvm::Constant *&OutlinedFnID, 1015 bool IsOffloadEntry, 1016 const RegionCodeGenTy &CodeGen) { 1017 ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode); 1018 EntryFunctionState EST; 1019 WrapperFunctionsMap.clear(); 1020 1021 // Emit target region as a standalone region. 1022 class NVPTXPrePostActionTy : public PrePostActionTy { 1023 CGOpenMPRuntimeGPU::EntryFunctionState &EST; 1024 1025 public: 1026 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST) 1027 : EST(EST) {} 1028 void Enter(CodeGenFunction &CGF) override { 1029 auto &RT = 1030 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1031 RT.emitKernelInit(CGF, EST, /* IsSPMD */ false); 1032 // Skip target region initialization. 1033 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1034 } 1035 void Exit(CodeGenFunction &CGF) override { 1036 auto &RT = 1037 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1038 RT.clearLocThreadIdInsertPt(CGF); 1039 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false); 1040 } 1041 } Action(EST); 1042 CodeGen.setAction(Action); 1043 IsInTTDRegion = true; 1044 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, 1045 IsOffloadEntry, CodeGen); 1046 IsInTTDRegion = false; 1047 } 1048 1049 void CGOpenMPRuntimeGPU::emitKernelInit(CodeGenFunction &CGF, 1050 EntryFunctionState &EST, bool IsSPMD) { 1051 CGBuilderTy &Bld = CGF.Builder; 1052 Bld.restoreIP(OMPBuilder.createTargetInit(Bld, IsSPMD, requiresFullRuntime())); 1053 IsInTargetMasterThreadRegion = IsSPMD; 1054 if (!IsSPMD) 1055 emitGenericVarsProlog(CGF, EST.Loc); 1056 } 1057 1058 void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF, 1059 EntryFunctionState &EST, 1060 bool IsSPMD) { 1061 if (!IsSPMD) 1062 emitGenericVarsEpilog(CGF); 1063 1064 CGBuilderTy &Bld = CGF.Builder; 1065 OMPBuilder.createTargetDeinit(Bld, IsSPMD, requiresFullRuntime()); 1066 } 1067 1068 void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D, 1069 StringRef ParentName, 1070 llvm::Function *&OutlinedFn, 1071 llvm::Constant *&OutlinedFnID, 1072 bool IsOffloadEntry, 1073 const RegionCodeGenTy &CodeGen) { 1074 ExecutionRuntimeModesRAII ModeRAII( 1075 CurrentExecutionMode, RequiresFullRuntime, 1076 CGM.getLangOpts().OpenMPCUDAForceFullRuntime || 1077 !supportsLightweightRuntime(CGM.getContext(), D)); 1078 EntryFunctionState EST; 1079 1080 // Emit target region as a standalone region. 1081 class NVPTXPrePostActionTy : public PrePostActionTy { 1082 CGOpenMPRuntimeGPU &RT; 1083 CGOpenMPRuntimeGPU::EntryFunctionState &EST; 1084 1085 public: 1086 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT, 1087 CGOpenMPRuntimeGPU::EntryFunctionState &EST) 1088 : RT(RT), EST(EST) {} 1089 void Enter(CodeGenFunction &CGF) override { 1090 RT.emitKernelInit(CGF, EST, /* IsSPMD */ true); 1091 // Skip target region initialization. 1092 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1093 } 1094 void Exit(CodeGenFunction &CGF) override { 1095 RT.clearLocThreadIdInsertPt(CGF); 1096 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true); 1097 } 1098 } Action(*this, EST); 1099 CodeGen.setAction(Action); 1100 IsInTTDRegion = true; 1101 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, 1102 IsOffloadEntry, CodeGen); 1103 IsInTTDRegion = false; 1104 } 1105 1106 // Create a unique global variable to indicate the execution mode of this target 1107 // region. The execution mode is either 'generic', or 'spmd' depending on the 1108 // target directive. This variable is picked up by the offload library to setup 1109 // the device appropriately before kernel launch. If the execution mode is 1110 // 'generic', the runtime reserves one warp for the master, otherwise, all 1111 // warps participate in parallel work. 1112 static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name, 1113 bool Mode) { 1114 auto *GVMode = 1115 new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, 1116 llvm::GlobalValue::WeakAnyLinkage, 1117 llvm::ConstantInt::get(CGM.Int8Ty, Mode ? 0 : 1), 1118 Twine(Name, "_exec_mode")); 1119 CGM.addCompilerUsedGlobal(GVMode); 1120 } 1121 1122 void CGOpenMPRuntimeGPU::createOffloadEntry(llvm::Constant *ID, 1123 llvm::Constant *Addr, 1124 uint64_t Size, int32_t, 1125 llvm::GlobalValue::LinkageTypes) { 1126 // TODO: Add support for global variables on the device after declare target 1127 // support. 1128 if (!isa<llvm::Function>(Addr)) 1129 return; 1130 llvm::Module &M = CGM.getModule(); 1131 llvm::LLVMContext &Ctx = CGM.getLLVMContext(); 1132 1133 // Get "nvvm.annotations" metadata node 1134 llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 1135 1136 llvm::Metadata *MDVals[] = { 1137 llvm::ConstantAsMetadata::get(Addr), llvm::MDString::get(Ctx, "kernel"), 1138 llvm::ConstantAsMetadata::get( 1139 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))}; 1140 // Append metadata to nvvm.annotations 1141 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 1142 } 1143 1144 void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction( 1145 const OMPExecutableDirective &D, StringRef ParentName, 1146 llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, 1147 bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { 1148 if (!IsOffloadEntry) // Nothing to do. 1149 return; 1150 1151 assert(!ParentName.empty() && "Invalid target region parent name!"); 1152 1153 bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D); 1154 if (Mode) 1155 emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, 1156 CodeGen); 1157 else 1158 emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, 1159 CodeGen); 1160 1161 setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode); 1162 } 1163 1164 namespace { 1165 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE(); 1166 /// Enum for accesseing the reserved_2 field of the ident_t struct. 1167 enum ModeFlagsTy : unsigned { 1168 /// Bit set to 1 when in SPMD mode. 1169 KMP_IDENT_SPMD_MODE = 0x01, 1170 /// Bit set to 1 when a simplified runtime is used. 1171 KMP_IDENT_SIMPLE_RT_MODE = 0x02, 1172 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE) 1173 }; 1174 1175 /// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime. 1176 static const ModeFlagsTy UndefinedMode = 1177 (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE; 1178 } // anonymous namespace 1179 1180 unsigned CGOpenMPRuntimeGPU::getDefaultLocationReserved2Flags() const { 1181 switch (getExecutionMode()) { 1182 case EM_SPMD: 1183 if (requiresFullRuntime()) 1184 return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE); 1185 return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE; 1186 case EM_NonSPMD: 1187 assert(requiresFullRuntime() && "Expected full runtime."); 1188 return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE); 1189 case EM_Unknown: 1190 return UndefinedMode; 1191 } 1192 llvm_unreachable("Unknown flags are requested."); 1193 } 1194 1195 CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM) 1196 : CGOpenMPRuntime(CGM, "_", "$") { 1197 if (!CGM.getLangOpts().OpenMPIsDevice) 1198 llvm_unreachable("OpenMP NVPTX can only handle device code."); 1199 } 1200 1201 void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF, 1202 ProcBindKind ProcBind, 1203 SourceLocation Loc) { 1204 // Do nothing in case of SPMD mode and L0 parallel. 1205 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 1206 return; 1207 1208 CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc); 1209 } 1210 1211 void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF, 1212 llvm::Value *NumThreads, 1213 SourceLocation Loc) { 1214 // Do nothing in case of SPMD mode and L0 parallel. 1215 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 1216 return; 1217 1218 CGOpenMPRuntime::emitNumThreadsClause(CGF, NumThreads, Loc); 1219 } 1220 1221 void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF, 1222 const Expr *NumTeams, 1223 const Expr *ThreadLimit, 1224 SourceLocation Loc) {} 1225 1226 llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction( 1227 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, 1228 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { 1229 // Emit target region as a standalone region. 1230 class NVPTXPrePostActionTy : public PrePostActionTy { 1231 bool &IsInParallelRegion; 1232 bool PrevIsInParallelRegion; 1233 1234 public: 1235 NVPTXPrePostActionTy(bool &IsInParallelRegion) 1236 : IsInParallelRegion(IsInParallelRegion) {} 1237 void Enter(CodeGenFunction &CGF) override { 1238 PrevIsInParallelRegion = IsInParallelRegion; 1239 IsInParallelRegion = true; 1240 } 1241 void Exit(CodeGenFunction &CGF) override { 1242 IsInParallelRegion = PrevIsInParallelRegion; 1243 } 1244 } Action(IsInParallelRegion); 1245 CodeGen.setAction(Action); 1246 bool PrevIsInTTDRegion = IsInTTDRegion; 1247 IsInTTDRegion = false; 1248 bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion; 1249 IsInTargetMasterThreadRegion = false; 1250 auto *OutlinedFun = 1251 cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction( 1252 D, ThreadIDVar, InnermostKind, CodeGen)); 1253 IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion; 1254 IsInTTDRegion = PrevIsInTTDRegion; 1255 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD && 1256 !IsInParallelRegion) { 1257 llvm::Function *WrapperFun = 1258 createParallelDataSharingWrapper(OutlinedFun, D); 1259 WrapperFunctionsMap[OutlinedFun] = WrapperFun; 1260 } 1261 1262 return OutlinedFun; 1263 } 1264 1265 /// Get list of lastprivate variables from the teams distribute ... or 1266 /// teams {distribute ...} directives. 1267 static void 1268 getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D, 1269 llvm::SmallVectorImpl<const ValueDecl *> &Vars) { 1270 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && 1271 "expected teams directive."); 1272 const OMPExecutableDirective *Dir = &D; 1273 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1274 if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild( 1275 Ctx, 1276 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers( 1277 /*IgnoreCaptured=*/true))) { 1278 Dir = dyn_cast_or_null<OMPExecutableDirective>(S); 1279 if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind())) 1280 Dir = nullptr; 1281 } 1282 } 1283 if (!Dir) 1284 return; 1285 for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) { 1286 for (const Expr *E : C->getVarRefs()) 1287 Vars.push_back(getPrivateItem(E)); 1288 } 1289 } 1290 1291 /// Get list of reduction variables from the teams ... directives. 1292 static void 1293 getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D, 1294 llvm::SmallVectorImpl<const ValueDecl *> &Vars) { 1295 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && 1296 "expected teams directive."); 1297 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1298 for (const Expr *E : C->privates()) 1299 Vars.push_back(getPrivateItem(E)); 1300 } 1301 } 1302 1303 llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction( 1304 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, 1305 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { 1306 SourceLocation Loc = D.getBeginLoc(); 1307 1308 const RecordDecl *GlobalizedRD = nullptr; 1309 llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions; 1310 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; 1311 unsigned WarpSize = CGM.getTarget().getGridValue(llvm::omp::GV_Warp_Size); 1312 // Globalize team reductions variable unconditionally in all modes. 1313 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1314 getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions); 1315 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { 1316 getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions); 1317 if (!LastPrivatesReductions.empty()) { 1318 GlobalizedRD = ::buildRecordForGlobalizedVars( 1319 CGM.getContext(), llvm::None, LastPrivatesReductions, 1320 MappedDeclsFields, WarpSize); 1321 } 1322 } else if (!LastPrivatesReductions.empty()) { 1323 assert(!TeamAndReductions.first && 1324 "Previous team declaration is not expected."); 1325 TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl(); 1326 std::swap(TeamAndReductions.second, LastPrivatesReductions); 1327 } 1328 1329 // Emit target region as a standalone region. 1330 class NVPTXPrePostActionTy : public PrePostActionTy { 1331 SourceLocation &Loc; 1332 const RecordDecl *GlobalizedRD; 1333 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 1334 &MappedDeclsFields; 1335 1336 public: 1337 NVPTXPrePostActionTy( 1338 SourceLocation &Loc, const RecordDecl *GlobalizedRD, 1339 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 1340 &MappedDeclsFields) 1341 : Loc(Loc), GlobalizedRD(GlobalizedRD), 1342 MappedDeclsFields(MappedDeclsFields) {} 1343 void Enter(CodeGenFunction &CGF) override { 1344 auto &Rt = 1345 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1346 if (GlobalizedRD) { 1347 auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; 1348 I->getSecond().MappedParams = 1349 std::make_unique<CodeGenFunction::OMPMapVars>(); 1350 DeclToAddrMapTy &Data = I->getSecond().LocalVarData; 1351 for (const auto &Pair : MappedDeclsFields) { 1352 assert(Pair.getFirst()->isCanonicalDecl() && 1353 "Expected canonical declaration"); 1354 Data.insert(std::make_pair(Pair.getFirst(), MappedVarData())); 1355 } 1356 } 1357 Rt.emitGenericVarsProlog(CGF, Loc); 1358 } 1359 void Exit(CodeGenFunction &CGF) override { 1360 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) 1361 .emitGenericVarsEpilog(CGF); 1362 } 1363 } Action(Loc, GlobalizedRD, MappedDeclsFields); 1364 CodeGen.setAction(Action); 1365 llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction( 1366 D, ThreadIDVar, InnermostKind, CodeGen); 1367 1368 return OutlinedFun; 1369 } 1370 1371 void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF, 1372 SourceLocation Loc, 1373 bool WithSPMDCheck) { 1374 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && 1375 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1376 return; 1377 1378 CGBuilderTy &Bld = CGF.Builder; 1379 1380 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 1381 if (I == FunctionGlobalizedDecls.end()) 1382 return; 1383 1384 for (auto &Rec : I->getSecond().LocalVarData) { 1385 const auto *VD = cast<VarDecl>(Rec.first); 1386 bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first); 1387 QualType VarTy = VD->getType(); 1388 1389 // Get the local allocation of a firstprivate variable before sharing 1390 llvm::Value *ParValue; 1391 if (EscapedParam) { 1392 LValue ParLVal = 1393 CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType()); 1394 ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc); 1395 } 1396 1397 // Allocate space for the variable to be globalized 1398 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())}; 1399 llvm::Instruction *VoidPtr = 1400 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1401 CGM.getModule(), OMPRTL___kmpc_alloc_shared), 1402 AllocArgs, VD->getName()); 1403 1404 // Cast the void pointer and get the address of the globalized variable. 1405 llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(VarTy)->getPointerTo(); 1406 llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 1407 VoidPtr, VarPtrTy, VD->getName() + "_on_stack"); 1408 LValue VarAddr = CGF.MakeNaturalAlignAddrLValue(CastedVoidPtr, VarTy); 1409 Rec.second.PrivateAddr = VarAddr.getAddress(CGF); 1410 Rec.second.GlobalizedVal = VoidPtr; 1411 1412 // Assign the local allocation to the newly globalized location. 1413 if (EscapedParam) { 1414 CGF.EmitStoreOfScalar(ParValue, VarAddr); 1415 I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress(CGF)); 1416 } 1417 if (auto *DI = CGF.getDebugInfo()) 1418 VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(VD->getLocation())); 1419 } 1420 for (const auto *VD : I->getSecond().EscapedVariableLengthDecls) { 1421 // Use actual memory size of the VLA object including the padding 1422 // for alignment purposes. 1423 llvm::Value *Size = CGF.getTypeSize(VD->getType()); 1424 CharUnits Align = CGM.getContext().getDeclAlign(VD); 1425 Size = Bld.CreateNUWAdd( 1426 Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1)); 1427 llvm::Value *AlignVal = 1428 llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity()); 1429 1430 Size = Bld.CreateUDiv(Size, AlignVal); 1431 Size = Bld.CreateNUWMul(Size, AlignVal); 1432 1433 // Allocate space for this VLA object to be globalized. 1434 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())}; 1435 llvm::Instruction *VoidPtr = 1436 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1437 CGM.getModule(), OMPRTL___kmpc_alloc_shared), 1438 AllocArgs, VD->getName()); 1439 1440 I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back( 1441 std::pair<llvm::Value *, llvm::Value *>( 1442 {VoidPtr, CGF.getTypeSize(VD->getType())})); 1443 LValue Base = CGF.MakeAddrLValue(VoidPtr, VD->getType(), 1444 CGM.getContext().getDeclAlign(VD), 1445 AlignmentSource::Decl); 1446 I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD), 1447 Base.getAddress(CGF)); 1448 } 1449 I->getSecond().MappedParams->apply(CGF); 1450 } 1451 1452 void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF, 1453 bool WithSPMDCheck) { 1454 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && 1455 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1456 return; 1457 1458 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 1459 if (I != FunctionGlobalizedDecls.end()) { 1460 // Deallocate the memory for each globalized VLA object 1461 for (auto AddrSizePair : 1462 llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) { 1463 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1464 CGM.getModule(), OMPRTL___kmpc_free_shared), 1465 {AddrSizePair.first, AddrSizePair.second}); 1466 } 1467 // Deallocate the memory for each globalized value 1468 for (auto &Rec : llvm::reverse(I->getSecond().LocalVarData)) { 1469 const auto *VD = cast<VarDecl>(Rec.first); 1470 I->getSecond().MappedParams->restore(CGF); 1471 1472 llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal, 1473 CGF.getTypeSize(VD->getType())}; 1474 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1475 CGM.getModule(), OMPRTL___kmpc_free_shared), 1476 FreeArgs); 1477 } 1478 } 1479 } 1480 1481 void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF, 1482 const OMPExecutableDirective &D, 1483 SourceLocation Loc, 1484 llvm::Function *OutlinedFn, 1485 ArrayRef<llvm::Value *> CapturedVars) { 1486 if (!CGF.HaveInsertPoint()) 1487 return; 1488 1489 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 1490 /*Name=*/".zero.addr"); 1491 CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); 1492 llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; 1493 OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer()); 1494 OutlinedFnArgs.push_back(ZeroAddr.getPointer()); 1495 OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); 1496 emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs); 1497 } 1498 1499 void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF, 1500 SourceLocation Loc, 1501 llvm::Function *OutlinedFn, 1502 ArrayRef<llvm::Value *> CapturedVars, 1503 const Expr *IfCond) { 1504 if (!CGF.HaveInsertPoint()) 1505 return; 1506 1507 auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, 1508 IfCond](CodeGenFunction &CGF, PrePostActionTy &Action) { 1509 CGBuilderTy &Bld = CGF.Builder; 1510 llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn]; 1511 llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 1512 if (WFn) 1513 ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy); 1514 llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy); 1515 1516 // Create a private scope that will globalize the arguments 1517 // passed from the outside of the target region. 1518 // TODO: Is that needed? 1519 CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF); 1520 1521 Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca( 1522 llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()), 1523 "captured_vars_addrs"); 1524 // There's something to share. 1525 if (!CapturedVars.empty()) { 1526 // Prepare for parallel region. Indicate the outlined function. 1527 ASTContext &Ctx = CGF.getContext(); 1528 unsigned Idx = 0; 1529 for (llvm::Value *V : CapturedVars) { 1530 Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx); 1531 llvm::Value *PtrV; 1532 if (V->getType()->isIntegerTy()) 1533 PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy); 1534 else 1535 PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy); 1536 CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false, 1537 Ctx.getPointerType(Ctx.VoidPtrTy)); 1538 ++Idx; 1539 } 1540 } 1541 1542 llvm::Value *IfCondVal = nullptr; 1543 if (IfCond) 1544 IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty, 1545 /* isSigned */ false); 1546 else 1547 IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1); 1548 1549 assert(IfCondVal && "Expected a value"); 1550 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 1551 llvm::Value *Args[] = { 1552 RTLoc, 1553 getThreadID(CGF, Loc), 1554 IfCondVal, 1555 llvm::ConstantInt::get(CGF.Int32Ty, -1), 1556 llvm::ConstantInt::get(CGF.Int32Ty, -1), 1557 FnPtr, 1558 ID, 1559 Bld.CreateBitOrPointerCast(CapturedVarsAddrs.getPointer(), 1560 CGF.VoidPtrPtrTy), 1561 llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())}; 1562 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1563 CGM.getModule(), OMPRTL___kmpc_parallel_51), 1564 Args); 1565 }; 1566 1567 RegionCodeGenTy RCG(ParallelGen); 1568 RCG(CGF); 1569 } 1570 1571 void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) { 1572 // Always emit simple barriers! 1573 if (!CGF.HaveInsertPoint()) 1574 return; 1575 // Build call __kmpc_barrier_simple_spmd(nullptr, 0); 1576 // This function does not use parameters, so we can emit just default values. 1577 llvm::Value *Args[] = { 1578 llvm::ConstantPointerNull::get( 1579 cast<llvm::PointerType>(getIdentTyPointerTy())), 1580 llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)}; 1581 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1582 CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd), 1583 Args); 1584 } 1585 1586 void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF, 1587 SourceLocation Loc, 1588 OpenMPDirectiveKind Kind, bool, 1589 bool) { 1590 // Always emit simple barriers! 1591 if (!CGF.HaveInsertPoint()) 1592 return; 1593 // Build call __kmpc_cancel_barrier(loc, thread_id); 1594 unsigned Flags = getDefaultFlagsForBarriers(Kind); 1595 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags), 1596 getThreadID(CGF, Loc)}; 1597 1598 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1599 CGM.getModule(), OMPRTL___kmpc_barrier), 1600 Args); 1601 } 1602 1603 void CGOpenMPRuntimeGPU::emitCriticalRegion( 1604 CodeGenFunction &CGF, StringRef CriticalName, 1605 const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc, 1606 const Expr *Hint) { 1607 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop"); 1608 llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test"); 1609 llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync"); 1610 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body"); 1611 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit"); 1612 1613 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1614 1615 // Get the mask of active threads in the warp. 1616 llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1617 CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask)); 1618 // Fetch team-local id of the thread. 1619 llvm::Value *ThreadID = RT.getGPUThreadID(CGF); 1620 1621 // Get the width of the team. 1622 llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF); 1623 1624 // Initialize the counter variable for the loop. 1625 QualType Int32Ty = 1626 CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0); 1627 Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter"); 1628 LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty); 1629 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal, 1630 /*isInit=*/true); 1631 1632 // Block checks if loop counter exceeds upper bound. 1633 CGF.EmitBlock(LoopBB); 1634 llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); 1635 llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth); 1636 CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB); 1637 1638 // Block tests which single thread should execute region, and which threads 1639 // should go straight to synchronisation point. 1640 CGF.EmitBlock(TestBB); 1641 CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); 1642 llvm::Value *CmpThreadToCounter = 1643 CGF.Builder.CreateICmpEQ(ThreadID, CounterVal); 1644 CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB); 1645 1646 // Block emits the body of the critical region. 1647 CGF.EmitBlock(BodyBB); 1648 1649 // Output the critical statement. 1650 CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc, 1651 Hint); 1652 1653 // After the body surrounded by the critical region, the single executing 1654 // thread will jump to the synchronisation point. 1655 // Block waits for all threads in current team to finish then increments the 1656 // counter variable and returns to the loop. 1657 CGF.EmitBlock(SyncBB); 1658 // Reconverge active threads in the warp. 1659 (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1660 CGM.getModule(), OMPRTL___kmpc_syncwarp), 1661 Mask); 1662 1663 llvm::Value *IncCounterVal = 1664 CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1)); 1665 CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal); 1666 CGF.EmitBranch(LoopBB); 1667 1668 // Block that is reached when all threads in the team complete the region. 1669 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1670 } 1671 1672 /// Cast value to the specified type. 1673 static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val, 1674 QualType ValTy, QualType CastTy, 1675 SourceLocation Loc) { 1676 assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() && 1677 "Cast type must sized."); 1678 assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() && 1679 "Val type must sized."); 1680 llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy); 1681 if (ValTy == CastTy) 1682 return Val; 1683 if (CGF.getContext().getTypeSizeInChars(ValTy) == 1684 CGF.getContext().getTypeSizeInChars(CastTy)) 1685 return CGF.Builder.CreateBitCast(Val, LLVMCastTy); 1686 if (CastTy->isIntegerType() && ValTy->isIntegerType()) 1687 return CGF.Builder.CreateIntCast(Val, LLVMCastTy, 1688 CastTy->hasSignedIntegerRepresentation()); 1689 Address CastItem = CGF.CreateMemTemp(CastTy); 1690 Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 1691 CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace())); 1692 CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy, 1693 LValueBaseInfo(AlignmentSource::Type), 1694 TBAAAccessInfo()); 1695 return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc, 1696 LValueBaseInfo(AlignmentSource::Type), 1697 TBAAAccessInfo()); 1698 } 1699 1700 /// This function creates calls to one of two shuffle functions to copy 1701 /// variables between lanes in a warp. 1702 static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF, 1703 llvm::Value *Elem, 1704 QualType ElemType, 1705 llvm::Value *Offset, 1706 SourceLocation Loc) { 1707 CodeGenModule &CGM = CGF.CGM; 1708 CGBuilderTy &Bld = CGF.Builder; 1709 CGOpenMPRuntimeGPU &RT = 1710 *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime())); 1711 llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder(); 1712 1713 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); 1714 assert(Size.getQuantity() <= 8 && 1715 "Unsupported bitwidth in shuffle instruction."); 1716 1717 RuntimeFunction ShuffleFn = Size.getQuantity() <= 4 1718 ? OMPRTL___kmpc_shuffle_int32 1719 : OMPRTL___kmpc_shuffle_int64; 1720 1721 // Cast all types to 32- or 64-bit values before calling shuffle routines. 1722 QualType CastTy = CGF.getContext().getIntTypeForBitwidth( 1723 Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1); 1724 llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc); 1725 llvm::Value *WarpSize = 1726 Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true); 1727 1728 llvm::Value *ShuffledVal = CGF.EmitRuntimeCall( 1729 OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn), 1730 {ElemCast, Offset, WarpSize}); 1731 1732 return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc); 1733 } 1734 1735 static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr, 1736 Address DestAddr, QualType ElemType, 1737 llvm::Value *Offset, SourceLocation Loc) { 1738 CGBuilderTy &Bld = CGF.Builder; 1739 1740 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); 1741 // Create the loop over the big sized data. 1742 // ptr = (void*)Elem; 1743 // ptrEnd = (void*) Elem + 1; 1744 // Step = 8; 1745 // while (ptr + Step < ptrEnd) 1746 // shuffle((int64_t)*ptr); 1747 // Step = 4; 1748 // while (ptr + Step < ptrEnd) 1749 // shuffle((int32_t)*ptr); 1750 // ... 1751 Address ElemPtr = DestAddr; 1752 Address Ptr = SrcAddr; 1753 Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast( 1754 Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy); 1755 for (int IntSize = 8; IntSize >= 1; IntSize /= 2) { 1756 if (Size < CharUnits::fromQuantity(IntSize)) 1757 continue; 1758 QualType IntType = CGF.getContext().getIntTypeForBitwidth( 1759 CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)), 1760 /*Signed=*/1); 1761 llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType); 1762 Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo()); 1763 ElemPtr = 1764 Bld.CreatePointerBitCastOrAddrSpaceCast(ElemPtr, IntTy->getPointerTo()); 1765 if (Size.getQuantity() / IntSize > 1) { 1766 llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond"); 1767 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then"); 1768 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit"); 1769 llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock(); 1770 CGF.EmitBlock(PreCondBB); 1771 llvm::PHINode *PhiSrc = 1772 Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2); 1773 PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB); 1774 llvm::PHINode *PhiDest = 1775 Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2); 1776 PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB); 1777 Ptr = Address(PhiSrc, Ptr.getAlignment()); 1778 ElemPtr = Address(PhiDest, ElemPtr.getAlignment()); 1779 llvm::Value *PtrDiff = Bld.CreatePtrDiff( 1780 PtrEnd.getPointer(), Bld.CreatePointerBitCastOrAddrSpaceCast( 1781 Ptr.getPointer(), CGF.VoidPtrTy)); 1782 Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)), 1783 ThenBB, ExitBB); 1784 CGF.EmitBlock(ThenBB); 1785 llvm::Value *Res = createRuntimeShuffleFunction( 1786 CGF, 1787 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, 1788 LValueBaseInfo(AlignmentSource::Type), 1789 TBAAAccessInfo()), 1790 IntType, Offset, Loc); 1791 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, 1792 LValueBaseInfo(AlignmentSource::Type), 1793 TBAAAccessInfo()); 1794 Address LocalPtr = Bld.CreateConstGEP(Ptr, 1); 1795 Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1); 1796 PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB); 1797 PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB); 1798 CGF.EmitBranch(PreCondBB); 1799 CGF.EmitBlock(ExitBB); 1800 } else { 1801 llvm::Value *Res = createRuntimeShuffleFunction( 1802 CGF, 1803 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, 1804 LValueBaseInfo(AlignmentSource::Type), 1805 TBAAAccessInfo()), 1806 IntType, Offset, Loc); 1807 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, 1808 LValueBaseInfo(AlignmentSource::Type), 1809 TBAAAccessInfo()); 1810 Ptr = Bld.CreateConstGEP(Ptr, 1); 1811 ElemPtr = Bld.CreateConstGEP(ElemPtr, 1); 1812 } 1813 Size = Size % IntSize; 1814 } 1815 } 1816 1817 namespace { 1818 enum CopyAction : unsigned { 1819 // RemoteLaneToThread: Copy over a Reduce list from a remote lane in 1820 // the warp using shuffle instructions. 1821 RemoteLaneToThread, 1822 // ThreadCopy: Make a copy of a Reduce list on the thread's stack. 1823 ThreadCopy, 1824 // ThreadToScratchpad: Copy a team-reduced array to the scratchpad. 1825 ThreadToScratchpad, 1826 // ScratchpadToThread: Copy from a scratchpad array in global memory 1827 // containing team-reduced data to a thread's stack. 1828 ScratchpadToThread, 1829 }; 1830 } // namespace 1831 1832 struct CopyOptionsTy { 1833 llvm::Value *RemoteLaneOffset; 1834 llvm::Value *ScratchpadIndex; 1835 llvm::Value *ScratchpadWidth; 1836 }; 1837 1838 /// Emit instructions to copy a Reduce list, which contains partially 1839 /// aggregated values, in the specified direction. 1840 static void emitReductionListCopy( 1841 CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy, 1842 ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase, 1843 CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) { 1844 1845 CodeGenModule &CGM = CGF.CGM; 1846 ASTContext &C = CGM.getContext(); 1847 CGBuilderTy &Bld = CGF.Builder; 1848 1849 llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset; 1850 llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex; 1851 llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth; 1852 1853 // Iterates, element-by-element, through the source Reduce list and 1854 // make a copy. 1855 unsigned Idx = 0; 1856 unsigned Size = Privates.size(); 1857 for (const Expr *Private : Privates) { 1858 Address SrcElementAddr = Address::invalid(); 1859 Address DestElementAddr = Address::invalid(); 1860 Address DestElementPtrAddr = Address::invalid(); 1861 // Should we shuffle in an element from a remote lane? 1862 bool ShuffleInElement = false; 1863 // Set to true to update the pointer in the dest Reduce list to a 1864 // newly created element. 1865 bool UpdateDestListPtr = false; 1866 // Increment the src or dest pointer to the scratchpad, for each 1867 // new element. 1868 bool IncrScratchpadSrc = false; 1869 bool IncrScratchpadDest = false; 1870 1871 switch (Action) { 1872 case RemoteLaneToThread: { 1873 // Step 1.1: Get the address for the src element in the Reduce list. 1874 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1875 SrcElementAddr = CGF.EmitLoadOfPointer( 1876 SrcElementPtrAddr, 1877 C.getPointerType(Private->getType())->castAs<PointerType>()); 1878 1879 // Step 1.2: Create a temporary to store the element in the destination 1880 // Reduce list. 1881 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1882 DestElementAddr = 1883 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); 1884 ShuffleInElement = true; 1885 UpdateDestListPtr = true; 1886 break; 1887 } 1888 case ThreadCopy: { 1889 // Step 1.1: Get the address for the src element in the Reduce list. 1890 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1891 SrcElementAddr = CGF.EmitLoadOfPointer( 1892 SrcElementPtrAddr, 1893 C.getPointerType(Private->getType())->castAs<PointerType>()); 1894 1895 // Step 1.2: Get the address for dest element. The destination 1896 // element has already been created on the thread's stack. 1897 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1898 DestElementAddr = CGF.EmitLoadOfPointer( 1899 DestElementPtrAddr, 1900 C.getPointerType(Private->getType())->castAs<PointerType>()); 1901 break; 1902 } 1903 case ThreadToScratchpad: { 1904 // Step 1.1: Get the address for the src element in the Reduce list. 1905 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1906 SrcElementAddr = CGF.EmitLoadOfPointer( 1907 SrcElementPtrAddr, 1908 C.getPointerType(Private->getType())->castAs<PointerType>()); 1909 1910 // Step 1.2: Get the address for dest element: 1911 // address = base + index * ElementSizeInChars. 1912 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 1913 llvm::Value *CurrentOffset = 1914 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); 1915 llvm::Value *ScratchPadElemAbsolutePtrVal = 1916 Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset); 1917 ScratchPadElemAbsolutePtrVal = 1918 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); 1919 DestElementAddr = Address(ScratchPadElemAbsolutePtrVal, 1920 C.getTypeAlignInChars(Private->getType())); 1921 IncrScratchpadDest = true; 1922 break; 1923 } 1924 case ScratchpadToThread: { 1925 // Step 1.1: Get the address for the src element in the scratchpad. 1926 // address = base + index * ElementSizeInChars. 1927 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 1928 llvm::Value *CurrentOffset = 1929 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); 1930 llvm::Value *ScratchPadElemAbsolutePtrVal = 1931 Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset); 1932 ScratchPadElemAbsolutePtrVal = 1933 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); 1934 SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal, 1935 C.getTypeAlignInChars(Private->getType())); 1936 IncrScratchpadSrc = true; 1937 1938 // Step 1.2: Create a temporary to store the element in the destination 1939 // Reduce list. 1940 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1941 DestElementAddr = 1942 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); 1943 UpdateDestListPtr = true; 1944 break; 1945 } 1946 } 1947 1948 // Regardless of src and dest of copy, we emit the load of src 1949 // element as this is required in all directions 1950 SrcElementAddr = Bld.CreateElementBitCast( 1951 SrcElementAddr, CGF.ConvertTypeForMem(Private->getType())); 1952 DestElementAddr = Bld.CreateElementBitCast(DestElementAddr, 1953 SrcElementAddr.getElementType()); 1954 1955 // Now that all active lanes have read the element in the 1956 // Reduce list, shuffle over the value from the remote lane. 1957 if (ShuffleInElement) { 1958 shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(), 1959 RemoteLaneOffset, Private->getExprLoc()); 1960 } else { 1961 switch (CGF.getEvaluationKind(Private->getType())) { 1962 case TEK_Scalar: { 1963 llvm::Value *Elem = CGF.EmitLoadOfScalar( 1964 SrcElementAddr, /*Volatile=*/false, Private->getType(), 1965 Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type), 1966 TBAAAccessInfo()); 1967 // Store the source element value to the dest element address. 1968 CGF.EmitStoreOfScalar( 1969 Elem, DestElementAddr, /*Volatile=*/false, Private->getType(), 1970 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 1971 break; 1972 } 1973 case TEK_Complex: { 1974 CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex( 1975 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), 1976 Private->getExprLoc()); 1977 CGF.EmitStoreOfComplex( 1978 Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()), 1979 /*isInit=*/false); 1980 break; 1981 } 1982 case TEK_Aggregate: 1983 CGF.EmitAggregateCopy( 1984 CGF.MakeAddrLValue(DestElementAddr, Private->getType()), 1985 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), 1986 Private->getType(), AggValueSlot::DoesNotOverlap); 1987 break; 1988 } 1989 } 1990 1991 // Step 3.1: Modify reference in dest Reduce list as needed. 1992 // Modifying the reference in Reduce list to point to the newly 1993 // created element. The element is live in the current function 1994 // scope and that of functions it invokes (i.e., reduce_function). 1995 // RemoteReduceData[i] = (void*)&RemoteElem 1996 if (UpdateDestListPtr) { 1997 CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast( 1998 DestElementAddr.getPointer(), CGF.VoidPtrTy), 1999 DestElementPtrAddr, /*Volatile=*/false, 2000 C.VoidPtrTy); 2001 } 2002 2003 // Step 4.1: Increment SrcBase/DestBase so that it points to the starting 2004 // address of the next element in scratchpad memory, unless we're currently 2005 // processing the last one. Memory alignment is also taken care of here. 2006 if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) { 2007 llvm::Value *ScratchpadBasePtr = 2008 IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer(); 2009 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 2010 ScratchpadBasePtr = Bld.CreateNUWAdd( 2011 ScratchpadBasePtr, 2012 Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars)); 2013 2014 // Take care of global memory alignment for performance 2015 ScratchpadBasePtr = Bld.CreateNUWSub( 2016 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); 2017 ScratchpadBasePtr = Bld.CreateUDiv( 2018 ScratchpadBasePtr, 2019 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); 2020 ScratchpadBasePtr = Bld.CreateNUWAdd( 2021 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); 2022 ScratchpadBasePtr = Bld.CreateNUWMul( 2023 ScratchpadBasePtr, 2024 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); 2025 2026 if (IncrScratchpadDest) 2027 DestBase = Address(ScratchpadBasePtr, CGF.getPointerAlign()); 2028 else /* IncrScratchpadSrc = true */ 2029 SrcBase = Address(ScratchpadBasePtr, CGF.getPointerAlign()); 2030 } 2031 2032 ++Idx; 2033 } 2034 } 2035 2036 /// This function emits a helper that gathers Reduce lists from the first 2037 /// lane of every active warp to lanes in the first warp. 2038 /// 2039 /// void inter_warp_copy_func(void* reduce_data, num_warps) 2040 /// shared smem[warp_size]; 2041 /// For all data entries D in reduce_data: 2042 /// sync 2043 /// If (I am the first lane in each warp) 2044 /// Copy my local D to smem[warp_id] 2045 /// sync 2046 /// if (I am the first warp) 2047 /// Copy smem[thread_id] to my local D 2048 static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM, 2049 ArrayRef<const Expr *> Privates, 2050 QualType ReductionArrayTy, 2051 SourceLocation Loc) { 2052 ASTContext &C = CGM.getContext(); 2053 llvm::Module &M = CGM.getModule(); 2054 2055 // ReduceList: thread local Reduce list. 2056 // At the stage of the computation when this function is called, partially 2057 // aggregated values reside in the first lane of every active warp. 2058 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2059 C.VoidPtrTy, ImplicitParamDecl::Other); 2060 // NumWarps: number of warps active in the parallel region. This could 2061 // be smaller than 32 (max warps in a CTA) for partial block reduction. 2062 ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2063 C.getIntTypeForBitwidth(32, /* Signed */ true), 2064 ImplicitParamDecl::Other); 2065 FunctionArgList Args; 2066 Args.push_back(&ReduceListArg); 2067 Args.push_back(&NumWarpsArg); 2068 2069 const CGFunctionInfo &CGFI = 2070 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2071 auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI), 2072 llvm::GlobalValue::InternalLinkage, 2073 "_omp_reduction_inter_warp_copy_func", &M); 2074 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2075 Fn->setDoesNotRecurse(); 2076 CodeGenFunction CGF(CGM); 2077 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2078 2079 CGBuilderTy &Bld = CGF.Builder; 2080 2081 // This array is used as a medium to transfer, one reduce element at a time, 2082 // the data from the first lane of every warp to lanes in the first warp 2083 // in order to perform the final step of a reduction in a parallel region 2084 // (reduction across warps). The array is placed in NVPTX __shared__ memory 2085 // for reduced latency, as well as to have a distinct copy for concurrently 2086 // executing target regions. The array is declared with common linkage so 2087 // as to be shared across compilation units. 2088 StringRef TransferMediumName = 2089 "__openmp_nvptx_data_transfer_temporary_storage"; 2090 llvm::GlobalVariable *TransferMedium = 2091 M.getGlobalVariable(TransferMediumName); 2092 unsigned WarpSize = CGF.getTarget().getGridValue(llvm::omp::GV_Warp_Size); 2093 if (!TransferMedium) { 2094 auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize); 2095 unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared); 2096 TransferMedium = new llvm::GlobalVariable( 2097 M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage, 2098 llvm::UndefValue::get(Ty), TransferMediumName, 2099 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 2100 SharedAddressSpace); 2101 CGM.addCompilerUsedGlobal(TransferMedium); 2102 } 2103 2104 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 2105 // Get the CUDA thread id of the current OpenMP thread on the GPU. 2106 llvm::Value *ThreadID = RT.getGPUThreadID(CGF); 2107 // nvptx_lane_id = nvptx_id % warpsize 2108 llvm::Value *LaneID = getNVPTXLaneID(CGF); 2109 // nvptx_warp_id = nvptx_id / warpsize 2110 llvm::Value *WarpID = getNVPTXWarpID(CGF); 2111 2112 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2113 Address LocalReduceList( 2114 Bld.CreatePointerBitCastOrAddrSpaceCast( 2115 CGF.EmitLoadOfScalar( 2116 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc, 2117 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()), 2118 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2119 CGF.getPointerAlign()); 2120 2121 unsigned Idx = 0; 2122 for (const Expr *Private : Privates) { 2123 // 2124 // Warp master copies reduce element to transfer medium in __shared__ 2125 // memory. 2126 // 2127 unsigned RealTySize = 2128 C.getTypeSizeInChars(Private->getType()) 2129 .alignTo(C.getTypeAlignInChars(Private->getType())) 2130 .getQuantity(); 2131 for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) { 2132 unsigned NumIters = RealTySize / TySize; 2133 if (NumIters == 0) 2134 continue; 2135 QualType CType = C.getIntTypeForBitwidth( 2136 C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1); 2137 llvm::Type *CopyType = CGF.ConvertTypeForMem(CType); 2138 CharUnits Align = CharUnits::fromQuantity(TySize); 2139 llvm::Value *Cnt = nullptr; 2140 Address CntAddr = Address::invalid(); 2141 llvm::BasicBlock *PrecondBB = nullptr; 2142 llvm::BasicBlock *ExitBB = nullptr; 2143 if (NumIters > 1) { 2144 CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr"); 2145 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr, 2146 /*Volatile=*/false, C.IntTy); 2147 PrecondBB = CGF.createBasicBlock("precond"); 2148 ExitBB = CGF.createBasicBlock("exit"); 2149 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body"); 2150 // There is no need to emit line number for unconditional branch. 2151 (void)ApplyDebugLocation::CreateEmpty(CGF); 2152 CGF.EmitBlock(PrecondBB); 2153 Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc); 2154 llvm::Value *Cmp = 2155 Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters)); 2156 Bld.CreateCondBr(Cmp, BodyBB, ExitBB); 2157 CGF.EmitBlock(BodyBB); 2158 } 2159 // kmpc_barrier. 2160 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, 2161 /*EmitChecks=*/false, 2162 /*ForceSimpleCall=*/true); 2163 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); 2164 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); 2165 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); 2166 2167 // if (lane_id == 0) 2168 llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master"); 2169 Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB); 2170 CGF.EmitBlock(ThenBB); 2171 2172 // Reduce element = LocalReduceList[i] 2173 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2174 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2175 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2176 // elemptr = ((CopyType*)(elemptrptr)) + I 2177 Address ElemPtr = Address(ElemPtrPtr, Align); 2178 ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType); 2179 if (NumIters > 1) { 2180 ElemPtr = Address(Bld.CreateGEP(ElemPtr.getElementType(), 2181 ElemPtr.getPointer(), Cnt), 2182 ElemPtr.getAlignment()); 2183 } 2184 2185 // Get pointer to location in transfer medium. 2186 // MediumPtr = &medium[warp_id] 2187 llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP( 2188 TransferMedium->getValueType(), TransferMedium, 2189 {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID}); 2190 Address MediumPtr(MediumPtrVal, Align); 2191 // Casting to actual data type. 2192 // MediumPtr = (CopyType*)MediumPtrAddr; 2193 MediumPtr = Bld.CreateElementBitCast(MediumPtr, CopyType); 2194 2195 // elem = *elemptr 2196 //*MediumPtr = elem 2197 llvm::Value *Elem = CGF.EmitLoadOfScalar( 2198 ElemPtr, /*Volatile=*/false, CType, Loc, 2199 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2200 // Store the source element value to the dest element address. 2201 CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType, 2202 LValueBaseInfo(AlignmentSource::Type), 2203 TBAAAccessInfo()); 2204 2205 Bld.CreateBr(MergeBB); 2206 2207 CGF.EmitBlock(ElseBB); 2208 Bld.CreateBr(MergeBB); 2209 2210 CGF.EmitBlock(MergeBB); 2211 2212 // kmpc_barrier. 2213 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, 2214 /*EmitChecks=*/false, 2215 /*ForceSimpleCall=*/true); 2216 2217 // 2218 // Warp 0 copies reduce element from transfer medium. 2219 // 2220 llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then"); 2221 llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else"); 2222 llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont"); 2223 2224 Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg); 2225 llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar( 2226 AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc); 2227 2228 // Up to 32 threads in warp 0 are active. 2229 llvm::Value *IsActiveThread = 2230 Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread"); 2231 Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB); 2232 2233 CGF.EmitBlock(W0ThenBB); 2234 2235 // SrcMediumPtr = &medium[tid] 2236 llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP( 2237 TransferMedium->getValueType(), TransferMedium, 2238 {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID}); 2239 Address SrcMediumPtr(SrcMediumPtrVal, Align); 2240 // SrcMediumVal = *SrcMediumPtr; 2241 SrcMediumPtr = Bld.CreateElementBitCast(SrcMediumPtr, CopyType); 2242 2243 // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I 2244 Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2245 llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar( 2246 TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc); 2247 Address TargetElemPtr = Address(TargetElemPtrVal, Align); 2248 TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType); 2249 if (NumIters > 1) { 2250 TargetElemPtr = Address(Bld.CreateGEP(TargetElemPtr.getElementType(), 2251 TargetElemPtr.getPointer(), Cnt), 2252 TargetElemPtr.getAlignment()); 2253 } 2254 2255 // *TargetElemPtr = SrcMediumVal; 2256 llvm::Value *SrcMediumValue = 2257 CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc); 2258 CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false, 2259 CType); 2260 Bld.CreateBr(W0MergeBB); 2261 2262 CGF.EmitBlock(W0ElseBB); 2263 Bld.CreateBr(W0MergeBB); 2264 2265 CGF.EmitBlock(W0MergeBB); 2266 2267 if (NumIters > 1) { 2268 Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1)); 2269 CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy); 2270 CGF.EmitBranch(PrecondBB); 2271 (void)ApplyDebugLocation::CreateEmpty(CGF); 2272 CGF.EmitBlock(ExitBB); 2273 } 2274 RealTySize %= TySize; 2275 } 2276 ++Idx; 2277 } 2278 2279 CGF.FinishFunction(); 2280 return Fn; 2281 } 2282 2283 /// Emit a helper that reduces data across two OpenMP threads (lanes) 2284 /// in the same warp. It uses shuffle instructions to copy over data from 2285 /// a remote lane's stack. The reduction algorithm performed is specified 2286 /// by the fourth parameter. 2287 /// 2288 /// Algorithm Versions. 2289 /// Full Warp Reduce (argument value 0): 2290 /// This algorithm assumes that all 32 lanes are active and gathers 2291 /// data from these 32 lanes, producing a single resultant value. 2292 /// Contiguous Partial Warp Reduce (argument value 1): 2293 /// This algorithm assumes that only a *contiguous* subset of lanes 2294 /// are active. This happens for the last warp in a parallel region 2295 /// when the user specified num_threads is not an integer multiple of 2296 /// 32. This contiguous subset always starts with the zeroth lane. 2297 /// Partial Warp Reduce (argument value 2): 2298 /// This algorithm gathers data from any number of lanes at any position. 2299 /// All reduced values are stored in the lowest possible lane. The set 2300 /// of problems every algorithm addresses is a super set of those 2301 /// addressable by algorithms with a lower version number. Overhead 2302 /// increases as algorithm version increases. 2303 /// 2304 /// Terminology 2305 /// Reduce element: 2306 /// Reduce element refers to the individual data field with primitive 2307 /// data types to be combined and reduced across threads. 2308 /// Reduce list: 2309 /// Reduce list refers to a collection of local, thread-private 2310 /// reduce elements. 2311 /// Remote Reduce list: 2312 /// Remote Reduce list refers to a collection of remote (relative to 2313 /// the current thread) reduce elements. 2314 /// 2315 /// We distinguish between three states of threads that are important to 2316 /// the implementation of this function. 2317 /// Alive threads: 2318 /// Threads in a warp executing the SIMT instruction, as distinguished from 2319 /// threads that are inactive due to divergent control flow. 2320 /// Active threads: 2321 /// The minimal set of threads that has to be alive upon entry to this 2322 /// function. The computation is correct iff active threads are alive. 2323 /// Some threads are alive but they are not active because they do not 2324 /// contribute to the computation in any useful manner. Turning them off 2325 /// may introduce control flow overheads without any tangible benefits. 2326 /// Effective threads: 2327 /// In order to comply with the argument requirements of the shuffle 2328 /// function, we must keep all lanes holding data alive. But at most 2329 /// half of them perform value aggregation; we refer to this half of 2330 /// threads as effective. The other half is simply handing off their 2331 /// data. 2332 /// 2333 /// Procedure 2334 /// Value shuffle: 2335 /// In this step active threads transfer data from higher lane positions 2336 /// in the warp to lower lane positions, creating Remote Reduce list. 2337 /// Value aggregation: 2338 /// In this step, effective threads combine their thread local Reduce list 2339 /// with Remote Reduce list and store the result in the thread local 2340 /// Reduce list. 2341 /// Value copy: 2342 /// In this step, we deal with the assumption made by algorithm 2 2343 /// (i.e. contiguity assumption). When we have an odd number of lanes 2344 /// active, say 2k+1, only k threads will be effective and therefore k 2345 /// new values will be produced. However, the Reduce list owned by the 2346 /// (2k+1)th thread is ignored in the value aggregation. Therefore 2347 /// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so 2348 /// that the contiguity assumption still holds. 2349 static llvm::Function *emitShuffleAndReduceFunction( 2350 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2351 QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) { 2352 ASTContext &C = CGM.getContext(); 2353 2354 // Thread local Reduce list used to host the values of data to be reduced. 2355 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2356 C.VoidPtrTy, ImplicitParamDecl::Other); 2357 // Current lane id; could be logical. 2358 ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy, 2359 ImplicitParamDecl::Other); 2360 // Offset of the remote source lane relative to the current lane. 2361 ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2362 C.ShortTy, ImplicitParamDecl::Other); 2363 // Algorithm version. This is expected to be known at compile time. 2364 ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2365 C.ShortTy, ImplicitParamDecl::Other); 2366 FunctionArgList Args; 2367 Args.push_back(&ReduceListArg); 2368 Args.push_back(&LaneIDArg); 2369 Args.push_back(&RemoteLaneOffsetArg); 2370 Args.push_back(&AlgoVerArg); 2371 2372 const CGFunctionInfo &CGFI = 2373 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2374 auto *Fn = llvm::Function::Create( 2375 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2376 "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule()); 2377 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2378 Fn->setDoesNotRecurse(); 2379 2380 CodeGenFunction CGF(CGM); 2381 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2382 2383 CGBuilderTy &Bld = CGF.Builder; 2384 2385 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2386 Address LocalReduceList( 2387 Bld.CreatePointerBitCastOrAddrSpaceCast( 2388 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2389 C.VoidPtrTy, SourceLocation()), 2390 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2391 CGF.getPointerAlign()); 2392 2393 Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg); 2394 llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar( 2395 AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2396 2397 Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg); 2398 llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar( 2399 AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2400 2401 Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg); 2402 llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar( 2403 AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2404 2405 // Create a local thread-private variable to host the Reduce list 2406 // from a remote lane. 2407 Address RemoteReduceList = 2408 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list"); 2409 2410 // This loop iterates through the list of reduce elements and copies, 2411 // element by element, from a remote lane in the warp to RemoteReduceList, 2412 // hosted on the thread's stack. 2413 emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates, 2414 LocalReduceList, RemoteReduceList, 2415 {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal, 2416 /*ScratchpadIndex=*/nullptr, 2417 /*ScratchpadWidth=*/nullptr}); 2418 2419 // The actions to be performed on the Remote Reduce list is dependent 2420 // on the algorithm version. 2421 // 2422 // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 && 2423 // LaneId % 2 == 0 && Offset > 0): 2424 // do the reduction value aggregation 2425 // 2426 // The thread local variable Reduce list is mutated in place to host the 2427 // reduced data, which is the aggregated value produced from local and 2428 // remote lanes. 2429 // 2430 // Note that AlgoVer is expected to be a constant integer known at compile 2431 // time. 2432 // When AlgoVer==0, the first conjunction evaluates to true, making 2433 // the entire predicate true during compile time. 2434 // When AlgoVer==1, the second conjunction has only the second part to be 2435 // evaluated during runtime. Other conjunctions evaluates to false 2436 // during compile time. 2437 // When AlgoVer==2, the third conjunction has only the second part to be 2438 // evaluated during runtime. Other conjunctions evaluates to false 2439 // during compile time. 2440 llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal); 2441 2442 llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); 2443 llvm::Value *CondAlgo1 = Bld.CreateAnd( 2444 Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal)); 2445 2446 llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2)); 2447 llvm::Value *CondAlgo2 = Bld.CreateAnd( 2448 Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1)))); 2449 CondAlgo2 = Bld.CreateAnd( 2450 CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0))); 2451 2452 llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1); 2453 CondReduce = Bld.CreateOr(CondReduce, CondAlgo2); 2454 2455 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); 2456 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); 2457 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); 2458 Bld.CreateCondBr(CondReduce, ThenBB, ElseBB); 2459 2460 CGF.EmitBlock(ThenBB); 2461 // reduce_function(LocalReduceList, RemoteReduceList) 2462 llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2463 LocalReduceList.getPointer(), CGF.VoidPtrTy); 2464 llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2465 RemoteReduceList.getPointer(), CGF.VoidPtrTy); 2466 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2467 CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr}); 2468 Bld.CreateBr(MergeBB); 2469 2470 CGF.EmitBlock(ElseBB); 2471 Bld.CreateBr(MergeBB); 2472 2473 CGF.EmitBlock(MergeBB); 2474 2475 // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local 2476 // Reduce list. 2477 Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); 2478 llvm::Value *CondCopy = Bld.CreateAnd( 2479 Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal)); 2480 2481 llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then"); 2482 llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else"); 2483 llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont"); 2484 Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB); 2485 2486 CGF.EmitBlock(CpyThenBB); 2487 emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates, 2488 RemoteReduceList, LocalReduceList); 2489 Bld.CreateBr(CpyMergeBB); 2490 2491 CGF.EmitBlock(CpyElseBB); 2492 Bld.CreateBr(CpyMergeBB); 2493 2494 CGF.EmitBlock(CpyMergeBB); 2495 2496 CGF.FinishFunction(); 2497 return Fn; 2498 } 2499 2500 /// This function emits a helper that copies all the reduction variables from 2501 /// the team into the provided global buffer for the reduction variables. 2502 /// 2503 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) 2504 /// For all data entries D in reduce_data: 2505 /// Copy local D to buffer.D[Idx] 2506 static llvm::Value *emitListToGlobalCopyFunction( 2507 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2508 QualType ReductionArrayTy, SourceLocation Loc, 2509 const RecordDecl *TeamReductionRec, 2510 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2511 &VarFieldMap) { 2512 ASTContext &C = CGM.getContext(); 2513 2514 // Buffer: global reduction buffer. 2515 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2516 C.VoidPtrTy, ImplicitParamDecl::Other); 2517 // Idx: index of the buffer. 2518 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2519 ImplicitParamDecl::Other); 2520 // ReduceList: thread local Reduce list. 2521 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2522 C.VoidPtrTy, ImplicitParamDecl::Other); 2523 FunctionArgList Args; 2524 Args.push_back(&BufferArg); 2525 Args.push_back(&IdxArg); 2526 Args.push_back(&ReduceListArg); 2527 2528 const CGFunctionInfo &CGFI = 2529 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2530 auto *Fn = llvm::Function::Create( 2531 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2532 "_omp_reduction_list_to_global_copy_func", &CGM.getModule()); 2533 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2534 Fn->setDoesNotRecurse(); 2535 CodeGenFunction CGF(CGM); 2536 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2537 2538 CGBuilderTy &Bld = CGF.Builder; 2539 2540 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2541 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2542 Address LocalReduceList( 2543 Bld.CreatePointerBitCastOrAddrSpaceCast( 2544 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2545 C.VoidPtrTy, Loc), 2546 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2547 CGF.getPointerAlign()); 2548 QualType StaticTy = C.getRecordType(TeamReductionRec); 2549 llvm::Type *LLVMReductionsBufferTy = 2550 CGM.getTypes().ConvertTypeForMem(StaticTy); 2551 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2552 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2553 LLVMReductionsBufferTy->getPointerTo()); 2554 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2555 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2556 /*Volatile=*/false, C.IntTy, 2557 Loc)}; 2558 unsigned Idx = 0; 2559 for (const Expr *Private : Privates) { 2560 // Reduce element = LocalReduceList[i] 2561 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2562 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2563 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2564 // elemptr = ((CopyType*)(elemptrptr)) + I 2565 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2566 ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo()); 2567 Address ElemPtr = 2568 Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType())); 2569 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); 2570 // Global = Buffer.VD[Idx]; 2571 const FieldDecl *FD = VarFieldMap.lookup(VD); 2572 LValue GlobLVal = CGF.EmitLValueForField( 2573 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2574 Address GlobAddr = GlobLVal.getAddress(CGF); 2575 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2576 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2577 GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment())); 2578 switch (CGF.getEvaluationKind(Private->getType())) { 2579 case TEK_Scalar: { 2580 llvm::Value *V = CGF.EmitLoadOfScalar( 2581 ElemPtr, /*Volatile=*/false, Private->getType(), Loc, 2582 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2583 CGF.EmitStoreOfScalar(V, GlobLVal); 2584 break; 2585 } 2586 case TEK_Complex: { 2587 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex( 2588 CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc); 2589 CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false); 2590 break; 2591 } 2592 case TEK_Aggregate: 2593 CGF.EmitAggregateCopy(GlobLVal, 2594 CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2595 Private->getType(), AggValueSlot::DoesNotOverlap); 2596 break; 2597 } 2598 ++Idx; 2599 } 2600 2601 CGF.FinishFunction(); 2602 return Fn; 2603 } 2604 2605 /// This function emits a helper that reduces all the reduction variables from 2606 /// the team into the provided global buffer for the reduction variables. 2607 /// 2608 /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data) 2609 /// void *GlobPtrs[]; 2610 /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; 2611 /// ... 2612 /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; 2613 /// reduce_function(GlobPtrs, reduce_data); 2614 static llvm::Value *emitListToGlobalReduceFunction( 2615 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2616 QualType ReductionArrayTy, SourceLocation Loc, 2617 const RecordDecl *TeamReductionRec, 2618 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2619 &VarFieldMap, 2620 llvm::Function *ReduceFn) { 2621 ASTContext &C = CGM.getContext(); 2622 2623 // Buffer: global reduction buffer. 2624 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2625 C.VoidPtrTy, ImplicitParamDecl::Other); 2626 // Idx: index of the buffer. 2627 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2628 ImplicitParamDecl::Other); 2629 // ReduceList: thread local Reduce list. 2630 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2631 C.VoidPtrTy, ImplicitParamDecl::Other); 2632 FunctionArgList Args; 2633 Args.push_back(&BufferArg); 2634 Args.push_back(&IdxArg); 2635 Args.push_back(&ReduceListArg); 2636 2637 const CGFunctionInfo &CGFI = 2638 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2639 auto *Fn = llvm::Function::Create( 2640 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2641 "_omp_reduction_list_to_global_reduce_func", &CGM.getModule()); 2642 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2643 Fn->setDoesNotRecurse(); 2644 CodeGenFunction CGF(CGM); 2645 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2646 2647 CGBuilderTy &Bld = CGF.Builder; 2648 2649 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2650 QualType StaticTy = C.getRecordType(TeamReductionRec); 2651 llvm::Type *LLVMReductionsBufferTy = 2652 CGM.getTypes().ConvertTypeForMem(StaticTy); 2653 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2654 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2655 LLVMReductionsBufferTy->getPointerTo()); 2656 2657 // 1. Build a list of reduction variables. 2658 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 2659 Address ReductionList = 2660 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 2661 auto IPriv = Privates.begin(); 2662 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2663 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2664 /*Volatile=*/false, C.IntTy, 2665 Loc)}; 2666 unsigned Idx = 0; 2667 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { 2668 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2669 // Global = Buffer.VD[Idx]; 2670 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); 2671 const FieldDecl *FD = VarFieldMap.lookup(VD); 2672 LValue GlobLVal = CGF.EmitLValueForField( 2673 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2674 Address GlobAddr = GlobLVal.getAddress(CGF); 2675 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2676 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2677 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); 2678 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); 2679 if ((*IPriv)->getType()->isVariablyModifiedType()) { 2680 // Store array size. 2681 ++Idx; 2682 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2683 llvm::Value *Size = CGF.Builder.CreateIntCast( 2684 CGF.getVLASize( 2685 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 2686 .NumElts, 2687 CGF.SizeTy, /*isSigned=*/false); 2688 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 2689 Elem); 2690 } 2691 } 2692 2693 // Call reduce_function(GlobalReduceList, ReduceList) 2694 llvm::Value *GlobalReduceList = 2695 CGF.EmitCastToVoidPtr(ReductionList.getPointer()); 2696 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2697 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( 2698 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); 2699 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2700 CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr}); 2701 CGF.FinishFunction(); 2702 return Fn; 2703 } 2704 2705 /// This function emits a helper that copies all the reduction variables from 2706 /// the team into the provided global buffer for the reduction variables. 2707 /// 2708 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) 2709 /// For all data entries D in reduce_data: 2710 /// Copy buffer.D[Idx] to local D; 2711 static llvm::Value *emitGlobalToListCopyFunction( 2712 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2713 QualType ReductionArrayTy, SourceLocation Loc, 2714 const RecordDecl *TeamReductionRec, 2715 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2716 &VarFieldMap) { 2717 ASTContext &C = CGM.getContext(); 2718 2719 // Buffer: global reduction buffer. 2720 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2721 C.VoidPtrTy, ImplicitParamDecl::Other); 2722 // Idx: index of the buffer. 2723 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2724 ImplicitParamDecl::Other); 2725 // ReduceList: thread local Reduce list. 2726 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2727 C.VoidPtrTy, ImplicitParamDecl::Other); 2728 FunctionArgList Args; 2729 Args.push_back(&BufferArg); 2730 Args.push_back(&IdxArg); 2731 Args.push_back(&ReduceListArg); 2732 2733 const CGFunctionInfo &CGFI = 2734 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2735 auto *Fn = llvm::Function::Create( 2736 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2737 "_omp_reduction_global_to_list_copy_func", &CGM.getModule()); 2738 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2739 Fn->setDoesNotRecurse(); 2740 CodeGenFunction CGF(CGM); 2741 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2742 2743 CGBuilderTy &Bld = CGF.Builder; 2744 2745 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2746 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2747 Address LocalReduceList( 2748 Bld.CreatePointerBitCastOrAddrSpaceCast( 2749 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2750 C.VoidPtrTy, Loc), 2751 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2752 CGF.getPointerAlign()); 2753 QualType StaticTy = C.getRecordType(TeamReductionRec); 2754 llvm::Type *LLVMReductionsBufferTy = 2755 CGM.getTypes().ConvertTypeForMem(StaticTy); 2756 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2757 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2758 LLVMReductionsBufferTy->getPointerTo()); 2759 2760 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2761 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2762 /*Volatile=*/false, C.IntTy, 2763 Loc)}; 2764 unsigned Idx = 0; 2765 for (const Expr *Private : Privates) { 2766 // Reduce element = LocalReduceList[i] 2767 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2768 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2769 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2770 // elemptr = ((CopyType*)(elemptrptr)) + I 2771 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2772 ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo()); 2773 Address ElemPtr = 2774 Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType())); 2775 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); 2776 // Global = Buffer.VD[Idx]; 2777 const FieldDecl *FD = VarFieldMap.lookup(VD); 2778 LValue GlobLVal = CGF.EmitLValueForField( 2779 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2780 Address GlobAddr = GlobLVal.getAddress(CGF); 2781 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2782 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2783 GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment())); 2784 switch (CGF.getEvaluationKind(Private->getType())) { 2785 case TEK_Scalar: { 2786 llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc); 2787 CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(), 2788 LValueBaseInfo(AlignmentSource::Type), 2789 TBAAAccessInfo()); 2790 break; 2791 } 2792 case TEK_Complex: { 2793 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc); 2794 CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2795 /*isInit=*/false); 2796 break; 2797 } 2798 case TEK_Aggregate: 2799 CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2800 GlobLVal, Private->getType(), 2801 AggValueSlot::DoesNotOverlap); 2802 break; 2803 } 2804 ++Idx; 2805 } 2806 2807 CGF.FinishFunction(); 2808 return Fn; 2809 } 2810 2811 /// This function emits a helper that reduces all the reduction variables from 2812 /// the team into the provided global buffer for the reduction variables. 2813 /// 2814 /// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data) 2815 /// void *GlobPtrs[]; 2816 /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; 2817 /// ... 2818 /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; 2819 /// reduce_function(reduce_data, GlobPtrs); 2820 static llvm::Value *emitGlobalToListReduceFunction( 2821 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2822 QualType ReductionArrayTy, SourceLocation Loc, 2823 const RecordDecl *TeamReductionRec, 2824 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2825 &VarFieldMap, 2826 llvm::Function *ReduceFn) { 2827 ASTContext &C = CGM.getContext(); 2828 2829 // Buffer: global reduction buffer. 2830 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2831 C.VoidPtrTy, ImplicitParamDecl::Other); 2832 // Idx: index of the buffer. 2833 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2834 ImplicitParamDecl::Other); 2835 // ReduceList: thread local Reduce list. 2836 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2837 C.VoidPtrTy, ImplicitParamDecl::Other); 2838 FunctionArgList Args; 2839 Args.push_back(&BufferArg); 2840 Args.push_back(&IdxArg); 2841 Args.push_back(&ReduceListArg); 2842 2843 const CGFunctionInfo &CGFI = 2844 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2845 auto *Fn = llvm::Function::Create( 2846 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2847 "_omp_reduction_global_to_list_reduce_func", &CGM.getModule()); 2848 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2849 Fn->setDoesNotRecurse(); 2850 CodeGenFunction CGF(CGM); 2851 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2852 2853 CGBuilderTy &Bld = CGF.Builder; 2854 2855 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2856 QualType StaticTy = C.getRecordType(TeamReductionRec); 2857 llvm::Type *LLVMReductionsBufferTy = 2858 CGM.getTypes().ConvertTypeForMem(StaticTy); 2859 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2860 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2861 LLVMReductionsBufferTy->getPointerTo()); 2862 2863 // 1. Build a list of reduction variables. 2864 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 2865 Address ReductionList = 2866 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 2867 auto IPriv = Privates.begin(); 2868 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2869 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2870 /*Volatile=*/false, C.IntTy, 2871 Loc)}; 2872 unsigned Idx = 0; 2873 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { 2874 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2875 // Global = Buffer.VD[Idx]; 2876 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); 2877 const FieldDecl *FD = VarFieldMap.lookup(VD); 2878 LValue GlobLVal = CGF.EmitLValueForField( 2879 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2880 Address GlobAddr = GlobLVal.getAddress(CGF); 2881 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2882 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2883 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); 2884 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); 2885 if ((*IPriv)->getType()->isVariablyModifiedType()) { 2886 // Store array size. 2887 ++Idx; 2888 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2889 llvm::Value *Size = CGF.Builder.CreateIntCast( 2890 CGF.getVLASize( 2891 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 2892 .NumElts, 2893 CGF.SizeTy, /*isSigned=*/false); 2894 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 2895 Elem); 2896 } 2897 } 2898 2899 // Call reduce_function(ReduceList, GlobalReduceList) 2900 llvm::Value *GlobalReduceList = 2901 CGF.EmitCastToVoidPtr(ReductionList.getPointer()); 2902 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2903 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( 2904 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); 2905 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2906 CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList}); 2907 CGF.FinishFunction(); 2908 return Fn; 2909 } 2910 2911 /// 2912 /// Design of OpenMP reductions on the GPU 2913 /// 2914 /// Consider a typical OpenMP program with one or more reduction 2915 /// clauses: 2916 /// 2917 /// float foo; 2918 /// double bar; 2919 /// #pragma omp target teams distribute parallel for \ 2920 /// reduction(+:foo) reduction(*:bar) 2921 /// for (int i = 0; i < N; i++) { 2922 /// foo += A[i]; bar *= B[i]; 2923 /// } 2924 /// 2925 /// where 'foo' and 'bar' are reduced across all OpenMP threads in 2926 /// all teams. In our OpenMP implementation on the NVPTX device an 2927 /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads 2928 /// within a team are mapped to CUDA threads within a threadblock. 2929 /// Our goal is to efficiently aggregate values across all OpenMP 2930 /// threads such that: 2931 /// 2932 /// - the compiler and runtime are logically concise, and 2933 /// - the reduction is performed efficiently in a hierarchical 2934 /// manner as follows: within OpenMP threads in the same warp, 2935 /// across warps in a threadblock, and finally across teams on 2936 /// the NVPTX device. 2937 /// 2938 /// Introduction to Decoupling 2939 /// 2940 /// We would like to decouple the compiler and the runtime so that the 2941 /// latter is ignorant of the reduction variables (number, data types) 2942 /// and the reduction operators. This allows a simpler interface 2943 /// and implementation while still attaining good performance. 2944 /// 2945 /// Pseudocode for the aforementioned OpenMP program generated by the 2946 /// compiler is as follows: 2947 /// 2948 /// 1. Create private copies of reduction variables on each OpenMP 2949 /// thread: 'foo_private', 'bar_private' 2950 /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned 2951 /// to it and writes the result in 'foo_private' and 'bar_private' 2952 /// respectively. 2953 /// 3. Call the OpenMP runtime on the GPU to reduce within a team 2954 /// and store the result on the team master: 2955 /// 2956 /// __kmpc_nvptx_parallel_reduce_nowait_v2(..., 2957 /// reduceData, shuffleReduceFn, interWarpCpyFn) 2958 /// 2959 /// where: 2960 /// struct ReduceData { 2961 /// double *foo; 2962 /// double *bar; 2963 /// } reduceData 2964 /// reduceData.foo = &foo_private 2965 /// reduceData.bar = &bar_private 2966 /// 2967 /// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two 2968 /// auxiliary functions generated by the compiler that operate on 2969 /// variables of type 'ReduceData'. They aid the runtime perform 2970 /// algorithmic steps in a data agnostic manner. 2971 /// 2972 /// 'shuffleReduceFn' is a pointer to a function that reduces data 2973 /// of type 'ReduceData' across two OpenMP threads (lanes) in the 2974 /// same warp. It takes the following arguments as input: 2975 /// 2976 /// a. variable of type 'ReduceData' on the calling lane, 2977 /// b. its lane_id, 2978 /// c. an offset relative to the current lane_id to generate a 2979 /// remote_lane_id. The remote lane contains the second 2980 /// variable of type 'ReduceData' that is to be reduced. 2981 /// d. an algorithm version parameter determining which reduction 2982 /// algorithm to use. 2983 /// 2984 /// 'shuffleReduceFn' retrieves data from the remote lane using 2985 /// efficient GPU shuffle intrinsics and reduces, using the 2986 /// algorithm specified by the 4th parameter, the two operands 2987 /// element-wise. The result is written to the first operand. 2988 /// 2989 /// Different reduction algorithms are implemented in different 2990 /// runtime functions, all calling 'shuffleReduceFn' to perform 2991 /// the essential reduction step. Therefore, based on the 4th 2992 /// parameter, this function behaves slightly differently to 2993 /// cooperate with the runtime to ensure correctness under 2994 /// different circumstances. 2995 /// 2996 /// 'InterWarpCpyFn' is a pointer to a function that transfers 2997 /// reduced variables across warps. It tunnels, through CUDA 2998 /// shared memory, the thread-private data of type 'ReduceData' 2999 /// from lane 0 of each warp to a lane in the first warp. 3000 /// 4. Call the OpenMP runtime on the GPU to reduce across teams. 3001 /// The last team writes the global reduced value to memory. 3002 /// 3003 /// ret = __kmpc_nvptx_teams_reduce_nowait(..., 3004 /// reduceData, shuffleReduceFn, interWarpCpyFn, 3005 /// scratchpadCopyFn, loadAndReduceFn) 3006 /// 3007 /// 'scratchpadCopyFn' is a helper that stores reduced 3008 /// data from the team master to a scratchpad array in 3009 /// global memory. 3010 /// 3011 /// 'loadAndReduceFn' is a helper that loads data from 3012 /// the scratchpad array and reduces it with the input 3013 /// operand. 3014 /// 3015 /// These compiler generated functions hide address 3016 /// calculation and alignment information from the runtime. 3017 /// 5. if ret == 1: 3018 /// The team master of the last team stores the reduced 3019 /// result to the globals in memory. 3020 /// foo += reduceData.foo; bar *= reduceData.bar 3021 /// 3022 /// 3023 /// Warp Reduction Algorithms 3024 /// 3025 /// On the warp level, we have three algorithms implemented in the 3026 /// OpenMP runtime depending on the number of active lanes: 3027 /// 3028 /// Full Warp Reduction 3029 /// 3030 /// The reduce algorithm within a warp where all lanes are active 3031 /// is implemented in the runtime as follows: 3032 /// 3033 /// full_warp_reduce(void *reduce_data, 3034 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { 3035 /// for (int offset = WARPSIZE/2; offset > 0; offset /= 2) 3036 /// ShuffleReduceFn(reduce_data, 0, offset, 0); 3037 /// } 3038 /// 3039 /// The algorithm completes in log(2, WARPSIZE) steps. 3040 /// 3041 /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is 3042 /// not used therefore we save instructions by not retrieving lane_id 3043 /// from the corresponding special registers. The 4th parameter, which 3044 /// represents the version of the algorithm being used, is set to 0 to 3045 /// signify full warp reduction. 3046 /// 3047 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3048 /// 3049 /// #reduce_elem refers to an element in the local lane's data structure 3050 /// #remote_elem is retrieved from a remote lane 3051 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3052 /// reduce_elem = reduce_elem REDUCE_OP remote_elem; 3053 /// 3054 /// Contiguous Partial Warp Reduction 3055 /// 3056 /// This reduce algorithm is used within a warp where only the first 3057 /// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the 3058 /// number of OpenMP threads in a parallel region is not a multiple of 3059 /// WARPSIZE. The algorithm is implemented in the runtime as follows: 3060 /// 3061 /// void 3062 /// contiguous_partial_reduce(void *reduce_data, 3063 /// kmp_ShuffleReductFctPtr ShuffleReduceFn, 3064 /// int size, int lane_id) { 3065 /// int curr_size; 3066 /// int offset; 3067 /// curr_size = size; 3068 /// mask = curr_size/2; 3069 /// while (offset>0) { 3070 /// ShuffleReduceFn(reduce_data, lane_id, offset, 1); 3071 /// curr_size = (curr_size+1)/2; 3072 /// offset = curr_size/2; 3073 /// } 3074 /// } 3075 /// 3076 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3077 /// 3078 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3079 /// if (lane_id < offset) 3080 /// reduce_elem = reduce_elem REDUCE_OP remote_elem 3081 /// else 3082 /// reduce_elem = remote_elem 3083 /// 3084 /// This algorithm assumes that the data to be reduced are located in a 3085 /// contiguous subset of lanes starting from the first. When there is 3086 /// an odd number of active lanes, the data in the last lane is not 3087 /// aggregated with any other lane's dat but is instead copied over. 3088 /// 3089 /// Dispersed Partial Warp Reduction 3090 /// 3091 /// This algorithm is used within a warp when any discontiguous subset of 3092 /// lanes are active. It is used to implement the reduction operation 3093 /// across lanes in an OpenMP simd region or in a nested parallel region. 3094 /// 3095 /// void 3096 /// dispersed_partial_reduce(void *reduce_data, 3097 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { 3098 /// int size, remote_id; 3099 /// int logical_lane_id = number_of_active_lanes_before_me() * 2; 3100 /// do { 3101 /// remote_id = next_active_lane_id_right_after_me(); 3102 /// # the above function returns 0 of no active lane 3103 /// # is present right after the current lane. 3104 /// size = number_of_active_lanes_in_this_warp(); 3105 /// logical_lane_id /= 2; 3106 /// ShuffleReduceFn(reduce_data, logical_lane_id, 3107 /// remote_id-1-threadIdx.x, 2); 3108 /// } while (logical_lane_id % 2 == 0 && size > 1); 3109 /// } 3110 /// 3111 /// There is no assumption made about the initial state of the reduction. 3112 /// Any number of lanes (>=1) could be active at any position. The reduction 3113 /// result is returned in the first active lane. 3114 /// 3115 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3116 /// 3117 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3118 /// if (lane_id % 2 == 0 && offset > 0) 3119 /// reduce_elem = reduce_elem REDUCE_OP remote_elem 3120 /// else 3121 /// reduce_elem = remote_elem 3122 /// 3123 /// 3124 /// Intra-Team Reduction 3125 /// 3126 /// This function, as implemented in the runtime call 3127 /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP 3128 /// threads in a team. It first reduces within a warp using the 3129 /// aforementioned algorithms. We then proceed to gather all such 3130 /// reduced values at the first warp. 3131 /// 3132 /// The runtime makes use of the function 'InterWarpCpyFn', which copies 3133 /// data from each of the "warp master" (zeroth lane of each warp, where 3134 /// warp-reduced data is held) to the zeroth warp. This step reduces (in 3135 /// a mathematical sense) the problem of reduction across warp masters in 3136 /// a block to the problem of warp reduction. 3137 /// 3138 /// 3139 /// Inter-Team Reduction 3140 /// 3141 /// Once a team has reduced its data to a single value, it is stored in 3142 /// a global scratchpad array. Since each team has a distinct slot, this 3143 /// can be done without locking. 3144 /// 3145 /// The last team to write to the scratchpad array proceeds to reduce the 3146 /// scratchpad array. One or more workers in the last team use the helper 3147 /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e., 3148 /// the k'th worker reduces every k'th element. 3149 /// 3150 /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to 3151 /// reduce across workers and compute a globally reduced value. 3152 /// 3153 void CGOpenMPRuntimeGPU::emitReduction( 3154 CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates, 3155 ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs, 3156 ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) { 3157 if (!CGF.HaveInsertPoint()) 3158 return; 3159 3160 bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind); 3161 #ifndef NDEBUG 3162 bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind); 3163 #endif 3164 3165 if (Options.SimpleReduction) { 3166 assert(!TeamsReduction && !ParallelReduction && 3167 "Invalid reduction selection in emitReduction."); 3168 CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs, 3169 ReductionOps, Options); 3170 return; 3171 } 3172 3173 assert((TeamsReduction || ParallelReduction) && 3174 "Invalid reduction selection in emitReduction."); 3175 3176 // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList), 3177 // RedList, shuffle_reduce_func, interwarp_copy_func); 3178 // or 3179 // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>); 3180 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 3181 llvm::Value *ThreadId = getThreadID(CGF, Loc); 3182 3183 llvm::Value *Res; 3184 ASTContext &C = CGM.getContext(); 3185 // 1. Build a list of reduction variables. 3186 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 3187 auto Size = RHSExprs.size(); 3188 for (const Expr *E : Privates) { 3189 if (E->getType()->isVariablyModifiedType()) 3190 // Reserve place for array size. 3191 ++Size; 3192 } 3193 llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size); 3194 QualType ReductionArrayTy = 3195 C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal, 3196 /*IndexTypeQuals=*/0); 3197 Address ReductionList = 3198 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 3199 auto IPriv = Privates.begin(); 3200 unsigned Idx = 0; 3201 for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) { 3202 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3203 CGF.Builder.CreateStore( 3204 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3205 CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy), 3206 Elem); 3207 if ((*IPriv)->getType()->isVariablyModifiedType()) { 3208 // Store array size. 3209 ++Idx; 3210 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3211 llvm::Value *Size = CGF.Builder.CreateIntCast( 3212 CGF.getVLASize( 3213 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 3214 .NumElts, 3215 CGF.SizeTy, /*isSigned=*/false); 3216 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 3217 Elem); 3218 } 3219 } 3220 3221 llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3222 ReductionList.getPointer(), CGF.VoidPtrTy); 3223 llvm::Function *ReductionFn = emitReductionFunction( 3224 Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates, 3225 LHSExprs, RHSExprs, ReductionOps); 3226 llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy); 3227 llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction( 3228 CGM, Privates, ReductionArrayTy, ReductionFn, Loc); 3229 llvm::Value *InterWarpCopyFn = 3230 emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc); 3231 3232 if (ParallelReduction) { 3233 llvm::Value *Args[] = {RTLoc, 3234 ThreadId, 3235 CGF.Builder.getInt32(RHSExprs.size()), 3236 ReductionArrayTySize, 3237 RL, 3238 ShuffleAndReduceFn, 3239 InterWarpCopyFn}; 3240 3241 Res = CGF.EmitRuntimeCall( 3242 OMPBuilder.getOrCreateRuntimeFunction( 3243 CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2), 3244 Args); 3245 } else { 3246 assert(TeamsReduction && "expected teams reduction."); 3247 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap; 3248 llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size()); 3249 int Cnt = 0; 3250 for (const Expr *DRE : Privates) { 3251 PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl(); 3252 ++Cnt; 3253 } 3254 const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars( 3255 CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap, 3256 C.getLangOpts().OpenMPCUDAReductionBufNum); 3257 TeamsReductions.push_back(TeamReductionRec); 3258 if (!KernelTeamsReductionPtr) { 3259 KernelTeamsReductionPtr = new llvm::GlobalVariable( 3260 CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true, 3261 llvm::GlobalValue::InternalLinkage, nullptr, 3262 "_openmp_teams_reductions_buffer_$_$ptr"); 3263 } 3264 llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar( 3265 Address(KernelTeamsReductionPtr, CGM.getPointerAlign()), 3266 /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc); 3267 llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction( 3268 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); 3269 llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction( 3270 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, 3271 ReductionFn); 3272 llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction( 3273 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); 3274 llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction( 3275 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, 3276 ReductionFn); 3277 3278 llvm::Value *Args[] = { 3279 RTLoc, 3280 ThreadId, 3281 GlobalBufferPtr, 3282 CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum), 3283 RL, 3284 ShuffleAndReduceFn, 3285 InterWarpCopyFn, 3286 GlobalToBufferCpyFn, 3287 GlobalToBufferRedFn, 3288 BufferToGlobalCpyFn, 3289 BufferToGlobalRedFn}; 3290 3291 Res = CGF.EmitRuntimeCall( 3292 OMPBuilder.getOrCreateRuntimeFunction( 3293 CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2), 3294 Args); 3295 } 3296 3297 // 5. Build if (res == 1) 3298 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done"); 3299 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then"); 3300 llvm::Value *Cond = CGF.Builder.CreateICmpEQ( 3301 Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1)); 3302 CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB); 3303 3304 // 6. Build then branch: where we have reduced values in the master 3305 // thread in each team. 3306 // __kmpc_end_reduce{_nowait}(<gtid>); 3307 // break; 3308 CGF.EmitBlock(ThenBB); 3309 3310 // Add emission of __kmpc_end_reduce{_nowait}(<gtid>); 3311 auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps, 3312 this](CodeGenFunction &CGF, PrePostActionTy &Action) { 3313 auto IPriv = Privates.begin(); 3314 auto ILHS = LHSExprs.begin(); 3315 auto IRHS = RHSExprs.begin(); 3316 for (const Expr *E : ReductionOps) { 3317 emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS), 3318 cast<DeclRefExpr>(*IRHS)); 3319 ++IPriv; 3320 ++ILHS; 3321 ++IRHS; 3322 } 3323 }; 3324 llvm::Value *EndArgs[] = {ThreadId}; 3325 RegionCodeGenTy RCG(CodeGen); 3326 NVPTXActionTy Action( 3327 nullptr, llvm::None, 3328 OMPBuilder.getOrCreateRuntimeFunction( 3329 CGM.getModule(), OMPRTL___kmpc_nvptx_end_reduce_nowait), 3330 EndArgs); 3331 RCG.setAction(Action); 3332 RCG(CGF); 3333 // There is no need to emit line number for unconditional branch. 3334 (void)ApplyDebugLocation::CreateEmpty(CGF); 3335 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 3336 } 3337 3338 const VarDecl * 3339 CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD, 3340 const VarDecl *NativeParam) const { 3341 if (!NativeParam->getType()->isReferenceType()) 3342 return NativeParam; 3343 QualType ArgType = NativeParam->getType(); 3344 QualifierCollector QC; 3345 const Type *NonQualTy = QC.strip(ArgType); 3346 QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); 3347 if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) { 3348 if (Attr->getCaptureKind() == OMPC_map) { 3349 PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy, 3350 LangAS::opencl_global); 3351 } 3352 } 3353 ArgType = CGM.getContext().getPointerType(PointeeTy); 3354 QC.addRestrict(); 3355 enum { NVPTX_local_addr = 5 }; 3356 QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr)); 3357 ArgType = QC.apply(CGM.getContext(), ArgType); 3358 if (isa<ImplicitParamDecl>(NativeParam)) 3359 return ImplicitParamDecl::Create( 3360 CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(), 3361 NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other); 3362 return ParmVarDecl::Create( 3363 CGM.getContext(), 3364 const_cast<DeclContext *>(NativeParam->getDeclContext()), 3365 NativeParam->getBeginLoc(), NativeParam->getLocation(), 3366 NativeParam->getIdentifier(), ArgType, 3367 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 3368 } 3369 3370 Address 3371 CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF, 3372 const VarDecl *NativeParam, 3373 const VarDecl *TargetParam) const { 3374 assert(NativeParam != TargetParam && 3375 NativeParam->getType()->isReferenceType() && 3376 "Native arg must not be the same as target arg."); 3377 Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam); 3378 QualType NativeParamType = NativeParam->getType(); 3379 QualifierCollector QC; 3380 const Type *NonQualTy = QC.strip(NativeParamType); 3381 QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); 3382 unsigned NativePointeeAddrSpace = 3383 CGF.getContext().getTargetAddressSpace(NativePointeeTy); 3384 QualType TargetTy = TargetParam->getType(); 3385 llvm::Value *TargetAddr = CGF.EmitLoadOfScalar( 3386 LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation()); 3387 // First cast to generic. 3388 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3389 TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo( 3390 /*AddrSpace=*/0)); 3391 // Cast from generic to native address space. 3392 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3393 TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo( 3394 NativePointeeAddrSpace)); 3395 Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType); 3396 CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false, 3397 NativeParamType); 3398 return NativeParamAddr; 3399 } 3400 3401 void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall( 3402 CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn, 3403 ArrayRef<llvm::Value *> Args) const { 3404 SmallVector<llvm::Value *, 4> TargetArgs; 3405 TargetArgs.reserve(Args.size()); 3406 auto *FnType = OutlinedFn.getFunctionType(); 3407 for (unsigned I = 0, E = Args.size(); I < E; ++I) { 3408 if (FnType->isVarArg() && FnType->getNumParams() <= I) { 3409 TargetArgs.append(std::next(Args.begin(), I), Args.end()); 3410 break; 3411 } 3412 llvm::Type *TargetType = FnType->getParamType(I); 3413 llvm::Value *NativeArg = Args[I]; 3414 if (!TargetType->isPointerTy()) { 3415 TargetArgs.emplace_back(NativeArg); 3416 continue; 3417 } 3418 llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3419 NativeArg, 3420 NativeArg->getType()->getPointerElementType()->getPointerTo()); 3421 TargetArgs.emplace_back( 3422 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType)); 3423 } 3424 CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs); 3425 } 3426 3427 /// Emit function which wraps the outline parallel region 3428 /// and controls the arguments which are passed to this function. 3429 /// The wrapper ensures that the outlined function is called 3430 /// with the correct arguments when data is shared. 3431 llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper( 3432 llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) { 3433 ASTContext &Ctx = CGM.getContext(); 3434 const auto &CS = *D.getCapturedStmt(OMPD_parallel); 3435 3436 // Create a function that takes as argument the source thread. 3437 FunctionArgList WrapperArgs; 3438 QualType Int16QTy = 3439 Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false); 3440 QualType Int32QTy = 3441 Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false); 3442 ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), 3443 /*Id=*/nullptr, Int16QTy, 3444 ImplicitParamDecl::Other); 3445 ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), 3446 /*Id=*/nullptr, Int32QTy, 3447 ImplicitParamDecl::Other); 3448 WrapperArgs.emplace_back(&ParallelLevelArg); 3449 WrapperArgs.emplace_back(&WrapperArg); 3450 3451 const CGFunctionInfo &CGFI = 3452 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs); 3453 3454 auto *Fn = llvm::Function::Create( 3455 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 3456 Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule()); 3457 3458 // Ensure we do not inline the function. This is trivially true for the ones 3459 // passed to __kmpc_fork_call but the ones calles in serialized regions 3460 // could be inlined. This is not a perfect but it is closer to the invariant 3461 // we want, namely, every data environment starts with a new function. 3462 // TODO: We should pass the if condition to the runtime function and do the 3463 // handling there. Much cleaner code. 3464 Fn->addFnAttr(llvm::Attribute::NoInline); 3465 3466 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 3467 Fn->setLinkage(llvm::GlobalValue::InternalLinkage); 3468 Fn->setDoesNotRecurse(); 3469 3470 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3471 CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs, 3472 D.getBeginLoc(), D.getBeginLoc()); 3473 3474 const auto *RD = CS.getCapturedRecordDecl(); 3475 auto CurField = RD->field_begin(); 3476 3477 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 3478 /*Name=*/".zero.addr"); 3479 CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); 3480 // Get the array of arguments. 3481 SmallVector<llvm::Value *, 8> Args; 3482 3483 Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer()); 3484 Args.emplace_back(ZeroAddr.getPointer()); 3485 3486 CGBuilderTy &Bld = CGF.Builder; 3487 auto CI = CS.capture_begin(); 3488 3489 // Use global memory for data sharing. 3490 // Handle passing of global args to workers. 3491 Address GlobalArgs = 3492 CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args"); 3493 llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer(); 3494 llvm::Value *DataSharingArgs[] = {GlobalArgsPtr}; 3495 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 3496 CGM.getModule(), OMPRTL___kmpc_get_shared_variables), 3497 DataSharingArgs); 3498 3499 // Retrieve the shared variables from the list of references returned 3500 // by the runtime. Pass the variables to the outlined function. 3501 Address SharedArgListAddress = Address::invalid(); 3502 if (CS.capture_size() > 0 || 3503 isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { 3504 SharedArgListAddress = CGF.EmitLoadOfPointer( 3505 GlobalArgs, CGF.getContext() 3506 .getPointerType(CGF.getContext().getPointerType( 3507 CGF.getContext().VoidPtrTy)) 3508 .castAs<PointerType>()); 3509 } 3510 unsigned Idx = 0; 3511 if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { 3512 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 3513 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3514 Src, CGF.SizeTy->getPointerTo()); 3515 llvm::Value *LB = CGF.EmitLoadOfScalar( 3516 TypedAddress, 3517 /*Volatile=*/false, 3518 CGF.getContext().getPointerType(CGF.getContext().getSizeType()), 3519 cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc()); 3520 Args.emplace_back(LB); 3521 ++Idx; 3522 Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 3523 TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3524 Src, CGF.SizeTy->getPointerTo()); 3525 llvm::Value *UB = CGF.EmitLoadOfScalar( 3526 TypedAddress, 3527 /*Volatile=*/false, 3528 CGF.getContext().getPointerType(CGF.getContext().getSizeType()), 3529 cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc()); 3530 Args.emplace_back(UB); 3531 ++Idx; 3532 } 3533 if (CS.capture_size() > 0) { 3534 ASTContext &CGFContext = CGF.getContext(); 3535 for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) { 3536 QualType ElemTy = CurField->getType(); 3537 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx); 3538 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3539 Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy))); 3540 llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress, 3541 /*Volatile=*/false, 3542 CGFContext.getPointerType(ElemTy), 3543 CI->getLocation()); 3544 if (CI->capturesVariableByCopy() && 3545 !CI->getCapturedVar()->getType()->isAnyPointerType()) { 3546 Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(), 3547 CI->getLocation()); 3548 } 3549 Args.emplace_back(Arg); 3550 } 3551 } 3552 3553 emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args); 3554 CGF.FinishFunction(); 3555 return Fn; 3556 } 3557 3558 void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF, 3559 const Decl *D) { 3560 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) 3561 return; 3562 3563 assert(D && "Expected function or captured|block decl."); 3564 assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 && 3565 "Function is registered already."); 3566 assert((!TeamAndReductions.first || TeamAndReductions.first == D) && 3567 "Team is set but not processed."); 3568 const Stmt *Body = nullptr; 3569 bool NeedToDelayGlobalization = false; 3570 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3571 Body = FD->getBody(); 3572 } else if (const auto *BD = dyn_cast<BlockDecl>(D)) { 3573 Body = BD->getBody(); 3574 } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) { 3575 Body = CD->getBody(); 3576 NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP; 3577 if (NeedToDelayGlobalization && 3578 getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 3579 return; 3580 } 3581 if (!Body) 3582 return; 3583 CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second); 3584 VarChecker.Visit(Body); 3585 const RecordDecl *GlobalizedVarsRecord = 3586 VarChecker.getGlobalizedRecord(IsInTTDRegion); 3587 TeamAndReductions.first = nullptr; 3588 TeamAndReductions.second.clear(); 3589 ArrayRef<const ValueDecl *> EscapedVariableLengthDecls = 3590 VarChecker.getEscapedVariableLengthDecls(); 3591 if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty()) 3592 return; 3593 auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; 3594 I->getSecond().MappedParams = 3595 std::make_unique<CodeGenFunction::OMPMapVars>(); 3596 I->getSecond().EscapedParameters.insert( 3597 VarChecker.getEscapedParameters().begin(), 3598 VarChecker.getEscapedParameters().end()); 3599 I->getSecond().EscapedVariableLengthDecls.append( 3600 EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end()); 3601 DeclToAddrMapTy &Data = I->getSecond().LocalVarData; 3602 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { 3603 assert(VD->isCanonicalDecl() && "Expected canonical declaration"); 3604 Data.insert(std::make_pair(VD, MappedVarData())); 3605 } 3606 if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) { 3607 CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None); 3608 VarChecker.Visit(Body); 3609 I->getSecond().SecondaryLocalVarData.emplace(); 3610 DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue(); 3611 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { 3612 assert(VD->isCanonicalDecl() && "Expected canonical declaration"); 3613 Data.insert(std::make_pair(VD, MappedVarData())); 3614 } 3615 } 3616 if (!NeedToDelayGlobalization) { 3617 emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true); 3618 struct GlobalizationScope final : EHScopeStack::Cleanup { 3619 GlobalizationScope() = default; 3620 3621 void Emit(CodeGenFunction &CGF, Flags flags) override { 3622 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) 3623 .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true); 3624 } 3625 }; 3626 CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup); 3627 } 3628 } 3629 3630 Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF, 3631 const VarDecl *VD) { 3632 if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) { 3633 const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); 3634 auto AS = LangAS::Default; 3635 switch (A->getAllocatorType()) { 3636 // Use the default allocator here as by default local vars are 3637 // threadlocal. 3638 case OMPAllocateDeclAttr::OMPNullMemAlloc: 3639 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: 3640 case OMPAllocateDeclAttr::OMPThreadMemAlloc: 3641 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: 3642 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: 3643 // Follow the user decision - use default allocation. 3644 return Address::invalid(); 3645 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: 3646 // TODO: implement aupport for user-defined allocators. 3647 return Address::invalid(); 3648 case OMPAllocateDeclAttr::OMPConstMemAlloc: 3649 AS = LangAS::cuda_constant; 3650 break; 3651 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: 3652 AS = LangAS::cuda_shared; 3653 break; 3654 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: 3655 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: 3656 break; 3657 } 3658 llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType()); 3659 auto *GV = new llvm::GlobalVariable( 3660 CGM.getModule(), VarTy, /*isConstant=*/false, 3661 llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy), 3662 VD->getName(), 3663 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, 3664 CGM.getContext().getTargetAddressSpace(AS)); 3665 CharUnits Align = CGM.getContext().getDeclAlign(VD); 3666 GV->setAlignment(Align.getAsAlign()); 3667 return Address( 3668 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3669 GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace( 3670 VD->getType().getAddressSpace()))), 3671 Align); 3672 } 3673 3674 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) 3675 return Address::invalid(); 3676 3677 VD = VD->getCanonicalDecl(); 3678 auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 3679 if (I == FunctionGlobalizedDecls.end()) 3680 return Address::invalid(); 3681 auto VDI = I->getSecond().LocalVarData.find(VD); 3682 if (VDI != I->getSecond().LocalVarData.end()) 3683 return VDI->second.PrivateAddr; 3684 if (VD->hasAttrs()) { 3685 for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()), 3686 E(VD->attr_end()); 3687 IT != E; ++IT) { 3688 auto VDI = I->getSecond().LocalVarData.find( 3689 cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl()) 3690 ->getCanonicalDecl()); 3691 if (VDI != I->getSecond().LocalVarData.end()) 3692 return VDI->second.PrivateAddr; 3693 } 3694 } 3695 3696 return Address::invalid(); 3697 } 3698 3699 void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) { 3700 FunctionGlobalizedDecls.erase(CGF.CurFn); 3701 CGOpenMPRuntime::functionFinished(CGF); 3702 } 3703 3704 void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk( 3705 CodeGenFunction &CGF, const OMPLoopDirective &S, 3706 OpenMPDistScheduleClauseKind &ScheduleKind, 3707 llvm::Value *&Chunk) const { 3708 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 3709 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { 3710 ScheduleKind = OMPC_DIST_SCHEDULE_static; 3711 Chunk = CGF.EmitScalarConversion( 3712 RT.getGPUNumThreads(CGF), 3713 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3714 S.getIterationVariable()->getType(), S.getBeginLoc()); 3715 return; 3716 } 3717 CGOpenMPRuntime::getDefaultDistScheduleAndChunk( 3718 CGF, S, ScheduleKind, Chunk); 3719 } 3720 3721 void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk( 3722 CodeGenFunction &CGF, const OMPLoopDirective &S, 3723 OpenMPScheduleClauseKind &ScheduleKind, 3724 const Expr *&ChunkExpr) const { 3725 ScheduleKind = OMPC_SCHEDULE_static; 3726 // Chunk size is 1 in this case. 3727 llvm::APInt ChunkSize(32, 1); 3728 ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize, 3729 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3730 SourceLocation()); 3731 } 3732 3733 void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas( 3734 CodeGenFunction &CGF, const OMPExecutableDirective &D) const { 3735 assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) && 3736 " Expected target-based directive."); 3737 const CapturedStmt *CS = D.getCapturedStmt(OMPD_target); 3738 for (const CapturedStmt::Capture &C : CS->captures()) { 3739 // Capture variables captured by reference in lambdas for target-based 3740 // directives. 3741 if (!C.capturesVariable()) 3742 continue; 3743 const VarDecl *VD = C.getCapturedVar(); 3744 const auto *RD = VD->getType() 3745 .getCanonicalType() 3746 .getNonReferenceType() 3747 ->getAsCXXRecordDecl(); 3748 if (!RD || !RD->isLambda()) 3749 continue; 3750 Address VDAddr = CGF.GetAddrOfLocalVar(VD); 3751 LValue VDLVal; 3752 if (VD->getType().getCanonicalType()->isReferenceType()) 3753 VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType()); 3754 else 3755 VDLVal = CGF.MakeAddrLValue( 3756 VDAddr, VD->getType().getCanonicalType().getNonReferenceType()); 3757 llvm::DenseMap<const VarDecl *, FieldDecl *> Captures; 3758 FieldDecl *ThisCapture = nullptr; 3759 RD->getCaptureFields(Captures, ThisCapture); 3760 if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) { 3761 LValue ThisLVal = 3762 CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture); 3763 llvm::Value *CXXThis = CGF.LoadCXXThis(); 3764 CGF.EmitStoreOfScalar(CXXThis, ThisLVal); 3765 } 3766 for (const LambdaCapture &LC : RD->captures()) { 3767 if (LC.getCaptureKind() != LCK_ByRef) 3768 continue; 3769 const VarDecl *VD = LC.getCapturedVar(); 3770 if (!CS->capturesVariable(VD)) 3771 continue; 3772 auto It = Captures.find(VD); 3773 assert(It != Captures.end() && "Found lambda capture without field."); 3774 LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second); 3775 Address VDAddr = CGF.GetAddrOfLocalVar(VD); 3776 if (VD->getType().getCanonicalType()->isReferenceType()) 3777 VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr, 3778 VD->getType().getCanonicalType()) 3779 .getAddress(CGF); 3780 CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal); 3781 } 3782 } 3783 } 3784 3785 bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD, 3786 LangAS &AS) { 3787 if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>()) 3788 return false; 3789 const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); 3790 switch(A->getAllocatorType()) { 3791 case OMPAllocateDeclAttr::OMPNullMemAlloc: 3792 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: 3793 // Not supported, fallback to the default mem space. 3794 case OMPAllocateDeclAttr::OMPThreadMemAlloc: 3795 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: 3796 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: 3797 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: 3798 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: 3799 AS = LangAS::Default; 3800 return true; 3801 case OMPAllocateDeclAttr::OMPConstMemAlloc: 3802 AS = LangAS::cuda_constant; 3803 return true; 3804 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: 3805 AS = LangAS::cuda_shared; 3806 return true; 3807 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: 3808 llvm_unreachable("Expected predefined allocator for the variables with the " 3809 "static storage."); 3810 } 3811 return false; 3812 } 3813 3814 // Get current CudaArch and ignore any unknown values 3815 static CudaArch getCudaArch(CodeGenModule &CGM) { 3816 if (!CGM.getTarget().hasFeature("ptx")) 3817 return CudaArch::UNKNOWN; 3818 for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) { 3819 if (Feature.getValue()) { 3820 CudaArch Arch = StringToCudaArch(Feature.getKey()); 3821 if (Arch != CudaArch::UNKNOWN) 3822 return Arch; 3823 } 3824 } 3825 return CudaArch::UNKNOWN; 3826 } 3827 3828 /// Check to see if target architecture supports unified addressing which is 3829 /// a restriction for OpenMP requires clause "unified_shared_memory". 3830 void CGOpenMPRuntimeGPU::processRequiresDirective( 3831 const OMPRequiresDecl *D) { 3832 for (const OMPClause *Clause : D->clauselists()) { 3833 if (Clause->getClauseKind() == OMPC_unified_shared_memory) { 3834 CudaArch Arch = getCudaArch(CGM); 3835 switch (Arch) { 3836 case CudaArch::SM_20: 3837 case CudaArch::SM_21: 3838 case CudaArch::SM_30: 3839 case CudaArch::SM_32: 3840 case CudaArch::SM_35: 3841 case CudaArch::SM_37: 3842 case CudaArch::SM_50: 3843 case CudaArch::SM_52: 3844 case CudaArch::SM_53: { 3845 SmallString<256> Buffer; 3846 llvm::raw_svector_ostream Out(Buffer); 3847 Out << "Target architecture " << CudaArchToString(Arch) 3848 << " does not support unified addressing"; 3849 CGM.Error(Clause->getBeginLoc(), Out.str()); 3850 return; 3851 } 3852 case CudaArch::SM_60: 3853 case CudaArch::SM_61: 3854 case CudaArch::SM_62: 3855 case CudaArch::SM_70: 3856 case CudaArch::SM_72: 3857 case CudaArch::SM_75: 3858 case CudaArch::SM_80: 3859 case CudaArch::SM_86: 3860 case CudaArch::GFX600: 3861 case CudaArch::GFX601: 3862 case CudaArch::GFX602: 3863 case CudaArch::GFX700: 3864 case CudaArch::GFX701: 3865 case CudaArch::GFX702: 3866 case CudaArch::GFX703: 3867 case CudaArch::GFX704: 3868 case CudaArch::GFX705: 3869 case CudaArch::GFX801: 3870 case CudaArch::GFX802: 3871 case CudaArch::GFX803: 3872 case CudaArch::GFX805: 3873 case CudaArch::GFX810: 3874 case CudaArch::GFX900: 3875 case CudaArch::GFX902: 3876 case CudaArch::GFX904: 3877 case CudaArch::GFX906: 3878 case CudaArch::GFX908: 3879 case CudaArch::GFX909: 3880 case CudaArch::GFX90a: 3881 case CudaArch::GFX90c: 3882 case CudaArch::GFX1010: 3883 case CudaArch::GFX1011: 3884 case CudaArch::GFX1012: 3885 case CudaArch::GFX1013: 3886 case CudaArch::GFX1030: 3887 case CudaArch::GFX1031: 3888 case CudaArch::GFX1032: 3889 case CudaArch::GFX1033: 3890 case CudaArch::GFX1034: 3891 case CudaArch::GFX1035: 3892 case CudaArch::UNUSED: 3893 case CudaArch::UNKNOWN: 3894 break; 3895 case CudaArch::LAST: 3896 llvm_unreachable("Unexpected Cuda arch."); 3897 } 3898 } 3899 } 3900 CGOpenMPRuntime::processRequiresDirective(D); 3901 } 3902 3903 void CGOpenMPRuntimeGPU::clear() { 3904 3905 if (!TeamsReductions.empty()) { 3906 ASTContext &C = CGM.getContext(); 3907 RecordDecl *StaticRD = C.buildImplicitRecord( 3908 "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union); 3909 StaticRD->startDefinition(); 3910 for (const RecordDecl *TeamReductionRec : TeamsReductions) { 3911 QualType RecTy = C.getRecordType(TeamReductionRec); 3912 auto *Field = FieldDecl::Create( 3913 C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy, 3914 C.getTrivialTypeSourceInfo(RecTy, SourceLocation()), 3915 /*BW=*/nullptr, /*Mutable=*/false, 3916 /*InitStyle=*/ICIS_NoInit); 3917 Field->setAccess(AS_public); 3918 StaticRD->addDecl(Field); 3919 } 3920 StaticRD->completeDefinition(); 3921 QualType StaticTy = C.getRecordType(StaticRD); 3922 llvm::Type *LLVMReductionsBufferTy = 3923 CGM.getTypes().ConvertTypeForMem(StaticTy); 3924 // FIXME: nvlink does not handle weak linkage correctly (object with the 3925 // different size are reported as erroneous). 3926 // Restore CommonLinkage as soon as nvlink is fixed. 3927 auto *GV = new llvm::GlobalVariable( 3928 CGM.getModule(), LLVMReductionsBufferTy, 3929 /*isConstant=*/false, llvm::GlobalValue::InternalLinkage, 3930 llvm::Constant::getNullValue(LLVMReductionsBufferTy), 3931 "_openmp_teams_reductions_buffer_$_"); 3932 KernelTeamsReductionPtr->setInitializer( 3933 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 3934 CGM.VoidPtrTy)); 3935 } 3936 CGOpenMPRuntime::clear(); 3937 } 3938