1 //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides a generalized class for OpenMP runtime code generation 10 // specialized by GPU targets NVPTX and AMDGCN. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGOpenMPRuntimeGPU.h" 15 #include "CodeGenFunction.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/DeclOpenMP.h" 18 #include "clang/AST/OpenMPClause.h" 19 #include "clang/AST/StmtOpenMP.h" 20 #include "clang/AST/StmtVisitor.h" 21 #include "clang/Basic/Cuda.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 24 #include "llvm/Support/MathExtras.h" 25 26 using namespace clang; 27 using namespace CodeGen; 28 using namespace llvm::omp; 29 30 namespace { 31 /// Pre(post)-action for different OpenMP constructs specialized for NVPTX. 32 class NVPTXActionTy final : public PrePostActionTy { 33 llvm::FunctionCallee EnterCallee = nullptr; 34 ArrayRef<llvm::Value *> EnterArgs; 35 llvm::FunctionCallee ExitCallee = nullptr; 36 ArrayRef<llvm::Value *> ExitArgs; 37 bool Conditional = false; 38 llvm::BasicBlock *ContBlock = nullptr; 39 40 public: 41 NVPTXActionTy(llvm::FunctionCallee EnterCallee, 42 ArrayRef<llvm::Value *> EnterArgs, 43 llvm::FunctionCallee ExitCallee, 44 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false) 45 : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee), 46 ExitArgs(ExitArgs), Conditional(Conditional) {} 47 void Enter(CodeGenFunction &CGF) override { 48 llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs); 49 if (Conditional) { 50 llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes); 51 auto *ThenBlock = CGF.createBasicBlock("omp_if.then"); 52 ContBlock = CGF.createBasicBlock("omp_if.end"); 53 // Generate the branch (If-stmt) 54 CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock); 55 CGF.EmitBlock(ThenBlock); 56 } 57 } 58 void Done(CodeGenFunction &CGF) { 59 // Emit the rest of blocks/branches 60 CGF.EmitBranch(ContBlock); 61 CGF.EmitBlock(ContBlock, true); 62 } 63 void Exit(CodeGenFunction &CGF) override { 64 CGF.EmitRuntimeCall(ExitCallee, ExitArgs); 65 } 66 }; 67 68 /// A class to track the execution mode when codegening directives within 69 /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry 70 /// to the target region and used by containing directives such as 'parallel' 71 /// to emit optimized code. 72 class ExecutionRuntimeModesRAII { 73 private: 74 CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode = 75 CGOpenMPRuntimeGPU::EM_Unknown; 76 CGOpenMPRuntimeGPU::ExecutionMode &ExecMode; 77 78 public: 79 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode, 80 CGOpenMPRuntimeGPU::ExecutionMode EntryMode) 81 : ExecMode(ExecMode) { 82 SavedExecMode = ExecMode; 83 ExecMode = EntryMode; 84 } 85 ~ExecutionRuntimeModesRAII() { ExecMode = SavedExecMode; } 86 }; 87 88 /// GPU Configuration: This information can be derived from cuda registers, 89 /// however, providing compile time constants helps generate more efficient 90 /// code. For all practical purposes this is fine because the configuration 91 /// is the same for all known NVPTX architectures. 92 enum MachineConfiguration : unsigned { 93 /// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target 94 /// specific Grid Values like GV_Warp_Size, GV_Slot_Size 95 96 /// Global memory alignment for performance. 97 GlobalMemoryAlignment = 128, 98 }; 99 100 static const ValueDecl *getPrivateItem(const Expr *RefExpr) { 101 RefExpr = RefExpr->IgnoreParens(); 102 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) { 103 const Expr *Base = ASE->getBase()->IgnoreParenImpCasts(); 104 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 105 Base = TempASE->getBase()->IgnoreParenImpCasts(); 106 RefExpr = Base; 107 } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) { 108 const Expr *Base = OASE->getBase()->IgnoreParenImpCasts(); 109 while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base)) 110 Base = TempOASE->getBase()->IgnoreParenImpCasts(); 111 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 112 Base = TempASE->getBase()->IgnoreParenImpCasts(); 113 RefExpr = Base; 114 } 115 RefExpr = RefExpr->IgnoreParenImpCasts(); 116 if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr)) 117 return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl()); 118 const auto *ME = cast<MemberExpr>(RefExpr); 119 return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl()); 120 } 121 122 123 static RecordDecl *buildRecordForGlobalizedVars( 124 ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls, 125 ArrayRef<const ValueDecl *> EscapedDeclsForTeams, 126 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 127 &MappedDeclsFields, int BufSize) { 128 using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>; 129 if (EscapedDecls.empty() && EscapedDeclsForTeams.empty()) 130 return nullptr; 131 SmallVector<VarsDataTy, 4> GlobalizedVars; 132 for (const ValueDecl *D : EscapedDecls) 133 GlobalizedVars.emplace_back( 134 CharUnits::fromQuantity(std::max( 135 C.getDeclAlign(D).getQuantity(), 136 static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))), 137 D); 138 for (const ValueDecl *D : EscapedDeclsForTeams) 139 GlobalizedVars.emplace_back(C.getDeclAlign(D), D); 140 llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) { 141 return L.first > R.first; 142 }); 143 144 // Build struct _globalized_locals_ty { 145 // /* globalized vars */[WarSize] align (max(decl_align, 146 // GlobalMemoryAlignment)) 147 // /* globalized vars */ for EscapedDeclsForTeams 148 // }; 149 RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty"); 150 GlobalizedRD->startDefinition(); 151 llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped( 152 EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end()); 153 for (const auto &Pair : GlobalizedVars) { 154 const ValueDecl *VD = Pair.second; 155 QualType Type = VD->getType(); 156 if (Type->isLValueReferenceType()) 157 Type = C.getPointerType(Type.getNonReferenceType()); 158 else 159 Type = Type.getNonReferenceType(); 160 SourceLocation Loc = VD->getLocation(); 161 FieldDecl *Field; 162 if (SingleEscaped.count(VD)) { 163 Field = FieldDecl::Create( 164 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, 165 C.getTrivialTypeSourceInfo(Type, SourceLocation()), 166 /*BW=*/nullptr, /*Mutable=*/false, 167 /*InitStyle=*/ICIS_NoInit); 168 Field->setAccess(AS_public); 169 if (VD->hasAttrs()) { 170 for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()), 171 E(VD->getAttrs().end()); 172 I != E; ++I) 173 Field->addAttr(*I); 174 } 175 } else { 176 llvm::APInt ArraySize(32, BufSize); 177 Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal, 178 0); 179 Field = FieldDecl::Create( 180 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, 181 C.getTrivialTypeSourceInfo(Type, SourceLocation()), 182 /*BW=*/nullptr, /*Mutable=*/false, 183 /*InitStyle=*/ICIS_NoInit); 184 Field->setAccess(AS_public); 185 llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(), 186 static_cast<CharUnits::QuantityType>( 187 GlobalMemoryAlignment))); 188 Field->addAttr(AlignedAttr::CreateImplicit( 189 C, /*IsAlignmentExpr=*/true, 190 IntegerLiteral::Create(C, Align, 191 C.getIntTypeForBitwidth(32, /*Signed=*/0), 192 SourceLocation()), 193 {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned)); 194 } 195 GlobalizedRD->addDecl(Field); 196 MappedDeclsFields.try_emplace(VD, Field); 197 } 198 GlobalizedRD->completeDefinition(); 199 return GlobalizedRD; 200 } 201 202 /// Get the list of variables that can escape their declaration context. 203 class CheckVarsEscapingDeclContext final 204 : public ConstStmtVisitor<CheckVarsEscapingDeclContext> { 205 CodeGenFunction &CGF; 206 llvm::SetVector<const ValueDecl *> EscapedDecls; 207 llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls; 208 llvm::SmallPtrSet<const Decl *, 4> EscapedParameters; 209 RecordDecl *GlobalizedRD = nullptr; 210 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; 211 bool AllEscaped = false; 212 bool IsForCombinedParallelRegion = false; 213 214 void markAsEscaped(const ValueDecl *VD) { 215 // Do not globalize declare target variables. 216 if (!isa<VarDecl>(VD) || 217 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) 218 return; 219 VD = cast<ValueDecl>(VD->getCanonicalDecl()); 220 // Use user-specified allocation. 221 if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>()) 222 return; 223 // Variables captured by value must be globalized. 224 if (auto *CSI = CGF.CapturedStmtInfo) { 225 if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) { 226 // Check if need to capture the variable that was already captured by 227 // value in the outer region. 228 if (!IsForCombinedParallelRegion) { 229 if (!FD->hasAttrs()) 230 return; 231 const auto *Attr = FD->getAttr<OMPCaptureKindAttr>(); 232 if (!Attr) 233 return; 234 if (((Attr->getCaptureKind() != OMPC_map) && 235 !isOpenMPPrivate(Attr->getCaptureKind())) || 236 ((Attr->getCaptureKind() == OMPC_map) && 237 !FD->getType()->isAnyPointerType())) 238 return; 239 } 240 if (!FD->getType()->isReferenceType()) { 241 assert(!VD->getType()->isVariablyModifiedType() && 242 "Parameter captured by value with variably modified type"); 243 EscapedParameters.insert(VD); 244 } else if (!IsForCombinedParallelRegion) { 245 return; 246 } 247 } 248 } 249 if ((!CGF.CapturedStmtInfo || 250 (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) && 251 VD->getType()->isReferenceType()) 252 // Do not globalize variables with reference type. 253 return; 254 if (VD->getType()->isVariablyModifiedType()) 255 EscapedVariableLengthDecls.insert(VD); 256 else 257 EscapedDecls.insert(VD); 258 } 259 260 void VisitValueDecl(const ValueDecl *VD) { 261 if (VD->getType()->isLValueReferenceType()) 262 markAsEscaped(VD); 263 if (const auto *VarD = dyn_cast<VarDecl>(VD)) { 264 if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) { 265 const bool SavedAllEscaped = AllEscaped; 266 AllEscaped = VD->getType()->isLValueReferenceType(); 267 Visit(VarD->getInit()); 268 AllEscaped = SavedAllEscaped; 269 } 270 } 271 } 272 void VisitOpenMPCapturedStmt(const CapturedStmt *S, 273 ArrayRef<OMPClause *> Clauses, 274 bool IsCombinedParallelRegion) { 275 if (!S) 276 return; 277 for (const CapturedStmt::Capture &C : S->captures()) { 278 if (C.capturesVariable() && !C.capturesVariableByCopy()) { 279 const ValueDecl *VD = C.getCapturedVar(); 280 bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion; 281 if (IsCombinedParallelRegion) { 282 // Check if the variable is privatized in the combined construct and 283 // those private copies must be shared in the inner parallel 284 // directive. 285 IsForCombinedParallelRegion = false; 286 for (const OMPClause *C : Clauses) { 287 if (!isOpenMPPrivate(C->getClauseKind()) || 288 C->getClauseKind() == OMPC_reduction || 289 C->getClauseKind() == OMPC_linear || 290 C->getClauseKind() == OMPC_private) 291 continue; 292 ArrayRef<const Expr *> Vars; 293 if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C)) 294 Vars = PC->getVarRefs(); 295 else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C)) 296 Vars = PC->getVarRefs(); 297 else 298 llvm_unreachable("Unexpected clause."); 299 for (const auto *E : Vars) { 300 const Decl *D = 301 cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl(); 302 if (D == VD->getCanonicalDecl()) { 303 IsForCombinedParallelRegion = true; 304 break; 305 } 306 } 307 if (IsForCombinedParallelRegion) 308 break; 309 } 310 } 311 markAsEscaped(VD); 312 if (isa<OMPCapturedExprDecl>(VD)) 313 VisitValueDecl(VD); 314 IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion; 315 } 316 } 317 } 318 319 void buildRecordForGlobalizedVars(bool IsInTTDRegion) { 320 assert(!GlobalizedRD && 321 "Record for globalized variables is built already."); 322 ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams; 323 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size; 324 if (IsInTTDRegion) 325 EscapedDeclsForTeams = EscapedDecls.getArrayRef(); 326 else 327 EscapedDeclsForParallel = EscapedDecls.getArrayRef(); 328 GlobalizedRD = ::buildRecordForGlobalizedVars( 329 CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams, 330 MappedDeclsFields, WarpSize); 331 } 332 333 public: 334 CheckVarsEscapingDeclContext(CodeGenFunction &CGF, 335 ArrayRef<const ValueDecl *> TeamsReductions) 336 : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) { 337 } 338 virtual ~CheckVarsEscapingDeclContext() = default; 339 void VisitDeclStmt(const DeclStmt *S) { 340 if (!S) 341 return; 342 for (const Decl *D : S->decls()) 343 if (const auto *VD = dyn_cast_or_null<ValueDecl>(D)) 344 VisitValueDecl(VD); 345 } 346 void VisitOMPExecutableDirective(const OMPExecutableDirective *D) { 347 if (!D) 348 return; 349 if (!D->hasAssociatedStmt()) 350 return; 351 if (const auto *S = 352 dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) { 353 // Do not analyze directives that do not actually require capturing, 354 // like `omp for` or `omp simd` directives. 355 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 356 getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind()); 357 if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) { 358 VisitStmt(S->getCapturedStmt()); 359 return; 360 } 361 VisitOpenMPCapturedStmt( 362 S, D->clauses(), 363 CaptureRegions.back() == OMPD_parallel && 364 isOpenMPDistributeDirective(D->getDirectiveKind())); 365 } 366 } 367 void VisitCapturedStmt(const CapturedStmt *S) { 368 if (!S) 369 return; 370 for (const CapturedStmt::Capture &C : S->captures()) { 371 if (C.capturesVariable() && !C.capturesVariableByCopy()) { 372 const ValueDecl *VD = C.getCapturedVar(); 373 markAsEscaped(VD); 374 if (isa<OMPCapturedExprDecl>(VD)) 375 VisitValueDecl(VD); 376 } 377 } 378 } 379 void VisitLambdaExpr(const LambdaExpr *E) { 380 if (!E) 381 return; 382 for (const LambdaCapture &C : E->captures()) { 383 if (C.capturesVariable()) { 384 if (C.getCaptureKind() == LCK_ByRef) { 385 const ValueDecl *VD = C.getCapturedVar(); 386 markAsEscaped(VD); 387 if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD)) 388 VisitValueDecl(VD); 389 } 390 } 391 } 392 } 393 void VisitBlockExpr(const BlockExpr *E) { 394 if (!E) 395 return; 396 for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) { 397 if (C.isByRef()) { 398 const VarDecl *VD = C.getVariable(); 399 markAsEscaped(VD); 400 if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture()) 401 VisitValueDecl(VD); 402 } 403 } 404 } 405 void VisitCallExpr(const CallExpr *E) { 406 if (!E) 407 return; 408 for (const Expr *Arg : E->arguments()) { 409 if (!Arg) 410 continue; 411 if (Arg->isLValue()) { 412 const bool SavedAllEscaped = AllEscaped; 413 AllEscaped = true; 414 Visit(Arg); 415 AllEscaped = SavedAllEscaped; 416 } else { 417 Visit(Arg); 418 } 419 } 420 Visit(E->getCallee()); 421 } 422 void VisitDeclRefExpr(const DeclRefExpr *E) { 423 if (!E) 424 return; 425 const ValueDecl *VD = E->getDecl(); 426 if (AllEscaped) 427 markAsEscaped(VD); 428 if (isa<OMPCapturedExprDecl>(VD)) 429 VisitValueDecl(VD); 430 else if (VD->isInitCapture()) 431 VisitValueDecl(VD); 432 } 433 void VisitUnaryOperator(const UnaryOperator *E) { 434 if (!E) 435 return; 436 if (E->getOpcode() == UO_AddrOf) { 437 const bool SavedAllEscaped = AllEscaped; 438 AllEscaped = true; 439 Visit(E->getSubExpr()); 440 AllEscaped = SavedAllEscaped; 441 } else { 442 Visit(E->getSubExpr()); 443 } 444 } 445 void VisitImplicitCastExpr(const ImplicitCastExpr *E) { 446 if (!E) 447 return; 448 if (E->getCastKind() == CK_ArrayToPointerDecay) { 449 const bool SavedAllEscaped = AllEscaped; 450 AllEscaped = true; 451 Visit(E->getSubExpr()); 452 AllEscaped = SavedAllEscaped; 453 } else { 454 Visit(E->getSubExpr()); 455 } 456 } 457 void VisitExpr(const Expr *E) { 458 if (!E) 459 return; 460 bool SavedAllEscaped = AllEscaped; 461 if (!E->isLValue()) 462 AllEscaped = false; 463 for (const Stmt *Child : E->children()) 464 if (Child) 465 Visit(Child); 466 AllEscaped = SavedAllEscaped; 467 } 468 void VisitStmt(const Stmt *S) { 469 if (!S) 470 return; 471 for (const Stmt *Child : S->children()) 472 if (Child) 473 Visit(Child); 474 } 475 476 /// Returns the record that handles all the escaped local variables and used 477 /// instead of their original storage. 478 const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) { 479 if (!GlobalizedRD) 480 buildRecordForGlobalizedVars(IsInTTDRegion); 481 return GlobalizedRD; 482 } 483 484 /// Returns the field in the globalized record for the escaped variable. 485 const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const { 486 assert(GlobalizedRD && 487 "Record for globalized variables must be generated already."); 488 auto I = MappedDeclsFields.find(VD); 489 if (I == MappedDeclsFields.end()) 490 return nullptr; 491 return I->getSecond(); 492 } 493 494 /// Returns the list of the escaped local variables/parameters. 495 ArrayRef<const ValueDecl *> getEscapedDecls() const { 496 return EscapedDecls.getArrayRef(); 497 } 498 499 /// Checks if the escaped local variable is actually a parameter passed by 500 /// value. 501 const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const { 502 return EscapedParameters; 503 } 504 505 /// Returns the list of the escaped variables with the variably modified 506 /// types. 507 ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const { 508 return EscapedVariableLengthDecls.getArrayRef(); 509 } 510 }; 511 } // anonymous namespace 512 513 /// Get the id of the warp in the block. 514 /// We assume that the warp size is 32, which is always the case 515 /// on the NVPTX device, to generate more efficient code. 516 static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) { 517 CGBuilderTy &Bld = CGF.Builder; 518 unsigned LaneIDBits = 519 llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size); 520 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 521 return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id"); 522 } 523 524 /// Get the id of the current lane in the Warp. 525 /// We assume that the warp size is 32, which is always the case 526 /// on the NVPTX device, to generate more efficient code. 527 static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) { 528 CGBuilderTy &Bld = CGF.Builder; 529 unsigned LaneIDBits = 530 llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size); 531 unsigned LaneIDMask = ~0u >> (32u - LaneIDBits); 532 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 533 return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask), 534 "nvptx_lane_id"); 535 } 536 537 CGOpenMPRuntimeGPU::ExecutionMode 538 CGOpenMPRuntimeGPU::getExecutionMode() const { 539 return CurrentExecutionMode; 540 } 541 542 static CGOpenMPRuntimeGPU::DataSharingMode 543 getDataSharingMode(CodeGenModule &CGM) { 544 return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA 545 : CGOpenMPRuntimeGPU::Generic; 546 } 547 548 /// Check for inner (nested) SPMD construct, if any 549 static bool hasNestedSPMDDirective(ASTContext &Ctx, 550 const OMPExecutableDirective &D) { 551 const auto *CS = D.getInnermostCapturedStmt(); 552 const auto *Body = 553 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 554 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 555 556 if (const auto *NestedDir = 557 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 558 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); 559 switch (D.getDirectiveKind()) { 560 case OMPD_target: 561 if (isOpenMPParallelDirective(DKind)) 562 return true; 563 if (DKind == OMPD_teams) { 564 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 565 /*IgnoreCaptured=*/true); 566 if (!Body) 567 return false; 568 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 569 if (const auto *NND = 570 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 571 DKind = NND->getDirectiveKind(); 572 if (isOpenMPParallelDirective(DKind)) 573 return true; 574 } 575 } 576 return false; 577 case OMPD_target_teams: 578 return isOpenMPParallelDirective(DKind); 579 case OMPD_target_simd: 580 case OMPD_target_parallel: 581 case OMPD_target_parallel_for: 582 case OMPD_target_parallel_for_simd: 583 case OMPD_target_teams_distribute: 584 case OMPD_target_teams_distribute_simd: 585 case OMPD_target_teams_distribute_parallel_for: 586 case OMPD_target_teams_distribute_parallel_for_simd: 587 case OMPD_parallel: 588 case OMPD_for: 589 case OMPD_parallel_for: 590 case OMPD_parallel_master: 591 case OMPD_parallel_sections: 592 case OMPD_for_simd: 593 case OMPD_parallel_for_simd: 594 case OMPD_cancel: 595 case OMPD_cancellation_point: 596 case OMPD_ordered: 597 case OMPD_threadprivate: 598 case OMPD_allocate: 599 case OMPD_task: 600 case OMPD_simd: 601 case OMPD_sections: 602 case OMPD_section: 603 case OMPD_single: 604 case OMPD_master: 605 case OMPD_critical: 606 case OMPD_taskyield: 607 case OMPD_barrier: 608 case OMPD_taskwait: 609 case OMPD_taskgroup: 610 case OMPD_atomic: 611 case OMPD_flush: 612 case OMPD_depobj: 613 case OMPD_scan: 614 case OMPD_teams: 615 case OMPD_target_data: 616 case OMPD_target_exit_data: 617 case OMPD_target_enter_data: 618 case OMPD_distribute: 619 case OMPD_distribute_simd: 620 case OMPD_distribute_parallel_for: 621 case OMPD_distribute_parallel_for_simd: 622 case OMPD_teams_distribute: 623 case OMPD_teams_distribute_simd: 624 case OMPD_teams_distribute_parallel_for: 625 case OMPD_teams_distribute_parallel_for_simd: 626 case OMPD_target_update: 627 case OMPD_declare_simd: 628 case OMPD_declare_variant: 629 case OMPD_begin_declare_variant: 630 case OMPD_end_declare_variant: 631 case OMPD_declare_target: 632 case OMPD_end_declare_target: 633 case OMPD_declare_reduction: 634 case OMPD_declare_mapper: 635 case OMPD_taskloop: 636 case OMPD_taskloop_simd: 637 case OMPD_master_taskloop: 638 case OMPD_master_taskloop_simd: 639 case OMPD_parallel_master_taskloop: 640 case OMPD_parallel_master_taskloop_simd: 641 case OMPD_requires: 642 case OMPD_unknown: 643 default: 644 llvm_unreachable("Unexpected directive."); 645 } 646 } 647 648 return false; 649 } 650 651 static bool supportsSPMDExecutionMode(ASTContext &Ctx, 652 const OMPExecutableDirective &D) { 653 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); 654 switch (DirectiveKind) { 655 case OMPD_target: 656 case OMPD_target_teams: 657 return hasNestedSPMDDirective(Ctx, D); 658 case OMPD_target_parallel: 659 case OMPD_target_parallel_for: 660 case OMPD_target_parallel_for_simd: 661 case OMPD_target_teams_distribute_parallel_for: 662 case OMPD_target_teams_distribute_parallel_for_simd: 663 case OMPD_target_simd: 664 case OMPD_target_teams_distribute_simd: 665 return true; 666 case OMPD_target_teams_distribute: 667 return false; 668 case OMPD_parallel: 669 case OMPD_for: 670 case OMPD_parallel_for: 671 case OMPD_parallel_master: 672 case OMPD_parallel_sections: 673 case OMPD_for_simd: 674 case OMPD_parallel_for_simd: 675 case OMPD_cancel: 676 case OMPD_cancellation_point: 677 case OMPD_ordered: 678 case OMPD_threadprivate: 679 case OMPD_allocate: 680 case OMPD_task: 681 case OMPD_simd: 682 case OMPD_sections: 683 case OMPD_section: 684 case OMPD_single: 685 case OMPD_master: 686 case OMPD_critical: 687 case OMPD_taskyield: 688 case OMPD_barrier: 689 case OMPD_taskwait: 690 case OMPD_taskgroup: 691 case OMPD_atomic: 692 case OMPD_flush: 693 case OMPD_depobj: 694 case OMPD_scan: 695 case OMPD_teams: 696 case OMPD_target_data: 697 case OMPD_target_exit_data: 698 case OMPD_target_enter_data: 699 case OMPD_distribute: 700 case OMPD_distribute_simd: 701 case OMPD_distribute_parallel_for: 702 case OMPD_distribute_parallel_for_simd: 703 case OMPD_teams_distribute: 704 case OMPD_teams_distribute_simd: 705 case OMPD_teams_distribute_parallel_for: 706 case OMPD_teams_distribute_parallel_for_simd: 707 case OMPD_target_update: 708 case OMPD_declare_simd: 709 case OMPD_declare_variant: 710 case OMPD_begin_declare_variant: 711 case OMPD_end_declare_variant: 712 case OMPD_declare_target: 713 case OMPD_end_declare_target: 714 case OMPD_declare_reduction: 715 case OMPD_declare_mapper: 716 case OMPD_taskloop: 717 case OMPD_taskloop_simd: 718 case OMPD_master_taskloop: 719 case OMPD_master_taskloop_simd: 720 case OMPD_parallel_master_taskloop: 721 case OMPD_parallel_master_taskloop_simd: 722 case OMPD_requires: 723 case OMPD_unknown: 724 default: 725 break; 726 } 727 llvm_unreachable( 728 "Unknown programming model for OpenMP directive on NVPTX target."); 729 } 730 731 void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D, 732 StringRef ParentName, 733 llvm::Function *&OutlinedFn, 734 llvm::Constant *&OutlinedFnID, 735 bool IsOffloadEntry, 736 const RegionCodeGenTy &CodeGen) { 737 ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode, EM_NonSPMD); 738 EntryFunctionState EST; 739 WrapperFunctionsMap.clear(); 740 741 // Emit target region as a standalone region. 742 class NVPTXPrePostActionTy : public PrePostActionTy { 743 CGOpenMPRuntimeGPU::EntryFunctionState &EST; 744 745 public: 746 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST) 747 : EST(EST) {} 748 void Enter(CodeGenFunction &CGF) override { 749 auto &RT = 750 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 751 RT.emitKernelInit(CGF, EST, /* IsSPMD */ false); 752 // Skip target region initialization. 753 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 754 } 755 void Exit(CodeGenFunction &CGF) override { 756 auto &RT = 757 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 758 RT.clearLocThreadIdInsertPt(CGF); 759 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false); 760 } 761 } Action(EST); 762 CodeGen.setAction(Action); 763 IsInTTDRegion = true; 764 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, 765 IsOffloadEntry, CodeGen); 766 IsInTTDRegion = false; 767 } 768 769 void CGOpenMPRuntimeGPU::emitKernelInit(CodeGenFunction &CGF, 770 EntryFunctionState &EST, bool IsSPMD) { 771 CGBuilderTy &Bld = CGF.Builder; 772 Bld.restoreIP(OMPBuilder.createTargetInit(Bld, IsSPMD)); 773 if (!IsSPMD) 774 emitGenericVarsProlog(CGF, EST.Loc); 775 } 776 777 void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF, 778 EntryFunctionState &EST, 779 bool IsSPMD) { 780 if (!IsSPMD) 781 emitGenericVarsEpilog(CGF); 782 783 CGBuilderTy &Bld = CGF.Builder; 784 OMPBuilder.createTargetDeinit(Bld, IsSPMD); 785 } 786 787 void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D, 788 StringRef ParentName, 789 llvm::Function *&OutlinedFn, 790 llvm::Constant *&OutlinedFnID, 791 bool IsOffloadEntry, 792 const RegionCodeGenTy &CodeGen) { 793 ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode, EM_SPMD); 794 EntryFunctionState EST; 795 796 // Emit target region as a standalone region. 797 class NVPTXPrePostActionTy : public PrePostActionTy { 798 CGOpenMPRuntimeGPU &RT; 799 CGOpenMPRuntimeGPU::EntryFunctionState &EST; 800 801 public: 802 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT, 803 CGOpenMPRuntimeGPU::EntryFunctionState &EST) 804 : RT(RT), EST(EST) {} 805 void Enter(CodeGenFunction &CGF) override { 806 RT.emitKernelInit(CGF, EST, /* IsSPMD */ true); 807 // Skip target region initialization. 808 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 809 } 810 void Exit(CodeGenFunction &CGF) override { 811 RT.clearLocThreadIdInsertPt(CGF); 812 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true); 813 } 814 } Action(*this, EST); 815 CodeGen.setAction(Action); 816 IsInTTDRegion = true; 817 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, 818 IsOffloadEntry, CodeGen); 819 IsInTTDRegion = false; 820 } 821 822 // Create a unique global variable to indicate the execution mode of this target 823 // region. The execution mode is either 'generic', or 'spmd' depending on the 824 // target directive. This variable is picked up by the offload library to setup 825 // the device appropriately before kernel launch. If the execution mode is 826 // 'generic', the runtime reserves one warp for the master, otherwise, all 827 // warps participate in parallel work. 828 static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name, 829 bool Mode) { 830 auto *GVMode = new llvm::GlobalVariable( 831 CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, 832 llvm::GlobalValue::WeakAnyLinkage, 833 llvm::ConstantInt::get(CGM.Int8Ty, Mode ? OMP_TGT_EXEC_MODE_SPMD 834 : OMP_TGT_EXEC_MODE_GENERIC), 835 Twine(Name, "_exec_mode")); 836 GVMode->setVisibility(llvm::GlobalVariable::ProtectedVisibility); 837 CGM.addCompilerUsedGlobal(GVMode); 838 } 839 840 void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction( 841 const OMPExecutableDirective &D, StringRef ParentName, 842 llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, 843 bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { 844 if (!IsOffloadEntry) // Nothing to do. 845 return; 846 847 assert(!ParentName.empty() && "Invalid target region parent name!"); 848 849 bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D); 850 if (Mode) 851 emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, 852 CodeGen); 853 else 854 emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, 855 CodeGen); 856 857 setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode); 858 } 859 860 CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM) 861 : CGOpenMPRuntime(CGM) { 862 llvm::OpenMPIRBuilderConfig Config(CGM.getLangOpts().OpenMPIsDevice, true, 863 hasRequiresUnifiedSharedMemory(), 864 CGM.getLangOpts().OpenMPOffloadMandatory); 865 OMPBuilder.setConfig(Config); 866 OffloadEntriesInfoManager.setConfig(Config); 867 868 if (!CGM.getLangOpts().OpenMPIsDevice) 869 llvm_unreachable("OpenMP can only handle device code."); 870 871 llvm::OpenMPIRBuilder &OMPBuilder = getOMPBuilder(); 872 if (CGM.getLangOpts().NoGPULib || CGM.getLangOpts().OMPHostIRFile.empty()) 873 return; 874 875 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTargetDebug, 876 "__omp_rtl_debug_kind"); 877 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTeamSubscription, 878 "__omp_rtl_assume_teams_oversubscription"); 879 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPThreadSubscription, 880 "__omp_rtl_assume_threads_oversubscription"); 881 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPNoThreadState, 882 "__omp_rtl_assume_no_thread_state"); 883 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPNoNestedParallelism, 884 "__omp_rtl_assume_no_nested_parallelism"); 885 } 886 887 void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF, 888 ProcBindKind ProcBind, 889 SourceLocation Loc) { 890 // Do nothing in case of SPMD mode and L0 parallel. 891 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 892 return; 893 894 CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc); 895 } 896 897 void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF, 898 llvm::Value *NumThreads, 899 SourceLocation Loc) { 900 // Nothing to do. 901 } 902 903 void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF, 904 const Expr *NumTeams, 905 const Expr *ThreadLimit, 906 SourceLocation Loc) {} 907 908 llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction( 909 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, 910 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { 911 // Emit target region as a standalone region. 912 bool PrevIsInTTDRegion = IsInTTDRegion; 913 IsInTTDRegion = false; 914 auto *OutlinedFun = 915 cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction( 916 D, ThreadIDVar, InnermostKind, CodeGen)); 917 IsInTTDRegion = PrevIsInTTDRegion; 918 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) { 919 llvm::Function *WrapperFun = 920 createParallelDataSharingWrapper(OutlinedFun, D); 921 WrapperFunctionsMap[OutlinedFun] = WrapperFun; 922 } 923 924 return OutlinedFun; 925 } 926 927 /// Get list of lastprivate variables from the teams distribute ... or 928 /// teams {distribute ...} directives. 929 static void 930 getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D, 931 llvm::SmallVectorImpl<const ValueDecl *> &Vars) { 932 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && 933 "expected teams directive."); 934 const OMPExecutableDirective *Dir = &D; 935 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 936 if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild( 937 Ctx, 938 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers( 939 /*IgnoreCaptured=*/true))) { 940 Dir = dyn_cast_or_null<OMPExecutableDirective>(S); 941 if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind())) 942 Dir = nullptr; 943 } 944 } 945 if (!Dir) 946 return; 947 for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) { 948 for (const Expr *E : C->getVarRefs()) 949 Vars.push_back(getPrivateItem(E)); 950 } 951 } 952 953 /// Get list of reduction variables from the teams ... directives. 954 static void 955 getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D, 956 llvm::SmallVectorImpl<const ValueDecl *> &Vars) { 957 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && 958 "expected teams directive."); 959 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 960 for (const Expr *E : C->privates()) 961 Vars.push_back(getPrivateItem(E)); 962 } 963 } 964 965 llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction( 966 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, 967 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { 968 SourceLocation Loc = D.getBeginLoc(); 969 970 const RecordDecl *GlobalizedRD = nullptr; 971 llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions; 972 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; 973 unsigned WarpSize = CGM.getTarget().getGridValue().GV_Warp_Size; 974 // Globalize team reductions variable unconditionally in all modes. 975 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 976 getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions); 977 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { 978 getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions); 979 if (!LastPrivatesReductions.empty()) { 980 GlobalizedRD = ::buildRecordForGlobalizedVars( 981 CGM.getContext(), std::nullopt, LastPrivatesReductions, 982 MappedDeclsFields, WarpSize); 983 } 984 } else if (!LastPrivatesReductions.empty()) { 985 assert(!TeamAndReductions.first && 986 "Previous team declaration is not expected."); 987 TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl(); 988 std::swap(TeamAndReductions.second, LastPrivatesReductions); 989 } 990 991 // Emit target region as a standalone region. 992 class NVPTXPrePostActionTy : public PrePostActionTy { 993 SourceLocation &Loc; 994 const RecordDecl *GlobalizedRD; 995 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 996 &MappedDeclsFields; 997 998 public: 999 NVPTXPrePostActionTy( 1000 SourceLocation &Loc, const RecordDecl *GlobalizedRD, 1001 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 1002 &MappedDeclsFields) 1003 : Loc(Loc), GlobalizedRD(GlobalizedRD), 1004 MappedDeclsFields(MappedDeclsFields) {} 1005 void Enter(CodeGenFunction &CGF) override { 1006 auto &Rt = 1007 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1008 if (GlobalizedRD) { 1009 auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; 1010 I->getSecond().MappedParams = 1011 std::make_unique<CodeGenFunction::OMPMapVars>(); 1012 DeclToAddrMapTy &Data = I->getSecond().LocalVarData; 1013 for (const auto &Pair : MappedDeclsFields) { 1014 assert(Pair.getFirst()->isCanonicalDecl() && 1015 "Expected canonical declaration"); 1016 Data.insert(std::make_pair(Pair.getFirst(), MappedVarData())); 1017 } 1018 } 1019 Rt.emitGenericVarsProlog(CGF, Loc); 1020 } 1021 void Exit(CodeGenFunction &CGF) override { 1022 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) 1023 .emitGenericVarsEpilog(CGF); 1024 } 1025 } Action(Loc, GlobalizedRD, MappedDeclsFields); 1026 CodeGen.setAction(Action); 1027 llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction( 1028 D, ThreadIDVar, InnermostKind, CodeGen); 1029 1030 return OutlinedFun; 1031 } 1032 1033 void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF, 1034 SourceLocation Loc, 1035 bool WithSPMDCheck) { 1036 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && 1037 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1038 return; 1039 1040 CGBuilderTy &Bld = CGF.Builder; 1041 1042 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 1043 if (I == FunctionGlobalizedDecls.end()) 1044 return; 1045 1046 for (auto &Rec : I->getSecond().LocalVarData) { 1047 const auto *VD = cast<VarDecl>(Rec.first); 1048 bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first); 1049 QualType VarTy = VD->getType(); 1050 1051 // Get the local allocation of a firstprivate variable before sharing 1052 llvm::Value *ParValue; 1053 if (EscapedParam) { 1054 LValue ParLVal = 1055 CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType()); 1056 ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc); 1057 } 1058 1059 // Allocate space for the variable to be globalized 1060 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())}; 1061 llvm::CallBase *VoidPtr = 1062 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1063 CGM.getModule(), OMPRTL___kmpc_alloc_shared), 1064 AllocArgs, VD->getName()); 1065 // FIXME: We should use the variables actual alignment as an argument. 1066 VoidPtr->addRetAttr(llvm::Attribute::get( 1067 CGM.getLLVMContext(), llvm::Attribute::Alignment, 1068 CGM.getContext().getTargetInfo().getNewAlign() / 8)); 1069 1070 // Cast the void pointer and get the address of the globalized variable. 1071 llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(VarTy)->getPointerTo(); 1072 llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 1073 VoidPtr, VarPtrTy, VD->getName() + "_on_stack"); 1074 LValue VarAddr = CGF.MakeNaturalAlignAddrLValue(CastedVoidPtr, VarTy); 1075 Rec.second.PrivateAddr = VarAddr.getAddress(CGF); 1076 Rec.second.GlobalizedVal = VoidPtr; 1077 1078 // Assign the local allocation to the newly globalized location. 1079 if (EscapedParam) { 1080 CGF.EmitStoreOfScalar(ParValue, VarAddr); 1081 I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress(CGF)); 1082 } 1083 if (auto *DI = CGF.getDebugInfo()) 1084 VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(VD->getLocation())); 1085 } 1086 for (const auto *VD : I->getSecond().EscapedVariableLengthDecls) { 1087 // Use actual memory size of the VLA object including the padding 1088 // for alignment purposes. 1089 llvm::Value *Size = CGF.getTypeSize(VD->getType()); 1090 CharUnits Align = CGM.getContext().getDeclAlign(VD); 1091 Size = Bld.CreateNUWAdd( 1092 Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1)); 1093 llvm::Value *AlignVal = 1094 llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity()); 1095 1096 Size = Bld.CreateUDiv(Size, AlignVal); 1097 Size = Bld.CreateNUWMul(Size, AlignVal); 1098 1099 // Allocate space for this VLA object to be globalized. 1100 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())}; 1101 llvm::CallBase *VoidPtr = 1102 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1103 CGM.getModule(), OMPRTL___kmpc_alloc_shared), 1104 AllocArgs, VD->getName()); 1105 VoidPtr->addRetAttr( 1106 llvm::Attribute::get(CGM.getLLVMContext(), llvm::Attribute::Alignment, 1107 CGM.getContext().getTargetInfo().getNewAlign())); 1108 1109 I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back( 1110 std::pair<llvm::Value *, llvm::Value *>( 1111 {VoidPtr, CGF.getTypeSize(VD->getType())})); 1112 LValue Base = CGF.MakeAddrLValue(VoidPtr, VD->getType(), 1113 CGM.getContext().getDeclAlign(VD), 1114 AlignmentSource::Decl); 1115 I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD), 1116 Base.getAddress(CGF)); 1117 } 1118 I->getSecond().MappedParams->apply(CGF); 1119 } 1120 1121 void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF, 1122 bool WithSPMDCheck) { 1123 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && 1124 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1125 return; 1126 1127 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 1128 if (I != FunctionGlobalizedDecls.end()) { 1129 // Deallocate the memory for each globalized VLA object 1130 for (auto AddrSizePair : 1131 llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) { 1132 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1133 CGM.getModule(), OMPRTL___kmpc_free_shared), 1134 {AddrSizePair.first, AddrSizePair.second}); 1135 } 1136 // Deallocate the memory for each globalized value 1137 for (auto &Rec : llvm::reverse(I->getSecond().LocalVarData)) { 1138 const auto *VD = cast<VarDecl>(Rec.first); 1139 I->getSecond().MappedParams->restore(CGF); 1140 1141 llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal, 1142 CGF.getTypeSize(VD->getType())}; 1143 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1144 CGM.getModule(), OMPRTL___kmpc_free_shared), 1145 FreeArgs); 1146 } 1147 } 1148 } 1149 1150 void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF, 1151 const OMPExecutableDirective &D, 1152 SourceLocation Loc, 1153 llvm::Function *OutlinedFn, 1154 ArrayRef<llvm::Value *> CapturedVars) { 1155 if (!CGF.HaveInsertPoint()) 1156 return; 1157 1158 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 1159 /*Name=*/".zero.addr"); 1160 CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr); 1161 llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; 1162 OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer()); 1163 OutlinedFnArgs.push_back(ZeroAddr.getPointer()); 1164 OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); 1165 emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs); 1166 } 1167 1168 void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF, 1169 SourceLocation Loc, 1170 llvm::Function *OutlinedFn, 1171 ArrayRef<llvm::Value *> CapturedVars, 1172 const Expr *IfCond, 1173 llvm::Value *NumThreads) { 1174 if (!CGF.HaveInsertPoint()) 1175 return; 1176 1177 auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, IfCond, 1178 NumThreads](CodeGenFunction &CGF, 1179 PrePostActionTy &Action) { 1180 CGBuilderTy &Bld = CGF.Builder; 1181 llvm::Value *NumThreadsVal = NumThreads; 1182 llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn]; 1183 llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 1184 if (WFn) 1185 ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy); 1186 llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy); 1187 1188 // Create a private scope that will globalize the arguments 1189 // passed from the outside of the target region. 1190 // TODO: Is that needed? 1191 CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF); 1192 1193 Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca( 1194 llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()), 1195 "captured_vars_addrs"); 1196 // There's something to share. 1197 if (!CapturedVars.empty()) { 1198 // Prepare for parallel region. Indicate the outlined function. 1199 ASTContext &Ctx = CGF.getContext(); 1200 unsigned Idx = 0; 1201 for (llvm::Value *V : CapturedVars) { 1202 Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx); 1203 llvm::Value *PtrV; 1204 if (V->getType()->isIntegerTy()) 1205 PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy); 1206 else 1207 PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy); 1208 CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false, 1209 Ctx.getPointerType(Ctx.VoidPtrTy)); 1210 ++Idx; 1211 } 1212 } 1213 1214 llvm::Value *IfCondVal = nullptr; 1215 if (IfCond) 1216 IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty, 1217 /* isSigned */ false); 1218 else 1219 IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1); 1220 1221 if (!NumThreadsVal) 1222 NumThreadsVal = llvm::ConstantInt::get(CGF.Int32Ty, -1); 1223 else 1224 NumThreadsVal = Bld.CreateZExtOrTrunc(NumThreadsVal, CGF.Int32Ty), 1225 1226 assert(IfCondVal && "Expected a value"); 1227 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 1228 llvm::Value *Args[] = { 1229 RTLoc, 1230 getThreadID(CGF, Loc), 1231 IfCondVal, 1232 NumThreadsVal, 1233 llvm::ConstantInt::get(CGF.Int32Ty, -1), 1234 FnPtr, 1235 ID, 1236 Bld.CreateBitOrPointerCast(CapturedVarsAddrs.getPointer(), 1237 CGF.VoidPtrPtrTy), 1238 llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())}; 1239 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1240 CGM.getModule(), OMPRTL___kmpc_parallel_51), 1241 Args); 1242 }; 1243 1244 RegionCodeGenTy RCG(ParallelGen); 1245 RCG(CGF); 1246 } 1247 1248 void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) { 1249 // Always emit simple barriers! 1250 if (!CGF.HaveInsertPoint()) 1251 return; 1252 // Build call __kmpc_barrier_simple_spmd(nullptr, 0); 1253 // This function does not use parameters, so we can emit just default values. 1254 llvm::Value *Args[] = { 1255 llvm::ConstantPointerNull::get( 1256 cast<llvm::PointerType>(getIdentTyPointerTy())), 1257 llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)}; 1258 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1259 CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd), 1260 Args); 1261 } 1262 1263 void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF, 1264 SourceLocation Loc, 1265 OpenMPDirectiveKind Kind, bool, 1266 bool) { 1267 // Always emit simple barriers! 1268 if (!CGF.HaveInsertPoint()) 1269 return; 1270 // Build call __kmpc_cancel_barrier(loc, thread_id); 1271 unsigned Flags = getDefaultFlagsForBarriers(Kind); 1272 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags), 1273 getThreadID(CGF, Loc)}; 1274 1275 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1276 CGM.getModule(), OMPRTL___kmpc_barrier), 1277 Args); 1278 } 1279 1280 void CGOpenMPRuntimeGPU::emitCriticalRegion( 1281 CodeGenFunction &CGF, StringRef CriticalName, 1282 const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc, 1283 const Expr *Hint) { 1284 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop"); 1285 llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test"); 1286 llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync"); 1287 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body"); 1288 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit"); 1289 1290 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1291 1292 // Get the mask of active threads in the warp. 1293 llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1294 CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask)); 1295 // Fetch team-local id of the thread. 1296 llvm::Value *ThreadID = RT.getGPUThreadID(CGF); 1297 1298 // Get the width of the team. 1299 llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF); 1300 1301 // Initialize the counter variable for the loop. 1302 QualType Int32Ty = 1303 CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0); 1304 Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter"); 1305 LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty); 1306 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal, 1307 /*isInit=*/true); 1308 1309 // Block checks if loop counter exceeds upper bound. 1310 CGF.EmitBlock(LoopBB); 1311 llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); 1312 llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth); 1313 CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB); 1314 1315 // Block tests which single thread should execute region, and which threads 1316 // should go straight to synchronisation point. 1317 CGF.EmitBlock(TestBB); 1318 CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); 1319 llvm::Value *CmpThreadToCounter = 1320 CGF.Builder.CreateICmpEQ(ThreadID, CounterVal); 1321 CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB); 1322 1323 // Block emits the body of the critical region. 1324 CGF.EmitBlock(BodyBB); 1325 1326 // Output the critical statement. 1327 CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc, 1328 Hint); 1329 1330 // After the body surrounded by the critical region, the single executing 1331 // thread will jump to the synchronisation point. 1332 // Block waits for all threads in current team to finish then increments the 1333 // counter variable and returns to the loop. 1334 CGF.EmitBlock(SyncBB); 1335 // Reconverge active threads in the warp. 1336 (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1337 CGM.getModule(), OMPRTL___kmpc_syncwarp), 1338 Mask); 1339 1340 llvm::Value *IncCounterVal = 1341 CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1)); 1342 CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal); 1343 CGF.EmitBranch(LoopBB); 1344 1345 // Block that is reached when all threads in the team complete the region. 1346 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1347 } 1348 1349 /// Cast value to the specified type. 1350 static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val, 1351 QualType ValTy, QualType CastTy, 1352 SourceLocation Loc) { 1353 assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() && 1354 "Cast type must sized."); 1355 assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() && 1356 "Val type must sized."); 1357 llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy); 1358 if (ValTy == CastTy) 1359 return Val; 1360 if (CGF.getContext().getTypeSizeInChars(ValTy) == 1361 CGF.getContext().getTypeSizeInChars(CastTy)) 1362 return CGF.Builder.CreateBitCast(Val, LLVMCastTy); 1363 if (CastTy->isIntegerType() && ValTy->isIntegerType()) 1364 return CGF.Builder.CreateIntCast(Val, LLVMCastTy, 1365 CastTy->hasSignedIntegerRepresentation()); 1366 Address CastItem = CGF.CreateMemTemp(CastTy); 1367 Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 1368 CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace()), 1369 Val->getType()); 1370 CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy, 1371 LValueBaseInfo(AlignmentSource::Type), 1372 TBAAAccessInfo()); 1373 return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc, 1374 LValueBaseInfo(AlignmentSource::Type), 1375 TBAAAccessInfo()); 1376 } 1377 1378 /// This function creates calls to one of two shuffle functions to copy 1379 /// variables between lanes in a warp. 1380 static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF, 1381 llvm::Value *Elem, 1382 QualType ElemType, 1383 llvm::Value *Offset, 1384 SourceLocation Loc) { 1385 CodeGenModule &CGM = CGF.CGM; 1386 CGBuilderTy &Bld = CGF.Builder; 1387 CGOpenMPRuntimeGPU &RT = 1388 *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime())); 1389 llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder(); 1390 1391 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); 1392 assert(Size.getQuantity() <= 8 && 1393 "Unsupported bitwidth in shuffle instruction."); 1394 1395 RuntimeFunction ShuffleFn = Size.getQuantity() <= 4 1396 ? OMPRTL___kmpc_shuffle_int32 1397 : OMPRTL___kmpc_shuffle_int64; 1398 1399 // Cast all types to 32- or 64-bit values before calling shuffle routines. 1400 QualType CastTy = CGF.getContext().getIntTypeForBitwidth( 1401 Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1); 1402 llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc); 1403 llvm::Value *WarpSize = 1404 Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true); 1405 1406 llvm::Value *ShuffledVal = CGF.EmitRuntimeCall( 1407 OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn), 1408 {ElemCast, Offset, WarpSize}); 1409 1410 return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc); 1411 } 1412 1413 static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr, 1414 Address DestAddr, QualType ElemType, 1415 llvm::Value *Offset, SourceLocation Loc) { 1416 CGBuilderTy &Bld = CGF.Builder; 1417 1418 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); 1419 // Create the loop over the big sized data. 1420 // ptr = (void*)Elem; 1421 // ptrEnd = (void*) Elem + 1; 1422 // Step = 8; 1423 // while (ptr + Step < ptrEnd) 1424 // shuffle((int64_t)*ptr); 1425 // Step = 4; 1426 // while (ptr + Step < ptrEnd) 1427 // shuffle((int32_t)*ptr); 1428 // ... 1429 Address ElemPtr = DestAddr; 1430 Address Ptr = SrcAddr; 1431 Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast( 1432 Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy, CGF.Int8Ty); 1433 for (int IntSize = 8; IntSize >= 1; IntSize /= 2) { 1434 if (Size < CharUnits::fromQuantity(IntSize)) 1435 continue; 1436 QualType IntType = CGF.getContext().getIntTypeForBitwidth( 1437 CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)), 1438 /*Signed=*/1); 1439 llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType); 1440 Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo(), 1441 IntTy); 1442 ElemPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 1443 ElemPtr, IntTy->getPointerTo(), IntTy); 1444 if (Size.getQuantity() / IntSize > 1) { 1445 llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond"); 1446 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then"); 1447 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit"); 1448 llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock(); 1449 CGF.EmitBlock(PreCondBB); 1450 llvm::PHINode *PhiSrc = 1451 Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2); 1452 PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB); 1453 llvm::PHINode *PhiDest = 1454 Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2); 1455 PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB); 1456 Ptr = Address(PhiSrc, Ptr.getElementType(), Ptr.getAlignment()); 1457 ElemPtr = 1458 Address(PhiDest, ElemPtr.getElementType(), ElemPtr.getAlignment()); 1459 llvm::Value *PtrDiff = Bld.CreatePtrDiff( 1460 CGF.Int8Ty, PtrEnd.getPointer(), 1461 Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr.getPointer(), 1462 CGF.VoidPtrTy)); 1463 Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)), 1464 ThenBB, ExitBB); 1465 CGF.EmitBlock(ThenBB); 1466 llvm::Value *Res = createRuntimeShuffleFunction( 1467 CGF, 1468 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, 1469 LValueBaseInfo(AlignmentSource::Type), 1470 TBAAAccessInfo()), 1471 IntType, Offset, Loc); 1472 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, 1473 LValueBaseInfo(AlignmentSource::Type), 1474 TBAAAccessInfo()); 1475 Address LocalPtr = Bld.CreateConstGEP(Ptr, 1); 1476 Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1); 1477 PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB); 1478 PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB); 1479 CGF.EmitBranch(PreCondBB); 1480 CGF.EmitBlock(ExitBB); 1481 } else { 1482 llvm::Value *Res = createRuntimeShuffleFunction( 1483 CGF, 1484 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, 1485 LValueBaseInfo(AlignmentSource::Type), 1486 TBAAAccessInfo()), 1487 IntType, Offset, Loc); 1488 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, 1489 LValueBaseInfo(AlignmentSource::Type), 1490 TBAAAccessInfo()); 1491 Ptr = Bld.CreateConstGEP(Ptr, 1); 1492 ElemPtr = Bld.CreateConstGEP(ElemPtr, 1); 1493 } 1494 Size = Size % IntSize; 1495 } 1496 } 1497 1498 namespace { 1499 enum CopyAction : unsigned { 1500 // RemoteLaneToThread: Copy over a Reduce list from a remote lane in 1501 // the warp using shuffle instructions. 1502 RemoteLaneToThread, 1503 // ThreadCopy: Make a copy of a Reduce list on the thread's stack. 1504 ThreadCopy, 1505 // ThreadToScratchpad: Copy a team-reduced array to the scratchpad. 1506 ThreadToScratchpad, 1507 // ScratchpadToThread: Copy from a scratchpad array in global memory 1508 // containing team-reduced data to a thread's stack. 1509 ScratchpadToThread, 1510 }; 1511 } // namespace 1512 1513 struct CopyOptionsTy { 1514 llvm::Value *RemoteLaneOffset; 1515 llvm::Value *ScratchpadIndex; 1516 llvm::Value *ScratchpadWidth; 1517 }; 1518 1519 /// Emit instructions to copy a Reduce list, which contains partially 1520 /// aggregated values, in the specified direction. 1521 static void emitReductionListCopy( 1522 CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy, 1523 ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase, 1524 CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) { 1525 1526 CodeGenModule &CGM = CGF.CGM; 1527 ASTContext &C = CGM.getContext(); 1528 CGBuilderTy &Bld = CGF.Builder; 1529 1530 llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset; 1531 llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex; 1532 llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth; 1533 1534 // Iterates, element-by-element, through the source Reduce list and 1535 // make a copy. 1536 unsigned Idx = 0; 1537 unsigned Size = Privates.size(); 1538 for (const Expr *Private : Privates) { 1539 Address SrcElementAddr = Address::invalid(); 1540 Address DestElementAddr = Address::invalid(); 1541 Address DestElementPtrAddr = Address::invalid(); 1542 // Should we shuffle in an element from a remote lane? 1543 bool ShuffleInElement = false; 1544 // Set to true to update the pointer in the dest Reduce list to a 1545 // newly created element. 1546 bool UpdateDestListPtr = false; 1547 // Increment the src or dest pointer to the scratchpad, for each 1548 // new element. 1549 bool IncrScratchpadSrc = false; 1550 bool IncrScratchpadDest = false; 1551 QualType PrivatePtrType = C.getPointerType(Private->getType()); 1552 llvm::Type *PrivateLlvmPtrType = CGF.ConvertType(PrivatePtrType); 1553 1554 switch (Action) { 1555 case RemoteLaneToThread: { 1556 // Step 1.1: Get the address for the src element in the Reduce list. 1557 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1558 SrcElementAddr = 1559 CGF.EmitLoadOfPointer(CGF.Builder.CreateElementBitCast( 1560 SrcElementPtrAddr, PrivateLlvmPtrType), 1561 PrivatePtrType->castAs<PointerType>()); 1562 1563 // Step 1.2: Create a temporary to store the element in the destination 1564 // Reduce list. 1565 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1566 DestElementAddr = 1567 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); 1568 ShuffleInElement = true; 1569 UpdateDestListPtr = true; 1570 break; 1571 } 1572 case ThreadCopy: { 1573 // Step 1.1: Get the address for the src element in the Reduce list. 1574 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1575 SrcElementAddr = 1576 CGF.EmitLoadOfPointer(CGF.Builder.CreateElementBitCast( 1577 SrcElementPtrAddr, PrivateLlvmPtrType), 1578 PrivatePtrType->castAs<PointerType>()); 1579 1580 // Step 1.2: Get the address for dest element. The destination 1581 // element has already been created on the thread's stack. 1582 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1583 DestElementAddr = 1584 CGF.EmitLoadOfPointer(CGF.Builder.CreateElementBitCast( 1585 DestElementPtrAddr, PrivateLlvmPtrType), 1586 PrivatePtrType->castAs<PointerType>()); 1587 break; 1588 } 1589 case ThreadToScratchpad: { 1590 // Step 1.1: Get the address for the src element in the Reduce list. 1591 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1592 SrcElementAddr = 1593 CGF.EmitLoadOfPointer(CGF.Builder.CreateElementBitCast( 1594 SrcElementPtrAddr, PrivateLlvmPtrType), 1595 PrivatePtrType->castAs<PointerType>()); 1596 1597 // Step 1.2: Get the address for dest element: 1598 // address = base + index * ElementSizeInChars. 1599 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 1600 llvm::Value *CurrentOffset = 1601 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); 1602 llvm::Value *ScratchPadElemAbsolutePtrVal = 1603 Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset); 1604 ScratchPadElemAbsolutePtrVal = 1605 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); 1606 DestElementAddr = Address(ScratchPadElemAbsolutePtrVal, CGF.Int8Ty, 1607 C.getTypeAlignInChars(Private->getType())); 1608 IncrScratchpadDest = true; 1609 break; 1610 } 1611 case ScratchpadToThread: { 1612 // Step 1.1: Get the address for the src element in the scratchpad. 1613 // address = base + index * ElementSizeInChars. 1614 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 1615 llvm::Value *CurrentOffset = 1616 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); 1617 llvm::Value *ScratchPadElemAbsolutePtrVal = 1618 Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset); 1619 ScratchPadElemAbsolutePtrVal = 1620 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); 1621 SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal, CGF.Int8Ty, 1622 C.getTypeAlignInChars(Private->getType())); 1623 IncrScratchpadSrc = true; 1624 1625 // Step 1.2: Create a temporary to store the element in the destination 1626 // Reduce list. 1627 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1628 DestElementAddr = 1629 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); 1630 UpdateDestListPtr = true; 1631 break; 1632 } 1633 } 1634 1635 // Regardless of src and dest of copy, we emit the load of src 1636 // element as this is required in all directions 1637 SrcElementAddr = Bld.CreateElementBitCast( 1638 SrcElementAddr, CGF.ConvertTypeForMem(Private->getType())); 1639 DestElementAddr = Bld.CreateElementBitCast(DestElementAddr, 1640 SrcElementAddr.getElementType()); 1641 1642 // Now that all active lanes have read the element in the 1643 // Reduce list, shuffle over the value from the remote lane. 1644 if (ShuffleInElement) { 1645 shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(), 1646 RemoteLaneOffset, Private->getExprLoc()); 1647 } else { 1648 switch (CGF.getEvaluationKind(Private->getType())) { 1649 case TEK_Scalar: { 1650 llvm::Value *Elem = CGF.EmitLoadOfScalar( 1651 SrcElementAddr, /*Volatile=*/false, Private->getType(), 1652 Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type), 1653 TBAAAccessInfo()); 1654 // Store the source element value to the dest element address. 1655 CGF.EmitStoreOfScalar( 1656 Elem, DestElementAddr, /*Volatile=*/false, Private->getType(), 1657 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 1658 break; 1659 } 1660 case TEK_Complex: { 1661 CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex( 1662 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), 1663 Private->getExprLoc()); 1664 CGF.EmitStoreOfComplex( 1665 Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()), 1666 /*isInit=*/false); 1667 break; 1668 } 1669 case TEK_Aggregate: 1670 CGF.EmitAggregateCopy( 1671 CGF.MakeAddrLValue(DestElementAddr, Private->getType()), 1672 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), 1673 Private->getType(), AggValueSlot::DoesNotOverlap); 1674 break; 1675 } 1676 } 1677 1678 // Step 3.1: Modify reference in dest Reduce list as needed. 1679 // Modifying the reference in Reduce list to point to the newly 1680 // created element. The element is live in the current function 1681 // scope and that of functions it invokes (i.e., reduce_function). 1682 // RemoteReduceData[i] = (void*)&RemoteElem 1683 if (UpdateDestListPtr) { 1684 CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast( 1685 DestElementAddr.getPointer(), CGF.VoidPtrTy), 1686 DestElementPtrAddr, /*Volatile=*/false, 1687 C.VoidPtrTy); 1688 } 1689 1690 // Step 4.1: Increment SrcBase/DestBase so that it points to the starting 1691 // address of the next element in scratchpad memory, unless we're currently 1692 // processing the last one. Memory alignment is also taken care of here. 1693 if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) { 1694 // FIXME: This code doesn't make any sense, it's trying to perform 1695 // integer arithmetic on pointers. 1696 llvm::Value *ScratchpadBasePtr = 1697 IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer(); 1698 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 1699 ScratchpadBasePtr = Bld.CreateNUWAdd( 1700 ScratchpadBasePtr, 1701 Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars)); 1702 1703 // Take care of global memory alignment for performance 1704 ScratchpadBasePtr = Bld.CreateNUWSub( 1705 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); 1706 ScratchpadBasePtr = Bld.CreateUDiv( 1707 ScratchpadBasePtr, 1708 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); 1709 ScratchpadBasePtr = Bld.CreateNUWAdd( 1710 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); 1711 ScratchpadBasePtr = Bld.CreateNUWMul( 1712 ScratchpadBasePtr, 1713 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); 1714 1715 if (IncrScratchpadDest) 1716 DestBase = 1717 Address(ScratchpadBasePtr, CGF.VoidPtrTy, CGF.getPointerAlign()); 1718 else /* IncrScratchpadSrc = true */ 1719 SrcBase = 1720 Address(ScratchpadBasePtr, CGF.VoidPtrTy, CGF.getPointerAlign()); 1721 } 1722 1723 ++Idx; 1724 } 1725 } 1726 1727 /// This function emits a helper that gathers Reduce lists from the first 1728 /// lane of every active warp to lanes in the first warp. 1729 /// 1730 /// void inter_warp_copy_func(void* reduce_data, num_warps) 1731 /// shared smem[warp_size]; 1732 /// For all data entries D in reduce_data: 1733 /// sync 1734 /// If (I am the first lane in each warp) 1735 /// Copy my local D to smem[warp_id] 1736 /// sync 1737 /// if (I am the first warp) 1738 /// Copy smem[thread_id] to my local D 1739 static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM, 1740 ArrayRef<const Expr *> Privates, 1741 QualType ReductionArrayTy, 1742 SourceLocation Loc) { 1743 ASTContext &C = CGM.getContext(); 1744 llvm::Module &M = CGM.getModule(); 1745 1746 // ReduceList: thread local Reduce list. 1747 // At the stage of the computation when this function is called, partially 1748 // aggregated values reside in the first lane of every active warp. 1749 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 1750 C.VoidPtrTy, ImplicitParamDecl::Other); 1751 // NumWarps: number of warps active in the parallel region. This could 1752 // be smaller than 32 (max warps in a CTA) for partial block reduction. 1753 ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 1754 C.getIntTypeForBitwidth(32, /* Signed */ true), 1755 ImplicitParamDecl::Other); 1756 FunctionArgList Args; 1757 Args.push_back(&ReduceListArg); 1758 Args.push_back(&NumWarpsArg); 1759 1760 const CGFunctionInfo &CGFI = 1761 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 1762 auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI), 1763 llvm::GlobalValue::InternalLinkage, 1764 "_omp_reduction_inter_warp_copy_func", &M); 1765 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 1766 Fn->setDoesNotRecurse(); 1767 CodeGenFunction CGF(CGM); 1768 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 1769 1770 CGBuilderTy &Bld = CGF.Builder; 1771 1772 // This array is used as a medium to transfer, one reduce element at a time, 1773 // the data from the first lane of every warp to lanes in the first warp 1774 // in order to perform the final step of a reduction in a parallel region 1775 // (reduction across warps). The array is placed in NVPTX __shared__ memory 1776 // for reduced latency, as well as to have a distinct copy for concurrently 1777 // executing target regions. The array is declared with common linkage so 1778 // as to be shared across compilation units. 1779 StringRef TransferMediumName = 1780 "__openmp_nvptx_data_transfer_temporary_storage"; 1781 llvm::GlobalVariable *TransferMedium = 1782 M.getGlobalVariable(TransferMediumName); 1783 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size; 1784 if (!TransferMedium) { 1785 auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize); 1786 unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared); 1787 TransferMedium = new llvm::GlobalVariable( 1788 M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage, 1789 llvm::UndefValue::get(Ty), TransferMediumName, 1790 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 1791 SharedAddressSpace); 1792 CGM.addCompilerUsedGlobal(TransferMedium); 1793 } 1794 1795 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1796 // Get the CUDA thread id of the current OpenMP thread on the GPU. 1797 llvm::Value *ThreadID = RT.getGPUThreadID(CGF); 1798 // nvptx_lane_id = nvptx_id % warpsize 1799 llvm::Value *LaneID = getNVPTXLaneID(CGF); 1800 // nvptx_warp_id = nvptx_id / warpsize 1801 llvm::Value *WarpID = getNVPTXWarpID(CGF); 1802 1803 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 1804 llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy); 1805 Address LocalReduceList( 1806 Bld.CreatePointerBitCastOrAddrSpaceCast( 1807 CGF.EmitLoadOfScalar( 1808 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc, 1809 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()), 1810 ElemTy->getPointerTo()), 1811 ElemTy, CGF.getPointerAlign()); 1812 1813 unsigned Idx = 0; 1814 for (const Expr *Private : Privates) { 1815 // 1816 // Warp master copies reduce element to transfer medium in __shared__ 1817 // memory. 1818 // 1819 unsigned RealTySize = 1820 C.getTypeSizeInChars(Private->getType()) 1821 .alignTo(C.getTypeAlignInChars(Private->getType())) 1822 .getQuantity(); 1823 for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) { 1824 unsigned NumIters = RealTySize / TySize; 1825 if (NumIters == 0) 1826 continue; 1827 QualType CType = C.getIntTypeForBitwidth( 1828 C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1); 1829 llvm::Type *CopyType = CGF.ConvertTypeForMem(CType); 1830 CharUnits Align = CharUnits::fromQuantity(TySize); 1831 llvm::Value *Cnt = nullptr; 1832 Address CntAddr = Address::invalid(); 1833 llvm::BasicBlock *PrecondBB = nullptr; 1834 llvm::BasicBlock *ExitBB = nullptr; 1835 if (NumIters > 1) { 1836 CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr"); 1837 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr, 1838 /*Volatile=*/false, C.IntTy); 1839 PrecondBB = CGF.createBasicBlock("precond"); 1840 ExitBB = CGF.createBasicBlock("exit"); 1841 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body"); 1842 // There is no need to emit line number for unconditional branch. 1843 (void)ApplyDebugLocation::CreateEmpty(CGF); 1844 CGF.EmitBlock(PrecondBB); 1845 Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc); 1846 llvm::Value *Cmp = 1847 Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters)); 1848 Bld.CreateCondBr(Cmp, BodyBB, ExitBB); 1849 CGF.EmitBlock(BodyBB); 1850 } 1851 // kmpc_barrier. 1852 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, 1853 /*EmitChecks=*/false, 1854 /*ForceSimpleCall=*/true); 1855 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); 1856 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); 1857 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); 1858 1859 // if (lane_id == 0) 1860 llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master"); 1861 Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB); 1862 CGF.EmitBlock(ThenBB); 1863 1864 // Reduce element = LocalReduceList[i] 1865 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 1866 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 1867 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 1868 // elemptr = ((CopyType*)(elemptrptr)) + I 1869 Address ElemPtr(ElemPtrPtr, CGF.Int8Ty, Align); 1870 ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType); 1871 if (NumIters > 1) 1872 ElemPtr = Bld.CreateGEP(ElemPtr, Cnt); 1873 1874 // Get pointer to location in transfer medium. 1875 // MediumPtr = &medium[warp_id] 1876 llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP( 1877 TransferMedium->getValueType(), TransferMedium, 1878 {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID}); 1879 // Casting to actual data type. 1880 // MediumPtr = (CopyType*)MediumPtrAddr; 1881 Address MediumPtr( 1882 Bld.CreateBitCast( 1883 MediumPtrVal, 1884 CopyType->getPointerTo( 1885 MediumPtrVal->getType()->getPointerAddressSpace())), 1886 CopyType, Align); 1887 1888 // elem = *elemptr 1889 //*MediumPtr = elem 1890 llvm::Value *Elem = CGF.EmitLoadOfScalar( 1891 ElemPtr, /*Volatile=*/false, CType, Loc, 1892 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 1893 // Store the source element value to the dest element address. 1894 CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType, 1895 LValueBaseInfo(AlignmentSource::Type), 1896 TBAAAccessInfo()); 1897 1898 Bld.CreateBr(MergeBB); 1899 1900 CGF.EmitBlock(ElseBB); 1901 Bld.CreateBr(MergeBB); 1902 1903 CGF.EmitBlock(MergeBB); 1904 1905 // kmpc_barrier. 1906 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, 1907 /*EmitChecks=*/false, 1908 /*ForceSimpleCall=*/true); 1909 1910 // 1911 // Warp 0 copies reduce element from transfer medium. 1912 // 1913 llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then"); 1914 llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else"); 1915 llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont"); 1916 1917 Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg); 1918 llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar( 1919 AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc); 1920 1921 // Up to 32 threads in warp 0 are active. 1922 llvm::Value *IsActiveThread = 1923 Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread"); 1924 Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB); 1925 1926 CGF.EmitBlock(W0ThenBB); 1927 1928 // SrcMediumPtr = &medium[tid] 1929 llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP( 1930 TransferMedium->getValueType(), TransferMedium, 1931 {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID}); 1932 // SrcMediumVal = *SrcMediumPtr; 1933 Address SrcMediumPtr( 1934 Bld.CreateBitCast( 1935 SrcMediumPtrVal, 1936 CopyType->getPointerTo( 1937 SrcMediumPtrVal->getType()->getPointerAddressSpace())), 1938 CopyType, Align); 1939 1940 // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I 1941 Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 1942 llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar( 1943 TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc); 1944 Address TargetElemPtr(TargetElemPtrVal, CGF.Int8Ty, Align); 1945 TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType); 1946 if (NumIters > 1) 1947 TargetElemPtr = Bld.CreateGEP(TargetElemPtr, Cnt); 1948 1949 // *TargetElemPtr = SrcMediumVal; 1950 llvm::Value *SrcMediumValue = 1951 CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc); 1952 CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false, 1953 CType); 1954 Bld.CreateBr(W0MergeBB); 1955 1956 CGF.EmitBlock(W0ElseBB); 1957 Bld.CreateBr(W0MergeBB); 1958 1959 CGF.EmitBlock(W0MergeBB); 1960 1961 if (NumIters > 1) { 1962 Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1)); 1963 CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy); 1964 CGF.EmitBranch(PrecondBB); 1965 (void)ApplyDebugLocation::CreateEmpty(CGF); 1966 CGF.EmitBlock(ExitBB); 1967 } 1968 RealTySize %= TySize; 1969 } 1970 ++Idx; 1971 } 1972 1973 CGF.FinishFunction(); 1974 return Fn; 1975 } 1976 1977 /// Emit a helper that reduces data across two OpenMP threads (lanes) 1978 /// in the same warp. It uses shuffle instructions to copy over data from 1979 /// a remote lane's stack. The reduction algorithm performed is specified 1980 /// by the fourth parameter. 1981 /// 1982 /// Algorithm Versions. 1983 /// Full Warp Reduce (argument value 0): 1984 /// This algorithm assumes that all 32 lanes are active and gathers 1985 /// data from these 32 lanes, producing a single resultant value. 1986 /// Contiguous Partial Warp Reduce (argument value 1): 1987 /// This algorithm assumes that only a *contiguous* subset of lanes 1988 /// are active. This happens for the last warp in a parallel region 1989 /// when the user specified num_threads is not an integer multiple of 1990 /// 32. This contiguous subset always starts with the zeroth lane. 1991 /// Partial Warp Reduce (argument value 2): 1992 /// This algorithm gathers data from any number of lanes at any position. 1993 /// All reduced values are stored in the lowest possible lane. The set 1994 /// of problems every algorithm addresses is a super set of those 1995 /// addressable by algorithms with a lower version number. Overhead 1996 /// increases as algorithm version increases. 1997 /// 1998 /// Terminology 1999 /// Reduce element: 2000 /// Reduce element refers to the individual data field with primitive 2001 /// data types to be combined and reduced across threads. 2002 /// Reduce list: 2003 /// Reduce list refers to a collection of local, thread-private 2004 /// reduce elements. 2005 /// Remote Reduce list: 2006 /// Remote Reduce list refers to a collection of remote (relative to 2007 /// the current thread) reduce elements. 2008 /// 2009 /// We distinguish between three states of threads that are important to 2010 /// the implementation of this function. 2011 /// Alive threads: 2012 /// Threads in a warp executing the SIMT instruction, as distinguished from 2013 /// threads that are inactive due to divergent control flow. 2014 /// Active threads: 2015 /// The minimal set of threads that has to be alive upon entry to this 2016 /// function. The computation is correct iff active threads are alive. 2017 /// Some threads are alive but they are not active because they do not 2018 /// contribute to the computation in any useful manner. Turning them off 2019 /// may introduce control flow overheads without any tangible benefits. 2020 /// Effective threads: 2021 /// In order to comply with the argument requirements of the shuffle 2022 /// function, we must keep all lanes holding data alive. But at most 2023 /// half of them perform value aggregation; we refer to this half of 2024 /// threads as effective. The other half is simply handing off their 2025 /// data. 2026 /// 2027 /// Procedure 2028 /// Value shuffle: 2029 /// In this step active threads transfer data from higher lane positions 2030 /// in the warp to lower lane positions, creating Remote Reduce list. 2031 /// Value aggregation: 2032 /// In this step, effective threads combine their thread local Reduce list 2033 /// with Remote Reduce list and store the result in the thread local 2034 /// Reduce list. 2035 /// Value copy: 2036 /// In this step, we deal with the assumption made by algorithm 2 2037 /// (i.e. contiguity assumption). When we have an odd number of lanes 2038 /// active, say 2k+1, only k threads will be effective and therefore k 2039 /// new values will be produced. However, the Reduce list owned by the 2040 /// (2k+1)th thread is ignored in the value aggregation. Therefore 2041 /// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so 2042 /// that the contiguity assumption still holds. 2043 static llvm::Function *emitShuffleAndReduceFunction( 2044 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2045 QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) { 2046 ASTContext &C = CGM.getContext(); 2047 2048 // Thread local Reduce list used to host the values of data to be reduced. 2049 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2050 C.VoidPtrTy, ImplicitParamDecl::Other); 2051 // Current lane id; could be logical. 2052 ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy, 2053 ImplicitParamDecl::Other); 2054 // Offset of the remote source lane relative to the current lane. 2055 ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2056 C.ShortTy, ImplicitParamDecl::Other); 2057 // Algorithm version. This is expected to be known at compile time. 2058 ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2059 C.ShortTy, ImplicitParamDecl::Other); 2060 FunctionArgList Args; 2061 Args.push_back(&ReduceListArg); 2062 Args.push_back(&LaneIDArg); 2063 Args.push_back(&RemoteLaneOffsetArg); 2064 Args.push_back(&AlgoVerArg); 2065 2066 const CGFunctionInfo &CGFI = 2067 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2068 auto *Fn = llvm::Function::Create( 2069 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2070 "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule()); 2071 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2072 Fn->setDoesNotRecurse(); 2073 2074 CodeGenFunction CGF(CGM); 2075 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2076 2077 CGBuilderTy &Bld = CGF.Builder; 2078 2079 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2080 llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy); 2081 Address LocalReduceList( 2082 Bld.CreatePointerBitCastOrAddrSpaceCast( 2083 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2084 C.VoidPtrTy, SourceLocation()), 2085 ElemTy->getPointerTo()), 2086 ElemTy, CGF.getPointerAlign()); 2087 2088 Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg); 2089 llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar( 2090 AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2091 2092 Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg); 2093 llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar( 2094 AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2095 2096 Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg); 2097 llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar( 2098 AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2099 2100 // Create a local thread-private variable to host the Reduce list 2101 // from a remote lane. 2102 Address RemoteReduceList = 2103 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list"); 2104 2105 // This loop iterates through the list of reduce elements and copies, 2106 // element by element, from a remote lane in the warp to RemoteReduceList, 2107 // hosted on the thread's stack. 2108 emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates, 2109 LocalReduceList, RemoteReduceList, 2110 {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal, 2111 /*ScratchpadIndex=*/nullptr, 2112 /*ScratchpadWidth=*/nullptr}); 2113 2114 // The actions to be performed on the Remote Reduce list is dependent 2115 // on the algorithm version. 2116 // 2117 // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 && 2118 // LaneId % 2 == 0 && Offset > 0): 2119 // do the reduction value aggregation 2120 // 2121 // The thread local variable Reduce list is mutated in place to host the 2122 // reduced data, which is the aggregated value produced from local and 2123 // remote lanes. 2124 // 2125 // Note that AlgoVer is expected to be a constant integer known at compile 2126 // time. 2127 // When AlgoVer==0, the first conjunction evaluates to true, making 2128 // the entire predicate true during compile time. 2129 // When AlgoVer==1, the second conjunction has only the second part to be 2130 // evaluated during runtime. Other conjunctions evaluates to false 2131 // during compile time. 2132 // When AlgoVer==2, the third conjunction has only the second part to be 2133 // evaluated during runtime. Other conjunctions evaluates to false 2134 // during compile time. 2135 llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal); 2136 2137 llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); 2138 llvm::Value *CondAlgo1 = Bld.CreateAnd( 2139 Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal)); 2140 2141 llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2)); 2142 llvm::Value *CondAlgo2 = Bld.CreateAnd( 2143 Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1)))); 2144 CondAlgo2 = Bld.CreateAnd( 2145 CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0))); 2146 2147 llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1); 2148 CondReduce = Bld.CreateOr(CondReduce, CondAlgo2); 2149 2150 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); 2151 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); 2152 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); 2153 Bld.CreateCondBr(CondReduce, ThenBB, ElseBB); 2154 2155 CGF.EmitBlock(ThenBB); 2156 // reduce_function(LocalReduceList, RemoteReduceList) 2157 llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2158 LocalReduceList.getPointer(), CGF.VoidPtrTy); 2159 llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2160 RemoteReduceList.getPointer(), CGF.VoidPtrTy); 2161 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2162 CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr}); 2163 Bld.CreateBr(MergeBB); 2164 2165 CGF.EmitBlock(ElseBB); 2166 Bld.CreateBr(MergeBB); 2167 2168 CGF.EmitBlock(MergeBB); 2169 2170 // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local 2171 // Reduce list. 2172 Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); 2173 llvm::Value *CondCopy = Bld.CreateAnd( 2174 Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal)); 2175 2176 llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then"); 2177 llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else"); 2178 llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont"); 2179 Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB); 2180 2181 CGF.EmitBlock(CpyThenBB); 2182 emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates, 2183 RemoteReduceList, LocalReduceList); 2184 Bld.CreateBr(CpyMergeBB); 2185 2186 CGF.EmitBlock(CpyElseBB); 2187 Bld.CreateBr(CpyMergeBB); 2188 2189 CGF.EmitBlock(CpyMergeBB); 2190 2191 CGF.FinishFunction(); 2192 return Fn; 2193 } 2194 2195 /// This function emits a helper that copies all the reduction variables from 2196 /// the team into the provided global buffer for the reduction variables. 2197 /// 2198 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) 2199 /// For all data entries D in reduce_data: 2200 /// Copy local D to buffer.D[Idx] 2201 static llvm::Value *emitListToGlobalCopyFunction( 2202 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2203 QualType ReductionArrayTy, SourceLocation Loc, 2204 const RecordDecl *TeamReductionRec, 2205 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2206 &VarFieldMap) { 2207 ASTContext &C = CGM.getContext(); 2208 2209 // Buffer: global reduction buffer. 2210 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2211 C.VoidPtrTy, ImplicitParamDecl::Other); 2212 // Idx: index of the buffer. 2213 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2214 ImplicitParamDecl::Other); 2215 // ReduceList: thread local Reduce list. 2216 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2217 C.VoidPtrTy, ImplicitParamDecl::Other); 2218 FunctionArgList Args; 2219 Args.push_back(&BufferArg); 2220 Args.push_back(&IdxArg); 2221 Args.push_back(&ReduceListArg); 2222 2223 const CGFunctionInfo &CGFI = 2224 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2225 auto *Fn = llvm::Function::Create( 2226 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2227 "_omp_reduction_list_to_global_copy_func", &CGM.getModule()); 2228 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2229 Fn->setDoesNotRecurse(); 2230 CodeGenFunction CGF(CGM); 2231 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2232 2233 CGBuilderTy &Bld = CGF.Builder; 2234 2235 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2236 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2237 llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy); 2238 Address LocalReduceList( 2239 Bld.CreatePointerBitCastOrAddrSpaceCast( 2240 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2241 C.VoidPtrTy, Loc), 2242 ElemTy->getPointerTo()), 2243 ElemTy, CGF.getPointerAlign()); 2244 QualType StaticTy = C.getRecordType(TeamReductionRec); 2245 llvm::Type *LLVMReductionsBufferTy = 2246 CGM.getTypes().ConvertTypeForMem(StaticTy); 2247 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2248 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2249 LLVMReductionsBufferTy->getPointerTo()); 2250 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2251 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2252 /*Volatile=*/false, C.IntTy, 2253 Loc)}; 2254 unsigned Idx = 0; 2255 for (const Expr *Private : Privates) { 2256 // Reduce element = LocalReduceList[i] 2257 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2258 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2259 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2260 // elemptr = ((CopyType*)(elemptrptr)) + I 2261 ElemTy = CGF.ConvertTypeForMem(Private->getType()); 2262 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2263 ElemPtrPtr, ElemTy->getPointerTo()); 2264 Address ElemPtr = 2265 Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(Private->getType())); 2266 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); 2267 // Global = Buffer.VD[Idx]; 2268 const FieldDecl *FD = VarFieldMap.lookup(VD); 2269 LValue GlobLVal = CGF.EmitLValueForField( 2270 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2271 Address GlobAddr = GlobLVal.getAddress(CGF); 2272 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(GlobAddr.getElementType(), 2273 GlobAddr.getPointer(), Idxs); 2274 GlobLVal.setAddress(Address(BufferPtr, 2275 CGF.ConvertTypeForMem(Private->getType()), 2276 GlobAddr.getAlignment())); 2277 switch (CGF.getEvaluationKind(Private->getType())) { 2278 case TEK_Scalar: { 2279 llvm::Value *V = CGF.EmitLoadOfScalar( 2280 ElemPtr, /*Volatile=*/false, Private->getType(), Loc, 2281 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2282 CGF.EmitStoreOfScalar(V, GlobLVal); 2283 break; 2284 } 2285 case TEK_Complex: { 2286 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex( 2287 CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc); 2288 CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false); 2289 break; 2290 } 2291 case TEK_Aggregate: 2292 CGF.EmitAggregateCopy(GlobLVal, 2293 CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2294 Private->getType(), AggValueSlot::DoesNotOverlap); 2295 break; 2296 } 2297 ++Idx; 2298 } 2299 2300 CGF.FinishFunction(); 2301 return Fn; 2302 } 2303 2304 /// This function emits a helper that reduces all the reduction variables from 2305 /// the team into the provided global buffer for the reduction variables. 2306 /// 2307 /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data) 2308 /// void *GlobPtrs[]; 2309 /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; 2310 /// ... 2311 /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; 2312 /// reduce_function(GlobPtrs, reduce_data); 2313 static llvm::Value *emitListToGlobalReduceFunction( 2314 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2315 QualType ReductionArrayTy, SourceLocation Loc, 2316 const RecordDecl *TeamReductionRec, 2317 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2318 &VarFieldMap, 2319 llvm::Function *ReduceFn) { 2320 ASTContext &C = CGM.getContext(); 2321 2322 // Buffer: global reduction buffer. 2323 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2324 C.VoidPtrTy, ImplicitParamDecl::Other); 2325 // Idx: index of the buffer. 2326 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2327 ImplicitParamDecl::Other); 2328 // ReduceList: thread local Reduce list. 2329 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2330 C.VoidPtrTy, ImplicitParamDecl::Other); 2331 FunctionArgList Args; 2332 Args.push_back(&BufferArg); 2333 Args.push_back(&IdxArg); 2334 Args.push_back(&ReduceListArg); 2335 2336 const CGFunctionInfo &CGFI = 2337 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2338 auto *Fn = llvm::Function::Create( 2339 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2340 "_omp_reduction_list_to_global_reduce_func", &CGM.getModule()); 2341 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2342 Fn->setDoesNotRecurse(); 2343 CodeGenFunction CGF(CGM); 2344 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2345 2346 CGBuilderTy &Bld = CGF.Builder; 2347 2348 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2349 QualType StaticTy = C.getRecordType(TeamReductionRec); 2350 llvm::Type *LLVMReductionsBufferTy = 2351 CGM.getTypes().ConvertTypeForMem(StaticTy); 2352 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2353 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2354 LLVMReductionsBufferTy->getPointerTo()); 2355 2356 // 1. Build a list of reduction variables. 2357 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 2358 Address ReductionList = 2359 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 2360 auto IPriv = Privates.begin(); 2361 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2362 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2363 /*Volatile=*/false, C.IntTy, 2364 Loc)}; 2365 unsigned Idx = 0; 2366 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { 2367 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2368 // Global = Buffer.VD[Idx]; 2369 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); 2370 const FieldDecl *FD = VarFieldMap.lookup(VD); 2371 LValue GlobLVal = CGF.EmitLValueForField( 2372 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2373 Address GlobAddr = GlobLVal.getAddress(CGF); 2374 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2375 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2376 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); 2377 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); 2378 if ((*IPriv)->getType()->isVariablyModifiedType()) { 2379 // Store array size. 2380 ++Idx; 2381 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2382 llvm::Value *Size = CGF.Builder.CreateIntCast( 2383 CGF.getVLASize( 2384 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 2385 .NumElts, 2386 CGF.SizeTy, /*isSigned=*/false); 2387 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 2388 Elem); 2389 } 2390 } 2391 2392 // Call reduce_function(GlobalReduceList, ReduceList) 2393 llvm::Value *GlobalReduceList = 2394 CGF.EmitCastToVoidPtr(ReductionList.getPointer()); 2395 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2396 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( 2397 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); 2398 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2399 CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr}); 2400 CGF.FinishFunction(); 2401 return Fn; 2402 } 2403 2404 /// This function emits a helper that copies all the reduction variables from 2405 /// the team into the provided global buffer for the reduction variables. 2406 /// 2407 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) 2408 /// For all data entries D in reduce_data: 2409 /// Copy buffer.D[Idx] to local D; 2410 static llvm::Value *emitGlobalToListCopyFunction( 2411 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2412 QualType ReductionArrayTy, SourceLocation Loc, 2413 const RecordDecl *TeamReductionRec, 2414 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2415 &VarFieldMap) { 2416 ASTContext &C = CGM.getContext(); 2417 2418 // Buffer: global reduction buffer. 2419 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2420 C.VoidPtrTy, ImplicitParamDecl::Other); 2421 // Idx: index of the buffer. 2422 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2423 ImplicitParamDecl::Other); 2424 // ReduceList: thread local Reduce list. 2425 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2426 C.VoidPtrTy, ImplicitParamDecl::Other); 2427 FunctionArgList Args; 2428 Args.push_back(&BufferArg); 2429 Args.push_back(&IdxArg); 2430 Args.push_back(&ReduceListArg); 2431 2432 const CGFunctionInfo &CGFI = 2433 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2434 auto *Fn = llvm::Function::Create( 2435 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2436 "_omp_reduction_global_to_list_copy_func", &CGM.getModule()); 2437 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2438 Fn->setDoesNotRecurse(); 2439 CodeGenFunction CGF(CGM); 2440 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2441 2442 CGBuilderTy &Bld = CGF.Builder; 2443 2444 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2445 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2446 llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy); 2447 Address LocalReduceList( 2448 Bld.CreatePointerBitCastOrAddrSpaceCast( 2449 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2450 C.VoidPtrTy, Loc), 2451 ElemTy->getPointerTo()), 2452 ElemTy, CGF.getPointerAlign()); 2453 QualType StaticTy = C.getRecordType(TeamReductionRec); 2454 llvm::Type *LLVMReductionsBufferTy = 2455 CGM.getTypes().ConvertTypeForMem(StaticTy); 2456 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2457 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2458 LLVMReductionsBufferTy->getPointerTo()); 2459 2460 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2461 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2462 /*Volatile=*/false, C.IntTy, 2463 Loc)}; 2464 unsigned Idx = 0; 2465 for (const Expr *Private : Privates) { 2466 // Reduce element = LocalReduceList[i] 2467 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2468 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2469 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2470 // elemptr = ((CopyType*)(elemptrptr)) + I 2471 ElemTy = CGF.ConvertTypeForMem(Private->getType()); 2472 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2473 ElemPtrPtr, ElemTy->getPointerTo()); 2474 Address ElemPtr = 2475 Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(Private->getType())); 2476 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); 2477 // Global = Buffer.VD[Idx]; 2478 const FieldDecl *FD = VarFieldMap.lookup(VD); 2479 LValue GlobLVal = CGF.EmitLValueForField( 2480 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2481 Address GlobAddr = GlobLVal.getAddress(CGF); 2482 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(GlobAddr.getElementType(), 2483 GlobAddr.getPointer(), Idxs); 2484 GlobLVal.setAddress(Address(BufferPtr, 2485 CGF.ConvertTypeForMem(Private->getType()), 2486 GlobAddr.getAlignment())); 2487 switch (CGF.getEvaluationKind(Private->getType())) { 2488 case TEK_Scalar: { 2489 llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc); 2490 CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(), 2491 LValueBaseInfo(AlignmentSource::Type), 2492 TBAAAccessInfo()); 2493 break; 2494 } 2495 case TEK_Complex: { 2496 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc); 2497 CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2498 /*isInit=*/false); 2499 break; 2500 } 2501 case TEK_Aggregate: 2502 CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2503 GlobLVal, Private->getType(), 2504 AggValueSlot::DoesNotOverlap); 2505 break; 2506 } 2507 ++Idx; 2508 } 2509 2510 CGF.FinishFunction(); 2511 return Fn; 2512 } 2513 2514 /// This function emits a helper that reduces all the reduction variables from 2515 /// the team into the provided global buffer for the reduction variables. 2516 /// 2517 /// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data) 2518 /// void *GlobPtrs[]; 2519 /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; 2520 /// ... 2521 /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; 2522 /// reduce_function(reduce_data, GlobPtrs); 2523 static llvm::Value *emitGlobalToListReduceFunction( 2524 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2525 QualType ReductionArrayTy, SourceLocation Loc, 2526 const RecordDecl *TeamReductionRec, 2527 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2528 &VarFieldMap, 2529 llvm::Function *ReduceFn) { 2530 ASTContext &C = CGM.getContext(); 2531 2532 // Buffer: global reduction buffer. 2533 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2534 C.VoidPtrTy, ImplicitParamDecl::Other); 2535 // Idx: index of the buffer. 2536 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2537 ImplicitParamDecl::Other); 2538 // ReduceList: thread local Reduce list. 2539 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2540 C.VoidPtrTy, ImplicitParamDecl::Other); 2541 FunctionArgList Args; 2542 Args.push_back(&BufferArg); 2543 Args.push_back(&IdxArg); 2544 Args.push_back(&ReduceListArg); 2545 2546 const CGFunctionInfo &CGFI = 2547 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2548 auto *Fn = llvm::Function::Create( 2549 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2550 "_omp_reduction_global_to_list_reduce_func", &CGM.getModule()); 2551 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2552 Fn->setDoesNotRecurse(); 2553 CodeGenFunction CGF(CGM); 2554 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2555 2556 CGBuilderTy &Bld = CGF.Builder; 2557 2558 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2559 QualType StaticTy = C.getRecordType(TeamReductionRec); 2560 llvm::Type *LLVMReductionsBufferTy = 2561 CGM.getTypes().ConvertTypeForMem(StaticTy); 2562 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2563 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2564 LLVMReductionsBufferTy->getPointerTo()); 2565 2566 // 1. Build a list of reduction variables. 2567 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 2568 Address ReductionList = 2569 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 2570 auto IPriv = Privates.begin(); 2571 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2572 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2573 /*Volatile=*/false, C.IntTy, 2574 Loc)}; 2575 unsigned Idx = 0; 2576 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { 2577 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2578 // Global = Buffer.VD[Idx]; 2579 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); 2580 const FieldDecl *FD = VarFieldMap.lookup(VD); 2581 LValue GlobLVal = CGF.EmitLValueForField( 2582 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2583 Address GlobAddr = GlobLVal.getAddress(CGF); 2584 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2585 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2586 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); 2587 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); 2588 if ((*IPriv)->getType()->isVariablyModifiedType()) { 2589 // Store array size. 2590 ++Idx; 2591 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2592 llvm::Value *Size = CGF.Builder.CreateIntCast( 2593 CGF.getVLASize( 2594 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 2595 .NumElts, 2596 CGF.SizeTy, /*isSigned=*/false); 2597 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 2598 Elem); 2599 } 2600 } 2601 2602 // Call reduce_function(ReduceList, GlobalReduceList) 2603 llvm::Value *GlobalReduceList = 2604 CGF.EmitCastToVoidPtr(ReductionList.getPointer()); 2605 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2606 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( 2607 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); 2608 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2609 CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList}); 2610 CGF.FinishFunction(); 2611 return Fn; 2612 } 2613 2614 /// 2615 /// Design of OpenMP reductions on the GPU 2616 /// 2617 /// Consider a typical OpenMP program with one or more reduction 2618 /// clauses: 2619 /// 2620 /// float foo; 2621 /// double bar; 2622 /// #pragma omp target teams distribute parallel for \ 2623 /// reduction(+:foo) reduction(*:bar) 2624 /// for (int i = 0; i < N; i++) { 2625 /// foo += A[i]; bar *= B[i]; 2626 /// } 2627 /// 2628 /// where 'foo' and 'bar' are reduced across all OpenMP threads in 2629 /// all teams. In our OpenMP implementation on the NVPTX device an 2630 /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads 2631 /// within a team are mapped to CUDA threads within a threadblock. 2632 /// Our goal is to efficiently aggregate values across all OpenMP 2633 /// threads such that: 2634 /// 2635 /// - the compiler and runtime are logically concise, and 2636 /// - the reduction is performed efficiently in a hierarchical 2637 /// manner as follows: within OpenMP threads in the same warp, 2638 /// across warps in a threadblock, and finally across teams on 2639 /// the NVPTX device. 2640 /// 2641 /// Introduction to Decoupling 2642 /// 2643 /// We would like to decouple the compiler and the runtime so that the 2644 /// latter is ignorant of the reduction variables (number, data types) 2645 /// and the reduction operators. This allows a simpler interface 2646 /// and implementation while still attaining good performance. 2647 /// 2648 /// Pseudocode for the aforementioned OpenMP program generated by the 2649 /// compiler is as follows: 2650 /// 2651 /// 1. Create private copies of reduction variables on each OpenMP 2652 /// thread: 'foo_private', 'bar_private' 2653 /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned 2654 /// to it and writes the result in 'foo_private' and 'bar_private' 2655 /// respectively. 2656 /// 3. Call the OpenMP runtime on the GPU to reduce within a team 2657 /// and store the result on the team master: 2658 /// 2659 /// __kmpc_nvptx_parallel_reduce_nowait_v2(..., 2660 /// reduceData, shuffleReduceFn, interWarpCpyFn) 2661 /// 2662 /// where: 2663 /// struct ReduceData { 2664 /// double *foo; 2665 /// double *bar; 2666 /// } reduceData 2667 /// reduceData.foo = &foo_private 2668 /// reduceData.bar = &bar_private 2669 /// 2670 /// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two 2671 /// auxiliary functions generated by the compiler that operate on 2672 /// variables of type 'ReduceData'. They aid the runtime perform 2673 /// algorithmic steps in a data agnostic manner. 2674 /// 2675 /// 'shuffleReduceFn' is a pointer to a function that reduces data 2676 /// of type 'ReduceData' across two OpenMP threads (lanes) in the 2677 /// same warp. It takes the following arguments as input: 2678 /// 2679 /// a. variable of type 'ReduceData' on the calling lane, 2680 /// b. its lane_id, 2681 /// c. an offset relative to the current lane_id to generate a 2682 /// remote_lane_id. The remote lane contains the second 2683 /// variable of type 'ReduceData' that is to be reduced. 2684 /// d. an algorithm version parameter determining which reduction 2685 /// algorithm to use. 2686 /// 2687 /// 'shuffleReduceFn' retrieves data from the remote lane using 2688 /// efficient GPU shuffle intrinsics and reduces, using the 2689 /// algorithm specified by the 4th parameter, the two operands 2690 /// element-wise. The result is written to the first operand. 2691 /// 2692 /// Different reduction algorithms are implemented in different 2693 /// runtime functions, all calling 'shuffleReduceFn' to perform 2694 /// the essential reduction step. Therefore, based on the 4th 2695 /// parameter, this function behaves slightly differently to 2696 /// cooperate with the runtime to ensure correctness under 2697 /// different circumstances. 2698 /// 2699 /// 'InterWarpCpyFn' is a pointer to a function that transfers 2700 /// reduced variables across warps. It tunnels, through CUDA 2701 /// shared memory, the thread-private data of type 'ReduceData' 2702 /// from lane 0 of each warp to a lane in the first warp. 2703 /// 4. Call the OpenMP runtime on the GPU to reduce across teams. 2704 /// The last team writes the global reduced value to memory. 2705 /// 2706 /// ret = __kmpc_nvptx_teams_reduce_nowait(..., 2707 /// reduceData, shuffleReduceFn, interWarpCpyFn, 2708 /// scratchpadCopyFn, loadAndReduceFn) 2709 /// 2710 /// 'scratchpadCopyFn' is a helper that stores reduced 2711 /// data from the team master to a scratchpad array in 2712 /// global memory. 2713 /// 2714 /// 'loadAndReduceFn' is a helper that loads data from 2715 /// the scratchpad array and reduces it with the input 2716 /// operand. 2717 /// 2718 /// These compiler generated functions hide address 2719 /// calculation and alignment information from the runtime. 2720 /// 5. if ret == 1: 2721 /// The team master of the last team stores the reduced 2722 /// result to the globals in memory. 2723 /// foo += reduceData.foo; bar *= reduceData.bar 2724 /// 2725 /// 2726 /// Warp Reduction Algorithms 2727 /// 2728 /// On the warp level, we have three algorithms implemented in the 2729 /// OpenMP runtime depending on the number of active lanes: 2730 /// 2731 /// Full Warp Reduction 2732 /// 2733 /// The reduce algorithm within a warp where all lanes are active 2734 /// is implemented in the runtime as follows: 2735 /// 2736 /// full_warp_reduce(void *reduce_data, 2737 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { 2738 /// for (int offset = WARPSIZE/2; offset > 0; offset /= 2) 2739 /// ShuffleReduceFn(reduce_data, 0, offset, 0); 2740 /// } 2741 /// 2742 /// The algorithm completes in log(2, WARPSIZE) steps. 2743 /// 2744 /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is 2745 /// not used therefore we save instructions by not retrieving lane_id 2746 /// from the corresponding special registers. The 4th parameter, which 2747 /// represents the version of the algorithm being used, is set to 0 to 2748 /// signify full warp reduction. 2749 /// 2750 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 2751 /// 2752 /// #reduce_elem refers to an element in the local lane's data structure 2753 /// #remote_elem is retrieved from a remote lane 2754 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 2755 /// reduce_elem = reduce_elem REDUCE_OP remote_elem; 2756 /// 2757 /// Contiguous Partial Warp Reduction 2758 /// 2759 /// This reduce algorithm is used within a warp where only the first 2760 /// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the 2761 /// number of OpenMP threads in a parallel region is not a multiple of 2762 /// WARPSIZE. The algorithm is implemented in the runtime as follows: 2763 /// 2764 /// void 2765 /// contiguous_partial_reduce(void *reduce_data, 2766 /// kmp_ShuffleReductFctPtr ShuffleReduceFn, 2767 /// int size, int lane_id) { 2768 /// int curr_size; 2769 /// int offset; 2770 /// curr_size = size; 2771 /// mask = curr_size/2; 2772 /// while (offset>0) { 2773 /// ShuffleReduceFn(reduce_data, lane_id, offset, 1); 2774 /// curr_size = (curr_size+1)/2; 2775 /// offset = curr_size/2; 2776 /// } 2777 /// } 2778 /// 2779 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 2780 /// 2781 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 2782 /// if (lane_id < offset) 2783 /// reduce_elem = reduce_elem REDUCE_OP remote_elem 2784 /// else 2785 /// reduce_elem = remote_elem 2786 /// 2787 /// This algorithm assumes that the data to be reduced are located in a 2788 /// contiguous subset of lanes starting from the first. When there is 2789 /// an odd number of active lanes, the data in the last lane is not 2790 /// aggregated with any other lane's dat but is instead copied over. 2791 /// 2792 /// Dispersed Partial Warp Reduction 2793 /// 2794 /// This algorithm is used within a warp when any discontiguous subset of 2795 /// lanes are active. It is used to implement the reduction operation 2796 /// across lanes in an OpenMP simd region or in a nested parallel region. 2797 /// 2798 /// void 2799 /// dispersed_partial_reduce(void *reduce_data, 2800 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { 2801 /// int size, remote_id; 2802 /// int logical_lane_id = number_of_active_lanes_before_me() * 2; 2803 /// do { 2804 /// remote_id = next_active_lane_id_right_after_me(); 2805 /// # the above function returns 0 of no active lane 2806 /// # is present right after the current lane. 2807 /// size = number_of_active_lanes_in_this_warp(); 2808 /// logical_lane_id /= 2; 2809 /// ShuffleReduceFn(reduce_data, logical_lane_id, 2810 /// remote_id-1-threadIdx.x, 2); 2811 /// } while (logical_lane_id % 2 == 0 && size > 1); 2812 /// } 2813 /// 2814 /// There is no assumption made about the initial state of the reduction. 2815 /// Any number of lanes (>=1) could be active at any position. The reduction 2816 /// result is returned in the first active lane. 2817 /// 2818 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 2819 /// 2820 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 2821 /// if (lane_id % 2 == 0 && offset > 0) 2822 /// reduce_elem = reduce_elem REDUCE_OP remote_elem 2823 /// else 2824 /// reduce_elem = remote_elem 2825 /// 2826 /// 2827 /// Intra-Team Reduction 2828 /// 2829 /// This function, as implemented in the runtime call 2830 /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP 2831 /// threads in a team. It first reduces within a warp using the 2832 /// aforementioned algorithms. We then proceed to gather all such 2833 /// reduced values at the first warp. 2834 /// 2835 /// The runtime makes use of the function 'InterWarpCpyFn', which copies 2836 /// data from each of the "warp master" (zeroth lane of each warp, where 2837 /// warp-reduced data is held) to the zeroth warp. This step reduces (in 2838 /// a mathematical sense) the problem of reduction across warp masters in 2839 /// a block to the problem of warp reduction. 2840 /// 2841 /// 2842 /// Inter-Team Reduction 2843 /// 2844 /// Once a team has reduced its data to a single value, it is stored in 2845 /// a global scratchpad array. Since each team has a distinct slot, this 2846 /// can be done without locking. 2847 /// 2848 /// The last team to write to the scratchpad array proceeds to reduce the 2849 /// scratchpad array. One or more workers in the last team use the helper 2850 /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e., 2851 /// the k'th worker reduces every k'th element. 2852 /// 2853 /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to 2854 /// reduce across workers and compute a globally reduced value. 2855 /// 2856 void CGOpenMPRuntimeGPU::emitReduction( 2857 CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates, 2858 ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs, 2859 ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) { 2860 if (!CGF.HaveInsertPoint()) 2861 return; 2862 2863 bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind); 2864 #ifndef NDEBUG 2865 bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind); 2866 #endif 2867 2868 if (Options.SimpleReduction) { 2869 assert(!TeamsReduction && !ParallelReduction && 2870 "Invalid reduction selection in emitReduction."); 2871 CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs, 2872 ReductionOps, Options); 2873 return; 2874 } 2875 2876 assert((TeamsReduction || ParallelReduction) && 2877 "Invalid reduction selection in emitReduction."); 2878 2879 // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList), 2880 // RedList, shuffle_reduce_func, interwarp_copy_func); 2881 // or 2882 // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>); 2883 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 2884 llvm::Value *ThreadId = getThreadID(CGF, Loc); 2885 2886 llvm::Value *Res; 2887 ASTContext &C = CGM.getContext(); 2888 // 1. Build a list of reduction variables. 2889 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 2890 auto Size = RHSExprs.size(); 2891 for (const Expr *E : Privates) { 2892 if (E->getType()->isVariablyModifiedType()) 2893 // Reserve place for array size. 2894 ++Size; 2895 } 2896 llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size); 2897 QualType ReductionArrayTy = 2898 C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal, 2899 /*IndexTypeQuals=*/0); 2900 Address ReductionList = 2901 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 2902 auto IPriv = Privates.begin(); 2903 unsigned Idx = 0; 2904 for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) { 2905 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2906 CGF.Builder.CreateStore( 2907 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 2908 CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy), 2909 Elem); 2910 if ((*IPriv)->getType()->isVariablyModifiedType()) { 2911 // Store array size. 2912 ++Idx; 2913 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2914 llvm::Value *Size = CGF.Builder.CreateIntCast( 2915 CGF.getVLASize( 2916 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 2917 .NumElts, 2918 CGF.SizeTy, /*isSigned=*/false); 2919 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 2920 Elem); 2921 } 2922 } 2923 2924 llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 2925 ReductionList.getPointer(), CGF.VoidPtrTy); 2926 llvm::Function *ReductionFn = 2927 emitReductionFunction(Loc, CGF.ConvertTypeForMem(ReductionArrayTy), 2928 Privates, LHSExprs, RHSExprs, ReductionOps); 2929 llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy); 2930 llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction( 2931 CGM, Privates, ReductionArrayTy, ReductionFn, Loc); 2932 llvm::Value *InterWarpCopyFn = 2933 emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc); 2934 2935 if (ParallelReduction) { 2936 llvm::Value *Args[] = {RTLoc, 2937 ThreadId, 2938 CGF.Builder.getInt32(RHSExprs.size()), 2939 ReductionArrayTySize, 2940 RL, 2941 ShuffleAndReduceFn, 2942 InterWarpCopyFn}; 2943 2944 Res = CGF.EmitRuntimeCall( 2945 OMPBuilder.getOrCreateRuntimeFunction( 2946 CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2), 2947 Args); 2948 } else { 2949 assert(TeamsReduction && "expected teams reduction."); 2950 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap; 2951 llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size()); 2952 int Cnt = 0; 2953 for (const Expr *DRE : Privates) { 2954 PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl(); 2955 ++Cnt; 2956 } 2957 const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars( 2958 CGM.getContext(), PrivatesReductions, std::nullopt, VarFieldMap, 2959 C.getLangOpts().OpenMPCUDAReductionBufNum); 2960 TeamsReductions.push_back(TeamReductionRec); 2961 if (!KernelTeamsReductionPtr) { 2962 KernelTeamsReductionPtr = new llvm::GlobalVariable( 2963 CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true, 2964 llvm::GlobalValue::InternalLinkage, nullptr, 2965 "_openmp_teams_reductions_buffer_$_$ptr"); 2966 } 2967 llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar( 2968 Address(KernelTeamsReductionPtr, CGF.VoidPtrTy, CGM.getPointerAlign()), 2969 /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc); 2970 llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction( 2971 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); 2972 llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction( 2973 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, 2974 ReductionFn); 2975 llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction( 2976 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); 2977 llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction( 2978 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, 2979 ReductionFn); 2980 2981 llvm::Value *Args[] = { 2982 RTLoc, 2983 ThreadId, 2984 GlobalBufferPtr, 2985 CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum), 2986 RL, 2987 ShuffleAndReduceFn, 2988 InterWarpCopyFn, 2989 GlobalToBufferCpyFn, 2990 GlobalToBufferRedFn, 2991 BufferToGlobalCpyFn, 2992 BufferToGlobalRedFn}; 2993 2994 Res = CGF.EmitRuntimeCall( 2995 OMPBuilder.getOrCreateRuntimeFunction( 2996 CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2), 2997 Args); 2998 } 2999 3000 // 5. Build if (res == 1) 3001 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done"); 3002 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then"); 3003 llvm::Value *Cond = CGF.Builder.CreateICmpEQ( 3004 Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1)); 3005 CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB); 3006 3007 // 6. Build then branch: where we have reduced values in the master 3008 // thread in each team. 3009 // __kmpc_end_reduce{_nowait}(<gtid>); 3010 // break; 3011 CGF.EmitBlock(ThenBB); 3012 3013 // Add emission of __kmpc_end_reduce{_nowait}(<gtid>); 3014 auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps, 3015 this](CodeGenFunction &CGF, PrePostActionTy &Action) { 3016 auto IPriv = Privates.begin(); 3017 auto ILHS = LHSExprs.begin(); 3018 auto IRHS = RHSExprs.begin(); 3019 for (const Expr *E : ReductionOps) { 3020 emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS), 3021 cast<DeclRefExpr>(*IRHS)); 3022 ++IPriv; 3023 ++ILHS; 3024 ++IRHS; 3025 } 3026 }; 3027 llvm::Value *EndArgs[] = {ThreadId}; 3028 RegionCodeGenTy RCG(CodeGen); 3029 NVPTXActionTy Action( 3030 nullptr, std::nullopt, 3031 OMPBuilder.getOrCreateRuntimeFunction( 3032 CGM.getModule(), OMPRTL___kmpc_nvptx_end_reduce_nowait), 3033 EndArgs); 3034 RCG.setAction(Action); 3035 RCG(CGF); 3036 // There is no need to emit line number for unconditional branch. 3037 (void)ApplyDebugLocation::CreateEmpty(CGF); 3038 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 3039 } 3040 3041 const VarDecl * 3042 CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD, 3043 const VarDecl *NativeParam) const { 3044 if (!NativeParam->getType()->isReferenceType()) 3045 return NativeParam; 3046 QualType ArgType = NativeParam->getType(); 3047 QualifierCollector QC; 3048 const Type *NonQualTy = QC.strip(ArgType); 3049 QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); 3050 if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) { 3051 if (Attr->getCaptureKind() == OMPC_map) { 3052 PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy, 3053 LangAS::opencl_global); 3054 } 3055 } 3056 ArgType = CGM.getContext().getPointerType(PointeeTy); 3057 QC.addRestrict(); 3058 enum { NVPTX_local_addr = 5 }; 3059 QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr)); 3060 ArgType = QC.apply(CGM.getContext(), ArgType); 3061 if (isa<ImplicitParamDecl>(NativeParam)) 3062 return ImplicitParamDecl::Create( 3063 CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(), 3064 NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other); 3065 return ParmVarDecl::Create( 3066 CGM.getContext(), 3067 const_cast<DeclContext *>(NativeParam->getDeclContext()), 3068 NativeParam->getBeginLoc(), NativeParam->getLocation(), 3069 NativeParam->getIdentifier(), ArgType, 3070 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 3071 } 3072 3073 Address 3074 CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF, 3075 const VarDecl *NativeParam, 3076 const VarDecl *TargetParam) const { 3077 assert(NativeParam != TargetParam && 3078 NativeParam->getType()->isReferenceType() && 3079 "Native arg must not be the same as target arg."); 3080 Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam); 3081 QualType NativeParamType = NativeParam->getType(); 3082 QualifierCollector QC; 3083 const Type *NonQualTy = QC.strip(NativeParamType); 3084 QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); 3085 unsigned NativePointeeAddrSpace = 3086 CGF.getTypes().getTargetAddressSpace(NativePointeeTy); 3087 QualType TargetTy = TargetParam->getType(); 3088 llvm::Value *TargetAddr = CGF.EmitLoadOfScalar( 3089 LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation()); 3090 // First cast to generic. 3091 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3092 TargetAddr, llvm::PointerType::getWithSamePointeeType( 3093 cast<llvm::PointerType>(TargetAddr->getType()), /*AddrSpace=*/0)); 3094 // Cast from generic to native address space. 3095 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3096 TargetAddr, llvm::PointerType::getWithSamePointeeType( 3097 cast<llvm::PointerType>(TargetAddr->getType()), 3098 NativePointeeAddrSpace)); 3099 Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType); 3100 CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false, 3101 NativeParamType); 3102 return NativeParamAddr; 3103 } 3104 3105 void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall( 3106 CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn, 3107 ArrayRef<llvm::Value *> Args) const { 3108 SmallVector<llvm::Value *, 4> TargetArgs; 3109 TargetArgs.reserve(Args.size()); 3110 auto *FnType = OutlinedFn.getFunctionType(); 3111 for (unsigned I = 0, E = Args.size(); I < E; ++I) { 3112 if (FnType->isVarArg() && FnType->getNumParams() <= I) { 3113 TargetArgs.append(std::next(Args.begin(), I), Args.end()); 3114 break; 3115 } 3116 llvm::Type *TargetType = FnType->getParamType(I); 3117 llvm::Value *NativeArg = Args[I]; 3118 if (!TargetType->isPointerTy()) { 3119 TargetArgs.emplace_back(NativeArg); 3120 continue; 3121 } 3122 llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3123 NativeArg, llvm::PointerType::getWithSamePointeeType( 3124 cast<llvm::PointerType>(NativeArg->getType()), /*AddrSpace*/ 0)); 3125 TargetArgs.emplace_back( 3126 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType)); 3127 } 3128 CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs); 3129 } 3130 3131 /// Emit function which wraps the outline parallel region 3132 /// and controls the arguments which are passed to this function. 3133 /// The wrapper ensures that the outlined function is called 3134 /// with the correct arguments when data is shared. 3135 llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper( 3136 llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) { 3137 ASTContext &Ctx = CGM.getContext(); 3138 const auto &CS = *D.getCapturedStmt(OMPD_parallel); 3139 3140 // Create a function that takes as argument the source thread. 3141 FunctionArgList WrapperArgs; 3142 QualType Int16QTy = 3143 Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false); 3144 QualType Int32QTy = 3145 Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false); 3146 ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), 3147 /*Id=*/nullptr, Int16QTy, 3148 ImplicitParamDecl::Other); 3149 ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), 3150 /*Id=*/nullptr, Int32QTy, 3151 ImplicitParamDecl::Other); 3152 WrapperArgs.emplace_back(&ParallelLevelArg); 3153 WrapperArgs.emplace_back(&WrapperArg); 3154 3155 const CGFunctionInfo &CGFI = 3156 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs); 3157 3158 auto *Fn = llvm::Function::Create( 3159 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 3160 Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule()); 3161 3162 // Ensure we do not inline the function. This is trivially true for the ones 3163 // passed to __kmpc_fork_call but the ones calles in serialized regions 3164 // could be inlined. This is not a perfect but it is closer to the invariant 3165 // we want, namely, every data environment starts with a new function. 3166 // TODO: We should pass the if condition to the runtime function and do the 3167 // handling there. Much cleaner code. 3168 Fn->addFnAttr(llvm::Attribute::NoInline); 3169 3170 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 3171 Fn->setLinkage(llvm::GlobalValue::InternalLinkage); 3172 Fn->setDoesNotRecurse(); 3173 3174 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3175 CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs, 3176 D.getBeginLoc(), D.getBeginLoc()); 3177 3178 const auto *RD = CS.getCapturedRecordDecl(); 3179 auto CurField = RD->field_begin(); 3180 3181 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 3182 /*Name=*/".zero.addr"); 3183 CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr); 3184 // Get the array of arguments. 3185 SmallVector<llvm::Value *, 8> Args; 3186 3187 Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer()); 3188 Args.emplace_back(ZeroAddr.getPointer()); 3189 3190 CGBuilderTy &Bld = CGF.Builder; 3191 auto CI = CS.capture_begin(); 3192 3193 // Use global memory for data sharing. 3194 // Handle passing of global args to workers. 3195 Address GlobalArgs = 3196 CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args"); 3197 llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer(); 3198 llvm::Value *DataSharingArgs[] = {GlobalArgsPtr}; 3199 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 3200 CGM.getModule(), OMPRTL___kmpc_get_shared_variables), 3201 DataSharingArgs); 3202 3203 // Retrieve the shared variables from the list of references returned 3204 // by the runtime. Pass the variables to the outlined function. 3205 Address SharedArgListAddress = Address::invalid(); 3206 if (CS.capture_size() > 0 || 3207 isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { 3208 SharedArgListAddress = CGF.EmitLoadOfPointer( 3209 GlobalArgs, CGF.getContext() 3210 .getPointerType(CGF.getContext().VoidPtrTy) 3211 .castAs<PointerType>()); 3212 } 3213 unsigned Idx = 0; 3214 if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { 3215 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 3216 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3217 Src, CGF.SizeTy->getPointerTo(), CGF.SizeTy); 3218 llvm::Value *LB = CGF.EmitLoadOfScalar( 3219 TypedAddress, 3220 /*Volatile=*/false, 3221 CGF.getContext().getPointerType(CGF.getContext().getSizeType()), 3222 cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc()); 3223 Args.emplace_back(LB); 3224 ++Idx; 3225 Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 3226 TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3227 Src, CGF.SizeTy->getPointerTo(), CGF.SizeTy); 3228 llvm::Value *UB = CGF.EmitLoadOfScalar( 3229 TypedAddress, 3230 /*Volatile=*/false, 3231 CGF.getContext().getPointerType(CGF.getContext().getSizeType()), 3232 cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc()); 3233 Args.emplace_back(UB); 3234 ++Idx; 3235 } 3236 if (CS.capture_size() > 0) { 3237 ASTContext &CGFContext = CGF.getContext(); 3238 for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) { 3239 QualType ElemTy = CurField->getType(); 3240 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx); 3241 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3242 Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy)), 3243 CGF.ConvertTypeForMem(ElemTy)); 3244 llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress, 3245 /*Volatile=*/false, 3246 CGFContext.getPointerType(ElemTy), 3247 CI->getLocation()); 3248 if (CI->capturesVariableByCopy() && 3249 !CI->getCapturedVar()->getType()->isAnyPointerType()) { 3250 Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(), 3251 CI->getLocation()); 3252 } 3253 Args.emplace_back(Arg); 3254 } 3255 } 3256 3257 emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args); 3258 CGF.FinishFunction(); 3259 return Fn; 3260 } 3261 3262 void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF, 3263 const Decl *D) { 3264 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) 3265 return; 3266 3267 assert(D && "Expected function or captured|block decl."); 3268 assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 && 3269 "Function is registered already."); 3270 assert((!TeamAndReductions.first || TeamAndReductions.first == D) && 3271 "Team is set but not processed."); 3272 const Stmt *Body = nullptr; 3273 bool NeedToDelayGlobalization = false; 3274 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3275 Body = FD->getBody(); 3276 } else if (const auto *BD = dyn_cast<BlockDecl>(D)) { 3277 Body = BD->getBody(); 3278 } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) { 3279 Body = CD->getBody(); 3280 NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP; 3281 if (NeedToDelayGlobalization && 3282 getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 3283 return; 3284 } 3285 if (!Body) 3286 return; 3287 CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second); 3288 VarChecker.Visit(Body); 3289 const RecordDecl *GlobalizedVarsRecord = 3290 VarChecker.getGlobalizedRecord(IsInTTDRegion); 3291 TeamAndReductions.first = nullptr; 3292 TeamAndReductions.second.clear(); 3293 ArrayRef<const ValueDecl *> EscapedVariableLengthDecls = 3294 VarChecker.getEscapedVariableLengthDecls(); 3295 if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty()) 3296 return; 3297 auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; 3298 I->getSecond().MappedParams = 3299 std::make_unique<CodeGenFunction::OMPMapVars>(); 3300 I->getSecond().EscapedParameters.insert( 3301 VarChecker.getEscapedParameters().begin(), 3302 VarChecker.getEscapedParameters().end()); 3303 I->getSecond().EscapedVariableLengthDecls.append( 3304 EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end()); 3305 DeclToAddrMapTy &Data = I->getSecond().LocalVarData; 3306 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { 3307 assert(VD->isCanonicalDecl() && "Expected canonical declaration"); 3308 Data.insert(std::make_pair(VD, MappedVarData())); 3309 } 3310 if (!NeedToDelayGlobalization) { 3311 emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true); 3312 struct GlobalizationScope final : EHScopeStack::Cleanup { 3313 GlobalizationScope() = default; 3314 3315 void Emit(CodeGenFunction &CGF, Flags flags) override { 3316 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) 3317 .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true); 3318 } 3319 }; 3320 CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup); 3321 } 3322 } 3323 3324 Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF, 3325 const VarDecl *VD) { 3326 if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) { 3327 const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); 3328 auto AS = LangAS::Default; 3329 switch (A->getAllocatorType()) { 3330 // Use the default allocator here as by default local vars are 3331 // threadlocal. 3332 case OMPAllocateDeclAttr::OMPNullMemAlloc: 3333 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: 3334 case OMPAllocateDeclAttr::OMPThreadMemAlloc: 3335 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: 3336 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: 3337 // Follow the user decision - use default allocation. 3338 return Address::invalid(); 3339 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: 3340 // TODO: implement aupport for user-defined allocators. 3341 return Address::invalid(); 3342 case OMPAllocateDeclAttr::OMPConstMemAlloc: 3343 AS = LangAS::cuda_constant; 3344 break; 3345 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: 3346 AS = LangAS::cuda_shared; 3347 break; 3348 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: 3349 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: 3350 break; 3351 } 3352 llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType()); 3353 auto *GV = new llvm::GlobalVariable( 3354 CGM.getModule(), VarTy, /*isConstant=*/false, 3355 llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy), 3356 VD->getName(), 3357 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, 3358 CGM.getContext().getTargetAddressSpace(AS)); 3359 CharUnits Align = CGM.getContext().getDeclAlign(VD); 3360 GV->setAlignment(Align.getAsAlign()); 3361 return Address( 3362 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3363 GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace( 3364 VD->getType().getAddressSpace()))), 3365 VarTy, Align); 3366 } 3367 3368 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) 3369 return Address::invalid(); 3370 3371 VD = VD->getCanonicalDecl(); 3372 auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 3373 if (I == FunctionGlobalizedDecls.end()) 3374 return Address::invalid(); 3375 auto VDI = I->getSecond().LocalVarData.find(VD); 3376 if (VDI != I->getSecond().LocalVarData.end()) 3377 return VDI->second.PrivateAddr; 3378 if (VD->hasAttrs()) { 3379 for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()), 3380 E(VD->attr_end()); 3381 IT != E; ++IT) { 3382 auto VDI = I->getSecond().LocalVarData.find( 3383 cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl()) 3384 ->getCanonicalDecl()); 3385 if (VDI != I->getSecond().LocalVarData.end()) 3386 return VDI->second.PrivateAddr; 3387 } 3388 } 3389 3390 return Address::invalid(); 3391 } 3392 3393 void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) { 3394 FunctionGlobalizedDecls.erase(CGF.CurFn); 3395 CGOpenMPRuntime::functionFinished(CGF); 3396 } 3397 3398 void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk( 3399 CodeGenFunction &CGF, const OMPLoopDirective &S, 3400 OpenMPDistScheduleClauseKind &ScheduleKind, 3401 llvm::Value *&Chunk) const { 3402 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 3403 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { 3404 ScheduleKind = OMPC_DIST_SCHEDULE_static; 3405 Chunk = CGF.EmitScalarConversion( 3406 RT.getGPUNumThreads(CGF), 3407 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3408 S.getIterationVariable()->getType(), S.getBeginLoc()); 3409 return; 3410 } 3411 CGOpenMPRuntime::getDefaultDistScheduleAndChunk( 3412 CGF, S, ScheduleKind, Chunk); 3413 } 3414 3415 void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk( 3416 CodeGenFunction &CGF, const OMPLoopDirective &S, 3417 OpenMPScheduleClauseKind &ScheduleKind, 3418 const Expr *&ChunkExpr) const { 3419 ScheduleKind = OMPC_SCHEDULE_static; 3420 // Chunk size is 1 in this case. 3421 llvm::APInt ChunkSize(32, 1); 3422 ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize, 3423 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3424 SourceLocation()); 3425 } 3426 3427 void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas( 3428 CodeGenFunction &CGF, const OMPExecutableDirective &D) const { 3429 assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) && 3430 " Expected target-based directive."); 3431 const CapturedStmt *CS = D.getCapturedStmt(OMPD_target); 3432 for (const CapturedStmt::Capture &C : CS->captures()) { 3433 // Capture variables captured by reference in lambdas for target-based 3434 // directives. 3435 if (!C.capturesVariable()) 3436 continue; 3437 const VarDecl *VD = C.getCapturedVar(); 3438 const auto *RD = VD->getType() 3439 .getCanonicalType() 3440 .getNonReferenceType() 3441 ->getAsCXXRecordDecl(); 3442 if (!RD || !RD->isLambda()) 3443 continue; 3444 Address VDAddr = CGF.GetAddrOfLocalVar(VD); 3445 LValue VDLVal; 3446 if (VD->getType().getCanonicalType()->isReferenceType()) 3447 VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType()); 3448 else 3449 VDLVal = CGF.MakeAddrLValue( 3450 VDAddr, VD->getType().getCanonicalType().getNonReferenceType()); 3451 llvm::DenseMap<const ValueDecl *, FieldDecl *> Captures; 3452 FieldDecl *ThisCapture = nullptr; 3453 RD->getCaptureFields(Captures, ThisCapture); 3454 if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) { 3455 LValue ThisLVal = 3456 CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture); 3457 llvm::Value *CXXThis = CGF.LoadCXXThis(); 3458 CGF.EmitStoreOfScalar(CXXThis, ThisLVal); 3459 } 3460 for (const LambdaCapture &LC : RD->captures()) { 3461 if (LC.getCaptureKind() != LCK_ByRef) 3462 continue; 3463 const ValueDecl *VD = LC.getCapturedVar(); 3464 // FIXME: For now VD is always a VarDecl because OpenMP does not support 3465 // capturing structured bindings in lambdas yet. 3466 if (!CS->capturesVariable(cast<VarDecl>(VD))) 3467 continue; 3468 auto It = Captures.find(VD); 3469 assert(It != Captures.end() && "Found lambda capture without field."); 3470 LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second); 3471 Address VDAddr = CGF.GetAddrOfLocalVar(cast<VarDecl>(VD)); 3472 if (VD->getType().getCanonicalType()->isReferenceType()) 3473 VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr, 3474 VD->getType().getCanonicalType()) 3475 .getAddress(CGF); 3476 CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal); 3477 } 3478 } 3479 } 3480 3481 bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD, 3482 LangAS &AS) { 3483 if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>()) 3484 return false; 3485 const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); 3486 switch(A->getAllocatorType()) { 3487 case OMPAllocateDeclAttr::OMPNullMemAlloc: 3488 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: 3489 // Not supported, fallback to the default mem space. 3490 case OMPAllocateDeclAttr::OMPThreadMemAlloc: 3491 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: 3492 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: 3493 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: 3494 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: 3495 AS = LangAS::Default; 3496 return true; 3497 case OMPAllocateDeclAttr::OMPConstMemAlloc: 3498 AS = LangAS::cuda_constant; 3499 return true; 3500 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: 3501 AS = LangAS::cuda_shared; 3502 return true; 3503 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: 3504 llvm_unreachable("Expected predefined allocator for the variables with the " 3505 "static storage."); 3506 } 3507 return false; 3508 } 3509 3510 // Get current CudaArch and ignore any unknown values 3511 static CudaArch getCudaArch(CodeGenModule &CGM) { 3512 if (!CGM.getTarget().hasFeature("ptx")) 3513 return CudaArch::UNKNOWN; 3514 for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) { 3515 if (Feature.getValue()) { 3516 CudaArch Arch = StringToCudaArch(Feature.getKey()); 3517 if (Arch != CudaArch::UNKNOWN) 3518 return Arch; 3519 } 3520 } 3521 return CudaArch::UNKNOWN; 3522 } 3523 3524 /// Check to see if target architecture supports unified addressing which is 3525 /// a restriction for OpenMP requires clause "unified_shared_memory". 3526 void CGOpenMPRuntimeGPU::processRequiresDirective( 3527 const OMPRequiresDecl *D) { 3528 for (const OMPClause *Clause : D->clauselists()) { 3529 if (Clause->getClauseKind() == OMPC_unified_shared_memory) { 3530 CudaArch Arch = getCudaArch(CGM); 3531 switch (Arch) { 3532 case CudaArch::SM_20: 3533 case CudaArch::SM_21: 3534 case CudaArch::SM_30: 3535 case CudaArch::SM_32: 3536 case CudaArch::SM_35: 3537 case CudaArch::SM_37: 3538 case CudaArch::SM_50: 3539 case CudaArch::SM_52: 3540 case CudaArch::SM_53: { 3541 SmallString<256> Buffer; 3542 llvm::raw_svector_ostream Out(Buffer); 3543 Out << "Target architecture " << CudaArchToString(Arch) 3544 << " does not support unified addressing"; 3545 CGM.Error(Clause->getBeginLoc(), Out.str()); 3546 return; 3547 } 3548 case CudaArch::SM_60: 3549 case CudaArch::SM_61: 3550 case CudaArch::SM_62: 3551 case CudaArch::SM_70: 3552 case CudaArch::SM_72: 3553 case CudaArch::SM_75: 3554 case CudaArch::SM_80: 3555 case CudaArch::SM_86: 3556 case CudaArch::SM_87: 3557 case CudaArch::SM_89: 3558 case CudaArch::SM_90: 3559 case CudaArch::GFX600: 3560 case CudaArch::GFX601: 3561 case CudaArch::GFX602: 3562 case CudaArch::GFX700: 3563 case CudaArch::GFX701: 3564 case CudaArch::GFX702: 3565 case CudaArch::GFX703: 3566 case CudaArch::GFX704: 3567 case CudaArch::GFX705: 3568 case CudaArch::GFX801: 3569 case CudaArch::GFX802: 3570 case CudaArch::GFX803: 3571 case CudaArch::GFX805: 3572 case CudaArch::GFX810: 3573 case CudaArch::GFX900: 3574 case CudaArch::GFX902: 3575 case CudaArch::GFX904: 3576 case CudaArch::GFX906: 3577 case CudaArch::GFX908: 3578 case CudaArch::GFX909: 3579 case CudaArch::GFX90a: 3580 case CudaArch::GFX90c: 3581 case CudaArch::GFX940: 3582 case CudaArch::GFX1010: 3583 case CudaArch::GFX1011: 3584 case CudaArch::GFX1012: 3585 case CudaArch::GFX1013: 3586 case CudaArch::GFX1030: 3587 case CudaArch::GFX1031: 3588 case CudaArch::GFX1032: 3589 case CudaArch::GFX1033: 3590 case CudaArch::GFX1034: 3591 case CudaArch::GFX1035: 3592 case CudaArch::GFX1036: 3593 case CudaArch::GFX1100: 3594 case CudaArch::GFX1101: 3595 case CudaArch::GFX1102: 3596 case CudaArch::GFX1103: 3597 case CudaArch::Generic: 3598 case CudaArch::UNUSED: 3599 case CudaArch::UNKNOWN: 3600 break; 3601 case CudaArch::LAST: 3602 llvm_unreachable("Unexpected Cuda arch."); 3603 } 3604 } 3605 } 3606 CGOpenMPRuntime::processRequiresDirective(D); 3607 } 3608 3609 void CGOpenMPRuntimeGPU::clear() { 3610 3611 if (!TeamsReductions.empty()) { 3612 ASTContext &C = CGM.getContext(); 3613 RecordDecl *StaticRD = C.buildImplicitRecord( 3614 "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union); 3615 StaticRD->startDefinition(); 3616 for (const RecordDecl *TeamReductionRec : TeamsReductions) { 3617 QualType RecTy = C.getRecordType(TeamReductionRec); 3618 auto *Field = FieldDecl::Create( 3619 C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy, 3620 C.getTrivialTypeSourceInfo(RecTy, SourceLocation()), 3621 /*BW=*/nullptr, /*Mutable=*/false, 3622 /*InitStyle=*/ICIS_NoInit); 3623 Field->setAccess(AS_public); 3624 StaticRD->addDecl(Field); 3625 } 3626 StaticRD->completeDefinition(); 3627 QualType StaticTy = C.getRecordType(StaticRD); 3628 llvm::Type *LLVMReductionsBufferTy = 3629 CGM.getTypes().ConvertTypeForMem(StaticTy); 3630 // FIXME: nvlink does not handle weak linkage correctly (object with the 3631 // different size are reported as erroneous). 3632 // Restore CommonLinkage as soon as nvlink is fixed. 3633 auto *GV = new llvm::GlobalVariable( 3634 CGM.getModule(), LLVMReductionsBufferTy, 3635 /*isConstant=*/false, llvm::GlobalValue::InternalLinkage, 3636 llvm::Constant::getNullValue(LLVMReductionsBufferTy), 3637 "_openmp_teams_reductions_buffer_$_"); 3638 KernelTeamsReductionPtr->setInitializer( 3639 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 3640 CGM.VoidPtrTy)); 3641 } 3642 CGOpenMPRuntime::clear(); 3643 } 3644 3645 llvm::Value *CGOpenMPRuntimeGPU::getGPUNumThreads(CodeGenFunction &CGF) { 3646 CGBuilderTy &Bld = CGF.Builder; 3647 llvm::Module *M = &CGF.CGM.getModule(); 3648 const char *LocSize = "__kmpc_get_hardware_num_threads_in_block"; 3649 llvm::Function *F = M->getFunction(LocSize); 3650 if (!F) { 3651 F = llvm::Function::Create( 3652 llvm::FunctionType::get(CGF.Int32Ty, std::nullopt, false), 3653 llvm::GlobalVariable::ExternalLinkage, LocSize, &CGF.CGM.getModule()); 3654 } 3655 return Bld.CreateCall(F, std::nullopt, "nvptx_num_threads"); 3656 } 3657 3658 llvm::Value *CGOpenMPRuntimeGPU::getGPUThreadID(CodeGenFunction &CGF) { 3659 ArrayRef<llvm::Value *> Args{}; 3660 return CGF.EmitRuntimeCall( 3661 OMPBuilder.getOrCreateRuntimeFunction( 3662 CGM.getModule(), OMPRTL___kmpc_get_hardware_thread_id_in_block), 3663 Args); 3664 } 3665 3666 llvm::Value *CGOpenMPRuntimeGPU::getGPUWarpSize(CodeGenFunction &CGF) { 3667 ArrayRef<llvm::Value *> Args{}; 3668 return CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 3669 CGM.getModule(), OMPRTL___kmpc_get_warp_size), 3670 Args); 3671 } 3672