1 //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides a generalized class for OpenMP runtime code generation 10 // specialized by GPU targets NVPTX and AMDGCN. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGOpenMPRuntimeGPU.h" 15 #include "CodeGenFunction.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/DeclOpenMP.h" 18 #include "clang/AST/StmtOpenMP.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "clang/Basic/Cuda.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 23 #include "llvm/Support/MathExtras.h" 24 25 using namespace clang; 26 using namespace CodeGen; 27 using namespace llvm::omp; 28 29 namespace { 30 /// Pre(post)-action for different OpenMP constructs specialized for NVPTX. 31 class NVPTXActionTy final : public PrePostActionTy { 32 llvm::FunctionCallee EnterCallee = nullptr; 33 ArrayRef<llvm::Value *> EnterArgs; 34 llvm::FunctionCallee ExitCallee = nullptr; 35 ArrayRef<llvm::Value *> ExitArgs; 36 bool Conditional = false; 37 llvm::BasicBlock *ContBlock = nullptr; 38 39 public: 40 NVPTXActionTy(llvm::FunctionCallee EnterCallee, 41 ArrayRef<llvm::Value *> EnterArgs, 42 llvm::FunctionCallee ExitCallee, 43 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false) 44 : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee), 45 ExitArgs(ExitArgs), Conditional(Conditional) {} 46 void Enter(CodeGenFunction &CGF) override { 47 llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs); 48 if (Conditional) { 49 llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes); 50 auto *ThenBlock = CGF.createBasicBlock("omp_if.then"); 51 ContBlock = CGF.createBasicBlock("omp_if.end"); 52 // Generate the branch (If-stmt) 53 CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock); 54 CGF.EmitBlock(ThenBlock); 55 } 56 } 57 void Done(CodeGenFunction &CGF) { 58 // Emit the rest of blocks/branches 59 CGF.EmitBranch(ContBlock); 60 CGF.EmitBlock(ContBlock, true); 61 } 62 void Exit(CodeGenFunction &CGF) override { 63 CGF.EmitRuntimeCall(ExitCallee, ExitArgs); 64 } 65 }; 66 67 /// A class to track the execution mode when codegening directives within 68 /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry 69 /// to the target region and used by containing directives such as 'parallel' 70 /// to emit optimized code. 71 class ExecutionRuntimeModesRAII { 72 private: 73 CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode = 74 CGOpenMPRuntimeGPU::EM_Unknown; 75 CGOpenMPRuntimeGPU::ExecutionMode &ExecMode; 76 bool SavedRuntimeMode = false; 77 bool *RuntimeMode = nullptr; 78 79 public: 80 /// Constructor for Non-SPMD mode. 81 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode) 82 : ExecMode(ExecMode) { 83 SavedExecMode = ExecMode; 84 ExecMode = CGOpenMPRuntimeGPU::EM_NonSPMD; 85 } 86 /// Constructor for SPMD mode. 87 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode, 88 bool &RuntimeMode, bool FullRuntimeMode) 89 : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) { 90 SavedExecMode = ExecMode; 91 SavedRuntimeMode = RuntimeMode; 92 ExecMode = CGOpenMPRuntimeGPU::EM_SPMD; 93 RuntimeMode = FullRuntimeMode; 94 } 95 ~ExecutionRuntimeModesRAII() { 96 ExecMode = SavedExecMode; 97 if (RuntimeMode) 98 *RuntimeMode = SavedRuntimeMode; 99 } 100 }; 101 102 /// GPU Configuration: This information can be derived from cuda registers, 103 /// however, providing compile time constants helps generate more efficient 104 /// code. For all practical purposes this is fine because the configuration 105 /// is the same for all known NVPTX architectures. 106 enum MachineConfiguration : unsigned { 107 /// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target 108 /// specific Grid Values like GV_Warp_Size, GV_Slot_Size 109 110 /// Global memory alignment for performance. 111 GlobalMemoryAlignment = 128, 112 113 /// Maximal size of the shared memory buffer. 114 SharedMemorySize = 128, 115 }; 116 117 static const ValueDecl *getPrivateItem(const Expr *RefExpr) { 118 RefExpr = RefExpr->IgnoreParens(); 119 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) { 120 const Expr *Base = ASE->getBase()->IgnoreParenImpCasts(); 121 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 122 Base = TempASE->getBase()->IgnoreParenImpCasts(); 123 RefExpr = Base; 124 } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) { 125 const Expr *Base = OASE->getBase()->IgnoreParenImpCasts(); 126 while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base)) 127 Base = TempOASE->getBase()->IgnoreParenImpCasts(); 128 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 129 Base = TempASE->getBase()->IgnoreParenImpCasts(); 130 RefExpr = Base; 131 } 132 RefExpr = RefExpr->IgnoreParenImpCasts(); 133 if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr)) 134 return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl()); 135 const auto *ME = cast<MemberExpr>(RefExpr); 136 return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl()); 137 } 138 139 140 static RecordDecl *buildRecordForGlobalizedVars( 141 ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls, 142 ArrayRef<const ValueDecl *> EscapedDeclsForTeams, 143 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 144 &MappedDeclsFields, int BufSize) { 145 using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>; 146 if (EscapedDecls.empty() && EscapedDeclsForTeams.empty()) 147 return nullptr; 148 SmallVector<VarsDataTy, 4> GlobalizedVars; 149 for (const ValueDecl *D : EscapedDecls) 150 GlobalizedVars.emplace_back( 151 CharUnits::fromQuantity(std::max( 152 C.getDeclAlign(D).getQuantity(), 153 static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))), 154 D); 155 for (const ValueDecl *D : EscapedDeclsForTeams) 156 GlobalizedVars.emplace_back(C.getDeclAlign(D), D); 157 llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) { 158 return L.first > R.first; 159 }); 160 161 // Build struct _globalized_locals_ty { 162 // /* globalized vars */[WarSize] align (max(decl_align, 163 // GlobalMemoryAlignment)) 164 // /* globalized vars */ for EscapedDeclsForTeams 165 // }; 166 RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty"); 167 GlobalizedRD->startDefinition(); 168 llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped( 169 EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end()); 170 for (const auto &Pair : GlobalizedVars) { 171 const ValueDecl *VD = Pair.second; 172 QualType Type = VD->getType(); 173 if (Type->isLValueReferenceType()) 174 Type = C.getPointerType(Type.getNonReferenceType()); 175 else 176 Type = Type.getNonReferenceType(); 177 SourceLocation Loc = VD->getLocation(); 178 FieldDecl *Field; 179 if (SingleEscaped.count(VD)) { 180 Field = FieldDecl::Create( 181 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, 182 C.getTrivialTypeSourceInfo(Type, SourceLocation()), 183 /*BW=*/nullptr, /*Mutable=*/false, 184 /*InitStyle=*/ICIS_NoInit); 185 Field->setAccess(AS_public); 186 if (VD->hasAttrs()) { 187 for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()), 188 E(VD->getAttrs().end()); 189 I != E; ++I) 190 Field->addAttr(*I); 191 } 192 } else { 193 llvm::APInt ArraySize(32, BufSize); 194 Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal, 195 0); 196 Field = FieldDecl::Create( 197 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, 198 C.getTrivialTypeSourceInfo(Type, SourceLocation()), 199 /*BW=*/nullptr, /*Mutable=*/false, 200 /*InitStyle=*/ICIS_NoInit); 201 Field->setAccess(AS_public); 202 llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(), 203 static_cast<CharUnits::QuantityType>( 204 GlobalMemoryAlignment))); 205 Field->addAttr(AlignedAttr::CreateImplicit( 206 C, /*IsAlignmentExpr=*/true, 207 IntegerLiteral::Create(C, Align, 208 C.getIntTypeForBitwidth(32, /*Signed=*/0), 209 SourceLocation()), 210 {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned)); 211 } 212 GlobalizedRD->addDecl(Field); 213 MappedDeclsFields.try_emplace(VD, Field); 214 } 215 GlobalizedRD->completeDefinition(); 216 return GlobalizedRD; 217 } 218 219 /// Get the list of variables that can escape their declaration context. 220 class CheckVarsEscapingDeclContext final 221 : public ConstStmtVisitor<CheckVarsEscapingDeclContext> { 222 CodeGenFunction &CGF; 223 llvm::SetVector<const ValueDecl *> EscapedDecls; 224 llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls; 225 llvm::SmallPtrSet<const Decl *, 4> EscapedParameters; 226 RecordDecl *GlobalizedRD = nullptr; 227 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; 228 bool AllEscaped = false; 229 bool IsForCombinedParallelRegion = false; 230 231 void markAsEscaped(const ValueDecl *VD) { 232 // Do not globalize declare target variables. 233 if (!isa<VarDecl>(VD) || 234 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) 235 return; 236 VD = cast<ValueDecl>(VD->getCanonicalDecl()); 237 // Use user-specified allocation. 238 if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>()) 239 return; 240 // Variables captured by value must be globalized. 241 if (auto *CSI = CGF.CapturedStmtInfo) { 242 if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) { 243 // Check if need to capture the variable that was already captured by 244 // value in the outer region. 245 if (!IsForCombinedParallelRegion) { 246 if (!FD->hasAttrs()) 247 return; 248 const auto *Attr = FD->getAttr<OMPCaptureKindAttr>(); 249 if (!Attr) 250 return; 251 if (((Attr->getCaptureKind() != OMPC_map) && 252 !isOpenMPPrivate(Attr->getCaptureKind())) || 253 ((Attr->getCaptureKind() == OMPC_map) && 254 !FD->getType()->isAnyPointerType())) 255 return; 256 } 257 if (!FD->getType()->isReferenceType()) { 258 assert(!VD->getType()->isVariablyModifiedType() && 259 "Parameter captured by value with variably modified type"); 260 EscapedParameters.insert(VD); 261 } else if (!IsForCombinedParallelRegion) { 262 return; 263 } 264 } 265 } 266 if ((!CGF.CapturedStmtInfo || 267 (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) && 268 VD->getType()->isReferenceType()) 269 // Do not globalize variables with reference type. 270 return; 271 if (VD->getType()->isVariablyModifiedType()) 272 EscapedVariableLengthDecls.insert(VD); 273 else 274 EscapedDecls.insert(VD); 275 } 276 277 void VisitValueDecl(const ValueDecl *VD) { 278 if (VD->getType()->isLValueReferenceType()) 279 markAsEscaped(VD); 280 if (const auto *VarD = dyn_cast<VarDecl>(VD)) { 281 if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) { 282 const bool SavedAllEscaped = AllEscaped; 283 AllEscaped = VD->getType()->isLValueReferenceType(); 284 Visit(VarD->getInit()); 285 AllEscaped = SavedAllEscaped; 286 } 287 } 288 } 289 void VisitOpenMPCapturedStmt(const CapturedStmt *S, 290 ArrayRef<OMPClause *> Clauses, 291 bool IsCombinedParallelRegion) { 292 if (!S) 293 return; 294 for (const CapturedStmt::Capture &C : S->captures()) { 295 if (C.capturesVariable() && !C.capturesVariableByCopy()) { 296 const ValueDecl *VD = C.getCapturedVar(); 297 bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion; 298 if (IsCombinedParallelRegion) { 299 // Check if the variable is privatized in the combined construct and 300 // those private copies must be shared in the inner parallel 301 // directive. 302 IsForCombinedParallelRegion = false; 303 for (const OMPClause *C : Clauses) { 304 if (!isOpenMPPrivate(C->getClauseKind()) || 305 C->getClauseKind() == OMPC_reduction || 306 C->getClauseKind() == OMPC_linear || 307 C->getClauseKind() == OMPC_private) 308 continue; 309 ArrayRef<const Expr *> Vars; 310 if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C)) 311 Vars = PC->getVarRefs(); 312 else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C)) 313 Vars = PC->getVarRefs(); 314 else 315 llvm_unreachable("Unexpected clause."); 316 for (const auto *E : Vars) { 317 const Decl *D = 318 cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl(); 319 if (D == VD->getCanonicalDecl()) { 320 IsForCombinedParallelRegion = true; 321 break; 322 } 323 } 324 if (IsForCombinedParallelRegion) 325 break; 326 } 327 } 328 markAsEscaped(VD); 329 if (isa<OMPCapturedExprDecl>(VD)) 330 VisitValueDecl(VD); 331 IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion; 332 } 333 } 334 } 335 336 void buildRecordForGlobalizedVars(bool IsInTTDRegion) { 337 assert(!GlobalizedRD && 338 "Record for globalized variables is built already."); 339 ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams; 340 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size; 341 if (IsInTTDRegion) 342 EscapedDeclsForTeams = EscapedDecls.getArrayRef(); 343 else 344 EscapedDeclsForParallel = EscapedDecls.getArrayRef(); 345 GlobalizedRD = ::buildRecordForGlobalizedVars( 346 CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams, 347 MappedDeclsFields, WarpSize); 348 } 349 350 public: 351 CheckVarsEscapingDeclContext(CodeGenFunction &CGF, 352 ArrayRef<const ValueDecl *> TeamsReductions) 353 : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) { 354 } 355 virtual ~CheckVarsEscapingDeclContext() = default; 356 void VisitDeclStmt(const DeclStmt *S) { 357 if (!S) 358 return; 359 for (const Decl *D : S->decls()) 360 if (const auto *VD = dyn_cast_or_null<ValueDecl>(D)) 361 VisitValueDecl(VD); 362 } 363 void VisitOMPExecutableDirective(const OMPExecutableDirective *D) { 364 if (!D) 365 return; 366 if (!D->hasAssociatedStmt()) 367 return; 368 if (const auto *S = 369 dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) { 370 // Do not analyze directives that do not actually require capturing, 371 // like `omp for` or `omp simd` directives. 372 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 373 getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind()); 374 if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) { 375 VisitStmt(S->getCapturedStmt()); 376 return; 377 } 378 VisitOpenMPCapturedStmt( 379 S, D->clauses(), 380 CaptureRegions.back() == OMPD_parallel && 381 isOpenMPDistributeDirective(D->getDirectiveKind())); 382 } 383 } 384 void VisitCapturedStmt(const CapturedStmt *S) { 385 if (!S) 386 return; 387 for (const CapturedStmt::Capture &C : S->captures()) { 388 if (C.capturesVariable() && !C.capturesVariableByCopy()) { 389 const ValueDecl *VD = C.getCapturedVar(); 390 markAsEscaped(VD); 391 if (isa<OMPCapturedExprDecl>(VD)) 392 VisitValueDecl(VD); 393 } 394 } 395 } 396 void VisitLambdaExpr(const LambdaExpr *E) { 397 if (!E) 398 return; 399 for (const LambdaCapture &C : E->captures()) { 400 if (C.capturesVariable()) { 401 if (C.getCaptureKind() == LCK_ByRef) { 402 const ValueDecl *VD = C.getCapturedVar(); 403 markAsEscaped(VD); 404 if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD)) 405 VisitValueDecl(VD); 406 } 407 } 408 } 409 } 410 void VisitBlockExpr(const BlockExpr *E) { 411 if (!E) 412 return; 413 for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) { 414 if (C.isByRef()) { 415 const VarDecl *VD = C.getVariable(); 416 markAsEscaped(VD); 417 if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture()) 418 VisitValueDecl(VD); 419 } 420 } 421 } 422 void VisitCallExpr(const CallExpr *E) { 423 if (!E) 424 return; 425 for (const Expr *Arg : E->arguments()) { 426 if (!Arg) 427 continue; 428 if (Arg->isLValue()) { 429 const bool SavedAllEscaped = AllEscaped; 430 AllEscaped = true; 431 Visit(Arg); 432 AllEscaped = SavedAllEscaped; 433 } else { 434 Visit(Arg); 435 } 436 } 437 Visit(E->getCallee()); 438 } 439 void VisitDeclRefExpr(const DeclRefExpr *E) { 440 if (!E) 441 return; 442 const ValueDecl *VD = E->getDecl(); 443 if (AllEscaped) 444 markAsEscaped(VD); 445 if (isa<OMPCapturedExprDecl>(VD)) 446 VisitValueDecl(VD); 447 else if (const auto *VarD = dyn_cast<VarDecl>(VD)) 448 if (VarD->isInitCapture()) 449 VisitValueDecl(VD); 450 } 451 void VisitUnaryOperator(const UnaryOperator *E) { 452 if (!E) 453 return; 454 if (E->getOpcode() == UO_AddrOf) { 455 const bool SavedAllEscaped = AllEscaped; 456 AllEscaped = true; 457 Visit(E->getSubExpr()); 458 AllEscaped = SavedAllEscaped; 459 } else { 460 Visit(E->getSubExpr()); 461 } 462 } 463 void VisitImplicitCastExpr(const ImplicitCastExpr *E) { 464 if (!E) 465 return; 466 if (E->getCastKind() == CK_ArrayToPointerDecay) { 467 const bool SavedAllEscaped = AllEscaped; 468 AllEscaped = true; 469 Visit(E->getSubExpr()); 470 AllEscaped = SavedAllEscaped; 471 } else { 472 Visit(E->getSubExpr()); 473 } 474 } 475 void VisitExpr(const Expr *E) { 476 if (!E) 477 return; 478 bool SavedAllEscaped = AllEscaped; 479 if (!E->isLValue()) 480 AllEscaped = false; 481 for (const Stmt *Child : E->children()) 482 if (Child) 483 Visit(Child); 484 AllEscaped = SavedAllEscaped; 485 } 486 void VisitStmt(const Stmt *S) { 487 if (!S) 488 return; 489 for (const Stmt *Child : S->children()) 490 if (Child) 491 Visit(Child); 492 } 493 494 /// Returns the record that handles all the escaped local variables and used 495 /// instead of their original storage. 496 const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) { 497 if (!GlobalizedRD) 498 buildRecordForGlobalizedVars(IsInTTDRegion); 499 return GlobalizedRD; 500 } 501 502 /// Returns the field in the globalized record for the escaped variable. 503 const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const { 504 assert(GlobalizedRD && 505 "Record for globalized variables must be generated already."); 506 auto I = MappedDeclsFields.find(VD); 507 if (I == MappedDeclsFields.end()) 508 return nullptr; 509 return I->getSecond(); 510 } 511 512 /// Returns the list of the escaped local variables/parameters. 513 ArrayRef<const ValueDecl *> getEscapedDecls() const { 514 return EscapedDecls.getArrayRef(); 515 } 516 517 /// Checks if the escaped local variable is actually a parameter passed by 518 /// value. 519 const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const { 520 return EscapedParameters; 521 } 522 523 /// Returns the list of the escaped variables with the variably modified 524 /// types. 525 ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const { 526 return EscapedVariableLengthDecls.getArrayRef(); 527 } 528 }; 529 } // anonymous namespace 530 531 /// Get the id of the warp in the block. 532 /// We assume that the warp size is 32, which is always the case 533 /// on the NVPTX device, to generate more efficient code. 534 static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) { 535 CGBuilderTy &Bld = CGF.Builder; 536 unsigned LaneIDBits = 537 llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size); 538 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 539 return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id"); 540 } 541 542 /// Get the id of the current lane in the Warp. 543 /// We assume that the warp size is 32, which is always the case 544 /// on the NVPTX device, to generate more efficient code. 545 static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) { 546 CGBuilderTy &Bld = CGF.Builder; 547 unsigned LaneIDBits = 548 llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size); 549 unsigned LaneIDMask = ~0u >> (32u - LaneIDBits); 550 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 551 return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask), 552 "nvptx_lane_id"); 553 } 554 555 CGOpenMPRuntimeGPU::ExecutionMode 556 CGOpenMPRuntimeGPU::getExecutionMode() const { 557 return CurrentExecutionMode; 558 } 559 560 static CGOpenMPRuntimeGPU::DataSharingMode 561 getDataSharingMode(CodeGenModule &CGM) { 562 return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA 563 : CGOpenMPRuntimeGPU::Generic; 564 } 565 566 /// Check for inner (nested) SPMD construct, if any 567 static bool hasNestedSPMDDirective(ASTContext &Ctx, 568 const OMPExecutableDirective &D) { 569 const auto *CS = D.getInnermostCapturedStmt(); 570 const auto *Body = 571 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 572 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 573 574 if (const auto *NestedDir = 575 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 576 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); 577 switch (D.getDirectiveKind()) { 578 case OMPD_target: 579 if (isOpenMPParallelDirective(DKind)) 580 return true; 581 if (DKind == OMPD_teams) { 582 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 583 /*IgnoreCaptured=*/true); 584 if (!Body) 585 return false; 586 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 587 if (const auto *NND = 588 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 589 DKind = NND->getDirectiveKind(); 590 if (isOpenMPParallelDirective(DKind)) 591 return true; 592 } 593 } 594 return false; 595 case OMPD_target_teams: 596 return isOpenMPParallelDirective(DKind); 597 case OMPD_target_simd: 598 case OMPD_target_parallel: 599 case OMPD_target_parallel_for: 600 case OMPD_target_parallel_for_simd: 601 case OMPD_target_teams_distribute: 602 case OMPD_target_teams_distribute_simd: 603 case OMPD_target_teams_distribute_parallel_for: 604 case OMPD_target_teams_distribute_parallel_for_simd: 605 case OMPD_parallel: 606 case OMPD_for: 607 case OMPD_parallel_for: 608 case OMPD_parallel_master: 609 case OMPD_parallel_sections: 610 case OMPD_for_simd: 611 case OMPD_parallel_for_simd: 612 case OMPD_cancel: 613 case OMPD_cancellation_point: 614 case OMPD_ordered: 615 case OMPD_threadprivate: 616 case OMPD_allocate: 617 case OMPD_task: 618 case OMPD_simd: 619 case OMPD_sections: 620 case OMPD_section: 621 case OMPD_single: 622 case OMPD_master: 623 case OMPD_critical: 624 case OMPD_taskyield: 625 case OMPD_barrier: 626 case OMPD_taskwait: 627 case OMPD_taskgroup: 628 case OMPD_atomic: 629 case OMPD_flush: 630 case OMPD_depobj: 631 case OMPD_scan: 632 case OMPD_teams: 633 case OMPD_target_data: 634 case OMPD_target_exit_data: 635 case OMPD_target_enter_data: 636 case OMPD_distribute: 637 case OMPD_distribute_simd: 638 case OMPD_distribute_parallel_for: 639 case OMPD_distribute_parallel_for_simd: 640 case OMPD_teams_distribute: 641 case OMPD_teams_distribute_simd: 642 case OMPD_teams_distribute_parallel_for: 643 case OMPD_teams_distribute_parallel_for_simd: 644 case OMPD_target_update: 645 case OMPD_declare_simd: 646 case OMPD_declare_variant: 647 case OMPD_begin_declare_variant: 648 case OMPD_end_declare_variant: 649 case OMPD_declare_target: 650 case OMPD_end_declare_target: 651 case OMPD_declare_reduction: 652 case OMPD_declare_mapper: 653 case OMPD_taskloop: 654 case OMPD_taskloop_simd: 655 case OMPD_master_taskloop: 656 case OMPD_master_taskloop_simd: 657 case OMPD_parallel_master_taskloop: 658 case OMPD_parallel_master_taskloop_simd: 659 case OMPD_requires: 660 case OMPD_unknown: 661 default: 662 llvm_unreachable("Unexpected directive."); 663 } 664 } 665 666 return false; 667 } 668 669 static bool supportsSPMDExecutionMode(ASTContext &Ctx, 670 const OMPExecutableDirective &D) { 671 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); 672 switch (DirectiveKind) { 673 case OMPD_target: 674 case OMPD_target_teams: 675 return hasNestedSPMDDirective(Ctx, D); 676 case OMPD_target_parallel: 677 case OMPD_target_parallel_for: 678 case OMPD_target_parallel_for_simd: 679 case OMPD_target_teams_distribute_parallel_for: 680 case OMPD_target_teams_distribute_parallel_for_simd: 681 case OMPD_target_simd: 682 case OMPD_target_teams_distribute_simd: 683 return true; 684 case OMPD_target_teams_distribute: 685 return false; 686 case OMPD_parallel: 687 case OMPD_for: 688 case OMPD_parallel_for: 689 case OMPD_parallel_master: 690 case OMPD_parallel_sections: 691 case OMPD_for_simd: 692 case OMPD_parallel_for_simd: 693 case OMPD_cancel: 694 case OMPD_cancellation_point: 695 case OMPD_ordered: 696 case OMPD_threadprivate: 697 case OMPD_allocate: 698 case OMPD_task: 699 case OMPD_simd: 700 case OMPD_sections: 701 case OMPD_section: 702 case OMPD_single: 703 case OMPD_master: 704 case OMPD_critical: 705 case OMPD_taskyield: 706 case OMPD_barrier: 707 case OMPD_taskwait: 708 case OMPD_taskgroup: 709 case OMPD_atomic: 710 case OMPD_flush: 711 case OMPD_depobj: 712 case OMPD_scan: 713 case OMPD_teams: 714 case OMPD_target_data: 715 case OMPD_target_exit_data: 716 case OMPD_target_enter_data: 717 case OMPD_distribute: 718 case OMPD_distribute_simd: 719 case OMPD_distribute_parallel_for: 720 case OMPD_distribute_parallel_for_simd: 721 case OMPD_teams_distribute: 722 case OMPD_teams_distribute_simd: 723 case OMPD_teams_distribute_parallel_for: 724 case OMPD_teams_distribute_parallel_for_simd: 725 case OMPD_target_update: 726 case OMPD_declare_simd: 727 case OMPD_declare_variant: 728 case OMPD_begin_declare_variant: 729 case OMPD_end_declare_variant: 730 case OMPD_declare_target: 731 case OMPD_end_declare_target: 732 case OMPD_declare_reduction: 733 case OMPD_declare_mapper: 734 case OMPD_taskloop: 735 case OMPD_taskloop_simd: 736 case OMPD_master_taskloop: 737 case OMPD_master_taskloop_simd: 738 case OMPD_parallel_master_taskloop: 739 case OMPD_parallel_master_taskloop_simd: 740 case OMPD_requires: 741 case OMPD_unknown: 742 default: 743 break; 744 } 745 llvm_unreachable( 746 "Unknown programming model for OpenMP directive on NVPTX target."); 747 } 748 749 /// Check if the directive is loops based and has schedule clause at all or has 750 /// static scheduling. 751 static bool hasStaticScheduling(const OMPExecutableDirective &D) { 752 assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) && 753 isOpenMPLoopDirective(D.getDirectiveKind()) && 754 "Expected loop-based directive."); 755 return !D.hasClausesOfKind<OMPOrderedClause>() && 756 (!D.hasClausesOfKind<OMPScheduleClause>() || 757 llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(), 758 [](const OMPScheduleClause *C) { 759 return C->getScheduleKind() == OMPC_SCHEDULE_static; 760 })); 761 } 762 763 /// Check for inner (nested) lightweight runtime construct, if any 764 static bool hasNestedLightweightDirective(ASTContext &Ctx, 765 const OMPExecutableDirective &D) { 766 assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive."); 767 const auto *CS = D.getInnermostCapturedStmt(); 768 const auto *Body = 769 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 770 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 771 772 if (const auto *NestedDir = 773 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 774 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); 775 switch (D.getDirectiveKind()) { 776 case OMPD_target: 777 if (isOpenMPParallelDirective(DKind) && 778 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && 779 hasStaticScheduling(*NestedDir)) 780 return true; 781 if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd) 782 return true; 783 if (DKind == OMPD_parallel) { 784 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 785 /*IgnoreCaptured=*/true); 786 if (!Body) 787 return false; 788 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 789 if (const auto *NND = 790 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 791 DKind = NND->getDirectiveKind(); 792 if (isOpenMPWorksharingDirective(DKind) && 793 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 794 return true; 795 } 796 } else if (DKind == OMPD_teams) { 797 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 798 /*IgnoreCaptured=*/true); 799 if (!Body) 800 return false; 801 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 802 if (const auto *NND = 803 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 804 DKind = NND->getDirectiveKind(); 805 if (isOpenMPParallelDirective(DKind) && 806 isOpenMPWorksharingDirective(DKind) && 807 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 808 return true; 809 if (DKind == OMPD_parallel) { 810 Body = NND->getInnermostCapturedStmt()->IgnoreContainers( 811 /*IgnoreCaptured=*/true); 812 if (!Body) 813 return false; 814 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 815 if (const auto *NND = 816 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 817 DKind = NND->getDirectiveKind(); 818 if (isOpenMPWorksharingDirective(DKind) && 819 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 820 return true; 821 } 822 } 823 } 824 } 825 return false; 826 case OMPD_target_teams: 827 if (isOpenMPParallelDirective(DKind) && 828 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && 829 hasStaticScheduling(*NestedDir)) 830 return true; 831 if (DKind == OMPD_distribute_simd || DKind == OMPD_simd) 832 return true; 833 if (DKind == OMPD_parallel) { 834 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 835 /*IgnoreCaptured=*/true); 836 if (!Body) 837 return false; 838 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 839 if (const auto *NND = 840 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 841 DKind = NND->getDirectiveKind(); 842 if (isOpenMPWorksharingDirective(DKind) && 843 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 844 return true; 845 } 846 } 847 return false; 848 case OMPD_target_parallel: 849 if (DKind == OMPD_simd) 850 return true; 851 return isOpenMPWorksharingDirective(DKind) && 852 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir); 853 case OMPD_target_teams_distribute: 854 case OMPD_target_simd: 855 case OMPD_target_parallel_for: 856 case OMPD_target_parallel_for_simd: 857 case OMPD_target_teams_distribute_simd: 858 case OMPD_target_teams_distribute_parallel_for: 859 case OMPD_target_teams_distribute_parallel_for_simd: 860 case OMPD_parallel: 861 case OMPD_for: 862 case OMPD_parallel_for: 863 case OMPD_parallel_master: 864 case OMPD_parallel_sections: 865 case OMPD_for_simd: 866 case OMPD_parallel_for_simd: 867 case OMPD_cancel: 868 case OMPD_cancellation_point: 869 case OMPD_ordered: 870 case OMPD_threadprivate: 871 case OMPD_allocate: 872 case OMPD_task: 873 case OMPD_simd: 874 case OMPD_sections: 875 case OMPD_section: 876 case OMPD_single: 877 case OMPD_master: 878 case OMPD_critical: 879 case OMPD_taskyield: 880 case OMPD_barrier: 881 case OMPD_taskwait: 882 case OMPD_taskgroup: 883 case OMPD_atomic: 884 case OMPD_flush: 885 case OMPD_depobj: 886 case OMPD_scan: 887 case OMPD_teams: 888 case OMPD_target_data: 889 case OMPD_target_exit_data: 890 case OMPD_target_enter_data: 891 case OMPD_distribute: 892 case OMPD_distribute_simd: 893 case OMPD_distribute_parallel_for: 894 case OMPD_distribute_parallel_for_simd: 895 case OMPD_teams_distribute: 896 case OMPD_teams_distribute_simd: 897 case OMPD_teams_distribute_parallel_for: 898 case OMPD_teams_distribute_parallel_for_simd: 899 case OMPD_target_update: 900 case OMPD_declare_simd: 901 case OMPD_declare_variant: 902 case OMPD_begin_declare_variant: 903 case OMPD_end_declare_variant: 904 case OMPD_declare_target: 905 case OMPD_end_declare_target: 906 case OMPD_declare_reduction: 907 case OMPD_declare_mapper: 908 case OMPD_taskloop: 909 case OMPD_taskloop_simd: 910 case OMPD_master_taskloop: 911 case OMPD_master_taskloop_simd: 912 case OMPD_parallel_master_taskloop: 913 case OMPD_parallel_master_taskloop_simd: 914 case OMPD_requires: 915 case OMPD_unknown: 916 default: 917 llvm_unreachable("Unexpected directive."); 918 } 919 } 920 921 return false; 922 } 923 924 /// Checks if the construct supports lightweight runtime. It must be SPMD 925 /// construct + inner loop-based construct with static scheduling. 926 static bool supportsLightweightRuntime(ASTContext &Ctx, 927 const OMPExecutableDirective &D) { 928 if (!supportsSPMDExecutionMode(Ctx, D)) 929 return false; 930 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); 931 switch (DirectiveKind) { 932 case OMPD_target: 933 case OMPD_target_teams: 934 case OMPD_target_parallel: 935 return hasNestedLightweightDirective(Ctx, D); 936 case OMPD_target_parallel_for: 937 case OMPD_target_parallel_for_simd: 938 case OMPD_target_teams_distribute_parallel_for: 939 case OMPD_target_teams_distribute_parallel_for_simd: 940 // (Last|First)-privates must be shared in parallel region. 941 return hasStaticScheduling(D); 942 case OMPD_target_simd: 943 case OMPD_target_teams_distribute_simd: 944 return true; 945 case OMPD_target_teams_distribute: 946 return false; 947 case OMPD_parallel: 948 case OMPD_for: 949 case OMPD_parallel_for: 950 case OMPD_parallel_master: 951 case OMPD_parallel_sections: 952 case OMPD_for_simd: 953 case OMPD_parallel_for_simd: 954 case OMPD_cancel: 955 case OMPD_cancellation_point: 956 case OMPD_ordered: 957 case OMPD_threadprivate: 958 case OMPD_allocate: 959 case OMPD_task: 960 case OMPD_simd: 961 case OMPD_sections: 962 case OMPD_section: 963 case OMPD_single: 964 case OMPD_master: 965 case OMPD_critical: 966 case OMPD_taskyield: 967 case OMPD_barrier: 968 case OMPD_taskwait: 969 case OMPD_taskgroup: 970 case OMPD_atomic: 971 case OMPD_flush: 972 case OMPD_depobj: 973 case OMPD_scan: 974 case OMPD_teams: 975 case OMPD_target_data: 976 case OMPD_target_exit_data: 977 case OMPD_target_enter_data: 978 case OMPD_distribute: 979 case OMPD_distribute_simd: 980 case OMPD_distribute_parallel_for: 981 case OMPD_distribute_parallel_for_simd: 982 case OMPD_teams_distribute: 983 case OMPD_teams_distribute_simd: 984 case OMPD_teams_distribute_parallel_for: 985 case OMPD_teams_distribute_parallel_for_simd: 986 case OMPD_target_update: 987 case OMPD_declare_simd: 988 case OMPD_declare_variant: 989 case OMPD_begin_declare_variant: 990 case OMPD_end_declare_variant: 991 case OMPD_declare_target: 992 case OMPD_end_declare_target: 993 case OMPD_declare_reduction: 994 case OMPD_declare_mapper: 995 case OMPD_taskloop: 996 case OMPD_taskloop_simd: 997 case OMPD_master_taskloop: 998 case OMPD_master_taskloop_simd: 999 case OMPD_parallel_master_taskloop: 1000 case OMPD_parallel_master_taskloop_simd: 1001 case OMPD_requires: 1002 case OMPD_unknown: 1003 default: 1004 break; 1005 } 1006 llvm_unreachable( 1007 "Unknown programming model for OpenMP directive on NVPTX target."); 1008 } 1009 1010 void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D, 1011 StringRef ParentName, 1012 llvm::Function *&OutlinedFn, 1013 llvm::Constant *&OutlinedFnID, 1014 bool IsOffloadEntry, 1015 const RegionCodeGenTy &CodeGen) { 1016 ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode); 1017 EntryFunctionState EST; 1018 WrapperFunctionsMap.clear(); 1019 1020 // Emit target region as a standalone region. 1021 class NVPTXPrePostActionTy : public PrePostActionTy { 1022 CGOpenMPRuntimeGPU::EntryFunctionState &EST; 1023 1024 public: 1025 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST) 1026 : EST(EST) {} 1027 void Enter(CodeGenFunction &CGF) override { 1028 auto &RT = 1029 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1030 RT.emitKernelInit(CGF, EST, /* IsSPMD */ false); 1031 // Skip target region initialization. 1032 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1033 } 1034 void Exit(CodeGenFunction &CGF) override { 1035 auto &RT = 1036 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1037 RT.clearLocThreadIdInsertPt(CGF); 1038 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false); 1039 } 1040 } Action(EST); 1041 CodeGen.setAction(Action); 1042 IsInTTDRegion = true; 1043 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, 1044 IsOffloadEntry, CodeGen); 1045 IsInTTDRegion = false; 1046 } 1047 1048 void CGOpenMPRuntimeGPU::emitKernelInit(CodeGenFunction &CGF, 1049 EntryFunctionState &EST, bool IsSPMD) { 1050 CGBuilderTy &Bld = CGF.Builder; 1051 Bld.restoreIP(OMPBuilder.createTargetInit(Bld, IsSPMD, requiresFullRuntime())); 1052 IsInTargetMasterThreadRegion = IsSPMD; 1053 if (!IsSPMD) 1054 emitGenericVarsProlog(CGF, EST.Loc); 1055 } 1056 1057 void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF, 1058 EntryFunctionState &EST, 1059 bool IsSPMD) { 1060 if (!IsSPMD) 1061 emitGenericVarsEpilog(CGF); 1062 1063 CGBuilderTy &Bld = CGF.Builder; 1064 OMPBuilder.createTargetDeinit(Bld, IsSPMD, requiresFullRuntime()); 1065 } 1066 1067 void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D, 1068 StringRef ParentName, 1069 llvm::Function *&OutlinedFn, 1070 llvm::Constant *&OutlinedFnID, 1071 bool IsOffloadEntry, 1072 const RegionCodeGenTy &CodeGen) { 1073 ExecutionRuntimeModesRAII ModeRAII( 1074 CurrentExecutionMode, RequiresFullRuntime, 1075 CGM.getLangOpts().OpenMPCUDAForceFullRuntime || 1076 !supportsLightweightRuntime(CGM.getContext(), D)); 1077 EntryFunctionState EST; 1078 1079 // Emit target region as a standalone region. 1080 class NVPTXPrePostActionTy : public PrePostActionTy { 1081 CGOpenMPRuntimeGPU &RT; 1082 CGOpenMPRuntimeGPU::EntryFunctionState &EST; 1083 1084 public: 1085 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT, 1086 CGOpenMPRuntimeGPU::EntryFunctionState &EST) 1087 : RT(RT), EST(EST) {} 1088 void Enter(CodeGenFunction &CGF) override { 1089 RT.emitKernelInit(CGF, EST, /* IsSPMD */ true); 1090 // Skip target region initialization. 1091 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1092 } 1093 void Exit(CodeGenFunction &CGF) override { 1094 RT.clearLocThreadIdInsertPt(CGF); 1095 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true); 1096 } 1097 } Action(*this, EST); 1098 CodeGen.setAction(Action); 1099 IsInTTDRegion = true; 1100 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, 1101 IsOffloadEntry, CodeGen); 1102 IsInTTDRegion = false; 1103 } 1104 1105 // Create a unique global variable to indicate the execution mode of this target 1106 // region. The execution mode is either 'generic', or 'spmd' depending on the 1107 // target directive. This variable is picked up by the offload library to setup 1108 // the device appropriately before kernel launch. If the execution mode is 1109 // 'generic', the runtime reserves one warp for the master, otherwise, all 1110 // warps participate in parallel work. 1111 static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name, 1112 bool Mode) { 1113 auto *GVMode = new llvm::GlobalVariable( 1114 CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, 1115 llvm::GlobalValue::WeakAnyLinkage, 1116 llvm::ConstantInt::get(CGM.Int8Ty, Mode ? OMP_TGT_EXEC_MODE_SPMD 1117 : OMP_TGT_EXEC_MODE_GENERIC), 1118 Twine(Name, "_exec_mode")); 1119 CGM.addCompilerUsedGlobal(GVMode); 1120 } 1121 1122 void CGOpenMPRuntimeGPU::createOffloadEntry(llvm::Constant *ID, 1123 llvm::Constant *Addr, 1124 uint64_t Size, int32_t, 1125 llvm::GlobalValue::LinkageTypes) { 1126 // TODO: Add support for global variables on the device after declare target 1127 // support. 1128 if (!isa<llvm::Function>(Addr)) 1129 return; 1130 llvm::Module &M = CGM.getModule(); 1131 llvm::LLVMContext &Ctx = CGM.getLLVMContext(); 1132 1133 // Get "nvvm.annotations" metadata node 1134 llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 1135 1136 llvm::Metadata *MDVals[] = { 1137 llvm::ConstantAsMetadata::get(Addr), llvm::MDString::get(Ctx, "kernel"), 1138 llvm::ConstantAsMetadata::get( 1139 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))}; 1140 // Append metadata to nvvm.annotations 1141 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 1142 } 1143 1144 void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction( 1145 const OMPExecutableDirective &D, StringRef ParentName, 1146 llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, 1147 bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { 1148 if (!IsOffloadEntry) // Nothing to do. 1149 return; 1150 1151 assert(!ParentName.empty() && "Invalid target region parent name!"); 1152 1153 bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D); 1154 if (Mode) 1155 emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, 1156 CodeGen); 1157 else 1158 emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, 1159 CodeGen); 1160 1161 setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode); 1162 } 1163 1164 namespace { 1165 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE(); 1166 /// Enum for accesseing the reserved_2 field of the ident_t struct. 1167 enum ModeFlagsTy : unsigned { 1168 /// Bit set to 1 when in SPMD mode. 1169 KMP_IDENT_SPMD_MODE = 0x01, 1170 /// Bit set to 1 when a simplified runtime is used. 1171 KMP_IDENT_SIMPLE_RT_MODE = 0x02, 1172 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE) 1173 }; 1174 1175 /// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime. 1176 static const ModeFlagsTy UndefinedMode = 1177 (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE; 1178 } // anonymous namespace 1179 1180 unsigned CGOpenMPRuntimeGPU::getDefaultLocationReserved2Flags() const { 1181 switch (getExecutionMode()) { 1182 case EM_SPMD: 1183 if (requiresFullRuntime()) 1184 return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE); 1185 return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE; 1186 case EM_NonSPMD: 1187 assert(requiresFullRuntime() && "Expected full runtime."); 1188 return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE); 1189 case EM_Unknown: 1190 return UndefinedMode; 1191 } 1192 llvm_unreachable("Unknown flags are requested."); 1193 } 1194 1195 CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM) 1196 : CGOpenMPRuntime(CGM, "_", "$") { 1197 if (!CGM.getLangOpts().OpenMPIsDevice) 1198 llvm_unreachable("OpenMP can only handle device code."); 1199 1200 llvm::OpenMPIRBuilder &OMPBuilder = getOMPBuilder(); 1201 if (CGM.getLangOpts().OpenMPTargetNewRuntime) { 1202 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTargetDebug, 1203 "__omp_rtl_debug_kind"); 1204 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTeamSubscription, 1205 "__omp_rtl_assume_teams_oversubscription"); 1206 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPThreadSubscription, 1207 "__omp_rtl_assume_threads_oversubscription"); 1208 } 1209 } 1210 1211 void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF, 1212 ProcBindKind ProcBind, 1213 SourceLocation Loc) { 1214 // Do nothing in case of SPMD mode and L0 parallel. 1215 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 1216 return; 1217 1218 CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc); 1219 } 1220 1221 void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF, 1222 llvm::Value *NumThreads, 1223 SourceLocation Loc) { 1224 // Do nothing in case of SPMD mode and L0 parallel. 1225 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 1226 return; 1227 1228 CGOpenMPRuntime::emitNumThreadsClause(CGF, NumThreads, Loc); 1229 } 1230 1231 void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF, 1232 const Expr *NumTeams, 1233 const Expr *ThreadLimit, 1234 SourceLocation Loc) {} 1235 1236 llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction( 1237 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, 1238 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { 1239 // Emit target region as a standalone region. 1240 class NVPTXPrePostActionTy : public PrePostActionTy { 1241 bool &IsInParallelRegion; 1242 bool PrevIsInParallelRegion; 1243 1244 public: 1245 NVPTXPrePostActionTy(bool &IsInParallelRegion) 1246 : IsInParallelRegion(IsInParallelRegion) {} 1247 void Enter(CodeGenFunction &CGF) override { 1248 PrevIsInParallelRegion = IsInParallelRegion; 1249 IsInParallelRegion = true; 1250 } 1251 void Exit(CodeGenFunction &CGF) override { 1252 IsInParallelRegion = PrevIsInParallelRegion; 1253 } 1254 } Action(IsInParallelRegion); 1255 CodeGen.setAction(Action); 1256 bool PrevIsInTTDRegion = IsInTTDRegion; 1257 IsInTTDRegion = false; 1258 bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion; 1259 IsInTargetMasterThreadRegion = false; 1260 auto *OutlinedFun = 1261 cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction( 1262 D, ThreadIDVar, InnermostKind, CodeGen)); 1263 IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion; 1264 IsInTTDRegion = PrevIsInTTDRegion; 1265 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD && 1266 !IsInParallelRegion) { 1267 llvm::Function *WrapperFun = 1268 createParallelDataSharingWrapper(OutlinedFun, D); 1269 WrapperFunctionsMap[OutlinedFun] = WrapperFun; 1270 } 1271 1272 return OutlinedFun; 1273 } 1274 1275 /// Get list of lastprivate variables from the teams distribute ... or 1276 /// teams {distribute ...} directives. 1277 static void 1278 getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D, 1279 llvm::SmallVectorImpl<const ValueDecl *> &Vars) { 1280 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && 1281 "expected teams directive."); 1282 const OMPExecutableDirective *Dir = &D; 1283 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1284 if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild( 1285 Ctx, 1286 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers( 1287 /*IgnoreCaptured=*/true))) { 1288 Dir = dyn_cast_or_null<OMPExecutableDirective>(S); 1289 if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind())) 1290 Dir = nullptr; 1291 } 1292 } 1293 if (!Dir) 1294 return; 1295 for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) { 1296 for (const Expr *E : C->getVarRefs()) 1297 Vars.push_back(getPrivateItem(E)); 1298 } 1299 } 1300 1301 /// Get list of reduction variables from the teams ... directives. 1302 static void 1303 getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D, 1304 llvm::SmallVectorImpl<const ValueDecl *> &Vars) { 1305 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && 1306 "expected teams directive."); 1307 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1308 for (const Expr *E : C->privates()) 1309 Vars.push_back(getPrivateItem(E)); 1310 } 1311 } 1312 1313 llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction( 1314 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, 1315 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { 1316 SourceLocation Loc = D.getBeginLoc(); 1317 1318 const RecordDecl *GlobalizedRD = nullptr; 1319 llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions; 1320 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; 1321 unsigned WarpSize = CGM.getTarget().getGridValue().GV_Warp_Size; 1322 // Globalize team reductions variable unconditionally in all modes. 1323 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1324 getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions); 1325 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { 1326 getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions); 1327 if (!LastPrivatesReductions.empty()) { 1328 GlobalizedRD = ::buildRecordForGlobalizedVars( 1329 CGM.getContext(), llvm::None, LastPrivatesReductions, 1330 MappedDeclsFields, WarpSize); 1331 } 1332 } else if (!LastPrivatesReductions.empty()) { 1333 assert(!TeamAndReductions.first && 1334 "Previous team declaration is not expected."); 1335 TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl(); 1336 std::swap(TeamAndReductions.second, LastPrivatesReductions); 1337 } 1338 1339 // Emit target region as a standalone region. 1340 class NVPTXPrePostActionTy : public PrePostActionTy { 1341 SourceLocation &Loc; 1342 const RecordDecl *GlobalizedRD; 1343 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 1344 &MappedDeclsFields; 1345 1346 public: 1347 NVPTXPrePostActionTy( 1348 SourceLocation &Loc, const RecordDecl *GlobalizedRD, 1349 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 1350 &MappedDeclsFields) 1351 : Loc(Loc), GlobalizedRD(GlobalizedRD), 1352 MappedDeclsFields(MappedDeclsFields) {} 1353 void Enter(CodeGenFunction &CGF) override { 1354 auto &Rt = 1355 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1356 if (GlobalizedRD) { 1357 auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; 1358 I->getSecond().MappedParams = 1359 std::make_unique<CodeGenFunction::OMPMapVars>(); 1360 DeclToAddrMapTy &Data = I->getSecond().LocalVarData; 1361 for (const auto &Pair : MappedDeclsFields) { 1362 assert(Pair.getFirst()->isCanonicalDecl() && 1363 "Expected canonical declaration"); 1364 Data.insert(std::make_pair(Pair.getFirst(), MappedVarData())); 1365 } 1366 } 1367 Rt.emitGenericVarsProlog(CGF, Loc); 1368 } 1369 void Exit(CodeGenFunction &CGF) override { 1370 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) 1371 .emitGenericVarsEpilog(CGF); 1372 } 1373 } Action(Loc, GlobalizedRD, MappedDeclsFields); 1374 CodeGen.setAction(Action); 1375 llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction( 1376 D, ThreadIDVar, InnermostKind, CodeGen); 1377 1378 return OutlinedFun; 1379 } 1380 1381 void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF, 1382 SourceLocation Loc, 1383 bool WithSPMDCheck) { 1384 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && 1385 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1386 return; 1387 1388 CGBuilderTy &Bld = CGF.Builder; 1389 1390 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 1391 if (I == FunctionGlobalizedDecls.end()) 1392 return; 1393 1394 for (auto &Rec : I->getSecond().LocalVarData) { 1395 const auto *VD = cast<VarDecl>(Rec.first); 1396 bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first); 1397 QualType VarTy = VD->getType(); 1398 1399 // Get the local allocation of a firstprivate variable before sharing 1400 llvm::Value *ParValue; 1401 if (EscapedParam) { 1402 LValue ParLVal = 1403 CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType()); 1404 ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc); 1405 } 1406 1407 // Allocate space for the variable to be globalized 1408 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())}; 1409 llvm::Instruction *VoidPtr = 1410 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1411 CGM.getModule(), OMPRTL___kmpc_alloc_shared), 1412 AllocArgs, VD->getName()); 1413 1414 // Cast the void pointer and get the address of the globalized variable. 1415 llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(VarTy)->getPointerTo(); 1416 llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 1417 VoidPtr, VarPtrTy, VD->getName() + "_on_stack"); 1418 LValue VarAddr = CGF.MakeNaturalAlignAddrLValue(CastedVoidPtr, VarTy); 1419 Rec.second.PrivateAddr = VarAddr.getAddress(CGF); 1420 Rec.second.GlobalizedVal = VoidPtr; 1421 1422 // Assign the local allocation to the newly globalized location. 1423 if (EscapedParam) { 1424 CGF.EmitStoreOfScalar(ParValue, VarAddr); 1425 I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress(CGF)); 1426 } 1427 if (auto *DI = CGF.getDebugInfo()) 1428 VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(VD->getLocation())); 1429 } 1430 for (const auto *VD : I->getSecond().EscapedVariableLengthDecls) { 1431 // Use actual memory size of the VLA object including the padding 1432 // for alignment purposes. 1433 llvm::Value *Size = CGF.getTypeSize(VD->getType()); 1434 CharUnits Align = CGM.getContext().getDeclAlign(VD); 1435 Size = Bld.CreateNUWAdd( 1436 Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1)); 1437 llvm::Value *AlignVal = 1438 llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity()); 1439 1440 Size = Bld.CreateUDiv(Size, AlignVal); 1441 Size = Bld.CreateNUWMul(Size, AlignVal); 1442 1443 // Allocate space for this VLA object to be globalized. 1444 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())}; 1445 llvm::Instruction *VoidPtr = 1446 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1447 CGM.getModule(), OMPRTL___kmpc_alloc_shared), 1448 AllocArgs, VD->getName()); 1449 1450 I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back( 1451 std::pair<llvm::Value *, llvm::Value *>( 1452 {VoidPtr, CGF.getTypeSize(VD->getType())})); 1453 LValue Base = CGF.MakeAddrLValue(VoidPtr, VD->getType(), 1454 CGM.getContext().getDeclAlign(VD), 1455 AlignmentSource::Decl); 1456 I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD), 1457 Base.getAddress(CGF)); 1458 } 1459 I->getSecond().MappedParams->apply(CGF); 1460 } 1461 1462 void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF, 1463 bool WithSPMDCheck) { 1464 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && 1465 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1466 return; 1467 1468 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 1469 if (I != FunctionGlobalizedDecls.end()) { 1470 // Deallocate the memory for each globalized VLA object 1471 for (auto AddrSizePair : 1472 llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) { 1473 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1474 CGM.getModule(), OMPRTL___kmpc_free_shared), 1475 {AddrSizePair.first, AddrSizePair.second}); 1476 } 1477 // Deallocate the memory for each globalized value 1478 for (auto &Rec : llvm::reverse(I->getSecond().LocalVarData)) { 1479 const auto *VD = cast<VarDecl>(Rec.first); 1480 I->getSecond().MappedParams->restore(CGF); 1481 1482 llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal, 1483 CGF.getTypeSize(VD->getType())}; 1484 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1485 CGM.getModule(), OMPRTL___kmpc_free_shared), 1486 FreeArgs); 1487 } 1488 } 1489 } 1490 1491 void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF, 1492 const OMPExecutableDirective &D, 1493 SourceLocation Loc, 1494 llvm::Function *OutlinedFn, 1495 ArrayRef<llvm::Value *> CapturedVars) { 1496 if (!CGF.HaveInsertPoint()) 1497 return; 1498 1499 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 1500 /*Name=*/".zero.addr"); 1501 CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr); 1502 llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; 1503 OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer()); 1504 OutlinedFnArgs.push_back(ZeroAddr.getPointer()); 1505 OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); 1506 emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs); 1507 } 1508 1509 void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF, 1510 SourceLocation Loc, 1511 llvm::Function *OutlinedFn, 1512 ArrayRef<llvm::Value *> CapturedVars, 1513 const Expr *IfCond) { 1514 if (!CGF.HaveInsertPoint()) 1515 return; 1516 1517 auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, 1518 IfCond](CodeGenFunction &CGF, PrePostActionTy &Action) { 1519 CGBuilderTy &Bld = CGF.Builder; 1520 llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn]; 1521 llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 1522 if (WFn) 1523 ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy); 1524 llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy); 1525 1526 // Create a private scope that will globalize the arguments 1527 // passed from the outside of the target region. 1528 // TODO: Is that needed? 1529 CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF); 1530 1531 Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca( 1532 llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()), 1533 "captured_vars_addrs"); 1534 // There's something to share. 1535 if (!CapturedVars.empty()) { 1536 // Prepare for parallel region. Indicate the outlined function. 1537 ASTContext &Ctx = CGF.getContext(); 1538 unsigned Idx = 0; 1539 for (llvm::Value *V : CapturedVars) { 1540 Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx); 1541 llvm::Value *PtrV; 1542 if (V->getType()->isIntegerTy()) 1543 PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy); 1544 else 1545 PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy); 1546 CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false, 1547 Ctx.getPointerType(Ctx.VoidPtrTy)); 1548 ++Idx; 1549 } 1550 } 1551 1552 llvm::Value *IfCondVal = nullptr; 1553 if (IfCond) 1554 IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty, 1555 /* isSigned */ false); 1556 else 1557 IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1); 1558 1559 assert(IfCondVal && "Expected a value"); 1560 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 1561 llvm::Value *Args[] = { 1562 RTLoc, 1563 getThreadID(CGF, Loc), 1564 IfCondVal, 1565 llvm::ConstantInt::get(CGF.Int32Ty, -1), 1566 llvm::ConstantInt::get(CGF.Int32Ty, -1), 1567 FnPtr, 1568 ID, 1569 Bld.CreateBitOrPointerCast(CapturedVarsAddrs.getPointer(), 1570 CGF.VoidPtrPtrTy), 1571 llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())}; 1572 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1573 CGM.getModule(), OMPRTL___kmpc_parallel_51), 1574 Args); 1575 }; 1576 1577 RegionCodeGenTy RCG(ParallelGen); 1578 RCG(CGF); 1579 } 1580 1581 void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) { 1582 // Always emit simple barriers! 1583 if (!CGF.HaveInsertPoint()) 1584 return; 1585 // Build call __kmpc_barrier_simple_spmd(nullptr, 0); 1586 // This function does not use parameters, so we can emit just default values. 1587 llvm::Value *Args[] = { 1588 llvm::ConstantPointerNull::get( 1589 cast<llvm::PointerType>(getIdentTyPointerTy())), 1590 llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)}; 1591 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1592 CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd), 1593 Args); 1594 } 1595 1596 void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF, 1597 SourceLocation Loc, 1598 OpenMPDirectiveKind Kind, bool, 1599 bool) { 1600 // Always emit simple barriers! 1601 if (!CGF.HaveInsertPoint()) 1602 return; 1603 // Build call __kmpc_cancel_barrier(loc, thread_id); 1604 unsigned Flags = getDefaultFlagsForBarriers(Kind); 1605 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags), 1606 getThreadID(CGF, Loc)}; 1607 1608 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1609 CGM.getModule(), OMPRTL___kmpc_barrier), 1610 Args); 1611 } 1612 1613 void CGOpenMPRuntimeGPU::emitCriticalRegion( 1614 CodeGenFunction &CGF, StringRef CriticalName, 1615 const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc, 1616 const Expr *Hint) { 1617 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop"); 1618 llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test"); 1619 llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync"); 1620 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body"); 1621 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit"); 1622 1623 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1624 1625 // Get the mask of active threads in the warp. 1626 llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1627 CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask)); 1628 // Fetch team-local id of the thread. 1629 llvm::Value *ThreadID = RT.getGPUThreadID(CGF); 1630 1631 // Get the width of the team. 1632 llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF); 1633 1634 // Initialize the counter variable for the loop. 1635 QualType Int32Ty = 1636 CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0); 1637 Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter"); 1638 LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty); 1639 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal, 1640 /*isInit=*/true); 1641 1642 // Block checks if loop counter exceeds upper bound. 1643 CGF.EmitBlock(LoopBB); 1644 llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); 1645 llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth); 1646 CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB); 1647 1648 // Block tests which single thread should execute region, and which threads 1649 // should go straight to synchronisation point. 1650 CGF.EmitBlock(TestBB); 1651 CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); 1652 llvm::Value *CmpThreadToCounter = 1653 CGF.Builder.CreateICmpEQ(ThreadID, CounterVal); 1654 CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB); 1655 1656 // Block emits the body of the critical region. 1657 CGF.EmitBlock(BodyBB); 1658 1659 // Output the critical statement. 1660 CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc, 1661 Hint); 1662 1663 // After the body surrounded by the critical region, the single executing 1664 // thread will jump to the synchronisation point. 1665 // Block waits for all threads in current team to finish then increments the 1666 // counter variable and returns to the loop. 1667 CGF.EmitBlock(SyncBB); 1668 // Reconverge active threads in the warp. 1669 (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1670 CGM.getModule(), OMPRTL___kmpc_syncwarp), 1671 Mask); 1672 1673 llvm::Value *IncCounterVal = 1674 CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1)); 1675 CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal); 1676 CGF.EmitBranch(LoopBB); 1677 1678 // Block that is reached when all threads in the team complete the region. 1679 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1680 } 1681 1682 /// Cast value to the specified type. 1683 static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val, 1684 QualType ValTy, QualType CastTy, 1685 SourceLocation Loc) { 1686 assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() && 1687 "Cast type must sized."); 1688 assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() && 1689 "Val type must sized."); 1690 llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy); 1691 if (ValTy == CastTy) 1692 return Val; 1693 if (CGF.getContext().getTypeSizeInChars(ValTy) == 1694 CGF.getContext().getTypeSizeInChars(CastTy)) 1695 return CGF.Builder.CreateBitCast(Val, LLVMCastTy); 1696 if (CastTy->isIntegerType() && ValTy->isIntegerType()) 1697 return CGF.Builder.CreateIntCast(Val, LLVMCastTy, 1698 CastTy->hasSignedIntegerRepresentation()); 1699 Address CastItem = CGF.CreateMemTemp(CastTy); 1700 Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 1701 CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace())); 1702 CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy, 1703 LValueBaseInfo(AlignmentSource::Type), 1704 TBAAAccessInfo()); 1705 return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc, 1706 LValueBaseInfo(AlignmentSource::Type), 1707 TBAAAccessInfo()); 1708 } 1709 1710 /// This function creates calls to one of two shuffle functions to copy 1711 /// variables between lanes in a warp. 1712 static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF, 1713 llvm::Value *Elem, 1714 QualType ElemType, 1715 llvm::Value *Offset, 1716 SourceLocation Loc) { 1717 CodeGenModule &CGM = CGF.CGM; 1718 CGBuilderTy &Bld = CGF.Builder; 1719 CGOpenMPRuntimeGPU &RT = 1720 *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime())); 1721 llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder(); 1722 1723 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); 1724 assert(Size.getQuantity() <= 8 && 1725 "Unsupported bitwidth in shuffle instruction."); 1726 1727 RuntimeFunction ShuffleFn = Size.getQuantity() <= 4 1728 ? OMPRTL___kmpc_shuffle_int32 1729 : OMPRTL___kmpc_shuffle_int64; 1730 1731 // Cast all types to 32- or 64-bit values before calling shuffle routines. 1732 QualType CastTy = CGF.getContext().getIntTypeForBitwidth( 1733 Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1); 1734 llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc); 1735 llvm::Value *WarpSize = 1736 Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true); 1737 1738 llvm::Value *ShuffledVal = CGF.EmitRuntimeCall( 1739 OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn), 1740 {ElemCast, Offset, WarpSize}); 1741 1742 return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc); 1743 } 1744 1745 static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr, 1746 Address DestAddr, QualType ElemType, 1747 llvm::Value *Offset, SourceLocation Loc) { 1748 CGBuilderTy &Bld = CGF.Builder; 1749 1750 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); 1751 // Create the loop over the big sized data. 1752 // ptr = (void*)Elem; 1753 // ptrEnd = (void*) Elem + 1; 1754 // Step = 8; 1755 // while (ptr + Step < ptrEnd) 1756 // shuffle((int64_t)*ptr); 1757 // Step = 4; 1758 // while (ptr + Step < ptrEnd) 1759 // shuffle((int32_t)*ptr); 1760 // ... 1761 Address ElemPtr = DestAddr; 1762 Address Ptr = SrcAddr; 1763 Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast( 1764 Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy); 1765 for (int IntSize = 8; IntSize >= 1; IntSize /= 2) { 1766 if (Size < CharUnits::fromQuantity(IntSize)) 1767 continue; 1768 QualType IntType = CGF.getContext().getIntTypeForBitwidth( 1769 CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)), 1770 /*Signed=*/1); 1771 llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType); 1772 Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo()); 1773 ElemPtr = 1774 Bld.CreatePointerBitCastOrAddrSpaceCast(ElemPtr, IntTy->getPointerTo()); 1775 if (Size.getQuantity() / IntSize > 1) { 1776 llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond"); 1777 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then"); 1778 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit"); 1779 llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock(); 1780 CGF.EmitBlock(PreCondBB); 1781 llvm::PHINode *PhiSrc = 1782 Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2); 1783 PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB); 1784 llvm::PHINode *PhiDest = 1785 Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2); 1786 PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB); 1787 Ptr = Address(PhiSrc, Ptr.getAlignment()); 1788 ElemPtr = Address(PhiDest, ElemPtr.getAlignment()); 1789 llvm::Value *PtrDiff = Bld.CreatePtrDiff( 1790 PtrEnd.getPointer(), Bld.CreatePointerBitCastOrAddrSpaceCast( 1791 Ptr.getPointer(), CGF.VoidPtrTy)); 1792 Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)), 1793 ThenBB, ExitBB); 1794 CGF.EmitBlock(ThenBB); 1795 llvm::Value *Res = createRuntimeShuffleFunction( 1796 CGF, 1797 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, 1798 LValueBaseInfo(AlignmentSource::Type), 1799 TBAAAccessInfo()), 1800 IntType, Offset, Loc); 1801 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, 1802 LValueBaseInfo(AlignmentSource::Type), 1803 TBAAAccessInfo()); 1804 Address LocalPtr = Bld.CreateConstGEP(Ptr, 1); 1805 Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1); 1806 PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB); 1807 PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB); 1808 CGF.EmitBranch(PreCondBB); 1809 CGF.EmitBlock(ExitBB); 1810 } else { 1811 llvm::Value *Res = createRuntimeShuffleFunction( 1812 CGF, 1813 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, 1814 LValueBaseInfo(AlignmentSource::Type), 1815 TBAAAccessInfo()), 1816 IntType, Offset, Loc); 1817 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, 1818 LValueBaseInfo(AlignmentSource::Type), 1819 TBAAAccessInfo()); 1820 Ptr = Bld.CreateConstGEP(Ptr, 1); 1821 ElemPtr = Bld.CreateConstGEP(ElemPtr, 1); 1822 } 1823 Size = Size % IntSize; 1824 } 1825 } 1826 1827 namespace { 1828 enum CopyAction : unsigned { 1829 // RemoteLaneToThread: Copy over a Reduce list from a remote lane in 1830 // the warp using shuffle instructions. 1831 RemoteLaneToThread, 1832 // ThreadCopy: Make a copy of a Reduce list on the thread's stack. 1833 ThreadCopy, 1834 // ThreadToScratchpad: Copy a team-reduced array to the scratchpad. 1835 ThreadToScratchpad, 1836 // ScratchpadToThread: Copy from a scratchpad array in global memory 1837 // containing team-reduced data to a thread's stack. 1838 ScratchpadToThread, 1839 }; 1840 } // namespace 1841 1842 struct CopyOptionsTy { 1843 llvm::Value *RemoteLaneOffset; 1844 llvm::Value *ScratchpadIndex; 1845 llvm::Value *ScratchpadWidth; 1846 }; 1847 1848 /// Emit instructions to copy a Reduce list, which contains partially 1849 /// aggregated values, in the specified direction. 1850 static void emitReductionListCopy( 1851 CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy, 1852 ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase, 1853 CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) { 1854 1855 CodeGenModule &CGM = CGF.CGM; 1856 ASTContext &C = CGM.getContext(); 1857 CGBuilderTy &Bld = CGF.Builder; 1858 1859 llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset; 1860 llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex; 1861 llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth; 1862 1863 // Iterates, element-by-element, through the source Reduce list and 1864 // make a copy. 1865 unsigned Idx = 0; 1866 unsigned Size = Privates.size(); 1867 for (const Expr *Private : Privates) { 1868 Address SrcElementAddr = Address::invalid(); 1869 Address DestElementAddr = Address::invalid(); 1870 Address DestElementPtrAddr = Address::invalid(); 1871 // Should we shuffle in an element from a remote lane? 1872 bool ShuffleInElement = false; 1873 // Set to true to update the pointer in the dest Reduce list to a 1874 // newly created element. 1875 bool UpdateDestListPtr = false; 1876 // Increment the src or dest pointer to the scratchpad, for each 1877 // new element. 1878 bool IncrScratchpadSrc = false; 1879 bool IncrScratchpadDest = false; 1880 1881 switch (Action) { 1882 case RemoteLaneToThread: { 1883 // Step 1.1: Get the address for the src element in the Reduce list. 1884 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1885 SrcElementAddr = CGF.EmitLoadOfPointer( 1886 SrcElementPtrAddr, 1887 C.getPointerType(Private->getType())->castAs<PointerType>()); 1888 1889 // Step 1.2: Create a temporary to store the element in the destination 1890 // Reduce list. 1891 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1892 DestElementAddr = 1893 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); 1894 ShuffleInElement = true; 1895 UpdateDestListPtr = true; 1896 break; 1897 } 1898 case ThreadCopy: { 1899 // Step 1.1: Get the address for the src element in the Reduce list. 1900 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1901 SrcElementAddr = CGF.EmitLoadOfPointer( 1902 SrcElementPtrAddr, 1903 C.getPointerType(Private->getType())->castAs<PointerType>()); 1904 1905 // Step 1.2: Get the address for dest element. The destination 1906 // element has already been created on the thread's stack. 1907 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1908 DestElementAddr = CGF.EmitLoadOfPointer( 1909 DestElementPtrAddr, 1910 C.getPointerType(Private->getType())->castAs<PointerType>()); 1911 break; 1912 } 1913 case ThreadToScratchpad: { 1914 // Step 1.1: Get the address for the src element in the Reduce list. 1915 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1916 SrcElementAddr = CGF.EmitLoadOfPointer( 1917 SrcElementPtrAddr, 1918 C.getPointerType(Private->getType())->castAs<PointerType>()); 1919 1920 // Step 1.2: Get the address for dest element: 1921 // address = base + index * ElementSizeInChars. 1922 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 1923 llvm::Value *CurrentOffset = 1924 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); 1925 llvm::Value *ScratchPadElemAbsolutePtrVal = 1926 Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset); 1927 ScratchPadElemAbsolutePtrVal = 1928 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); 1929 DestElementAddr = Address(ScratchPadElemAbsolutePtrVal, 1930 C.getTypeAlignInChars(Private->getType())); 1931 IncrScratchpadDest = true; 1932 break; 1933 } 1934 case ScratchpadToThread: { 1935 // Step 1.1: Get the address for the src element in the scratchpad. 1936 // address = base + index * ElementSizeInChars. 1937 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 1938 llvm::Value *CurrentOffset = 1939 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); 1940 llvm::Value *ScratchPadElemAbsolutePtrVal = 1941 Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset); 1942 ScratchPadElemAbsolutePtrVal = 1943 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); 1944 SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal, 1945 C.getTypeAlignInChars(Private->getType())); 1946 IncrScratchpadSrc = true; 1947 1948 // Step 1.2: Create a temporary to store the element in the destination 1949 // Reduce list. 1950 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1951 DestElementAddr = 1952 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); 1953 UpdateDestListPtr = true; 1954 break; 1955 } 1956 } 1957 1958 // Regardless of src and dest of copy, we emit the load of src 1959 // element as this is required in all directions 1960 SrcElementAddr = Bld.CreateElementBitCast( 1961 SrcElementAddr, CGF.ConvertTypeForMem(Private->getType())); 1962 DestElementAddr = Bld.CreateElementBitCast(DestElementAddr, 1963 SrcElementAddr.getElementType()); 1964 1965 // Now that all active lanes have read the element in the 1966 // Reduce list, shuffle over the value from the remote lane. 1967 if (ShuffleInElement) { 1968 shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(), 1969 RemoteLaneOffset, Private->getExprLoc()); 1970 } else { 1971 switch (CGF.getEvaluationKind(Private->getType())) { 1972 case TEK_Scalar: { 1973 llvm::Value *Elem = CGF.EmitLoadOfScalar( 1974 SrcElementAddr, /*Volatile=*/false, Private->getType(), 1975 Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type), 1976 TBAAAccessInfo()); 1977 // Store the source element value to the dest element address. 1978 CGF.EmitStoreOfScalar( 1979 Elem, DestElementAddr, /*Volatile=*/false, Private->getType(), 1980 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 1981 break; 1982 } 1983 case TEK_Complex: { 1984 CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex( 1985 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), 1986 Private->getExprLoc()); 1987 CGF.EmitStoreOfComplex( 1988 Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()), 1989 /*isInit=*/false); 1990 break; 1991 } 1992 case TEK_Aggregate: 1993 CGF.EmitAggregateCopy( 1994 CGF.MakeAddrLValue(DestElementAddr, Private->getType()), 1995 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), 1996 Private->getType(), AggValueSlot::DoesNotOverlap); 1997 break; 1998 } 1999 } 2000 2001 // Step 3.1: Modify reference in dest Reduce list as needed. 2002 // Modifying the reference in Reduce list to point to the newly 2003 // created element. The element is live in the current function 2004 // scope and that of functions it invokes (i.e., reduce_function). 2005 // RemoteReduceData[i] = (void*)&RemoteElem 2006 if (UpdateDestListPtr) { 2007 CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast( 2008 DestElementAddr.getPointer(), CGF.VoidPtrTy), 2009 DestElementPtrAddr, /*Volatile=*/false, 2010 C.VoidPtrTy); 2011 } 2012 2013 // Step 4.1: Increment SrcBase/DestBase so that it points to the starting 2014 // address of the next element in scratchpad memory, unless we're currently 2015 // processing the last one. Memory alignment is also taken care of here. 2016 if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) { 2017 llvm::Value *ScratchpadBasePtr = 2018 IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer(); 2019 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 2020 ScratchpadBasePtr = Bld.CreateNUWAdd( 2021 ScratchpadBasePtr, 2022 Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars)); 2023 2024 // Take care of global memory alignment for performance 2025 ScratchpadBasePtr = Bld.CreateNUWSub( 2026 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); 2027 ScratchpadBasePtr = Bld.CreateUDiv( 2028 ScratchpadBasePtr, 2029 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); 2030 ScratchpadBasePtr = Bld.CreateNUWAdd( 2031 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); 2032 ScratchpadBasePtr = Bld.CreateNUWMul( 2033 ScratchpadBasePtr, 2034 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); 2035 2036 if (IncrScratchpadDest) 2037 DestBase = Address(ScratchpadBasePtr, CGF.getPointerAlign()); 2038 else /* IncrScratchpadSrc = true */ 2039 SrcBase = Address(ScratchpadBasePtr, CGF.getPointerAlign()); 2040 } 2041 2042 ++Idx; 2043 } 2044 } 2045 2046 /// This function emits a helper that gathers Reduce lists from the first 2047 /// lane of every active warp to lanes in the first warp. 2048 /// 2049 /// void inter_warp_copy_func(void* reduce_data, num_warps) 2050 /// shared smem[warp_size]; 2051 /// For all data entries D in reduce_data: 2052 /// sync 2053 /// If (I am the first lane in each warp) 2054 /// Copy my local D to smem[warp_id] 2055 /// sync 2056 /// if (I am the first warp) 2057 /// Copy smem[thread_id] to my local D 2058 static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM, 2059 ArrayRef<const Expr *> Privates, 2060 QualType ReductionArrayTy, 2061 SourceLocation Loc) { 2062 ASTContext &C = CGM.getContext(); 2063 llvm::Module &M = CGM.getModule(); 2064 2065 // ReduceList: thread local Reduce list. 2066 // At the stage of the computation when this function is called, partially 2067 // aggregated values reside in the first lane of every active warp. 2068 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2069 C.VoidPtrTy, ImplicitParamDecl::Other); 2070 // NumWarps: number of warps active in the parallel region. This could 2071 // be smaller than 32 (max warps in a CTA) for partial block reduction. 2072 ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2073 C.getIntTypeForBitwidth(32, /* Signed */ true), 2074 ImplicitParamDecl::Other); 2075 FunctionArgList Args; 2076 Args.push_back(&ReduceListArg); 2077 Args.push_back(&NumWarpsArg); 2078 2079 const CGFunctionInfo &CGFI = 2080 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2081 auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI), 2082 llvm::GlobalValue::InternalLinkage, 2083 "_omp_reduction_inter_warp_copy_func", &M); 2084 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2085 Fn->setDoesNotRecurse(); 2086 CodeGenFunction CGF(CGM); 2087 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2088 2089 CGBuilderTy &Bld = CGF.Builder; 2090 2091 // This array is used as a medium to transfer, one reduce element at a time, 2092 // the data from the first lane of every warp to lanes in the first warp 2093 // in order to perform the final step of a reduction in a parallel region 2094 // (reduction across warps). The array is placed in NVPTX __shared__ memory 2095 // for reduced latency, as well as to have a distinct copy for concurrently 2096 // executing target regions. The array is declared with common linkage so 2097 // as to be shared across compilation units. 2098 StringRef TransferMediumName = 2099 "__openmp_nvptx_data_transfer_temporary_storage"; 2100 llvm::GlobalVariable *TransferMedium = 2101 M.getGlobalVariable(TransferMediumName); 2102 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size; 2103 if (!TransferMedium) { 2104 auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize); 2105 unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared); 2106 TransferMedium = new llvm::GlobalVariable( 2107 M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage, 2108 llvm::UndefValue::get(Ty), TransferMediumName, 2109 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 2110 SharedAddressSpace); 2111 CGM.addCompilerUsedGlobal(TransferMedium); 2112 } 2113 2114 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 2115 // Get the CUDA thread id of the current OpenMP thread on the GPU. 2116 llvm::Value *ThreadID = RT.getGPUThreadID(CGF); 2117 // nvptx_lane_id = nvptx_id % warpsize 2118 llvm::Value *LaneID = getNVPTXLaneID(CGF); 2119 // nvptx_warp_id = nvptx_id / warpsize 2120 llvm::Value *WarpID = getNVPTXWarpID(CGF); 2121 2122 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2123 Address LocalReduceList( 2124 Bld.CreatePointerBitCastOrAddrSpaceCast( 2125 CGF.EmitLoadOfScalar( 2126 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc, 2127 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()), 2128 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2129 CGF.getPointerAlign()); 2130 2131 unsigned Idx = 0; 2132 for (const Expr *Private : Privates) { 2133 // 2134 // Warp master copies reduce element to transfer medium in __shared__ 2135 // memory. 2136 // 2137 unsigned RealTySize = 2138 C.getTypeSizeInChars(Private->getType()) 2139 .alignTo(C.getTypeAlignInChars(Private->getType())) 2140 .getQuantity(); 2141 for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) { 2142 unsigned NumIters = RealTySize / TySize; 2143 if (NumIters == 0) 2144 continue; 2145 QualType CType = C.getIntTypeForBitwidth( 2146 C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1); 2147 llvm::Type *CopyType = CGF.ConvertTypeForMem(CType); 2148 CharUnits Align = CharUnits::fromQuantity(TySize); 2149 llvm::Value *Cnt = nullptr; 2150 Address CntAddr = Address::invalid(); 2151 llvm::BasicBlock *PrecondBB = nullptr; 2152 llvm::BasicBlock *ExitBB = nullptr; 2153 if (NumIters > 1) { 2154 CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr"); 2155 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr, 2156 /*Volatile=*/false, C.IntTy); 2157 PrecondBB = CGF.createBasicBlock("precond"); 2158 ExitBB = CGF.createBasicBlock("exit"); 2159 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body"); 2160 // There is no need to emit line number for unconditional branch. 2161 (void)ApplyDebugLocation::CreateEmpty(CGF); 2162 CGF.EmitBlock(PrecondBB); 2163 Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc); 2164 llvm::Value *Cmp = 2165 Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters)); 2166 Bld.CreateCondBr(Cmp, BodyBB, ExitBB); 2167 CGF.EmitBlock(BodyBB); 2168 } 2169 // kmpc_barrier. 2170 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, 2171 /*EmitChecks=*/false, 2172 /*ForceSimpleCall=*/true); 2173 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); 2174 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); 2175 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); 2176 2177 // if (lane_id == 0) 2178 llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master"); 2179 Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB); 2180 CGF.EmitBlock(ThenBB); 2181 2182 // Reduce element = LocalReduceList[i] 2183 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2184 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2185 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2186 // elemptr = ((CopyType*)(elemptrptr)) + I 2187 Address ElemPtr = Address(ElemPtrPtr, Align); 2188 ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType); 2189 if (NumIters > 1) { 2190 ElemPtr = Address(Bld.CreateGEP(ElemPtr.getElementType(), 2191 ElemPtr.getPointer(), Cnt), 2192 ElemPtr.getAlignment()); 2193 } 2194 2195 // Get pointer to location in transfer medium. 2196 // MediumPtr = &medium[warp_id] 2197 llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP( 2198 TransferMedium->getValueType(), TransferMedium, 2199 {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID}); 2200 Address MediumPtr(MediumPtrVal, Align); 2201 // Casting to actual data type. 2202 // MediumPtr = (CopyType*)MediumPtrAddr; 2203 MediumPtr = Bld.CreateElementBitCast(MediumPtr, CopyType); 2204 2205 // elem = *elemptr 2206 //*MediumPtr = elem 2207 llvm::Value *Elem = CGF.EmitLoadOfScalar( 2208 ElemPtr, /*Volatile=*/false, CType, Loc, 2209 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2210 // Store the source element value to the dest element address. 2211 CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType, 2212 LValueBaseInfo(AlignmentSource::Type), 2213 TBAAAccessInfo()); 2214 2215 Bld.CreateBr(MergeBB); 2216 2217 CGF.EmitBlock(ElseBB); 2218 Bld.CreateBr(MergeBB); 2219 2220 CGF.EmitBlock(MergeBB); 2221 2222 // kmpc_barrier. 2223 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, 2224 /*EmitChecks=*/false, 2225 /*ForceSimpleCall=*/true); 2226 2227 // 2228 // Warp 0 copies reduce element from transfer medium. 2229 // 2230 llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then"); 2231 llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else"); 2232 llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont"); 2233 2234 Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg); 2235 llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar( 2236 AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc); 2237 2238 // Up to 32 threads in warp 0 are active. 2239 llvm::Value *IsActiveThread = 2240 Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread"); 2241 Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB); 2242 2243 CGF.EmitBlock(W0ThenBB); 2244 2245 // SrcMediumPtr = &medium[tid] 2246 llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP( 2247 TransferMedium->getValueType(), TransferMedium, 2248 {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID}); 2249 Address SrcMediumPtr(SrcMediumPtrVal, Align); 2250 // SrcMediumVal = *SrcMediumPtr; 2251 SrcMediumPtr = Bld.CreateElementBitCast(SrcMediumPtr, CopyType); 2252 2253 // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I 2254 Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2255 llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar( 2256 TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc); 2257 Address TargetElemPtr = Address(TargetElemPtrVal, Align); 2258 TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType); 2259 if (NumIters > 1) { 2260 TargetElemPtr = Address(Bld.CreateGEP(TargetElemPtr.getElementType(), 2261 TargetElemPtr.getPointer(), Cnt), 2262 TargetElemPtr.getAlignment()); 2263 } 2264 2265 // *TargetElemPtr = SrcMediumVal; 2266 llvm::Value *SrcMediumValue = 2267 CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc); 2268 CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false, 2269 CType); 2270 Bld.CreateBr(W0MergeBB); 2271 2272 CGF.EmitBlock(W0ElseBB); 2273 Bld.CreateBr(W0MergeBB); 2274 2275 CGF.EmitBlock(W0MergeBB); 2276 2277 if (NumIters > 1) { 2278 Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1)); 2279 CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy); 2280 CGF.EmitBranch(PrecondBB); 2281 (void)ApplyDebugLocation::CreateEmpty(CGF); 2282 CGF.EmitBlock(ExitBB); 2283 } 2284 RealTySize %= TySize; 2285 } 2286 ++Idx; 2287 } 2288 2289 CGF.FinishFunction(); 2290 return Fn; 2291 } 2292 2293 /// Emit a helper that reduces data across two OpenMP threads (lanes) 2294 /// in the same warp. It uses shuffle instructions to copy over data from 2295 /// a remote lane's stack. The reduction algorithm performed is specified 2296 /// by the fourth parameter. 2297 /// 2298 /// Algorithm Versions. 2299 /// Full Warp Reduce (argument value 0): 2300 /// This algorithm assumes that all 32 lanes are active and gathers 2301 /// data from these 32 lanes, producing a single resultant value. 2302 /// Contiguous Partial Warp Reduce (argument value 1): 2303 /// This algorithm assumes that only a *contiguous* subset of lanes 2304 /// are active. This happens for the last warp in a parallel region 2305 /// when the user specified num_threads is not an integer multiple of 2306 /// 32. This contiguous subset always starts with the zeroth lane. 2307 /// Partial Warp Reduce (argument value 2): 2308 /// This algorithm gathers data from any number of lanes at any position. 2309 /// All reduced values are stored in the lowest possible lane. The set 2310 /// of problems every algorithm addresses is a super set of those 2311 /// addressable by algorithms with a lower version number. Overhead 2312 /// increases as algorithm version increases. 2313 /// 2314 /// Terminology 2315 /// Reduce element: 2316 /// Reduce element refers to the individual data field with primitive 2317 /// data types to be combined and reduced across threads. 2318 /// Reduce list: 2319 /// Reduce list refers to a collection of local, thread-private 2320 /// reduce elements. 2321 /// Remote Reduce list: 2322 /// Remote Reduce list refers to a collection of remote (relative to 2323 /// the current thread) reduce elements. 2324 /// 2325 /// We distinguish between three states of threads that are important to 2326 /// the implementation of this function. 2327 /// Alive threads: 2328 /// Threads in a warp executing the SIMT instruction, as distinguished from 2329 /// threads that are inactive due to divergent control flow. 2330 /// Active threads: 2331 /// The minimal set of threads that has to be alive upon entry to this 2332 /// function. The computation is correct iff active threads are alive. 2333 /// Some threads are alive but they are not active because they do not 2334 /// contribute to the computation in any useful manner. Turning them off 2335 /// may introduce control flow overheads without any tangible benefits. 2336 /// Effective threads: 2337 /// In order to comply with the argument requirements of the shuffle 2338 /// function, we must keep all lanes holding data alive. But at most 2339 /// half of them perform value aggregation; we refer to this half of 2340 /// threads as effective. The other half is simply handing off their 2341 /// data. 2342 /// 2343 /// Procedure 2344 /// Value shuffle: 2345 /// In this step active threads transfer data from higher lane positions 2346 /// in the warp to lower lane positions, creating Remote Reduce list. 2347 /// Value aggregation: 2348 /// In this step, effective threads combine their thread local Reduce list 2349 /// with Remote Reduce list and store the result in the thread local 2350 /// Reduce list. 2351 /// Value copy: 2352 /// In this step, we deal with the assumption made by algorithm 2 2353 /// (i.e. contiguity assumption). When we have an odd number of lanes 2354 /// active, say 2k+1, only k threads will be effective and therefore k 2355 /// new values will be produced. However, the Reduce list owned by the 2356 /// (2k+1)th thread is ignored in the value aggregation. Therefore 2357 /// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so 2358 /// that the contiguity assumption still holds. 2359 static llvm::Function *emitShuffleAndReduceFunction( 2360 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2361 QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) { 2362 ASTContext &C = CGM.getContext(); 2363 2364 // Thread local Reduce list used to host the values of data to be reduced. 2365 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2366 C.VoidPtrTy, ImplicitParamDecl::Other); 2367 // Current lane id; could be logical. 2368 ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy, 2369 ImplicitParamDecl::Other); 2370 // Offset of the remote source lane relative to the current lane. 2371 ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2372 C.ShortTy, ImplicitParamDecl::Other); 2373 // Algorithm version. This is expected to be known at compile time. 2374 ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2375 C.ShortTy, ImplicitParamDecl::Other); 2376 FunctionArgList Args; 2377 Args.push_back(&ReduceListArg); 2378 Args.push_back(&LaneIDArg); 2379 Args.push_back(&RemoteLaneOffsetArg); 2380 Args.push_back(&AlgoVerArg); 2381 2382 const CGFunctionInfo &CGFI = 2383 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2384 auto *Fn = llvm::Function::Create( 2385 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2386 "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule()); 2387 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2388 Fn->setDoesNotRecurse(); 2389 2390 CodeGenFunction CGF(CGM); 2391 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2392 2393 CGBuilderTy &Bld = CGF.Builder; 2394 2395 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2396 Address LocalReduceList( 2397 Bld.CreatePointerBitCastOrAddrSpaceCast( 2398 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2399 C.VoidPtrTy, SourceLocation()), 2400 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2401 CGF.getPointerAlign()); 2402 2403 Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg); 2404 llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar( 2405 AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2406 2407 Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg); 2408 llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar( 2409 AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2410 2411 Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg); 2412 llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar( 2413 AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2414 2415 // Create a local thread-private variable to host the Reduce list 2416 // from a remote lane. 2417 Address RemoteReduceList = 2418 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list"); 2419 2420 // This loop iterates through the list of reduce elements and copies, 2421 // element by element, from a remote lane in the warp to RemoteReduceList, 2422 // hosted on the thread's stack. 2423 emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates, 2424 LocalReduceList, RemoteReduceList, 2425 {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal, 2426 /*ScratchpadIndex=*/nullptr, 2427 /*ScratchpadWidth=*/nullptr}); 2428 2429 // The actions to be performed on the Remote Reduce list is dependent 2430 // on the algorithm version. 2431 // 2432 // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 && 2433 // LaneId % 2 == 0 && Offset > 0): 2434 // do the reduction value aggregation 2435 // 2436 // The thread local variable Reduce list is mutated in place to host the 2437 // reduced data, which is the aggregated value produced from local and 2438 // remote lanes. 2439 // 2440 // Note that AlgoVer is expected to be a constant integer known at compile 2441 // time. 2442 // When AlgoVer==0, the first conjunction evaluates to true, making 2443 // the entire predicate true during compile time. 2444 // When AlgoVer==1, the second conjunction has only the second part to be 2445 // evaluated during runtime. Other conjunctions evaluates to false 2446 // during compile time. 2447 // When AlgoVer==2, the third conjunction has only the second part to be 2448 // evaluated during runtime. Other conjunctions evaluates to false 2449 // during compile time. 2450 llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal); 2451 2452 llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); 2453 llvm::Value *CondAlgo1 = Bld.CreateAnd( 2454 Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal)); 2455 2456 llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2)); 2457 llvm::Value *CondAlgo2 = Bld.CreateAnd( 2458 Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1)))); 2459 CondAlgo2 = Bld.CreateAnd( 2460 CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0))); 2461 2462 llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1); 2463 CondReduce = Bld.CreateOr(CondReduce, CondAlgo2); 2464 2465 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); 2466 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); 2467 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); 2468 Bld.CreateCondBr(CondReduce, ThenBB, ElseBB); 2469 2470 CGF.EmitBlock(ThenBB); 2471 // reduce_function(LocalReduceList, RemoteReduceList) 2472 llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2473 LocalReduceList.getPointer(), CGF.VoidPtrTy); 2474 llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2475 RemoteReduceList.getPointer(), CGF.VoidPtrTy); 2476 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2477 CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr}); 2478 Bld.CreateBr(MergeBB); 2479 2480 CGF.EmitBlock(ElseBB); 2481 Bld.CreateBr(MergeBB); 2482 2483 CGF.EmitBlock(MergeBB); 2484 2485 // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local 2486 // Reduce list. 2487 Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); 2488 llvm::Value *CondCopy = Bld.CreateAnd( 2489 Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal)); 2490 2491 llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then"); 2492 llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else"); 2493 llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont"); 2494 Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB); 2495 2496 CGF.EmitBlock(CpyThenBB); 2497 emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates, 2498 RemoteReduceList, LocalReduceList); 2499 Bld.CreateBr(CpyMergeBB); 2500 2501 CGF.EmitBlock(CpyElseBB); 2502 Bld.CreateBr(CpyMergeBB); 2503 2504 CGF.EmitBlock(CpyMergeBB); 2505 2506 CGF.FinishFunction(); 2507 return Fn; 2508 } 2509 2510 /// This function emits a helper that copies all the reduction variables from 2511 /// the team into the provided global buffer for the reduction variables. 2512 /// 2513 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) 2514 /// For all data entries D in reduce_data: 2515 /// Copy local D to buffer.D[Idx] 2516 static llvm::Value *emitListToGlobalCopyFunction( 2517 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2518 QualType ReductionArrayTy, SourceLocation Loc, 2519 const RecordDecl *TeamReductionRec, 2520 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2521 &VarFieldMap) { 2522 ASTContext &C = CGM.getContext(); 2523 2524 // Buffer: global reduction buffer. 2525 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2526 C.VoidPtrTy, ImplicitParamDecl::Other); 2527 // Idx: index of the buffer. 2528 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2529 ImplicitParamDecl::Other); 2530 // ReduceList: thread local Reduce list. 2531 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2532 C.VoidPtrTy, ImplicitParamDecl::Other); 2533 FunctionArgList Args; 2534 Args.push_back(&BufferArg); 2535 Args.push_back(&IdxArg); 2536 Args.push_back(&ReduceListArg); 2537 2538 const CGFunctionInfo &CGFI = 2539 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2540 auto *Fn = llvm::Function::Create( 2541 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2542 "_omp_reduction_list_to_global_copy_func", &CGM.getModule()); 2543 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2544 Fn->setDoesNotRecurse(); 2545 CodeGenFunction CGF(CGM); 2546 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2547 2548 CGBuilderTy &Bld = CGF.Builder; 2549 2550 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2551 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2552 Address LocalReduceList( 2553 Bld.CreatePointerBitCastOrAddrSpaceCast( 2554 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2555 C.VoidPtrTy, Loc), 2556 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2557 CGF.getPointerAlign()); 2558 QualType StaticTy = C.getRecordType(TeamReductionRec); 2559 llvm::Type *LLVMReductionsBufferTy = 2560 CGM.getTypes().ConvertTypeForMem(StaticTy); 2561 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2562 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2563 LLVMReductionsBufferTy->getPointerTo()); 2564 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2565 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2566 /*Volatile=*/false, C.IntTy, 2567 Loc)}; 2568 unsigned Idx = 0; 2569 for (const Expr *Private : Privates) { 2570 // Reduce element = LocalReduceList[i] 2571 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2572 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2573 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2574 // elemptr = ((CopyType*)(elemptrptr)) + I 2575 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2576 ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo()); 2577 Address ElemPtr = 2578 Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType())); 2579 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); 2580 // Global = Buffer.VD[Idx]; 2581 const FieldDecl *FD = VarFieldMap.lookup(VD); 2582 LValue GlobLVal = CGF.EmitLValueForField( 2583 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2584 Address GlobAddr = GlobLVal.getAddress(CGF); 2585 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2586 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2587 GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment())); 2588 switch (CGF.getEvaluationKind(Private->getType())) { 2589 case TEK_Scalar: { 2590 llvm::Value *V = CGF.EmitLoadOfScalar( 2591 ElemPtr, /*Volatile=*/false, Private->getType(), Loc, 2592 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2593 CGF.EmitStoreOfScalar(V, GlobLVal); 2594 break; 2595 } 2596 case TEK_Complex: { 2597 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex( 2598 CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc); 2599 CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false); 2600 break; 2601 } 2602 case TEK_Aggregate: 2603 CGF.EmitAggregateCopy(GlobLVal, 2604 CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2605 Private->getType(), AggValueSlot::DoesNotOverlap); 2606 break; 2607 } 2608 ++Idx; 2609 } 2610 2611 CGF.FinishFunction(); 2612 return Fn; 2613 } 2614 2615 /// This function emits a helper that reduces all the reduction variables from 2616 /// the team into the provided global buffer for the reduction variables. 2617 /// 2618 /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data) 2619 /// void *GlobPtrs[]; 2620 /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; 2621 /// ... 2622 /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; 2623 /// reduce_function(GlobPtrs, reduce_data); 2624 static llvm::Value *emitListToGlobalReduceFunction( 2625 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2626 QualType ReductionArrayTy, SourceLocation Loc, 2627 const RecordDecl *TeamReductionRec, 2628 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2629 &VarFieldMap, 2630 llvm::Function *ReduceFn) { 2631 ASTContext &C = CGM.getContext(); 2632 2633 // Buffer: global reduction buffer. 2634 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2635 C.VoidPtrTy, ImplicitParamDecl::Other); 2636 // Idx: index of the buffer. 2637 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2638 ImplicitParamDecl::Other); 2639 // ReduceList: thread local Reduce list. 2640 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2641 C.VoidPtrTy, ImplicitParamDecl::Other); 2642 FunctionArgList Args; 2643 Args.push_back(&BufferArg); 2644 Args.push_back(&IdxArg); 2645 Args.push_back(&ReduceListArg); 2646 2647 const CGFunctionInfo &CGFI = 2648 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2649 auto *Fn = llvm::Function::Create( 2650 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2651 "_omp_reduction_list_to_global_reduce_func", &CGM.getModule()); 2652 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2653 Fn->setDoesNotRecurse(); 2654 CodeGenFunction CGF(CGM); 2655 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2656 2657 CGBuilderTy &Bld = CGF.Builder; 2658 2659 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2660 QualType StaticTy = C.getRecordType(TeamReductionRec); 2661 llvm::Type *LLVMReductionsBufferTy = 2662 CGM.getTypes().ConvertTypeForMem(StaticTy); 2663 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2664 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2665 LLVMReductionsBufferTy->getPointerTo()); 2666 2667 // 1. Build a list of reduction variables. 2668 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 2669 Address ReductionList = 2670 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 2671 auto IPriv = Privates.begin(); 2672 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2673 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2674 /*Volatile=*/false, C.IntTy, 2675 Loc)}; 2676 unsigned Idx = 0; 2677 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { 2678 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2679 // Global = Buffer.VD[Idx]; 2680 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); 2681 const FieldDecl *FD = VarFieldMap.lookup(VD); 2682 LValue GlobLVal = CGF.EmitLValueForField( 2683 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2684 Address GlobAddr = GlobLVal.getAddress(CGF); 2685 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2686 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2687 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); 2688 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); 2689 if ((*IPriv)->getType()->isVariablyModifiedType()) { 2690 // Store array size. 2691 ++Idx; 2692 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2693 llvm::Value *Size = CGF.Builder.CreateIntCast( 2694 CGF.getVLASize( 2695 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 2696 .NumElts, 2697 CGF.SizeTy, /*isSigned=*/false); 2698 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 2699 Elem); 2700 } 2701 } 2702 2703 // Call reduce_function(GlobalReduceList, ReduceList) 2704 llvm::Value *GlobalReduceList = 2705 CGF.EmitCastToVoidPtr(ReductionList.getPointer()); 2706 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2707 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( 2708 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); 2709 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2710 CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr}); 2711 CGF.FinishFunction(); 2712 return Fn; 2713 } 2714 2715 /// This function emits a helper that copies all the reduction variables from 2716 /// the team into the provided global buffer for the reduction variables. 2717 /// 2718 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) 2719 /// For all data entries D in reduce_data: 2720 /// Copy buffer.D[Idx] to local D; 2721 static llvm::Value *emitGlobalToListCopyFunction( 2722 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2723 QualType ReductionArrayTy, SourceLocation Loc, 2724 const RecordDecl *TeamReductionRec, 2725 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2726 &VarFieldMap) { 2727 ASTContext &C = CGM.getContext(); 2728 2729 // Buffer: global reduction buffer. 2730 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2731 C.VoidPtrTy, ImplicitParamDecl::Other); 2732 // Idx: index of the buffer. 2733 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2734 ImplicitParamDecl::Other); 2735 // ReduceList: thread local Reduce list. 2736 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2737 C.VoidPtrTy, ImplicitParamDecl::Other); 2738 FunctionArgList Args; 2739 Args.push_back(&BufferArg); 2740 Args.push_back(&IdxArg); 2741 Args.push_back(&ReduceListArg); 2742 2743 const CGFunctionInfo &CGFI = 2744 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2745 auto *Fn = llvm::Function::Create( 2746 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2747 "_omp_reduction_global_to_list_copy_func", &CGM.getModule()); 2748 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2749 Fn->setDoesNotRecurse(); 2750 CodeGenFunction CGF(CGM); 2751 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2752 2753 CGBuilderTy &Bld = CGF.Builder; 2754 2755 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2756 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2757 Address LocalReduceList( 2758 Bld.CreatePointerBitCastOrAddrSpaceCast( 2759 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2760 C.VoidPtrTy, Loc), 2761 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2762 CGF.getPointerAlign()); 2763 QualType StaticTy = C.getRecordType(TeamReductionRec); 2764 llvm::Type *LLVMReductionsBufferTy = 2765 CGM.getTypes().ConvertTypeForMem(StaticTy); 2766 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2767 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2768 LLVMReductionsBufferTy->getPointerTo()); 2769 2770 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2771 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2772 /*Volatile=*/false, C.IntTy, 2773 Loc)}; 2774 unsigned Idx = 0; 2775 for (const Expr *Private : Privates) { 2776 // Reduce element = LocalReduceList[i] 2777 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2778 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2779 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2780 // elemptr = ((CopyType*)(elemptrptr)) + I 2781 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2782 ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo()); 2783 Address ElemPtr = 2784 Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType())); 2785 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); 2786 // Global = Buffer.VD[Idx]; 2787 const FieldDecl *FD = VarFieldMap.lookup(VD); 2788 LValue GlobLVal = CGF.EmitLValueForField( 2789 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2790 Address GlobAddr = GlobLVal.getAddress(CGF); 2791 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2792 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2793 GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment())); 2794 switch (CGF.getEvaluationKind(Private->getType())) { 2795 case TEK_Scalar: { 2796 llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc); 2797 CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(), 2798 LValueBaseInfo(AlignmentSource::Type), 2799 TBAAAccessInfo()); 2800 break; 2801 } 2802 case TEK_Complex: { 2803 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc); 2804 CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2805 /*isInit=*/false); 2806 break; 2807 } 2808 case TEK_Aggregate: 2809 CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2810 GlobLVal, Private->getType(), 2811 AggValueSlot::DoesNotOverlap); 2812 break; 2813 } 2814 ++Idx; 2815 } 2816 2817 CGF.FinishFunction(); 2818 return Fn; 2819 } 2820 2821 /// This function emits a helper that reduces all the reduction variables from 2822 /// the team into the provided global buffer for the reduction variables. 2823 /// 2824 /// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data) 2825 /// void *GlobPtrs[]; 2826 /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; 2827 /// ... 2828 /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; 2829 /// reduce_function(reduce_data, GlobPtrs); 2830 static llvm::Value *emitGlobalToListReduceFunction( 2831 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2832 QualType ReductionArrayTy, SourceLocation Loc, 2833 const RecordDecl *TeamReductionRec, 2834 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2835 &VarFieldMap, 2836 llvm::Function *ReduceFn) { 2837 ASTContext &C = CGM.getContext(); 2838 2839 // Buffer: global reduction buffer. 2840 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2841 C.VoidPtrTy, ImplicitParamDecl::Other); 2842 // Idx: index of the buffer. 2843 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2844 ImplicitParamDecl::Other); 2845 // ReduceList: thread local Reduce list. 2846 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2847 C.VoidPtrTy, ImplicitParamDecl::Other); 2848 FunctionArgList Args; 2849 Args.push_back(&BufferArg); 2850 Args.push_back(&IdxArg); 2851 Args.push_back(&ReduceListArg); 2852 2853 const CGFunctionInfo &CGFI = 2854 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2855 auto *Fn = llvm::Function::Create( 2856 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2857 "_omp_reduction_global_to_list_reduce_func", &CGM.getModule()); 2858 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2859 Fn->setDoesNotRecurse(); 2860 CodeGenFunction CGF(CGM); 2861 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2862 2863 CGBuilderTy &Bld = CGF.Builder; 2864 2865 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2866 QualType StaticTy = C.getRecordType(TeamReductionRec); 2867 llvm::Type *LLVMReductionsBufferTy = 2868 CGM.getTypes().ConvertTypeForMem(StaticTy); 2869 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2870 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2871 LLVMReductionsBufferTy->getPointerTo()); 2872 2873 // 1. Build a list of reduction variables. 2874 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 2875 Address ReductionList = 2876 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 2877 auto IPriv = Privates.begin(); 2878 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2879 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2880 /*Volatile=*/false, C.IntTy, 2881 Loc)}; 2882 unsigned Idx = 0; 2883 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { 2884 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2885 // Global = Buffer.VD[Idx]; 2886 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); 2887 const FieldDecl *FD = VarFieldMap.lookup(VD); 2888 LValue GlobLVal = CGF.EmitLValueForField( 2889 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2890 Address GlobAddr = GlobLVal.getAddress(CGF); 2891 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2892 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2893 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); 2894 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); 2895 if ((*IPriv)->getType()->isVariablyModifiedType()) { 2896 // Store array size. 2897 ++Idx; 2898 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2899 llvm::Value *Size = CGF.Builder.CreateIntCast( 2900 CGF.getVLASize( 2901 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 2902 .NumElts, 2903 CGF.SizeTy, /*isSigned=*/false); 2904 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 2905 Elem); 2906 } 2907 } 2908 2909 // Call reduce_function(ReduceList, GlobalReduceList) 2910 llvm::Value *GlobalReduceList = 2911 CGF.EmitCastToVoidPtr(ReductionList.getPointer()); 2912 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2913 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( 2914 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); 2915 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2916 CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList}); 2917 CGF.FinishFunction(); 2918 return Fn; 2919 } 2920 2921 /// 2922 /// Design of OpenMP reductions on the GPU 2923 /// 2924 /// Consider a typical OpenMP program with one or more reduction 2925 /// clauses: 2926 /// 2927 /// float foo; 2928 /// double bar; 2929 /// #pragma omp target teams distribute parallel for \ 2930 /// reduction(+:foo) reduction(*:bar) 2931 /// for (int i = 0; i < N; i++) { 2932 /// foo += A[i]; bar *= B[i]; 2933 /// } 2934 /// 2935 /// where 'foo' and 'bar' are reduced across all OpenMP threads in 2936 /// all teams. In our OpenMP implementation on the NVPTX device an 2937 /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads 2938 /// within a team are mapped to CUDA threads within a threadblock. 2939 /// Our goal is to efficiently aggregate values across all OpenMP 2940 /// threads such that: 2941 /// 2942 /// - the compiler and runtime are logically concise, and 2943 /// - the reduction is performed efficiently in a hierarchical 2944 /// manner as follows: within OpenMP threads in the same warp, 2945 /// across warps in a threadblock, and finally across teams on 2946 /// the NVPTX device. 2947 /// 2948 /// Introduction to Decoupling 2949 /// 2950 /// We would like to decouple the compiler and the runtime so that the 2951 /// latter is ignorant of the reduction variables (number, data types) 2952 /// and the reduction operators. This allows a simpler interface 2953 /// and implementation while still attaining good performance. 2954 /// 2955 /// Pseudocode for the aforementioned OpenMP program generated by the 2956 /// compiler is as follows: 2957 /// 2958 /// 1. Create private copies of reduction variables on each OpenMP 2959 /// thread: 'foo_private', 'bar_private' 2960 /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned 2961 /// to it and writes the result in 'foo_private' and 'bar_private' 2962 /// respectively. 2963 /// 3. Call the OpenMP runtime on the GPU to reduce within a team 2964 /// and store the result on the team master: 2965 /// 2966 /// __kmpc_nvptx_parallel_reduce_nowait_v2(..., 2967 /// reduceData, shuffleReduceFn, interWarpCpyFn) 2968 /// 2969 /// where: 2970 /// struct ReduceData { 2971 /// double *foo; 2972 /// double *bar; 2973 /// } reduceData 2974 /// reduceData.foo = &foo_private 2975 /// reduceData.bar = &bar_private 2976 /// 2977 /// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two 2978 /// auxiliary functions generated by the compiler that operate on 2979 /// variables of type 'ReduceData'. They aid the runtime perform 2980 /// algorithmic steps in a data agnostic manner. 2981 /// 2982 /// 'shuffleReduceFn' is a pointer to a function that reduces data 2983 /// of type 'ReduceData' across two OpenMP threads (lanes) in the 2984 /// same warp. It takes the following arguments as input: 2985 /// 2986 /// a. variable of type 'ReduceData' on the calling lane, 2987 /// b. its lane_id, 2988 /// c. an offset relative to the current lane_id to generate a 2989 /// remote_lane_id. The remote lane contains the second 2990 /// variable of type 'ReduceData' that is to be reduced. 2991 /// d. an algorithm version parameter determining which reduction 2992 /// algorithm to use. 2993 /// 2994 /// 'shuffleReduceFn' retrieves data from the remote lane using 2995 /// efficient GPU shuffle intrinsics and reduces, using the 2996 /// algorithm specified by the 4th parameter, the two operands 2997 /// element-wise. The result is written to the first operand. 2998 /// 2999 /// Different reduction algorithms are implemented in different 3000 /// runtime functions, all calling 'shuffleReduceFn' to perform 3001 /// the essential reduction step. Therefore, based on the 4th 3002 /// parameter, this function behaves slightly differently to 3003 /// cooperate with the runtime to ensure correctness under 3004 /// different circumstances. 3005 /// 3006 /// 'InterWarpCpyFn' is a pointer to a function that transfers 3007 /// reduced variables across warps. It tunnels, through CUDA 3008 /// shared memory, the thread-private data of type 'ReduceData' 3009 /// from lane 0 of each warp to a lane in the first warp. 3010 /// 4. Call the OpenMP runtime on the GPU to reduce across teams. 3011 /// The last team writes the global reduced value to memory. 3012 /// 3013 /// ret = __kmpc_nvptx_teams_reduce_nowait(..., 3014 /// reduceData, shuffleReduceFn, interWarpCpyFn, 3015 /// scratchpadCopyFn, loadAndReduceFn) 3016 /// 3017 /// 'scratchpadCopyFn' is a helper that stores reduced 3018 /// data from the team master to a scratchpad array in 3019 /// global memory. 3020 /// 3021 /// 'loadAndReduceFn' is a helper that loads data from 3022 /// the scratchpad array and reduces it with the input 3023 /// operand. 3024 /// 3025 /// These compiler generated functions hide address 3026 /// calculation and alignment information from the runtime. 3027 /// 5. if ret == 1: 3028 /// The team master of the last team stores the reduced 3029 /// result to the globals in memory. 3030 /// foo += reduceData.foo; bar *= reduceData.bar 3031 /// 3032 /// 3033 /// Warp Reduction Algorithms 3034 /// 3035 /// On the warp level, we have three algorithms implemented in the 3036 /// OpenMP runtime depending on the number of active lanes: 3037 /// 3038 /// Full Warp Reduction 3039 /// 3040 /// The reduce algorithm within a warp where all lanes are active 3041 /// is implemented in the runtime as follows: 3042 /// 3043 /// full_warp_reduce(void *reduce_data, 3044 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { 3045 /// for (int offset = WARPSIZE/2; offset > 0; offset /= 2) 3046 /// ShuffleReduceFn(reduce_data, 0, offset, 0); 3047 /// } 3048 /// 3049 /// The algorithm completes in log(2, WARPSIZE) steps. 3050 /// 3051 /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is 3052 /// not used therefore we save instructions by not retrieving lane_id 3053 /// from the corresponding special registers. The 4th parameter, which 3054 /// represents the version of the algorithm being used, is set to 0 to 3055 /// signify full warp reduction. 3056 /// 3057 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3058 /// 3059 /// #reduce_elem refers to an element in the local lane's data structure 3060 /// #remote_elem is retrieved from a remote lane 3061 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3062 /// reduce_elem = reduce_elem REDUCE_OP remote_elem; 3063 /// 3064 /// Contiguous Partial Warp Reduction 3065 /// 3066 /// This reduce algorithm is used within a warp where only the first 3067 /// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the 3068 /// number of OpenMP threads in a parallel region is not a multiple of 3069 /// WARPSIZE. The algorithm is implemented in the runtime as follows: 3070 /// 3071 /// void 3072 /// contiguous_partial_reduce(void *reduce_data, 3073 /// kmp_ShuffleReductFctPtr ShuffleReduceFn, 3074 /// int size, int lane_id) { 3075 /// int curr_size; 3076 /// int offset; 3077 /// curr_size = size; 3078 /// mask = curr_size/2; 3079 /// while (offset>0) { 3080 /// ShuffleReduceFn(reduce_data, lane_id, offset, 1); 3081 /// curr_size = (curr_size+1)/2; 3082 /// offset = curr_size/2; 3083 /// } 3084 /// } 3085 /// 3086 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3087 /// 3088 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3089 /// if (lane_id < offset) 3090 /// reduce_elem = reduce_elem REDUCE_OP remote_elem 3091 /// else 3092 /// reduce_elem = remote_elem 3093 /// 3094 /// This algorithm assumes that the data to be reduced are located in a 3095 /// contiguous subset of lanes starting from the first. When there is 3096 /// an odd number of active lanes, the data in the last lane is not 3097 /// aggregated with any other lane's dat but is instead copied over. 3098 /// 3099 /// Dispersed Partial Warp Reduction 3100 /// 3101 /// This algorithm is used within a warp when any discontiguous subset of 3102 /// lanes are active. It is used to implement the reduction operation 3103 /// across lanes in an OpenMP simd region or in a nested parallel region. 3104 /// 3105 /// void 3106 /// dispersed_partial_reduce(void *reduce_data, 3107 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { 3108 /// int size, remote_id; 3109 /// int logical_lane_id = number_of_active_lanes_before_me() * 2; 3110 /// do { 3111 /// remote_id = next_active_lane_id_right_after_me(); 3112 /// # the above function returns 0 of no active lane 3113 /// # is present right after the current lane. 3114 /// size = number_of_active_lanes_in_this_warp(); 3115 /// logical_lane_id /= 2; 3116 /// ShuffleReduceFn(reduce_data, logical_lane_id, 3117 /// remote_id-1-threadIdx.x, 2); 3118 /// } while (logical_lane_id % 2 == 0 && size > 1); 3119 /// } 3120 /// 3121 /// There is no assumption made about the initial state of the reduction. 3122 /// Any number of lanes (>=1) could be active at any position. The reduction 3123 /// result is returned in the first active lane. 3124 /// 3125 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3126 /// 3127 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3128 /// if (lane_id % 2 == 0 && offset > 0) 3129 /// reduce_elem = reduce_elem REDUCE_OP remote_elem 3130 /// else 3131 /// reduce_elem = remote_elem 3132 /// 3133 /// 3134 /// Intra-Team Reduction 3135 /// 3136 /// This function, as implemented in the runtime call 3137 /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP 3138 /// threads in a team. It first reduces within a warp using the 3139 /// aforementioned algorithms. We then proceed to gather all such 3140 /// reduced values at the first warp. 3141 /// 3142 /// The runtime makes use of the function 'InterWarpCpyFn', which copies 3143 /// data from each of the "warp master" (zeroth lane of each warp, where 3144 /// warp-reduced data is held) to the zeroth warp. This step reduces (in 3145 /// a mathematical sense) the problem of reduction across warp masters in 3146 /// a block to the problem of warp reduction. 3147 /// 3148 /// 3149 /// Inter-Team Reduction 3150 /// 3151 /// Once a team has reduced its data to a single value, it is stored in 3152 /// a global scratchpad array. Since each team has a distinct slot, this 3153 /// can be done without locking. 3154 /// 3155 /// The last team to write to the scratchpad array proceeds to reduce the 3156 /// scratchpad array. One or more workers in the last team use the helper 3157 /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e., 3158 /// the k'th worker reduces every k'th element. 3159 /// 3160 /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to 3161 /// reduce across workers and compute a globally reduced value. 3162 /// 3163 void CGOpenMPRuntimeGPU::emitReduction( 3164 CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates, 3165 ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs, 3166 ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) { 3167 if (!CGF.HaveInsertPoint()) 3168 return; 3169 3170 bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind); 3171 #ifndef NDEBUG 3172 bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind); 3173 #endif 3174 3175 if (Options.SimpleReduction) { 3176 assert(!TeamsReduction && !ParallelReduction && 3177 "Invalid reduction selection in emitReduction."); 3178 CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs, 3179 ReductionOps, Options); 3180 return; 3181 } 3182 3183 assert((TeamsReduction || ParallelReduction) && 3184 "Invalid reduction selection in emitReduction."); 3185 3186 // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList), 3187 // RedList, shuffle_reduce_func, interwarp_copy_func); 3188 // or 3189 // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>); 3190 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 3191 llvm::Value *ThreadId = getThreadID(CGF, Loc); 3192 3193 llvm::Value *Res; 3194 ASTContext &C = CGM.getContext(); 3195 // 1. Build a list of reduction variables. 3196 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 3197 auto Size = RHSExprs.size(); 3198 for (const Expr *E : Privates) { 3199 if (E->getType()->isVariablyModifiedType()) 3200 // Reserve place for array size. 3201 ++Size; 3202 } 3203 llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size); 3204 QualType ReductionArrayTy = 3205 C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal, 3206 /*IndexTypeQuals=*/0); 3207 Address ReductionList = 3208 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 3209 auto IPriv = Privates.begin(); 3210 unsigned Idx = 0; 3211 for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) { 3212 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3213 CGF.Builder.CreateStore( 3214 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3215 CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy), 3216 Elem); 3217 if ((*IPriv)->getType()->isVariablyModifiedType()) { 3218 // Store array size. 3219 ++Idx; 3220 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3221 llvm::Value *Size = CGF.Builder.CreateIntCast( 3222 CGF.getVLASize( 3223 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 3224 .NumElts, 3225 CGF.SizeTy, /*isSigned=*/false); 3226 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 3227 Elem); 3228 } 3229 } 3230 3231 llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3232 ReductionList.getPointer(), CGF.VoidPtrTy); 3233 llvm::Function *ReductionFn = emitReductionFunction( 3234 Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates, 3235 LHSExprs, RHSExprs, ReductionOps); 3236 llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy); 3237 llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction( 3238 CGM, Privates, ReductionArrayTy, ReductionFn, Loc); 3239 llvm::Value *InterWarpCopyFn = 3240 emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc); 3241 3242 if (ParallelReduction) { 3243 llvm::Value *Args[] = {RTLoc, 3244 ThreadId, 3245 CGF.Builder.getInt32(RHSExprs.size()), 3246 ReductionArrayTySize, 3247 RL, 3248 ShuffleAndReduceFn, 3249 InterWarpCopyFn}; 3250 3251 Res = CGF.EmitRuntimeCall( 3252 OMPBuilder.getOrCreateRuntimeFunction( 3253 CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2), 3254 Args); 3255 } else { 3256 assert(TeamsReduction && "expected teams reduction."); 3257 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap; 3258 llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size()); 3259 int Cnt = 0; 3260 for (const Expr *DRE : Privates) { 3261 PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl(); 3262 ++Cnt; 3263 } 3264 const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars( 3265 CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap, 3266 C.getLangOpts().OpenMPCUDAReductionBufNum); 3267 TeamsReductions.push_back(TeamReductionRec); 3268 if (!KernelTeamsReductionPtr) { 3269 KernelTeamsReductionPtr = new llvm::GlobalVariable( 3270 CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true, 3271 llvm::GlobalValue::InternalLinkage, nullptr, 3272 "_openmp_teams_reductions_buffer_$_$ptr"); 3273 } 3274 llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar( 3275 Address(KernelTeamsReductionPtr, CGM.getPointerAlign()), 3276 /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc); 3277 llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction( 3278 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); 3279 llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction( 3280 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, 3281 ReductionFn); 3282 llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction( 3283 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); 3284 llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction( 3285 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, 3286 ReductionFn); 3287 3288 llvm::Value *Args[] = { 3289 RTLoc, 3290 ThreadId, 3291 GlobalBufferPtr, 3292 CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum), 3293 RL, 3294 ShuffleAndReduceFn, 3295 InterWarpCopyFn, 3296 GlobalToBufferCpyFn, 3297 GlobalToBufferRedFn, 3298 BufferToGlobalCpyFn, 3299 BufferToGlobalRedFn}; 3300 3301 Res = CGF.EmitRuntimeCall( 3302 OMPBuilder.getOrCreateRuntimeFunction( 3303 CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2), 3304 Args); 3305 } 3306 3307 // 5. Build if (res == 1) 3308 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done"); 3309 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then"); 3310 llvm::Value *Cond = CGF.Builder.CreateICmpEQ( 3311 Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1)); 3312 CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB); 3313 3314 // 6. Build then branch: where we have reduced values in the master 3315 // thread in each team. 3316 // __kmpc_end_reduce{_nowait}(<gtid>); 3317 // break; 3318 CGF.EmitBlock(ThenBB); 3319 3320 // Add emission of __kmpc_end_reduce{_nowait}(<gtid>); 3321 auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps, 3322 this](CodeGenFunction &CGF, PrePostActionTy &Action) { 3323 auto IPriv = Privates.begin(); 3324 auto ILHS = LHSExprs.begin(); 3325 auto IRHS = RHSExprs.begin(); 3326 for (const Expr *E : ReductionOps) { 3327 emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS), 3328 cast<DeclRefExpr>(*IRHS)); 3329 ++IPriv; 3330 ++ILHS; 3331 ++IRHS; 3332 } 3333 }; 3334 llvm::Value *EndArgs[] = {ThreadId}; 3335 RegionCodeGenTy RCG(CodeGen); 3336 NVPTXActionTy Action( 3337 nullptr, llvm::None, 3338 OMPBuilder.getOrCreateRuntimeFunction( 3339 CGM.getModule(), OMPRTL___kmpc_nvptx_end_reduce_nowait), 3340 EndArgs); 3341 RCG.setAction(Action); 3342 RCG(CGF); 3343 // There is no need to emit line number for unconditional branch. 3344 (void)ApplyDebugLocation::CreateEmpty(CGF); 3345 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 3346 } 3347 3348 const VarDecl * 3349 CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD, 3350 const VarDecl *NativeParam) const { 3351 if (!NativeParam->getType()->isReferenceType()) 3352 return NativeParam; 3353 QualType ArgType = NativeParam->getType(); 3354 QualifierCollector QC; 3355 const Type *NonQualTy = QC.strip(ArgType); 3356 QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); 3357 if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) { 3358 if (Attr->getCaptureKind() == OMPC_map) { 3359 PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy, 3360 LangAS::opencl_global); 3361 } 3362 } 3363 ArgType = CGM.getContext().getPointerType(PointeeTy); 3364 QC.addRestrict(); 3365 enum { NVPTX_local_addr = 5 }; 3366 QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr)); 3367 ArgType = QC.apply(CGM.getContext(), ArgType); 3368 if (isa<ImplicitParamDecl>(NativeParam)) 3369 return ImplicitParamDecl::Create( 3370 CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(), 3371 NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other); 3372 return ParmVarDecl::Create( 3373 CGM.getContext(), 3374 const_cast<DeclContext *>(NativeParam->getDeclContext()), 3375 NativeParam->getBeginLoc(), NativeParam->getLocation(), 3376 NativeParam->getIdentifier(), ArgType, 3377 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 3378 } 3379 3380 Address 3381 CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF, 3382 const VarDecl *NativeParam, 3383 const VarDecl *TargetParam) const { 3384 assert(NativeParam != TargetParam && 3385 NativeParam->getType()->isReferenceType() && 3386 "Native arg must not be the same as target arg."); 3387 Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam); 3388 QualType NativeParamType = NativeParam->getType(); 3389 QualifierCollector QC; 3390 const Type *NonQualTy = QC.strip(NativeParamType); 3391 QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); 3392 unsigned NativePointeeAddrSpace = 3393 CGF.getContext().getTargetAddressSpace(NativePointeeTy); 3394 QualType TargetTy = TargetParam->getType(); 3395 llvm::Value *TargetAddr = CGF.EmitLoadOfScalar( 3396 LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation()); 3397 // First cast to generic. 3398 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3399 TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo( 3400 /*AddrSpace=*/0)); 3401 // Cast from generic to native address space. 3402 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3403 TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo( 3404 NativePointeeAddrSpace)); 3405 Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType); 3406 CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false, 3407 NativeParamType); 3408 return NativeParamAddr; 3409 } 3410 3411 void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall( 3412 CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn, 3413 ArrayRef<llvm::Value *> Args) const { 3414 SmallVector<llvm::Value *, 4> TargetArgs; 3415 TargetArgs.reserve(Args.size()); 3416 auto *FnType = OutlinedFn.getFunctionType(); 3417 for (unsigned I = 0, E = Args.size(); I < E; ++I) { 3418 if (FnType->isVarArg() && FnType->getNumParams() <= I) { 3419 TargetArgs.append(std::next(Args.begin(), I), Args.end()); 3420 break; 3421 } 3422 llvm::Type *TargetType = FnType->getParamType(I); 3423 llvm::Value *NativeArg = Args[I]; 3424 if (!TargetType->isPointerTy()) { 3425 TargetArgs.emplace_back(NativeArg); 3426 continue; 3427 } 3428 llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3429 NativeArg, 3430 NativeArg->getType()->getPointerElementType()->getPointerTo()); 3431 TargetArgs.emplace_back( 3432 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType)); 3433 } 3434 CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs); 3435 } 3436 3437 /// Emit function which wraps the outline parallel region 3438 /// and controls the arguments which are passed to this function. 3439 /// The wrapper ensures that the outlined function is called 3440 /// with the correct arguments when data is shared. 3441 llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper( 3442 llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) { 3443 ASTContext &Ctx = CGM.getContext(); 3444 const auto &CS = *D.getCapturedStmt(OMPD_parallel); 3445 3446 // Create a function that takes as argument the source thread. 3447 FunctionArgList WrapperArgs; 3448 QualType Int16QTy = 3449 Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false); 3450 QualType Int32QTy = 3451 Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false); 3452 ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), 3453 /*Id=*/nullptr, Int16QTy, 3454 ImplicitParamDecl::Other); 3455 ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), 3456 /*Id=*/nullptr, Int32QTy, 3457 ImplicitParamDecl::Other); 3458 WrapperArgs.emplace_back(&ParallelLevelArg); 3459 WrapperArgs.emplace_back(&WrapperArg); 3460 3461 const CGFunctionInfo &CGFI = 3462 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs); 3463 3464 auto *Fn = llvm::Function::Create( 3465 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 3466 Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule()); 3467 3468 // Ensure we do not inline the function. This is trivially true for the ones 3469 // passed to __kmpc_fork_call but the ones calles in serialized regions 3470 // could be inlined. This is not a perfect but it is closer to the invariant 3471 // we want, namely, every data environment starts with a new function. 3472 // TODO: We should pass the if condition to the runtime function and do the 3473 // handling there. Much cleaner code. 3474 Fn->addFnAttr(llvm::Attribute::NoInline); 3475 3476 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 3477 Fn->setLinkage(llvm::GlobalValue::InternalLinkage); 3478 Fn->setDoesNotRecurse(); 3479 3480 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3481 CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs, 3482 D.getBeginLoc(), D.getBeginLoc()); 3483 3484 const auto *RD = CS.getCapturedRecordDecl(); 3485 auto CurField = RD->field_begin(); 3486 3487 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 3488 /*Name=*/".zero.addr"); 3489 CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr); 3490 // Get the array of arguments. 3491 SmallVector<llvm::Value *, 8> Args; 3492 3493 Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer()); 3494 Args.emplace_back(ZeroAddr.getPointer()); 3495 3496 CGBuilderTy &Bld = CGF.Builder; 3497 auto CI = CS.capture_begin(); 3498 3499 // Use global memory for data sharing. 3500 // Handle passing of global args to workers. 3501 Address GlobalArgs = 3502 CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args"); 3503 llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer(); 3504 llvm::Value *DataSharingArgs[] = {GlobalArgsPtr}; 3505 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 3506 CGM.getModule(), OMPRTL___kmpc_get_shared_variables), 3507 DataSharingArgs); 3508 3509 // Retrieve the shared variables from the list of references returned 3510 // by the runtime. Pass the variables to the outlined function. 3511 Address SharedArgListAddress = Address::invalid(); 3512 if (CS.capture_size() > 0 || 3513 isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { 3514 SharedArgListAddress = CGF.EmitLoadOfPointer( 3515 GlobalArgs, CGF.getContext() 3516 .getPointerType(CGF.getContext().getPointerType( 3517 CGF.getContext().VoidPtrTy)) 3518 .castAs<PointerType>()); 3519 } 3520 unsigned Idx = 0; 3521 if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { 3522 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 3523 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3524 Src, CGF.SizeTy->getPointerTo()); 3525 llvm::Value *LB = CGF.EmitLoadOfScalar( 3526 TypedAddress, 3527 /*Volatile=*/false, 3528 CGF.getContext().getPointerType(CGF.getContext().getSizeType()), 3529 cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc()); 3530 Args.emplace_back(LB); 3531 ++Idx; 3532 Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 3533 TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3534 Src, CGF.SizeTy->getPointerTo()); 3535 llvm::Value *UB = CGF.EmitLoadOfScalar( 3536 TypedAddress, 3537 /*Volatile=*/false, 3538 CGF.getContext().getPointerType(CGF.getContext().getSizeType()), 3539 cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc()); 3540 Args.emplace_back(UB); 3541 ++Idx; 3542 } 3543 if (CS.capture_size() > 0) { 3544 ASTContext &CGFContext = CGF.getContext(); 3545 for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) { 3546 QualType ElemTy = CurField->getType(); 3547 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx); 3548 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3549 Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy))); 3550 llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress, 3551 /*Volatile=*/false, 3552 CGFContext.getPointerType(ElemTy), 3553 CI->getLocation()); 3554 if (CI->capturesVariableByCopy() && 3555 !CI->getCapturedVar()->getType()->isAnyPointerType()) { 3556 Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(), 3557 CI->getLocation()); 3558 } 3559 Args.emplace_back(Arg); 3560 } 3561 } 3562 3563 emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args); 3564 CGF.FinishFunction(); 3565 return Fn; 3566 } 3567 3568 void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF, 3569 const Decl *D) { 3570 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) 3571 return; 3572 3573 assert(D && "Expected function or captured|block decl."); 3574 assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 && 3575 "Function is registered already."); 3576 assert((!TeamAndReductions.first || TeamAndReductions.first == D) && 3577 "Team is set but not processed."); 3578 const Stmt *Body = nullptr; 3579 bool NeedToDelayGlobalization = false; 3580 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3581 Body = FD->getBody(); 3582 } else if (const auto *BD = dyn_cast<BlockDecl>(D)) { 3583 Body = BD->getBody(); 3584 } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) { 3585 Body = CD->getBody(); 3586 NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP; 3587 if (NeedToDelayGlobalization && 3588 getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 3589 return; 3590 } 3591 if (!Body) 3592 return; 3593 CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second); 3594 VarChecker.Visit(Body); 3595 const RecordDecl *GlobalizedVarsRecord = 3596 VarChecker.getGlobalizedRecord(IsInTTDRegion); 3597 TeamAndReductions.first = nullptr; 3598 TeamAndReductions.second.clear(); 3599 ArrayRef<const ValueDecl *> EscapedVariableLengthDecls = 3600 VarChecker.getEscapedVariableLengthDecls(); 3601 if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty()) 3602 return; 3603 auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; 3604 I->getSecond().MappedParams = 3605 std::make_unique<CodeGenFunction::OMPMapVars>(); 3606 I->getSecond().EscapedParameters.insert( 3607 VarChecker.getEscapedParameters().begin(), 3608 VarChecker.getEscapedParameters().end()); 3609 I->getSecond().EscapedVariableLengthDecls.append( 3610 EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end()); 3611 DeclToAddrMapTy &Data = I->getSecond().LocalVarData; 3612 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { 3613 assert(VD->isCanonicalDecl() && "Expected canonical declaration"); 3614 Data.insert(std::make_pair(VD, MappedVarData())); 3615 } 3616 if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) { 3617 CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None); 3618 VarChecker.Visit(Body); 3619 I->getSecond().SecondaryLocalVarData.emplace(); 3620 DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue(); 3621 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { 3622 assert(VD->isCanonicalDecl() && "Expected canonical declaration"); 3623 Data.insert(std::make_pair(VD, MappedVarData())); 3624 } 3625 } 3626 if (!NeedToDelayGlobalization) { 3627 emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true); 3628 struct GlobalizationScope final : EHScopeStack::Cleanup { 3629 GlobalizationScope() = default; 3630 3631 void Emit(CodeGenFunction &CGF, Flags flags) override { 3632 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) 3633 .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true); 3634 } 3635 }; 3636 CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup); 3637 } 3638 } 3639 3640 Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF, 3641 const VarDecl *VD) { 3642 if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) { 3643 const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); 3644 auto AS = LangAS::Default; 3645 switch (A->getAllocatorType()) { 3646 // Use the default allocator here as by default local vars are 3647 // threadlocal. 3648 case OMPAllocateDeclAttr::OMPNullMemAlloc: 3649 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: 3650 case OMPAllocateDeclAttr::OMPThreadMemAlloc: 3651 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: 3652 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: 3653 // Follow the user decision - use default allocation. 3654 return Address::invalid(); 3655 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: 3656 // TODO: implement aupport for user-defined allocators. 3657 return Address::invalid(); 3658 case OMPAllocateDeclAttr::OMPConstMemAlloc: 3659 AS = LangAS::cuda_constant; 3660 break; 3661 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: 3662 AS = LangAS::cuda_shared; 3663 break; 3664 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: 3665 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: 3666 break; 3667 } 3668 llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType()); 3669 auto *GV = new llvm::GlobalVariable( 3670 CGM.getModule(), VarTy, /*isConstant=*/false, 3671 llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy), 3672 VD->getName(), 3673 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, 3674 CGM.getContext().getTargetAddressSpace(AS)); 3675 CharUnits Align = CGM.getContext().getDeclAlign(VD); 3676 GV->setAlignment(Align.getAsAlign()); 3677 return Address( 3678 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3679 GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace( 3680 VD->getType().getAddressSpace()))), 3681 Align); 3682 } 3683 3684 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) 3685 return Address::invalid(); 3686 3687 VD = VD->getCanonicalDecl(); 3688 auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 3689 if (I == FunctionGlobalizedDecls.end()) 3690 return Address::invalid(); 3691 auto VDI = I->getSecond().LocalVarData.find(VD); 3692 if (VDI != I->getSecond().LocalVarData.end()) 3693 return VDI->second.PrivateAddr; 3694 if (VD->hasAttrs()) { 3695 for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()), 3696 E(VD->attr_end()); 3697 IT != E; ++IT) { 3698 auto VDI = I->getSecond().LocalVarData.find( 3699 cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl()) 3700 ->getCanonicalDecl()); 3701 if (VDI != I->getSecond().LocalVarData.end()) 3702 return VDI->second.PrivateAddr; 3703 } 3704 } 3705 3706 return Address::invalid(); 3707 } 3708 3709 void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) { 3710 FunctionGlobalizedDecls.erase(CGF.CurFn); 3711 CGOpenMPRuntime::functionFinished(CGF); 3712 } 3713 3714 void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk( 3715 CodeGenFunction &CGF, const OMPLoopDirective &S, 3716 OpenMPDistScheduleClauseKind &ScheduleKind, 3717 llvm::Value *&Chunk) const { 3718 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 3719 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { 3720 ScheduleKind = OMPC_DIST_SCHEDULE_static; 3721 Chunk = CGF.EmitScalarConversion( 3722 RT.getGPUNumThreads(CGF), 3723 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3724 S.getIterationVariable()->getType(), S.getBeginLoc()); 3725 return; 3726 } 3727 CGOpenMPRuntime::getDefaultDistScheduleAndChunk( 3728 CGF, S, ScheduleKind, Chunk); 3729 } 3730 3731 void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk( 3732 CodeGenFunction &CGF, const OMPLoopDirective &S, 3733 OpenMPScheduleClauseKind &ScheduleKind, 3734 const Expr *&ChunkExpr) const { 3735 ScheduleKind = OMPC_SCHEDULE_static; 3736 // Chunk size is 1 in this case. 3737 llvm::APInt ChunkSize(32, 1); 3738 ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize, 3739 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3740 SourceLocation()); 3741 } 3742 3743 void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas( 3744 CodeGenFunction &CGF, const OMPExecutableDirective &D) const { 3745 assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) && 3746 " Expected target-based directive."); 3747 const CapturedStmt *CS = D.getCapturedStmt(OMPD_target); 3748 for (const CapturedStmt::Capture &C : CS->captures()) { 3749 // Capture variables captured by reference in lambdas for target-based 3750 // directives. 3751 if (!C.capturesVariable()) 3752 continue; 3753 const VarDecl *VD = C.getCapturedVar(); 3754 const auto *RD = VD->getType() 3755 .getCanonicalType() 3756 .getNonReferenceType() 3757 ->getAsCXXRecordDecl(); 3758 if (!RD || !RD->isLambda()) 3759 continue; 3760 Address VDAddr = CGF.GetAddrOfLocalVar(VD); 3761 LValue VDLVal; 3762 if (VD->getType().getCanonicalType()->isReferenceType()) 3763 VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType()); 3764 else 3765 VDLVal = CGF.MakeAddrLValue( 3766 VDAddr, VD->getType().getCanonicalType().getNonReferenceType()); 3767 llvm::DenseMap<const VarDecl *, FieldDecl *> Captures; 3768 FieldDecl *ThisCapture = nullptr; 3769 RD->getCaptureFields(Captures, ThisCapture); 3770 if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) { 3771 LValue ThisLVal = 3772 CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture); 3773 llvm::Value *CXXThis = CGF.LoadCXXThis(); 3774 CGF.EmitStoreOfScalar(CXXThis, ThisLVal); 3775 } 3776 for (const LambdaCapture &LC : RD->captures()) { 3777 if (LC.getCaptureKind() != LCK_ByRef) 3778 continue; 3779 const VarDecl *VD = LC.getCapturedVar(); 3780 if (!CS->capturesVariable(VD)) 3781 continue; 3782 auto It = Captures.find(VD); 3783 assert(It != Captures.end() && "Found lambda capture without field."); 3784 LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second); 3785 Address VDAddr = CGF.GetAddrOfLocalVar(VD); 3786 if (VD->getType().getCanonicalType()->isReferenceType()) 3787 VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr, 3788 VD->getType().getCanonicalType()) 3789 .getAddress(CGF); 3790 CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal); 3791 } 3792 } 3793 } 3794 3795 bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD, 3796 LangAS &AS) { 3797 if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>()) 3798 return false; 3799 const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); 3800 switch(A->getAllocatorType()) { 3801 case OMPAllocateDeclAttr::OMPNullMemAlloc: 3802 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: 3803 // Not supported, fallback to the default mem space. 3804 case OMPAllocateDeclAttr::OMPThreadMemAlloc: 3805 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: 3806 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: 3807 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: 3808 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: 3809 AS = LangAS::Default; 3810 return true; 3811 case OMPAllocateDeclAttr::OMPConstMemAlloc: 3812 AS = LangAS::cuda_constant; 3813 return true; 3814 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: 3815 AS = LangAS::cuda_shared; 3816 return true; 3817 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: 3818 llvm_unreachable("Expected predefined allocator for the variables with the " 3819 "static storage."); 3820 } 3821 return false; 3822 } 3823 3824 // Get current CudaArch and ignore any unknown values 3825 static CudaArch getCudaArch(CodeGenModule &CGM) { 3826 if (!CGM.getTarget().hasFeature("ptx")) 3827 return CudaArch::UNKNOWN; 3828 for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) { 3829 if (Feature.getValue()) { 3830 CudaArch Arch = StringToCudaArch(Feature.getKey()); 3831 if (Arch != CudaArch::UNKNOWN) 3832 return Arch; 3833 } 3834 } 3835 return CudaArch::UNKNOWN; 3836 } 3837 3838 /// Check to see if target architecture supports unified addressing which is 3839 /// a restriction for OpenMP requires clause "unified_shared_memory". 3840 void CGOpenMPRuntimeGPU::processRequiresDirective( 3841 const OMPRequiresDecl *D) { 3842 for (const OMPClause *Clause : D->clauselists()) { 3843 if (Clause->getClauseKind() == OMPC_unified_shared_memory) { 3844 CudaArch Arch = getCudaArch(CGM); 3845 switch (Arch) { 3846 case CudaArch::SM_20: 3847 case CudaArch::SM_21: 3848 case CudaArch::SM_30: 3849 case CudaArch::SM_32: 3850 case CudaArch::SM_35: 3851 case CudaArch::SM_37: 3852 case CudaArch::SM_50: 3853 case CudaArch::SM_52: 3854 case CudaArch::SM_53: { 3855 SmallString<256> Buffer; 3856 llvm::raw_svector_ostream Out(Buffer); 3857 Out << "Target architecture " << CudaArchToString(Arch) 3858 << " does not support unified addressing"; 3859 CGM.Error(Clause->getBeginLoc(), Out.str()); 3860 return; 3861 } 3862 case CudaArch::SM_60: 3863 case CudaArch::SM_61: 3864 case CudaArch::SM_62: 3865 case CudaArch::SM_70: 3866 case CudaArch::SM_72: 3867 case CudaArch::SM_75: 3868 case CudaArch::SM_80: 3869 case CudaArch::SM_86: 3870 case CudaArch::GFX600: 3871 case CudaArch::GFX601: 3872 case CudaArch::GFX602: 3873 case CudaArch::GFX700: 3874 case CudaArch::GFX701: 3875 case CudaArch::GFX702: 3876 case CudaArch::GFX703: 3877 case CudaArch::GFX704: 3878 case CudaArch::GFX705: 3879 case CudaArch::GFX801: 3880 case CudaArch::GFX802: 3881 case CudaArch::GFX803: 3882 case CudaArch::GFX805: 3883 case CudaArch::GFX810: 3884 case CudaArch::GFX900: 3885 case CudaArch::GFX902: 3886 case CudaArch::GFX904: 3887 case CudaArch::GFX906: 3888 case CudaArch::GFX908: 3889 case CudaArch::GFX909: 3890 case CudaArch::GFX90a: 3891 case CudaArch::GFX90c: 3892 case CudaArch::GFX1010: 3893 case CudaArch::GFX1011: 3894 case CudaArch::GFX1012: 3895 case CudaArch::GFX1013: 3896 case CudaArch::GFX1030: 3897 case CudaArch::GFX1031: 3898 case CudaArch::GFX1032: 3899 case CudaArch::GFX1033: 3900 case CudaArch::GFX1034: 3901 case CudaArch::GFX1035: 3902 case CudaArch::UNUSED: 3903 case CudaArch::UNKNOWN: 3904 break; 3905 case CudaArch::LAST: 3906 llvm_unreachable("Unexpected Cuda arch."); 3907 } 3908 } 3909 } 3910 CGOpenMPRuntime::processRequiresDirective(D); 3911 } 3912 3913 void CGOpenMPRuntimeGPU::clear() { 3914 3915 if (!TeamsReductions.empty()) { 3916 ASTContext &C = CGM.getContext(); 3917 RecordDecl *StaticRD = C.buildImplicitRecord( 3918 "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union); 3919 StaticRD->startDefinition(); 3920 for (const RecordDecl *TeamReductionRec : TeamsReductions) { 3921 QualType RecTy = C.getRecordType(TeamReductionRec); 3922 auto *Field = FieldDecl::Create( 3923 C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy, 3924 C.getTrivialTypeSourceInfo(RecTy, SourceLocation()), 3925 /*BW=*/nullptr, /*Mutable=*/false, 3926 /*InitStyle=*/ICIS_NoInit); 3927 Field->setAccess(AS_public); 3928 StaticRD->addDecl(Field); 3929 } 3930 StaticRD->completeDefinition(); 3931 QualType StaticTy = C.getRecordType(StaticRD); 3932 llvm::Type *LLVMReductionsBufferTy = 3933 CGM.getTypes().ConvertTypeForMem(StaticTy); 3934 // FIXME: nvlink does not handle weak linkage correctly (object with the 3935 // different size are reported as erroneous). 3936 // Restore CommonLinkage as soon as nvlink is fixed. 3937 auto *GV = new llvm::GlobalVariable( 3938 CGM.getModule(), LLVMReductionsBufferTy, 3939 /*isConstant=*/false, llvm::GlobalValue::InternalLinkage, 3940 llvm::Constant::getNullValue(LLVMReductionsBufferTy), 3941 "_openmp_teams_reductions_buffer_$_"); 3942 KernelTeamsReductionPtr->setInitializer( 3943 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 3944 CGM.VoidPtrTy)); 3945 } 3946 CGOpenMPRuntime::clear(); 3947 } 3948 3949 llvm::Value *CGOpenMPRuntimeGPU::getGPUNumThreads(CodeGenFunction &CGF) { 3950 CGBuilderTy &Bld = CGF.Builder; 3951 llvm::Module *M = &CGF.CGM.getModule(); 3952 const char *LocSize = "__kmpc_get_hardware_num_threads_in_block"; 3953 llvm::Function *F = M->getFunction(LocSize); 3954 if (!F) { 3955 F = llvm::Function::Create( 3956 llvm::FunctionType::get(CGF.Int32Ty, llvm::None, false), 3957 llvm::GlobalVariable::ExternalLinkage, LocSize, &CGF.CGM.getModule()); 3958 } 3959 return Bld.CreateCall(F, llvm::None, "nvptx_num_threads"); 3960 } 3961 3962 llvm::Value *CGOpenMPRuntimeGPU::getGPUThreadID(CodeGenFunction &CGF) { 3963 ArrayRef<llvm::Value *> Args{}; 3964 return CGF.EmitRuntimeCall( 3965 OMPBuilder.getOrCreateRuntimeFunction( 3966 CGM.getModule(), OMPRTL___kmpc_get_hardware_thread_id_in_block), 3967 Args); 3968 } 3969 3970 llvm::Value *CGOpenMPRuntimeGPU::getGPUWarpSize(CodeGenFunction &CGF) { 3971 ArrayRef<llvm::Value *> Args{}; 3972 return CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 3973 CGM.getModule(), OMPRTL___kmpc_get_warp_size), 3974 Args); 3975 } 3976