xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides a generalized class for OpenMP runtime code generation
10 // specialized by GPU targets NVPTX and AMDGCN.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGOpenMPRuntimeGPU.h"
15 #include "CodeGenFunction.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/DeclOpenMP.h"
18 #include "clang/AST/OpenMPClause.h"
19 #include "clang/AST/StmtOpenMP.h"
20 #include "clang/AST/StmtVisitor.h"
21 #include "clang/Basic/Cuda.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/Frontend/OpenMP/OMPGridValues.h"
24 #include "llvm/Support/MathExtras.h"
25 
26 using namespace clang;
27 using namespace CodeGen;
28 using namespace llvm::omp;
29 
30 namespace {
31 /// Pre(post)-action for different OpenMP constructs specialized for NVPTX.
32 class NVPTXActionTy final : public PrePostActionTy {
33   llvm::FunctionCallee EnterCallee = nullptr;
34   ArrayRef<llvm::Value *> EnterArgs;
35   llvm::FunctionCallee ExitCallee = nullptr;
36   ArrayRef<llvm::Value *> ExitArgs;
37   bool Conditional = false;
38   llvm::BasicBlock *ContBlock = nullptr;
39 
40 public:
41   NVPTXActionTy(llvm::FunctionCallee EnterCallee,
42                 ArrayRef<llvm::Value *> EnterArgs,
43                 llvm::FunctionCallee ExitCallee,
44                 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
45       : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
46         ExitArgs(ExitArgs), Conditional(Conditional) {}
47   void Enter(CodeGenFunction &CGF) override {
48     llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
49     if (Conditional) {
50       llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
51       auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
52       ContBlock = CGF.createBasicBlock("omp_if.end");
53       // Generate the branch (If-stmt)
54       CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
55       CGF.EmitBlock(ThenBlock);
56     }
57   }
58   void Done(CodeGenFunction &CGF) {
59     // Emit the rest of blocks/branches
60     CGF.EmitBranch(ContBlock);
61     CGF.EmitBlock(ContBlock, true);
62   }
63   void Exit(CodeGenFunction &CGF) override {
64     CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
65   }
66 };
67 
68 /// A class to track the execution mode when codegening directives within
69 /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry
70 /// to the target region and used by containing directives such as 'parallel'
71 /// to emit optimized code.
72 class ExecutionRuntimeModesRAII {
73 private:
74   CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode =
75       CGOpenMPRuntimeGPU::EM_Unknown;
76   CGOpenMPRuntimeGPU::ExecutionMode &ExecMode;
77 
78 public:
79   ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode,
80                             CGOpenMPRuntimeGPU::ExecutionMode EntryMode)
81       : ExecMode(ExecMode) {
82     SavedExecMode = ExecMode;
83     ExecMode = EntryMode;
84   }
85   ~ExecutionRuntimeModesRAII() { ExecMode = SavedExecMode; }
86 };
87 
88 static const ValueDecl *getPrivateItem(const Expr *RefExpr) {
89   RefExpr = RefExpr->IgnoreParens();
90   if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) {
91     const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
92     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
93       Base = TempASE->getBase()->IgnoreParenImpCasts();
94     RefExpr = Base;
95   } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) {
96     const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
97     while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
98       Base = TempOASE->getBase()->IgnoreParenImpCasts();
99     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
100       Base = TempASE->getBase()->IgnoreParenImpCasts();
101     RefExpr = Base;
102   }
103   RefExpr = RefExpr->IgnoreParenImpCasts();
104   if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr))
105     return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl());
106   const auto *ME = cast<MemberExpr>(RefExpr);
107   return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
108 }
109 
110 static RecordDecl *buildRecordForGlobalizedVars(
111     ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls,
112     ArrayRef<const ValueDecl *> EscapedDeclsForTeams,
113     llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
114         &MappedDeclsFields,
115     int BufSize) {
116   using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>;
117   if (EscapedDecls.empty() && EscapedDeclsForTeams.empty())
118     return nullptr;
119   SmallVector<VarsDataTy, 4> GlobalizedVars;
120   for (const ValueDecl *D : EscapedDecls)
121     GlobalizedVars.emplace_back(C.getDeclAlign(D), D);
122   for (const ValueDecl *D : EscapedDeclsForTeams)
123     GlobalizedVars.emplace_back(C.getDeclAlign(D), D);
124 
125   // Build struct _globalized_locals_ty {
126   //         /*  globalized vars  */[WarSize] align (decl_align)
127   //         /*  globalized vars  */ for EscapedDeclsForTeams
128   //       };
129   RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty");
130   GlobalizedRD->startDefinition();
131   llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped(
132       EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end());
133   for (const auto &Pair : GlobalizedVars) {
134     const ValueDecl *VD = Pair.second;
135     QualType Type = VD->getType();
136     if (Type->isLValueReferenceType())
137       Type = C.getPointerType(Type.getNonReferenceType());
138     else
139       Type = Type.getNonReferenceType();
140     SourceLocation Loc = VD->getLocation();
141     FieldDecl *Field;
142     if (SingleEscaped.count(VD)) {
143       Field = FieldDecl::Create(
144           C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
145           C.getTrivialTypeSourceInfo(Type, SourceLocation()),
146           /*BW=*/nullptr, /*Mutable=*/false,
147           /*InitStyle=*/ICIS_NoInit);
148       Field->setAccess(AS_public);
149       if (VD->hasAttrs()) {
150         for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
151              E(VD->getAttrs().end());
152              I != E; ++I)
153           Field->addAttr(*I);
154       }
155     } else {
156       if (BufSize > 1) {
157         llvm::APInt ArraySize(32, BufSize);
158         Type = C.getConstantArrayType(Type, ArraySize, nullptr,
159                                       ArraySizeModifier::Normal, 0);
160       }
161       Field = FieldDecl::Create(
162           C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
163           C.getTrivialTypeSourceInfo(Type, SourceLocation()),
164           /*BW=*/nullptr, /*Mutable=*/false,
165           /*InitStyle=*/ICIS_NoInit);
166       Field->setAccess(AS_public);
167       llvm::APInt Align(32, Pair.first.getQuantity());
168       Field->addAttr(AlignedAttr::CreateImplicit(
169           C, /*IsAlignmentExpr=*/true,
170           IntegerLiteral::Create(C, Align,
171                                  C.getIntTypeForBitwidth(32, /*Signed=*/0),
172                                  SourceLocation()),
173           {}, AlignedAttr::GNU_aligned));
174     }
175     GlobalizedRD->addDecl(Field);
176     MappedDeclsFields.try_emplace(VD, Field);
177   }
178   GlobalizedRD->completeDefinition();
179   return GlobalizedRD;
180 }
181 
182 /// Get the list of variables that can escape their declaration context.
183 class CheckVarsEscapingDeclContext final
184     : public ConstStmtVisitor<CheckVarsEscapingDeclContext> {
185   CodeGenFunction &CGF;
186   llvm::SetVector<const ValueDecl *> EscapedDecls;
187   llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls;
188   llvm::SetVector<const ValueDecl *> DelayedVariableLengthDecls;
189   llvm::SmallPtrSet<const Decl *, 4> EscapedParameters;
190   RecordDecl *GlobalizedRD = nullptr;
191   llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
192   bool AllEscaped = false;
193   bool IsForCombinedParallelRegion = false;
194 
195   void markAsEscaped(const ValueDecl *VD) {
196     // Do not globalize declare target variables.
197     if (!isa<VarDecl>(VD) ||
198         OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
199       return;
200     VD = cast<ValueDecl>(VD->getCanonicalDecl());
201     // Use user-specified allocation.
202     if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>())
203       return;
204     // Variables captured by value must be globalized.
205     bool IsCaptured = false;
206     if (auto *CSI = CGF.CapturedStmtInfo) {
207       if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) {
208         // Check if need to capture the variable that was already captured by
209         // value in the outer region.
210         IsCaptured = true;
211         if (!IsForCombinedParallelRegion) {
212           if (!FD->hasAttrs())
213             return;
214           const auto *Attr = FD->getAttr<OMPCaptureKindAttr>();
215           if (!Attr)
216             return;
217           if (((Attr->getCaptureKind() != OMPC_map) &&
218                !isOpenMPPrivate(Attr->getCaptureKind())) ||
219               ((Attr->getCaptureKind() == OMPC_map) &&
220                !FD->getType()->isAnyPointerType()))
221             return;
222         }
223         if (!FD->getType()->isReferenceType()) {
224           assert(!VD->getType()->isVariablyModifiedType() &&
225                  "Parameter captured by value with variably modified type");
226           EscapedParameters.insert(VD);
227         } else if (!IsForCombinedParallelRegion) {
228           return;
229         }
230       }
231     }
232     if ((!CGF.CapturedStmtInfo ||
233          (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) &&
234         VD->getType()->isReferenceType())
235       // Do not globalize variables with reference type.
236       return;
237     if (VD->getType()->isVariablyModifiedType()) {
238       // If not captured at the target region level then mark the escaped
239       // variable as delayed.
240       if (IsCaptured)
241         EscapedVariableLengthDecls.insert(VD);
242       else
243         DelayedVariableLengthDecls.insert(VD);
244     } else
245       EscapedDecls.insert(VD);
246   }
247 
248   void VisitValueDecl(const ValueDecl *VD) {
249     if (VD->getType()->isLValueReferenceType())
250       markAsEscaped(VD);
251     if (const auto *VarD = dyn_cast<VarDecl>(VD)) {
252       if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) {
253         const bool SavedAllEscaped = AllEscaped;
254         AllEscaped = VD->getType()->isLValueReferenceType();
255         Visit(VarD->getInit());
256         AllEscaped = SavedAllEscaped;
257       }
258     }
259   }
260   void VisitOpenMPCapturedStmt(const CapturedStmt *S,
261                                ArrayRef<OMPClause *> Clauses,
262                                bool IsCombinedParallelRegion) {
263     if (!S)
264       return;
265     for (const CapturedStmt::Capture &C : S->captures()) {
266       if (C.capturesVariable() && !C.capturesVariableByCopy()) {
267         const ValueDecl *VD = C.getCapturedVar();
268         bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion;
269         if (IsCombinedParallelRegion) {
270           // Check if the variable is privatized in the combined construct and
271           // those private copies must be shared in the inner parallel
272           // directive.
273           IsForCombinedParallelRegion = false;
274           for (const OMPClause *C : Clauses) {
275             if (!isOpenMPPrivate(C->getClauseKind()) ||
276                 C->getClauseKind() == OMPC_reduction ||
277                 C->getClauseKind() == OMPC_linear ||
278                 C->getClauseKind() == OMPC_private)
279               continue;
280             ArrayRef<const Expr *> Vars;
281             if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C))
282               Vars = PC->getVarRefs();
283             else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C))
284               Vars = PC->getVarRefs();
285             else
286               llvm_unreachable("Unexpected clause.");
287             for (const auto *E : Vars) {
288               const Decl *D =
289                   cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl();
290               if (D == VD->getCanonicalDecl()) {
291                 IsForCombinedParallelRegion = true;
292                 break;
293               }
294             }
295             if (IsForCombinedParallelRegion)
296               break;
297           }
298         }
299         markAsEscaped(VD);
300         if (isa<OMPCapturedExprDecl>(VD))
301           VisitValueDecl(VD);
302         IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion;
303       }
304     }
305   }
306 
307   void buildRecordForGlobalizedVars(bool IsInTTDRegion) {
308     assert(!GlobalizedRD &&
309            "Record for globalized variables is built already.");
310     ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams;
311     unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size;
312     if (IsInTTDRegion)
313       EscapedDeclsForTeams = EscapedDecls.getArrayRef();
314     else
315       EscapedDeclsForParallel = EscapedDecls.getArrayRef();
316     GlobalizedRD = ::buildRecordForGlobalizedVars(
317         CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams,
318         MappedDeclsFields, WarpSize);
319   }
320 
321 public:
322   CheckVarsEscapingDeclContext(CodeGenFunction &CGF,
323                                ArrayRef<const ValueDecl *> TeamsReductions)
324       : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) {
325   }
326   virtual ~CheckVarsEscapingDeclContext() = default;
327   void VisitDeclStmt(const DeclStmt *S) {
328     if (!S)
329       return;
330     for (const Decl *D : S->decls())
331       if (const auto *VD = dyn_cast_or_null<ValueDecl>(D))
332         VisitValueDecl(VD);
333   }
334   void VisitOMPExecutableDirective(const OMPExecutableDirective *D) {
335     if (!D)
336       return;
337     if (!D->hasAssociatedStmt())
338       return;
339     if (const auto *S =
340             dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) {
341       // Do not analyze directives that do not actually require capturing,
342       // like `omp for` or `omp simd` directives.
343       llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
344       getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind());
345       if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) {
346         VisitStmt(S->getCapturedStmt());
347         return;
348       }
349       VisitOpenMPCapturedStmt(
350           S, D->clauses(),
351           CaptureRegions.back() == OMPD_parallel &&
352               isOpenMPDistributeDirective(D->getDirectiveKind()));
353     }
354   }
355   void VisitCapturedStmt(const CapturedStmt *S) {
356     if (!S)
357       return;
358     for (const CapturedStmt::Capture &C : S->captures()) {
359       if (C.capturesVariable() && !C.capturesVariableByCopy()) {
360         const ValueDecl *VD = C.getCapturedVar();
361         markAsEscaped(VD);
362         if (isa<OMPCapturedExprDecl>(VD))
363           VisitValueDecl(VD);
364       }
365     }
366   }
367   void VisitLambdaExpr(const LambdaExpr *E) {
368     if (!E)
369       return;
370     for (const LambdaCapture &C : E->captures()) {
371       if (C.capturesVariable()) {
372         if (C.getCaptureKind() == LCK_ByRef) {
373           const ValueDecl *VD = C.getCapturedVar();
374           markAsEscaped(VD);
375           if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD))
376             VisitValueDecl(VD);
377         }
378       }
379     }
380   }
381   void VisitBlockExpr(const BlockExpr *E) {
382     if (!E)
383       return;
384     for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) {
385       if (C.isByRef()) {
386         const VarDecl *VD = C.getVariable();
387         markAsEscaped(VD);
388         if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture())
389           VisitValueDecl(VD);
390       }
391     }
392   }
393   void VisitCallExpr(const CallExpr *E) {
394     if (!E)
395       return;
396     for (const Expr *Arg : E->arguments()) {
397       if (!Arg)
398         continue;
399       if (Arg->isLValue()) {
400         const bool SavedAllEscaped = AllEscaped;
401         AllEscaped = true;
402         Visit(Arg);
403         AllEscaped = SavedAllEscaped;
404       } else {
405         Visit(Arg);
406       }
407     }
408     Visit(E->getCallee());
409   }
410   void VisitDeclRefExpr(const DeclRefExpr *E) {
411     if (!E)
412       return;
413     const ValueDecl *VD = E->getDecl();
414     if (AllEscaped)
415       markAsEscaped(VD);
416     if (isa<OMPCapturedExprDecl>(VD))
417       VisitValueDecl(VD);
418     else if (VD->isInitCapture())
419       VisitValueDecl(VD);
420   }
421   void VisitUnaryOperator(const UnaryOperator *E) {
422     if (!E)
423       return;
424     if (E->getOpcode() == UO_AddrOf) {
425       const bool SavedAllEscaped = AllEscaped;
426       AllEscaped = true;
427       Visit(E->getSubExpr());
428       AllEscaped = SavedAllEscaped;
429     } else {
430       Visit(E->getSubExpr());
431     }
432   }
433   void VisitImplicitCastExpr(const ImplicitCastExpr *E) {
434     if (!E)
435       return;
436     if (E->getCastKind() == CK_ArrayToPointerDecay) {
437       const bool SavedAllEscaped = AllEscaped;
438       AllEscaped = true;
439       Visit(E->getSubExpr());
440       AllEscaped = SavedAllEscaped;
441     } else {
442       Visit(E->getSubExpr());
443     }
444   }
445   void VisitExpr(const Expr *E) {
446     if (!E)
447       return;
448     bool SavedAllEscaped = AllEscaped;
449     if (!E->isLValue())
450       AllEscaped = false;
451     for (const Stmt *Child : E->children())
452       if (Child)
453         Visit(Child);
454     AllEscaped = SavedAllEscaped;
455   }
456   void VisitStmt(const Stmt *S) {
457     if (!S)
458       return;
459     for (const Stmt *Child : S->children())
460       if (Child)
461         Visit(Child);
462   }
463 
464   /// Returns the record that handles all the escaped local variables and used
465   /// instead of their original storage.
466   const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) {
467     if (!GlobalizedRD)
468       buildRecordForGlobalizedVars(IsInTTDRegion);
469     return GlobalizedRD;
470   }
471 
472   /// Returns the field in the globalized record for the escaped variable.
473   const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const {
474     assert(GlobalizedRD &&
475            "Record for globalized variables must be generated already.");
476     return MappedDeclsFields.lookup(VD);
477   }
478 
479   /// Returns the list of the escaped local variables/parameters.
480   ArrayRef<const ValueDecl *> getEscapedDecls() const {
481     return EscapedDecls.getArrayRef();
482   }
483 
484   /// Checks if the escaped local variable is actually a parameter passed by
485   /// value.
486   const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const {
487     return EscapedParameters;
488   }
489 
490   /// Returns the list of the escaped variables with the variably modified
491   /// types.
492   ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const {
493     return EscapedVariableLengthDecls.getArrayRef();
494   }
495 
496   /// Returns the list of the delayed variables with the variably modified
497   /// types.
498   ArrayRef<const ValueDecl *> getDelayedVariableLengthDecls() const {
499     return DelayedVariableLengthDecls.getArrayRef();
500   }
501 };
502 } // anonymous namespace
503 
504 /// Get the id of the warp in the block.
505 /// We assume that the warp size is 32, which is always the case
506 /// on the NVPTX device, to generate more efficient code.
507 static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) {
508   CGBuilderTy &Bld = CGF.Builder;
509   unsigned LaneIDBits =
510       llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size);
511   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
512   return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id");
513 }
514 
515 /// Get the id of the current lane in the Warp.
516 /// We assume that the warp size is 32, which is always the case
517 /// on the NVPTX device, to generate more efficient code.
518 static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) {
519   CGBuilderTy &Bld = CGF.Builder;
520   unsigned LaneIDBits =
521       llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size);
522   assert(LaneIDBits < 32 && "Invalid LaneIDBits size in NVPTX device.");
523   unsigned LaneIDMask = ~0u >> (32u - LaneIDBits);
524   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
525   return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask),
526                        "nvptx_lane_id");
527 }
528 
529 CGOpenMPRuntimeGPU::ExecutionMode
530 CGOpenMPRuntimeGPU::getExecutionMode() const {
531   return CurrentExecutionMode;
532 }
533 
534 CGOpenMPRuntimeGPU::DataSharingMode
535 CGOpenMPRuntimeGPU::getDataSharingMode() const {
536   return CurrentDataSharingMode;
537 }
538 
539 /// Check for inner (nested) SPMD construct, if any
540 static bool hasNestedSPMDDirective(ASTContext &Ctx,
541                                    const OMPExecutableDirective &D) {
542   const auto *CS = D.getInnermostCapturedStmt();
543   const auto *Body =
544       CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
545   const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
546 
547   if (const auto *NestedDir =
548           dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
549     OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
550     switch (D.getDirectiveKind()) {
551     case OMPD_target:
552       if (isOpenMPParallelDirective(DKind))
553         return true;
554       if (DKind == OMPD_teams) {
555         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
556             /*IgnoreCaptured=*/true);
557         if (!Body)
558           return false;
559         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
560         if (const auto *NND =
561                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
562           DKind = NND->getDirectiveKind();
563           if (isOpenMPParallelDirective(DKind))
564             return true;
565         }
566       }
567       return false;
568     case OMPD_target_teams:
569       return isOpenMPParallelDirective(DKind);
570     case OMPD_target_simd:
571     case OMPD_target_parallel:
572     case OMPD_target_parallel_for:
573     case OMPD_target_parallel_for_simd:
574     case OMPD_target_teams_distribute:
575     case OMPD_target_teams_distribute_simd:
576     case OMPD_target_teams_distribute_parallel_for:
577     case OMPD_target_teams_distribute_parallel_for_simd:
578     case OMPD_parallel:
579     case OMPD_for:
580     case OMPD_parallel_for:
581     case OMPD_parallel_master:
582     case OMPD_parallel_sections:
583     case OMPD_for_simd:
584     case OMPD_parallel_for_simd:
585     case OMPD_cancel:
586     case OMPD_cancellation_point:
587     case OMPD_ordered:
588     case OMPD_threadprivate:
589     case OMPD_allocate:
590     case OMPD_task:
591     case OMPD_simd:
592     case OMPD_sections:
593     case OMPD_section:
594     case OMPD_single:
595     case OMPD_master:
596     case OMPD_critical:
597     case OMPD_taskyield:
598     case OMPD_barrier:
599     case OMPD_taskwait:
600     case OMPD_taskgroup:
601     case OMPD_atomic:
602     case OMPD_flush:
603     case OMPD_depobj:
604     case OMPD_scan:
605     case OMPD_teams:
606     case OMPD_target_data:
607     case OMPD_target_exit_data:
608     case OMPD_target_enter_data:
609     case OMPD_distribute:
610     case OMPD_distribute_simd:
611     case OMPD_distribute_parallel_for:
612     case OMPD_distribute_parallel_for_simd:
613     case OMPD_teams_distribute:
614     case OMPD_teams_distribute_simd:
615     case OMPD_teams_distribute_parallel_for:
616     case OMPD_teams_distribute_parallel_for_simd:
617     case OMPD_target_update:
618     case OMPD_declare_simd:
619     case OMPD_declare_variant:
620     case OMPD_begin_declare_variant:
621     case OMPD_end_declare_variant:
622     case OMPD_declare_target:
623     case OMPD_end_declare_target:
624     case OMPD_declare_reduction:
625     case OMPD_declare_mapper:
626     case OMPD_taskloop:
627     case OMPD_taskloop_simd:
628     case OMPD_master_taskloop:
629     case OMPD_master_taskloop_simd:
630     case OMPD_parallel_master_taskloop:
631     case OMPD_parallel_master_taskloop_simd:
632     case OMPD_requires:
633     case OMPD_unknown:
634     default:
635       llvm_unreachable("Unexpected directive.");
636     }
637   }
638 
639   return false;
640 }
641 
642 static bool supportsSPMDExecutionMode(ASTContext &Ctx,
643                                       const OMPExecutableDirective &D) {
644   OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
645   switch (DirectiveKind) {
646   case OMPD_target:
647   case OMPD_target_teams:
648     return hasNestedSPMDDirective(Ctx, D);
649   case OMPD_target_teams_loop:
650   case OMPD_target_parallel_loop:
651   case OMPD_target_parallel:
652   case OMPD_target_parallel_for:
653   case OMPD_target_parallel_for_simd:
654   case OMPD_target_teams_distribute_parallel_for:
655   case OMPD_target_teams_distribute_parallel_for_simd:
656   case OMPD_target_simd:
657   case OMPD_target_teams_distribute_simd:
658     return true;
659   case OMPD_target_teams_distribute:
660     return false;
661   case OMPD_parallel:
662   case OMPD_for:
663   case OMPD_parallel_for:
664   case OMPD_parallel_master:
665   case OMPD_parallel_sections:
666   case OMPD_for_simd:
667   case OMPD_parallel_for_simd:
668   case OMPD_cancel:
669   case OMPD_cancellation_point:
670   case OMPD_ordered:
671   case OMPD_threadprivate:
672   case OMPD_allocate:
673   case OMPD_task:
674   case OMPD_simd:
675   case OMPD_sections:
676   case OMPD_section:
677   case OMPD_single:
678   case OMPD_master:
679   case OMPD_critical:
680   case OMPD_taskyield:
681   case OMPD_barrier:
682   case OMPD_taskwait:
683   case OMPD_taskgroup:
684   case OMPD_atomic:
685   case OMPD_flush:
686   case OMPD_depobj:
687   case OMPD_scan:
688   case OMPD_teams:
689   case OMPD_target_data:
690   case OMPD_target_exit_data:
691   case OMPD_target_enter_data:
692   case OMPD_distribute:
693   case OMPD_distribute_simd:
694   case OMPD_distribute_parallel_for:
695   case OMPD_distribute_parallel_for_simd:
696   case OMPD_teams_distribute:
697   case OMPD_teams_distribute_simd:
698   case OMPD_teams_distribute_parallel_for:
699   case OMPD_teams_distribute_parallel_for_simd:
700   case OMPD_target_update:
701   case OMPD_declare_simd:
702   case OMPD_declare_variant:
703   case OMPD_begin_declare_variant:
704   case OMPD_end_declare_variant:
705   case OMPD_declare_target:
706   case OMPD_end_declare_target:
707   case OMPD_declare_reduction:
708   case OMPD_declare_mapper:
709   case OMPD_taskloop:
710   case OMPD_taskloop_simd:
711   case OMPD_master_taskloop:
712   case OMPD_master_taskloop_simd:
713   case OMPD_parallel_master_taskloop:
714   case OMPD_parallel_master_taskloop_simd:
715   case OMPD_requires:
716   case OMPD_unknown:
717   default:
718     break;
719   }
720   llvm_unreachable(
721       "Unknown programming model for OpenMP directive on NVPTX target.");
722 }
723 
724 void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D,
725                                              StringRef ParentName,
726                                              llvm::Function *&OutlinedFn,
727                                              llvm::Constant *&OutlinedFnID,
728                                              bool IsOffloadEntry,
729                                              const RegionCodeGenTy &CodeGen) {
730   ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode, EM_NonSPMD);
731   EntryFunctionState EST;
732   WrapperFunctionsMap.clear();
733 
734   [[maybe_unused]] bool IsBareKernel = D.getSingleClause<OMPXBareClause>();
735   assert(!IsBareKernel && "bare kernel should not be at generic mode");
736 
737   // Emit target region as a standalone region.
738   class NVPTXPrePostActionTy : public PrePostActionTy {
739     CGOpenMPRuntimeGPU::EntryFunctionState &EST;
740     const OMPExecutableDirective &D;
741 
742   public:
743     NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST,
744                          const OMPExecutableDirective &D)
745         : EST(EST), D(D) {}
746     void Enter(CodeGenFunction &CGF) override {
747       auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
748       RT.emitKernelInit(D, CGF, EST, /* IsSPMD */ false);
749       // Skip target region initialization.
750       RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
751     }
752     void Exit(CodeGenFunction &CGF) override {
753       auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
754       RT.clearLocThreadIdInsertPt(CGF);
755       RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false);
756     }
757   } Action(EST, D);
758   CodeGen.setAction(Action);
759   IsInTTDRegion = true;
760   emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
761                                    IsOffloadEntry, CodeGen);
762   IsInTTDRegion = false;
763 }
764 
765 void CGOpenMPRuntimeGPU::emitKernelInit(const OMPExecutableDirective &D,
766                                         CodeGenFunction &CGF,
767                                         EntryFunctionState &EST, bool IsSPMD) {
768   int32_t MinThreadsVal = 1, MaxThreadsVal = -1, MinTeamsVal = 1,
769           MaxTeamsVal = -1;
770   computeMinAndMaxThreadsAndTeams(D, CGF, MinThreadsVal, MaxThreadsVal,
771                                   MinTeamsVal, MaxTeamsVal);
772 
773   CGBuilderTy &Bld = CGF.Builder;
774   Bld.restoreIP(OMPBuilder.createTargetInit(
775       Bld, IsSPMD, MinThreadsVal, MaxThreadsVal, MinTeamsVal, MaxTeamsVal));
776   if (!IsSPMD)
777     emitGenericVarsProlog(CGF, EST.Loc);
778 }
779 
780 void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF,
781                                           EntryFunctionState &EST,
782                                           bool IsSPMD) {
783   if (!IsSPMD)
784     emitGenericVarsEpilog(CGF);
785 
786   // This is temporary until we remove the fixed sized buffer.
787   ASTContext &C = CGM.getContext();
788   RecordDecl *StaticRD = C.buildImplicitRecord(
789       "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::Union);
790   StaticRD->startDefinition();
791   for (const RecordDecl *TeamReductionRec : TeamsReductions) {
792     QualType RecTy = C.getRecordType(TeamReductionRec);
793     auto *Field = FieldDecl::Create(
794         C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy,
795         C.getTrivialTypeSourceInfo(RecTy, SourceLocation()),
796         /*BW=*/nullptr, /*Mutable=*/false,
797         /*InitStyle=*/ICIS_NoInit);
798     Field->setAccess(AS_public);
799     StaticRD->addDecl(Field);
800   }
801   StaticRD->completeDefinition();
802   QualType StaticTy = C.getRecordType(StaticRD);
803   llvm::Type *LLVMReductionsBufferTy =
804       CGM.getTypes().ConvertTypeForMem(StaticTy);
805   const auto &DL = CGM.getModule().getDataLayout();
806   uint64_t ReductionDataSize =
807       TeamsReductions.empty()
808           ? 0
809           : DL.getTypeAllocSize(LLVMReductionsBufferTy).getFixedValue();
810   CGBuilderTy &Bld = CGF.Builder;
811   OMPBuilder.createTargetDeinit(Bld, ReductionDataSize,
812                                 C.getLangOpts().OpenMPCUDAReductionBufNum);
813   TeamsReductions.clear();
814 }
815 
816 void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D,
817                                           StringRef ParentName,
818                                           llvm::Function *&OutlinedFn,
819                                           llvm::Constant *&OutlinedFnID,
820                                           bool IsOffloadEntry,
821                                           const RegionCodeGenTy &CodeGen) {
822   ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode, EM_SPMD);
823   EntryFunctionState EST;
824 
825   bool IsBareKernel = D.getSingleClause<OMPXBareClause>();
826 
827   // Emit target region as a standalone region.
828   class NVPTXPrePostActionTy : public PrePostActionTy {
829     CGOpenMPRuntimeGPU &RT;
830     CGOpenMPRuntimeGPU::EntryFunctionState &EST;
831     bool IsBareKernel;
832     DataSharingMode Mode;
833     const OMPExecutableDirective &D;
834 
835   public:
836     NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT,
837                          CGOpenMPRuntimeGPU::EntryFunctionState &EST,
838                          bool IsBareKernel, const OMPExecutableDirective &D)
839         : RT(RT), EST(EST), IsBareKernel(IsBareKernel),
840           Mode(RT.CurrentDataSharingMode), D(D) {}
841     void Enter(CodeGenFunction &CGF) override {
842       if (IsBareKernel) {
843         RT.CurrentDataSharingMode = DataSharingMode::DS_CUDA;
844         return;
845       }
846       RT.emitKernelInit(D, CGF, EST, /* IsSPMD */ true);
847       // Skip target region initialization.
848       RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
849     }
850     void Exit(CodeGenFunction &CGF) override {
851       if (IsBareKernel) {
852         RT.CurrentDataSharingMode = Mode;
853         return;
854       }
855       RT.clearLocThreadIdInsertPt(CGF);
856       RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true);
857     }
858   } Action(*this, EST, IsBareKernel, D);
859   CodeGen.setAction(Action);
860   IsInTTDRegion = true;
861   emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
862                                    IsOffloadEntry, CodeGen);
863   IsInTTDRegion = false;
864 }
865 
866 void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction(
867     const OMPExecutableDirective &D, StringRef ParentName,
868     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
869     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
870   if (!IsOffloadEntry) // Nothing to do.
871     return;
872 
873   assert(!ParentName.empty() && "Invalid target region parent name!");
874 
875   bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D);
876   bool IsBareKernel = D.getSingleClause<OMPXBareClause>();
877   if (Mode || IsBareKernel)
878     emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
879                    CodeGen);
880   else
881     emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
882                       CodeGen);
883 }
884 
885 CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM)
886     : CGOpenMPRuntime(CGM) {
887   llvm::OpenMPIRBuilderConfig Config(
888       CGM.getLangOpts().OpenMPIsTargetDevice, isGPU(),
889       CGM.getLangOpts().OpenMPOffloadMandatory,
890       /*HasRequiresReverseOffload*/ false, /*HasRequiresUnifiedAddress*/ false,
891       hasRequiresUnifiedSharedMemory(), /*HasRequiresDynamicAllocators*/ false);
892   OMPBuilder.setConfig(Config);
893 
894   if (!CGM.getLangOpts().OpenMPIsTargetDevice)
895     llvm_unreachable("OpenMP can only handle device code.");
896 
897   if (CGM.getLangOpts().OpenMPCUDAMode)
898     CurrentDataSharingMode = CGOpenMPRuntimeGPU::DS_CUDA;
899 
900   llvm::OpenMPIRBuilder &OMPBuilder = getOMPBuilder();
901   if (CGM.getLangOpts().NoGPULib || CGM.getLangOpts().OMPHostIRFile.empty())
902     return;
903 
904   OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTargetDebug,
905                               "__omp_rtl_debug_kind");
906   OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTeamSubscription,
907                               "__omp_rtl_assume_teams_oversubscription");
908   OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPThreadSubscription,
909                               "__omp_rtl_assume_threads_oversubscription");
910   OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPNoThreadState,
911                               "__omp_rtl_assume_no_thread_state");
912   OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPNoNestedParallelism,
913                               "__omp_rtl_assume_no_nested_parallelism");
914 }
915 
916 void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF,
917                                               ProcBindKind ProcBind,
918                                               SourceLocation Loc) {
919   // Nothing to do.
920 }
921 
922 void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF,
923                                                 llvm::Value *NumThreads,
924                                                 SourceLocation Loc) {
925   // Nothing to do.
926 }
927 
928 void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF,
929                                               const Expr *NumTeams,
930                                               const Expr *ThreadLimit,
931                                               SourceLocation Loc) {}
932 
933 llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction(
934     CodeGenFunction &CGF, const OMPExecutableDirective &D,
935     const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind,
936     const RegionCodeGenTy &CodeGen) {
937   // Emit target region as a standalone region.
938   bool PrevIsInTTDRegion = IsInTTDRegion;
939   IsInTTDRegion = false;
940   auto *OutlinedFun =
941       cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction(
942           CGF, D, ThreadIDVar, InnermostKind, CodeGen));
943   IsInTTDRegion = PrevIsInTTDRegion;
944   if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) {
945     llvm::Function *WrapperFun =
946         createParallelDataSharingWrapper(OutlinedFun, D);
947     WrapperFunctionsMap[OutlinedFun] = WrapperFun;
948   }
949 
950   return OutlinedFun;
951 }
952 
953 /// Get list of lastprivate variables from the teams distribute ... or
954 /// teams {distribute ...} directives.
955 static void
956 getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D,
957                              llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
958   assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
959          "expected teams directive.");
960   const OMPExecutableDirective *Dir = &D;
961   if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
962     if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild(
963             Ctx,
964             D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(
965                 /*IgnoreCaptured=*/true))) {
966       Dir = dyn_cast_or_null<OMPExecutableDirective>(S);
967       if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind()))
968         Dir = nullptr;
969     }
970   }
971   if (!Dir)
972     return;
973   for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) {
974     for (const Expr *E : C->getVarRefs())
975       Vars.push_back(getPrivateItem(E));
976   }
977 }
978 
979 /// Get list of reduction variables from the teams ... directives.
980 static void
981 getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D,
982                       llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
983   assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
984          "expected teams directive.");
985   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
986     for (const Expr *E : C->privates())
987       Vars.push_back(getPrivateItem(E));
988   }
989 }
990 
991 llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction(
992     CodeGenFunction &CGF, const OMPExecutableDirective &D,
993     const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind,
994     const RegionCodeGenTy &CodeGen) {
995   SourceLocation Loc = D.getBeginLoc();
996 
997   const RecordDecl *GlobalizedRD = nullptr;
998   llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions;
999   llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
1000   unsigned WarpSize = CGM.getTarget().getGridValue().GV_Warp_Size;
1001   // Globalize team reductions variable unconditionally in all modes.
1002   if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1003     getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions);
1004   if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
1005     getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions);
1006     if (!LastPrivatesReductions.empty()) {
1007       GlobalizedRD = ::buildRecordForGlobalizedVars(
1008           CGM.getContext(), std::nullopt, LastPrivatesReductions,
1009           MappedDeclsFields, WarpSize);
1010     }
1011   } else if (!LastPrivatesReductions.empty()) {
1012     assert(!TeamAndReductions.first &&
1013            "Previous team declaration is not expected.");
1014     TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl();
1015     std::swap(TeamAndReductions.second, LastPrivatesReductions);
1016   }
1017 
1018   // Emit target region as a standalone region.
1019   class NVPTXPrePostActionTy : public PrePostActionTy {
1020     SourceLocation &Loc;
1021     const RecordDecl *GlobalizedRD;
1022     llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
1023         &MappedDeclsFields;
1024 
1025   public:
1026     NVPTXPrePostActionTy(
1027         SourceLocation &Loc, const RecordDecl *GlobalizedRD,
1028         llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
1029             &MappedDeclsFields)
1030         : Loc(Loc), GlobalizedRD(GlobalizedRD),
1031           MappedDeclsFields(MappedDeclsFields) {}
1032     void Enter(CodeGenFunction &CGF) override {
1033       auto &Rt =
1034           static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1035       if (GlobalizedRD) {
1036         auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
1037         I->getSecond().MappedParams =
1038             std::make_unique<CodeGenFunction::OMPMapVars>();
1039         DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
1040         for (const auto &Pair : MappedDeclsFields) {
1041           assert(Pair.getFirst()->isCanonicalDecl() &&
1042                  "Expected canonical declaration");
1043           Data.insert(std::make_pair(Pair.getFirst(), MappedVarData()));
1044         }
1045       }
1046       Rt.emitGenericVarsProlog(CGF, Loc);
1047     }
1048     void Exit(CodeGenFunction &CGF) override {
1049       static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
1050           .emitGenericVarsEpilog(CGF);
1051     }
1052   } Action(Loc, GlobalizedRD, MappedDeclsFields);
1053   CodeGen.setAction(Action);
1054   llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction(
1055       CGF, D, ThreadIDVar, InnermostKind, CodeGen);
1056 
1057   return OutlinedFun;
1058 }
1059 
1060 void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF,
1061                                                SourceLocation Loc) {
1062   if (getDataSharingMode() != CGOpenMPRuntimeGPU::DS_Generic)
1063     return;
1064 
1065   CGBuilderTy &Bld = CGF.Builder;
1066 
1067   const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1068   if (I == FunctionGlobalizedDecls.end())
1069     return;
1070 
1071   for (auto &Rec : I->getSecond().LocalVarData) {
1072     const auto *VD = cast<VarDecl>(Rec.first);
1073     bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first);
1074     QualType VarTy = VD->getType();
1075 
1076     // Get the local allocation of a firstprivate variable before sharing
1077     llvm::Value *ParValue;
1078     if (EscapedParam) {
1079       LValue ParLVal =
1080           CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
1081       ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc);
1082     }
1083 
1084     // Allocate space for the variable to be globalized
1085     llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())};
1086     llvm::CallBase *VoidPtr =
1087         CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1088                                 CGM.getModule(), OMPRTL___kmpc_alloc_shared),
1089                             AllocArgs, VD->getName());
1090     // FIXME: We should use the variables actual alignment as an argument.
1091     VoidPtr->addRetAttr(llvm::Attribute::get(
1092         CGM.getLLVMContext(), llvm::Attribute::Alignment,
1093         CGM.getContext().getTargetInfo().getNewAlign() / 8));
1094 
1095     // Cast the void pointer and get the address of the globalized variable.
1096     llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(VarTy)->getPointerTo();
1097     llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1098         VoidPtr, VarPtrTy, VD->getName() + "_on_stack");
1099     LValue VarAddr = CGF.MakeNaturalAlignAddrLValue(CastedVoidPtr, VarTy);
1100     Rec.second.PrivateAddr = VarAddr.getAddress(CGF);
1101     Rec.second.GlobalizedVal = VoidPtr;
1102 
1103     // Assign the local allocation to the newly globalized location.
1104     if (EscapedParam) {
1105       CGF.EmitStoreOfScalar(ParValue, VarAddr);
1106       I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress(CGF));
1107     }
1108     if (auto *DI = CGF.getDebugInfo())
1109       VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(VD->getLocation()));
1110   }
1111 
1112   for (const auto *ValueD : I->getSecond().EscapedVariableLengthDecls) {
1113     const auto *VD = cast<VarDecl>(ValueD);
1114     std::pair<llvm::Value *, llvm::Value *> AddrSizePair =
1115         getKmpcAllocShared(CGF, VD);
1116     I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back(AddrSizePair);
1117     LValue Base = CGF.MakeAddrLValue(AddrSizePair.first, VD->getType(),
1118                                      CGM.getContext().getDeclAlign(VD),
1119                                      AlignmentSource::Decl);
1120     I->getSecond().MappedParams->setVarAddr(CGF, VD, Base.getAddress(CGF));
1121   }
1122   I->getSecond().MappedParams->apply(CGF);
1123 }
1124 
1125 bool CGOpenMPRuntimeGPU::isDelayedVariableLengthDecl(CodeGenFunction &CGF,
1126                                                      const VarDecl *VD) const {
1127   const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1128   if (I == FunctionGlobalizedDecls.end())
1129     return false;
1130 
1131   // Check variable declaration is delayed:
1132   return llvm::is_contained(I->getSecond().DelayedVariableLengthDecls, VD);
1133 }
1134 
1135 std::pair<llvm::Value *, llvm::Value *>
1136 CGOpenMPRuntimeGPU::getKmpcAllocShared(CodeGenFunction &CGF,
1137                                        const VarDecl *VD) {
1138   CGBuilderTy &Bld = CGF.Builder;
1139 
1140   // Compute size and alignment.
1141   llvm::Value *Size = CGF.getTypeSize(VD->getType());
1142   CharUnits Align = CGM.getContext().getDeclAlign(VD);
1143   Size = Bld.CreateNUWAdd(
1144       Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1));
1145   llvm::Value *AlignVal =
1146       llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity());
1147   Size = Bld.CreateUDiv(Size, AlignVal);
1148   Size = Bld.CreateNUWMul(Size, AlignVal);
1149 
1150   // Allocate space for this VLA object to be globalized.
1151   llvm::Value *AllocArgs[] = {Size};
1152   llvm::CallBase *VoidPtr =
1153       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1154                               CGM.getModule(), OMPRTL___kmpc_alloc_shared),
1155                           AllocArgs, VD->getName());
1156   VoidPtr->addRetAttr(llvm::Attribute::get(
1157       CGM.getLLVMContext(), llvm::Attribute::Alignment, Align.getQuantity()));
1158 
1159   return std::make_pair(VoidPtr, Size);
1160 }
1161 
1162 void CGOpenMPRuntimeGPU::getKmpcFreeShared(
1163     CodeGenFunction &CGF,
1164     const std::pair<llvm::Value *, llvm::Value *> &AddrSizePair) {
1165   // Deallocate the memory for each globalized VLA object
1166   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1167                           CGM.getModule(), OMPRTL___kmpc_free_shared),
1168                       {AddrSizePair.first, AddrSizePair.second});
1169 }
1170 
1171 void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF) {
1172   if (getDataSharingMode() != CGOpenMPRuntimeGPU::DS_Generic)
1173     return;
1174 
1175   const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1176   if (I != FunctionGlobalizedDecls.end()) {
1177     // Deallocate the memory for each globalized VLA object that was
1178     // globalized in the prolog (i.e. emitGenericVarsProlog).
1179     for (const auto &AddrSizePair :
1180          llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) {
1181       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1182                               CGM.getModule(), OMPRTL___kmpc_free_shared),
1183                           {AddrSizePair.first, AddrSizePair.second});
1184     }
1185     // Deallocate the memory for each globalized value
1186     for (auto &Rec : llvm::reverse(I->getSecond().LocalVarData)) {
1187       const auto *VD = cast<VarDecl>(Rec.first);
1188       I->getSecond().MappedParams->restore(CGF);
1189 
1190       llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal,
1191                                  CGF.getTypeSize(VD->getType())};
1192       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1193                               CGM.getModule(), OMPRTL___kmpc_free_shared),
1194                           FreeArgs);
1195     }
1196   }
1197 }
1198 
1199 void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF,
1200                                          const OMPExecutableDirective &D,
1201                                          SourceLocation Loc,
1202                                          llvm::Function *OutlinedFn,
1203                                          ArrayRef<llvm::Value *> CapturedVars) {
1204   if (!CGF.HaveInsertPoint())
1205     return;
1206 
1207   bool IsBareKernel = D.getSingleClause<OMPXBareClause>();
1208 
1209   Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
1210                                                       /*Name=*/".zero.addr");
1211   CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr);
1212   llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
1213   // We don't emit any thread id function call in bare kernel, but because the
1214   // outlined function has a pointer argument, we emit a nullptr here.
1215   if (IsBareKernel)
1216     OutlinedFnArgs.push_back(llvm::ConstantPointerNull::get(CGM.VoidPtrTy));
1217   else
1218     OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer());
1219   OutlinedFnArgs.push_back(ZeroAddr.getPointer());
1220   OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
1221   emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
1222 }
1223 
1224 void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF,
1225                                           SourceLocation Loc,
1226                                           llvm::Function *OutlinedFn,
1227                                           ArrayRef<llvm::Value *> CapturedVars,
1228                                           const Expr *IfCond,
1229                                           llvm::Value *NumThreads) {
1230   if (!CGF.HaveInsertPoint())
1231     return;
1232 
1233   auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, IfCond,
1234                         NumThreads](CodeGenFunction &CGF,
1235                                     PrePostActionTy &Action) {
1236     CGBuilderTy &Bld = CGF.Builder;
1237     llvm::Value *NumThreadsVal = NumThreads;
1238     llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn];
1239     llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
1240     if (WFn)
1241       ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy);
1242     llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy);
1243 
1244     // Create a private scope that will globalize the arguments
1245     // passed from the outside of the target region.
1246     // TODO: Is that needed?
1247     CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF);
1248 
1249     Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca(
1250         llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()),
1251         "captured_vars_addrs");
1252     // There's something to share.
1253     if (!CapturedVars.empty()) {
1254       // Prepare for parallel region. Indicate the outlined function.
1255       ASTContext &Ctx = CGF.getContext();
1256       unsigned Idx = 0;
1257       for (llvm::Value *V : CapturedVars) {
1258         Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx);
1259         llvm::Value *PtrV;
1260         if (V->getType()->isIntegerTy())
1261           PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy);
1262         else
1263           PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy);
1264         CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false,
1265                               Ctx.getPointerType(Ctx.VoidPtrTy));
1266         ++Idx;
1267       }
1268     }
1269 
1270     llvm::Value *IfCondVal = nullptr;
1271     if (IfCond)
1272       IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty,
1273                                     /* isSigned */ false);
1274     else
1275       IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1);
1276 
1277     if (!NumThreadsVal)
1278       NumThreadsVal = llvm::ConstantInt::get(CGF.Int32Ty, -1);
1279     else
1280       NumThreadsVal = Bld.CreateZExtOrTrunc(NumThreadsVal, CGF.Int32Ty),
1281 
1282       assert(IfCondVal && "Expected a value");
1283     llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
1284     llvm::Value *Args[] = {
1285         RTLoc,
1286         getThreadID(CGF, Loc),
1287         IfCondVal,
1288         NumThreadsVal,
1289         llvm::ConstantInt::get(CGF.Int32Ty, -1),
1290         FnPtr,
1291         ID,
1292         Bld.CreateBitOrPointerCast(CapturedVarsAddrs.getPointer(),
1293                                    CGF.VoidPtrPtrTy),
1294         llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())};
1295     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1296                             CGM.getModule(), OMPRTL___kmpc_parallel_51),
1297                         Args);
1298   };
1299 
1300   RegionCodeGenTy RCG(ParallelGen);
1301   RCG(CGF);
1302 }
1303 
1304 void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) {
1305   // Always emit simple barriers!
1306   if (!CGF.HaveInsertPoint())
1307     return;
1308   // Build call __kmpc_barrier_simple_spmd(nullptr, 0);
1309   // This function does not use parameters, so we can emit just default values.
1310   llvm::Value *Args[] = {
1311       llvm::ConstantPointerNull::get(
1312           cast<llvm::PointerType>(getIdentTyPointerTy())),
1313       llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)};
1314   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1315                           CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd),
1316                       Args);
1317 }
1318 
1319 void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF,
1320                                            SourceLocation Loc,
1321                                            OpenMPDirectiveKind Kind, bool,
1322                                            bool) {
1323   // Always emit simple barriers!
1324   if (!CGF.HaveInsertPoint())
1325     return;
1326   // Build call __kmpc_cancel_barrier(loc, thread_id);
1327   unsigned Flags = getDefaultFlagsForBarriers(Kind);
1328   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
1329                          getThreadID(CGF, Loc)};
1330 
1331   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1332                           CGM.getModule(), OMPRTL___kmpc_barrier),
1333                       Args);
1334 }
1335 
1336 void CGOpenMPRuntimeGPU::emitCriticalRegion(
1337     CodeGenFunction &CGF, StringRef CriticalName,
1338     const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
1339     const Expr *Hint) {
1340   llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop");
1341   llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test");
1342   llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync");
1343   llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body");
1344   llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit");
1345 
1346   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1347 
1348   // Get the mask of active threads in the warp.
1349   llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1350       CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask));
1351   // Fetch team-local id of the thread.
1352   llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
1353 
1354   // Get the width of the team.
1355   llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF);
1356 
1357   // Initialize the counter variable for the loop.
1358   QualType Int32Ty =
1359       CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0);
1360   Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter");
1361   LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty);
1362   CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal,
1363                         /*isInit=*/true);
1364 
1365   // Block checks if loop counter exceeds upper bound.
1366   CGF.EmitBlock(LoopBB);
1367   llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
1368   llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth);
1369   CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB);
1370 
1371   // Block tests which single thread should execute region, and which threads
1372   // should go straight to synchronisation point.
1373   CGF.EmitBlock(TestBB);
1374   CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
1375   llvm::Value *CmpThreadToCounter =
1376       CGF.Builder.CreateICmpEQ(ThreadID, CounterVal);
1377   CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB);
1378 
1379   // Block emits the body of the critical region.
1380   CGF.EmitBlock(BodyBB);
1381 
1382   // Output the critical statement.
1383   CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc,
1384                                       Hint);
1385 
1386   // After the body surrounded by the critical region, the single executing
1387   // thread will jump to the synchronisation point.
1388   // Block waits for all threads in current team to finish then increments the
1389   // counter variable and returns to the loop.
1390   CGF.EmitBlock(SyncBB);
1391   // Reconverge active threads in the warp.
1392   (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1393                                 CGM.getModule(), OMPRTL___kmpc_syncwarp),
1394                             Mask);
1395 
1396   llvm::Value *IncCounterVal =
1397       CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1));
1398   CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal);
1399   CGF.EmitBranch(LoopBB);
1400 
1401   // Block that is reached when  all threads in the team complete the region.
1402   CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1403 }
1404 
1405 /// Cast value to the specified type.
1406 static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val,
1407                                     QualType ValTy, QualType CastTy,
1408                                     SourceLocation Loc) {
1409   assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() &&
1410          "Cast type must sized.");
1411   assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() &&
1412          "Val type must sized.");
1413   llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy);
1414   if (ValTy == CastTy)
1415     return Val;
1416   if (CGF.getContext().getTypeSizeInChars(ValTy) ==
1417       CGF.getContext().getTypeSizeInChars(CastTy))
1418     return CGF.Builder.CreateBitCast(Val, LLVMCastTy);
1419   if (CastTy->isIntegerType() && ValTy->isIntegerType())
1420     return CGF.Builder.CreateIntCast(Val, LLVMCastTy,
1421                                      CastTy->hasSignedIntegerRepresentation());
1422   Address CastItem = CGF.CreateMemTemp(CastTy);
1423   Address ValCastItem = CastItem.withElementType(Val->getType());
1424   CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy,
1425                         LValueBaseInfo(AlignmentSource::Type),
1426                         TBAAAccessInfo());
1427   return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc,
1428                               LValueBaseInfo(AlignmentSource::Type),
1429                               TBAAAccessInfo());
1430 }
1431 
1432 /// This function creates calls to one of two shuffle functions to copy
1433 /// variables between lanes in a warp.
1434 static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF,
1435                                                  llvm::Value *Elem,
1436                                                  QualType ElemType,
1437                                                  llvm::Value *Offset,
1438                                                  SourceLocation Loc) {
1439   CodeGenModule &CGM = CGF.CGM;
1440   CGBuilderTy &Bld = CGF.Builder;
1441   CGOpenMPRuntimeGPU &RT =
1442       *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime()));
1443   llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder();
1444 
1445   CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
1446   assert(Size.getQuantity() <= 8 &&
1447          "Unsupported bitwidth in shuffle instruction.");
1448 
1449   RuntimeFunction ShuffleFn = Size.getQuantity() <= 4
1450                                   ? OMPRTL___kmpc_shuffle_int32
1451                                   : OMPRTL___kmpc_shuffle_int64;
1452 
1453   // Cast all types to 32- or 64-bit values before calling shuffle routines.
1454   QualType CastTy = CGF.getContext().getIntTypeForBitwidth(
1455       Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1);
1456   llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc);
1457   llvm::Value *WarpSize =
1458       Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true);
1459 
1460   llvm::Value *ShuffledVal = CGF.EmitRuntimeCall(
1461       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn),
1462       {ElemCast, Offset, WarpSize});
1463 
1464   return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc);
1465 }
1466 
1467 static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr,
1468                             Address DestAddr, QualType ElemType,
1469                             llvm::Value *Offset, SourceLocation Loc) {
1470   CGBuilderTy &Bld = CGF.Builder;
1471 
1472   CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
1473   // Create the loop over the big sized data.
1474   // ptr = (void*)Elem;
1475   // ptrEnd = (void*) Elem + 1;
1476   // Step = 8;
1477   // while (ptr + Step < ptrEnd)
1478   //   shuffle((int64_t)*ptr);
1479   // Step = 4;
1480   // while (ptr + Step < ptrEnd)
1481   //   shuffle((int32_t)*ptr);
1482   // ...
1483   Address ElemPtr = DestAddr;
1484   Address Ptr = SrcAddr;
1485   Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast(
1486       Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy, CGF.Int8Ty);
1487   for (int IntSize = 8; IntSize >= 1; IntSize /= 2) {
1488     if (Size < CharUnits::fromQuantity(IntSize))
1489       continue;
1490     QualType IntType = CGF.getContext().getIntTypeForBitwidth(
1491         CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)),
1492         /*Signed=*/1);
1493     llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType);
1494     Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo(),
1495                                                   IntTy);
1496     ElemPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1497         ElemPtr, IntTy->getPointerTo(), IntTy);
1498     if (Size.getQuantity() / IntSize > 1) {
1499       llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond");
1500       llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then");
1501       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit");
1502       llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock();
1503       CGF.EmitBlock(PreCondBB);
1504       llvm::PHINode *PhiSrc =
1505           Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2);
1506       PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB);
1507       llvm::PHINode *PhiDest =
1508           Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2);
1509       PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB);
1510       Ptr = Address(PhiSrc, Ptr.getElementType(), Ptr.getAlignment());
1511       ElemPtr =
1512           Address(PhiDest, ElemPtr.getElementType(), ElemPtr.getAlignment());
1513       llvm::Value *PtrDiff = Bld.CreatePtrDiff(
1514           CGF.Int8Ty, PtrEnd.getPointer(),
1515           Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr.getPointer(),
1516                                                   CGF.VoidPtrTy));
1517       Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)),
1518                        ThenBB, ExitBB);
1519       CGF.EmitBlock(ThenBB);
1520       llvm::Value *Res = createRuntimeShuffleFunction(
1521           CGF,
1522           CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
1523                                LValueBaseInfo(AlignmentSource::Type),
1524                                TBAAAccessInfo()),
1525           IntType, Offset, Loc);
1526       CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
1527                             LValueBaseInfo(AlignmentSource::Type),
1528                             TBAAAccessInfo());
1529       Address LocalPtr = Bld.CreateConstGEP(Ptr, 1);
1530       Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
1531       PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB);
1532       PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB);
1533       CGF.EmitBranch(PreCondBB);
1534       CGF.EmitBlock(ExitBB);
1535     } else {
1536       llvm::Value *Res = createRuntimeShuffleFunction(
1537           CGF,
1538           CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
1539                                LValueBaseInfo(AlignmentSource::Type),
1540                                TBAAAccessInfo()),
1541           IntType, Offset, Loc);
1542       CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
1543                             LValueBaseInfo(AlignmentSource::Type),
1544                             TBAAAccessInfo());
1545       Ptr = Bld.CreateConstGEP(Ptr, 1);
1546       ElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
1547     }
1548     Size = Size % IntSize;
1549   }
1550 }
1551 
1552 namespace {
1553 enum CopyAction : unsigned {
1554   // RemoteLaneToThread: Copy over a Reduce list from a remote lane in
1555   // the warp using shuffle instructions.
1556   RemoteLaneToThread,
1557   // ThreadCopy: Make a copy of a Reduce list on the thread's stack.
1558   ThreadCopy,
1559 };
1560 } // namespace
1561 
1562 struct CopyOptionsTy {
1563   llvm::Value *RemoteLaneOffset;
1564   llvm::Value *ScratchpadIndex;
1565   llvm::Value *ScratchpadWidth;
1566 };
1567 
1568 /// Emit instructions to copy a Reduce list, which contains partially
1569 /// aggregated values, in the specified direction.
1570 static void emitReductionListCopy(
1571     CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy,
1572     ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase,
1573     CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) {
1574 
1575   CodeGenModule &CGM = CGF.CGM;
1576   ASTContext &C = CGM.getContext();
1577   CGBuilderTy &Bld = CGF.Builder;
1578 
1579   llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset;
1580 
1581   // Iterates, element-by-element, through the source Reduce list and
1582   // make a copy.
1583   unsigned Idx = 0;
1584   for (const Expr *Private : Privates) {
1585     Address SrcElementAddr = Address::invalid();
1586     Address DestElementAddr = Address::invalid();
1587     Address DestElementPtrAddr = Address::invalid();
1588     // Should we shuffle in an element from a remote lane?
1589     bool ShuffleInElement = false;
1590     // Set to true to update the pointer in the dest Reduce list to a
1591     // newly created element.
1592     bool UpdateDestListPtr = false;
1593     QualType PrivatePtrType = C.getPointerType(Private->getType());
1594     llvm::Type *PrivateLlvmPtrType = CGF.ConvertType(PrivatePtrType);
1595 
1596     switch (Action) {
1597     case RemoteLaneToThread: {
1598       // Step 1.1: Get the address for the src element in the Reduce list.
1599       Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1600       SrcElementAddr = CGF.EmitLoadOfPointer(
1601           SrcElementPtrAddr.withElementType(PrivateLlvmPtrType),
1602           PrivatePtrType->castAs<PointerType>());
1603 
1604       // Step 1.2: Create a temporary to store the element in the destination
1605       // Reduce list.
1606       DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1607       DestElementAddr =
1608           CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
1609       ShuffleInElement = true;
1610       UpdateDestListPtr = true;
1611       break;
1612     }
1613     case ThreadCopy: {
1614       // Step 1.1: Get the address for the src element in the Reduce list.
1615       Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1616       SrcElementAddr = CGF.EmitLoadOfPointer(
1617           SrcElementPtrAddr.withElementType(PrivateLlvmPtrType),
1618           PrivatePtrType->castAs<PointerType>());
1619 
1620       // Step 1.2: Get the address for dest element.  The destination
1621       // element has already been created on the thread's stack.
1622       DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1623       DestElementAddr = CGF.EmitLoadOfPointer(
1624           DestElementPtrAddr.withElementType(PrivateLlvmPtrType),
1625           PrivatePtrType->castAs<PointerType>());
1626       break;
1627     }
1628     }
1629 
1630     // Regardless of src and dest of copy, we emit the load of src
1631     // element as this is required in all directions
1632     SrcElementAddr = SrcElementAddr.withElementType(
1633         CGF.ConvertTypeForMem(Private->getType()));
1634     DestElementAddr =
1635         DestElementAddr.withElementType(SrcElementAddr.getElementType());
1636 
1637     // Now that all active lanes have read the element in the
1638     // Reduce list, shuffle over the value from the remote lane.
1639     if (ShuffleInElement) {
1640       shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(),
1641                       RemoteLaneOffset, Private->getExprLoc());
1642     } else {
1643       switch (CGF.getEvaluationKind(Private->getType())) {
1644       case TEK_Scalar: {
1645         llvm::Value *Elem = CGF.EmitLoadOfScalar(
1646             SrcElementAddr, /*Volatile=*/false, Private->getType(),
1647             Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type),
1648             TBAAAccessInfo());
1649         // Store the source element value to the dest element address.
1650         CGF.EmitStoreOfScalar(
1651             Elem, DestElementAddr, /*Volatile=*/false, Private->getType(),
1652             LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
1653         break;
1654       }
1655       case TEK_Complex: {
1656         CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex(
1657             CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
1658             Private->getExprLoc());
1659         CGF.EmitStoreOfComplex(
1660             Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
1661             /*isInit=*/false);
1662         break;
1663       }
1664       case TEK_Aggregate:
1665         CGF.EmitAggregateCopy(
1666             CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
1667             CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
1668             Private->getType(), AggValueSlot::DoesNotOverlap);
1669         break;
1670       }
1671     }
1672 
1673     // Step 3.1: Modify reference in dest Reduce list as needed.
1674     // Modifying the reference in Reduce list to point to the newly
1675     // created element.  The element is live in the current function
1676     // scope and that of functions it invokes (i.e., reduce_function).
1677     // RemoteReduceData[i] = (void*)&RemoteElem
1678     if (UpdateDestListPtr) {
1679       CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast(
1680                                 DestElementAddr.getPointer(), CGF.VoidPtrTy),
1681                             DestElementPtrAddr, /*Volatile=*/false,
1682                             C.VoidPtrTy);
1683     }
1684 
1685     ++Idx;
1686   }
1687 }
1688 
1689 /// This function emits a helper that gathers Reduce lists from the first
1690 /// lane of every active warp to lanes in the first warp.
1691 ///
1692 /// void inter_warp_copy_func(void* reduce_data, num_warps)
1693 ///   shared smem[warp_size];
1694 ///   For all data entries D in reduce_data:
1695 ///     sync
1696 ///     If (I am the first lane in each warp)
1697 ///       Copy my local D to smem[warp_id]
1698 ///     sync
1699 ///     if (I am the first warp)
1700 ///       Copy smem[thread_id] to my local D
1701 static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM,
1702                                               ArrayRef<const Expr *> Privates,
1703                                               QualType ReductionArrayTy,
1704                                               SourceLocation Loc) {
1705   ASTContext &C = CGM.getContext();
1706   llvm::Module &M = CGM.getModule();
1707 
1708   // ReduceList: thread local Reduce list.
1709   // At the stage of the computation when this function is called, partially
1710   // aggregated values reside in the first lane of every active warp.
1711   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
1712                                   C.VoidPtrTy, ImplicitParamKind::Other);
1713   // NumWarps: number of warps active in the parallel region.  This could
1714   // be smaller than 32 (max warps in a CTA) for partial block reduction.
1715   ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
1716                                 C.getIntTypeForBitwidth(32, /* Signed */ true),
1717                                 ImplicitParamKind::Other);
1718   FunctionArgList Args;
1719   Args.push_back(&ReduceListArg);
1720   Args.push_back(&NumWarpsArg);
1721 
1722   const CGFunctionInfo &CGFI =
1723       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
1724   auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
1725                                     llvm::GlobalValue::InternalLinkage,
1726                                     "_omp_reduction_inter_warp_copy_func", &M);
1727   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
1728   Fn->setDoesNotRecurse();
1729   CodeGenFunction CGF(CGM);
1730   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
1731 
1732   CGBuilderTy &Bld = CGF.Builder;
1733 
1734   // This array is used as a medium to transfer, one reduce element at a time,
1735   // the data from the first lane of every warp to lanes in the first warp
1736   // in order to perform the final step of a reduction in a parallel region
1737   // (reduction across warps).  The array is placed in NVPTX __shared__ memory
1738   // for reduced latency, as well as to have a distinct copy for concurrently
1739   // executing target regions.  The array is declared with common linkage so
1740   // as to be shared across compilation units.
1741   StringRef TransferMediumName =
1742       "__openmp_nvptx_data_transfer_temporary_storage";
1743   llvm::GlobalVariable *TransferMedium =
1744       M.getGlobalVariable(TransferMediumName);
1745   unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size;
1746   if (!TransferMedium) {
1747     auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize);
1748     unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared);
1749     TransferMedium = new llvm::GlobalVariable(
1750         M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage,
1751         llvm::UndefValue::get(Ty), TransferMediumName,
1752         /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
1753         SharedAddressSpace);
1754     CGM.addCompilerUsedGlobal(TransferMedium);
1755   }
1756 
1757   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1758   // Get the CUDA thread id of the current OpenMP thread on the GPU.
1759   llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
1760   // nvptx_lane_id = nvptx_id % warpsize
1761   llvm::Value *LaneID = getNVPTXLaneID(CGF);
1762   // nvptx_warp_id = nvptx_id / warpsize
1763   llvm::Value *WarpID = getNVPTXWarpID(CGF);
1764 
1765   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
1766   llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
1767   Address LocalReduceList(
1768       Bld.CreatePointerBitCastOrAddrSpaceCast(
1769           CGF.EmitLoadOfScalar(
1770               AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc,
1771               LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()),
1772           ElemTy->getPointerTo()),
1773       ElemTy, CGF.getPointerAlign());
1774 
1775   unsigned Idx = 0;
1776   for (const Expr *Private : Privates) {
1777     //
1778     // Warp master copies reduce element to transfer medium in __shared__
1779     // memory.
1780     //
1781     unsigned RealTySize =
1782         C.getTypeSizeInChars(Private->getType())
1783             .alignTo(C.getTypeAlignInChars(Private->getType()))
1784             .getQuantity();
1785     for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) {
1786       unsigned NumIters = RealTySize / TySize;
1787       if (NumIters == 0)
1788         continue;
1789       QualType CType = C.getIntTypeForBitwidth(
1790           C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1);
1791       llvm::Type *CopyType = CGF.ConvertTypeForMem(CType);
1792       CharUnits Align = CharUnits::fromQuantity(TySize);
1793       llvm::Value *Cnt = nullptr;
1794       Address CntAddr = Address::invalid();
1795       llvm::BasicBlock *PrecondBB = nullptr;
1796       llvm::BasicBlock *ExitBB = nullptr;
1797       if (NumIters > 1) {
1798         CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr");
1799         CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr,
1800                               /*Volatile=*/false, C.IntTy);
1801         PrecondBB = CGF.createBasicBlock("precond");
1802         ExitBB = CGF.createBasicBlock("exit");
1803         llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body");
1804         // There is no need to emit line number for unconditional branch.
1805         (void)ApplyDebugLocation::CreateEmpty(CGF);
1806         CGF.EmitBlock(PrecondBB);
1807         Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc);
1808         llvm::Value *Cmp =
1809             Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters));
1810         Bld.CreateCondBr(Cmp, BodyBB, ExitBB);
1811         CGF.EmitBlock(BodyBB);
1812       }
1813       // kmpc_barrier.
1814       CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
1815                                              /*EmitChecks=*/false,
1816                                              /*ForceSimpleCall=*/true);
1817       llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
1818       llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
1819       llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
1820 
1821       // if (lane_id == 0)
1822       llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master");
1823       Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB);
1824       CGF.EmitBlock(ThenBB);
1825 
1826       // Reduce element = LocalReduceList[i]
1827       Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
1828       llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
1829           ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
1830       // elemptr = ((CopyType*)(elemptrptr)) + I
1831       Address ElemPtr(ElemPtrPtr, CopyType, Align);
1832       if (NumIters > 1)
1833         ElemPtr = Bld.CreateGEP(ElemPtr, Cnt);
1834 
1835       // Get pointer to location in transfer medium.
1836       // MediumPtr = &medium[warp_id]
1837       llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP(
1838           TransferMedium->getValueType(), TransferMedium,
1839           {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID});
1840       // Casting to actual data type.
1841       // MediumPtr = (CopyType*)MediumPtrAddr;
1842       Address MediumPtr(MediumPtrVal, CopyType, Align);
1843 
1844       // elem = *elemptr
1845       //*MediumPtr = elem
1846       llvm::Value *Elem = CGF.EmitLoadOfScalar(
1847           ElemPtr, /*Volatile=*/false, CType, Loc,
1848           LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
1849       // Store the source element value to the dest element address.
1850       CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType,
1851                             LValueBaseInfo(AlignmentSource::Type),
1852                             TBAAAccessInfo());
1853 
1854       Bld.CreateBr(MergeBB);
1855 
1856       CGF.EmitBlock(ElseBB);
1857       Bld.CreateBr(MergeBB);
1858 
1859       CGF.EmitBlock(MergeBB);
1860 
1861       // kmpc_barrier.
1862       CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
1863                                              /*EmitChecks=*/false,
1864                                              /*ForceSimpleCall=*/true);
1865 
1866       //
1867       // Warp 0 copies reduce element from transfer medium.
1868       //
1869       llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then");
1870       llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else");
1871       llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont");
1872 
1873       Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg);
1874       llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar(
1875           AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc);
1876 
1877       // Up to 32 threads in warp 0 are active.
1878       llvm::Value *IsActiveThread =
1879           Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread");
1880       Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB);
1881 
1882       CGF.EmitBlock(W0ThenBB);
1883 
1884       // SrcMediumPtr = &medium[tid]
1885       llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP(
1886           TransferMedium->getValueType(), TransferMedium,
1887           {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID});
1888       // SrcMediumVal = *SrcMediumPtr;
1889       Address SrcMediumPtr(SrcMediumPtrVal, CopyType, Align);
1890 
1891       // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I
1892       Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
1893       llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar(
1894           TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc);
1895       Address TargetElemPtr(TargetElemPtrVal, CopyType, Align);
1896       if (NumIters > 1)
1897         TargetElemPtr = Bld.CreateGEP(TargetElemPtr, Cnt);
1898 
1899       // *TargetElemPtr = SrcMediumVal;
1900       llvm::Value *SrcMediumValue =
1901           CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc);
1902       CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false,
1903                             CType);
1904       Bld.CreateBr(W0MergeBB);
1905 
1906       CGF.EmitBlock(W0ElseBB);
1907       Bld.CreateBr(W0MergeBB);
1908 
1909       CGF.EmitBlock(W0MergeBB);
1910 
1911       if (NumIters > 1) {
1912         Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1));
1913         CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy);
1914         CGF.EmitBranch(PrecondBB);
1915         (void)ApplyDebugLocation::CreateEmpty(CGF);
1916         CGF.EmitBlock(ExitBB);
1917       }
1918       RealTySize %= TySize;
1919     }
1920     ++Idx;
1921   }
1922 
1923   CGF.FinishFunction();
1924   return Fn;
1925 }
1926 
1927 /// Emit a helper that reduces data across two OpenMP threads (lanes)
1928 /// in the same warp.  It uses shuffle instructions to copy over data from
1929 /// a remote lane's stack.  The reduction algorithm performed is specified
1930 /// by the fourth parameter.
1931 ///
1932 /// Algorithm Versions.
1933 /// Full Warp Reduce (argument value 0):
1934 ///   This algorithm assumes that all 32 lanes are active and gathers
1935 ///   data from these 32 lanes, producing a single resultant value.
1936 /// Contiguous Partial Warp Reduce (argument value 1):
1937 ///   This algorithm assumes that only a *contiguous* subset of lanes
1938 ///   are active.  This happens for the last warp in a parallel region
1939 ///   when the user specified num_threads is not an integer multiple of
1940 ///   32.  This contiguous subset always starts with the zeroth lane.
1941 /// Partial Warp Reduce (argument value 2):
1942 ///   This algorithm gathers data from any number of lanes at any position.
1943 /// All reduced values are stored in the lowest possible lane.  The set
1944 /// of problems every algorithm addresses is a super set of those
1945 /// addressable by algorithms with a lower version number.  Overhead
1946 /// increases as algorithm version increases.
1947 ///
1948 /// Terminology
1949 /// Reduce element:
1950 ///   Reduce element refers to the individual data field with primitive
1951 ///   data types to be combined and reduced across threads.
1952 /// Reduce list:
1953 ///   Reduce list refers to a collection of local, thread-private
1954 ///   reduce elements.
1955 /// Remote Reduce list:
1956 ///   Remote Reduce list refers to a collection of remote (relative to
1957 ///   the current thread) reduce elements.
1958 ///
1959 /// We distinguish between three states of threads that are important to
1960 /// the implementation of this function.
1961 /// Alive threads:
1962 ///   Threads in a warp executing the SIMT instruction, as distinguished from
1963 ///   threads that are inactive due to divergent control flow.
1964 /// Active threads:
1965 ///   The minimal set of threads that has to be alive upon entry to this
1966 ///   function.  The computation is correct iff active threads are alive.
1967 ///   Some threads are alive but they are not active because they do not
1968 ///   contribute to the computation in any useful manner.  Turning them off
1969 ///   may introduce control flow overheads without any tangible benefits.
1970 /// Effective threads:
1971 ///   In order to comply with the argument requirements of the shuffle
1972 ///   function, we must keep all lanes holding data alive.  But at most
1973 ///   half of them perform value aggregation; we refer to this half of
1974 ///   threads as effective. The other half is simply handing off their
1975 ///   data.
1976 ///
1977 /// Procedure
1978 /// Value shuffle:
1979 ///   In this step active threads transfer data from higher lane positions
1980 ///   in the warp to lower lane positions, creating Remote Reduce list.
1981 /// Value aggregation:
1982 ///   In this step, effective threads combine their thread local Reduce list
1983 ///   with Remote Reduce list and store the result in the thread local
1984 ///   Reduce list.
1985 /// Value copy:
1986 ///   In this step, we deal with the assumption made by algorithm 2
1987 ///   (i.e. contiguity assumption).  When we have an odd number of lanes
1988 ///   active, say 2k+1, only k threads will be effective and therefore k
1989 ///   new values will be produced.  However, the Reduce list owned by the
1990 ///   (2k+1)th thread is ignored in the value aggregation.  Therefore
1991 ///   we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so
1992 ///   that the contiguity assumption still holds.
1993 static llvm::Function *emitShuffleAndReduceFunction(
1994     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
1995     QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) {
1996   ASTContext &C = CGM.getContext();
1997 
1998   // Thread local Reduce list used to host the values of data to be reduced.
1999   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2000                                   C.VoidPtrTy, ImplicitParamKind::Other);
2001   // Current lane id; could be logical.
2002   ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy,
2003                               ImplicitParamKind::Other);
2004   // Offset of the remote source lane relative to the current lane.
2005   ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2006                                         C.ShortTy, ImplicitParamKind::Other);
2007   // Algorithm version.  This is expected to be known at compile time.
2008   ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2009                                C.ShortTy, ImplicitParamKind::Other);
2010   FunctionArgList Args;
2011   Args.push_back(&ReduceListArg);
2012   Args.push_back(&LaneIDArg);
2013   Args.push_back(&RemoteLaneOffsetArg);
2014   Args.push_back(&AlgoVerArg);
2015 
2016   const CGFunctionInfo &CGFI =
2017       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2018   auto *Fn = llvm::Function::Create(
2019       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2020       "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule());
2021   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2022   Fn->setDoesNotRecurse();
2023 
2024   CodeGenFunction CGF(CGM);
2025   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2026 
2027   CGBuilderTy &Bld = CGF.Builder;
2028 
2029   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2030   llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2031   Address LocalReduceList(
2032       Bld.CreatePointerBitCastOrAddrSpaceCast(
2033           CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2034                                C.VoidPtrTy, SourceLocation()),
2035           ElemTy->getPointerTo()),
2036       ElemTy, CGF.getPointerAlign());
2037 
2038   Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg);
2039   llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar(
2040       AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2041 
2042   Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg);
2043   llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar(
2044       AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2045 
2046   Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg);
2047   llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar(
2048       AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2049 
2050   // Create a local thread-private variable to host the Reduce list
2051   // from a remote lane.
2052   Address RemoteReduceList =
2053       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list");
2054 
2055   // This loop iterates through the list of reduce elements and copies,
2056   // element by element, from a remote lane in the warp to RemoteReduceList,
2057   // hosted on the thread's stack.
2058   emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates,
2059                         LocalReduceList, RemoteReduceList,
2060                         {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal,
2061                          /*ScratchpadIndex=*/nullptr,
2062                          /*ScratchpadWidth=*/nullptr});
2063 
2064   // The actions to be performed on the Remote Reduce list is dependent
2065   // on the algorithm version.
2066   //
2067   //  if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 &&
2068   //  LaneId % 2 == 0 && Offset > 0):
2069   //    do the reduction value aggregation
2070   //
2071   //  The thread local variable Reduce list is mutated in place to host the
2072   //  reduced data, which is the aggregated value produced from local and
2073   //  remote lanes.
2074   //
2075   //  Note that AlgoVer is expected to be a constant integer known at compile
2076   //  time.
2077   //  When AlgoVer==0, the first conjunction evaluates to true, making
2078   //    the entire predicate true during compile time.
2079   //  When AlgoVer==1, the second conjunction has only the second part to be
2080   //    evaluated during runtime.  Other conjunctions evaluates to false
2081   //    during compile time.
2082   //  When AlgoVer==2, the third conjunction has only the second part to be
2083   //    evaluated during runtime.  Other conjunctions evaluates to false
2084   //    during compile time.
2085   llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal);
2086 
2087   llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
2088   llvm::Value *CondAlgo1 = Bld.CreateAnd(
2089       Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal));
2090 
2091   llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2));
2092   llvm::Value *CondAlgo2 = Bld.CreateAnd(
2093       Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1))));
2094   CondAlgo2 = Bld.CreateAnd(
2095       CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0)));
2096 
2097   llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1);
2098   CondReduce = Bld.CreateOr(CondReduce, CondAlgo2);
2099 
2100   llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
2101   llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
2102   llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
2103   Bld.CreateCondBr(CondReduce, ThenBB, ElseBB);
2104 
2105   CGF.EmitBlock(ThenBB);
2106   // reduce_function(LocalReduceList, RemoteReduceList)
2107   llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2108       LocalReduceList.getPointer(), CGF.VoidPtrTy);
2109   llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2110       RemoteReduceList.getPointer(), CGF.VoidPtrTy);
2111   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2112       CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr});
2113   Bld.CreateBr(MergeBB);
2114 
2115   CGF.EmitBlock(ElseBB);
2116   Bld.CreateBr(MergeBB);
2117 
2118   CGF.EmitBlock(MergeBB);
2119 
2120   // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local
2121   // Reduce list.
2122   Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
2123   llvm::Value *CondCopy = Bld.CreateAnd(
2124       Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal));
2125 
2126   llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then");
2127   llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else");
2128   llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont");
2129   Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB);
2130 
2131   CGF.EmitBlock(CpyThenBB);
2132   emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates,
2133                         RemoteReduceList, LocalReduceList);
2134   Bld.CreateBr(CpyMergeBB);
2135 
2136   CGF.EmitBlock(CpyElseBB);
2137   Bld.CreateBr(CpyMergeBB);
2138 
2139   CGF.EmitBlock(CpyMergeBB);
2140 
2141   CGF.FinishFunction();
2142   return Fn;
2143 }
2144 
2145 /// This function emits a helper that copies all the reduction variables from
2146 /// the team into the provided global buffer for the reduction variables.
2147 ///
2148 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
2149 ///   For all data entries D in reduce_data:
2150 ///     Copy local D to buffer.D[Idx]
2151 static llvm::Value *emitListToGlobalCopyFunction(
2152     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2153     QualType ReductionArrayTy, SourceLocation Loc,
2154     const RecordDecl *TeamReductionRec,
2155     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2156         &VarFieldMap) {
2157   ASTContext &C = CGM.getContext();
2158 
2159   // Buffer: global reduction buffer.
2160   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2161                               C.VoidPtrTy, ImplicitParamKind::Other);
2162   // Idx: index of the buffer.
2163   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2164                            ImplicitParamKind::Other);
2165   // ReduceList: thread local Reduce list.
2166   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2167                                   C.VoidPtrTy, ImplicitParamKind::Other);
2168   FunctionArgList Args;
2169   Args.push_back(&BufferArg);
2170   Args.push_back(&IdxArg);
2171   Args.push_back(&ReduceListArg);
2172 
2173   const CGFunctionInfo &CGFI =
2174       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2175   auto *Fn = llvm::Function::Create(
2176       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2177       "_omp_reduction_list_to_global_copy_func", &CGM.getModule());
2178   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2179   Fn->setDoesNotRecurse();
2180   CodeGenFunction CGF(CGM);
2181   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2182 
2183   CGBuilderTy &Bld = CGF.Builder;
2184 
2185   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2186   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2187   llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2188   Address LocalReduceList(
2189       Bld.CreatePointerBitCastOrAddrSpaceCast(
2190           CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2191                                C.VoidPtrTy, Loc),
2192           ElemTy->getPointerTo()),
2193       ElemTy, CGF.getPointerAlign());
2194   QualType StaticTy = C.getRecordType(TeamReductionRec);
2195   llvm::Type *LLVMReductionsBufferTy =
2196       CGM.getTypes().ConvertTypeForMem(StaticTy);
2197   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2198       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2199       LLVMReductionsBufferTy->getPointerTo());
2200   llvm::Value *Idxs[] = {CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2201                                               /*Volatile=*/false, C.IntTy,
2202                                               Loc)};
2203   unsigned Idx = 0;
2204   for (const Expr *Private : Privates) {
2205     // Reduce element = LocalReduceList[i]
2206     Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2207     llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2208         ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2209     // elemptr = ((CopyType*)(elemptrptr)) + I
2210     ElemTy = CGF.ConvertTypeForMem(Private->getType());
2211     ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2212         ElemPtrPtr, ElemTy->getPointerTo());
2213     Address ElemPtr =
2214         Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(Private->getType()));
2215     const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
2216     // Global = Buffer.VD[Idx];
2217     const FieldDecl *FD = VarFieldMap.lookup(VD);
2218     llvm::Value *BufferPtr =
2219         Bld.CreateInBoundsGEP(LLVMReductionsBufferTy, BufferArrPtr, Idxs);
2220     LValue GlobLVal = CGF.EmitLValueForField(
2221         CGF.MakeNaturalAlignAddrLValue(BufferPtr, StaticTy), FD);
2222     Address GlobAddr = GlobLVal.getAddress(CGF);
2223     GlobLVal.setAddress(Address(GlobAddr.getPointer(),
2224                                 CGF.ConvertTypeForMem(Private->getType()),
2225                                 GlobAddr.getAlignment()));
2226     switch (CGF.getEvaluationKind(Private->getType())) {
2227     case TEK_Scalar: {
2228       llvm::Value *V = CGF.EmitLoadOfScalar(
2229           ElemPtr, /*Volatile=*/false, Private->getType(), Loc,
2230           LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
2231       CGF.EmitStoreOfScalar(V, GlobLVal);
2232       break;
2233     }
2234     case TEK_Complex: {
2235       CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(
2236           CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc);
2237       CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false);
2238       break;
2239     }
2240     case TEK_Aggregate:
2241       CGF.EmitAggregateCopy(GlobLVal,
2242                             CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2243                             Private->getType(), AggValueSlot::DoesNotOverlap);
2244       break;
2245     }
2246     ++Idx;
2247   }
2248 
2249   CGF.FinishFunction();
2250   return Fn;
2251 }
2252 
2253 /// This function emits a helper that reduces all the reduction variables from
2254 /// the team into the provided global buffer for the reduction variables.
2255 ///
2256 /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data)
2257 ///  void *GlobPtrs[];
2258 ///  GlobPtrs[0] = (void*)&buffer.D0[Idx];
2259 ///  ...
2260 ///  GlobPtrs[N] = (void*)&buffer.DN[Idx];
2261 ///  reduce_function(GlobPtrs, reduce_data);
2262 static llvm::Value *emitListToGlobalReduceFunction(
2263     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2264     QualType ReductionArrayTy, SourceLocation Loc,
2265     const RecordDecl *TeamReductionRec,
2266     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2267         &VarFieldMap,
2268     llvm::Function *ReduceFn) {
2269   ASTContext &C = CGM.getContext();
2270 
2271   // Buffer: global reduction buffer.
2272   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2273                               C.VoidPtrTy, ImplicitParamKind::Other);
2274   // Idx: index of the buffer.
2275   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2276                            ImplicitParamKind::Other);
2277   // ReduceList: thread local Reduce list.
2278   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2279                                   C.VoidPtrTy, ImplicitParamKind::Other);
2280   FunctionArgList Args;
2281   Args.push_back(&BufferArg);
2282   Args.push_back(&IdxArg);
2283   Args.push_back(&ReduceListArg);
2284 
2285   const CGFunctionInfo &CGFI =
2286       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2287   auto *Fn = llvm::Function::Create(
2288       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2289       "_omp_reduction_list_to_global_reduce_func", &CGM.getModule());
2290   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2291   Fn->setDoesNotRecurse();
2292   CodeGenFunction CGF(CGM);
2293   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2294 
2295   CGBuilderTy &Bld = CGF.Builder;
2296 
2297   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2298   QualType StaticTy = C.getRecordType(TeamReductionRec);
2299   llvm::Type *LLVMReductionsBufferTy =
2300       CGM.getTypes().ConvertTypeForMem(StaticTy);
2301   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2302       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2303       LLVMReductionsBufferTy->getPointerTo());
2304 
2305   // 1. Build a list of reduction variables.
2306   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
2307   Address ReductionList =
2308       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
2309   auto IPriv = Privates.begin();
2310   llvm::Value *Idxs[] = {CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2311                                               /*Volatile=*/false, C.IntTy,
2312                                               Loc)};
2313   unsigned Idx = 0;
2314   for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
2315     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2316     // Global = Buffer.VD[Idx];
2317     const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
2318     const FieldDecl *FD = VarFieldMap.lookup(VD);
2319     llvm::Value *BufferPtr =
2320         Bld.CreateInBoundsGEP(LLVMReductionsBufferTy, BufferArrPtr, Idxs);
2321     LValue GlobLVal = CGF.EmitLValueForField(
2322         CGF.MakeNaturalAlignAddrLValue(BufferPtr, StaticTy), FD);
2323     Address GlobAddr = GlobLVal.getAddress(CGF);
2324     CGF.EmitStoreOfScalar(GlobAddr.getPointer(), Elem, /*Volatile=*/false,
2325                           C.VoidPtrTy);
2326     if ((*IPriv)->getType()->isVariablyModifiedType()) {
2327       // Store array size.
2328       ++Idx;
2329       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2330       llvm::Value *Size = CGF.Builder.CreateIntCast(
2331           CGF.getVLASize(
2332                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
2333               .NumElts,
2334           CGF.SizeTy, /*isSigned=*/false);
2335       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
2336                               Elem);
2337     }
2338   }
2339 
2340   // Call reduce_function(GlobalReduceList, ReduceList)
2341   llvm::Value *GlobalReduceList = ReductionList.getPointer();
2342   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2343   llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
2344       AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
2345   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2346       CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr});
2347   CGF.FinishFunction();
2348   return Fn;
2349 }
2350 
2351 /// This function emits a helper that copies all the reduction variables from
2352 /// the team into the provided global buffer for the reduction variables.
2353 ///
2354 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
2355 ///   For all data entries D in reduce_data:
2356 ///     Copy buffer.D[Idx] to local D;
2357 static llvm::Value *emitGlobalToListCopyFunction(
2358     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2359     QualType ReductionArrayTy, SourceLocation Loc,
2360     const RecordDecl *TeamReductionRec,
2361     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2362         &VarFieldMap) {
2363   ASTContext &C = CGM.getContext();
2364 
2365   // Buffer: global reduction buffer.
2366   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2367                               C.VoidPtrTy, ImplicitParamKind::Other);
2368   // Idx: index of the buffer.
2369   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2370                            ImplicitParamKind::Other);
2371   // ReduceList: thread local Reduce list.
2372   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2373                                   C.VoidPtrTy, ImplicitParamKind::Other);
2374   FunctionArgList Args;
2375   Args.push_back(&BufferArg);
2376   Args.push_back(&IdxArg);
2377   Args.push_back(&ReduceListArg);
2378 
2379   const CGFunctionInfo &CGFI =
2380       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2381   auto *Fn = llvm::Function::Create(
2382       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2383       "_omp_reduction_global_to_list_copy_func", &CGM.getModule());
2384   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2385   Fn->setDoesNotRecurse();
2386   CodeGenFunction CGF(CGM);
2387   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2388 
2389   CGBuilderTy &Bld = CGF.Builder;
2390 
2391   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2392   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2393   llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2394   Address LocalReduceList(
2395       Bld.CreatePointerBitCastOrAddrSpaceCast(
2396           CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2397                                C.VoidPtrTy, Loc),
2398           ElemTy->getPointerTo()),
2399       ElemTy, CGF.getPointerAlign());
2400   QualType StaticTy = C.getRecordType(TeamReductionRec);
2401   llvm::Type *LLVMReductionsBufferTy =
2402       CGM.getTypes().ConvertTypeForMem(StaticTy);
2403   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2404       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2405       LLVMReductionsBufferTy->getPointerTo());
2406 
2407   llvm::Value *Idxs[] = {CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2408                                               /*Volatile=*/false, C.IntTy,
2409                                               Loc)};
2410   unsigned Idx = 0;
2411   for (const Expr *Private : Privates) {
2412     // Reduce element = LocalReduceList[i]
2413     Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2414     llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2415         ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2416     // elemptr = ((CopyType*)(elemptrptr)) + I
2417     ElemTy = CGF.ConvertTypeForMem(Private->getType());
2418     ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2419         ElemPtrPtr, ElemTy->getPointerTo());
2420     Address ElemPtr =
2421         Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(Private->getType()));
2422     const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
2423     // Global = Buffer.VD[Idx];
2424     const FieldDecl *FD = VarFieldMap.lookup(VD);
2425     llvm::Value *BufferPtr =
2426         Bld.CreateInBoundsGEP(LLVMReductionsBufferTy, BufferArrPtr, Idxs);
2427     LValue GlobLVal = CGF.EmitLValueForField(
2428         CGF.MakeNaturalAlignAddrLValue(BufferPtr, StaticTy), FD);
2429     Address GlobAddr = GlobLVal.getAddress(CGF);
2430     GlobLVal.setAddress(Address(GlobAddr.getPointer(),
2431                                 CGF.ConvertTypeForMem(Private->getType()),
2432                                 GlobAddr.getAlignment()));
2433     switch (CGF.getEvaluationKind(Private->getType())) {
2434     case TEK_Scalar: {
2435       llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc);
2436       CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(),
2437                             LValueBaseInfo(AlignmentSource::Type),
2438                             TBAAAccessInfo());
2439       break;
2440     }
2441     case TEK_Complex: {
2442       CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc);
2443       CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2444                              /*isInit=*/false);
2445       break;
2446     }
2447     case TEK_Aggregate:
2448       CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2449                             GlobLVal, Private->getType(),
2450                             AggValueSlot::DoesNotOverlap);
2451       break;
2452     }
2453     ++Idx;
2454   }
2455 
2456   CGF.FinishFunction();
2457   return Fn;
2458 }
2459 
2460 /// This function emits a helper that reduces all the reduction variables from
2461 /// the team into the provided global buffer for the reduction variables.
2462 ///
2463 /// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data)
2464 ///  void *GlobPtrs[];
2465 ///  GlobPtrs[0] = (void*)&buffer.D0[Idx];
2466 ///  ...
2467 ///  GlobPtrs[N] = (void*)&buffer.DN[Idx];
2468 ///  reduce_function(reduce_data, GlobPtrs);
2469 static llvm::Value *emitGlobalToListReduceFunction(
2470     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2471     QualType ReductionArrayTy, SourceLocation Loc,
2472     const RecordDecl *TeamReductionRec,
2473     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2474         &VarFieldMap,
2475     llvm::Function *ReduceFn) {
2476   ASTContext &C = CGM.getContext();
2477 
2478   // Buffer: global reduction buffer.
2479   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2480                               C.VoidPtrTy, ImplicitParamKind::Other);
2481   // Idx: index of the buffer.
2482   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2483                            ImplicitParamKind::Other);
2484   // ReduceList: thread local Reduce list.
2485   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2486                                   C.VoidPtrTy, ImplicitParamKind::Other);
2487   FunctionArgList Args;
2488   Args.push_back(&BufferArg);
2489   Args.push_back(&IdxArg);
2490   Args.push_back(&ReduceListArg);
2491 
2492   const CGFunctionInfo &CGFI =
2493       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2494   auto *Fn = llvm::Function::Create(
2495       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2496       "_omp_reduction_global_to_list_reduce_func", &CGM.getModule());
2497   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2498   Fn->setDoesNotRecurse();
2499   CodeGenFunction CGF(CGM);
2500   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2501 
2502   CGBuilderTy &Bld = CGF.Builder;
2503 
2504   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2505   QualType StaticTy = C.getRecordType(TeamReductionRec);
2506   llvm::Type *LLVMReductionsBufferTy =
2507       CGM.getTypes().ConvertTypeForMem(StaticTy);
2508   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2509       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2510       LLVMReductionsBufferTy->getPointerTo());
2511 
2512   // 1. Build a list of reduction variables.
2513   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
2514   Address ReductionList =
2515       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
2516   auto IPriv = Privates.begin();
2517   llvm::Value *Idxs[] = {CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2518                                               /*Volatile=*/false, C.IntTy,
2519                                               Loc)};
2520   unsigned Idx = 0;
2521   for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
2522     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2523     // Global = Buffer.VD[Idx];
2524     const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
2525     const FieldDecl *FD = VarFieldMap.lookup(VD);
2526     llvm::Value *BufferPtr =
2527         Bld.CreateInBoundsGEP(LLVMReductionsBufferTy, BufferArrPtr, Idxs);
2528     LValue GlobLVal = CGF.EmitLValueForField(
2529         CGF.MakeNaturalAlignAddrLValue(BufferPtr, StaticTy), FD);
2530     Address GlobAddr = GlobLVal.getAddress(CGF);
2531     CGF.EmitStoreOfScalar(GlobAddr.getPointer(), Elem, /*Volatile=*/false,
2532                           C.VoidPtrTy);
2533     if ((*IPriv)->getType()->isVariablyModifiedType()) {
2534       // Store array size.
2535       ++Idx;
2536       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2537       llvm::Value *Size = CGF.Builder.CreateIntCast(
2538           CGF.getVLASize(
2539                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
2540               .NumElts,
2541           CGF.SizeTy, /*isSigned=*/false);
2542       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
2543                               Elem);
2544     }
2545   }
2546 
2547   // Call reduce_function(ReduceList, GlobalReduceList)
2548   llvm::Value *GlobalReduceList = ReductionList.getPointer();
2549   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2550   llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
2551       AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
2552   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2553       CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList});
2554   CGF.FinishFunction();
2555   return Fn;
2556 }
2557 
2558 ///
2559 /// Design of OpenMP reductions on the GPU
2560 ///
2561 /// Consider a typical OpenMP program with one or more reduction
2562 /// clauses:
2563 ///
2564 /// float foo;
2565 /// double bar;
2566 /// #pragma omp target teams distribute parallel for \
2567 ///             reduction(+:foo) reduction(*:bar)
2568 /// for (int i = 0; i < N; i++) {
2569 ///   foo += A[i]; bar *= B[i];
2570 /// }
2571 ///
2572 /// where 'foo' and 'bar' are reduced across all OpenMP threads in
2573 /// all teams.  In our OpenMP implementation on the NVPTX device an
2574 /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads
2575 /// within a team are mapped to CUDA threads within a threadblock.
2576 /// Our goal is to efficiently aggregate values across all OpenMP
2577 /// threads such that:
2578 ///
2579 ///   - the compiler and runtime are logically concise, and
2580 ///   - the reduction is performed efficiently in a hierarchical
2581 ///     manner as follows: within OpenMP threads in the same warp,
2582 ///     across warps in a threadblock, and finally across teams on
2583 ///     the NVPTX device.
2584 ///
2585 /// Introduction to Decoupling
2586 ///
2587 /// We would like to decouple the compiler and the runtime so that the
2588 /// latter is ignorant of the reduction variables (number, data types)
2589 /// and the reduction operators.  This allows a simpler interface
2590 /// and implementation while still attaining good performance.
2591 ///
2592 /// Pseudocode for the aforementioned OpenMP program generated by the
2593 /// compiler is as follows:
2594 ///
2595 /// 1. Create private copies of reduction variables on each OpenMP
2596 ///    thread: 'foo_private', 'bar_private'
2597 /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned
2598 ///    to it and writes the result in 'foo_private' and 'bar_private'
2599 ///    respectively.
2600 /// 3. Call the OpenMP runtime on the GPU to reduce within a team
2601 ///    and store the result on the team master:
2602 ///
2603 ///     __kmpc_nvptx_parallel_reduce_nowait_v2(...,
2604 ///        reduceData, shuffleReduceFn, interWarpCpyFn)
2605 ///
2606 ///     where:
2607 ///       struct ReduceData {
2608 ///         double *foo;
2609 ///         double *bar;
2610 ///       } reduceData
2611 ///       reduceData.foo = &foo_private
2612 ///       reduceData.bar = &bar_private
2613 ///
2614 ///     'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two
2615 ///     auxiliary functions generated by the compiler that operate on
2616 ///     variables of type 'ReduceData'.  They aid the runtime perform
2617 ///     algorithmic steps in a data agnostic manner.
2618 ///
2619 ///     'shuffleReduceFn' is a pointer to a function that reduces data
2620 ///     of type 'ReduceData' across two OpenMP threads (lanes) in the
2621 ///     same warp.  It takes the following arguments as input:
2622 ///
2623 ///     a. variable of type 'ReduceData' on the calling lane,
2624 ///     b. its lane_id,
2625 ///     c. an offset relative to the current lane_id to generate a
2626 ///        remote_lane_id.  The remote lane contains the second
2627 ///        variable of type 'ReduceData' that is to be reduced.
2628 ///     d. an algorithm version parameter determining which reduction
2629 ///        algorithm to use.
2630 ///
2631 ///     'shuffleReduceFn' retrieves data from the remote lane using
2632 ///     efficient GPU shuffle intrinsics and reduces, using the
2633 ///     algorithm specified by the 4th parameter, the two operands
2634 ///     element-wise.  The result is written to the first operand.
2635 ///
2636 ///     Different reduction algorithms are implemented in different
2637 ///     runtime functions, all calling 'shuffleReduceFn' to perform
2638 ///     the essential reduction step.  Therefore, based on the 4th
2639 ///     parameter, this function behaves slightly differently to
2640 ///     cooperate with the runtime to ensure correctness under
2641 ///     different circumstances.
2642 ///
2643 ///     'InterWarpCpyFn' is a pointer to a function that transfers
2644 ///     reduced variables across warps.  It tunnels, through CUDA
2645 ///     shared memory, the thread-private data of type 'ReduceData'
2646 ///     from lane 0 of each warp to a lane in the first warp.
2647 /// 4. Call the OpenMP runtime on the GPU to reduce across teams.
2648 ///    The last team writes the global reduced value to memory.
2649 ///
2650 ///     ret = __kmpc_nvptx_teams_reduce_nowait(...,
2651 ///             reduceData, shuffleReduceFn, interWarpCpyFn,
2652 ///             scratchpadCopyFn, loadAndReduceFn)
2653 ///
2654 ///     'scratchpadCopyFn' is a helper that stores reduced
2655 ///     data from the team master to a scratchpad array in
2656 ///     global memory.
2657 ///
2658 ///     'loadAndReduceFn' is a helper that loads data from
2659 ///     the scratchpad array and reduces it with the input
2660 ///     operand.
2661 ///
2662 ///     These compiler generated functions hide address
2663 ///     calculation and alignment information from the runtime.
2664 /// 5. if ret == 1:
2665 ///     The team master of the last team stores the reduced
2666 ///     result to the globals in memory.
2667 ///     foo += reduceData.foo; bar *= reduceData.bar
2668 ///
2669 ///
2670 /// Warp Reduction Algorithms
2671 ///
2672 /// On the warp level, we have three algorithms implemented in the
2673 /// OpenMP runtime depending on the number of active lanes:
2674 ///
2675 /// Full Warp Reduction
2676 ///
2677 /// The reduce algorithm within a warp where all lanes are active
2678 /// is implemented in the runtime as follows:
2679 ///
2680 /// full_warp_reduce(void *reduce_data,
2681 ///                  kmp_ShuffleReductFctPtr ShuffleReduceFn) {
2682 ///   for (int offset = WARPSIZE/2; offset > 0; offset /= 2)
2683 ///     ShuffleReduceFn(reduce_data, 0, offset, 0);
2684 /// }
2685 ///
2686 /// The algorithm completes in log(2, WARPSIZE) steps.
2687 ///
2688 /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is
2689 /// not used therefore we save instructions by not retrieving lane_id
2690 /// from the corresponding special registers.  The 4th parameter, which
2691 /// represents the version of the algorithm being used, is set to 0 to
2692 /// signify full warp reduction.
2693 ///
2694 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
2695 ///
2696 /// #reduce_elem refers to an element in the local lane's data structure
2697 /// #remote_elem is retrieved from a remote lane
2698 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
2699 /// reduce_elem = reduce_elem REDUCE_OP remote_elem;
2700 ///
2701 /// Contiguous Partial Warp Reduction
2702 ///
2703 /// This reduce algorithm is used within a warp where only the first
2704 /// 'n' (n <= WARPSIZE) lanes are active.  It is typically used when the
2705 /// number of OpenMP threads in a parallel region is not a multiple of
2706 /// WARPSIZE.  The algorithm is implemented in the runtime as follows:
2707 ///
2708 /// void
2709 /// contiguous_partial_reduce(void *reduce_data,
2710 ///                           kmp_ShuffleReductFctPtr ShuffleReduceFn,
2711 ///                           int size, int lane_id) {
2712 ///   int curr_size;
2713 ///   int offset;
2714 ///   curr_size = size;
2715 ///   mask = curr_size/2;
2716 ///   while (offset>0) {
2717 ///     ShuffleReduceFn(reduce_data, lane_id, offset, 1);
2718 ///     curr_size = (curr_size+1)/2;
2719 ///     offset = curr_size/2;
2720 ///   }
2721 /// }
2722 ///
2723 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
2724 ///
2725 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
2726 /// if (lane_id < offset)
2727 ///     reduce_elem = reduce_elem REDUCE_OP remote_elem
2728 /// else
2729 ///     reduce_elem = remote_elem
2730 ///
2731 /// This algorithm assumes that the data to be reduced are located in a
2732 /// contiguous subset of lanes starting from the first.  When there is
2733 /// an odd number of active lanes, the data in the last lane is not
2734 /// aggregated with any other lane's dat but is instead copied over.
2735 ///
2736 /// Dispersed Partial Warp Reduction
2737 ///
2738 /// This algorithm is used within a warp when any discontiguous subset of
2739 /// lanes are active.  It is used to implement the reduction operation
2740 /// across lanes in an OpenMP simd region or in a nested parallel region.
2741 ///
2742 /// void
2743 /// dispersed_partial_reduce(void *reduce_data,
2744 ///                          kmp_ShuffleReductFctPtr ShuffleReduceFn) {
2745 ///   int size, remote_id;
2746 ///   int logical_lane_id = number_of_active_lanes_before_me() * 2;
2747 ///   do {
2748 ///       remote_id = next_active_lane_id_right_after_me();
2749 ///       # the above function returns 0 of no active lane
2750 ///       # is present right after the current lane.
2751 ///       size = number_of_active_lanes_in_this_warp();
2752 ///       logical_lane_id /= 2;
2753 ///       ShuffleReduceFn(reduce_data, logical_lane_id,
2754 ///                       remote_id-1-threadIdx.x, 2);
2755 ///   } while (logical_lane_id % 2 == 0 && size > 1);
2756 /// }
2757 ///
2758 /// There is no assumption made about the initial state of the reduction.
2759 /// Any number of lanes (>=1) could be active at any position.  The reduction
2760 /// result is returned in the first active lane.
2761 ///
2762 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
2763 ///
2764 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
2765 /// if (lane_id % 2 == 0 && offset > 0)
2766 ///     reduce_elem = reduce_elem REDUCE_OP remote_elem
2767 /// else
2768 ///     reduce_elem = remote_elem
2769 ///
2770 ///
2771 /// Intra-Team Reduction
2772 ///
2773 /// This function, as implemented in the runtime call
2774 /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP
2775 /// threads in a team.  It first reduces within a warp using the
2776 /// aforementioned algorithms.  We then proceed to gather all such
2777 /// reduced values at the first warp.
2778 ///
2779 /// The runtime makes use of the function 'InterWarpCpyFn', which copies
2780 /// data from each of the "warp master" (zeroth lane of each warp, where
2781 /// warp-reduced data is held) to the zeroth warp.  This step reduces (in
2782 /// a mathematical sense) the problem of reduction across warp masters in
2783 /// a block to the problem of warp reduction.
2784 ///
2785 ///
2786 /// Inter-Team Reduction
2787 ///
2788 /// Once a team has reduced its data to a single value, it is stored in
2789 /// a global scratchpad array.  Since each team has a distinct slot, this
2790 /// can be done without locking.
2791 ///
2792 /// The last team to write to the scratchpad array proceeds to reduce the
2793 /// scratchpad array.  One or more workers in the last team use the helper
2794 /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e.,
2795 /// the k'th worker reduces every k'th element.
2796 ///
2797 /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to
2798 /// reduce across workers and compute a globally reduced value.
2799 ///
2800 void CGOpenMPRuntimeGPU::emitReduction(
2801     CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
2802     ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
2803     ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
2804   if (!CGF.HaveInsertPoint())
2805     return;
2806 
2807   bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind);
2808 #ifndef NDEBUG
2809   bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind);
2810 #endif
2811 
2812   if (Options.SimpleReduction) {
2813     assert(!TeamsReduction && !ParallelReduction &&
2814            "Invalid reduction selection in emitReduction.");
2815     CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
2816                                    ReductionOps, Options);
2817     return;
2818   }
2819 
2820   assert((TeamsReduction || ParallelReduction) &&
2821          "Invalid reduction selection in emitReduction.");
2822 
2823   llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap;
2824   llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size());
2825   int Cnt = 0;
2826   for (const Expr *DRE : Privates) {
2827     PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl();
2828     ++Cnt;
2829   }
2830 
2831   ASTContext &C = CGM.getContext();
2832   const RecordDecl *ReductionRec = ::buildRecordForGlobalizedVars(
2833       CGM.getContext(), PrivatesReductions, std::nullopt, VarFieldMap, 1);
2834 
2835   // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList),
2836   // RedList, shuffle_reduce_func, interwarp_copy_func);
2837   // or
2838   // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>);
2839   llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
2840 
2841   llvm::Value *Res;
2842   // 1. Build a list of reduction variables.
2843   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
2844   auto Size = RHSExprs.size();
2845   for (const Expr *E : Privates) {
2846     if (E->getType()->isVariablyModifiedType())
2847       // Reserve place for array size.
2848       ++Size;
2849   }
2850   llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
2851   QualType ReductionArrayTy = C.getConstantArrayType(
2852       C.VoidPtrTy, ArraySize, nullptr, ArraySizeModifier::Normal,
2853       /*IndexTypeQuals=*/0);
2854   Address ReductionList =
2855       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
2856   auto IPriv = Privates.begin();
2857   unsigned Idx = 0;
2858   for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
2859     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2860     CGF.Builder.CreateStore(
2861         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2862             CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy),
2863         Elem);
2864     if ((*IPriv)->getType()->isVariablyModifiedType()) {
2865       // Store array size.
2866       ++Idx;
2867       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2868       llvm::Value *Size = CGF.Builder.CreateIntCast(
2869           CGF.getVLASize(
2870                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
2871               .NumElts,
2872           CGF.SizeTy, /*isSigned=*/false);
2873       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
2874                               Elem);
2875     }
2876   }
2877 
2878   llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2879       ReductionList.getPointer(), CGF.VoidPtrTy);
2880   llvm::Function *ReductionFn = emitReductionFunction(
2881       CGF.CurFn->getName(), Loc, CGF.ConvertTypeForMem(ReductionArrayTy),
2882       Privates, LHSExprs, RHSExprs, ReductionOps);
2883   llvm::Value *ReductionDataSize =
2884       CGF.getTypeSize(C.getRecordType(ReductionRec));
2885   ReductionDataSize =
2886       CGF.Builder.CreateSExtOrTrunc(ReductionDataSize, CGF.Int64Ty);
2887   llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction(
2888       CGM, Privates, ReductionArrayTy, ReductionFn, Loc);
2889   llvm::Value *InterWarpCopyFn =
2890       emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc);
2891 
2892   if (ParallelReduction) {
2893     llvm::Value *Args[] = {RTLoc, ReductionDataSize, RL, ShuffleAndReduceFn,
2894                            InterWarpCopyFn};
2895 
2896     Res = CGF.EmitRuntimeCall(
2897         OMPBuilder.getOrCreateRuntimeFunction(
2898             CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2),
2899         Args);
2900   } else {
2901     assert(TeamsReduction && "expected teams reduction.");
2902     TeamsReductions.push_back(ReductionRec);
2903     auto *KernelTeamsReductionPtr = CGF.EmitRuntimeCall(
2904         OMPBuilder.getOrCreateRuntimeFunction(
2905             CGM.getModule(), OMPRTL___kmpc_reduction_get_fixed_buffer),
2906         {}, "_openmp_teams_reductions_buffer_$_$ptr");
2907     llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction(
2908         CGM, Privates, ReductionArrayTy, Loc, ReductionRec, VarFieldMap);
2909     llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction(
2910         CGM, Privates, ReductionArrayTy, Loc, ReductionRec, VarFieldMap,
2911         ReductionFn);
2912     llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction(
2913         CGM, Privates, ReductionArrayTy, Loc, ReductionRec, VarFieldMap);
2914     llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction(
2915         CGM, Privates, ReductionArrayTy, Loc, ReductionRec, VarFieldMap,
2916         ReductionFn);
2917 
2918     llvm::Value *Args[] = {
2919         RTLoc,
2920         KernelTeamsReductionPtr,
2921         CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum),
2922         ReductionDataSize,
2923         RL,
2924         ShuffleAndReduceFn,
2925         InterWarpCopyFn,
2926         GlobalToBufferCpyFn,
2927         GlobalToBufferRedFn,
2928         BufferToGlobalCpyFn,
2929         BufferToGlobalRedFn};
2930 
2931     Res = CGF.EmitRuntimeCall(
2932         OMPBuilder.getOrCreateRuntimeFunction(
2933             CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2),
2934         Args);
2935   }
2936 
2937   // 5. Build if (res == 1)
2938   llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done");
2939   llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then");
2940   llvm::Value *Cond = CGF.Builder.CreateICmpEQ(
2941       Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1));
2942   CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB);
2943 
2944   // 6. Build then branch: where we have reduced values in the master
2945   //    thread in each team.
2946   //    __kmpc_end_reduce{_nowait}(<gtid>);
2947   //    break;
2948   CGF.EmitBlock(ThenBB);
2949 
2950   // Add emission of __kmpc_end_reduce{_nowait}(<gtid>);
2951   auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps,
2952                     this](CodeGenFunction &CGF, PrePostActionTy &Action) {
2953     auto IPriv = Privates.begin();
2954     auto ILHS = LHSExprs.begin();
2955     auto IRHS = RHSExprs.begin();
2956     for (const Expr *E : ReductionOps) {
2957       emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
2958                                   cast<DeclRefExpr>(*IRHS));
2959       ++IPriv;
2960       ++ILHS;
2961       ++IRHS;
2962     }
2963   };
2964   RegionCodeGenTy RCG(CodeGen);
2965   RCG(CGF);
2966   // There is no need to emit line number for unconditional branch.
2967   (void)ApplyDebugLocation::CreateEmpty(CGF);
2968   CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
2969 }
2970 
2971 const VarDecl *
2972 CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD,
2973                                        const VarDecl *NativeParam) const {
2974   if (!NativeParam->getType()->isReferenceType())
2975     return NativeParam;
2976   QualType ArgType = NativeParam->getType();
2977   QualifierCollector QC;
2978   const Type *NonQualTy = QC.strip(ArgType);
2979   QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
2980   if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) {
2981     if (Attr->getCaptureKind() == OMPC_map) {
2982       PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy,
2983                                                         LangAS::opencl_global);
2984     }
2985   }
2986   ArgType = CGM.getContext().getPointerType(PointeeTy);
2987   QC.addRestrict();
2988   enum { NVPTX_local_addr = 5 };
2989   QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr));
2990   ArgType = QC.apply(CGM.getContext(), ArgType);
2991   if (isa<ImplicitParamDecl>(NativeParam))
2992     return ImplicitParamDecl::Create(
2993         CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(),
2994         NativeParam->getIdentifier(), ArgType, ImplicitParamKind::Other);
2995   return ParmVarDecl::Create(
2996       CGM.getContext(),
2997       const_cast<DeclContext *>(NativeParam->getDeclContext()),
2998       NativeParam->getBeginLoc(), NativeParam->getLocation(),
2999       NativeParam->getIdentifier(), ArgType,
3000       /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
3001 }
3002 
3003 Address
3004 CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF,
3005                                           const VarDecl *NativeParam,
3006                                           const VarDecl *TargetParam) const {
3007   assert(NativeParam != TargetParam &&
3008          NativeParam->getType()->isReferenceType() &&
3009          "Native arg must not be the same as target arg.");
3010   Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam);
3011   QualType NativeParamType = NativeParam->getType();
3012   QualifierCollector QC;
3013   const Type *NonQualTy = QC.strip(NativeParamType);
3014   QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
3015   unsigned NativePointeeAddrSpace =
3016       CGF.getTypes().getTargetAddressSpace(NativePointeeTy);
3017   QualType TargetTy = TargetParam->getType();
3018   llvm::Value *TargetAddr = CGF.EmitLoadOfScalar(LocalAddr, /*Volatile=*/false,
3019                                                  TargetTy, SourceLocation());
3020   // Cast to native address space.
3021   TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3022       TargetAddr,
3023       llvm::PointerType::get(CGF.getLLVMContext(), NativePointeeAddrSpace));
3024   Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType);
3025   CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false,
3026                         NativeParamType);
3027   return NativeParamAddr;
3028 }
3029 
3030 void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall(
3031     CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
3032     ArrayRef<llvm::Value *> Args) const {
3033   SmallVector<llvm::Value *, 4> TargetArgs;
3034   TargetArgs.reserve(Args.size());
3035   auto *FnType = OutlinedFn.getFunctionType();
3036   for (unsigned I = 0, E = Args.size(); I < E; ++I) {
3037     if (FnType->isVarArg() && FnType->getNumParams() <= I) {
3038       TargetArgs.append(std::next(Args.begin(), I), Args.end());
3039       break;
3040     }
3041     llvm::Type *TargetType = FnType->getParamType(I);
3042     llvm::Value *NativeArg = Args[I];
3043     if (!TargetType->isPointerTy()) {
3044       TargetArgs.emplace_back(NativeArg);
3045       continue;
3046     }
3047     TargetArgs.emplace_back(
3048         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(NativeArg, TargetType));
3049   }
3050   CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs);
3051 }
3052 
3053 /// Emit function which wraps the outline parallel region
3054 /// and controls the arguments which are passed to this function.
3055 /// The wrapper ensures that the outlined function is called
3056 /// with the correct arguments when data is shared.
3057 llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper(
3058     llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) {
3059   ASTContext &Ctx = CGM.getContext();
3060   const auto &CS = *D.getCapturedStmt(OMPD_parallel);
3061 
3062   // Create a function that takes as argument the source thread.
3063   FunctionArgList WrapperArgs;
3064   QualType Int16QTy =
3065       Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false);
3066   QualType Int32QTy =
3067       Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false);
3068   ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
3069                                      /*Id=*/nullptr, Int16QTy,
3070                                      ImplicitParamKind::Other);
3071   ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
3072                                /*Id=*/nullptr, Int32QTy,
3073                                ImplicitParamKind::Other);
3074   WrapperArgs.emplace_back(&ParallelLevelArg);
3075   WrapperArgs.emplace_back(&WrapperArg);
3076 
3077   const CGFunctionInfo &CGFI =
3078       CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs);
3079 
3080   auto *Fn = llvm::Function::Create(
3081       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
3082       Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule());
3083 
3084   // Ensure we do not inline the function. This is trivially true for the ones
3085   // passed to __kmpc_fork_call but the ones calles in serialized regions
3086   // could be inlined. This is not a perfect but it is closer to the invariant
3087   // we want, namely, every data environment starts with a new function.
3088   // TODO: We should pass the if condition to the runtime function and do the
3089   //       handling there. Much cleaner code.
3090   Fn->addFnAttr(llvm::Attribute::NoInline);
3091 
3092   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
3093   Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
3094   Fn->setDoesNotRecurse();
3095 
3096   CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
3097   CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs,
3098                     D.getBeginLoc(), D.getBeginLoc());
3099 
3100   const auto *RD = CS.getCapturedRecordDecl();
3101   auto CurField = RD->field_begin();
3102 
3103   Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
3104                                                       /*Name=*/".zero.addr");
3105   CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr);
3106   // Get the array of arguments.
3107   SmallVector<llvm::Value *, 8> Args;
3108 
3109   Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer());
3110   Args.emplace_back(ZeroAddr.getPointer());
3111 
3112   CGBuilderTy &Bld = CGF.Builder;
3113   auto CI = CS.capture_begin();
3114 
3115   // Use global memory for data sharing.
3116   // Handle passing of global args to workers.
3117   Address GlobalArgs =
3118       CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args");
3119   llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer();
3120   llvm::Value *DataSharingArgs[] = {GlobalArgsPtr};
3121   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
3122                           CGM.getModule(), OMPRTL___kmpc_get_shared_variables),
3123                       DataSharingArgs);
3124 
3125   // Retrieve the shared variables from the list of references returned
3126   // by the runtime. Pass the variables to the outlined function.
3127   Address SharedArgListAddress = Address::invalid();
3128   if (CS.capture_size() > 0 ||
3129       isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
3130     SharedArgListAddress = CGF.EmitLoadOfPointer(
3131         GlobalArgs, CGF.getContext()
3132                         .getPointerType(CGF.getContext().VoidPtrTy)
3133                         .castAs<PointerType>());
3134   }
3135   unsigned Idx = 0;
3136   if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
3137     Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
3138     Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3139         Src, CGF.SizeTy->getPointerTo(), CGF.SizeTy);
3140     llvm::Value *LB = CGF.EmitLoadOfScalar(
3141         TypedAddress,
3142         /*Volatile=*/false,
3143         CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
3144         cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc());
3145     Args.emplace_back(LB);
3146     ++Idx;
3147     Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
3148     TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3149         Src, CGF.SizeTy->getPointerTo(), CGF.SizeTy);
3150     llvm::Value *UB = CGF.EmitLoadOfScalar(
3151         TypedAddress,
3152         /*Volatile=*/false,
3153         CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
3154         cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc());
3155     Args.emplace_back(UB);
3156     ++Idx;
3157   }
3158   if (CS.capture_size() > 0) {
3159     ASTContext &CGFContext = CGF.getContext();
3160     for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) {
3161       QualType ElemTy = CurField->getType();
3162       Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx);
3163       Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3164           Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy)),
3165           CGF.ConvertTypeForMem(ElemTy));
3166       llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress,
3167                                               /*Volatile=*/false,
3168                                               CGFContext.getPointerType(ElemTy),
3169                                               CI->getLocation());
3170       if (CI->capturesVariableByCopy() &&
3171           !CI->getCapturedVar()->getType()->isAnyPointerType()) {
3172         Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(),
3173                               CI->getLocation());
3174       }
3175       Args.emplace_back(Arg);
3176     }
3177   }
3178 
3179   emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args);
3180   CGF.FinishFunction();
3181   return Fn;
3182 }
3183 
3184 void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF,
3185                                               const Decl *D) {
3186   if (getDataSharingMode() != CGOpenMPRuntimeGPU::DS_Generic)
3187     return;
3188 
3189   assert(D && "Expected function or captured|block decl.");
3190   assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 &&
3191          "Function is registered already.");
3192   assert((!TeamAndReductions.first || TeamAndReductions.first == D) &&
3193          "Team is set but not processed.");
3194   const Stmt *Body = nullptr;
3195   bool NeedToDelayGlobalization = false;
3196   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3197     Body = FD->getBody();
3198   } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
3199     Body = BD->getBody();
3200   } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) {
3201     Body = CD->getBody();
3202     NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP;
3203     if (NeedToDelayGlobalization &&
3204         getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
3205       return;
3206   }
3207   if (!Body)
3208     return;
3209   CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second);
3210   VarChecker.Visit(Body);
3211   const RecordDecl *GlobalizedVarsRecord =
3212       VarChecker.getGlobalizedRecord(IsInTTDRegion);
3213   TeamAndReductions.first = nullptr;
3214   TeamAndReductions.second.clear();
3215   ArrayRef<const ValueDecl *> EscapedVariableLengthDecls =
3216       VarChecker.getEscapedVariableLengthDecls();
3217   ArrayRef<const ValueDecl *> DelayedVariableLengthDecls =
3218       VarChecker.getDelayedVariableLengthDecls();
3219   if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty() &&
3220       DelayedVariableLengthDecls.empty())
3221     return;
3222   auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
3223   I->getSecond().MappedParams =
3224       std::make_unique<CodeGenFunction::OMPMapVars>();
3225   I->getSecond().EscapedParameters.insert(
3226       VarChecker.getEscapedParameters().begin(),
3227       VarChecker.getEscapedParameters().end());
3228   I->getSecond().EscapedVariableLengthDecls.append(
3229       EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end());
3230   I->getSecond().DelayedVariableLengthDecls.append(
3231       DelayedVariableLengthDecls.begin(), DelayedVariableLengthDecls.end());
3232   DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
3233   for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
3234     assert(VD->isCanonicalDecl() && "Expected canonical declaration");
3235     Data.insert(std::make_pair(VD, MappedVarData()));
3236   }
3237   if (!NeedToDelayGlobalization) {
3238     emitGenericVarsProlog(CGF, D->getBeginLoc());
3239     struct GlobalizationScope final : EHScopeStack::Cleanup {
3240       GlobalizationScope() = default;
3241 
3242       void Emit(CodeGenFunction &CGF, Flags flags) override {
3243         static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
3244             .emitGenericVarsEpilog(CGF);
3245       }
3246     };
3247     CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup);
3248   }
3249 }
3250 
3251 Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF,
3252                                                         const VarDecl *VD) {
3253   if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) {
3254     const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
3255     auto AS = LangAS::Default;
3256     switch (A->getAllocatorType()) {
3257       // Use the default allocator here as by default local vars are
3258       // threadlocal.
3259     case OMPAllocateDeclAttr::OMPNullMemAlloc:
3260     case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
3261     case OMPAllocateDeclAttr::OMPThreadMemAlloc:
3262     case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
3263     case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
3264       // Follow the user decision - use default allocation.
3265       return Address::invalid();
3266     case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
3267       // TODO: implement aupport for user-defined allocators.
3268       return Address::invalid();
3269     case OMPAllocateDeclAttr::OMPConstMemAlloc:
3270       AS = LangAS::cuda_constant;
3271       break;
3272     case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
3273       AS = LangAS::cuda_shared;
3274       break;
3275     case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
3276     case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
3277       break;
3278     }
3279     llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType());
3280     auto *GV = new llvm::GlobalVariable(
3281         CGM.getModule(), VarTy, /*isConstant=*/false,
3282         llvm::GlobalValue::InternalLinkage, llvm::PoisonValue::get(VarTy),
3283         VD->getName(),
3284         /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal,
3285         CGM.getContext().getTargetAddressSpace(AS));
3286     CharUnits Align = CGM.getContext().getDeclAlign(VD);
3287     GV->setAlignment(Align.getAsAlign());
3288     return Address(
3289         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3290             GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace(
3291                     VD->getType().getAddressSpace()))),
3292         VarTy, Align);
3293   }
3294 
3295   if (getDataSharingMode() != CGOpenMPRuntimeGPU::DS_Generic)
3296     return Address::invalid();
3297 
3298   VD = VD->getCanonicalDecl();
3299   auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
3300   if (I == FunctionGlobalizedDecls.end())
3301     return Address::invalid();
3302   auto VDI = I->getSecond().LocalVarData.find(VD);
3303   if (VDI != I->getSecond().LocalVarData.end())
3304     return VDI->second.PrivateAddr;
3305   if (VD->hasAttrs()) {
3306     for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()),
3307          E(VD->attr_end());
3308          IT != E; ++IT) {
3309       auto VDI = I->getSecond().LocalVarData.find(
3310           cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl())
3311               ->getCanonicalDecl());
3312       if (VDI != I->getSecond().LocalVarData.end())
3313         return VDI->second.PrivateAddr;
3314     }
3315   }
3316 
3317   return Address::invalid();
3318 }
3319 
3320 void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) {
3321   FunctionGlobalizedDecls.erase(CGF.CurFn);
3322   CGOpenMPRuntime::functionFinished(CGF);
3323 }
3324 
3325 void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk(
3326     CodeGenFunction &CGF, const OMPLoopDirective &S,
3327     OpenMPDistScheduleClauseKind &ScheduleKind,
3328     llvm::Value *&Chunk) const {
3329   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
3330   if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
3331     ScheduleKind = OMPC_DIST_SCHEDULE_static;
3332     Chunk = CGF.EmitScalarConversion(
3333         RT.getGPUNumThreads(CGF),
3334         CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3335         S.getIterationVariable()->getType(), S.getBeginLoc());
3336     return;
3337   }
3338   CGOpenMPRuntime::getDefaultDistScheduleAndChunk(
3339       CGF, S, ScheduleKind, Chunk);
3340 }
3341 
3342 void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk(
3343     CodeGenFunction &CGF, const OMPLoopDirective &S,
3344     OpenMPScheduleClauseKind &ScheduleKind,
3345     const Expr *&ChunkExpr) const {
3346   ScheduleKind = OMPC_SCHEDULE_static;
3347   // Chunk size is 1 in this case.
3348   llvm::APInt ChunkSize(32, 1);
3349   ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize,
3350       CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3351       SourceLocation());
3352 }
3353 
3354 void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas(
3355     CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
3356   assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
3357          " Expected target-based directive.");
3358   const CapturedStmt *CS = D.getCapturedStmt(OMPD_target);
3359   for (const CapturedStmt::Capture &C : CS->captures()) {
3360     // Capture variables captured by reference in lambdas for target-based
3361     // directives.
3362     if (!C.capturesVariable())
3363       continue;
3364     const VarDecl *VD = C.getCapturedVar();
3365     const auto *RD = VD->getType()
3366                          .getCanonicalType()
3367                          .getNonReferenceType()
3368                          ->getAsCXXRecordDecl();
3369     if (!RD || !RD->isLambda())
3370       continue;
3371     Address VDAddr = CGF.GetAddrOfLocalVar(VD);
3372     LValue VDLVal;
3373     if (VD->getType().getCanonicalType()->isReferenceType())
3374       VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType());
3375     else
3376       VDLVal = CGF.MakeAddrLValue(
3377           VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
3378     llvm::DenseMap<const ValueDecl *, FieldDecl *> Captures;
3379     FieldDecl *ThisCapture = nullptr;
3380     RD->getCaptureFields(Captures, ThisCapture);
3381     if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) {
3382       LValue ThisLVal =
3383           CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
3384       llvm::Value *CXXThis = CGF.LoadCXXThis();
3385       CGF.EmitStoreOfScalar(CXXThis, ThisLVal);
3386     }
3387     for (const LambdaCapture &LC : RD->captures()) {
3388       if (LC.getCaptureKind() != LCK_ByRef)
3389         continue;
3390       const ValueDecl *VD = LC.getCapturedVar();
3391       // FIXME: For now VD is always a VarDecl because OpenMP does not support
3392       //  capturing structured bindings in lambdas yet.
3393       if (!CS->capturesVariable(cast<VarDecl>(VD)))
3394         continue;
3395       auto It = Captures.find(VD);
3396       assert(It != Captures.end() && "Found lambda capture without field.");
3397       LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
3398       Address VDAddr = CGF.GetAddrOfLocalVar(cast<VarDecl>(VD));
3399       if (VD->getType().getCanonicalType()->isReferenceType())
3400         VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr,
3401                                                VD->getType().getCanonicalType())
3402                      .getAddress(CGF);
3403       CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal);
3404     }
3405   }
3406 }
3407 
3408 bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
3409                                                             LangAS &AS) {
3410   if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
3411     return false;
3412   const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
3413   switch(A->getAllocatorType()) {
3414   case OMPAllocateDeclAttr::OMPNullMemAlloc:
3415   case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
3416   // Not supported, fallback to the default mem space.
3417   case OMPAllocateDeclAttr::OMPThreadMemAlloc:
3418   case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
3419   case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
3420   case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
3421   case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
3422     AS = LangAS::Default;
3423     return true;
3424   case OMPAllocateDeclAttr::OMPConstMemAlloc:
3425     AS = LangAS::cuda_constant;
3426     return true;
3427   case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
3428     AS = LangAS::cuda_shared;
3429     return true;
3430   case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
3431     llvm_unreachable("Expected predefined allocator for the variables with the "
3432                      "static storage.");
3433   }
3434   return false;
3435 }
3436 
3437 // Get current CudaArch and ignore any unknown values
3438 static CudaArch getCudaArch(CodeGenModule &CGM) {
3439   if (!CGM.getTarget().hasFeature("ptx"))
3440     return CudaArch::UNKNOWN;
3441   for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) {
3442     if (Feature.getValue()) {
3443       CudaArch Arch = StringToCudaArch(Feature.getKey());
3444       if (Arch != CudaArch::UNKNOWN)
3445         return Arch;
3446     }
3447   }
3448   return CudaArch::UNKNOWN;
3449 }
3450 
3451 /// Check to see if target architecture supports unified addressing which is
3452 /// a restriction for OpenMP requires clause "unified_shared_memory".
3453 void CGOpenMPRuntimeGPU::processRequiresDirective(
3454     const OMPRequiresDecl *D) {
3455   for (const OMPClause *Clause : D->clauselists()) {
3456     if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
3457       CudaArch Arch = getCudaArch(CGM);
3458       switch (Arch) {
3459       case CudaArch::SM_20:
3460       case CudaArch::SM_21:
3461       case CudaArch::SM_30:
3462       case CudaArch::SM_32:
3463       case CudaArch::SM_35:
3464       case CudaArch::SM_37:
3465       case CudaArch::SM_50:
3466       case CudaArch::SM_52:
3467       case CudaArch::SM_53: {
3468         SmallString<256> Buffer;
3469         llvm::raw_svector_ostream Out(Buffer);
3470         Out << "Target architecture " << CudaArchToString(Arch)
3471             << " does not support unified addressing";
3472         CGM.Error(Clause->getBeginLoc(), Out.str());
3473         return;
3474       }
3475       case CudaArch::SM_60:
3476       case CudaArch::SM_61:
3477       case CudaArch::SM_62:
3478       case CudaArch::SM_70:
3479       case CudaArch::SM_72:
3480       case CudaArch::SM_75:
3481       case CudaArch::SM_80:
3482       case CudaArch::SM_86:
3483       case CudaArch::SM_87:
3484       case CudaArch::SM_89:
3485       case CudaArch::SM_90:
3486       case CudaArch::SM_90a:
3487       case CudaArch::GFX600:
3488       case CudaArch::GFX601:
3489       case CudaArch::GFX602:
3490       case CudaArch::GFX700:
3491       case CudaArch::GFX701:
3492       case CudaArch::GFX702:
3493       case CudaArch::GFX703:
3494       case CudaArch::GFX704:
3495       case CudaArch::GFX705:
3496       case CudaArch::GFX801:
3497       case CudaArch::GFX802:
3498       case CudaArch::GFX803:
3499       case CudaArch::GFX805:
3500       case CudaArch::GFX810:
3501       case CudaArch::GFX900:
3502       case CudaArch::GFX902:
3503       case CudaArch::GFX904:
3504       case CudaArch::GFX906:
3505       case CudaArch::GFX908:
3506       case CudaArch::GFX909:
3507       case CudaArch::GFX90a:
3508       case CudaArch::GFX90c:
3509       case CudaArch::GFX940:
3510       case CudaArch::GFX941:
3511       case CudaArch::GFX942:
3512       case CudaArch::GFX1010:
3513       case CudaArch::GFX1011:
3514       case CudaArch::GFX1012:
3515       case CudaArch::GFX1013:
3516       case CudaArch::GFX1030:
3517       case CudaArch::GFX1031:
3518       case CudaArch::GFX1032:
3519       case CudaArch::GFX1033:
3520       case CudaArch::GFX1034:
3521       case CudaArch::GFX1035:
3522       case CudaArch::GFX1036:
3523       case CudaArch::GFX1100:
3524       case CudaArch::GFX1101:
3525       case CudaArch::GFX1102:
3526       case CudaArch::GFX1103:
3527       case CudaArch::GFX1150:
3528       case CudaArch::GFX1151:
3529       case CudaArch::GFX1200:
3530       case CudaArch::GFX1201:
3531       case CudaArch::Generic:
3532       case CudaArch::UNUSED:
3533       case CudaArch::UNKNOWN:
3534         break;
3535       case CudaArch::LAST:
3536         llvm_unreachable("Unexpected Cuda arch.");
3537       }
3538     }
3539   }
3540   CGOpenMPRuntime::processRequiresDirective(D);
3541 }
3542 
3543 llvm::Value *CGOpenMPRuntimeGPU::getGPUNumThreads(CodeGenFunction &CGF) {
3544   CGBuilderTy &Bld = CGF.Builder;
3545   llvm::Module *M = &CGF.CGM.getModule();
3546   const char *LocSize = "__kmpc_get_hardware_num_threads_in_block";
3547   llvm::Function *F = M->getFunction(LocSize);
3548   if (!F) {
3549     F = llvm::Function::Create(
3550         llvm::FunctionType::get(CGF.Int32Ty, std::nullopt, false),
3551         llvm::GlobalVariable::ExternalLinkage, LocSize, &CGF.CGM.getModule());
3552   }
3553   return Bld.CreateCall(F, std::nullopt, "nvptx_num_threads");
3554 }
3555 
3556 llvm::Value *CGOpenMPRuntimeGPU::getGPUThreadID(CodeGenFunction &CGF) {
3557   ArrayRef<llvm::Value *> Args{};
3558   return CGF.EmitRuntimeCall(
3559       OMPBuilder.getOrCreateRuntimeFunction(
3560           CGM.getModule(), OMPRTL___kmpc_get_hardware_thread_id_in_block),
3561       Args);
3562 }
3563 
3564 llvm::Value *CGOpenMPRuntimeGPU::getGPUWarpSize(CodeGenFunction &CGF) {
3565   ArrayRef<llvm::Value *> Args{};
3566   return CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
3567                                  CGM.getModule(), OMPRTL___kmpc_get_warp_size),
3568                              Args);
3569 }
3570