1 //===------- CGObjCMac.cpp - Interface to Apple Objective-C Runtime -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides Objective-C code generation targeting the Apple runtime. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCleanup.h" 15 #include "CGObjCRuntime.h" 16 #include "CGRecordLayout.h" 17 #include "CodeGenFunction.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/Mangle.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtObjC.h" 26 #include "clang/Basic/CodeGenOptions.h" 27 #include "clang/Basic/LangOptions.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "clang/CodeGen/ConstantInitBuilder.h" 30 #include "llvm/ADT/CachedHashString.h" 31 #include "llvm/ADT/DenseSet.h" 32 #include "llvm/ADT/SetVector.h" 33 #include "llvm/ADT/SmallPtrSet.h" 34 #include "llvm/ADT/SmallString.h" 35 #include "llvm/ADT/UniqueVector.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/IR/Module.h" 41 #include "llvm/Support/ScopedPrinter.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <cstdio> 44 45 using namespace clang; 46 using namespace CodeGen; 47 48 namespace { 49 50 // FIXME: We should find a nicer way to make the labels for metadata, string 51 // concatenation is lame. 52 53 class ObjCCommonTypesHelper { 54 protected: 55 llvm::LLVMContext &VMContext; 56 57 private: 58 // The types of these functions don't really matter because we 59 // should always bitcast before calling them. 60 61 /// id objc_msgSend (id, SEL, ...) 62 /// 63 /// The default messenger, used for sends whose ABI is unchanged from 64 /// the all-integer/pointer case. 65 llvm::FunctionCallee getMessageSendFn() const { 66 // Add the non-lazy-bind attribute, since objc_msgSend is likely to 67 // be called a lot. 68 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 69 return CGM.CreateRuntimeFunction( 70 llvm::FunctionType::get(ObjectPtrTy, params, true), "objc_msgSend", 71 llvm::AttributeList::get(CGM.getLLVMContext(), 72 llvm::AttributeList::FunctionIndex, 73 llvm::Attribute::NonLazyBind)); 74 } 75 76 /// void objc_msgSend_stret (id, SEL, ...) 77 /// 78 /// The messenger used when the return value is an aggregate returned 79 /// by indirect reference in the first argument, and therefore the 80 /// self and selector parameters are shifted over by one. 81 llvm::FunctionCallee getMessageSendStretFn() const { 82 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 83 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, 84 params, true), 85 "objc_msgSend_stret"); 86 } 87 88 /// [double | long double] objc_msgSend_fpret(id self, SEL op, ...) 89 /// 90 /// The messenger used when the return value is returned on the x87 91 /// floating-point stack; without a special entrypoint, the nil case 92 /// would be unbalanced. 93 llvm::FunctionCallee getMessageSendFpretFn() const { 94 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 95 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.DoubleTy, 96 params, true), 97 "objc_msgSend_fpret"); 98 } 99 100 /// _Complex long double objc_msgSend_fp2ret(id self, SEL op, ...) 101 /// 102 /// The messenger used when the return value is returned in two values on the 103 /// x87 floating point stack; without a special entrypoint, the nil case 104 /// would be unbalanced. Only used on 64-bit X86. 105 llvm::FunctionCallee getMessageSendFp2retFn() const { 106 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 107 llvm::Type *longDoubleType = llvm::Type::getX86_FP80Ty(VMContext); 108 llvm::Type *resultType = 109 llvm::StructType::get(longDoubleType, longDoubleType); 110 111 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(resultType, 112 params, true), 113 "objc_msgSend_fp2ret"); 114 } 115 116 /// id objc_msgSendSuper(struct objc_super *super, SEL op, ...) 117 /// 118 /// The messenger used for super calls, which have different dispatch 119 /// semantics. The class passed is the superclass of the current 120 /// class. 121 llvm::FunctionCallee getMessageSendSuperFn() const { 122 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 123 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 124 params, true), 125 "objc_msgSendSuper"); 126 } 127 128 /// id objc_msgSendSuper2(struct objc_super *super, SEL op, ...) 129 /// 130 /// A slightly different messenger used for super calls. The class 131 /// passed is the current class. 132 llvm::FunctionCallee getMessageSendSuperFn2() const { 133 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 134 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 135 params, true), 136 "objc_msgSendSuper2"); 137 } 138 139 /// void objc_msgSendSuper_stret(void *stretAddr, struct objc_super *super, 140 /// SEL op, ...) 141 /// 142 /// The messenger used for super calls which return an aggregate indirectly. 143 llvm::FunctionCallee getMessageSendSuperStretFn() const { 144 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 145 return CGM.CreateRuntimeFunction( 146 llvm::FunctionType::get(CGM.VoidTy, params, true), 147 "objc_msgSendSuper_stret"); 148 } 149 150 /// void objc_msgSendSuper2_stret(void * stretAddr, struct objc_super *super, 151 /// SEL op, ...) 152 /// 153 /// objc_msgSendSuper_stret with the super2 semantics. 154 llvm::FunctionCallee getMessageSendSuperStretFn2() const { 155 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 156 return CGM.CreateRuntimeFunction( 157 llvm::FunctionType::get(CGM.VoidTy, params, true), 158 "objc_msgSendSuper2_stret"); 159 } 160 161 llvm::FunctionCallee getMessageSendSuperFpretFn() const { 162 // There is no objc_msgSendSuper_fpret? How can that work? 163 return getMessageSendSuperFn(); 164 } 165 166 llvm::FunctionCallee getMessageSendSuperFpretFn2() const { 167 // There is no objc_msgSendSuper_fpret? How can that work? 168 return getMessageSendSuperFn2(); 169 } 170 171 protected: 172 CodeGen::CodeGenModule &CGM; 173 174 public: 175 llvm::IntegerType *ShortTy, *IntTy, *LongTy; 176 llvm::PointerType *Int8PtrTy, *Int8PtrPtrTy; 177 llvm::Type *IvarOffsetVarTy; 178 179 /// ObjectPtrTy - LLVM type for object handles (typeof(id)) 180 llvm::PointerType *ObjectPtrTy; 181 182 /// PtrObjectPtrTy - LLVM type for id * 183 llvm::PointerType *PtrObjectPtrTy; 184 185 /// SelectorPtrTy - LLVM type for selector handles (typeof(SEL)) 186 llvm::PointerType *SelectorPtrTy; 187 188 private: 189 /// ProtocolPtrTy - LLVM type for external protocol handles 190 /// (typeof(Protocol)) 191 llvm::Type *ExternalProtocolPtrTy; 192 193 public: 194 llvm::Type *getExternalProtocolPtrTy() { 195 if (!ExternalProtocolPtrTy) { 196 // FIXME: It would be nice to unify this with the opaque type, so that the 197 // IR comes out a bit cleaner. 198 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 199 ASTContext &Ctx = CGM.getContext(); 200 llvm::Type *T = Types.ConvertType(Ctx.getObjCProtoType()); 201 ExternalProtocolPtrTy = llvm::PointerType::getUnqual(T); 202 } 203 204 return ExternalProtocolPtrTy; 205 } 206 207 // SuperCTy - clang type for struct objc_super. 208 QualType SuperCTy; 209 // SuperPtrCTy - clang type for struct objc_super *. 210 QualType SuperPtrCTy; 211 212 /// SuperTy - LLVM type for struct objc_super. 213 llvm::StructType *SuperTy; 214 /// SuperPtrTy - LLVM type for struct objc_super *. 215 llvm::PointerType *SuperPtrTy; 216 217 /// PropertyTy - LLVM type for struct objc_property (struct _prop_t 218 /// in GCC parlance). 219 llvm::StructType *PropertyTy; 220 221 /// PropertyListTy - LLVM type for struct objc_property_list 222 /// (_prop_list_t in GCC parlance). 223 llvm::StructType *PropertyListTy; 224 /// PropertyListPtrTy - LLVM type for struct objc_property_list*. 225 llvm::PointerType *PropertyListPtrTy; 226 227 // MethodTy - LLVM type for struct objc_method. 228 llvm::StructType *MethodTy; 229 230 /// CacheTy - LLVM type for struct objc_cache. 231 llvm::Type *CacheTy; 232 /// CachePtrTy - LLVM type for struct objc_cache *. 233 llvm::PointerType *CachePtrTy; 234 235 llvm::FunctionCallee getGetPropertyFn() { 236 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 237 ASTContext &Ctx = CGM.getContext(); 238 // id objc_getProperty (id, SEL, ptrdiff_t, bool) 239 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 240 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 241 CanQualType Params[] = { 242 IdType, SelType, 243 Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), Ctx.BoolTy}; 244 llvm::FunctionType *FTy = 245 Types.GetFunctionType( 246 Types.arrangeBuiltinFunctionDeclaration(IdType, Params)); 247 return CGM.CreateRuntimeFunction(FTy, "objc_getProperty"); 248 } 249 250 llvm::FunctionCallee getSetPropertyFn() { 251 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 252 ASTContext &Ctx = CGM.getContext(); 253 // void objc_setProperty (id, SEL, ptrdiff_t, id, bool, bool) 254 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 255 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 256 CanQualType Params[] = { 257 IdType, 258 SelType, 259 Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), 260 IdType, 261 Ctx.BoolTy, 262 Ctx.BoolTy}; 263 llvm::FunctionType *FTy = 264 Types.GetFunctionType( 265 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 266 return CGM.CreateRuntimeFunction(FTy, "objc_setProperty"); 267 } 268 269 llvm::FunctionCallee getOptimizedSetPropertyFn(bool atomic, bool copy) { 270 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 271 ASTContext &Ctx = CGM.getContext(); 272 // void objc_setProperty_atomic(id self, SEL _cmd, 273 // id newValue, ptrdiff_t offset); 274 // void objc_setProperty_nonatomic(id self, SEL _cmd, 275 // id newValue, ptrdiff_t offset); 276 // void objc_setProperty_atomic_copy(id self, SEL _cmd, 277 // id newValue, ptrdiff_t offset); 278 // void objc_setProperty_nonatomic_copy(id self, SEL _cmd, 279 // id newValue, ptrdiff_t offset); 280 281 SmallVector<CanQualType,4> Params; 282 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 283 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 284 Params.push_back(IdType); 285 Params.push_back(SelType); 286 Params.push_back(IdType); 287 Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified()); 288 llvm::FunctionType *FTy = 289 Types.GetFunctionType( 290 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 291 const char *name; 292 if (atomic && copy) 293 name = "objc_setProperty_atomic_copy"; 294 else if (atomic && !copy) 295 name = "objc_setProperty_atomic"; 296 else if (!atomic && copy) 297 name = "objc_setProperty_nonatomic_copy"; 298 else 299 name = "objc_setProperty_nonatomic"; 300 301 return CGM.CreateRuntimeFunction(FTy, name); 302 } 303 304 llvm::FunctionCallee getCopyStructFn() { 305 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 306 ASTContext &Ctx = CGM.getContext(); 307 // void objc_copyStruct (void *, const void *, size_t, bool, bool) 308 SmallVector<CanQualType,5> Params; 309 Params.push_back(Ctx.VoidPtrTy); 310 Params.push_back(Ctx.VoidPtrTy); 311 Params.push_back(Ctx.getSizeType()); 312 Params.push_back(Ctx.BoolTy); 313 Params.push_back(Ctx.BoolTy); 314 llvm::FunctionType *FTy = 315 Types.GetFunctionType( 316 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 317 return CGM.CreateRuntimeFunction(FTy, "objc_copyStruct"); 318 } 319 320 /// This routine declares and returns address of: 321 /// void objc_copyCppObjectAtomic( 322 /// void *dest, const void *src, 323 /// void (*copyHelper) (void *dest, const void *source)); 324 llvm::FunctionCallee getCppAtomicObjectFunction() { 325 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 326 ASTContext &Ctx = CGM.getContext(); 327 /// void objc_copyCppObjectAtomic(void *dest, const void *src, void *helper); 328 SmallVector<CanQualType,3> Params; 329 Params.push_back(Ctx.VoidPtrTy); 330 Params.push_back(Ctx.VoidPtrTy); 331 Params.push_back(Ctx.VoidPtrTy); 332 llvm::FunctionType *FTy = 333 Types.GetFunctionType( 334 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 335 return CGM.CreateRuntimeFunction(FTy, "objc_copyCppObjectAtomic"); 336 } 337 338 llvm::FunctionCallee getEnumerationMutationFn() { 339 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 340 ASTContext &Ctx = CGM.getContext(); 341 // void objc_enumerationMutation (id) 342 SmallVector<CanQualType,1> Params; 343 Params.push_back(Ctx.getCanonicalParamType(Ctx.getObjCIdType())); 344 llvm::FunctionType *FTy = 345 Types.GetFunctionType( 346 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 347 return CGM.CreateRuntimeFunction(FTy, "objc_enumerationMutation"); 348 } 349 350 llvm::FunctionCallee getLookUpClassFn() { 351 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 352 ASTContext &Ctx = CGM.getContext(); 353 // Class objc_lookUpClass (const char *) 354 SmallVector<CanQualType,1> Params; 355 Params.push_back( 356 Ctx.getCanonicalType(Ctx.getPointerType(Ctx.CharTy.withConst()))); 357 llvm::FunctionType *FTy = 358 Types.GetFunctionType(Types.arrangeBuiltinFunctionDeclaration( 359 Ctx.getCanonicalType(Ctx.getObjCClassType()), 360 Params)); 361 return CGM.CreateRuntimeFunction(FTy, "objc_lookUpClass"); 362 } 363 364 /// GcReadWeakFn -- LLVM objc_read_weak (id *src) function. 365 llvm::FunctionCallee getGcReadWeakFn() { 366 // id objc_read_weak (id *) 367 llvm::Type *args[] = { ObjectPtrTy->getPointerTo() }; 368 llvm::FunctionType *FTy = 369 llvm::FunctionType::get(ObjectPtrTy, args, false); 370 return CGM.CreateRuntimeFunction(FTy, "objc_read_weak"); 371 } 372 373 /// GcAssignWeakFn -- LLVM objc_assign_weak function. 374 llvm::FunctionCallee getGcAssignWeakFn() { 375 // id objc_assign_weak (id, id *) 376 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 377 llvm::FunctionType *FTy = 378 llvm::FunctionType::get(ObjectPtrTy, args, false); 379 return CGM.CreateRuntimeFunction(FTy, "objc_assign_weak"); 380 } 381 382 /// GcAssignGlobalFn -- LLVM objc_assign_global function. 383 llvm::FunctionCallee getGcAssignGlobalFn() { 384 // id objc_assign_global(id, id *) 385 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 386 llvm::FunctionType *FTy = 387 llvm::FunctionType::get(ObjectPtrTy, args, false); 388 return CGM.CreateRuntimeFunction(FTy, "objc_assign_global"); 389 } 390 391 /// GcAssignThreadLocalFn -- LLVM objc_assign_threadlocal function. 392 llvm::FunctionCallee getGcAssignThreadLocalFn() { 393 // id objc_assign_threadlocal(id src, id * dest) 394 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 395 llvm::FunctionType *FTy = 396 llvm::FunctionType::get(ObjectPtrTy, args, false); 397 return CGM.CreateRuntimeFunction(FTy, "objc_assign_threadlocal"); 398 } 399 400 /// GcAssignIvarFn -- LLVM objc_assign_ivar function. 401 llvm::FunctionCallee getGcAssignIvarFn() { 402 // id objc_assign_ivar(id, id *, ptrdiff_t) 403 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo(), 404 CGM.PtrDiffTy }; 405 llvm::FunctionType *FTy = 406 llvm::FunctionType::get(ObjectPtrTy, args, false); 407 return CGM.CreateRuntimeFunction(FTy, "objc_assign_ivar"); 408 } 409 410 /// GcMemmoveCollectableFn -- LLVM objc_memmove_collectable function. 411 llvm::FunctionCallee GcMemmoveCollectableFn() { 412 // void *objc_memmove_collectable(void *dst, const void *src, size_t size) 413 llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, LongTy }; 414 llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, args, false); 415 return CGM.CreateRuntimeFunction(FTy, "objc_memmove_collectable"); 416 } 417 418 /// GcAssignStrongCastFn -- LLVM objc_assign_strongCast function. 419 llvm::FunctionCallee getGcAssignStrongCastFn() { 420 // id objc_assign_strongCast(id, id *) 421 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 422 llvm::FunctionType *FTy = 423 llvm::FunctionType::get(ObjectPtrTy, args, false); 424 return CGM.CreateRuntimeFunction(FTy, "objc_assign_strongCast"); 425 } 426 427 /// ExceptionThrowFn - LLVM objc_exception_throw function. 428 llvm::FunctionCallee getExceptionThrowFn() { 429 // void objc_exception_throw(id) 430 llvm::Type *args[] = { ObjectPtrTy }; 431 llvm::FunctionType *FTy = 432 llvm::FunctionType::get(CGM.VoidTy, args, false); 433 return CGM.CreateRuntimeFunction(FTy, "objc_exception_throw"); 434 } 435 436 /// ExceptionRethrowFn - LLVM objc_exception_rethrow function. 437 llvm::FunctionCallee getExceptionRethrowFn() { 438 // void objc_exception_rethrow(void) 439 llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, false); 440 return CGM.CreateRuntimeFunction(FTy, "objc_exception_rethrow"); 441 } 442 443 /// SyncEnterFn - LLVM object_sync_enter function. 444 llvm::FunctionCallee getSyncEnterFn() { 445 // int objc_sync_enter (id) 446 llvm::Type *args[] = { ObjectPtrTy }; 447 llvm::FunctionType *FTy = 448 llvm::FunctionType::get(CGM.IntTy, args, false); 449 return CGM.CreateRuntimeFunction(FTy, "objc_sync_enter"); 450 } 451 452 /// SyncExitFn - LLVM object_sync_exit function. 453 llvm::FunctionCallee getSyncExitFn() { 454 // int objc_sync_exit (id) 455 llvm::Type *args[] = { ObjectPtrTy }; 456 llvm::FunctionType *FTy = 457 llvm::FunctionType::get(CGM.IntTy, args, false); 458 return CGM.CreateRuntimeFunction(FTy, "objc_sync_exit"); 459 } 460 461 llvm::FunctionCallee getSendFn(bool IsSuper) const { 462 return IsSuper ? getMessageSendSuperFn() : getMessageSendFn(); 463 } 464 465 llvm::FunctionCallee getSendFn2(bool IsSuper) const { 466 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFn(); 467 } 468 469 llvm::FunctionCallee getSendStretFn(bool IsSuper) const { 470 return IsSuper ? getMessageSendSuperStretFn() : getMessageSendStretFn(); 471 } 472 473 llvm::FunctionCallee getSendStretFn2(bool IsSuper) const { 474 return IsSuper ? getMessageSendSuperStretFn2() : getMessageSendStretFn(); 475 } 476 477 llvm::FunctionCallee getSendFpretFn(bool IsSuper) const { 478 return IsSuper ? getMessageSendSuperFpretFn() : getMessageSendFpretFn(); 479 } 480 481 llvm::FunctionCallee getSendFpretFn2(bool IsSuper) const { 482 return IsSuper ? getMessageSendSuperFpretFn2() : getMessageSendFpretFn(); 483 } 484 485 llvm::FunctionCallee getSendFp2retFn(bool IsSuper) const { 486 return IsSuper ? getMessageSendSuperFn() : getMessageSendFp2retFn(); 487 } 488 489 llvm::FunctionCallee getSendFp2RetFn2(bool IsSuper) const { 490 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFp2retFn(); 491 } 492 493 ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm); 494 }; 495 496 /// ObjCTypesHelper - Helper class that encapsulates lazy 497 /// construction of varies types used during ObjC generation. 498 class ObjCTypesHelper : public ObjCCommonTypesHelper { 499 public: 500 /// SymtabTy - LLVM type for struct objc_symtab. 501 llvm::StructType *SymtabTy; 502 /// SymtabPtrTy - LLVM type for struct objc_symtab *. 503 llvm::PointerType *SymtabPtrTy; 504 /// ModuleTy - LLVM type for struct objc_module. 505 llvm::StructType *ModuleTy; 506 507 /// ProtocolTy - LLVM type for struct objc_protocol. 508 llvm::StructType *ProtocolTy; 509 /// ProtocolPtrTy - LLVM type for struct objc_protocol *. 510 llvm::PointerType *ProtocolPtrTy; 511 /// ProtocolExtensionTy - LLVM type for struct 512 /// objc_protocol_extension. 513 llvm::StructType *ProtocolExtensionTy; 514 /// ProtocolExtensionTy - LLVM type for struct 515 /// objc_protocol_extension *. 516 llvm::PointerType *ProtocolExtensionPtrTy; 517 /// MethodDescriptionTy - LLVM type for struct 518 /// objc_method_description. 519 llvm::StructType *MethodDescriptionTy; 520 /// MethodDescriptionListTy - LLVM type for struct 521 /// objc_method_description_list. 522 llvm::StructType *MethodDescriptionListTy; 523 /// MethodDescriptionListPtrTy - LLVM type for struct 524 /// objc_method_description_list *. 525 llvm::PointerType *MethodDescriptionListPtrTy; 526 /// ProtocolListTy - LLVM type for struct objc_property_list. 527 llvm::StructType *ProtocolListTy; 528 /// ProtocolListPtrTy - LLVM type for struct objc_property_list*. 529 llvm::PointerType *ProtocolListPtrTy; 530 /// CategoryTy - LLVM type for struct objc_category. 531 llvm::StructType *CategoryTy; 532 /// ClassTy - LLVM type for struct objc_class. 533 llvm::StructType *ClassTy; 534 /// ClassPtrTy - LLVM type for struct objc_class *. 535 llvm::PointerType *ClassPtrTy; 536 /// ClassExtensionTy - LLVM type for struct objc_class_ext. 537 llvm::StructType *ClassExtensionTy; 538 /// ClassExtensionPtrTy - LLVM type for struct objc_class_ext *. 539 llvm::PointerType *ClassExtensionPtrTy; 540 // IvarTy - LLVM type for struct objc_ivar. 541 llvm::StructType *IvarTy; 542 /// IvarListTy - LLVM type for struct objc_ivar_list. 543 llvm::StructType *IvarListTy; 544 /// IvarListPtrTy - LLVM type for struct objc_ivar_list *. 545 llvm::PointerType *IvarListPtrTy; 546 /// MethodListTy - LLVM type for struct objc_method_list. 547 llvm::StructType *MethodListTy; 548 /// MethodListPtrTy - LLVM type for struct objc_method_list *. 549 llvm::PointerType *MethodListPtrTy; 550 551 /// ExceptionDataTy - LLVM type for struct _objc_exception_data. 552 llvm::StructType *ExceptionDataTy; 553 554 /// ExceptionTryEnterFn - LLVM objc_exception_try_enter function. 555 llvm::FunctionCallee getExceptionTryEnterFn() { 556 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 557 return CGM.CreateRuntimeFunction( 558 llvm::FunctionType::get(CGM.VoidTy, params, false), 559 "objc_exception_try_enter"); 560 } 561 562 /// ExceptionTryExitFn - LLVM objc_exception_try_exit function. 563 llvm::FunctionCallee getExceptionTryExitFn() { 564 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 565 return CGM.CreateRuntimeFunction( 566 llvm::FunctionType::get(CGM.VoidTy, params, false), 567 "objc_exception_try_exit"); 568 } 569 570 /// ExceptionExtractFn - LLVM objc_exception_extract function. 571 llvm::FunctionCallee getExceptionExtractFn() { 572 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 573 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 574 params, false), 575 "objc_exception_extract"); 576 } 577 578 /// ExceptionMatchFn - LLVM objc_exception_match function. 579 llvm::FunctionCallee getExceptionMatchFn() { 580 llvm::Type *params[] = { ClassPtrTy, ObjectPtrTy }; 581 return CGM.CreateRuntimeFunction( 582 llvm::FunctionType::get(CGM.Int32Ty, params, false), 583 "objc_exception_match"); 584 } 585 586 /// SetJmpFn - LLVM _setjmp function. 587 llvm::FunctionCallee getSetJmpFn() { 588 // This is specifically the prototype for x86. 589 llvm::Type *params[] = { CGM.Int32Ty->getPointerTo() }; 590 return CGM.CreateRuntimeFunction( 591 llvm::FunctionType::get(CGM.Int32Ty, params, false), "_setjmp", 592 llvm::AttributeList::get(CGM.getLLVMContext(), 593 llvm::AttributeList::FunctionIndex, 594 llvm::Attribute::NonLazyBind)); 595 } 596 597 public: 598 ObjCTypesHelper(CodeGen::CodeGenModule &cgm); 599 }; 600 601 /// ObjCNonFragileABITypesHelper - will have all types needed by objective-c's 602 /// modern abi 603 class ObjCNonFragileABITypesHelper : public ObjCCommonTypesHelper { 604 public: 605 // MethodListnfABITy - LLVM for struct _method_list_t 606 llvm::StructType *MethodListnfABITy; 607 608 // MethodListnfABIPtrTy - LLVM for struct _method_list_t* 609 llvm::PointerType *MethodListnfABIPtrTy; 610 611 // ProtocolnfABITy = LLVM for struct _protocol_t 612 llvm::StructType *ProtocolnfABITy; 613 614 // ProtocolnfABIPtrTy = LLVM for struct _protocol_t* 615 llvm::PointerType *ProtocolnfABIPtrTy; 616 617 // ProtocolListnfABITy - LLVM for struct _objc_protocol_list 618 llvm::StructType *ProtocolListnfABITy; 619 620 // ProtocolListnfABIPtrTy - LLVM for struct _objc_protocol_list* 621 llvm::PointerType *ProtocolListnfABIPtrTy; 622 623 // ClassnfABITy - LLVM for struct _class_t 624 llvm::StructType *ClassnfABITy; 625 626 // ClassnfABIPtrTy - LLVM for struct _class_t* 627 llvm::PointerType *ClassnfABIPtrTy; 628 629 // IvarnfABITy - LLVM for struct _ivar_t 630 llvm::StructType *IvarnfABITy; 631 632 // IvarListnfABITy - LLVM for struct _ivar_list_t 633 llvm::StructType *IvarListnfABITy; 634 635 // IvarListnfABIPtrTy = LLVM for struct _ivar_list_t* 636 llvm::PointerType *IvarListnfABIPtrTy; 637 638 // ClassRonfABITy - LLVM for struct _class_ro_t 639 llvm::StructType *ClassRonfABITy; 640 641 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 642 llvm::PointerType *ImpnfABITy; 643 644 // CategorynfABITy - LLVM for struct _category_t 645 llvm::StructType *CategorynfABITy; 646 647 // New types for nonfragile abi messaging. 648 649 // MessageRefTy - LLVM for: 650 // struct _message_ref_t { 651 // IMP messenger; 652 // SEL name; 653 // }; 654 llvm::StructType *MessageRefTy; 655 // MessageRefCTy - clang type for struct _message_ref_t 656 QualType MessageRefCTy; 657 658 // MessageRefPtrTy - LLVM for struct _message_ref_t* 659 llvm::Type *MessageRefPtrTy; 660 // MessageRefCPtrTy - clang type for struct _message_ref_t* 661 QualType MessageRefCPtrTy; 662 663 // SuperMessageRefTy - LLVM for: 664 // struct _super_message_ref_t { 665 // SUPER_IMP messenger; 666 // SEL name; 667 // }; 668 llvm::StructType *SuperMessageRefTy; 669 670 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 671 llvm::PointerType *SuperMessageRefPtrTy; 672 673 llvm::FunctionCallee getMessageSendFixupFn() { 674 // id objc_msgSend_fixup(id, struct message_ref_t*, ...) 675 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 676 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 677 params, true), 678 "objc_msgSend_fixup"); 679 } 680 681 llvm::FunctionCallee getMessageSendFpretFixupFn() { 682 // id objc_msgSend_fpret_fixup(id, struct message_ref_t*, ...) 683 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 684 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 685 params, true), 686 "objc_msgSend_fpret_fixup"); 687 } 688 689 llvm::FunctionCallee getMessageSendStretFixupFn() { 690 // id objc_msgSend_stret_fixup(id, struct message_ref_t*, ...) 691 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 692 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 693 params, true), 694 "objc_msgSend_stret_fixup"); 695 } 696 697 llvm::FunctionCallee getMessageSendSuper2FixupFn() { 698 // id objc_msgSendSuper2_fixup (struct objc_super *, 699 // struct _super_message_ref_t*, ...) 700 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 701 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 702 params, true), 703 "objc_msgSendSuper2_fixup"); 704 } 705 706 llvm::FunctionCallee getMessageSendSuper2StretFixupFn() { 707 // id objc_msgSendSuper2_stret_fixup(struct objc_super *, 708 // struct _super_message_ref_t*, ...) 709 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 710 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 711 params, true), 712 "objc_msgSendSuper2_stret_fixup"); 713 } 714 715 llvm::FunctionCallee getObjCEndCatchFn() { 716 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, false), 717 "objc_end_catch"); 718 } 719 720 llvm::FunctionCallee getObjCBeginCatchFn() { 721 llvm::Type *params[] = { Int8PtrTy }; 722 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(Int8PtrTy, 723 params, false), 724 "objc_begin_catch"); 725 } 726 727 /// Class objc_loadClassref (void *) 728 /// 729 /// Loads from a classref. For Objective-C stub classes, this invokes the 730 /// initialization callback stored inside the stub. For all other classes 731 /// this simply dereferences the pointer. 732 llvm::FunctionCallee getLoadClassrefFn() const { 733 // Add the non-lazy-bind attribute, since objc_loadClassref is likely to 734 // be called a lot. 735 // 736 // Also it is safe to make it readnone, since we never load or store the 737 // classref except by calling this function. 738 llvm::Type *params[] = { Int8PtrPtrTy }; 739 llvm::FunctionCallee F = CGM.CreateRuntimeFunction( 740 llvm::FunctionType::get(ClassnfABIPtrTy, params, false), 741 "objc_loadClassref", 742 llvm::AttributeList::get(CGM.getLLVMContext(), 743 llvm::AttributeList::FunctionIndex, 744 {llvm::Attribute::NonLazyBind, 745 llvm::Attribute::ReadNone, 746 llvm::Attribute::NoUnwind})); 747 if (!CGM.getTriple().isOSBinFormatCOFF()) 748 cast<llvm::Function>(F.getCallee())->setLinkage( 749 llvm::Function::ExternalWeakLinkage); 750 751 return F; 752 } 753 754 llvm::StructType *EHTypeTy; 755 llvm::Type *EHTypePtrTy; 756 757 ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm); 758 }; 759 760 enum class ObjCLabelType { 761 ClassName, 762 MethodVarName, 763 MethodVarType, 764 PropertyName, 765 }; 766 767 class CGObjCCommonMac : public CodeGen::CGObjCRuntime { 768 public: 769 class SKIP_SCAN { 770 public: 771 unsigned skip; 772 unsigned scan; 773 SKIP_SCAN(unsigned _skip = 0, unsigned _scan = 0) 774 : skip(_skip), scan(_scan) {} 775 }; 776 777 /// opcode for captured block variables layout 'instructions'. 778 /// In the following descriptions, 'I' is the value of the immediate field. 779 /// (field following the opcode). 780 /// 781 enum BLOCK_LAYOUT_OPCODE { 782 /// An operator which affects how the following layout should be 783 /// interpreted. 784 /// I == 0: Halt interpretation and treat everything else as 785 /// a non-pointer. Note that this instruction is equal 786 /// to '\0'. 787 /// I != 0: Currently unused. 788 BLOCK_LAYOUT_OPERATOR = 0, 789 790 /// The next I+1 bytes do not contain a value of object pointer type. 791 /// Note that this can leave the stream unaligned, meaning that 792 /// subsequent word-size instructions do not begin at a multiple of 793 /// the pointer size. 794 BLOCK_LAYOUT_NON_OBJECT_BYTES = 1, 795 796 /// The next I+1 words do not contain a value of object pointer type. 797 /// This is simply an optimized version of BLOCK_LAYOUT_BYTES for 798 /// when the required skip quantity is a multiple of the pointer size. 799 BLOCK_LAYOUT_NON_OBJECT_WORDS = 2, 800 801 /// The next I+1 words are __strong pointers to Objective-C 802 /// objects or blocks. 803 BLOCK_LAYOUT_STRONG = 3, 804 805 /// The next I+1 words are pointers to __block variables. 806 BLOCK_LAYOUT_BYREF = 4, 807 808 /// The next I+1 words are __weak pointers to Objective-C 809 /// objects or blocks. 810 BLOCK_LAYOUT_WEAK = 5, 811 812 /// The next I+1 words are __unsafe_unretained pointers to 813 /// Objective-C objects or blocks. 814 BLOCK_LAYOUT_UNRETAINED = 6 815 816 /// The next I+1 words are block or object pointers with some 817 /// as-yet-unspecified ownership semantics. If we add more 818 /// flavors of ownership semantics, values will be taken from 819 /// this range. 820 /// 821 /// This is included so that older tools can at least continue 822 /// processing the layout past such things. 823 //BLOCK_LAYOUT_OWNERSHIP_UNKNOWN = 7..10, 824 825 /// All other opcodes are reserved. Halt interpretation and 826 /// treat everything else as opaque. 827 }; 828 829 class RUN_SKIP { 830 public: 831 enum BLOCK_LAYOUT_OPCODE opcode; 832 CharUnits block_var_bytepos; 833 CharUnits block_var_size; 834 RUN_SKIP(enum BLOCK_LAYOUT_OPCODE Opcode = BLOCK_LAYOUT_OPERATOR, 835 CharUnits BytePos = CharUnits::Zero(), 836 CharUnits Size = CharUnits::Zero()) 837 : opcode(Opcode), block_var_bytepos(BytePos), block_var_size(Size) {} 838 839 // Allow sorting based on byte pos. 840 bool operator<(const RUN_SKIP &b) const { 841 return block_var_bytepos < b.block_var_bytepos; 842 } 843 }; 844 845 protected: 846 llvm::LLVMContext &VMContext; 847 // FIXME! May not be needing this after all. 848 unsigned ObjCABI; 849 850 // arc/mrr layout of captured block literal variables. 851 SmallVector<RUN_SKIP, 16> RunSkipBlockVars; 852 853 /// LazySymbols - Symbols to generate a lazy reference for. See 854 /// DefinedSymbols and FinishModule(). 855 llvm::SetVector<IdentifierInfo*> LazySymbols; 856 857 /// DefinedSymbols - External symbols which are defined by this 858 /// module. The symbols in this list and LazySymbols are used to add 859 /// special linker symbols which ensure that Objective-C modules are 860 /// linked properly. 861 llvm::SetVector<IdentifierInfo*> DefinedSymbols; 862 863 /// ClassNames - uniqued class names. 864 llvm::StringMap<llvm::GlobalVariable*> ClassNames; 865 866 /// MethodVarNames - uniqued method variable names. 867 llvm::DenseMap<Selector, llvm::GlobalVariable*> MethodVarNames; 868 869 /// DefinedCategoryNames - list of category names in form Class_Category. 870 llvm::SmallSetVector<llvm::CachedHashString, 16> DefinedCategoryNames; 871 872 /// MethodVarTypes - uniqued method type signatures. We have to use 873 /// a StringMap here because have no other unique reference. 874 llvm::StringMap<llvm::GlobalVariable*> MethodVarTypes; 875 876 /// MethodDefinitions - map of methods which have been defined in 877 /// this translation unit. 878 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> MethodDefinitions; 879 880 /// DirectMethodDefinitions - map of direct methods which have been defined in 881 /// this translation unit. 882 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> DirectMethodDefinitions; 883 884 /// PropertyNames - uniqued method variable names. 885 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> PropertyNames; 886 887 /// ClassReferences - uniqued class references. 888 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> ClassReferences; 889 890 /// SelectorReferences - uniqued selector references. 891 llvm::DenseMap<Selector, llvm::GlobalVariable*> SelectorReferences; 892 893 /// Protocols - Protocols for which an objc_protocol structure has 894 /// been emitted. Forward declarations are handled by creating an 895 /// empty structure whose initializer is filled in when/if defined. 896 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> Protocols; 897 898 /// DefinedProtocols - Protocols which have actually been 899 /// defined. We should not need this, see FIXME in GenerateProtocol. 900 llvm::DenseSet<IdentifierInfo*> DefinedProtocols; 901 902 /// DefinedClasses - List of defined classes. 903 SmallVector<llvm::GlobalValue*, 16> DefinedClasses; 904 905 /// ImplementedClasses - List of @implemented classes. 906 SmallVector<const ObjCInterfaceDecl*, 16> ImplementedClasses; 907 908 /// DefinedNonLazyClasses - List of defined "non-lazy" classes. 909 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyClasses; 910 911 /// DefinedCategories - List of defined categories. 912 SmallVector<llvm::GlobalValue*, 16> DefinedCategories; 913 914 /// DefinedStubCategories - List of defined categories on class stubs. 915 SmallVector<llvm::GlobalValue*, 16> DefinedStubCategories; 916 917 /// DefinedNonLazyCategories - List of defined "non-lazy" categories. 918 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyCategories; 919 920 /// Cached reference to the class for constant strings. This value has type 921 /// int * but is actually an Obj-C class pointer. 922 llvm::WeakTrackingVH ConstantStringClassRef; 923 924 /// The LLVM type corresponding to NSConstantString. 925 llvm::StructType *NSConstantStringType = nullptr; 926 927 llvm::StringMap<llvm::GlobalVariable *> NSConstantStringMap; 928 929 /// GetMethodVarName - Return a unique constant for the given 930 /// selector's name. The return value has type char *. 931 llvm::Constant *GetMethodVarName(Selector Sel); 932 llvm::Constant *GetMethodVarName(IdentifierInfo *Ident); 933 934 /// GetMethodVarType - Return a unique constant for the given 935 /// method's type encoding string. The return value has type char *. 936 937 // FIXME: This is a horrible name. 938 llvm::Constant *GetMethodVarType(const ObjCMethodDecl *D, 939 bool Extended = false); 940 llvm::Constant *GetMethodVarType(const FieldDecl *D); 941 942 /// GetPropertyName - Return a unique constant for the given 943 /// name. The return value has type char *. 944 llvm::Constant *GetPropertyName(IdentifierInfo *Ident); 945 946 // FIXME: This can be dropped once string functions are unified. 947 llvm::Constant *GetPropertyTypeString(const ObjCPropertyDecl *PD, 948 const Decl *Container); 949 950 /// GetClassName - Return a unique constant for the given selector's 951 /// runtime name (which may change via use of objc_runtime_name attribute on 952 /// class or protocol definition. The return value has type char *. 953 llvm::Constant *GetClassName(StringRef RuntimeName); 954 955 llvm::Function *GetMethodDefinition(const ObjCMethodDecl *MD); 956 957 /// BuildIvarLayout - Builds ivar layout bitmap for the class 958 /// implementation for the __strong or __weak case. 959 /// 960 /// \param hasMRCWeakIvars - Whether we are compiling in MRC and there 961 /// are any weak ivars defined directly in the class. Meaningless unless 962 /// building a weak layout. Does not guarantee that the layout will 963 /// actually have any entries, because the ivar might be under-aligned. 964 llvm::Constant *BuildIvarLayout(const ObjCImplementationDecl *OI, 965 CharUnits beginOffset, 966 CharUnits endOffset, 967 bool forStrongLayout, 968 bool hasMRCWeakIvars); 969 970 llvm::Constant *BuildStrongIvarLayout(const ObjCImplementationDecl *OI, 971 CharUnits beginOffset, 972 CharUnits endOffset) { 973 return BuildIvarLayout(OI, beginOffset, endOffset, true, false); 974 } 975 976 llvm::Constant *BuildWeakIvarLayout(const ObjCImplementationDecl *OI, 977 CharUnits beginOffset, 978 CharUnits endOffset, 979 bool hasMRCWeakIvars) { 980 return BuildIvarLayout(OI, beginOffset, endOffset, false, hasMRCWeakIvars); 981 } 982 983 Qualifiers::ObjCLifetime getBlockCaptureLifetime(QualType QT, bool ByrefLayout); 984 985 void UpdateRunSkipBlockVars(bool IsByref, 986 Qualifiers::ObjCLifetime LifeTime, 987 CharUnits FieldOffset, 988 CharUnits FieldSize); 989 990 void BuildRCBlockVarRecordLayout(const RecordType *RT, 991 CharUnits BytePos, bool &HasUnion, 992 bool ByrefLayout=false); 993 994 void BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 995 const RecordDecl *RD, 996 ArrayRef<const FieldDecl*> RecFields, 997 CharUnits BytePos, bool &HasUnion, 998 bool ByrefLayout); 999 1000 uint64_t InlineLayoutInstruction(SmallVectorImpl<unsigned char> &Layout); 1001 1002 llvm::Constant *getBitmapBlockLayout(bool ComputeByrefLayout); 1003 1004 /// GetIvarLayoutName - Returns a unique constant for the given 1005 /// ivar layout bitmap. 1006 llvm::Constant *GetIvarLayoutName(IdentifierInfo *Ident, 1007 const ObjCCommonTypesHelper &ObjCTypes); 1008 1009 /// EmitPropertyList - Emit the given property list. The return 1010 /// value has type PropertyListPtrTy. 1011 llvm::Constant *EmitPropertyList(Twine Name, 1012 const Decl *Container, 1013 const ObjCContainerDecl *OCD, 1014 const ObjCCommonTypesHelper &ObjCTypes, 1015 bool IsClassProperty); 1016 1017 /// EmitProtocolMethodTypes - Generate the array of extended method type 1018 /// strings. The return value has type Int8PtrPtrTy. 1019 llvm::Constant *EmitProtocolMethodTypes(Twine Name, 1020 ArrayRef<llvm::Constant*> MethodTypes, 1021 const ObjCCommonTypesHelper &ObjCTypes); 1022 1023 /// GetProtocolRef - Return a reference to the internal protocol 1024 /// description, creating an empty one if it has not been 1025 /// defined. The return value has type ProtocolPtrTy. 1026 llvm::Constant *GetProtocolRef(const ObjCProtocolDecl *PD); 1027 1028 /// Return a reference to the given Class using runtime calls rather than 1029 /// by a symbol reference. 1030 llvm::Value *EmitClassRefViaRuntime(CodeGenFunction &CGF, 1031 const ObjCInterfaceDecl *ID, 1032 ObjCCommonTypesHelper &ObjCTypes); 1033 1034 std::string GetSectionName(StringRef Section, StringRef MachOAttributes); 1035 1036 public: 1037 /// CreateMetadataVar - Create a global variable with internal 1038 /// linkage for use by the Objective-C runtime. 1039 /// 1040 /// This is a convenience wrapper which not only creates the 1041 /// variable, but also sets the section and alignment and adds the 1042 /// global to the "llvm.used" list. 1043 /// 1044 /// \param Name - The variable name. 1045 /// \param Init - The variable initializer; this is also used to 1046 /// define the type of the variable. 1047 /// \param Section - The section the variable should go into, or empty. 1048 /// \param Align - The alignment for the variable, or 0. 1049 /// \param AddToUsed - Whether the variable should be added to 1050 /// "llvm.used". 1051 llvm::GlobalVariable *CreateMetadataVar(Twine Name, 1052 ConstantStructBuilder &Init, 1053 StringRef Section, CharUnits Align, 1054 bool AddToUsed); 1055 llvm::GlobalVariable *CreateMetadataVar(Twine Name, 1056 llvm::Constant *Init, 1057 StringRef Section, CharUnits Align, 1058 bool AddToUsed); 1059 1060 llvm::GlobalVariable *CreateCStringLiteral(StringRef Name, 1061 ObjCLabelType LabelType, 1062 bool ForceNonFragileABI = false, 1063 bool NullTerminate = true); 1064 1065 protected: 1066 CodeGen::RValue EmitMessageSend(CodeGen::CodeGenFunction &CGF, 1067 ReturnValueSlot Return, 1068 QualType ResultType, 1069 Selector Sel, 1070 llvm::Value *Arg0, 1071 QualType Arg0Ty, 1072 bool IsSuper, 1073 const CallArgList &CallArgs, 1074 const ObjCMethodDecl *OMD, 1075 const ObjCInterfaceDecl *ClassReceiver, 1076 const ObjCCommonTypesHelper &ObjCTypes); 1077 1078 /// EmitImageInfo - Emit the image info marker used to encode some module 1079 /// level information. 1080 void EmitImageInfo(); 1081 1082 public: 1083 CGObjCCommonMac(CodeGen::CodeGenModule &cgm) 1084 : CGObjCRuntime(cgm), VMContext(cgm.getLLVMContext()) {} 1085 1086 bool isNonFragileABI() const { 1087 return ObjCABI == 2; 1088 } 1089 1090 ConstantAddress GenerateConstantString(const StringLiteral *SL) override; 1091 ConstantAddress GenerateConstantNSString(const StringLiteral *SL); 1092 1093 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD, 1094 const ObjCContainerDecl *CD=nullptr) override; 1095 1096 llvm::Function *GenerateDirectMethod(const ObjCMethodDecl *OMD, 1097 const ObjCContainerDecl *CD); 1098 1099 void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn, 1100 const ObjCMethodDecl *OMD, 1101 const ObjCContainerDecl *CD) override; 1102 1103 void GenerateProtocol(const ObjCProtocolDecl *PD) override; 1104 1105 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1106 /// object for the given declaration, emitting it if needed. These 1107 /// forward references will be filled in with empty bodies if no 1108 /// definition is seen. The return value has type ProtocolPtrTy. 1109 virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD)=0; 1110 1111 virtual llvm::Constant *getNSConstantStringClassRef() = 0; 1112 1113 llvm::Constant *BuildGCBlockLayout(CodeGen::CodeGenModule &CGM, 1114 const CGBlockInfo &blockInfo) override; 1115 llvm::Constant *BuildRCBlockLayout(CodeGen::CodeGenModule &CGM, 1116 const CGBlockInfo &blockInfo) override; 1117 std::string getRCBlockLayoutStr(CodeGen::CodeGenModule &CGM, 1118 const CGBlockInfo &blockInfo) override; 1119 1120 llvm::Constant *BuildByrefLayout(CodeGen::CodeGenModule &CGM, 1121 QualType T) override; 1122 1123 private: 1124 void fillRunSkipBlockVars(CodeGenModule &CGM, const CGBlockInfo &blockInfo); 1125 }; 1126 1127 namespace { 1128 1129 enum class MethodListType { 1130 CategoryInstanceMethods, 1131 CategoryClassMethods, 1132 InstanceMethods, 1133 ClassMethods, 1134 ProtocolInstanceMethods, 1135 ProtocolClassMethods, 1136 OptionalProtocolInstanceMethods, 1137 OptionalProtocolClassMethods, 1138 }; 1139 1140 /// A convenience class for splitting the methods of a protocol into 1141 /// the four interesting groups. 1142 class ProtocolMethodLists { 1143 public: 1144 enum Kind { 1145 RequiredInstanceMethods, 1146 RequiredClassMethods, 1147 OptionalInstanceMethods, 1148 OptionalClassMethods 1149 }; 1150 enum { 1151 NumProtocolMethodLists = 4 1152 }; 1153 1154 static MethodListType getMethodListKind(Kind kind) { 1155 switch (kind) { 1156 case RequiredInstanceMethods: 1157 return MethodListType::ProtocolInstanceMethods; 1158 case RequiredClassMethods: 1159 return MethodListType::ProtocolClassMethods; 1160 case OptionalInstanceMethods: 1161 return MethodListType::OptionalProtocolInstanceMethods; 1162 case OptionalClassMethods: 1163 return MethodListType::OptionalProtocolClassMethods; 1164 } 1165 llvm_unreachable("bad kind"); 1166 } 1167 1168 SmallVector<const ObjCMethodDecl *, 4> Methods[NumProtocolMethodLists]; 1169 1170 static ProtocolMethodLists get(const ObjCProtocolDecl *PD) { 1171 ProtocolMethodLists result; 1172 1173 for (auto MD : PD->methods()) { 1174 size_t index = (2 * size_t(MD->isOptional())) 1175 + (size_t(MD->isClassMethod())); 1176 result.Methods[index].push_back(MD); 1177 } 1178 1179 return result; 1180 } 1181 1182 template <class Self> 1183 SmallVector<llvm::Constant*, 8> emitExtendedTypesArray(Self *self) const { 1184 // In both ABIs, the method types list is parallel with the 1185 // concatenation of the methods arrays in the following order: 1186 // instance methods 1187 // class methods 1188 // optional instance methods 1189 // optional class methods 1190 SmallVector<llvm::Constant*, 8> result; 1191 1192 // Methods is already in the correct order for both ABIs. 1193 for (auto &list : Methods) { 1194 for (auto MD : list) { 1195 result.push_back(self->GetMethodVarType(MD, true)); 1196 } 1197 } 1198 1199 return result; 1200 } 1201 1202 template <class Self> 1203 llvm::Constant *emitMethodList(Self *self, const ObjCProtocolDecl *PD, 1204 Kind kind) const { 1205 return self->emitMethodList(PD->getObjCRuntimeNameAsString(), 1206 getMethodListKind(kind), Methods[kind]); 1207 } 1208 }; 1209 1210 } // end anonymous namespace 1211 1212 class CGObjCMac : public CGObjCCommonMac { 1213 private: 1214 friend ProtocolMethodLists; 1215 1216 ObjCTypesHelper ObjCTypes; 1217 1218 /// EmitModuleInfo - Another marker encoding module level 1219 /// information. 1220 void EmitModuleInfo(); 1221 1222 /// EmitModuleSymols - Emit module symbols, the list of defined 1223 /// classes and categories. The result has type SymtabPtrTy. 1224 llvm::Constant *EmitModuleSymbols(); 1225 1226 /// FinishModule - Write out global data structures at the end of 1227 /// processing a translation unit. 1228 void FinishModule(); 1229 1230 /// EmitClassExtension - Generate the class extension structure used 1231 /// to store the weak ivar layout and properties. The return value 1232 /// has type ClassExtensionPtrTy. 1233 llvm::Constant *EmitClassExtension(const ObjCImplementationDecl *ID, 1234 CharUnits instanceSize, 1235 bool hasMRCWeakIvars, 1236 bool isMetaclass); 1237 1238 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1239 /// for the given class. 1240 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1241 const ObjCInterfaceDecl *ID); 1242 1243 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1244 IdentifierInfo *II); 1245 1246 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1247 1248 /// EmitSuperClassRef - Emits reference to class's main metadata class. 1249 llvm::Value *EmitSuperClassRef(const ObjCInterfaceDecl *ID); 1250 1251 /// EmitIvarList - Emit the ivar list for the given 1252 /// implementation. If ForClass is true the list of class ivars 1253 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1254 /// interface ivars will be emitted. The return value has type 1255 /// IvarListPtrTy. 1256 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID, 1257 bool ForClass); 1258 1259 /// EmitMetaClass - Emit a forward reference to the class structure 1260 /// for the metaclass of the given interface. The return value has 1261 /// type ClassPtrTy. 1262 llvm::Constant *EmitMetaClassRef(const ObjCInterfaceDecl *ID); 1263 1264 /// EmitMetaClass - Emit a class structure for the metaclass of the 1265 /// given implementation. The return value has type ClassPtrTy. 1266 llvm::Constant *EmitMetaClass(const ObjCImplementationDecl *ID, 1267 llvm::Constant *Protocols, 1268 ArrayRef<const ObjCMethodDecl *> Methods); 1269 1270 void emitMethodConstant(ConstantArrayBuilder &builder, 1271 const ObjCMethodDecl *MD); 1272 1273 void emitMethodDescriptionConstant(ConstantArrayBuilder &builder, 1274 const ObjCMethodDecl *MD); 1275 1276 /// EmitMethodList - Emit the method list for the given 1277 /// implementation. The return value has type MethodListPtrTy. 1278 llvm::Constant *emitMethodList(Twine Name, MethodListType MLT, 1279 ArrayRef<const ObjCMethodDecl *> Methods); 1280 1281 /// GetOrEmitProtocol - Get the protocol object for the given 1282 /// declaration, emitting it if necessary. The return value has type 1283 /// ProtocolPtrTy. 1284 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1285 1286 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1287 /// object for the given declaration, emitting it if needed. These 1288 /// forward references will be filled in with empty bodies if no 1289 /// definition is seen. The return value has type ProtocolPtrTy. 1290 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1291 1292 /// EmitProtocolExtension - Generate the protocol extension 1293 /// structure used to store optional instance and class methods, and 1294 /// protocol properties. The return value has type 1295 /// ProtocolExtensionPtrTy. 1296 llvm::Constant * 1297 EmitProtocolExtension(const ObjCProtocolDecl *PD, 1298 const ProtocolMethodLists &methodLists); 1299 1300 /// EmitProtocolList - Generate the list of referenced 1301 /// protocols. The return value has type ProtocolListPtrTy. 1302 llvm::Constant *EmitProtocolList(Twine Name, 1303 ObjCProtocolDecl::protocol_iterator begin, 1304 ObjCProtocolDecl::protocol_iterator end); 1305 1306 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1307 /// for the given selector. 1308 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1309 Address EmitSelectorAddr(Selector Sel); 1310 1311 public: 1312 CGObjCMac(CodeGen::CodeGenModule &cgm); 1313 1314 llvm::Constant *getNSConstantStringClassRef() override; 1315 1316 llvm::Function *ModuleInitFunction() override; 1317 1318 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1319 ReturnValueSlot Return, 1320 QualType ResultType, 1321 Selector Sel, llvm::Value *Receiver, 1322 const CallArgList &CallArgs, 1323 const ObjCInterfaceDecl *Class, 1324 const ObjCMethodDecl *Method) override; 1325 1326 CodeGen::RValue 1327 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1328 ReturnValueSlot Return, QualType ResultType, 1329 Selector Sel, const ObjCInterfaceDecl *Class, 1330 bool isCategoryImpl, llvm::Value *Receiver, 1331 bool IsClassMessage, const CallArgList &CallArgs, 1332 const ObjCMethodDecl *Method) override; 1333 1334 llvm::Value *GetClass(CodeGenFunction &CGF, 1335 const ObjCInterfaceDecl *ID) override; 1336 1337 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override; 1338 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override; 1339 1340 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1341 /// untyped one. 1342 llvm::Value *GetSelector(CodeGenFunction &CGF, 1343 const ObjCMethodDecl *Method) override; 1344 1345 llvm::Constant *GetEHType(QualType T) override; 1346 1347 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1348 1349 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1350 1351 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1352 1353 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1354 const ObjCProtocolDecl *PD) override; 1355 1356 llvm::FunctionCallee GetPropertyGetFunction() override; 1357 llvm::FunctionCallee GetPropertySetFunction() override; 1358 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 1359 bool copy) override; 1360 llvm::FunctionCallee GetGetStructFunction() override; 1361 llvm::FunctionCallee GetSetStructFunction() override; 1362 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override; 1363 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override; 1364 llvm::FunctionCallee EnumerationMutationFunction() override; 1365 1366 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1367 const ObjCAtTryStmt &S) override; 1368 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1369 const ObjCAtSynchronizedStmt &S) override; 1370 void EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const Stmt &S); 1371 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1372 bool ClearInsertionPoint=true) override; 1373 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1374 Address AddrWeakObj) override; 1375 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1376 llvm::Value *src, Address dst) override; 1377 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1378 llvm::Value *src, Address dest, 1379 bool threadlocal = false) override; 1380 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1381 llvm::Value *src, Address dest, 1382 llvm::Value *ivarOffset) override; 1383 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1384 llvm::Value *src, Address dest) override; 1385 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1386 Address dest, Address src, 1387 llvm::Value *size) override; 1388 1389 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1390 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1391 unsigned CVRQualifiers) override; 1392 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1393 const ObjCInterfaceDecl *Interface, 1394 const ObjCIvarDecl *Ivar) override; 1395 }; 1396 1397 class CGObjCNonFragileABIMac : public CGObjCCommonMac { 1398 private: 1399 friend ProtocolMethodLists; 1400 ObjCNonFragileABITypesHelper ObjCTypes; 1401 llvm::GlobalVariable* ObjCEmptyCacheVar; 1402 llvm::Constant* ObjCEmptyVtableVar; 1403 1404 /// SuperClassReferences - uniqued super class references. 1405 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> SuperClassReferences; 1406 1407 /// MetaClassReferences - uniqued meta class references. 1408 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> MetaClassReferences; 1409 1410 /// EHTypeReferences - uniqued class ehtype references. 1411 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> EHTypeReferences; 1412 1413 /// VTableDispatchMethods - List of methods for which we generate 1414 /// vtable-based message dispatch. 1415 llvm::DenseSet<Selector> VTableDispatchMethods; 1416 1417 /// DefinedMetaClasses - List of defined meta-classes. 1418 std::vector<llvm::GlobalValue*> DefinedMetaClasses; 1419 1420 /// isVTableDispatchedSelector - Returns true if SEL is a 1421 /// vtable-based selector. 1422 bool isVTableDispatchedSelector(Selector Sel); 1423 1424 /// FinishNonFragileABIModule - Write out global data structures at the end of 1425 /// processing a translation unit. 1426 void FinishNonFragileABIModule(); 1427 1428 /// AddModuleClassList - Add the given list of class pointers to the 1429 /// module with the provided symbol and section names. 1430 void AddModuleClassList(ArrayRef<llvm::GlobalValue *> Container, 1431 StringRef SymbolName, StringRef SectionName); 1432 1433 llvm::GlobalVariable * BuildClassRoTInitializer(unsigned flags, 1434 unsigned InstanceStart, 1435 unsigned InstanceSize, 1436 const ObjCImplementationDecl *ID); 1437 llvm::GlobalVariable *BuildClassObject(const ObjCInterfaceDecl *CI, 1438 bool isMetaclass, 1439 llvm::Constant *IsAGV, 1440 llvm::Constant *SuperClassGV, 1441 llvm::Constant *ClassRoGV, 1442 bool HiddenVisibility); 1443 1444 void emitMethodConstant(ConstantArrayBuilder &builder, 1445 const ObjCMethodDecl *MD, 1446 bool forProtocol); 1447 1448 /// Emit the method list for the given implementation. The return value 1449 /// has type MethodListnfABITy. 1450 llvm::Constant *emitMethodList(Twine Name, MethodListType MLT, 1451 ArrayRef<const ObjCMethodDecl *> Methods); 1452 1453 /// EmitIvarList - Emit the ivar list for the given 1454 /// implementation. If ForClass is true the list of class ivars 1455 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1456 /// interface ivars will be emitted. The return value has type 1457 /// IvarListnfABIPtrTy. 1458 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID); 1459 1460 llvm::Constant *EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 1461 const ObjCIvarDecl *Ivar, 1462 unsigned long int offset); 1463 1464 /// GetOrEmitProtocol - Get the protocol object for the given 1465 /// declaration, emitting it if necessary. The return value has type 1466 /// ProtocolPtrTy. 1467 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1468 1469 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1470 /// object for the given declaration, emitting it if needed. These 1471 /// forward references will be filled in with empty bodies if no 1472 /// definition is seen. The return value has type ProtocolPtrTy. 1473 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1474 1475 /// EmitProtocolList - Generate the list of referenced 1476 /// protocols. The return value has type ProtocolListPtrTy. 1477 llvm::Constant *EmitProtocolList(Twine Name, 1478 ObjCProtocolDecl::protocol_iterator begin, 1479 ObjCProtocolDecl::protocol_iterator end); 1480 1481 CodeGen::RValue EmitVTableMessageSend(CodeGen::CodeGenFunction &CGF, 1482 ReturnValueSlot Return, 1483 QualType ResultType, 1484 Selector Sel, 1485 llvm::Value *Receiver, 1486 QualType Arg0Ty, 1487 bool IsSuper, 1488 const CallArgList &CallArgs, 1489 const ObjCMethodDecl *Method); 1490 1491 /// GetClassGlobal - Return the global variable for the Objective-C 1492 /// class of the given name. 1493 llvm::Constant *GetClassGlobal(StringRef Name, 1494 ForDefinition_t IsForDefinition, 1495 bool Weak = false, bool DLLImport = false); 1496 llvm::Constant *GetClassGlobal(const ObjCInterfaceDecl *ID, 1497 bool isMetaclass, 1498 ForDefinition_t isForDefinition); 1499 1500 llvm::Constant *GetClassGlobalForClassRef(const ObjCInterfaceDecl *ID); 1501 1502 llvm::Value *EmitLoadOfClassRef(CodeGenFunction &CGF, 1503 const ObjCInterfaceDecl *ID, 1504 llvm::GlobalVariable *Entry); 1505 1506 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1507 /// for the given class reference. 1508 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1509 const ObjCInterfaceDecl *ID); 1510 1511 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1512 IdentifierInfo *II, 1513 const ObjCInterfaceDecl *ID); 1514 1515 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1516 1517 /// EmitSuperClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1518 /// for the given super class reference. 1519 llvm::Value *EmitSuperClassRef(CodeGenFunction &CGF, 1520 const ObjCInterfaceDecl *ID); 1521 1522 /// EmitMetaClassRef - Return a Value * of the address of _class_t 1523 /// meta-data 1524 llvm::Value *EmitMetaClassRef(CodeGenFunction &CGF, 1525 const ObjCInterfaceDecl *ID, bool Weak); 1526 1527 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 1528 /// the given ivar. 1529 /// 1530 llvm::GlobalVariable * ObjCIvarOffsetVariable( 1531 const ObjCInterfaceDecl *ID, 1532 const ObjCIvarDecl *Ivar); 1533 1534 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1535 /// for the given selector. 1536 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1537 Address EmitSelectorAddr(Selector Sel); 1538 1539 /// GetInterfaceEHType - Get the cached ehtype for the given Objective-C 1540 /// interface. The return value has type EHTypePtrTy. 1541 llvm::Constant *GetInterfaceEHType(const ObjCInterfaceDecl *ID, 1542 ForDefinition_t IsForDefinition); 1543 1544 StringRef getMetaclassSymbolPrefix() const { return "OBJC_METACLASS_$_"; } 1545 1546 StringRef getClassSymbolPrefix() const { return "OBJC_CLASS_$_"; } 1547 1548 void GetClassSizeInfo(const ObjCImplementationDecl *OID, 1549 uint32_t &InstanceStart, 1550 uint32_t &InstanceSize); 1551 1552 // Shamelessly stolen from Analysis/CFRefCount.cpp 1553 Selector GetNullarySelector(const char* name) const { 1554 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1555 return CGM.getContext().Selectors.getSelector(0, &II); 1556 } 1557 1558 Selector GetUnarySelector(const char* name) const { 1559 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1560 return CGM.getContext().Selectors.getSelector(1, &II); 1561 } 1562 1563 /// ImplementationIsNonLazy - Check whether the given category or 1564 /// class implementation is "non-lazy". 1565 bool ImplementationIsNonLazy(const ObjCImplDecl *OD) const; 1566 1567 bool IsIvarOffsetKnownIdempotent(const CodeGen::CodeGenFunction &CGF, 1568 const ObjCIvarDecl *IV) { 1569 // Annotate the load as an invariant load iff inside an instance method 1570 // and ivar belongs to instance method's class and one of its super class. 1571 // This check is needed because the ivar offset is a lazily 1572 // initialised value that may depend on objc_msgSend to perform a fixup on 1573 // the first message dispatch. 1574 // 1575 // An additional opportunity to mark the load as invariant arises when the 1576 // base of the ivar access is a parameter to an Objective C method. 1577 // However, because the parameters are not available in the current 1578 // interface, we cannot perform this check. 1579 // 1580 // Note that for direct methods, because objc_msgSend is skipped, 1581 // and that the method may be inlined, this optimization actually 1582 // can't be performed. 1583 if (const ObjCMethodDecl *MD = 1584 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurFuncDecl)) 1585 if (MD->isInstanceMethod() && !MD->isDirectMethod()) 1586 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 1587 return IV->getContainingInterface()->isSuperClassOf(ID); 1588 return false; 1589 } 1590 1591 bool isClassLayoutKnownStatically(const ObjCInterfaceDecl *ID) { 1592 // NSObject is a fixed size. If we can see the @implementation of a class 1593 // which inherits from NSObject then we know that all it's offsets also must 1594 // be fixed. FIXME: Can we do this if see a chain of super classes with 1595 // implementations leading to NSObject? 1596 return ID->getImplementation() && ID->getSuperClass() && 1597 ID->getSuperClass()->getName() == "NSObject"; 1598 } 1599 1600 public: 1601 CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm); 1602 1603 llvm::Constant *getNSConstantStringClassRef() override; 1604 1605 llvm::Function *ModuleInitFunction() override; 1606 1607 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1608 ReturnValueSlot Return, 1609 QualType ResultType, Selector Sel, 1610 llvm::Value *Receiver, 1611 const CallArgList &CallArgs, 1612 const ObjCInterfaceDecl *Class, 1613 const ObjCMethodDecl *Method) override; 1614 1615 CodeGen::RValue 1616 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1617 ReturnValueSlot Return, QualType ResultType, 1618 Selector Sel, const ObjCInterfaceDecl *Class, 1619 bool isCategoryImpl, llvm::Value *Receiver, 1620 bool IsClassMessage, const CallArgList &CallArgs, 1621 const ObjCMethodDecl *Method) override; 1622 1623 llvm::Value *GetClass(CodeGenFunction &CGF, 1624 const ObjCInterfaceDecl *ID) override; 1625 1626 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override 1627 { return EmitSelector(CGF, Sel); } 1628 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override 1629 { return EmitSelectorAddr(Sel); } 1630 1631 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1632 /// untyped one. 1633 llvm::Value *GetSelector(CodeGenFunction &CGF, 1634 const ObjCMethodDecl *Method) override 1635 { return EmitSelector(CGF, Method->getSelector()); } 1636 1637 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1638 1639 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1640 1641 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1642 1643 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1644 const ObjCProtocolDecl *PD) override; 1645 1646 llvm::Constant *GetEHType(QualType T) override; 1647 1648 llvm::FunctionCallee GetPropertyGetFunction() override { 1649 return ObjCTypes.getGetPropertyFn(); 1650 } 1651 llvm::FunctionCallee GetPropertySetFunction() override { 1652 return ObjCTypes.getSetPropertyFn(); 1653 } 1654 1655 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 1656 bool copy) override { 1657 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 1658 } 1659 1660 llvm::FunctionCallee GetSetStructFunction() override { 1661 return ObjCTypes.getCopyStructFn(); 1662 } 1663 1664 llvm::FunctionCallee GetGetStructFunction() override { 1665 return ObjCTypes.getCopyStructFn(); 1666 } 1667 1668 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override { 1669 return ObjCTypes.getCppAtomicObjectFunction(); 1670 } 1671 1672 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override { 1673 return ObjCTypes.getCppAtomicObjectFunction(); 1674 } 1675 1676 llvm::FunctionCallee EnumerationMutationFunction() override { 1677 return ObjCTypes.getEnumerationMutationFn(); 1678 } 1679 1680 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1681 const ObjCAtTryStmt &S) override; 1682 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1683 const ObjCAtSynchronizedStmt &S) override; 1684 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1685 bool ClearInsertionPoint=true) override; 1686 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1687 Address AddrWeakObj) override; 1688 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1689 llvm::Value *src, Address edst) override; 1690 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1691 llvm::Value *src, Address dest, 1692 bool threadlocal = false) override; 1693 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1694 llvm::Value *src, Address dest, 1695 llvm::Value *ivarOffset) override; 1696 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1697 llvm::Value *src, Address dest) override; 1698 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1699 Address dest, Address src, 1700 llvm::Value *size) override; 1701 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1702 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1703 unsigned CVRQualifiers) override; 1704 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1705 const ObjCInterfaceDecl *Interface, 1706 const ObjCIvarDecl *Ivar) override; 1707 }; 1708 1709 /// A helper class for performing the null-initialization of a return 1710 /// value. 1711 struct NullReturnState { 1712 llvm::BasicBlock *NullBB; 1713 NullReturnState() : NullBB(nullptr) {} 1714 1715 /// Perform a null-check of the given receiver. 1716 void init(CodeGenFunction &CGF, llvm::Value *receiver) { 1717 // Make blocks for the null-receiver and call edges. 1718 NullBB = CGF.createBasicBlock("msgSend.null-receiver"); 1719 llvm::BasicBlock *callBB = CGF.createBasicBlock("msgSend.call"); 1720 1721 // Check for a null receiver and, if there is one, jump to the 1722 // null-receiver block. There's no point in trying to avoid it: 1723 // we're always going to put *something* there, because otherwise 1724 // we shouldn't have done this null-check in the first place. 1725 llvm::Value *isNull = CGF.Builder.CreateIsNull(receiver); 1726 CGF.Builder.CreateCondBr(isNull, NullBB, callBB); 1727 1728 // Otherwise, start performing the call. 1729 CGF.EmitBlock(callBB); 1730 } 1731 1732 /// Complete the null-return operation. It is valid to call this 1733 /// regardless of whether 'init' has been called. 1734 RValue complete(CodeGenFunction &CGF, 1735 ReturnValueSlot returnSlot, 1736 RValue result, 1737 QualType resultType, 1738 const CallArgList &CallArgs, 1739 const ObjCMethodDecl *Method) { 1740 // If we never had to do a null-check, just use the raw result. 1741 if (!NullBB) return result; 1742 1743 // The continuation block. This will be left null if we don't have an 1744 // IP, which can happen if the method we're calling is marked noreturn. 1745 llvm::BasicBlock *contBB = nullptr; 1746 1747 // Finish the call path. 1748 llvm::BasicBlock *callBB = CGF.Builder.GetInsertBlock(); 1749 if (callBB) { 1750 contBB = CGF.createBasicBlock("msgSend.cont"); 1751 CGF.Builder.CreateBr(contBB); 1752 } 1753 1754 // Okay, start emitting the null-receiver block. 1755 CGF.EmitBlock(NullBB); 1756 1757 // Release any consumed arguments we've got. 1758 if (Method) { 1759 CallArgList::const_iterator I = CallArgs.begin(); 1760 for (ObjCMethodDecl::param_const_iterator i = Method->param_begin(), 1761 e = Method->param_end(); i != e; ++i, ++I) { 1762 const ParmVarDecl *ParamDecl = (*i); 1763 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 1764 RValue RV = I->getRValue(CGF); 1765 assert(RV.isScalar() && 1766 "NullReturnState::complete - arg not on object"); 1767 CGF.EmitARCRelease(RV.getScalarVal(), ARCImpreciseLifetime); 1768 } else { 1769 QualType QT = ParamDecl->getType(); 1770 auto *RT = QT->getAs<RecordType>(); 1771 if (RT && RT->getDecl()->isParamDestroyedInCallee()) { 1772 RValue RV = I->getRValue(CGF); 1773 QualType::DestructionKind DtorKind = QT.isDestructedType(); 1774 switch (DtorKind) { 1775 case QualType::DK_cxx_destructor: 1776 CGF.destroyCXXObject(CGF, RV.getAggregateAddress(), QT); 1777 break; 1778 case QualType::DK_nontrivial_c_struct: 1779 CGF.destroyNonTrivialCStruct(CGF, RV.getAggregateAddress(), QT); 1780 break; 1781 default: 1782 llvm_unreachable("unexpected dtor kind"); 1783 break; 1784 } 1785 } 1786 } 1787 } 1788 } 1789 1790 // The phi code below assumes that we haven't needed any control flow yet. 1791 assert(CGF.Builder.GetInsertBlock() == NullBB); 1792 1793 // If we've got a void return, just jump to the continuation block. 1794 if (result.isScalar() && resultType->isVoidType()) { 1795 // No jumps required if the message-send was noreturn. 1796 if (contBB) CGF.EmitBlock(contBB); 1797 return result; 1798 } 1799 1800 // If we've got a scalar return, build a phi. 1801 if (result.isScalar()) { 1802 // Derive the null-initialization value. 1803 llvm::Value *null = 1804 CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(resultType), resultType); 1805 1806 // If no join is necessary, just flow out. 1807 if (!contBB) return RValue::get(null); 1808 1809 // Otherwise, build a phi. 1810 CGF.EmitBlock(contBB); 1811 llvm::PHINode *phi = CGF.Builder.CreatePHI(null->getType(), 2); 1812 phi->addIncoming(result.getScalarVal(), callBB); 1813 phi->addIncoming(null, NullBB); 1814 return RValue::get(phi); 1815 } 1816 1817 // If we've got an aggregate return, null the buffer out. 1818 // FIXME: maybe we should be doing things differently for all the 1819 // cases where the ABI has us returning (1) non-agg values in 1820 // memory or (2) agg values in registers. 1821 if (result.isAggregate()) { 1822 assert(result.isAggregate() && "null init of non-aggregate result?"); 1823 if (!returnSlot.isUnused()) 1824 CGF.EmitNullInitialization(result.getAggregateAddress(), resultType); 1825 if (contBB) CGF.EmitBlock(contBB); 1826 return result; 1827 } 1828 1829 // Complex types. 1830 CGF.EmitBlock(contBB); 1831 CodeGenFunction::ComplexPairTy callResult = result.getComplexVal(); 1832 1833 // Find the scalar type and its zero value. 1834 llvm::Type *scalarTy = callResult.first->getType(); 1835 llvm::Constant *scalarZero = llvm::Constant::getNullValue(scalarTy); 1836 1837 // Build phis for both coordinates. 1838 llvm::PHINode *real = CGF.Builder.CreatePHI(scalarTy, 2); 1839 real->addIncoming(callResult.first, callBB); 1840 real->addIncoming(scalarZero, NullBB); 1841 llvm::PHINode *imag = CGF.Builder.CreatePHI(scalarTy, 2); 1842 imag->addIncoming(callResult.second, callBB); 1843 imag->addIncoming(scalarZero, NullBB); 1844 return RValue::getComplex(real, imag); 1845 } 1846 }; 1847 1848 } // end anonymous namespace 1849 1850 /* *** Helper Functions *** */ 1851 1852 /// getConstantGEP() - Help routine to construct simple GEPs. 1853 static llvm::Constant *getConstantGEP(llvm::LLVMContext &VMContext, 1854 llvm::GlobalVariable *C, unsigned idx0, 1855 unsigned idx1) { 1856 llvm::Value *Idxs[] = { 1857 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx0), 1858 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx1) 1859 }; 1860 return llvm::ConstantExpr::getGetElementPtr(C->getValueType(), C, Idxs); 1861 } 1862 1863 /// hasObjCExceptionAttribute - Return true if this class or any super 1864 /// class has the __objc_exception__ attribute. 1865 static bool hasObjCExceptionAttribute(ASTContext &Context, 1866 const ObjCInterfaceDecl *OID) { 1867 if (OID->hasAttr<ObjCExceptionAttr>()) 1868 return true; 1869 if (const ObjCInterfaceDecl *Super = OID->getSuperClass()) 1870 return hasObjCExceptionAttribute(Context, Super); 1871 return false; 1872 } 1873 1874 static llvm::GlobalValue::LinkageTypes 1875 getLinkageTypeForObjCMetadata(CodeGenModule &CGM, StringRef Section) { 1876 if (CGM.getTriple().isOSBinFormatMachO() && 1877 (Section.empty() || Section.startswith("__DATA"))) 1878 return llvm::GlobalValue::InternalLinkage; 1879 return llvm::GlobalValue::PrivateLinkage; 1880 } 1881 1882 /// A helper function to create an internal or private global variable. 1883 static llvm::GlobalVariable * 1884 finishAndCreateGlobal(ConstantInitBuilder::StructBuilder &Builder, 1885 const llvm::Twine &Name, CodeGenModule &CGM) { 1886 std::string SectionName; 1887 if (CGM.getTriple().isOSBinFormatMachO()) 1888 SectionName = "__DATA, __objc_const"; 1889 auto *GV = Builder.finishAndCreateGlobal( 1890 Name, CGM.getPointerAlign(), /*constant*/ false, 1891 getLinkageTypeForObjCMetadata(CGM, SectionName)); 1892 GV->setSection(SectionName); 1893 return GV; 1894 } 1895 1896 /* *** CGObjCMac Public Interface *** */ 1897 1898 CGObjCMac::CGObjCMac(CodeGen::CodeGenModule &cgm) : CGObjCCommonMac(cgm), 1899 ObjCTypes(cgm) { 1900 ObjCABI = 1; 1901 EmitImageInfo(); 1902 } 1903 1904 /// GetClass - Return a reference to the class for the given interface 1905 /// decl. 1906 llvm::Value *CGObjCMac::GetClass(CodeGenFunction &CGF, 1907 const ObjCInterfaceDecl *ID) { 1908 return EmitClassRef(CGF, ID); 1909 } 1910 1911 /// GetSelector - Return the pointer to the unique'd string for this selector. 1912 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, Selector Sel) { 1913 return EmitSelector(CGF, Sel); 1914 } 1915 Address CGObjCMac::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) { 1916 return EmitSelectorAddr(Sel); 1917 } 1918 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, const ObjCMethodDecl 1919 *Method) { 1920 return EmitSelector(CGF, Method->getSelector()); 1921 } 1922 1923 llvm::Constant *CGObjCMac::GetEHType(QualType T) { 1924 if (T->isObjCIdType() || 1925 T->isObjCQualifiedIdType()) { 1926 return CGM.GetAddrOfRTTIDescriptor( 1927 CGM.getContext().getObjCIdRedefinitionType(), /*ForEH=*/true); 1928 } 1929 if (T->isObjCClassType() || 1930 T->isObjCQualifiedClassType()) { 1931 return CGM.GetAddrOfRTTIDescriptor( 1932 CGM.getContext().getObjCClassRedefinitionType(), /*ForEH=*/true); 1933 } 1934 if (T->isObjCObjectPointerType()) 1935 return CGM.GetAddrOfRTTIDescriptor(T, /*ForEH=*/true); 1936 1937 llvm_unreachable("asking for catch type for ObjC type in fragile runtime"); 1938 } 1939 1940 /// Generate a constant CFString object. 1941 /* 1942 struct __builtin_CFString { 1943 const int *isa; // point to __CFConstantStringClassReference 1944 int flags; 1945 const char *str; 1946 long length; 1947 }; 1948 */ 1949 1950 /// or Generate a constant NSString object. 1951 /* 1952 struct __builtin_NSString { 1953 const int *isa; // point to __NSConstantStringClassReference 1954 const char *str; 1955 unsigned int length; 1956 }; 1957 */ 1958 1959 ConstantAddress 1960 CGObjCCommonMac::GenerateConstantString(const StringLiteral *SL) { 1961 return (!CGM.getLangOpts().NoConstantCFStrings 1962 ? CGM.GetAddrOfConstantCFString(SL) 1963 : GenerateConstantNSString(SL)); 1964 } 1965 1966 static llvm::StringMapEntry<llvm::GlobalVariable *> & 1967 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 1968 const StringLiteral *Literal, unsigned &StringLength) { 1969 StringRef String = Literal->getString(); 1970 StringLength = String.size(); 1971 return *Map.insert(std::make_pair(String, nullptr)).first; 1972 } 1973 1974 llvm::Constant *CGObjCMac::getNSConstantStringClassRef() { 1975 if (llvm::Value *V = ConstantStringClassRef) 1976 return cast<llvm::Constant>(V); 1977 1978 auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1979 std::string str = 1980 StringClass.empty() ? "_NSConstantStringClassReference" 1981 : "_" + StringClass + "ClassReference"; 1982 1983 llvm::Type *PTy = llvm::ArrayType::get(CGM.IntTy, 0); 1984 auto GV = CGM.CreateRuntimeVariable(PTy, str); 1985 auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo()); 1986 ConstantStringClassRef = V; 1987 return V; 1988 } 1989 1990 llvm::Constant *CGObjCNonFragileABIMac::getNSConstantStringClassRef() { 1991 if (llvm::Value *V = ConstantStringClassRef) 1992 return cast<llvm::Constant>(V); 1993 1994 auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1995 std::string str = 1996 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 1997 : "OBJC_CLASS_$_" + StringClass; 1998 llvm::Constant *GV = GetClassGlobal(str, NotForDefinition); 1999 2000 // Make sure the result is of the correct type. 2001 auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo()); 2002 2003 ConstantStringClassRef = V; 2004 return V; 2005 } 2006 2007 ConstantAddress 2008 CGObjCCommonMac::GenerateConstantNSString(const StringLiteral *Literal) { 2009 unsigned StringLength = 0; 2010 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2011 GetConstantStringEntry(NSConstantStringMap, Literal, StringLength); 2012 2013 if (auto *C = Entry.second) 2014 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 2015 2016 // If we don't already have it, get _NSConstantStringClassReference. 2017 llvm::Constant *Class = getNSConstantStringClassRef(); 2018 2019 // If we don't already have it, construct the type for a constant NSString. 2020 if (!NSConstantStringType) { 2021 NSConstantStringType = 2022 llvm::StructType::create({ 2023 CGM.Int32Ty->getPointerTo(), 2024 CGM.Int8PtrTy, 2025 CGM.IntTy 2026 }, "struct.__builtin_NSString"); 2027 } 2028 2029 ConstantInitBuilder Builder(CGM); 2030 auto Fields = Builder.beginStruct(NSConstantStringType); 2031 2032 // Class pointer. 2033 Fields.add(Class); 2034 2035 // String pointer. 2036 llvm::Constant *C = 2037 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2038 2039 llvm::GlobalValue::LinkageTypes Linkage = llvm::GlobalValue::PrivateLinkage; 2040 bool isConstant = !CGM.getLangOpts().WritableStrings; 2041 2042 auto *GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), isConstant, 2043 Linkage, C, ".str"); 2044 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2045 // Don't enforce the target's minimum global alignment, since the only use 2046 // of the string is via this class initializer. 2047 GV->setAlignment(llvm::Align(1)); 2048 Fields.addBitCast(GV, CGM.Int8PtrTy); 2049 2050 // String length. 2051 Fields.addInt(CGM.IntTy, StringLength); 2052 2053 // The struct. 2054 CharUnits Alignment = CGM.getPointerAlign(); 2055 GV = Fields.finishAndCreateGlobal("_unnamed_nsstring_", Alignment, 2056 /*constant*/ true, 2057 llvm::GlobalVariable::PrivateLinkage); 2058 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2059 const char *NSStringNonFragileABISection = 2060 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2061 // FIXME. Fix section. 2062 GV->setSection(CGM.getLangOpts().ObjCRuntime.isNonFragile() 2063 ? NSStringNonFragileABISection 2064 : NSStringSection); 2065 Entry.second = GV; 2066 2067 return ConstantAddress(GV, Alignment); 2068 } 2069 2070 enum { 2071 kCFTaggedObjectID_Integer = (1 << 1) + 1 2072 }; 2073 2074 /// Generates a message send where the super is the receiver. This is 2075 /// a message send to self with special delivery semantics indicating 2076 /// which class's method should be called. 2077 CodeGen::RValue 2078 CGObjCMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 2079 ReturnValueSlot Return, 2080 QualType ResultType, 2081 Selector Sel, 2082 const ObjCInterfaceDecl *Class, 2083 bool isCategoryImpl, 2084 llvm::Value *Receiver, 2085 bool IsClassMessage, 2086 const CodeGen::CallArgList &CallArgs, 2087 const ObjCMethodDecl *Method) { 2088 // Create and init a super structure; this is a (receiver, class) 2089 // pair we will pass to objc_msgSendSuper. 2090 Address ObjCSuper = 2091 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 2092 "objc_super"); 2093 llvm::Value *ReceiverAsObject = 2094 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 2095 CGF.Builder.CreateStore(ReceiverAsObject, 2096 CGF.Builder.CreateStructGEP(ObjCSuper, 0)); 2097 2098 // If this is a class message the metaclass is passed as the target. 2099 llvm::Value *Target; 2100 if (IsClassMessage) { 2101 if (isCategoryImpl) { 2102 // Message sent to 'super' in a class method defined in a category 2103 // implementation requires an odd treatment. 2104 // If we are in a class method, we must retrieve the 2105 // _metaclass_ for the current class, pointed at by 2106 // the class's "isa" pointer. The following assumes that 2107 // isa" is the first ivar in a class (which it must be). 2108 Target = EmitClassRef(CGF, Class->getSuperClass()); 2109 Target = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, Target, 0); 2110 Target = CGF.Builder.CreateAlignedLoad(Target, CGF.getPointerAlign()); 2111 } else { 2112 llvm::Constant *MetaClassPtr = EmitMetaClassRef(Class); 2113 llvm::Value *SuperPtr = 2114 CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, MetaClassPtr, 1); 2115 llvm::Value *Super = 2116 CGF.Builder.CreateAlignedLoad(SuperPtr, CGF.getPointerAlign()); 2117 Target = Super; 2118 } 2119 } else if (isCategoryImpl) 2120 Target = EmitClassRef(CGF, Class->getSuperClass()); 2121 else { 2122 llvm::Value *ClassPtr = EmitSuperClassRef(Class); 2123 ClassPtr = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, ClassPtr, 1); 2124 Target = CGF.Builder.CreateAlignedLoad(ClassPtr, CGF.getPointerAlign()); 2125 } 2126 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 2127 // ObjCTypes types. 2128 llvm::Type *ClassTy = 2129 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 2130 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 2131 CGF.Builder.CreateStore(Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1)); 2132 return EmitMessageSend(CGF, Return, ResultType, Sel, ObjCSuper.getPointer(), 2133 ObjCTypes.SuperPtrCTy, true, CallArgs, Method, Class, 2134 ObjCTypes); 2135 } 2136 2137 /// Generate code for a message send expression. 2138 CodeGen::RValue CGObjCMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 2139 ReturnValueSlot Return, 2140 QualType ResultType, 2141 Selector Sel, 2142 llvm::Value *Receiver, 2143 const CallArgList &CallArgs, 2144 const ObjCInterfaceDecl *Class, 2145 const ObjCMethodDecl *Method) { 2146 return EmitMessageSend(CGF, Return, ResultType, Sel, Receiver, 2147 CGF.getContext().getObjCIdType(), false, CallArgs, 2148 Method, Class, ObjCTypes); 2149 } 2150 2151 static bool isWeakLinkedClass(const ObjCInterfaceDecl *ID) { 2152 do { 2153 if (ID->isWeakImported()) 2154 return true; 2155 } while ((ID = ID->getSuperClass())); 2156 2157 return false; 2158 } 2159 2160 CodeGen::RValue 2161 CGObjCCommonMac::EmitMessageSend(CodeGen::CodeGenFunction &CGF, 2162 ReturnValueSlot Return, 2163 QualType ResultType, 2164 Selector Sel, 2165 llvm::Value *Arg0, 2166 QualType Arg0Ty, 2167 bool IsSuper, 2168 const CallArgList &CallArgs, 2169 const ObjCMethodDecl *Method, 2170 const ObjCInterfaceDecl *ClassReceiver, 2171 const ObjCCommonTypesHelper &ObjCTypes) { 2172 CodeGenTypes &Types = CGM.getTypes(); 2173 auto selTy = CGF.getContext().getObjCSelType(); 2174 llvm::Value *SelValue; 2175 2176 if (Method && Method->isDirectMethod()) { 2177 // Direct methods will synthesize the proper `_cmd` internally, 2178 // so just don't bother with setting the `_cmd` argument. 2179 assert(!IsSuper); 2180 SelValue = llvm::UndefValue::get(Types.ConvertType(selTy)); 2181 } else { 2182 SelValue = GetSelector(CGF, Sel); 2183 } 2184 2185 CallArgList ActualArgs; 2186 if (!IsSuper) 2187 Arg0 = CGF.Builder.CreateBitCast(Arg0, ObjCTypes.ObjectPtrTy); 2188 ActualArgs.add(RValue::get(Arg0), Arg0Ty); 2189 ActualArgs.add(RValue::get(SelValue), selTy); 2190 ActualArgs.addFrom(CallArgs); 2191 2192 // If we're calling a method, use the formal signature. 2193 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 2194 2195 if (Method) 2196 assert(CGM.getContext().getCanonicalType(Method->getReturnType()) == 2197 CGM.getContext().getCanonicalType(ResultType) && 2198 "Result type mismatch!"); 2199 2200 bool ReceiverCanBeNull = true; 2201 2202 // Super dispatch assumes that self is non-null; even the messenger 2203 // doesn't have a null check internally. 2204 if (IsSuper) { 2205 ReceiverCanBeNull = false; 2206 2207 // If this is a direct dispatch of a class method, check whether the class, 2208 // or anything in its hierarchy, was weak-linked. 2209 } else if (ClassReceiver && Method && Method->isClassMethod()) { 2210 ReceiverCanBeNull = isWeakLinkedClass(ClassReceiver); 2211 2212 // If we're emitting a method, and self is const (meaning just ARC, for now), 2213 // and the receiver is a load of self, then self is a valid object. 2214 } else if (auto CurMethod = 2215 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl)) { 2216 auto Self = CurMethod->getSelfDecl(); 2217 if (Self->getType().isConstQualified()) { 2218 if (auto LI = dyn_cast<llvm::LoadInst>(Arg0->stripPointerCasts())) { 2219 llvm::Value *SelfAddr = CGF.GetAddrOfLocalVar(Self).getPointer(); 2220 if (SelfAddr == LI->getPointerOperand()) { 2221 ReceiverCanBeNull = false; 2222 } 2223 } 2224 } 2225 } 2226 2227 bool RequiresNullCheck = false; 2228 2229 llvm::FunctionCallee Fn = nullptr; 2230 if (Method && Method->isDirectMethod()) { 2231 Fn = GenerateDirectMethod(Method, Method->getClassInterface()); 2232 } else if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 2233 if (ReceiverCanBeNull) RequiresNullCheck = true; 2234 Fn = (ObjCABI == 2) ? ObjCTypes.getSendStretFn2(IsSuper) 2235 : ObjCTypes.getSendStretFn(IsSuper); 2236 } else if (CGM.ReturnTypeUsesFPRet(ResultType)) { 2237 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFpretFn2(IsSuper) 2238 : ObjCTypes.getSendFpretFn(IsSuper); 2239 } else if (CGM.ReturnTypeUsesFP2Ret(ResultType)) { 2240 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFp2RetFn2(IsSuper) 2241 : ObjCTypes.getSendFp2retFn(IsSuper); 2242 } else { 2243 // arm64 uses objc_msgSend for stret methods and yet null receiver check 2244 // must be made for it. 2245 if (ReceiverCanBeNull && CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 2246 RequiresNullCheck = true; 2247 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFn2(IsSuper) 2248 : ObjCTypes.getSendFn(IsSuper); 2249 } 2250 2251 // Cast function to proper signature 2252 llvm::Constant *BitcastFn = cast<llvm::Constant>( 2253 CGF.Builder.CreateBitCast(Fn.getCallee(), MSI.MessengerType)); 2254 2255 // We don't need to emit a null check to zero out an indirect result if the 2256 // result is ignored. 2257 if (Return.isUnused()) 2258 RequiresNullCheck = false; 2259 2260 // Emit a null-check if there's a consumed argument other than the receiver. 2261 if (!RequiresNullCheck && CGM.getLangOpts().ObjCAutoRefCount && Method) { 2262 for (const auto *ParamDecl : Method->parameters()) { 2263 if (ParamDecl->isDestroyedInCallee()) { 2264 RequiresNullCheck = true; 2265 break; 2266 } 2267 } 2268 } 2269 2270 NullReturnState nullReturn; 2271 if (RequiresNullCheck) { 2272 nullReturn.init(CGF, Arg0); 2273 } 2274 2275 llvm::CallBase *CallSite; 2276 CGCallee Callee = CGCallee::forDirect(BitcastFn); 2277 RValue rvalue = CGF.EmitCall(MSI.CallInfo, Callee, Return, ActualArgs, 2278 &CallSite); 2279 2280 // Mark the call as noreturn if the method is marked noreturn and the 2281 // receiver cannot be null. 2282 if (Method && Method->hasAttr<NoReturnAttr>() && !ReceiverCanBeNull) { 2283 CallSite->setDoesNotReturn(); 2284 } 2285 2286 return nullReturn.complete(CGF, Return, rvalue, ResultType, CallArgs, 2287 RequiresNullCheck ? Method : nullptr); 2288 } 2289 2290 static Qualifiers::GC GetGCAttrTypeForType(ASTContext &Ctx, QualType FQT, 2291 bool pointee = false) { 2292 // Note that GC qualification applies recursively to C pointer types 2293 // that aren't otherwise decorated. This is weird, but it's probably 2294 // an intentional workaround to the unreliable placement of GC qualifiers. 2295 if (FQT.isObjCGCStrong()) 2296 return Qualifiers::Strong; 2297 2298 if (FQT.isObjCGCWeak()) 2299 return Qualifiers::Weak; 2300 2301 if (auto ownership = FQT.getObjCLifetime()) { 2302 // Ownership does not apply recursively to C pointer types. 2303 if (pointee) return Qualifiers::GCNone; 2304 switch (ownership) { 2305 case Qualifiers::OCL_Weak: return Qualifiers::Weak; 2306 case Qualifiers::OCL_Strong: return Qualifiers::Strong; 2307 case Qualifiers::OCL_ExplicitNone: return Qualifiers::GCNone; 2308 case Qualifiers::OCL_Autoreleasing: llvm_unreachable("autoreleasing ivar?"); 2309 case Qualifiers::OCL_None: llvm_unreachable("known nonzero"); 2310 } 2311 llvm_unreachable("bad objc ownership"); 2312 } 2313 2314 // Treat unqualified retainable pointers as strong. 2315 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2316 return Qualifiers::Strong; 2317 2318 // Walk into C pointer types, but only in GC. 2319 if (Ctx.getLangOpts().getGC() != LangOptions::NonGC) { 2320 if (const PointerType *PT = FQT->getAs<PointerType>()) 2321 return GetGCAttrTypeForType(Ctx, PT->getPointeeType(), /*pointee*/ true); 2322 } 2323 2324 return Qualifiers::GCNone; 2325 } 2326 2327 namespace { 2328 struct IvarInfo { 2329 CharUnits Offset; 2330 uint64_t SizeInWords; 2331 IvarInfo(CharUnits offset, uint64_t sizeInWords) 2332 : Offset(offset), SizeInWords(sizeInWords) {} 2333 2334 // Allow sorting based on byte pos. 2335 bool operator<(const IvarInfo &other) const { 2336 return Offset < other.Offset; 2337 } 2338 }; 2339 2340 /// A helper class for building GC layout strings. 2341 class IvarLayoutBuilder { 2342 CodeGenModule &CGM; 2343 2344 /// The start of the layout. Offsets will be relative to this value, 2345 /// and entries less than this value will be silently discarded. 2346 CharUnits InstanceBegin; 2347 2348 /// The end of the layout. Offsets will never exceed this value. 2349 CharUnits InstanceEnd; 2350 2351 /// Whether we're generating the strong layout or the weak layout. 2352 bool ForStrongLayout; 2353 2354 /// Whether the offsets in IvarsInfo might be out-of-order. 2355 bool IsDisordered = false; 2356 2357 llvm::SmallVector<IvarInfo, 8> IvarsInfo; 2358 2359 public: 2360 IvarLayoutBuilder(CodeGenModule &CGM, CharUnits instanceBegin, 2361 CharUnits instanceEnd, bool forStrongLayout) 2362 : CGM(CGM), InstanceBegin(instanceBegin), InstanceEnd(instanceEnd), 2363 ForStrongLayout(forStrongLayout) { 2364 } 2365 2366 void visitRecord(const RecordType *RT, CharUnits offset); 2367 2368 template <class Iterator, class GetOffsetFn> 2369 void visitAggregate(Iterator begin, Iterator end, 2370 CharUnits aggrOffset, 2371 const GetOffsetFn &getOffset); 2372 2373 void visitField(const FieldDecl *field, CharUnits offset); 2374 2375 /// Add the layout of a block implementation. 2376 void visitBlock(const CGBlockInfo &blockInfo); 2377 2378 /// Is there any information for an interesting bitmap? 2379 bool hasBitmapData() const { return !IvarsInfo.empty(); } 2380 2381 llvm::Constant *buildBitmap(CGObjCCommonMac &CGObjC, 2382 llvm::SmallVectorImpl<unsigned char> &buffer); 2383 2384 static void dump(ArrayRef<unsigned char> buffer) { 2385 const unsigned char *s = buffer.data(); 2386 for (unsigned i = 0, e = buffer.size(); i < e; i++) 2387 if (!(s[i] & 0xf0)) 2388 printf("0x0%x%s", s[i], s[i] != 0 ? ", " : ""); 2389 else 2390 printf("0x%x%s", s[i], s[i] != 0 ? ", " : ""); 2391 printf("\n"); 2392 } 2393 }; 2394 } // end anonymous namespace 2395 2396 llvm::Constant *CGObjCCommonMac::BuildGCBlockLayout(CodeGenModule &CGM, 2397 const CGBlockInfo &blockInfo) { 2398 2399 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2400 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) 2401 return nullPtr; 2402 2403 IvarLayoutBuilder builder(CGM, CharUnits::Zero(), blockInfo.BlockSize, 2404 /*for strong layout*/ true); 2405 2406 builder.visitBlock(blockInfo); 2407 2408 if (!builder.hasBitmapData()) 2409 return nullPtr; 2410 2411 llvm::SmallVector<unsigned char, 32> buffer; 2412 llvm::Constant *C = builder.buildBitmap(*this, buffer); 2413 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 2414 printf("\n block variable layout for block: "); 2415 builder.dump(buffer); 2416 } 2417 2418 return C; 2419 } 2420 2421 void IvarLayoutBuilder::visitBlock(const CGBlockInfo &blockInfo) { 2422 // __isa is the first field in block descriptor and must assume by runtime's 2423 // convention that it is GC'able. 2424 IvarsInfo.push_back(IvarInfo(CharUnits::Zero(), 1)); 2425 2426 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2427 2428 // Ignore the optional 'this' capture: C++ objects are not assumed 2429 // to be GC'ed. 2430 2431 CharUnits lastFieldOffset; 2432 2433 // Walk the captured variables. 2434 for (const auto &CI : blockDecl->captures()) { 2435 const VarDecl *variable = CI.getVariable(); 2436 QualType type = variable->getType(); 2437 2438 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2439 2440 // Ignore constant captures. 2441 if (capture.isConstant()) continue; 2442 2443 CharUnits fieldOffset = capture.getOffset(); 2444 2445 // Block fields are not necessarily ordered; if we detect that we're 2446 // adding them out-of-order, make sure we sort later. 2447 if (fieldOffset < lastFieldOffset) 2448 IsDisordered = true; 2449 lastFieldOffset = fieldOffset; 2450 2451 // __block variables are passed by their descriptor address. 2452 if (CI.isByRef()) { 2453 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2454 continue; 2455 } 2456 2457 assert(!type->isArrayType() && "array variable should not be caught"); 2458 if (const RecordType *record = type->getAs<RecordType>()) { 2459 visitRecord(record, fieldOffset); 2460 continue; 2461 } 2462 2463 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), type); 2464 2465 if (GCAttr == Qualifiers::Strong) { 2466 assert(CGM.getContext().getTypeSize(type) 2467 == CGM.getTarget().getPointerWidth(0)); 2468 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2469 } 2470 } 2471 } 2472 2473 /// getBlockCaptureLifetime - This routine returns life time of the captured 2474 /// block variable for the purpose of block layout meta-data generation. FQT is 2475 /// the type of the variable captured in the block. 2476 Qualifiers::ObjCLifetime CGObjCCommonMac::getBlockCaptureLifetime(QualType FQT, 2477 bool ByrefLayout) { 2478 // If it has an ownership qualifier, we're done. 2479 if (auto lifetime = FQT.getObjCLifetime()) 2480 return lifetime; 2481 2482 // If it doesn't, and this is ARC, it has no ownership. 2483 if (CGM.getLangOpts().ObjCAutoRefCount) 2484 return Qualifiers::OCL_None; 2485 2486 // In MRC, retainable pointers are owned by non-__block variables. 2487 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2488 return ByrefLayout ? Qualifiers::OCL_ExplicitNone : Qualifiers::OCL_Strong; 2489 2490 return Qualifiers::OCL_None; 2491 } 2492 2493 void CGObjCCommonMac::UpdateRunSkipBlockVars(bool IsByref, 2494 Qualifiers::ObjCLifetime LifeTime, 2495 CharUnits FieldOffset, 2496 CharUnits FieldSize) { 2497 // __block variables are passed by their descriptor address. 2498 if (IsByref) 2499 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_BYREF, FieldOffset, 2500 FieldSize)); 2501 else if (LifeTime == Qualifiers::OCL_Strong) 2502 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_STRONG, FieldOffset, 2503 FieldSize)); 2504 else if (LifeTime == Qualifiers::OCL_Weak) 2505 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_WEAK, FieldOffset, 2506 FieldSize)); 2507 else if (LifeTime == Qualifiers::OCL_ExplicitNone) 2508 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_UNRETAINED, FieldOffset, 2509 FieldSize)); 2510 else 2511 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_NON_OBJECT_BYTES, 2512 FieldOffset, 2513 FieldSize)); 2514 } 2515 2516 void CGObjCCommonMac::BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 2517 const RecordDecl *RD, 2518 ArrayRef<const FieldDecl*> RecFields, 2519 CharUnits BytePos, bool &HasUnion, 2520 bool ByrefLayout) { 2521 bool IsUnion = (RD && RD->isUnion()); 2522 CharUnits MaxUnionSize = CharUnits::Zero(); 2523 const FieldDecl *MaxField = nullptr; 2524 const FieldDecl *LastFieldBitfieldOrUnnamed = nullptr; 2525 CharUnits MaxFieldOffset = CharUnits::Zero(); 2526 CharUnits LastBitfieldOrUnnamedOffset = CharUnits::Zero(); 2527 2528 if (RecFields.empty()) 2529 return; 2530 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2531 2532 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 2533 const FieldDecl *Field = RecFields[i]; 2534 // Note that 'i' here is actually the field index inside RD of Field, 2535 // although this dependency is hidden. 2536 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); 2537 CharUnits FieldOffset = 2538 CGM.getContext().toCharUnitsFromBits(RL.getFieldOffset(i)); 2539 2540 // Skip over unnamed or bitfields 2541 if (!Field->getIdentifier() || Field->isBitField()) { 2542 LastFieldBitfieldOrUnnamed = Field; 2543 LastBitfieldOrUnnamedOffset = FieldOffset; 2544 continue; 2545 } 2546 2547 LastFieldBitfieldOrUnnamed = nullptr; 2548 QualType FQT = Field->getType(); 2549 if (FQT->isRecordType() || FQT->isUnionType()) { 2550 if (FQT->isUnionType()) 2551 HasUnion = true; 2552 2553 BuildRCBlockVarRecordLayout(FQT->getAs<RecordType>(), 2554 BytePos + FieldOffset, HasUnion); 2555 continue; 2556 } 2557 2558 if (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2559 auto *CArray = cast<ConstantArrayType>(Array); 2560 uint64_t ElCount = CArray->getSize().getZExtValue(); 2561 assert(CArray && "only array with known element size is supported"); 2562 FQT = CArray->getElementType(); 2563 while (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2564 auto *CArray = cast<ConstantArrayType>(Array); 2565 ElCount *= CArray->getSize().getZExtValue(); 2566 FQT = CArray->getElementType(); 2567 } 2568 if (FQT->isRecordType() && ElCount) { 2569 int OldIndex = RunSkipBlockVars.size() - 1; 2570 auto *RT = FQT->castAs<RecordType>(); 2571 BuildRCBlockVarRecordLayout(RT, BytePos + FieldOffset, HasUnion); 2572 2573 // Replicate layout information for each array element. Note that 2574 // one element is already done. 2575 uint64_t ElIx = 1; 2576 for (int FirstIndex = RunSkipBlockVars.size() - 1 ;ElIx < ElCount; ElIx++) { 2577 CharUnits Size = CGM.getContext().getTypeSizeInChars(RT); 2578 for (int i = OldIndex+1; i <= FirstIndex; ++i) 2579 RunSkipBlockVars.push_back( 2580 RUN_SKIP(RunSkipBlockVars[i].opcode, 2581 RunSkipBlockVars[i].block_var_bytepos + Size*ElIx, 2582 RunSkipBlockVars[i].block_var_size)); 2583 } 2584 continue; 2585 } 2586 } 2587 CharUnits FieldSize = CGM.getContext().getTypeSizeInChars(Field->getType()); 2588 if (IsUnion) { 2589 CharUnits UnionIvarSize = FieldSize; 2590 if (UnionIvarSize > MaxUnionSize) { 2591 MaxUnionSize = UnionIvarSize; 2592 MaxField = Field; 2593 MaxFieldOffset = FieldOffset; 2594 } 2595 } else { 2596 UpdateRunSkipBlockVars(false, 2597 getBlockCaptureLifetime(FQT, ByrefLayout), 2598 BytePos + FieldOffset, 2599 FieldSize); 2600 } 2601 } 2602 2603 if (LastFieldBitfieldOrUnnamed) { 2604 if (LastFieldBitfieldOrUnnamed->isBitField()) { 2605 // Last field was a bitfield. Must update the info. 2606 uint64_t BitFieldSize 2607 = LastFieldBitfieldOrUnnamed->getBitWidthValue(CGM.getContext()); 2608 unsigned UnsSize = (BitFieldSize / ByteSizeInBits) + 2609 ((BitFieldSize % ByteSizeInBits) != 0); 2610 CharUnits Size = CharUnits::fromQuantity(UnsSize); 2611 Size += LastBitfieldOrUnnamedOffset; 2612 UpdateRunSkipBlockVars(false, 2613 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2614 ByrefLayout), 2615 BytePos + LastBitfieldOrUnnamedOffset, 2616 Size); 2617 } else { 2618 assert(!LastFieldBitfieldOrUnnamed->getIdentifier() &&"Expected unnamed"); 2619 // Last field was unnamed. Must update skip info. 2620 CharUnits FieldSize 2621 = CGM.getContext().getTypeSizeInChars(LastFieldBitfieldOrUnnamed->getType()); 2622 UpdateRunSkipBlockVars(false, 2623 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2624 ByrefLayout), 2625 BytePos + LastBitfieldOrUnnamedOffset, 2626 FieldSize); 2627 } 2628 } 2629 2630 if (MaxField) 2631 UpdateRunSkipBlockVars(false, 2632 getBlockCaptureLifetime(MaxField->getType(), ByrefLayout), 2633 BytePos + MaxFieldOffset, 2634 MaxUnionSize); 2635 } 2636 2637 void CGObjCCommonMac::BuildRCBlockVarRecordLayout(const RecordType *RT, 2638 CharUnits BytePos, 2639 bool &HasUnion, 2640 bool ByrefLayout) { 2641 const RecordDecl *RD = RT->getDecl(); 2642 SmallVector<const FieldDecl*, 16> Fields(RD->fields()); 2643 llvm::Type *Ty = CGM.getTypes().ConvertType(QualType(RT, 0)); 2644 const llvm::StructLayout *RecLayout = 2645 CGM.getDataLayout().getStructLayout(cast<llvm::StructType>(Ty)); 2646 2647 BuildRCRecordLayout(RecLayout, RD, Fields, BytePos, HasUnion, ByrefLayout); 2648 } 2649 2650 /// InlineLayoutInstruction - This routine produce an inline instruction for the 2651 /// block variable layout if it can. If not, it returns 0. Rules are as follow: 2652 /// If ((uintptr_t) layout) < (1 << 12), the layout is inline. In the 64bit world, 2653 /// an inline layout of value 0x0000000000000xyz is interpreted as follows: 2654 /// x captured object pointers of BLOCK_LAYOUT_STRONG. Followed by 2655 /// y captured object of BLOCK_LAYOUT_BYREF. Followed by 2656 /// z captured object of BLOCK_LAYOUT_WEAK. If any of the above is missing, zero 2657 /// replaces it. For example, 0x00000x00 means x BLOCK_LAYOUT_STRONG and no 2658 /// BLOCK_LAYOUT_BYREF and no BLOCK_LAYOUT_WEAK objects are captured. 2659 uint64_t CGObjCCommonMac::InlineLayoutInstruction( 2660 SmallVectorImpl<unsigned char> &Layout) { 2661 uint64_t Result = 0; 2662 if (Layout.size() <= 3) { 2663 unsigned size = Layout.size(); 2664 unsigned strong_word_count = 0, byref_word_count=0, weak_word_count=0; 2665 unsigned char inst; 2666 enum BLOCK_LAYOUT_OPCODE opcode ; 2667 switch (size) { 2668 case 3: 2669 inst = Layout[0]; 2670 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2671 if (opcode == BLOCK_LAYOUT_STRONG) 2672 strong_word_count = (inst & 0xF)+1; 2673 else 2674 return 0; 2675 inst = Layout[1]; 2676 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2677 if (opcode == BLOCK_LAYOUT_BYREF) 2678 byref_word_count = (inst & 0xF)+1; 2679 else 2680 return 0; 2681 inst = Layout[2]; 2682 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2683 if (opcode == BLOCK_LAYOUT_WEAK) 2684 weak_word_count = (inst & 0xF)+1; 2685 else 2686 return 0; 2687 break; 2688 2689 case 2: 2690 inst = Layout[0]; 2691 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2692 if (opcode == BLOCK_LAYOUT_STRONG) { 2693 strong_word_count = (inst & 0xF)+1; 2694 inst = Layout[1]; 2695 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2696 if (opcode == BLOCK_LAYOUT_BYREF) 2697 byref_word_count = (inst & 0xF)+1; 2698 else if (opcode == BLOCK_LAYOUT_WEAK) 2699 weak_word_count = (inst & 0xF)+1; 2700 else 2701 return 0; 2702 } 2703 else if (opcode == BLOCK_LAYOUT_BYREF) { 2704 byref_word_count = (inst & 0xF)+1; 2705 inst = Layout[1]; 2706 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2707 if (opcode == BLOCK_LAYOUT_WEAK) 2708 weak_word_count = (inst & 0xF)+1; 2709 else 2710 return 0; 2711 } 2712 else 2713 return 0; 2714 break; 2715 2716 case 1: 2717 inst = Layout[0]; 2718 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2719 if (opcode == BLOCK_LAYOUT_STRONG) 2720 strong_word_count = (inst & 0xF)+1; 2721 else if (opcode == BLOCK_LAYOUT_BYREF) 2722 byref_word_count = (inst & 0xF)+1; 2723 else if (opcode == BLOCK_LAYOUT_WEAK) 2724 weak_word_count = (inst & 0xF)+1; 2725 else 2726 return 0; 2727 break; 2728 2729 default: 2730 return 0; 2731 } 2732 2733 // Cannot inline when any of the word counts is 15. Because this is one less 2734 // than the actual work count (so 15 means 16 actual word counts), 2735 // and we can only display 0 thru 15 word counts. 2736 if (strong_word_count == 16 || byref_word_count == 16 || weak_word_count == 16) 2737 return 0; 2738 2739 unsigned count = 2740 (strong_word_count != 0) + (byref_word_count != 0) + (weak_word_count != 0); 2741 2742 if (size == count) { 2743 if (strong_word_count) 2744 Result = strong_word_count; 2745 Result <<= 4; 2746 if (byref_word_count) 2747 Result += byref_word_count; 2748 Result <<= 4; 2749 if (weak_word_count) 2750 Result += weak_word_count; 2751 } 2752 } 2753 return Result; 2754 } 2755 2756 llvm::Constant *CGObjCCommonMac::getBitmapBlockLayout(bool ComputeByrefLayout) { 2757 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2758 if (RunSkipBlockVars.empty()) 2759 return nullPtr; 2760 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 2761 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2762 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2763 2764 // Sort on byte position; captures might not be allocated in order, 2765 // and unions can do funny things. 2766 llvm::array_pod_sort(RunSkipBlockVars.begin(), RunSkipBlockVars.end()); 2767 SmallVector<unsigned char, 16> Layout; 2768 2769 unsigned size = RunSkipBlockVars.size(); 2770 for (unsigned i = 0; i < size; i++) { 2771 enum BLOCK_LAYOUT_OPCODE opcode = RunSkipBlockVars[i].opcode; 2772 CharUnits start_byte_pos = RunSkipBlockVars[i].block_var_bytepos; 2773 CharUnits end_byte_pos = start_byte_pos; 2774 unsigned j = i+1; 2775 while (j < size) { 2776 if (opcode == RunSkipBlockVars[j].opcode) { 2777 end_byte_pos = RunSkipBlockVars[j++].block_var_bytepos; 2778 i++; 2779 } 2780 else 2781 break; 2782 } 2783 CharUnits size_in_bytes = 2784 end_byte_pos - start_byte_pos + RunSkipBlockVars[j-1].block_var_size; 2785 if (j < size) { 2786 CharUnits gap = 2787 RunSkipBlockVars[j].block_var_bytepos - 2788 RunSkipBlockVars[j-1].block_var_bytepos - RunSkipBlockVars[j-1].block_var_size; 2789 size_in_bytes += gap; 2790 } 2791 CharUnits residue_in_bytes = CharUnits::Zero(); 2792 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES) { 2793 residue_in_bytes = size_in_bytes % WordSizeInBytes; 2794 size_in_bytes -= residue_in_bytes; 2795 opcode = BLOCK_LAYOUT_NON_OBJECT_WORDS; 2796 } 2797 2798 unsigned size_in_words = size_in_bytes.getQuantity() / WordSizeInBytes; 2799 while (size_in_words >= 16) { 2800 // Note that value in imm. is one less that the actual 2801 // value. So, 0xf means 16 words follow! 2802 unsigned char inst = (opcode << 4) | 0xf; 2803 Layout.push_back(inst); 2804 size_in_words -= 16; 2805 } 2806 if (size_in_words > 0) { 2807 // Note that value in imm. is one less that the actual 2808 // value. So, we subtract 1 away! 2809 unsigned char inst = (opcode << 4) | (size_in_words-1); 2810 Layout.push_back(inst); 2811 } 2812 if (residue_in_bytes > CharUnits::Zero()) { 2813 unsigned char inst = 2814 (BLOCK_LAYOUT_NON_OBJECT_BYTES << 4) | (residue_in_bytes.getQuantity()-1); 2815 Layout.push_back(inst); 2816 } 2817 } 2818 2819 while (!Layout.empty()) { 2820 unsigned char inst = Layout.back(); 2821 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2822 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES || opcode == BLOCK_LAYOUT_NON_OBJECT_WORDS) 2823 Layout.pop_back(); 2824 else 2825 break; 2826 } 2827 2828 uint64_t Result = InlineLayoutInstruction(Layout); 2829 if (Result != 0) { 2830 // Block variable layout instruction has been inlined. 2831 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2832 if (ComputeByrefLayout) 2833 printf("\n Inline BYREF variable layout: "); 2834 else 2835 printf("\n Inline block variable layout: "); 2836 printf("0x0%" PRIx64 "", Result); 2837 if (auto numStrong = (Result & 0xF00) >> 8) 2838 printf(", BL_STRONG:%d", (int) numStrong); 2839 if (auto numByref = (Result & 0x0F0) >> 4) 2840 printf(", BL_BYREF:%d", (int) numByref); 2841 if (auto numWeak = (Result & 0x00F) >> 0) 2842 printf(", BL_WEAK:%d", (int) numWeak); 2843 printf(", BL_OPERATOR:0\n"); 2844 } 2845 return llvm::ConstantInt::get(CGM.IntPtrTy, Result); 2846 } 2847 2848 unsigned char inst = (BLOCK_LAYOUT_OPERATOR << 4) | 0; 2849 Layout.push_back(inst); 2850 std::string BitMap; 2851 for (unsigned i = 0, e = Layout.size(); i != e; i++) 2852 BitMap += Layout[i]; 2853 2854 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2855 if (ComputeByrefLayout) 2856 printf("\n Byref variable layout: "); 2857 else 2858 printf("\n Block variable layout: "); 2859 for (unsigned i = 0, e = BitMap.size(); i != e; i++) { 2860 unsigned char inst = BitMap[i]; 2861 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2862 unsigned delta = 1; 2863 switch (opcode) { 2864 case BLOCK_LAYOUT_OPERATOR: 2865 printf("BL_OPERATOR:"); 2866 delta = 0; 2867 break; 2868 case BLOCK_LAYOUT_NON_OBJECT_BYTES: 2869 printf("BL_NON_OBJECT_BYTES:"); 2870 break; 2871 case BLOCK_LAYOUT_NON_OBJECT_WORDS: 2872 printf("BL_NON_OBJECT_WORD:"); 2873 break; 2874 case BLOCK_LAYOUT_STRONG: 2875 printf("BL_STRONG:"); 2876 break; 2877 case BLOCK_LAYOUT_BYREF: 2878 printf("BL_BYREF:"); 2879 break; 2880 case BLOCK_LAYOUT_WEAK: 2881 printf("BL_WEAK:"); 2882 break; 2883 case BLOCK_LAYOUT_UNRETAINED: 2884 printf("BL_UNRETAINED:"); 2885 break; 2886 } 2887 // Actual value of word count is one more that what is in the imm. 2888 // field of the instruction 2889 printf("%d", (inst & 0xf) + delta); 2890 if (i < e-1) 2891 printf(", "); 2892 else 2893 printf("\n"); 2894 } 2895 } 2896 2897 auto *Entry = CreateCStringLiteral(BitMap, ObjCLabelType::ClassName, 2898 /*ForceNonFragileABI=*/true, 2899 /*NullTerminate=*/false); 2900 return getConstantGEP(VMContext, Entry, 0, 0); 2901 } 2902 2903 static std::string getBlockLayoutInfoString( 2904 const SmallVectorImpl<CGObjCCommonMac::RUN_SKIP> &RunSkipBlockVars, 2905 bool HasCopyDisposeHelpers) { 2906 std::string Str; 2907 for (const CGObjCCommonMac::RUN_SKIP &R : RunSkipBlockVars) { 2908 if (R.opcode == CGObjCCommonMac::BLOCK_LAYOUT_UNRETAINED) { 2909 // Copy/dispose helpers don't have any information about 2910 // __unsafe_unretained captures, so unconditionally concatenate a string. 2911 Str += "u"; 2912 } else if (HasCopyDisposeHelpers) { 2913 // Information about __strong, __weak, or byref captures has already been 2914 // encoded into the names of the copy/dispose helpers. We have to add a 2915 // string here only when the copy/dispose helpers aren't generated (which 2916 // happens when the block is non-escaping). 2917 continue; 2918 } else { 2919 switch (R.opcode) { 2920 case CGObjCCommonMac::BLOCK_LAYOUT_STRONG: 2921 Str += "s"; 2922 break; 2923 case CGObjCCommonMac::BLOCK_LAYOUT_BYREF: 2924 Str += "r"; 2925 break; 2926 case CGObjCCommonMac::BLOCK_LAYOUT_WEAK: 2927 Str += "w"; 2928 break; 2929 default: 2930 continue; 2931 } 2932 } 2933 Str += llvm::to_string(R.block_var_bytepos.getQuantity()); 2934 Str += "l" + llvm::to_string(R.block_var_size.getQuantity()); 2935 } 2936 return Str; 2937 } 2938 2939 void CGObjCCommonMac::fillRunSkipBlockVars(CodeGenModule &CGM, 2940 const CGBlockInfo &blockInfo) { 2941 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2942 2943 RunSkipBlockVars.clear(); 2944 bool hasUnion = false; 2945 2946 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 2947 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2948 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2949 2950 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2951 2952 // Calculate the basic layout of the block structure. 2953 const llvm::StructLayout *layout = 2954 CGM.getDataLayout().getStructLayout(blockInfo.StructureType); 2955 2956 // Ignore the optional 'this' capture: C++ objects are not assumed 2957 // to be GC'ed. 2958 if (blockInfo.BlockHeaderForcedGapSize != CharUnits::Zero()) 2959 UpdateRunSkipBlockVars(false, Qualifiers::OCL_None, 2960 blockInfo.BlockHeaderForcedGapOffset, 2961 blockInfo.BlockHeaderForcedGapSize); 2962 // Walk the captured variables. 2963 for (const auto &CI : blockDecl->captures()) { 2964 const VarDecl *variable = CI.getVariable(); 2965 QualType type = variable->getType(); 2966 2967 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2968 2969 // Ignore constant captures. 2970 if (capture.isConstant()) continue; 2971 2972 CharUnits fieldOffset = 2973 CharUnits::fromQuantity(layout->getElementOffset(capture.getIndex())); 2974 2975 assert(!type->isArrayType() && "array variable should not be caught"); 2976 if (!CI.isByRef()) 2977 if (const RecordType *record = type->getAs<RecordType>()) { 2978 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion); 2979 continue; 2980 } 2981 CharUnits fieldSize; 2982 if (CI.isByRef()) 2983 fieldSize = CharUnits::fromQuantity(WordSizeInBytes); 2984 else 2985 fieldSize = CGM.getContext().getTypeSizeInChars(type); 2986 UpdateRunSkipBlockVars(CI.isByRef(), getBlockCaptureLifetime(type, false), 2987 fieldOffset, fieldSize); 2988 } 2989 } 2990 2991 llvm::Constant * 2992 CGObjCCommonMac::BuildRCBlockLayout(CodeGenModule &CGM, 2993 const CGBlockInfo &blockInfo) { 2994 fillRunSkipBlockVars(CGM, blockInfo); 2995 return getBitmapBlockLayout(false); 2996 } 2997 2998 std::string CGObjCCommonMac::getRCBlockLayoutStr(CodeGenModule &CGM, 2999 const CGBlockInfo &blockInfo) { 3000 fillRunSkipBlockVars(CGM, blockInfo); 3001 return getBlockLayoutInfoString(RunSkipBlockVars, 3002 blockInfo.needsCopyDisposeHelpers()); 3003 } 3004 3005 llvm::Constant *CGObjCCommonMac::BuildByrefLayout(CodeGen::CodeGenModule &CGM, 3006 QualType T) { 3007 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 3008 assert(!T->isArrayType() && "__block array variable should not be caught"); 3009 CharUnits fieldOffset; 3010 RunSkipBlockVars.clear(); 3011 bool hasUnion = false; 3012 if (const RecordType *record = T->getAs<RecordType>()) { 3013 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion, true /*ByrefLayout */); 3014 llvm::Constant *Result = getBitmapBlockLayout(true); 3015 if (isa<llvm::ConstantInt>(Result)) 3016 Result = llvm::ConstantExpr::getIntToPtr(Result, CGM.Int8PtrTy); 3017 return Result; 3018 } 3019 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 3020 return nullPtr; 3021 } 3022 3023 llvm::Value *CGObjCMac::GenerateProtocolRef(CodeGenFunction &CGF, 3024 const ObjCProtocolDecl *PD) { 3025 // FIXME: I don't understand why gcc generates this, or where it is 3026 // resolved. Investigate. Its also wasteful to look this up over and over. 3027 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 3028 3029 return llvm::ConstantExpr::getBitCast(GetProtocolRef(PD), 3030 ObjCTypes.getExternalProtocolPtrTy()); 3031 } 3032 3033 void CGObjCCommonMac::GenerateProtocol(const ObjCProtocolDecl *PD) { 3034 // FIXME: We shouldn't need this, the protocol decl should contain enough 3035 // information to tell us whether this was a declaration or a definition. 3036 DefinedProtocols.insert(PD->getIdentifier()); 3037 3038 // If we have generated a forward reference to this protocol, emit 3039 // it now. Otherwise do nothing, the protocol objects are lazily 3040 // emitted. 3041 if (Protocols.count(PD->getIdentifier())) 3042 GetOrEmitProtocol(PD); 3043 } 3044 3045 llvm::Constant *CGObjCCommonMac::GetProtocolRef(const ObjCProtocolDecl *PD) { 3046 if (DefinedProtocols.count(PD->getIdentifier())) 3047 return GetOrEmitProtocol(PD); 3048 3049 return GetOrEmitProtocolRef(PD); 3050 } 3051 3052 llvm::Value *CGObjCCommonMac::EmitClassRefViaRuntime( 3053 CodeGenFunction &CGF, 3054 const ObjCInterfaceDecl *ID, 3055 ObjCCommonTypesHelper &ObjCTypes) { 3056 llvm::FunctionCallee lookUpClassFn = ObjCTypes.getLookUpClassFn(); 3057 3058 llvm::Value *className = CGF.CGM 3059 .GetAddrOfConstantCString(std::string( 3060 ID->getObjCRuntimeNameAsString())) 3061 .getPointer(); 3062 ASTContext &ctx = CGF.CGM.getContext(); 3063 className = 3064 CGF.Builder.CreateBitCast(className, 3065 CGF.ConvertType( 3066 ctx.getPointerType(ctx.CharTy.withConst()))); 3067 llvm::CallInst *call = CGF.Builder.CreateCall(lookUpClassFn, className); 3068 call->setDoesNotThrow(); 3069 return call; 3070 } 3071 3072 /* 3073 // Objective-C 1.0 extensions 3074 struct _objc_protocol { 3075 struct _objc_protocol_extension *isa; 3076 char *protocol_name; 3077 struct _objc_protocol_list *protocol_list; 3078 struct _objc__method_prototype_list *instance_methods; 3079 struct _objc__method_prototype_list *class_methods 3080 }; 3081 3082 See EmitProtocolExtension(). 3083 */ 3084 llvm::Constant *CGObjCMac::GetOrEmitProtocol(const ObjCProtocolDecl *PD) { 3085 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 3086 3087 // Early exit if a defining object has already been generated. 3088 if (Entry && Entry->hasInitializer()) 3089 return Entry; 3090 3091 // Use the protocol definition, if there is one. 3092 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 3093 PD = Def; 3094 3095 // FIXME: I don't understand why gcc generates this, or where it is 3096 // resolved. Investigate. Its also wasteful to look this up over and over. 3097 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 3098 3099 // Construct method lists. 3100 auto methodLists = ProtocolMethodLists::get(PD); 3101 3102 ConstantInitBuilder builder(CGM); 3103 auto values = builder.beginStruct(ObjCTypes.ProtocolTy); 3104 values.add(EmitProtocolExtension(PD, methodLists)); 3105 values.add(GetClassName(PD->getObjCRuntimeNameAsString())); 3106 values.add(EmitProtocolList("OBJC_PROTOCOL_REFS_" + PD->getName(), 3107 PD->protocol_begin(), PD->protocol_end())); 3108 values.add(methodLists.emitMethodList(this, PD, 3109 ProtocolMethodLists::RequiredInstanceMethods)); 3110 values.add(methodLists.emitMethodList(this, PD, 3111 ProtocolMethodLists::RequiredClassMethods)); 3112 3113 if (Entry) { 3114 // Already created, update the initializer. 3115 assert(Entry->hasPrivateLinkage()); 3116 values.finishAndSetAsInitializer(Entry); 3117 } else { 3118 Entry = values.finishAndCreateGlobal("OBJC_PROTOCOL_" + PD->getName(), 3119 CGM.getPointerAlign(), 3120 /*constant*/ false, 3121 llvm::GlobalValue::PrivateLinkage); 3122 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 3123 3124 Protocols[PD->getIdentifier()] = Entry; 3125 } 3126 CGM.addCompilerUsedGlobal(Entry); 3127 3128 return Entry; 3129 } 3130 3131 llvm::Constant *CGObjCMac::GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) { 3132 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 3133 3134 if (!Entry) { 3135 // We use the initializer as a marker of whether this is a forward 3136 // reference or not. At module finalization we add the empty 3137 // contents for protocols which were referenced but never defined. 3138 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy, 3139 false, llvm::GlobalValue::PrivateLinkage, 3140 nullptr, "OBJC_PROTOCOL_" + PD->getName()); 3141 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 3142 // FIXME: Is this necessary? Why only for protocol? 3143 Entry->setAlignment(llvm::Align(4)); 3144 } 3145 3146 return Entry; 3147 } 3148 3149 /* 3150 struct _objc_protocol_extension { 3151 uint32_t size; 3152 struct objc_method_description_list *optional_instance_methods; 3153 struct objc_method_description_list *optional_class_methods; 3154 struct objc_property_list *instance_properties; 3155 const char ** extendedMethodTypes; 3156 struct objc_property_list *class_properties; 3157 }; 3158 */ 3159 llvm::Constant * 3160 CGObjCMac::EmitProtocolExtension(const ObjCProtocolDecl *PD, 3161 const ProtocolMethodLists &methodLists) { 3162 auto optInstanceMethods = 3163 methodLists.emitMethodList(this, PD, 3164 ProtocolMethodLists::OptionalInstanceMethods); 3165 auto optClassMethods = 3166 methodLists.emitMethodList(this, PD, 3167 ProtocolMethodLists::OptionalClassMethods); 3168 3169 auto extendedMethodTypes = 3170 EmitProtocolMethodTypes("OBJC_PROTOCOL_METHOD_TYPES_" + PD->getName(), 3171 methodLists.emitExtendedTypesArray(this), 3172 ObjCTypes); 3173 3174 auto instanceProperties = 3175 EmitPropertyList("OBJC_$_PROP_PROTO_LIST_" + PD->getName(), nullptr, PD, 3176 ObjCTypes, false); 3177 auto classProperties = 3178 EmitPropertyList("OBJC_$_CLASS_PROP_PROTO_LIST_" + PD->getName(), nullptr, 3179 PD, ObjCTypes, true); 3180 3181 // Return null if no extension bits are used. 3182 if (optInstanceMethods->isNullValue() && 3183 optClassMethods->isNullValue() && 3184 extendedMethodTypes->isNullValue() && 3185 instanceProperties->isNullValue() && 3186 classProperties->isNullValue()) { 3187 return llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy); 3188 } 3189 3190 uint64_t size = 3191 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolExtensionTy); 3192 3193 ConstantInitBuilder builder(CGM); 3194 auto values = builder.beginStruct(ObjCTypes.ProtocolExtensionTy); 3195 values.addInt(ObjCTypes.IntTy, size); 3196 values.add(optInstanceMethods); 3197 values.add(optClassMethods); 3198 values.add(instanceProperties); 3199 values.add(extendedMethodTypes); 3200 values.add(classProperties); 3201 3202 // No special section, but goes in llvm.used 3203 return CreateMetadataVar("_OBJC_PROTOCOLEXT_" + PD->getName(), values, 3204 StringRef(), CGM.getPointerAlign(), true); 3205 } 3206 3207 /* 3208 struct objc_protocol_list { 3209 struct objc_protocol_list *next; 3210 long count; 3211 Protocol *list[]; 3212 }; 3213 */ 3214 llvm::Constant * 3215 CGObjCMac::EmitProtocolList(Twine name, 3216 ObjCProtocolDecl::protocol_iterator begin, 3217 ObjCProtocolDecl::protocol_iterator end) { 3218 // Just return null for empty protocol lists 3219 auto PDs = GetRuntimeProtocolList(begin, end); 3220 if (PDs.empty()) 3221 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 3222 3223 ConstantInitBuilder builder(CGM); 3224 auto values = builder.beginStruct(); 3225 3226 // This field is only used by the runtime. 3227 values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 3228 3229 // Reserve a slot for the count. 3230 auto countSlot = values.addPlaceholder(); 3231 3232 auto refsArray = values.beginArray(ObjCTypes.ProtocolPtrTy); 3233 for (const auto *Proto : PDs) 3234 refsArray.add(GetProtocolRef(Proto)); 3235 3236 auto count = refsArray.size(); 3237 3238 // This list is null terminated. 3239 refsArray.addNullPointer(ObjCTypes.ProtocolPtrTy); 3240 3241 refsArray.finishAndAddTo(values); 3242 values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count); 3243 3244 StringRef section; 3245 if (CGM.getTriple().isOSBinFormatMachO()) 3246 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3247 3248 llvm::GlobalVariable *GV = 3249 CreateMetadataVar(name, values, section, CGM.getPointerAlign(), false); 3250 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListPtrTy); 3251 } 3252 3253 static void 3254 PushProtocolProperties(llvm::SmallPtrSet<const IdentifierInfo*,16> &PropertySet, 3255 SmallVectorImpl<const ObjCPropertyDecl *> &Properties, 3256 const ObjCProtocolDecl *Proto, 3257 bool IsClassProperty) { 3258 for (const auto *PD : Proto->properties()) { 3259 if (IsClassProperty != PD->isClassProperty()) 3260 continue; 3261 if (!PropertySet.insert(PD->getIdentifier()).second) 3262 continue; 3263 Properties.push_back(PD); 3264 } 3265 3266 for (const auto *P : Proto->protocols()) 3267 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3268 } 3269 3270 /* 3271 struct _objc_property { 3272 const char * const name; 3273 const char * const attributes; 3274 }; 3275 3276 struct _objc_property_list { 3277 uint32_t entsize; // sizeof (struct _objc_property) 3278 uint32_t prop_count; 3279 struct _objc_property[prop_count]; 3280 }; 3281 */ 3282 llvm::Constant *CGObjCCommonMac::EmitPropertyList(Twine Name, 3283 const Decl *Container, 3284 const ObjCContainerDecl *OCD, 3285 const ObjCCommonTypesHelper &ObjCTypes, 3286 bool IsClassProperty) { 3287 if (IsClassProperty) { 3288 // Make this entry NULL for OS X with deployment target < 10.11, for iOS 3289 // with deployment target < 9.0. 3290 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 3291 if ((Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 11)) || 3292 (Triple.isiOS() && Triple.isOSVersionLT(9))) 3293 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3294 } 3295 3296 SmallVector<const ObjCPropertyDecl *, 16> Properties; 3297 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet; 3298 3299 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) 3300 for (const ObjCCategoryDecl *ClassExt : OID->known_extensions()) 3301 for (auto *PD : ClassExt->properties()) { 3302 if (IsClassProperty != PD->isClassProperty()) 3303 continue; 3304 if (PD->isDirectProperty()) 3305 continue; 3306 PropertySet.insert(PD->getIdentifier()); 3307 Properties.push_back(PD); 3308 } 3309 3310 for (const auto *PD : OCD->properties()) { 3311 if (IsClassProperty != PD->isClassProperty()) 3312 continue; 3313 // Don't emit duplicate metadata for properties that were already in a 3314 // class extension. 3315 if (!PropertySet.insert(PD->getIdentifier()).second) 3316 continue; 3317 if (PD->isDirectProperty()) 3318 continue; 3319 Properties.push_back(PD); 3320 } 3321 3322 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) { 3323 for (const auto *P : OID->all_referenced_protocols()) 3324 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3325 } 3326 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) { 3327 for (const auto *P : CD->protocols()) 3328 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3329 } 3330 3331 // Return null for empty list. 3332 if (Properties.empty()) 3333 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3334 3335 unsigned propertySize = 3336 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.PropertyTy); 3337 3338 ConstantInitBuilder builder(CGM); 3339 auto values = builder.beginStruct(); 3340 values.addInt(ObjCTypes.IntTy, propertySize); 3341 values.addInt(ObjCTypes.IntTy, Properties.size()); 3342 auto propertiesArray = values.beginArray(ObjCTypes.PropertyTy); 3343 for (auto PD : Properties) { 3344 auto property = propertiesArray.beginStruct(ObjCTypes.PropertyTy); 3345 property.add(GetPropertyName(PD->getIdentifier())); 3346 property.add(GetPropertyTypeString(PD, Container)); 3347 property.finishAndAddTo(propertiesArray); 3348 } 3349 propertiesArray.finishAndAddTo(values); 3350 3351 StringRef Section; 3352 if (CGM.getTriple().isOSBinFormatMachO()) 3353 Section = (ObjCABI == 2) ? "__DATA, __objc_const" 3354 : "__OBJC,__property,regular,no_dead_strip"; 3355 3356 llvm::GlobalVariable *GV = 3357 CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true); 3358 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.PropertyListPtrTy); 3359 } 3360 3361 llvm::Constant * 3362 CGObjCCommonMac::EmitProtocolMethodTypes(Twine Name, 3363 ArrayRef<llvm::Constant*> MethodTypes, 3364 const ObjCCommonTypesHelper &ObjCTypes) { 3365 // Return null for empty list. 3366 if (MethodTypes.empty()) 3367 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrPtrTy); 3368 3369 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 3370 MethodTypes.size()); 3371 llvm::Constant *Init = llvm::ConstantArray::get(AT, MethodTypes); 3372 3373 StringRef Section; 3374 if (CGM.getTriple().isOSBinFormatMachO() && ObjCABI == 2) 3375 Section = "__DATA, __objc_const"; 3376 3377 llvm::GlobalVariable *GV = 3378 CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true); 3379 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.Int8PtrPtrTy); 3380 } 3381 3382 /* 3383 struct _objc_category { 3384 char *category_name; 3385 char *class_name; 3386 struct _objc_method_list *instance_methods; 3387 struct _objc_method_list *class_methods; 3388 struct _objc_protocol_list *protocols; 3389 uint32_t size; // <rdar://4585769> 3390 struct _objc_property_list *instance_properties; 3391 struct _objc_property_list *class_properties; 3392 }; 3393 */ 3394 void CGObjCMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 3395 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategoryTy); 3396 3397 // FIXME: This is poor design, the OCD should have a pointer to the category 3398 // decl. Additionally, note that Category can be null for the @implementation 3399 // w/o an @interface case. Sema should just create one for us as it does for 3400 // @implementation so everyone else can live life under a clear blue sky. 3401 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 3402 const ObjCCategoryDecl *Category = 3403 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 3404 3405 SmallString<256> ExtName; 3406 llvm::raw_svector_ostream(ExtName) << Interface->getName() << '_' 3407 << OCD->getName(); 3408 3409 ConstantInitBuilder Builder(CGM); 3410 auto Values = Builder.beginStruct(ObjCTypes.CategoryTy); 3411 3412 enum { 3413 InstanceMethods, 3414 ClassMethods, 3415 NumMethodLists 3416 }; 3417 SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists]; 3418 for (const auto *MD : OCD->methods()) { 3419 if (!MD->isDirectMethod()) 3420 Methods[unsigned(MD->isClassMethod())].push_back(MD); 3421 } 3422 3423 Values.add(GetClassName(OCD->getName())); 3424 Values.add(GetClassName(Interface->getObjCRuntimeNameAsString())); 3425 LazySymbols.insert(Interface->getIdentifier()); 3426 3427 Values.add(emitMethodList(ExtName, MethodListType::CategoryInstanceMethods, 3428 Methods[InstanceMethods])); 3429 Values.add(emitMethodList(ExtName, MethodListType::CategoryClassMethods, 3430 Methods[ClassMethods])); 3431 if (Category) { 3432 Values.add( 3433 EmitProtocolList("OBJC_CATEGORY_PROTOCOLS_" + ExtName.str(), 3434 Category->protocol_begin(), Category->protocol_end())); 3435 } else { 3436 Values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 3437 } 3438 Values.addInt(ObjCTypes.IntTy, Size); 3439 3440 // If there is no category @interface then there can be no properties. 3441 if (Category) { 3442 Values.add(EmitPropertyList("_OBJC_$_PROP_LIST_" + ExtName.str(), 3443 OCD, Category, ObjCTypes, false)); 3444 Values.add(EmitPropertyList("_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), 3445 OCD, Category, ObjCTypes, true)); 3446 } else { 3447 Values.addNullPointer(ObjCTypes.PropertyListPtrTy); 3448 Values.addNullPointer(ObjCTypes.PropertyListPtrTy); 3449 } 3450 3451 llvm::GlobalVariable *GV = 3452 CreateMetadataVar("OBJC_CATEGORY_" + ExtName.str(), Values, 3453 "__OBJC,__category,regular,no_dead_strip", 3454 CGM.getPointerAlign(), true); 3455 DefinedCategories.push_back(GV); 3456 DefinedCategoryNames.insert(llvm::CachedHashString(ExtName)); 3457 // method definition entries must be clear for next implementation. 3458 MethodDefinitions.clear(); 3459 } 3460 3461 enum FragileClassFlags { 3462 /// Apparently: is not a meta-class. 3463 FragileABI_Class_Factory = 0x00001, 3464 3465 /// Is a meta-class. 3466 FragileABI_Class_Meta = 0x00002, 3467 3468 /// Has a non-trivial constructor or destructor. 3469 FragileABI_Class_HasCXXStructors = 0x02000, 3470 3471 /// Has hidden visibility. 3472 FragileABI_Class_Hidden = 0x20000, 3473 3474 /// Class implementation was compiled under ARC. 3475 FragileABI_Class_CompiledByARC = 0x04000000, 3476 3477 /// Class implementation was compiled under MRC and has MRC weak ivars. 3478 /// Exclusive with CompiledByARC. 3479 FragileABI_Class_HasMRCWeakIvars = 0x08000000, 3480 }; 3481 3482 enum NonFragileClassFlags { 3483 /// Is a meta-class. 3484 NonFragileABI_Class_Meta = 0x00001, 3485 3486 /// Is a root class. 3487 NonFragileABI_Class_Root = 0x00002, 3488 3489 /// Has a non-trivial constructor or destructor. 3490 NonFragileABI_Class_HasCXXStructors = 0x00004, 3491 3492 /// Has hidden visibility. 3493 NonFragileABI_Class_Hidden = 0x00010, 3494 3495 /// Has the exception attribute. 3496 NonFragileABI_Class_Exception = 0x00020, 3497 3498 /// (Obsolete) ARC-specific: this class has a .release_ivars method 3499 NonFragileABI_Class_HasIvarReleaser = 0x00040, 3500 3501 /// Class implementation was compiled under ARC. 3502 NonFragileABI_Class_CompiledByARC = 0x00080, 3503 3504 /// Class has non-trivial destructors, but zero-initialization is okay. 3505 NonFragileABI_Class_HasCXXDestructorOnly = 0x00100, 3506 3507 /// Class implementation was compiled under MRC and has MRC weak ivars. 3508 /// Exclusive with CompiledByARC. 3509 NonFragileABI_Class_HasMRCWeakIvars = 0x00200, 3510 }; 3511 3512 static bool hasWeakMember(QualType type) { 3513 if (type.getObjCLifetime() == Qualifiers::OCL_Weak) { 3514 return true; 3515 } 3516 3517 if (auto recType = type->getAs<RecordType>()) { 3518 for (auto field : recType->getDecl()->fields()) { 3519 if (hasWeakMember(field->getType())) 3520 return true; 3521 } 3522 } 3523 3524 return false; 3525 } 3526 3527 /// For compatibility, we only want to set the "HasMRCWeakIvars" flag 3528 /// (and actually fill in a layout string) if we really do have any 3529 /// __weak ivars. 3530 static bool hasMRCWeakIvars(CodeGenModule &CGM, 3531 const ObjCImplementationDecl *ID) { 3532 if (!CGM.getLangOpts().ObjCWeak) return false; 3533 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 3534 3535 for (const ObjCIvarDecl *ivar = 3536 ID->getClassInterface()->all_declared_ivar_begin(); 3537 ivar; ivar = ivar->getNextIvar()) { 3538 if (hasWeakMember(ivar->getType())) 3539 return true; 3540 } 3541 3542 return false; 3543 } 3544 3545 /* 3546 struct _objc_class { 3547 Class isa; 3548 Class super_class; 3549 const char *name; 3550 long version; 3551 long info; 3552 long instance_size; 3553 struct _objc_ivar_list *ivars; 3554 struct _objc_method_list *methods; 3555 struct _objc_cache *cache; 3556 struct _objc_protocol_list *protocols; 3557 // Objective-C 1.0 extensions (<rdr://4585769>) 3558 const char *ivar_layout; 3559 struct _objc_class_ext *ext; 3560 }; 3561 3562 See EmitClassExtension(); 3563 */ 3564 void CGObjCMac::GenerateClass(const ObjCImplementationDecl *ID) { 3565 IdentifierInfo *RuntimeName = 3566 &CGM.getContext().Idents.get(ID->getObjCRuntimeNameAsString()); 3567 DefinedSymbols.insert(RuntimeName); 3568 3569 std::string ClassName = ID->getNameAsString(); 3570 // FIXME: Gross 3571 ObjCInterfaceDecl *Interface = 3572 const_cast<ObjCInterfaceDecl*>(ID->getClassInterface()); 3573 llvm::Constant *Protocols = 3574 EmitProtocolList("OBJC_CLASS_PROTOCOLS_" + ID->getName(), 3575 Interface->all_referenced_protocol_begin(), 3576 Interface->all_referenced_protocol_end()); 3577 unsigned Flags = FragileABI_Class_Factory; 3578 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) 3579 Flags |= FragileABI_Class_HasCXXStructors; 3580 3581 bool hasMRCWeak = false; 3582 3583 if (CGM.getLangOpts().ObjCAutoRefCount) 3584 Flags |= FragileABI_Class_CompiledByARC; 3585 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 3586 Flags |= FragileABI_Class_HasMRCWeakIvars; 3587 3588 CharUnits Size = 3589 CGM.getContext().getASTObjCImplementationLayout(ID).getSize(); 3590 3591 // FIXME: Set CXX-structors flag. 3592 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3593 Flags |= FragileABI_Class_Hidden; 3594 3595 enum { 3596 InstanceMethods, 3597 ClassMethods, 3598 NumMethodLists 3599 }; 3600 SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists]; 3601 for (const auto *MD : ID->methods()) { 3602 if (!MD->isDirectMethod()) 3603 Methods[unsigned(MD->isClassMethod())].push_back(MD); 3604 } 3605 3606 for (const auto *PID : ID->property_impls()) { 3607 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3608 if (PID->getPropertyDecl()->isDirectProperty()) 3609 continue; 3610 if (ObjCMethodDecl *MD = PID->getGetterMethodDecl()) 3611 if (GetMethodDefinition(MD)) 3612 Methods[InstanceMethods].push_back(MD); 3613 if (ObjCMethodDecl *MD = PID->getSetterMethodDecl()) 3614 if (GetMethodDefinition(MD)) 3615 Methods[InstanceMethods].push_back(MD); 3616 } 3617 } 3618 3619 ConstantInitBuilder builder(CGM); 3620 auto values = builder.beginStruct(ObjCTypes.ClassTy); 3621 values.add(EmitMetaClass(ID, Protocols, Methods[ClassMethods])); 3622 if (ObjCInterfaceDecl *Super = Interface->getSuperClass()) { 3623 // Record a reference to the super class. 3624 LazySymbols.insert(Super->getIdentifier()); 3625 3626 values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3627 ObjCTypes.ClassPtrTy); 3628 } else { 3629 values.addNullPointer(ObjCTypes.ClassPtrTy); 3630 } 3631 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 3632 // Version is always 0. 3633 values.addInt(ObjCTypes.LongTy, 0); 3634 values.addInt(ObjCTypes.LongTy, Flags); 3635 values.addInt(ObjCTypes.LongTy, Size.getQuantity()); 3636 values.add(EmitIvarList(ID, false)); 3637 values.add(emitMethodList(ID->getName(), MethodListType::InstanceMethods, 3638 Methods[InstanceMethods])); 3639 // cache is always NULL. 3640 values.addNullPointer(ObjCTypes.CachePtrTy); 3641 values.add(Protocols); 3642 values.add(BuildStrongIvarLayout(ID, CharUnits::Zero(), Size)); 3643 values.add(EmitClassExtension(ID, Size, hasMRCWeak, 3644 /*isMetaclass*/ false)); 3645 3646 std::string Name("OBJC_CLASS_"); 3647 Name += ClassName; 3648 const char *Section = "__OBJC,__class,regular,no_dead_strip"; 3649 // Check for a forward reference. 3650 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3651 if (GV) { 3652 assert(GV->getValueType() == ObjCTypes.ClassTy && 3653 "Forward metaclass reference has incorrect type."); 3654 values.finishAndSetAsInitializer(GV); 3655 GV->setSection(Section); 3656 GV->setAlignment(CGM.getPointerAlign().getAsAlign()); 3657 CGM.addCompilerUsedGlobal(GV); 3658 } else 3659 GV = CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true); 3660 DefinedClasses.push_back(GV); 3661 ImplementedClasses.push_back(Interface); 3662 // method definition entries must be clear for next implementation. 3663 MethodDefinitions.clear(); 3664 } 3665 3666 llvm::Constant *CGObjCMac::EmitMetaClass(const ObjCImplementationDecl *ID, 3667 llvm::Constant *Protocols, 3668 ArrayRef<const ObjCMethodDecl*> Methods) { 3669 unsigned Flags = FragileABI_Class_Meta; 3670 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassTy); 3671 3672 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3673 Flags |= FragileABI_Class_Hidden; 3674 3675 ConstantInitBuilder builder(CGM); 3676 auto values = builder.beginStruct(ObjCTypes.ClassTy); 3677 // The isa for the metaclass is the root of the hierarchy. 3678 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 3679 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 3680 Root = Super; 3681 values.addBitCast(GetClassName(Root->getObjCRuntimeNameAsString()), 3682 ObjCTypes.ClassPtrTy); 3683 // The super class for the metaclass is emitted as the name of the 3684 // super class. The runtime fixes this up to point to the 3685 // *metaclass* for the super class. 3686 if (ObjCInterfaceDecl *Super = ID->getClassInterface()->getSuperClass()) { 3687 values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3688 ObjCTypes.ClassPtrTy); 3689 } else { 3690 values.addNullPointer(ObjCTypes.ClassPtrTy); 3691 } 3692 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 3693 // Version is always 0. 3694 values.addInt(ObjCTypes.LongTy, 0); 3695 values.addInt(ObjCTypes.LongTy, Flags); 3696 values.addInt(ObjCTypes.LongTy, Size); 3697 values.add(EmitIvarList(ID, true)); 3698 values.add(emitMethodList(ID->getName(), MethodListType::ClassMethods, 3699 Methods)); 3700 // cache is always NULL. 3701 values.addNullPointer(ObjCTypes.CachePtrTy); 3702 values.add(Protocols); 3703 // ivar_layout for metaclass is always NULL. 3704 values.addNullPointer(ObjCTypes.Int8PtrTy); 3705 // The class extension is used to store class properties for metaclasses. 3706 values.add(EmitClassExtension(ID, CharUnits::Zero(), false/*hasMRCWeak*/, 3707 /*isMetaclass*/true)); 3708 3709 std::string Name("OBJC_METACLASS_"); 3710 Name += ID->getName(); 3711 3712 // Check for a forward reference. 3713 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3714 if (GV) { 3715 assert(GV->getValueType() == ObjCTypes.ClassTy && 3716 "Forward metaclass reference has incorrect type."); 3717 values.finishAndSetAsInitializer(GV); 3718 } else { 3719 GV = values.finishAndCreateGlobal(Name, CGM.getPointerAlign(), 3720 /*constant*/ false, 3721 llvm::GlobalValue::PrivateLinkage); 3722 } 3723 GV->setSection("__OBJC,__meta_class,regular,no_dead_strip"); 3724 CGM.addCompilerUsedGlobal(GV); 3725 3726 return GV; 3727 } 3728 3729 llvm::Constant *CGObjCMac::EmitMetaClassRef(const ObjCInterfaceDecl *ID) { 3730 std::string Name = "OBJC_METACLASS_" + ID->getNameAsString(); 3731 3732 // FIXME: Should we look these up somewhere other than the module. Its a bit 3733 // silly since we only generate these while processing an implementation, so 3734 // exactly one pointer would work if know when we entered/exitted an 3735 // implementation block. 3736 3737 // Check for an existing forward reference. 3738 // Previously, metaclass with internal linkage may have been defined. 3739 // pass 'true' as 2nd argument so it is returned. 3740 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3741 if (!GV) 3742 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3743 llvm::GlobalValue::PrivateLinkage, nullptr, 3744 Name); 3745 3746 assert(GV->getValueType() == ObjCTypes.ClassTy && 3747 "Forward metaclass reference has incorrect type."); 3748 return GV; 3749 } 3750 3751 llvm::Value *CGObjCMac::EmitSuperClassRef(const ObjCInterfaceDecl *ID) { 3752 std::string Name = "OBJC_CLASS_" + ID->getNameAsString(); 3753 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3754 3755 if (!GV) 3756 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3757 llvm::GlobalValue::PrivateLinkage, nullptr, 3758 Name); 3759 3760 assert(GV->getValueType() == ObjCTypes.ClassTy && 3761 "Forward class metadata reference has incorrect type."); 3762 return GV; 3763 } 3764 3765 /* 3766 Emit a "class extension", which in this specific context means extra 3767 data that doesn't fit in the normal fragile-ABI class structure, and 3768 has nothing to do with the language concept of a class extension. 3769 3770 struct objc_class_ext { 3771 uint32_t size; 3772 const char *weak_ivar_layout; 3773 struct _objc_property_list *properties; 3774 }; 3775 */ 3776 llvm::Constant * 3777 CGObjCMac::EmitClassExtension(const ObjCImplementationDecl *ID, 3778 CharUnits InstanceSize, bool hasMRCWeakIvars, 3779 bool isMetaclass) { 3780 // Weak ivar layout. 3781 llvm::Constant *layout; 3782 if (isMetaclass) { 3783 layout = llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 3784 } else { 3785 layout = BuildWeakIvarLayout(ID, CharUnits::Zero(), InstanceSize, 3786 hasMRCWeakIvars); 3787 } 3788 3789 // Properties. 3790 llvm::Constant *propertyList = 3791 EmitPropertyList((isMetaclass ? Twine("_OBJC_$_CLASS_PROP_LIST_") 3792 : Twine("_OBJC_$_PROP_LIST_")) 3793 + ID->getName(), 3794 ID, ID->getClassInterface(), ObjCTypes, isMetaclass); 3795 3796 // Return null if no extension bits are used. 3797 if (layout->isNullValue() && propertyList->isNullValue()) { 3798 return llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy); 3799 } 3800 3801 uint64_t size = 3802 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassExtensionTy); 3803 3804 ConstantInitBuilder builder(CGM); 3805 auto values = builder.beginStruct(ObjCTypes.ClassExtensionTy); 3806 values.addInt(ObjCTypes.IntTy, size); 3807 values.add(layout); 3808 values.add(propertyList); 3809 3810 return CreateMetadataVar("OBJC_CLASSEXT_" + ID->getName(), values, 3811 "__OBJC,__class_ext,regular,no_dead_strip", 3812 CGM.getPointerAlign(), true); 3813 } 3814 3815 /* 3816 struct objc_ivar { 3817 char *ivar_name; 3818 char *ivar_type; 3819 int ivar_offset; 3820 }; 3821 3822 struct objc_ivar_list { 3823 int ivar_count; 3824 struct objc_ivar list[count]; 3825 }; 3826 */ 3827 llvm::Constant *CGObjCMac::EmitIvarList(const ObjCImplementationDecl *ID, 3828 bool ForClass) { 3829 // When emitting the root class GCC emits ivar entries for the 3830 // actual class structure. It is not clear if we need to follow this 3831 // behavior; for now lets try and get away with not doing it. If so, 3832 // the cleanest solution would be to make up an ObjCInterfaceDecl 3833 // for the class. 3834 if (ForClass) 3835 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3836 3837 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 3838 3839 ConstantInitBuilder builder(CGM); 3840 auto ivarList = builder.beginStruct(); 3841 auto countSlot = ivarList.addPlaceholder(); 3842 auto ivars = ivarList.beginArray(ObjCTypes.IvarTy); 3843 3844 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 3845 IVD; IVD = IVD->getNextIvar()) { 3846 // Ignore unnamed bit-fields. 3847 if (!IVD->getDeclName()) 3848 continue; 3849 3850 auto ivar = ivars.beginStruct(ObjCTypes.IvarTy); 3851 ivar.add(GetMethodVarName(IVD->getIdentifier())); 3852 ivar.add(GetMethodVarType(IVD)); 3853 ivar.addInt(ObjCTypes.IntTy, ComputeIvarBaseOffset(CGM, OID, IVD)); 3854 ivar.finishAndAddTo(ivars); 3855 } 3856 3857 // Return null for empty list. 3858 auto count = ivars.size(); 3859 if (count == 0) { 3860 ivars.abandon(); 3861 ivarList.abandon(); 3862 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3863 } 3864 3865 ivars.finishAndAddTo(ivarList); 3866 ivarList.fillPlaceholderWithInt(countSlot, ObjCTypes.IntTy, count); 3867 3868 llvm::GlobalVariable *GV; 3869 if (ForClass) 3870 GV = 3871 CreateMetadataVar("OBJC_CLASS_VARIABLES_" + ID->getName(), ivarList, 3872 "__OBJC,__class_vars,regular,no_dead_strip", 3873 CGM.getPointerAlign(), true); 3874 else 3875 GV = CreateMetadataVar("OBJC_INSTANCE_VARIABLES_" + ID->getName(), ivarList, 3876 "__OBJC,__instance_vars,regular,no_dead_strip", 3877 CGM.getPointerAlign(), true); 3878 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListPtrTy); 3879 } 3880 3881 /// Build a struct objc_method_description constant for the given method. 3882 /// 3883 /// struct objc_method_description { 3884 /// SEL method_name; 3885 /// char *method_types; 3886 /// }; 3887 void CGObjCMac::emitMethodDescriptionConstant(ConstantArrayBuilder &builder, 3888 const ObjCMethodDecl *MD) { 3889 auto description = builder.beginStruct(ObjCTypes.MethodDescriptionTy); 3890 description.addBitCast(GetMethodVarName(MD->getSelector()), 3891 ObjCTypes.SelectorPtrTy); 3892 description.add(GetMethodVarType(MD)); 3893 description.finishAndAddTo(builder); 3894 } 3895 3896 /// Build a struct objc_method constant for the given method. 3897 /// 3898 /// struct objc_method { 3899 /// SEL method_name; 3900 /// char *method_types; 3901 /// void *method; 3902 /// }; 3903 void CGObjCMac::emitMethodConstant(ConstantArrayBuilder &builder, 3904 const ObjCMethodDecl *MD) { 3905 llvm::Function *fn = GetMethodDefinition(MD); 3906 assert(fn && "no definition registered for method"); 3907 3908 auto method = builder.beginStruct(ObjCTypes.MethodTy); 3909 method.addBitCast(GetMethodVarName(MD->getSelector()), 3910 ObjCTypes.SelectorPtrTy); 3911 method.add(GetMethodVarType(MD)); 3912 method.addBitCast(fn, ObjCTypes.Int8PtrTy); 3913 method.finishAndAddTo(builder); 3914 } 3915 3916 /// Build a struct objc_method_list or struct objc_method_description_list, 3917 /// as appropriate. 3918 /// 3919 /// struct objc_method_list { 3920 /// struct objc_method_list *obsolete; 3921 /// int count; 3922 /// struct objc_method methods_list[count]; 3923 /// }; 3924 /// 3925 /// struct objc_method_description_list { 3926 /// int count; 3927 /// struct objc_method_description list[count]; 3928 /// }; 3929 llvm::Constant *CGObjCMac::emitMethodList(Twine name, MethodListType MLT, 3930 ArrayRef<const ObjCMethodDecl *> methods) { 3931 StringRef prefix; 3932 StringRef section; 3933 bool forProtocol = false; 3934 switch (MLT) { 3935 case MethodListType::CategoryInstanceMethods: 3936 prefix = "OBJC_CATEGORY_INSTANCE_METHODS_"; 3937 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3938 forProtocol = false; 3939 break; 3940 case MethodListType::CategoryClassMethods: 3941 prefix = "OBJC_CATEGORY_CLASS_METHODS_"; 3942 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3943 forProtocol = false; 3944 break; 3945 case MethodListType::InstanceMethods: 3946 prefix = "OBJC_INSTANCE_METHODS_"; 3947 section = "__OBJC,__inst_meth,regular,no_dead_strip"; 3948 forProtocol = false; 3949 break; 3950 case MethodListType::ClassMethods: 3951 prefix = "OBJC_CLASS_METHODS_"; 3952 section = "__OBJC,__cls_meth,regular,no_dead_strip"; 3953 forProtocol = false; 3954 break; 3955 case MethodListType::ProtocolInstanceMethods: 3956 prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_"; 3957 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3958 forProtocol = true; 3959 break; 3960 case MethodListType::ProtocolClassMethods: 3961 prefix = "OBJC_PROTOCOL_CLASS_METHODS_"; 3962 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3963 forProtocol = true; 3964 break; 3965 case MethodListType::OptionalProtocolInstanceMethods: 3966 prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_OPT_"; 3967 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3968 forProtocol = true; 3969 break; 3970 case MethodListType::OptionalProtocolClassMethods: 3971 prefix = "OBJC_PROTOCOL_CLASS_METHODS_OPT_"; 3972 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3973 forProtocol = true; 3974 break; 3975 } 3976 3977 // Return null for empty list. 3978 if (methods.empty()) 3979 return llvm::Constant::getNullValue(forProtocol 3980 ? ObjCTypes.MethodDescriptionListPtrTy 3981 : ObjCTypes.MethodListPtrTy); 3982 3983 // For protocols, this is an objc_method_description_list, which has 3984 // a slightly different structure. 3985 if (forProtocol) { 3986 ConstantInitBuilder builder(CGM); 3987 auto values = builder.beginStruct(); 3988 values.addInt(ObjCTypes.IntTy, methods.size()); 3989 auto methodArray = values.beginArray(ObjCTypes.MethodDescriptionTy); 3990 for (auto MD : methods) { 3991 emitMethodDescriptionConstant(methodArray, MD); 3992 } 3993 methodArray.finishAndAddTo(values); 3994 3995 llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section, 3996 CGM.getPointerAlign(), true); 3997 return llvm::ConstantExpr::getBitCast(GV, 3998 ObjCTypes.MethodDescriptionListPtrTy); 3999 } 4000 4001 // Otherwise, it's an objc_method_list. 4002 ConstantInitBuilder builder(CGM); 4003 auto values = builder.beginStruct(); 4004 values.addNullPointer(ObjCTypes.Int8PtrTy); 4005 values.addInt(ObjCTypes.IntTy, methods.size()); 4006 auto methodArray = values.beginArray(ObjCTypes.MethodTy); 4007 for (auto MD : methods) { 4008 if (!MD->isDirectMethod()) 4009 emitMethodConstant(methodArray, MD); 4010 } 4011 methodArray.finishAndAddTo(values); 4012 4013 llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section, 4014 CGM.getPointerAlign(), true); 4015 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListPtrTy); 4016 } 4017 4018 llvm::Function *CGObjCCommonMac::GenerateMethod(const ObjCMethodDecl *OMD, 4019 const ObjCContainerDecl *CD) { 4020 llvm::Function *Method; 4021 4022 if (OMD->isDirectMethod()) { 4023 Method = GenerateDirectMethod(OMD, CD); 4024 } else { 4025 auto Name = getSymbolNameForMethod(OMD); 4026 4027 CodeGenTypes &Types = CGM.getTypes(); 4028 llvm::FunctionType *MethodTy = 4029 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 4030 Method = 4031 llvm::Function::Create(MethodTy, llvm::GlobalValue::InternalLinkage, 4032 Name, &CGM.getModule()); 4033 } 4034 4035 MethodDefinitions.insert(std::make_pair(OMD, Method)); 4036 4037 return Method; 4038 } 4039 4040 llvm::Function * 4041 CGObjCCommonMac::GenerateDirectMethod(const ObjCMethodDecl *OMD, 4042 const ObjCContainerDecl *CD) { 4043 auto *COMD = OMD->getCanonicalDecl(); 4044 auto I = DirectMethodDefinitions.find(COMD); 4045 llvm::Function *OldFn = nullptr, *Fn = nullptr; 4046 4047 if (I != DirectMethodDefinitions.end()) { 4048 // Objective-C allows for the declaration and implementation types 4049 // to differ slightly. 4050 // 4051 // If we're being asked for the Function associated for a method 4052 // implementation, a previous value might have been cached 4053 // based on the type of the canonical declaration. 4054 // 4055 // If these do not match, then we'll replace this function with 4056 // a new one that has the proper type below. 4057 if (!OMD->getBody() || COMD->getReturnType() == OMD->getReturnType()) 4058 return I->second; 4059 OldFn = I->second; 4060 } 4061 4062 CodeGenTypes &Types = CGM.getTypes(); 4063 llvm::FunctionType *MethodTy = 4064 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 4065 4066 if (OldFn) { 4067 Fn = llvm::Function::Create(MethodTy, llvm::GlobalValue::ExternalLinkage, 4068 "", &CGM.getModule()); 4069 Fn->takeName(OldFn); 4070 OldFn->replaceAllUsesWith( 4071 llvm::ConstantExpr::getBitCast(Fn, OldFn->getType())); 4072 OldFn->eraseFromParent(); 4073 4074 // Replace the cached function in the map. 4075 I->second = Fn; 4076 } else { 4077 auto Name = getSymbolNameForMethod(OMD, /*include category*/ false); 4078 4079 Fn = llvm::Function::Create(MethodTy, llvm::GlobalValue::ExternalLinkage, 4080 Name, &CGM.getModule()); 4081 DirectMethodDefinitions.insert(std::make_pair(COMD, Fn)); 4082 } 4083 4084 return Fn; 4085 } 4086 4087 void CGObjCCommonMac::GenerateDirectMethodPrologue( 4088 CodeGenFunction &CGF, llvm::Function *Fn, const ObjCMethodDecl *OMD, 4089 const ObjCContainerDecl *CD) { 4090 auto &Builder = CGF.Builder; 4091 bool ReceiverCanBeNull = true; 4092 auto selfAddr = CGF.GetAddrOfLocalVar(OMD->getSelfDecl()); 4093 auto selfValue = Builder.CreateLoad(selfAddr); 4094 4095 // Generate: 4096 // 4097 // /* for class methods only to force class lazy initialization */ 4098 // self = [self self]; 4099 // 4100 // /* unless the receiver is never NULL */ 4101 // if (self == nil) { 4102 // return (ReturnType){ }; 4103 // } 4104 // 4105 // _cmd = @selector(...) 4106 // ... 4107 4108 if (OMD->isClassMethod()) { 4109 const ObjCInterfaceDecl *OID = cast<ObjCInterfaceDecl>(CD); 4110 assert(OID && 4111 "GenerateDirectMethod() should be called with the Class Interface"); 4112 Selector SelfSel = GetNullarySelector("self", CGM.getContext()); 4113 auto ResultType = CGF.getContext().getObjCIdType(); 4114 RValue result; 4115 CallArgList Args; 4116 4117 // TODO: If this method is inlined, the caller might know that `self` is 4118 // already initialized; for example, it might be an ordinary Objective-C 4119 // method which always receives an initialized `self`, or it might have just 4120 // forced initialization on its own. 4121 // 4122 // We should find a way to eliminate this unnecessary initialization in such 4123 // cases in LLVM. 4124 result = GeneratePossiblySpecializedMessageSend( 4125 CGF, ReturnValueSlot(), ResultType, SelfSel, selfValue, Args, OID, 4126 nullptr, true); 4127 Builder.CreateStore(result.getScalarVal(), selfAddr); 4128 4129 // Nullable `Class` expressions cannot be messaged with a direct method 4130 // so the only reason why the receive can be null would be because 4131 // of weak linking. 4132 ReceiverCanBeNull = isWeakLinkedClass(OID); 4133 } 4134 4135 if (ReceiverCanBeNull) { 4136 llvm::BasicBlock *SelfIsNilBlock = 4137 CGF.createBasicBlock("objc_direct_method.self_is_nil"); 4138 llvm::BasicBlock *ContBlock = 4139 CGF.createBasicBlock("objc_direct_method.cont"); 4140 4141 // if (self == nil) { 4142 auto selfTy = cast<llvm::PointerType>(selfValue->getType()); 4143 auto Zero = llvm::ConstantPointerNull::get(selfTy); 4144 4145 llvm::MDBuilder MDHelper(CGM.getLLVMContext()); 4146 Builder.CreateCondBr(Builder.CreateICmpEQ(selfValue, Zero), SelfIsNilBlock, 4147 ContBlock, MDHelper.createBranchWeights(1, 1 << 20)); 4148 4149 CGF.EmitBlock(SelfIsNilBlock); 4150 4151 // return (ReturnType){ }; 4152 auto retTy = OMD->getReturnType(); 4153 Builder.SetInsertPoint(SelfIsNilBlock); 4154 if (!retTy->isVoidType()) { 4155 CGF.EmitNullInitialization(CGF.ReturnValue, retTy); 4156 } 4157 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); 4158 // } 4159 4160 // rest of the body 4161 CGF.EmitBlock(ContBlock); 4162 Builder.SetInsertPoint(ContBlock); 4163 } 4164 4165 // only synthesize _cmd if it's referenced 4166 if (OMD->getCmdDecl()->isUsed()) { 4167 Builder.CreateStore(GetSelector(CGF, OMD), 4168 CGF.GetAddrOfLocalVar(OMD->getCmdDecl())); 4169 } 4170 } 4171 4172 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name, 4173 ConstantStructBuilder &Init, 4174 StringRef Section, 4175 CharUnits Align, 4176 bool AddToUsed) { 4177 llvm::GlobalValue::LinkageTypes LT = 4178 getLinkageTypeForObjCMetadata(CGM, Section); 4179 llvm::GlobalVariable *GV = 4180 Init.finishAndCreateGlobal(Name, Align, /*constant*/ false, LT); 4181 if (!Section.empty()) 4182 GV->setSection(Section); 4183 if (AddToUsed) 4184 CGM.addCompilerUsedGlobal(GV); 4185 return GV; 4186 } 4187 4188 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name, 4189 llvm::Constant *Init, 4190 StringRef Section, 4191 CharUnits Align, 4192 bool AddToUsed) { 4193 llvm::Type *Ty = Init->getType(); 4194 llvm::GlobalValue::LinkageTypes LT = 4195 getLinkageTypeForObjCMetadata(CGM, Section); 4196 llvm::GlobalVariable *GV = 4197 new llvm::GlobalVariable(CGM.getModule(), Ty, false, LT, Init, Name); 4198 if (!Section.empty()) 4199 GV->setSection(Section); 4200 GV->setAlignment(Align.getAsAlign()); 4201 if (AddToUsed) 4202 CGM.addCompilerUsedGlobal(GV); 4203 return GV; 4204 } 4205 4206 llvm::GlobalVariable * 4207 CGObjCCommonMac::CreateCStringLiteral(StringRef Name, ObjCLabelType Type, 4208 bool ForceNonFragileABI, 4209 bool NullTerminate) { 4210 StringRef Label; 4211 switch (Type) { 4212 case ObjCLabelType::ClassName: Label = "OBJC_CLASS_NAME_"; break; 4213 case ObjCLabelType::MethodVarName: Label = "OBJC_METH_VAR_NAME_"; break; 4214 case ObjCLabelType::MethodVarType: Label = "OBJC_METH_VAR_TYPE_"; break; 4215 case ObjCLabelType::PropertyName: Label = "OBJC_PROP_NAME_ATTR_"; break; 4216 } 4217 4218 bool NonFragile = ForceNonFragileABI || isNonFragileABI(); 4219 4220 StringRef Section; 4221 switch (Type) { 4222 case ObjCLabelType::ClassName: 4223 Section = NonFragile ? "__TEXT,__objc_classname,cstring_literals" 4224 : "__TEXT,__cstring,cstring_literals"; 4225 break; 4226 case ObjCLabelType::MethodVarName: 4227 Section = NonFragile ? "__TEXT,__objc_methname,cstring_literals" 4228 : "__TEXT,__cstring,cstring_literals"; 4229 break; 4230 case ObjCLabelType::MethodVarType: 4231 Section = NonFragile ? "__TEXT,__objc_methtype,cstring_literals" 4232 : "__TEXT,__cstring,cstring_literals"; 4233 break; 4234 case ObjCLabelType::PropertyName: 4235 Section = NonFragile ? "__TEXT,__objc_methname,cstring_literals" 4236 : "__TEXT,__cstring,cstring_literals"; 4237 break; 4238 } 4239 4240 llvm::Constant *Value = 4241 llvm::ConstantDataArray::getString(VMContext, Name, NullTerminate); 4242 llvm::GlobalVariable *GV = 4243 new llvm::GlobalVariable(CGM.getModule(), Value->getType(), 4244 /*isConstant=*/true, 4245 llvm::GlobalValue::PrivateLinkage, Value, Label); 4246 if (CGM.getTriple().isOSBinFormatMachO()) 4247 GV->setSection(Section); 4248 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4249 GV->setAlignment(CharUnits::One().getAsAlign()); 4250 CGM.addCompilerUsedGlobal(GV); 4251 4252 return GV; 4253 } 4254 4255 llvm::Function *CGObjCMac::ModuleInitFunction() { 4256 // Abuse this interface function as a place to finalize. 4257 FinishModule(); 4258 return nullptr; 4259 } 4260 4261 llvm::FunctionCallee CGObjCMac::GetPropertyGetFunction() { 4262 return ObjCTypes.getGetPropertyFn(); 4263 } 4264 4265 llvm::FunctionCallee CGObjCMac::GetPropertySetFunction() { 4266 return ObjCTypes.getSetPropertyFn(); 4267 } 4268 4269 llvm::FunctionCallee CGObjCMac::GetOptimizedPropertySetFunction(bool atomic, 4270 bool copy) { 4271 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 4272 } 4273 4274 llvm::FunctionCallee CGObjCMac::GetGetStructFunction() { 4275 return ObjCTypes.getCopyStructFn(); 4276 } 4277 4278 llvm::FunctionCallee CGObjCMac::GetSetStructFunction() { 4279 return ObjCTypes.getCopyStructFn(); 4280 } 4281 4282 llvm::FunctionCallee CGObjCMac::GetCppAtomicObjectGetFunction() { 4283 return ObjCTypes.getCppAtomicObjectFunction(); 4284 } 4285 4286 llvm::FunctionCallee CGObjCMac::GetCppAtomicObjectSetFunction() { 4287 return ObjCTypes.getCppAtomicObjectFunction(); 4288 } 4289 4290 llvm::FunctionCallee CGObjCMac::EnumerationMutationFunction() { 4291 return ObjCTypes.getEnumerationMutationFn(); 4292 } 4293 4294 void CGObjCMac::EmitTryStmt(CodeGenFunction &CGF, const ObjCAtTryStmt &S) { 4295 return EmitTryOrSynchronizedStmt(CGF, S); 4296 } 4297 4298 void CGObjCMac::EmitSynchronizedStmt(CodeGenFunction &CGF, 4299 const ObjCAtSynchronizedStmt &S) { 4300 return EmitTryOrSynchronizedStmt(CGF, S); 4301 } 4302 4303 namespace { 4304 struct PerformFragileFinally final : EHScopeStack::Cleanup { 4305 const Stmt &S; 4306 Address SyncArgSlot; 4307 Address CallTryExitVar; 4308 Address ExceptionData; 4309 ObjCTypesHelper &ObjCTypes; 4310 PerformFragileFinally(const Stmt *S, 4311 Address SyncArgSlot, 4312 Address CallTryExitVar, 4313 Address ExceptionData, 4314 ObjCTypesHelper *ObjCTypes) 4315 : S(*S), SyncArgSlot(SyncArgSlot), CallTryExitVar(CallTryExitVar), 4316 ExceptionData(ExceptionData), ObjCTypes(*ObjCTypes) {} 4317 4318 void Emit(CodeGenFunction &CGF, Flags flags) override { 4319 // Check whether we need to call objc_exception_try_exit. 4320 // In optimized code, this branch will always be folded. 4321 llvm::BasicBlock *FinallyCallExit = 4322 CGF.createBasicBlock("finally.call_exit"); 4323 llvm::BasicBlock *FinallyNoCallExit = 4324 CGF.createBasicBlock("finally.no_call_exit"); 4325 CGF.Builder.CreateCondBr(CGF.Builder.CreateLoad(CallTryExitVar), 4326 FinallyCallExit, FinallyNoCallExit); 4327 4328 CGF.EmitBlock(FinallyCallExit); 4329 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryExitFn(), 4330 ExceptionData.getPointer()); 4331 4332 CGF.EmitBlock(FinallyNoCallExit); 4333 4334 if (isa<ObjCAtTryStmt>(S)) { 4335 if (const ObjCAtFinallyStmt* FinallyStmt = 4336 cast<ObjCAtTryStmt>(S).getFinallyStmt()) { 4337 // Don't try to do the @finally if this is an EH cleanup. 4338 if (flags.isForEHCleanup()) return; 4339 4340 // Save the current cleanup destination in case there's 4341 // control flow inside the finally statement. 4342 llvm::Value *CurCleanupDest = 4343 CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot()); 4344 4345 CGF.EmitStmt(FinallyStmt->getFinallyBody()); 4346 4347 if (CGF.HaveInsertPoint()) { 4348 CGF.Builder.CreateStore(CurCleanupDest, 4349 CGF.getNormalCleanupDestSlot()); 4350 } else { 4351 // Currently, the end of the cleanup must always exist. 4352 CGF.EnsureInsertPoint(); 4353 } 4354 } 4355 } else { 4356 // Emit objc_sync_exit(expr); as finally's sole statement for 4357 // @synchronized. 4358 llvm::Value *SyncArg = CGF.Builder.CreateLoad(SyncArgSlot); 4359 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncExitFn(), SyncArg); 4360 } 4361 } 4362 }; 4363 4364 class FragileHazards { 4365 CodeGenFunction &CGF; 4366 SmallVector<llvm::Value*, 20> Locals; 4367 llvm::DenseSet<llvm::BasicBlock*> BlocksBeforeTry; 4368 4369 llvm::InlineAsm *ReadHazard; 4370 llvm::InlineAsm *WriteHazard; 4371 4372 llvm::FunctionType *GetAsmFnType(); 4373 4374 void collectLocals(); 4375 void emitReadHazard(CGBuilderTy &Builder); 4376 4377 public: 4378 FragileHazards(CodeGenFunction &CGF); 4379 4380 void emitWriteHazard(); 4381 void emitHazardsInNewBlocks(); 4382 }; 4383 } // end anonymous namespace 4384 4385 /// Create the fragile-ABI read and write hazards based on the current 4386 /// state of the function, which is presumed to be immediately prior 4387 /// to a @try block. These hazards are used to maintain correct 4388 /// semantics in the face of optimization and the fragile ABI's 4389 /// cavalier use of setjmp/longjmp. 4390 FragileHazards::FragileHazards(CodeGenFunction &CGF) : CGF(CGF) { 4391 collectLocals(); 4392 4393 if (Locals.empty()) return; 4394 4395 // Collect all the blocks in the function. 4396 for (llvm::Function::iterator 4397 I = CGF.CurFn->begin(), E = CGF.CurFn->end(); I != E; ++I) 4398 BlocksBeforeTry.insert(&*I); 4399 4400 llvm::FunctionType *AsmFnTy = GetAsmFnType(); 4401 4402 // Create a read hazard for the allocas. This inhibits dead-store 4403 // optimizations and forces the values to memory. This hazard is 4404 // inserted before any 'throwing' calls in the protected scope to 4405 // reflect the possibility that the variables might be read from the 4406 // catch block if the call throws. 4407 { 4408 std::string Constraint; 4409 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 4410 if (I) Constraint += ','; 4411 Constraint += "*m"; 4412 } 4413 4414 ReadHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 4415 } 4416 4417 // Create a write hazard for the allocas. This inhibits folding 4418 // loads across the hazard. This hazard is inserted at the 4419 // beginning of the catch path to reflect the possibility that the 4420 // variables might have been written within the protected scope. 4421 { 4422 std::string Constraint; 4423 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 4424 if (I) Constraint += ','; 4425 Constraint += "=*m"; 4426 } 4427 4428 WriteHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 4429 } 4430 } 4431 4432 /// Emit a write hazard at the current location. 4433 void FragileHazards::emitWriteHazard() { 4434 if (Locals.empty()) return; 4435 4436 CGF.EmitNounwindRuntimeCall(WriteHazard, Locals); 4437 } 4438 4439 void FragileHazards::emitReadHazard(CGBuilderTy &Builder) { 4440 assert(!Locals.empty()); 4441 llvm::CallInst *call = Builder.CreateCall(ReadHazard, Locals); 4442 call->setDoesNotThrow(); 4443 call->setCallingConv(CGF.getRuntimeCC()); 4444 } 4445 4446 /// Emit read hazards in all the protected blocks, i.e. all the blocks 4447 /// which have been inserted since the beginning of the try. 4448 void FragileHazards::emitHazardsInNewBlocks() { 4449 if (Locals.empty()) return; 4450 4451 CGBuilderTy Builder(CGF, CGF.getLLVMContext()); 4452 4453 // Iterate through all blocks, skipping those prior to the try. 4454 for (llvm::Function::iterator 4455 FI = CGF.CurFn->begin(), FE = CGF.CurFn->end(); FI != FE; ++FI) { 4456 llvm::BasicBlock &BB = *FI; 4457 if (BlocksBeforeTry.count(&BB)) continue; 4458 4459 // Walk through all the calls in the block. 4460 for (llvm::BasicBlock::iterator 4461 BI = BB.begin(), BE = BB.end(); BI != BE; ++BI) { 4462 llvm::Instruction &I = *BI; 4463 4464 // Ignore instructions that aren't non-intrinsic calls. 4465 // These are the only calls that can possibly call longjmp. 4466 if (!isa<llvm::CallInst>(I) && !isa<llvm::InvokeInst>(I)) 4467 continue; 4468 if (isa<llvm::IntrinsicInst>(I)) 4469 continue; 4470 4471 // Ignore call sites marked nounwind. This may be questionable, 4472 // since 'nounwind' doesn't necessarily mean 'does not call longjmp'. 4473 if (cast<llvm::CallBase>(I).doesNotThrow()) 4474 continue; 4475 4476 // Insert a read hazard before the call. This will ensure that 4477 // any writes to the locals are performed before making the 4478 // call. If the call throws, then this is sufficient to 4479 // guarantee correctness as long as it doesn't also write to any 4480 // locals. 4481 Builder.SetInsertPoint(&BB, BI); 4482 emitReadHazard(Builder); 4483 } 4484 } 4485 } 4486 4487 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, Address V) { 4488 if (V.isValid()) S.insert(V.getPointer()); 4489 } 4490 4491 void FragileHazards::collectLocals() { 4492 // Compute a set of allocas to ignore. 4493 llvm::DenseSet<llvm::Value*> AllocasToIgnore; 4494 addIfPresent(AllocasToIgnore, CGF.ReturnValue); 4495 addIfPresent(AllocasToIgnore, CGF.NormalCleanupDest); 4496 4497 // Collect all the allocas currently in the function. This is 4498 // probably way too aggressive. 4499 llvm::BasicBlock &Entry = CGF.CurFn->getEntryBlock(); 4500 for (llvm::BasicBlock::iterator 4501 I = Entry.begin(), E = Entry.end(); I != E; ++I) 4502 if (isa<llvm::AllocaInst>(*I) && !AllocasToIgnore.count(&*I)) 4503 Locals.push_back(&*I); 4504 } 4505 4506 llvm::FunctionType *FragileHazards::GetAsmFnType() { 4507 SmallVector<llvm::Type *, 16> tys(Locals.size()); 4508 for (unsigned i = 0, e = Locals.size(); i != e; ++i) 4509 tys[i] = Locals[i]->getType(); 4510 return llvm::FunctionType::get(CGF.VoidTy, tys, false); 4511 } 4512 4513 /* 4514 4515 Objective-C setjmp-longjmp (sjlj) Exception Handling 4516 -- 4517 4518 A catch buffer is a setjmp buffer plus: 4519 - a pointer to the exception that was caught 4520 - a pointer to the previous exception data buffer 4521 - two pointers of reserved storage 4522 Therefore catch buffers form a stack, with a pointer to the top 4523 of the stack kept in thread-local storage. 4524 4525 objc_exception_try_enter pushes a catch buffer onto the EH stack. 4526 objc_exception_try_exit pops the given catch buffer, which is 4527 required to be the top of the EH stack. 4528 objc_exception_throw pops the top of the EH stack, writes the 4529 thrown exception into the appropriate field, and longjmps 4530 to the setjmp buffer. It crashes the process (with a printf 4531 and an abort()) if there are no catch buffers on the stack. 4532 objc_exception_extract just reads the exception pointer out of the 4533 catch buffer. 4534 4535 There's no reason an implementation couldn't use a light-weight 4536 setjmp here --- something like __builtin_setjmp, but API-compatible 4537 with the heavyweight setjmp. This will be more important if we ever 4538 want to implement correct ObjC/C++ exception interactions for the 4539 fragile ABI. 4540 4541 Note that for this use of setjmp/longjmp to be correct, we may need 4542 to mark some local variables volatile: if a non-volatile local 4543 variable is modified between the setjmp and the longjmp, it has 4544 indeterminate value. For the purposes of LLVM IR, it may be 4545 sufficient to make loads and stores within the @try (to variables 4546 declared outside the @try) volatile. This is necessary for 4547 optimized correctness, but is not currently being done; this is 4548 being tracked as rdar://problem/8160285 4549 4550 The basic framework for a @try-catch-finally is as follows: 4551 { 4552 objc_exception_data d; 4553 id _rethrow = null; 4554 bool _call_try_exit = true; 4555 4556 objc_exception_try_enter(&d); 4557 if (!setjmp(d.jmp_buf)) { 4558 ... try body ... 4559 } else { 4560 // exception path 4561 id _caught = objc_exception_extract(&d); 4562 4563 // enter new try scope for handlers 4564 if (!setjmp(d.jmp_buf)) { 4565 ... match exception and execute catch blocks ... 4566 4567 // fell off end, rethrow. 4568 _rethrow = _caught; 4569 ... jump-through-finally to finally_rethrow ... 4570 } else { 4571 // exception in catch block 4572 _rethrow = objc_exception_extract(&d); 4573 _call_try_exit = false; 4574 ... jump-through-finally to finally_rethrow ... 4575 } 4576 } 4577 ... jump-through-finally to finally_end ... 4578 4579 finally: 4580 if (_call_try_exit) 4581 objc_exception_try_exit(&d); 4582 4583 ... finally block .... 4584 ... dispatch to finally destination ... 4585 4586 finally_rethrow: 4587 objc_exception_throw(_rethrow); 4588 4589 finally_end: 4590 } 4591 4592 This framework differs slightly from the one gcc uses, in that gcc 4593 uses _rethrow to determine if objc_exception_try_exit should be called 4594 and if the object should be rethrown. This breaks in the face of 4595 throwing nil and introduces unnecessary branches. 4596 4597 We specialize this framework for a few particular circumstances: 4598 4599 - If there are no catch blocks, then we avoid emitting the second 4600 exception handling context. 4601 4602 - If there is a catch-all catch block (i.e. @catch(...) or @catch(id 4603 e)) we avoid emitting the code to rethrow an uncaught exception. 4604 4605 - FIXME: If there is no @finally block we can do a few more 4606 simplifications. 4607 4608 Rethrows and Jumps-Through-Finally 4609 -- 4610 4611 '@throw;' is supported by pushing the currently-caught exception 4612 onto ObjCEHStack while the @catch blocks are emitted. 4613 4614 Branches through the @finally block are handled with an ordinary 4615 normal cleanup. We do not register an EH cleanup; fragile-ABI ObjC 4616 exceptions are not compatible with C++ exceptions, and this is 4617 hardly the only place where this will go wrong. 4618 4619 @synchronized(expr) { stmt; } is emitted as if it were: 4620 id synch_value = expr; 4621 objc_sync_enter(synch_value); 4622 @try { stmt; } @finally { objc_sync_exit(synch_value); } 4623 */ 4624 4625 void CGObjCMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 4626 const Stmt &S) { 4627 bool isTry = isa<ObjCAtTryStmt>(S); 4628 4629 // A destination for the fall-through edges of the catch handlers to 4630 // jump to. 4631 CodeGenFunction::JumpDest FinallyEnd = 4632 CGF.getJumpDestInCurrentScope("finally.end"); 4633 4634 // A destination for the rethrow edge of the catch handlers to jump 4635 // to. 4636 CodeGenFunction::JumpDest FinallyRethrow = 4637 CGF.getJumpDestInCurrentScope("finally.rethrow"); 4638 4639 // For @synchronized, call objc_sync_enter(sync.expr). The 4640 // evaluation of the expression must occur before we enter the 4641 // @synchronized. We can't avoid a temp here because we need the 4642 // value to be preserved. If the backend ever does liveness 4643 // correctly after setjmp, this will be unnecessary. 4644 Address SyncArgSlot = Address::invalid(); 4645 if (!isTry) { 4646 llvm::Value *SyncArg = 4647 CGF.EmitScalarExpr(cast<ObjCAtSynchronizedStmt>(S).getSynchExpr()); 4648 SyncArg = CGF.Builder.CreateBitCast(SyncArg, ObjCTypes.ObjectPtrTy); 4649 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncEnterFn(), SyncArg); 4650 4651 SyncArgSlot = CGF.CreateTempAlloca(SyncArg->getType(), 4652 CGF.getPointerAlign(), "sync.arg"); 4653 CGF.Builder.CreateStore(SyncArg, SyncArgSlot); 4654 } 4655 4656 // Allocate memory for the setjmp buffer. This needs to be kept 4657 // live throughout the try and catch blocks. 4658 Address ExceptionData = CGF.CreateTempAlloca(ObjCTypes.ExceptionDataTy, 4659 CGF.getPointerAlign(), 4660 "exceptiondata.ptr"); 4661 4662 // Create the fragile hazards. Note that this will not capture any 4663 // of the allocas required for exception processing, but will 4664 // capture the current basic block (which extends all the way to the 4665 // setjmp call) as "before the @try". 4666 FragileHazards Hazards(CGF); 4667 4668 // Create a flag indicating whether the cleanup needs to call 4669 // objc_exception_try_exit. This is true except when 4670 // - no catches match and we're branching through the cleanup 4671 // just to rethrow the exception, or 4672 // - a catch matched and we're falling out of the catch handler. 4673 // The setjmp-safety rule here is that we should always store to this 4674 // variable in a place that dominates the branch through the cleanup 4675 // without passing through any setjmps. 4676 Address CallTryExitVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), 4677 CharUnits::One(), 4678 "_call_try_exit"); 4679 4680 // A slot containing the exception to rethrow. Only needed when we 4681 // have both a @catch and a @finally. 4682 Address PropagatingExnVar = Address::invalid(); 4683 4684 // Push a normal cleanup to leave the try scope. 4685 CGF.EHStack.pushCleanup<PerformFragileFinally>(NormalAndEHCleanup, &S, 4686 SyncArgSlot, 4687 CallTryExitVar, 4688 ExceptionData, 4689 &ObjCTypes); 4690 4691 // Enter a try block: 4692 // - Call objc_exception_try_enter to push ExceptionData on top of 4693 // the EH stack. 4694 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4695 ExceptionData.getPointer()); 4696 4697 // - Call setjmp on the exception data buffer. 4698 llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0); 4699 llvm::Value *GEPIndexes[] = { Zero, Zero, Zero }; 4700 llvm::Value *SetJmpBuffer = CGF.Builder.CreateGEP( 4701 ObjCTypes.ExceptionDataTy, ExceptionData.getPointer(), GEPIndexes, 4702 "setjmp_buffer"); 4703 llvm::CallInst *SetJmpResult = CGF.EmitNounwindRuntimeCall( 4704 ObjCTypes.getSetJmpFn(), SetJmpBuffer, "setjmp_result"); 4705 SetJmpResult->setCanReturnTwice(); 4706 4707 // If setjmp returned 0, enter the protected block; otherwise, 4708 // branch to the handler. 4709 llvm::BasicBlock *TryBlock = CGF.createBasicBlock("try"); 4710 llvm::BasicBlock *TryHandler = CGF.createBasicBlock("try.handler"); 4711 llvm::Value *DidCatch = 4712 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4713 CGF.Builder.CreateCondBr(DidCatch, TryHandler, TryBlock); 4714 4715 // Emit the protected block. 4716 CGF.EmitBlock(TryBlock); 4717 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4718 CGF.EmitStmt(isTry ? cast<ObjCAtTryStmt>(S).getTryBody() 4719 : cast<ObjCAtSynchronizedStmt>(S).getSynchBody()); 4720 4721 CGBuilderTy::InsertPoint TryFallthroughIP = CGF.Builder.saveAndClearIP(); 4722 4723 // Emit the exception handler block. 4724 CGF.EmitBlock(TryHandler); 4725 4726 // Don't optimize loads of the in-scope locals across this point. 4727 Hazards.emitWriteHazard(); 4728 4729 // For a @synchronized (or a @try with no catches), just branch 4730 // through the cleanup to the rethrow block. 4731 if (!isTry || !cast<ObjCAtTryStmt>(S).getNumCatchStmts()) { 4732 // Tell the cleanup not to re-pop the exit. 4733 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4734 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4735 4736 // Otherwise, we have to match against the caught exceptions. 4737 } else { 4738 // Retrieve the exception object. We may emit multiple blocks but 4739 // nothing can cross this so the value is already in SSA form. 4740 llvm::CallInst *Caught = 4741 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4742 ExceptionData.getPointer(), "caught"); 4743 4744 // Push the exception to rethrow onto the EH value stack for the 4745 // benefit of any @throws in the handlers. 4746 CGF.ObjCEHValueStack.push_back(Caught); 4747 4748 const ObjCAtTryStmt* AtTryStmt = cast<ObjCAtTryStmt>(&S); 4749 4750 bool HasFinally = (AtTryStmt->getFinallyStmt() != nullptr); 4751 4752 llvm::BasicBlock *CatchBlock = nullptr; 4753 llvm::BasicBlock *CatchHandler = nullptr; 4754 if (HasFinally) { 4755 // Save the currently-propagating exception before 4756 // objc_exception_try_enter clears the exception slot. 4757 PropagatingExnVar = CGF.CreateTempAlloca(Caught->getType(), 4758 CGF.getPointerAlign(), 4759 "propagating_exception"); 4760 CGF.Builder.CreateStore(Caught, PropagatingExnVar); 4761 4762 // Enter a new exception try block (in case a @catch block 4763 // throws an exception). 4764 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4765 ExceptionData.getPointer()); 4766 4767 llvm::CallInst *SetJmpResult = 4768 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSetJmpFn(), 4769 SetJmpBuffer, "setjmp.result"); 4770 SetJmpResult->setCanReturnTwice(); 4771 4772 llvm::Value *Threw = 4773 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4774 4775 CatchBlock = CGF.createBasicBlock("catch"); 4776 CatchHandler = CGF.createBasicBlock("catch_for_catch"); 4777 CGF.Builder.CreateCondBr(Threw, CatchHandler, CatchBlock); 4778 4779 CGF.EmitBlock(CatchBlock); 4780 } 4781 4782 CGF.Builder.CreateStore(CGF.Builder.getInt1(HasFinally), CallTryExitVar); 4783 4784 // Handle catch list. As a special case we check if everything is 4785 // matched and avoid generating code for falling off the end if 4786 // so. 4787 bool AllMatched = false; 4788 for (unsigned I = 0, N = AtTryStmt->getNumCatchStmts(); I != N; ++I) { 4789 const ObjCAtCatchStmt *CatchStmt = AtTryStmt->getCatchStmt(I); 4790 4791 const VarDecl *CatchParam = CatchStmt->getCatchParamDecl(); 4792 const ObjCObjectPointerType *OPT = nullptr; 4793 4794 // catch(...) always matches. 4795 if (!CatchParam) { 4796 AllMatched = true; 4797 } else { 4798 OPT = CatchParam->getType()->getAs<ObjCObjectPointerType>(); 4799 4800 // catch(id e) always matches under this ABI, since only 4801 // ObjC exceptions end up here in the first place. 4802 // FIXME: For the time being we also match id<X>; this should 4803 // be rejected by Sema instead. 4804 if (OPT && (OPT->isObjCIdType() || OPT->isObjCQualifiedIdType())) 4805 AllMatched = true; 4806 } 4807 4808 // If this is a catch-all, we don't need to test anything. 4809 if (AllMatched) { 4810 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4811 4812 if (CatchParam) { 4813 CGF.EmitAutoVarDecl(*CatchParam); 4814 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4815 4816 // These types work out because ConvertType(id) == i8*. 4817 EmitInitOfCatchParam(CGF, Caught, CatchParam); 4818 } 4819 4820 CGF.EmitStmt(CatchStmt->getCatchBody()); 4821 4822 // The scope of the catch variable ends right here. 4823 CatchVarCleanups.ForceCleanup(); 4824 4825 CGF.EmitBranchThroughCleanup(FinallyEnd); 4826 break; 4827 } 4828 4829 assert(OPT && "Unexpected non-object pointer type in @catch"); 4830 const ObjCObjectType *ObjTy = OPT->getObjectType(); 4831 4832 // FIXME: @catch (Class c) ? 4833 ObjCInterfaceDecl *IDecl = ObjTy->getInterface(); 4834 assert(IDecl && "Catch parameter must have Objective-C type!"); 4835 4836 // Check if the @catch block matches the exception object. 4837 llvm::Value *Class = EmitClassRef(CGF, IDecl); 4838 4839 llvm::Value *matchArgs[] = { Class, Caught }; 4840 llvm::CallInst *Match = 4841 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionMatchFn(), 4842 matchArgs, "match"); 4843 4844 llvm::BasicBlock *MatchedBlock = CGF.createBasicBlock("match"); 4845 llvm::BasicBlock *NextCatchBlock = CGF.createBasicBlock("catch.next"); 4846 4847 CGF.Builder.CreateCondBr(CGF.Builder.CreateIsNotNull(Match, "matched"), 4848 MatchedBlock, NextCatchBlock); 4849 4850 // Emit the @catch block. 4851 CGF.EmitBlock(MatchedBlock); 4852 4853 // Collect any cleanups for the catch variable. The scope lasts until 4854 // the end of the catch body. 4855 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4856 4857 CGF.EmitAutoVarDecl(*CatchParam); 4858 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4859 4860 // Initialize the catch variable. 4861 llvm::Value *Tmp = 4862 CGF.Builder.CreateBitCast(Caught, 4863 CGF.ConvertType(CatchParam->getType())); 4864 EmitInitOfCatchParam(CGF, Tmp, CatchParam); 4865 4866 CGF.EmitStmt(CatchStmt->getCatchBody()); 4867 4868 // We're done with the catch variable. 4869 CatchVarCleanups.ForceCleanup(); 4870 4871 CGF.EmitBranchThroughCleanup(FinallyEnd); 4872 4873 CGF.EmitBlock(NextCatchBlock); 4874 } 4875 4876 CGF.ObjCEHValueStack.pop_back(); 4877 4878 // If nothing wanted anything to do with the caught exception, 4879 // kill the extract call. 4880 if (Caught->use_empty()) 4881 Caught->eraseFromParent(); 4882 4883 if (!AllMatched) 4884 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4885 4886 if (HasFinally) { 4887 // Emit the exception handler for the @catch blocks. 4888 CGF.EmitBlock(CatchHandler); 4889 4890 // In theory we might now need a write hazard, but actually it's 4891 // unnecessary because there's no local-accessing code between 4892 // the try's write hazard and here. 4893 //Hazards.emitWriteHazard(); 4894 4895 // Extract the new exception and save it to the 4896 // propagating-exception slot. 4897 assert(PropagatingExnVar.isValid()); 4898 llvm::CallInst *NewCaught = 4899 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4900 ExceptionData.getPointer(), "caught"); 4901 CGF.Builder.CreateStore(NewCaught, PropagatingExnVar); 4902 4903 // Don't pop the catch handler; the throw already did. 4904 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4905 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4906 } 4907 } 4908 4909 // Insert read hazards as required in the new blocks. 4910 Hazards.emitHazardsInNewBlocks(); 4911 4912 // Pop the cleanup. 4913 CGF.Builder.restoreIP(TryFallthroughIP); 4914 if (CGF.HaveInsertPoint()) 4915 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4916 CGF.PopCleanupBlock(); 4917 CGF.EmitBlock(FinallyEnd.getBlock(), true); 4918 4919 // Emit the rethrow block. 4920 CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); 4921 CGF.EmitBlock(FinallyRethrow.getBlock(), true); 4922 if (CGF.HaveInsertPoint()) { 4923 // If we have a propagating-exception variable, check it. 4924 llvm::Value *PropagatingExn; 4925 if (PropagatingExnVar.isValid()) { 4926 PropagatingExn = CGF.Builder.CreateLoad(PropagatingExnVar); 4927 4928 // Otherwise, just look in the buffer for the exception to throw. 4929 } else { 4930 llvm::CallInst *Caught = 4931 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4932 ExceptionData.getPointer()); 4933 PropagatingExn = Caught; 4934 } 4935 4936 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionThrowFn(), 4937 PropagatingExn); 4938 CGF.Builder.CreateUnreachable(); 4939 } 4940 4941 CGF.Builder.restoreIP(SavedIP); 4942 } 4943 4944 void CGObjCMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 4945 const ObjCAtThrowStmt &S, 4946 bool ClearInsertionPoint) { 4947 llvm::Value *ExceptionAsObject; 4948 4949 if (const Expr *ThrowExpr = S.getThrowExpr()) { 4950 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 4951 ExceptionAsObject = 4952 CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 4953 } else { 4954 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && 4955 "Unexpected rethrow outside @catch block."); 4956 ExceptionAsObject = CGF.ObjCEHValueStack.back(); 4957 } 4958 4959 CGF.EmitRuntimeCall(ObjCTypes.getExceptionThrowFn(), ExceptionAsObject) 4960 ->setDoesNotReturn(); 4961 CGF.Builder.CreateUnreachable(); 4962 4963 // Clear the insertion point to indicate we are in unreachable code. 4964 if (ClearInsertionPoint) 4965 CGF.Builder.ClearInsertionPoint(); 4966 } 4967 4968 /// EmitObjCWeakRead - Code gen for loading value of a __weak 4969 /// object: objc_read_weak (id *src) 4970 /// 4971 llvm::Value * CGObjCMac::EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 4972 Address AddrWeakObj) { 4973 llvm::Type* DestTy = AddrWeakObj.getElementType(); 4974 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, 4975 ObjCTypes.PtrObjectPtrTy); 4976 llvm::Value *read_weak = 4977 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 4978 AddrWeakObj.getPointer(), "weakread"); 4979 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 4980 return read_weak; 4981 } 4982 4983 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 4984 /// objc_assign_weak (id src, id *dst) 4985 /// 4986 void CGObjCMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 4987 llvm::Value *src, Address dst) { 4988 llvm::Type * SrcTy = src->getType(); 4989 if (!isa<llvm::PointerType>(SrcTy)) { 4990 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4991 assert(Size <= 8 && "does not support size > 8"); 4992 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4993 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4994 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4995 } 4996 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4997 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4998 llvm::Value *args[] = { src, dst.getPointer() }; 4999 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 5000 args, "weakassign"); 5001 } 5002 5003 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 5004 /// objc_assign_global (id src, id *dst) 5005 /// 5006 void CGObjCMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 5007 llvm::Value *src, Address dst, 5008 bool threadlocal) { 5009 llvm::Type * SrcTy = src->getType(); 5010 if (!isa<llvm::PointerType>(SrcTy)) { 5011 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 5012 assert(Size <= 8 && "does not support size > 8"); 5013 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 5014 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 5015 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 5016 } 5017 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 5018 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 5019 llvm::Value *args[] = { src, dst.getPointer() }; 5020 if (!threadlocal) 5021 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 5022 args, "globalassign"); 5023 else 5024 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 5025 args, "threadlocalassign"); 5026 } 5027 5028 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 5029 /// objc_assign_ivar (id src, id *dst, ptrdiff_t ivaroffset) 5030 /// 5031 void CGObjCMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 5032 llvm::Value *src, Address dst, 5033 llvm::Value *ivarOffset) { 5034 assert(ivarOffset && "EmitObjCIvarAssign - ivarOffset is NULL"); 5035 llvm::Type * SrcTy = src->getType(); 5036 if (!isa<llvm::PointerType>(SrcTy)) { 5037 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 5038 assert(Size <= 8 && "does not support size > 8"); 5039 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 5040 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 5041 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 5042 } 5043 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 5044 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 5045 llvm::Value *args[] = { src, dst.getPointer(), ivarOffset }; 5046 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 5047 } 5048 5049 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 5050 /// objc_assign_strongCast (id src, id *dst) 5051 /// 5052 void CGObjCMac::EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 5053 llvm::Value *src, Address dst) { 5054 llvm::Type * SrcTy = src->getType(); 5055 if (!isa<llvm::PointerType>(SrcTy)) { 5056 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 5057 assert(Size <= 8 && "does not support size > 8"); 5058 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 5059 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 5060 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 5061 } 5062 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 5063 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 5064 llvm::Value *args[] = { src, dst.getPointer() }; 5065 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 5066 args, "strongassign"); 5067 } 5068 5069 void CGObjCMac::EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 5070 Address DestPtr, 5071 Address SrcPtr, 5072 llvm::Value *size) { 5073 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 5074 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 5075 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), size }; 5076 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 5077 } 5078 5079 /// EmitObjCValueForIvar - Code Gen for ivar reference. 5080 /// 5081 LValue CGObjCMac::EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, 5082 QualType ObjectTy, 5083 llvm::Value *BaseValue, 5084 const ObjCIvarDecl *Ivar, 5085 unsigned CVRQualifiers) { 5086 const ObjCInterfaceDecl *ID = 5087 ObjectTy->castAs<ObjCObjectType>()->getInterface(); 5088 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 5089 EmitIvarOffset(CGF, ID, Ivar)); 5090 } 5091 5092 llvm::Value *CGObjCMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 5093 const ObjCInterfaceDecl *Interface, 5094 const ObjCIvarDecl *Ivar) { 5095 uint64_t Offset = ComputeIvarBaseOffset(CGM, Interface, Ivar); 5096 return llvm::ConstantInt::get( 5097 CGM.getTypes().ConvertType(CGM.getContext().LongTy), 5098 Offset); 5099 } 5100 5101 /* *** Private Interface *** */ 5102 5103 std::string CGObjCCommonMac::GetSectionName(StringRef Section, 5104 StringRef MachOAttributes) { 5105 switch (CGM.getTriple().getObjectFormat()) { 5106 case llvm::Triple::UnknownObjectFormat: 5107 llvm_unreachable("unexpected object file format"); 5108 case llvm::Triple::MachO: { 5109 if (MachOAttributes.empty()) 5110 return ("__DATA," + Section).str(); 5111 return ("__DATA," + Section + "," + MachOAttributes).str(); 5112 } 5113 case llvm::Triple::ELF: 5114 assert(Section.substr(0, 2) == "__" && 5115 "expected the name to begin with __"); 5116 return Section.substr(2).str(); 5117 case llvm::Triple::COFF: 5118 assert(Section.substr(0, 2) == "__" && 5119 "expected the name to begin with __"); 5120 return ("." + Section.substr(2) + "$B").str(); 5121 case llvm::Triple::Wasm: 5122 case llvm::Triple::GOFF: 5123 case llvm::Triple::XCOFF: 5124 llvm::report_fatal_error( 5125 "Objective-C support is unimplemented for object file format"); 5126 } 5127 5128 llvm_unreachable("Unhandled llvm::Triple::ObjectFormatType enum"); 5129 } 5130 5131 /// EmitImageInfo - Emit the image info marker used to encode some module 5132 /// level information. 5133 /// 5134 /// See: <rdr://4810609&4810587&4810587> 5135 /// struct IMAGE_INFO { 5136 /// unsigned version; 5137 /// unsigned flags; 5138 /// }; 5139 enum ImageInfoFlags { 5140 eImageInfo_FixAndContinue = (1 << 0), // This flag is no longer set by clang. 5141 eImageInfo_GarbageCollected = (1 << 1), 5142 eImageInfo_GCOnly = (1 << 2), 5143 eImageInfo_OptimizedByDyld = (1 << 3), // This flag is set by the dyld shared cache. 5144 5145 // A flag indicating that the module has no instances of a @synthesize of a 5146 // superclass variable. <rdar://problem/6803242> 5147 eImageInfo_CorrectedSynthesize = (1 << 4), // This flag is no longer set by clang. 5148 eImageInfo_ImageIsSimulated = (1 << 5), 5149 eImageInfo_ClassProperties = (1 << 6) 5150 }; 5151 5152 void CGObjCCommonMac::EmitImageInfo() { 5153 unsigned version = 0; // Version is unused? 5154 std::string Section = 5155 (ObjCABI == 1) 5156 ? "__OBJC,__image_info,regular" 5157 : GetSectionName("__objc_imageinfo", "regular,no_dead_strip"); 5158 5159 // Generate module-level named metadata to convey this information to the 5160 // linker and code-gen. 5161 llvm::Module &Mod = CGM.getModule(); 5162 5163 // Add the ObjC ABI version to the module flags. 5164 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Version", ObjCABI); 5165 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Version", 5166 version); 5167 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Section", 5168 llvm::MDString::get(VMContext, Section)); 5169 5170 auto Int8Ty = llvm::Type::getInt8Ty(VMContext); 5171 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 5172 // Non-GC overrides those files which specify GC. 5173 Mod.addModuleFlag(llvm::Module::Error, 5174 "Objective-C Garbage Collection", 5175 llvm::ConstantInt::get(Int8Ty,0)); 5176 } else { 5177 // Add the ObjC garbage collection value. 5178 Mod.addModuleFlag(llvm::Module::Error, 5179 "Objective-C Garbage Collection", 5180 llvm::ConstantInt::get(Int8Ty, 5181 (uint8_t)eImageInfo_GarbageCollected)); 5182 5183 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 5184 // Add the ObjC GC Only value. 5185 Mod.addModuleFlag(llvm::Module::Error, "Objective-C GC Only", 5186 eImageInfo_GCOnly); 5187 5188 // Require that GC be specified and set to eImageInfo_GarbageCollected. 5189 llvm::Metadata *Ops[2] = { 5190 llvm::MDString::get(VMContext, "Objective-C Garbage Collection"), 5191 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 5192 Int8Ty, eImageInfo_GarbageCollected))}; 5193 Mod.addModuleFlag(llvm::Module::Require, "Objective-C GC Only", 5194 llvm::MDNode::get(VMContext, Ops)); 5195 } 5196 } 5197 5198 // Indicate whether we're compiling this to run on a simulator. 5199 if (CGM.getTarget().getTriple().isSimulatorEnvironment()) 5200 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Is Simulated", 5201 eImageInfo_ImageIsSimulated); 5202 5203 // Indicate whether we are generating class properties. 5204 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Class Properties", 5205 eImageInfo_ClassProperties); 5206 } 5207 5208 // struct objc_module { 5209 // unsigned long version; 5210 // unsigned long size; 5211 // const char *name; 5212 // Symtab symtab; 5213 // }; 5214 5215 // FIXME: Get from somewhere 5216 static const int ModuleVersion = 7; 5217 5218 void CGObjCMac::EmitModuleInfo() { 5219 uint64_t Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ModuleTy); 5220 5221 ConstantInitBuilder builder(CGM); 5222 auto values = builder.beginStruct(ObjCTypes.ModuleTy); 5223 values.addInt(ObjCTypes.LongTy, ModuleVersion); 5224 values.addInt(ObjCTypes.LongTy, Size); 5225 // This used to be the filename, now it is unused. <rdr://4327263> 5226 values.add(GetClassName(StringRef(""))); 5227 values.add(EmitModuleSymbols()); 5228 CreateMetadataVar("OBJC_MODULES", values, 5229 "__OBJC,__module_info,regular,no_dead_strip", 5230 CGM.getPointerAlign(), true); 5231 } 5232 5233 llvm::Constant *CGObjCMac::EmitModuleSymbols() { 5234 unsigned NumClasses = DefinedClasses.size(); 5235 unsigned NumCategories = DefinedCategories.size(); 5236 5237 // Return null if no symbols were defined. 5238 if (!NumClasses && !NumCategories) 5239 return llvm::Constant::getNullValue(ObjCTypes.SymtabPtrTy); 5240 5241 ConstantInitBuilder builder(CGM); 5242 auto values = builder.beginStruct(); 5243 values.addInt(ObjCTypes.LongTy, 0); 5244 values.addNullPointer(ObjCTypes.SelectorPtrTy); 5245 values.addInt(ObjCTypes.ShortTy, NumClasses); 5246 values.addInt(ObjCTypes.ShortTy, NumCategories); 5247 5248 // The runtime expects exactly the list of defined classes followed 5249 // by the list of defined categories, in a single array. 5250 auto array = values.beginArray(ObjCTypes.Int8PtrTy); 5251 for (unsigned i=0; i<NumClasses; i++) { 5252 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 5253 assert(ID); 5254 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 5255 // We are implementing a weak imported interface. Give it external linkage 5256 if (ID->isWeakImported() && !IMP->isWeakImported()) 5257 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 5258 5259 array.addBitCast(DefinedClasses[i], ObjCTypes.Int8PtrTy); 5260 } 5261 for (unsigned i=0; i<NumCategories; i++) 5262 array.addBitCast(DefinedCategories[i], ObjCTypes.Int8PtrTy); 5263 5264 array.finishAndAddTo(values); 5265 5266 llvm::GlobalVariable *GV = CreateMetadataVar( 5267 "OBJC_SYMBOLS", values, "__OBJC,__symbols,regular,no_dead_strip", 5268 CGM.getPointerAlign(), true); 5269 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.SymtabPtrTy); 5270 } 5271 5272 llvm::Value *CGObjCMac::EmitClassRefFromId(CodeGenFunction &CGF, 5273 IdentifierInfo *II) { 5274 LazySymbols.insert(II); 5275 5276 llvm::GlobalVariable *&Entry = ClassReferences[II]; 5277 5278 if (!Entry) { 5279 llvm::Constant *Casted = 5280 llvm::ConstantExpr::getBitCast(GetClassName(II->getName()), 5281 ObjCTypes.ClassPtrTy); 5282 Entry = CreateMetadataVar( 5283 "OBJC_CLASS_REFERENCES_", Casted, 5284 "__OBJC,__cls_refs,literal_pointers,no_dead_strip", 5285 CGM.getPointerAlign(), true); 5286 } 5287 5288 return CGF.Builder.CreateAlignedLoad(Entry, CGF.getPointerAlign()); 5289 } 5290 5291 llvm::Value *CGObjCMac::EmitClassRef(CodeGenFunction &CGF, 5292 const ObjCInterfaceDecl *ID) { 5293 // If the class has the objc_runtime_visible attribute, we need to 5294 // use the Objective-C runtime to get the class. 5295 if (ID->hasAttr<ObjCRuntimeVisibleAttr>()) 5296 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes); 5297 5298 IdentifierInfo *RuntimeName = 5299 &CGM.getContext().Idents.get(ID->getObjCRuntimeNameAsString()); 5300 return EmitClassRefFromId(CGF, RuntimeName); 5301 } 5302 5303 llvm::Value *CGObjCMac::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) { 5304 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 5305 return EmitClassRefFromId(CGF, II); 5306 } 5307 5308 llvm::Value *CGObjCMac::EmitSelector(CodeGenFunction &CGF, Selector Sel) { 5309 return CGF.Builder.CreateLoad(EmitSelectorAddr(Sel)); 5310 } 5311 5312 Address CGObjCMac::EmitSelectorAddr(Selector Sel) { 5313 CharUnits Align = CGM.getPointerAlign(); 5314 5315 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 5316 if (!Entry) { 5317 llvm::Constant *Casted = 5318 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 5319 ObjCTypes.SelectorPtrTy); 5320 Entry = CreateMetadataVar( 5321 "OBJC_SELECTOR_REFERENCES_", Casted, 5322 "__OBJC,__message_refs,literal_pointers,no_dead_strip", Align, true); 5323 Entry->setExternallyInitialized(true); 5324 } 5325 5326 return Address(Entry, Align); 5327 } 5328 5329 llvm::Constant *CGObjCCommonMac::GetClassName(StringRef RuntimeName) { 5330 llvm::GlobalVariable *&Entry = ClassNames[RuntimeName]; 5331 if (!Entry) 5332 Entry = CreateCStringLiteral(RuntimeName, ObjCLabelType::ClassName); 5333 return getConstantGEP(VMContext, Entry, 0, 0); 5334 } 5335 5336 llvm::Function *CGObjCCommonMac::GetMethodDefinition(const ObjCMethodDecl *MD) { 5337 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*>::iterator 5338 I = MethodDefinitions.find(MD); 5339 if (I != MethodDefinitions.end()) 5340 return I->second; 5341 5342 return nullptr; 5343 } 5344 5345 /// GetIvarLayoutName - Returns a unique constant for the given 5346 /// ivar layout bitmap. 5347 llvm::Constant *CGObjCCommonMac::GetIvarLayoutName(IdentifierInfo *Ident, 5348 const ObjCCommonTypesHelper &ObjCTypes) { 5349 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 5350 } 5351 5352 void IvarLayoutBuilder::visitRecord(const RecordType *RT, 5353 CharUnits offset) { 5354 const RecordDecl *RD = RT->getDecl(); 5355 5356 // If this is a union, remember that we had one, because it might mess 5357 // up the ordering of layout entries. 5358 if (RD->isUnion()) 5359 IsDisordered = true; 5360 5361 const ASTRecordLayout *recLayout = nullptr; 5362 visitAggregate(RD->field_begin(), RD->field_end(), offset, 5363 [&](const FieldDecl *field) -> CharUnits { 5364 if (!recLayout) 5365 recLayout = &CGM.getContext().getASTRecordLayout(RD); 5366 auto offsetInBits = recLayout->getFieldOffset(field->getFieldIndex()); 5367 return CGM.getContext().toCharUnitsFromBits(offsetInBits); 5368 }); 5369 } 5370 5371 template <class Iterator, class GetOffsetFn> 5372 void IvarLayoutBuilder::visitAggregate(Iterator begin, Iterator end, 5373 CharUnits aggregateOffset, 5374 const GetOffsetFn &getOffset) { 5375 for (; begin != end; ++begin) { 5376 auto field = *begin; 5377 5378 // Skip over bitfields. 5379 if (field->isBitField()) { 5380 continue; 5381 } 5382 5383 // Compute the offset of the field within the aggregate. 5384 CharUnits fieldOffset = aggregateOffset + getOffset(field); 5385 5386 visitField(field, fieldOffset); 5387 } 5388 } 5389 5390 /// Collect layout information for the given fields into IvarsInfo. 5391 void IvarLayoutBuilder::visitField(const FieldDecl *field, 5392 CharUnits fieldOffset) { 5393 QualType fieldType = field->getType(); 5394 5395 // Drill down into arrays. 5396 uint64_t numElts = 1; 5397 if (auto arrayType = CGM.getContext().getAsIncompleteArrayType(fieldType)) { 5398 numElts = 0; 5399 fieldType = arrayType->getElementType(); 5400 } 5401 // Unlike incomplete arrays, constant arrays can be nested. 5402 while (auto arrayType = CGM.getContext().getAsConstantArrayType(fieldType)) { 5403 numElts *= arrayType->getSize().getZExtValue(); 5404 fieldType = arrayType->getElementType(); 5405 } 5406 5407 assert(!fieldType->isArrayType() && "ivar of non-constant array type?"); 5408 5409 // If we ended up with a zero-sized array, we've done what we can do within 5410 // the limits of this layout encoding. 5411 if (numElts == 0) return; 5412 5413 // Recurse if the base element type is a record type. 5414 if (auto recType = fieldType->getAs<RecordType>()) { 5415 size_t oldEnd = IvarsInfo.size(); 5416 5417 visitRecord(recType, fieldOffset); 5418 5419 // If we have an array, replicate the first entry's layout information. 5420 auto numEltEntries = IvarsInfo.size() - oldEnd; 5421 if (numElts != 1 && numEltEntries != 0) { 5422 CharUnits eltSize = CGM.getContext().getTypeSizeInChars(recType); 5423 for (uint64_t eltIndex = 1; eltIndex != numElts; ++eltIndex) { 5424 // Copy the last numEltEntries onto the end of the array, adjusting 5425 // each for the element size. 5426 for (size_t i = 0; i != numEltEntries; ++i) { 5427 auto firstEntry = IvarsInfo[oldEnd + i]; 5428 IvarsInfo.push_back(IvarInfo(firstEntry.Offset + eltIndex * eltSize, 5429 firstEntry.SizeInWords)); 5430 } 5431 } 5432 } 5433 5434 return; 5435 } 5436 5437 // Classify the element type. 5438 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), fieldType); 5439 5440 // If it matches what we're looking for, add an entry. 5441 if ((ForStrongLayout && GCAttr == Qualifiers::Strong) 5442 || (!ForStrongLayout && GCAttr == Qualifiers::Weak)) { 5443 assert(CGM.getContext().getTypeSizeInChars(fieldType) 5444 == CGM.getPointerSize()); 5445 IvarsInfo.push_back(IvarInfo(fieldOffset, numElts)); 5446 } 5447 } 5448 5449 /// buildBitmap - This routine does the horsework of taking the offsets of 5450 /// strong/weak references and creating a bitmap. The bitmap is also 5451 /// returned in the given buffer, suitable for being passed to \c dump(). 5452 llvm::Constant *IvarLayoutBuilder::buildBitmap(CGObjCCommonMac &CGObjC, 5453 llvm::SmallVectorImpl<unsigned char> &buffer) { 5454 // The bitmap is a series of skip/scan instructions, aligned to word 5455 // boundaries. The skip is performed first. 5456 const unsigned char MaxNibble = 0xF; 5457 const unsigned char SkipMask = 0xF0, SkipShift = 4; 5458 const unsigned char ScanMask = 0x0F, ScanShift = 0; 5459 5460 assert(!IvarsInfo.empty() && "generating bitmap for no data"); 5461 5462 // Sort the ivar info on byte position in case we encounterred a 5463 // union nested in the ivar list. 5464 if (IsDisordered) { 5465 // This isn't a stable sort, but our algorithm should handle it fine. 5466 llvm::array_pod_sort(IvarsInfo.begin(), IvarsInfo.end()); 5467 } else { 5468 assert(llvm::is_sorted(IvarsInfo)); 5469 } 5470 assert(IvarsInfo.back().Offset < InstanceEnd); 5471 5472 assert(buffer.empty()); 5473 5474 // Skip the next N words. 5475 auto skip = [&](unsigned numWords) { 5476 assert(numWords > 0); 5477 5478 // Try to merge into the previous byte. Since scans happen second, we 5479 // can't do this if it includes a scan. 5480 if (!buffer.empty() && !(buffer.back() & ScanMask)) { 5481 unsigned lastSkip = buffer.back() >> SkipShift; 5482 if (lastSkip < MaxNibble) { 5483 unsigned claimed = std::min(MaxNibble - lastSkip, numWords); 5484 numWords -= claimed; 5485 lastSkip += claimed; 5486 buffer.back() = (lastSkip << SkipShift); 5487 } 5488 } 5489 5490 while (numWords >= MaxNibble) { 5491 buffer.push_back(MaxNibble << SkipShift); 5492 numWords -= MaxNibble; 5493 } 5494 if (numWords) { 5495 buffer.push_back(numWords << SkipShift); 5496 } 5497 }; 5498 5499 // Scan the next N words. 5500 auto scan = [&](unsigned numWords) { 5501 assert(numWords > 0); 5502 5503 // Try to merge into the previous byte. Since scans happen second, we can 5504 // do this even if it includes a skip. 5505 if (!buffer.empty()) { 5506 unsigned lastScan = (buffer.back() & ScanMask) >> ScanShift; 5507 if (lastScan < MaxNibble) { 5508 unsigned claimed = std::min(MaxNibble - lastScan, numWords); 5509 numWords -= claimed; 5510 lastScan += claimed; 5511 buffer.back() = (buffer.back() & SkipMask) | (lastScan << ScanShift); 5512 } 5513 } 5514 5515 while (numWords >= MaxNibble) { 5516 buffer.push_back(MaxNibble << ScanShift); 5517 numWords -= MaxNibble; 5518 } 5519 if (numWords) { 5520 buffer.push_back(numWords << ScanShift); 5521 } 5522 }; 5523 5524 // One past the end of the last scan. 5525 unsigned endOfLastScanInWords = 0; 5526 const CharUnits WordSize = CGM.getPointerSize(); 5527 5528 // Consider all the scan requests. 5529 for (auto &request : IvarsInfo) { 5530 CharUnits beginOfScan = request.Offset - InstanceBegin; 5531 5532 // Ignore scan requests that don't start at an even multiple of the 5533 // word size. We can't encode them. 5534 if ((beginOfScan % WordSize) != 0) continue; 5535 5536 // Ignore scan requests that start before the instance start. 5537 // This assumes that scans never span that boundary. The boundary 5538 // isn't the true start of the ivars, because in the fragile-ARC case 5539 // it's rounded up to word alignment, but the test above should leave 5540 // us ignoring that possibility. 5541 if (beginOfScan.isNegative()) { 5542 assert(request.Offset + request.SizeInWords * WordSize <= InstanceBegin); 5543 continue; 5544 } 5545 5546 unsigned beginOfScanInWords = beginOfScan / WordSize; 5547 unsigned endOfScanInWords = beginOfScanInWords + request.SizeInWords; 5548 5549 // If the scan starts some number of words after the last one ended, 5550 // skip forward. 5551 if (beginOfScanInWords > endOfLastScanInWords) { 5552 skip(beginOfScanInWords - endOfLastScanInWords); 5553 5554 // Otherwise, start scanning where the last left off. 5555 } else { 5556 beginOfScanInWords = endOfLastScanInWords; 5557 5558 // If that leaves us with nothing to scan, ignore this request. 5559 if (beginOfScanInWords >= endOfScanInWords) continue; 5560 } 5561 5562 // Scan to the end of the request. 5563 assert(beginOfScanInWords < endOfScanInWords); 5564 scan(endOfScanInWords - beginOfScanInWords); 5565 endOfLastScanInWords = endOfScanInWords; 5566 } 5567 5568 if (buffer.empty()) 5569 return llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 5570 5571 // For GC layouts, emit a skip to the end of the allocation so that we 5572 // have precise information about the entire thing. This isn't useful 5573 // or necessary for the ARC-style layout strings. 5574 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 5575 unsigned lastOffsetInWords = 5576 (InstanceEnd - InstanceBegin + WordSize - CharUnits::One()) / WordSize; 5577 if (lastOffsetInWords > endOfLastScanInWords) { 5578 skip(lastOffsetInWords - endOfLastScanInWords); 5579 } 5580 } 5581 5582 // Null terminate the string. 5583 buffer.push_back(0); 5584 5585 auto *Entry = CGObjC.CreateCStringLiteral( 5586 reinterpret_cast<char *>(buffer.data()), ObjCLabelType::ClassName); 5587 return getConstantGEP(CGM.getLLVMContext(), Entry, 0, 0); 5588 } 5589 5590 /// BuildIvarLayout - Builds ivar layout bitmap for the class 5591 /// implementation for the __strong or __weak case. 5592 /// The layout map displays which words in ivar list must be skipped 5593 /// and which must be scanned by GC (see below). String is built of bytes. 5594 /// Each byte is divided up in two nibbles (4-bit each). Left nibble is count 5595 /// of words to skip and right nibble is count of words to scan. So, each 5596 /// nibble represents up to 15 workds to skip or scan. Skipping the rest is 5597 /// represented by a 0x00 byte which also ends the string. 5598 /// 1. when ForStrongLayout is true, following ivars are scanned: 5599 /// - id, Class 5600 /// - object * 5601 /// - __strong anything 5602 /// 5603 /// 2. When ForStrongLayout is false, following ivars are scanned: 5604 /// - __weak anything 5605 /// 5606 llvm::Constant * 5607 CGObjCCommonMac::BuildIvarLayout(const ObjCImplementationDecl *OMD, 5608 CharUnits beginOffset, CharUnits endOffset, 5609 bool ForStrongLayout, bool HasMRCWeakIvars) { 5610 // If this is MRC, and we're either building a strong layout or there 5611 // are no weak ivars, bail out early. 5612 llvm::Type *PtrTy = CGM.Int8PtrTy; 5613 if (CGM.getLangOpts().getGC() == LangOptions::NonGC && 5614 !CGM.getLangOpts().ObjCAutoRefCount && 5615 (ForStrongLayout || !HasMRCWeakIvars)) 5616 return llvm::Constant::getNullValue(PtrTy); 5617 5618 const ObjCInterfaceDecl *OI = OMD->getClassInterface(); 5619 SmallVector<const ObjCIvarDecl*, 32> ivars; 5620 5621 // GC layout strings include the complete object layout, possibly 5622 // inaccurately in the non-fragile ABI; the runtime knows how to fix this 5623 // up. 5624 // 5625 // ARC layout strings only include the class's ivars. In non-fragile 5626 // runtimes, that means starting at InstanceStart, rounded up to word 5627 // alignment. In fragile runtimes, there's no InstanceStart, so it means 5628 // starting at the offset of the first ivar, rounded up to word alignment. 5629 // 5630 // MRC weak layout strings follow the ARC style. 5631 CharUnits baseOffset; 5632 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 5633 for (const ObjCIvarDecl *IVD = OI->all_declared_ivar_begin(); 5634 IVD; IVD = IVD->getNextIvar()) 5635 ivars.push_back(IVD); 5636 5637 if (isNonFragileABI()) { 5638 baseOffset = beginOffset; // InstanceStart 5639 } else if (!ivars.empty()) { 5640 baseOffset = 5641 CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivars[0])); 5642 } else { 5643 baseOffset = CharUnits::Zero(); 5644 } 5645 5646 baseOffset = baseOffset.alignTo(CGM.getPointerAlign()); 5647 } 5648 else { 5649 CGM.getContext().DeepCollectObjCIvars(OI, true, ivars); 5650 5651 baseOffset = CharUnits::Zero(); 5652 } 5653 5654 if (ivars.empty()) 5655 return llvm::Constant::getNullValue(PtrTy); 5656 5657 IvarLayoutBuilder builder(CGM, baseOffset, endOffset, ForStrongLayout); 5658 5659 builder.visitAggregate(ivars.begin(), ivars.end(), CharUnits::Zero(), 5660 [&](const ObjCIvarDecl *ivar) -> CharUnits { 5661 return CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivar)); 5662 }); 5663 5664 if (!builder.hasBitmapData()) 5665 return llvm::Constant::getNullValue(PtrTy); 5666 5667 llvm::SmallVector<unsigned char, 4> buffer; 5668 llvm::Constant *C = builder.buildBitmap(*this, buffer); 5669 5670 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 5671 printf("\n%s ivar layout for class '%s': ", 5672 ForStrongLayout ? "strong" : "weak", 5673 OMD->getClassInterface()->getName().str().c_str()); 5674 builder.dump(buffer); 5675 } 5676 return C; 5677 } 5678 5679 llvm::Constant *CGObjCCommonMac::GetMethodVarName(Selector Sel) { 5680 llvm::GlobalVariable *&Entry = MethodVarNames[Sel]; 5681 // FIXME: Avoid std::string in "Sel.getAsString()" 5682 if (!Entry) 5683 Entry = CreateCStringLiteral(Sel.getAsString(), ObjCLabelType::MethodVarName); 5684 return getConstantGEP(VMContext, Entry, 0, 0); 5685 } 5686 5687 // FIXME: Merge into a single cstring creation function. 5688 llvm::Constant *CGObjCCommonMac::GetMethodVarName(IdentifierInfo *ID) { 5689 return GetMethodVarName(CGM.getContext().Selectors.getNullarySelector(ID)); 5690 } 5691 5692 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const FieldDecl *Field) { 5693 std::string TypeStr; 5694 CGM.getContext().getObjCEncodingForType(Field->getType(), TypeStr, Field); 5695 5696 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5697 if (!Entry) 5698 Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType); 5699 return getConstantGEP(VMContext, Entry, 0, 0); 5700 } 5701 5702 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const ObjCMethodDecl *D, 5703 bool Extended) { 5704 std::string TypeStr = 5705 CGM.getContext().getObjCEncodingForMethodDecl(D, Extended); 5706 5707 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5708 if (!Entry) 5709 Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType); 5710 return getConstantGEP(VMContext, Entry, 0, 0); 5711 } 5712 5713 // FIXME: Merge into a single cstring creation function. 5714 llvm::Constant *CGObjCCommonMac::GetPropertyName(IdentifierInfo *Ident) { 5715 llvm::GlobalVariable *&Entry = PropertyNames[Ident]; 5716 if (!Entry) 5717 Entry = CreateCStringLiteral(Ident->getName(), ObjCLabelType::PropertyName); 5718 return getConstantGEP(VMContext, Entry, 0, 0); 5719 } 5720 5721 // FIXME: Merge into a single cstring creation function. 5722 // FIXME: This Decl should be more precise. 5723 llvm::Constant * 5724 CGObjCCommonMac::GetPropertyTypeString(const ObjCPropertyDecl *PD, 5725 const Decl *Container) { 5726 std::string TypeStr = 5727 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container); 5728 return GetPropertyName(&CGM.getContext().Idents.get(TypeStr)); 5729 } 5730 5731 void CGObjCMac::FinishModule() { 5732 EmitModuleInfo(); 5733 5734 // Emit the dummy bodies for any protocols which were referenced but 5735 // never defined. 5736 for (auto &entry : Protocols) { 5737 llvm::GlobalVariable *global = entry.second; 5738 if (global->hasInitializer()) 5739 continue; 5740 5741 ConstantInitBuilder builder(CGM); 5742 auto values = builder.beginStruct(ObjCTypes.ProtocolTy); 5743 values.addNullPointer(ObjCTypes.ProtocolExtensionPtrTy); 5744 values.add(GetClassName(entry.first->getName())); 5745 values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 5746 values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy); 5747 values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy); 5748 values.finishAndSetAsInitializer(global); 5749 CGM.addCompilerUsedGlobal(global); 5750 } 5751 5752 // Add assembler directives to add lazy undefined symbol references 5753 // for classes which are referenced but not defined. This is 5754 // important for correct linker interaction. 5755 // 5756 // FIXME: It would be nice if we had an LLVM construct for this. 5757 if ((!LazySymbols.empty() || !DefinedSymbols.empty()) && 5758 CGM.getTriple().isOSBinFormatMachO()) { 5759 SmallString<256> Asm; 5760 Asm += CGM.getModule().getModuleInlineAsm(); 5761 if (!Asm.empty() && Asm.back() != '\n') 5762 Asm += '\n'; 5763 5764 llvm::raw_svector_ostream OS(Asm); 5765 for (const auto *Sym : DefinedSymbols) 5766 OS << "\t.objc_class_name_" << Sym->getName() << "=0\n" 5767 << "\t.globl .objc_class_name_" << Sym->getName() << "\n"; 5768 for (const auto *Sym : LazySymbols) 5769 OS << "\t.lazy_reference .objc_class_name_" << Sym->getName() << "\n"; 5770 for (const auto &Category : DefinedCategoryNames) 5771 OS << "\t.objc_category_name_" << Category << "=0\n" 5772 << "\t.globl .objc_category_name_" << Category << "\n"; 5773 5774 CGM.getModule().setModuleInlineAsm(OS.str()); 5775 } 5776 } 5777 5778 CGObjCNonFragileABIMac::CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm) 5779 : CGObjCCommonMac(cgm), ObjCTypes(cgm), ObjCEmptyCacheVar(nullptr), 5780 ObjCEmptyVtableVar(nullptr) { 5781 ObjCABI = 2; 5782 } 5783 5784 /* *** */ 5785 5786 ObjCCommonTypesHelper::ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm) 5787 : VMContext(cgm.getLLVMContext()), CGM(cgm), ExternalProtocolPtrTy(nullptr) 5788 { 5789 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 5790 ASTContext &Ctx = CGM.getContext(); 5791 5792 ShortTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.ShortTy)); 5793 IntTy = CGM.IntTy; 5794 LongTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.LongTy)); 5795 Int8PtrTy = CGM.Int8PtrTy; 5796 Int8PtrPtrTy = CGM.Int8PtrPtrTy; 5797 5798 // arm64 targets use "int" ivar offset variables. All others, 5799 // including OS X x86_64 and Windows x86_64, use "long" ivar offsets. 5800 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::aarch64) 5801 IvarOffsetVarTy = IntTy; 5802 else 5803 IvarOffsetVarTy = LongTy; 5804 5805 ObjectPtrTy = 5806 cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCIdType())); 5807 PtrObjectPtrTy = 5808 llvm::PointerType::getUnqual(ObjectPtrTy); 5809 SelectorPtrTy = 5810 cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCSelType())); 5811 5812 // I'm not sure I like this. The implicit coordination is a bit 5813 // gross. We should solve this in a reasonable fashion because this 5814 // is a pretty common task (match some runtime data structure with 5815 // an LLVM data structure). 5816 5817 // FIXME: This is leaked. 5818 // FIXME: Merge with rewriter code? 5819 5820 // struct _objc_super { 5821 // id self; 5822 // Class cls; 5823 // } 5824 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 5825 Ctx.getTranslationUnitDecl(), 5826 SourceLocation(), SourceLocation(), 5827 &Ctx.Idents.get("_objc_super")); 5828 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5829 nullptr, Ctx.getObjCIdType(), nullptr, nullptr, 5830 false, ICIS_NoInit)); 5831 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5832 nullptr, Ctx.getObjCClassType(), nullptr, 5833 nullptr, false, ICIS_NoInit)); 5834 RD->completeDefinition(); 5835 5836 SuperCTy = Ctx.getTagDeclType(RD); 5837 SuperPtrCTy = Ctx.getPointerType(SuperCTy); 5838 5839 SuperTy = cast<llvm::StructType>(Types.ConvertType(SuperCTy)); 5840 SuperPtrTy = llvm::PointerType::getUnqual(SuperTy); 5841 5842 // struct _prop_t { 5843 // char *name; 5844 // char *attributes; 5845 // } 5846 PropertyTy = llvm::StructType::create("struct._prop_t", Int8PtrTy, Int8PtrTy); 5847 5848 // struct _prop_list_t { 5849 // uint32_t entsize; // sizeof(struct _prop_t) 5850 // uint32_t count_of_properties; 5851 // struct _prop_t prop_list[count_of_properties]; 5852 // } 5853 PropertyListTy = llvm::StructType::create( 5854 "struct._prop_list_t", IntTy, IntTy, llvm::ArrayType::get(PropertyTy, 0)); 5855 // struct _prop_list_t * 5856 PropertyListPtrTy = llvm::PointerType::getUnqual(PropertyListTy); 5857 5858 // struct _objc_method { 5859 // SEL _cmd; 5860 // char *method_type; 5861 // char *_imp; 5862 // } 5863 MethodTy = llvm::StructType::create("struct._objc_method", SelectorPtrTy, 5864 Int8PtrTy, Int8PtrTy); 5865 5866 // struct _objc_cache * 5867 CacheTy = llvm::StructType::create(VMContext, "struct._objc_cache"); 5868 CachePtrTy = llvm::PointerType::getUnqual(CacheTy); 5869 } 5870 5871 ObjCTypesHelper::ObjCTypesHelper(CodeGen::CodeGenModule &cgm) 5872 : ObjCCommonTypesHelper(cgm) { 5873 // struct _objc_method_description { 5874 // SEL name; 5875 // char *types; 5876 // } 5877 MethodDescriptionTy = llvm::StructType::create( 5878 "struct._objc_method_description", SelectorPtrTy, Int8PtrTy); 5879 5880 // struct _objc_method_description_list { 5881 // int count; 5882 // struct _objc_method_description[1]; 5883 // } 5884 MethodDescriptionListTy = 5885 llvm::StructType::create("struct._objc_method_description_list", IntTy, 5886 llvm::ArrayType::get(MethodDescriptionTy, 0)); 5887 5888 // struct _objc_method_description_list * 5889 MethodDescriptionListPtrTy = 5890 llvm::PointerType::getUnqual(MethodDescriptionListTy); 5891 5892 // Protocol description structures 5893 5894 // struct _objc_protocol_extension { 5895 // uint32_t size; // sizeof(struct _objc_protocol_extension) 5896 // struct _objc_method_description_list *optional_instance_methods; 5897 // struct _objc_method_description_list *optional_class_methods; 5898 // struct _objc_property_list *instance_properties; 5899 // const char ** extendedMethodTypes; 5900 // struct _objc_property_list *class_properties; 5901 // } 5902 ProtocolExtensionTy = llvm::StructType::create( 5903 "struct._objc_protocol_extension", IntTy, MethodDescriptionListPtrTy, 5904 MethodDescriptionListPtrTy, PropertyListPtrTy, Int8PtrPtrTy, 5905 PropertyListPtrTy); 5906 5907 // struct _objc_protocol_extension * 5908 ProtocolExtensionPtrTy = llvm::PointerType::getUnqual(ProtocolExtensionTy); 5909 5910 // Handle recursive construction of Protocol and ProtocolList types 5911 5912 ProtocolTy = 5913 llvm::StructType::create(VMContext, "struct._objc_protocol"); 5914 5915 ProtocolListTy = 5916 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 5917 ProtocolListTy->setBody(llvm::PointerType::getUnqual(ProtocolListTy), LongTy, 5918 llvm::ArrayType::get(ProtocolTy, 0)); 5919 5920 // struct _objc_protocol { 5921 // struct _objc_protocol_extension *isa; 5922 // char *protocol_name; 5923 // struct _objc_protocol **_objc_protocol_list; 5924 // struct _objc_method_description_list *instance_methods; 5925 // struct _objc_method_description_list *class_methods; 5926 // } 5927 ProtocolTy->setBody(ProtocolExtensionPtrTy, Int8PtrTy, 5928 llvm::PointerType::getUnqual(ProtocolListTy), 5929 MethodDescriptionListPtrTy, MethodDescriptionListPtrTy); 5930 5931 // struct _objc_protocol_list * 5932 ProtocolListPtrTy = llvm::PointerType::getUnqual(ProtocolListTy); 5933 5934 ProtocolPtrTy = llvm::PointerType::getUnqual(ProtocolTy); 5935 5936 // Class description structures 5937 5938 // struct _objc_ivar { 5939 // char *ivar_name; 5940 // char *ivar_type; 5941 // int ivar_offset; 5942 // } 5943 IvarTy = llvm::StructType::create("struct._objc_ivar", Int8PtrTy, Int8PtrTy, 5944 IntTy); 5945 5946 // struct _objc_ivar_list * 5947 IvarListTy = 5948 llvm::StructType::create(VMContext, "struct._objc_ivar_list"); 5949 IvarListPtrTy = llvm::PointerType::getUnqual(IvarListTy); 5950 5951 // struct _objc_method_list * 5952 MethodListTy = 5953 llvm::StructType::create(VMContext, "struct._objc_method_list"); 5954 MethodListPtrTy = llvm::PointerType::getUnqual(MethodListTy); 5955 5956 // struct _objc_class_extension * 5957 ClassExtensionTy = llvm::StructType::create( 5958 "struct._objc_class_extension", IntTy, Int8PtrTy, PropertyListPtrTy); 5959 ClassExtensionPtrTy = llvm::PointerType::getUnqual(ClassExtensionTy); 5960 5961 ClassTy = llvm::StructType::create(VMContext, "struct._objc_class"); 5962 5963 // struct _objc_class { 5964 // Class isa; 5965 // Class super_class; 5966 // char *name; 5967 // long version; 5968 // long info; 5969 // long instance_size; 5970 // struct _objc_ivar_list *ivars; 5971 // struct _objc_method_list *methods; 5972 // struct _objc_cache *cache; 5973 // struct _objc_protocol_list *protocols; 5974 // char *ivar_layout; 5975 // struct _objc_class_ext *ext; 5976 // }; 5977 ClassTy->setBody(llvm::PointerType::getUnqual(ClassTy), 5978 llvm::PointerType::getUnqual(ClassTy), Int8PtrTy, LongTy, 5979 LongTy, LongTy, IvarListPtrTy, MethodListPtrTy, CachePtrTy, 5980 ProtocolListPtrTy, Int8PtrTy, ClassExtensionPtrTy); 5981 5982 ClassPtrTy = llvm::PointerType::getUnqual(ClassTy); 5983 5984 // struct _objc_category { 5985 // char *category_name; 5986 // char *class_name; 5987 // struct _objc_method_list *instance_method; 5988 // struct _objc_method_list *class_method; 5989 // struct _objc_protocol_list *protocols; 5990 // uint32_t size; // sizeof(struct _objc_category) 5991 // struct _objc_property_list *instance_properties;// category's @property 5992 // struct _objc_property_list *class_properties; 5993 // } 5994 CategoryTy = llvm::StructType::create( 5995 "struct._objc_category", Int8PtrTy, Int8PtrTy, MethodListPtrTy, 5996 MethodListPtrTy, ProtocolListPtrTy, IntTy, PropertyListPtrTy, 5997 PropertyListPtrTy); 5998 5999 // Global metadata structures 6000 6001 // struct _objc_symtab { 6002 // long sel_ref_cnt; 6003 // SEL *refs; 6004 // short cls_def_cnt; 6005 // short cat_def_cnt; 6006 // char *defs[cls_def_cnt + cat_def_cnt]; 6007 // } 6008 SymtabTy = llvm::StructType::create("struct._objc_symtab", LongTy, 6009 SelectorPtrTy, ShortTy, ShortTy, 6010 llvm::ArrayType::get(Int8PtrTy, 0)); 6011 SymtabPtrTy = llvm::PointerType::getUnqual(SymtabTy); 6012 6013 // struct _objc_module { 6014 // long version; 6015 // long size; // sizeof(struct _objc_module) 6016 // char *name; 6017 // struct _objc_symtab* symtab; 6018 // } 6019 ModuleTy = llvm::StructType::create("struct._objc_module", LongTy, LongTy, 6020 Int8PtrTy, SymtabPtrTy); 6021 6022 // FIXME: This is the size of the setjmp buffer and should be target 6023 // specific. 18 is what's used on 32-bit X86. 6024 uint64_t SetJmpBufferSize = 18; 6025 6026 // Exceptions 6027 llvm::Type *StackPtrTy = llvm::ArrayType::get(CGM.Int8PtrTy, 4); 6028 6029 ExceptionDataTy = llvm::StructType::create( 6030 "struct._objc_exception_data", 6031 llvm::ArrayType::get(CGM.Int32Ty, SetJmpBufferSize), StackPtrTy); 6032 } 6033 6034 ObjCNonFragileABITypesHelper::ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm) 6035 : ObjCCommonTypesHelper(cgm) { 6036 // struct _method_list_t { 6037 // uint32_t entsize; // sizeof(struct _objc_method) 6038 // uint32_t method_count; 6039 // struct _objc_method method_list[method_count]; 6040 // } 6041 MethodListnfABITy = 6042 llvm::StructType::create("struct.__method_list_t", IntTy, IntTy, 6043 llvm::ArrayType::get(MethodTy, 0)); 6044 // struct method_list_t * 6045 MethodListnfABIPtrTy = llvm::PointerType::getUnqual(MethodListnfABITy); 6046 6047 // struct _protocol_t { 6048 // id isa; // NULL 6049 // const char * const protocol_name; 6050 // const struct _protocol_list_t * protocol_list; // super protocols 6051 // const struct method_list_t * const instance_methods; 6052 // const struct method_list_t * const class_methods; 6053 // const struct method_list_t *optionalInstanceMethods; 6054 // const struct method_list_t *optionalClassMethods; 6055 // const struct _prop_list_t * properties; 6056 // const uint32_t size; // sizeof(struct _protocol_t) 6057 // const uint32_t flags; // = 0 6058 // const char ** extendedMethodTypes; 6059 // const char *demangledName; 6060 // const struct _prop_list_t * class_properties; 6061 // } 6062 6063 // Holder for struct _protocol_list_t * 6064 ProtocolListnfABITy = 6065 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 6066 6067 ProtocolnfABITy = llvm::StructType::create( 6068 "struct._protocol_t", ObjectPtrTy, Int8PtrTy, 6069 llvm::PointerType::getUnqual(ProtocolListnfABITy), MethodListnfABIPtrTy, 6070 MethodListnfABIPtrTy, MethodListnfABIPtrTy, MethodListnfABIPtrTy, 6071 PropertyListPtrTy, IntTy, IntTy, Int8PtrPtrTy, Int8PtrTy, 6072 PropertyListPtrTy); 6073 6074 // struct _protocol_t* 6075 ProtocolnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolnfABITy); 6076 6077 // struct _protocol_list_t { 6078 // long protocol_count; // Note, this is 32/64 bit 6079 // struct _protocol_t *[protocol_count]; 6080 // } 6081 ProtocolListnfABITy->setBody(LongTy, 6082 llvm::ArrayType::get(ProtocolnfABIPtrTy, 0)); 6083 6084 // struct _objc_protocol_list* 6085 ProtocolListnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolListnfABITy); 6086 6087 // struct _ivar_t { 6088 // unsigned [long] int *offset; // pointer to ivar offset location 6089 // char *name; 6090 // char *type; 6091 // uint32_t alignment; 6092 // uint32_t size; 6093 // } 6094 IvarnfABITy = llvm::StructType::create( 6095 "struct._ivar_t", llvm::PointerType::getUnqual(IvarOffsetVarTy), 6096 Int8PtrTy, Int8PtrTy, IntTy, IntTy); 6097 6098 // struct _ivar_list_t { 6099 // uint32 entsize; // sizeof(struct _ivar_t) 6100 // uint32 count; 6101 // struct _iver_t list[count]; 6102 // } 6103 IvarListnfABITy = 6104 llvm::StructType::create("struct._ivar_list_t", IntTy, IntTy, 6105 llvm::ArrayType::get(IvarnfABITy, 0)); 6106 6107 IvarListnfABIPtrTy = llvm::PointerType::getUnqual(IvarListnfABITy); 6108 6109 // struct _class_ro_t { 6110 // uint32_t const flags; 6111 // uint32_t const instanceStart; 6112 // uint32_t const instanceSize; 6113 // uint32_t const reserved; // only when building for 64bit targets 6114 // const uint8_t * const ivarLayout; 6115 // const char *const name; 6116 // const struct _method_list_t * const baseMethods; 6117 // const struct _objc_protocol_list *const baseProtocols; 6118 // const struct _ivar_list_t *const ivars; 6119 // const uint8_t * const weakIvarLayout; 6120 // const struct _prop_list_t * const properties; 6121 // } 6122 6123 // FIXME. Add 'reserved' field in 64bit abi mode! 6124 ClassRonfABITy = llvm::StructType::create( 6125 "struct._class_ro_t", IntTy, IntTy, IntTy, Int8PtrTy, Int8PtrTy, 6126 MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, IvarListnfABIPtrTy, 6127 Int8PtrTy, PropertyListPtrTy); 6128 6129 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 6130 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 6131 ImpnfABITy = llvm::FunctionType::get(ObjectPtrTy, params, false) 6132 ->getPointerTo(); 6133 6134 // struct _class_t { 6135 // struct _class_t *isa; 6136 // struct _class_t * const superclass; 6137 // void *cache; 6138 // IMP *vtable; 6139 // struct class_ro_t *ro; 6140 // } 6141 6142 ClassnfABITy = llvm::StructType::create(VMContext, "struct._class_t"); 6143 ClassnfABITy->setBody(llvm::PointerType::getUnqual(ClassnfABITy), 6144 llvm::PointerType::getUnqual(ClassnfABITy), CachePtrTy, 6145 llvm::PointerType::getUnqual(ImpnfABITy), 6146 llvm::PointerType::getUnqual(ClassRonfABITy)); 6147 6148 // LLVM for struct _class_t * 6149 ClassnfABIPtrTy = llvm::PointerType::getUnqual(ClassnfABITy); 6150 6151 // struct _category_t { 6152 // const char * const name; 6153 // struct _class_t *const cls; 6154 // const struct _method_list_t * const instance_methods; 6155 // const struct _method_list_t * const class_methods; 6156 // const struct _protocol_list_t * const protocols; 6157 // const struct _prop_list_t * const properties; 6158 // const struct _prop_list_t * const class_properties; 6159 // const uint32_t size; 6160 // } 6161 CategorynfABITy = llvm::StructType::create( 6162 "struct._category_t", Int8PtrTy, ClassnfABIPtrTy, MethodListnfABIPtrTy, 6163 MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, PropertyListPtrTy, 6164 PropertyListPtrTy, IntTy); 6165 6166 // New types for nonfragile abi messaging. 6167 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 6168 ASTContext &Ctx = CGM.getContext(); 6169 6170 // MessageRefTy - LLVM for: 6171 // struct _message_ref_t { 6172 // IMP messenger; 6173 // SEL name; 6174 // }; 6175 6176 // First the clang type for struct _message_ref_t 6177 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 6178 Ctx.getTranslationUnitDecl(), 6179 SourceLocation(), SourceLocation(), 6180 &Ctx.Idents.get("_message_ref_t")); 6181 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 6182 nullptr, Ctx.VoidPtrTy, nullptr, nullptr, false, 6183 ICIS_NoInit)); 6184 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 6185 nullptr, Ctx.getObjCSelType(), nullptr, nullptr, 6186 false, ICIS_NoInit)); 6187 RD->completeDefinition(); 6188 6189 MessageRefCTy = Ctx.getTagDeclType(RD); 6190 MessageRefCPtrTy = Ctx.getPointerType(MessageRefCTy); 6191 MessageRefTy = cast<llvm::StructType>(Types.ConvertType(MessageRefCTy)); 6192 6193 // MessageRefPtrTy - LLVM for struct _message_ref_t* 6194 MessageRefPtrTy = llvm::PointerType::getUnqual(MessageRefTy); 6195 6196 // SuperMessageRefTy - LLVM for: 6197 // struct _super_message_ref_t { 6198 // SUPER_IMP messenger; 6199 // SEL name; 6200 // }; 6201 SuperMessageRefTy = llvm::StructType::create("struct._super_message_ref_t", 6202 ImpnfABITy, SelectorPtrTy); 6203 6204 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 6205 SuperMessageRefPtrTy = llvm::PointerType::getUnqual(SuperMessageRefTy); 6206 6207 6208 // struct objc_typeinfo { 6209 // const void** vtable; // objc_ehtype_vtable + 2 6210 // const char* name; // c++ typeinfo string 6211 // Class cls; 6212 // }; 6213 EHTypeTy = llvm::StructType::create("struct._objc_typeinfo", 6214 llvm::PointerType::getUnqual(Int8PtrTy), 6215 Int8PtrTy, ClassnfABIPtrTy); 6216 EHTypePtrTy = llvm::PointerType::getUnqual(EHTypeTy); 6217 } 6218 6219 llvm::Function *CGObjCNonFragileABIMac::ModuleInitFunction() { 6220 FinishNonFragileABIModule(); 6221 6222 return nullptr; 6223 } 6224 6225 void CGObjCNonFragileABIMac::AddModuleClassList( 6226 ArrayRef<llvm::GlobalValue *> Container, StringRef SymbolName, 6227 StringRef SectionName) { 6228 unsigned NumClasses = Container.size(); 6229 6230 if (!NumClasses) 6231 return; 6232 6233 SmallVector<llvm::Constant*, 8> Symbols(NumClasses); 6234 for (unsigned i=0; i<NumClasses; i++) 6235 Symbols[i] = llvm::ConstantExpr::getBitCast(Container[i], 6236 ObjCTypes.Int8PtrTy); 6237 llvm::Constant *Init = 6238 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 6239 Symbols.size()), 6240 Symbols); 6241 6242 // Section name is obtained by calling GetSectionName, which returns 6243 // sections in the __DATA segment on MachO. 6244 assert((!CGM.getTriple().isOSBinFormatMachO() || 6245 SectionName.startswith("__DATA")) && 6246 "SectionName expected to start with __DATA on MachO"); 6247 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 6248 CGM.getModule(), Init->getType(), false, 6249 llvm::GlobalValue::PrivateLinkage, Init, SymbolName); 6250 GV->setAlignment( 6251 llvm::Align(CGM.getDataLayout().getABITypeAlignment(Init->getType()))); 6252 GV->setSection(SectionName); 6253 CGM.addCompilerUsedGlobal(GV); 6254 } 6255 6256 void CGObjCNonFragileABIMac::FinishNonFragileABIModule() { 6257 // nonfragile abi has no module definition. 6258 6259 // Build list of all implemented class addresses in array 6260 // L_OBJC_LABEL_CLASS_$. 6261 6262 for (unsigned i=0, NumClasses=ImplementedClasses.size(); i<NumClasses; i++) { 6263 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 6264 assert(ID); 6265 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 6266 // We are implementing a weak imported interface. Give it external linkage 6267 if (ID->isWeakImported() && !IMP->isWeakImported()) { 6268 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 6269 DefinedMetaClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 6270 } 6271 } 6272 6273 AddModuleClassList(DefinedClasses, "OBJC_LABEL_CLASS_$", 6274 GetSectionName("__objc_classlist", 6275 "regular,no_dead_strip")); 6276 6277 AddModuleClassList(DefinedNonLazyClasses, "OBJC_LABEL_NONLAZY_CLASS_$", 6278 GetSectionName("__objc_nlclslist", 6279 "regular,no_dead_strip")); 6280 6281 // Build list of all implemented category addresses in array 6282 // L_OBJC_LABEL_CATEGORY_$. 6283 AddModuleClassList(DefinedCategories, "OBJC_LABEL_CATEGORY_$", 6284 GetSectionName("__objc_catlist", 6285 "regular,no_dead_strip")); 6286 AddModuleClassList(DefinedStubCategories, "OBJC_LABEL_STUB_CATEGORY_$", 6287 GetSectionName("__objc_catlist2", 6288 "regular,no_dead_strip")); 6289 AddModuleClassList(DefinedNonLazyCategories, "OBJC_LABEL_NONLAZY_CATEGORY_$", 6290 GetSectionName("__objc_nlcatlist", 6291 "regular,no_dead_strip")); 6292 6293 EmitImageInfo(); 6294 } 6295 6296 /// isVTableDispatchedSelector - Returns true if SEL is not in the list of 6297 /// VTableDispatchMethods; false otherwise. What this means is that 6298 /// except for the 19 selectors in the list, we generate 32bit-style 6299 /// message dispatch call for all the rest. 6300 bool CGObjCNonFragileABIMac::isVTableDispatchedSelector(Selector Sel) { 6301 // At various points we've experimented with using vtable-based 6302 // dispatch for all methods. 6303 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) { 6304 case CodeGenOptions::Legacy: 6305 return false; 6306 case CodeGenOptions::NonLegacy: 6307 return true; 6308 case CodeGenOptions::Mixed: 6309 break; 6310 } 6311 6312 // If so, see whether this selector is in the white-list of things which must 6313 // use the new dispatch convention. We lazily build a dense set for this. 6314 if (VTableDispatchMethods.empty()) { 6315 VTableDispatchMethods.insert(GetNullarySelector("alloc")); 6316 VTableDispatchMethods.insert(GetNullarySelector("class")); 6317 VTableDispatchMethods.insert(GetNullarySelector("self")); 6318 VTableDispatchMethods.insert(GetNullarySelector("isFlipped")); 6319 VTableDispatchMethods.insert(GetNullarySelector("length")); 6320 VTableDispatchMethods.insert(GetNullarySelector("count")); 6321 6322 // These are vtable-based if GC is disabled. 6323 // Optimistically use vtable dispatch for hybrid compiles. 6324 if (CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 6325 VTableDispatchMethods.insert(GetNullarySelector("retain")); 6326 VTableDispatchMethods.insert(GetNullarySelector("release")); 6327 VTableDispatchMethods.insert(GetNullarySelector("autorelease")); 6328 } 6329 6330 VTableDispatchMethods.insert(GetUnarySelector("allocWithZone")); 6331 VTableDispatchMethods.insert(GetUnarySelector("isKindOfClass")); 6332 VTableDispatchMethods.insert(GetUnarySelector("respondsToSelector")); 6333 VTableDispatchMethods.insert(GetUnarySelector("objectForKey")); 6334 VTableDispatchMethods.insert(GetUnarySelector("objectAtIndex")); 6335 VTableDispatchMethods.insert(GetUnarySelector("isEqualToString")); 6336 VTableDispatchMethods.insert(GetUnarySelector("isEqual")); 6337 6338 // These are vtable-based if GC is enabled. 6339 // Optimistically use vtable dispatch for hybrid compiles. 6340 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 6341 VTableDispatchMethods.insert(GetNullarySelector("hash")); 6342 VTableDispatchMethods.insert(GetUnarySelector("addObject")); 6343 6344 // "countByEnumeratingWithState:objects:count" 6345 IdentifierInfo *KeyIdents[] = { 6346 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 6347 &CGM.getContext().Idents.get("objects"), 6348 &CGM.getContext().Idents.get("count") 6349 }; 6350 VTableDispatchMethods.insert( 6351 CGM.getContext().Selectors.getSelector(3, KeyIdents)); 6352 } 6353 } 6354 6355 return VTableDispatchMethods.count(Sel); 6356 } 6357 6358 /// BuildClassRoTInitializer - generate meta-data for: 6359 /// struct _class_ro_t { 6360 /// uint32_t const flags; 6361 /// uint32_t const instanceStart; 6362 /// uint32_t const instanceSize; 6363 /// uint32_t const reserved; // only when building for 64bit targets 6364 /// const uint8_t * const ivarLayout; 6365 /// const char *const name; 6366 /// const struct _method_list_t * const baseMethods; 6367 /// const struct _protocol_list_t *const baseProtocols; 6368 /// const struct _ivar_list_t *const ivars; 6369 /// const uint8_t * const weakIvarLayout; 6370 /// const struct _prop_list_t * const properties; 6371 /// } 6372 /// 6373 llvm::GlobalVariable * CGObjCNonFragileABIMac::BuildClassRoTInitializer( 6374 unsigned flags, 6375 unsigned InstanceStart, 6376 unsigned InstanceSize, 6377 const ObjCImplementationDecl *ID) { 6378 std::string ClassName = std::string(ID->getObjCRuntimeNameAsString()); 6379 6380 CharUnits beginInstance = CharUnits::fromQuantity(InstanceStart); 6381 CharUnits endInstance = CharUnits::fromQuantity(InstanceSize); 6382 6383 bool hasMRCWeak = false; 6384 if (CGM.getLangOpts().ObjCAutoRefCount) 6385 flags |= NonFragileABI_Class_CompiledByARC; 6386 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 6387 flags |= NonFragileABI_Class_HasMRCWeakIvars; 6388 6389 ConstantInitBuilder builder(CGM); 6390 auto values = builder.beginStruct(ObjCTypes.ClassRonfABITy); 6391 6392 values.addInt(ObjCTypes.IntTy, flags); 6393 values.addInt(ObjCTypes.IntTy, InstanceStart); 6394 values.addInt(ObjCTypes.IntTy, InstanceSize); 6395 values.add((flags & NonFragileABI_Class_Meta) 6396 ? GetIvarLayoutName(nullptr, ObjCTypes) 6397 : BuildStrongIvarLayout(ID, beginInstance, endInstance)); 6398 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 6399 6400 // const struct _method_list_t * const baseMethods; 6401 SmallVector<const ObjCMethodDecl*, 16> methods; 6402 if (flags & NonFragileABI_Class_Meta) { 6403 for (const auto *MD : ID->class_methods()) 6404 if (!MD->isDirectMethod()) 6405 methods.push_back(MD); 6406 } else { 6407 for (const auto *MD : ID->instance_methods()) 6408 if (!MD->isDirectMethod()) 6409 methods.push_back(MD); 6410 } 6411 6412 values.add(emitMethodList(ID->getObjCRuntimeNameAsString(), 6413 (flags & NonFragileABI_Class_Meta) 6414 ? MethodListType::ClassMethods 6415 : MethodListType::InstanceMethods, 6416 methods)); 6417 6418 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6419 assert(OID && "CGObjCNonFragileABIMac::BuildClassRoTInitializer"); 6420 values.add(EmitProtocolList("_OBJC_CLASS_PROTOCOLS_$_" 6421 + OID->getObjCRuntimeNameAsString(), 6422 OID->all_referenced_protocol_begin(), 6423 OID->all_referenced_protocol_end())); 6424 6425 if (flags & NonFragileABI_Class_Meta) { 6426 values.addNullPointer(ObjCTypes.IvarListnfABIPtrTy); 6427 values.add(GetIvarLayoutName(nullptr, ObjCTypes)); 6428 values.add(EmitPropertyList( 6429 "_OBJC_$_CLASS_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 6430 ID, ID->getClassInterface(), ObjCTypes, true)); 6431 } else { 6432 values.add(EmitIvarList(ID)); 6433 values.add(BuildWeakIvarLayout(ID, beginInstance, endInstance, hasMRCWeak)); 6434 values.add(EmitPropertyList( 6435 "_OBJC_$_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 6436 ID, ID->getClassInterface(), ObjCTypes, false)); 6437 } 6438 6439 llvm::SmallString<64> roLabel; 6440 llvm::raw_svector_ostream(roLabel) 6441 << ((flags & NonFragileABI_Class_Meta) ? "_OBJC_METACLASS_RO_$_" 6442 : "_OBJC_CLASS_RO_$_") 6443 << ClassName; 6444 6445 return finishAndCreateGlobal(values, roLabel, CGM); 6446 } 6447 6448 /// Build the metaclass object for a class. 6449 /// 6450 /// struct _class_t { 6451 /// struct _class_t *isa; 6452 /// struct _class_t * const superclass; 6453 /// void *cache; 6454 /// IMP *vtable; 6455 /// struct class_ro_t *ro; 6456 /// } 6457 /// 6458 llvm::GlobalVariable * 6459 CGObjCNonFragileABIMac::BuildClassObject(const ObjCInterfaceDecl *CI, 6460 bool isMetaclass, 6461 llvm::Constant *IsAGV, 6462 llvm::Constant *SuperClassGV, 6463 llvm::Constant *ClassRoGV, 6464 bool HiddenVisibility) { 6465 ConstantInitBuilder builder(CGM); 6466 auto values = builder.beginStruct(ObjCTypes.ClassnfABITy); 6467 values.add(IsAGV); 6468 if (SuperClassGV) { 6469 values.add(SuperClassGV); 6470 } else { 6471 values.addNullPointer(ObjCTypes.ClassnfABIPtrTy); 6472 } 6473 values.add(ObjCEmptyCacheVar); 6474 values.add(ObjCEmptyVtableVar); 6475 values.add(ClassRoGV); 6476 6477 llvm::GlobalVariable *GV = 6478 cast<llvm::GlobalVariable>(GetClassGlobal(CI, isMetaclass, ForDefinition)); 6479 values.finishAndSetAsInitializer(GV); 6480 6481 if (CGM.getTriple().isOSBinFormatMachO()) 6482 GV->setSection("__DATA, __objc_data"); 6483 GV->setAlignment(llvm::Align( 6484 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ClassnfABITy))); 6485 if (!CGM.getTriple().isOSBinFormatCOFF()) 6486 if (HiddenVisibility) 6487 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6488 return GV; 6489 } 6490 6491 bool CGObjCNonFragileABIMac::ImplementationIsNonLazy( 6492 const ObjCImplDecl *OD) const { 6493 return OD->getClassMethod(GetNullarySelector("load")) != nullptr || 6494 OD->getClassInterface()->hasAttr<ObjCNonLazyClassAttr>() || 6495 OD->hasAttr<ObjCNonLazyClassAttr>(); 6496 } 6497 6498 void CGObjCNonFragileABIMac::GetClassSizeInfo(const ObjCImplementationDecl *OID, 6499 uint32_t &InstanceStart, 6500 uint32_t &InstanceSize) { 6501 const ASTRecordLayout &RL = 6502 CGM.getContext().getASTObjCImplementationLayout(OID); 6503 6504 // InstanceSize is really instance end. 6505 InstanceSize = RL.getDataSize().getQuantity(); 6506 6507 // If there are no fields, the start is the same as the end. 6508 if (!RL.getFieldCount()) 6509 InstanceStart = InstanceSize; 6510 else 6511 InstanceStart = RL.getFieldOffset(0) / CGM.getContext().getCharWidth(); 6512 } 6513 6514 static llvm::GlobalValue::DLLStorageClassTypes getStorage(CodeGenModule &CGM, 6515 StringRef Name) { 6516 IdentifierInfo &II = CGM.getContext().Idents.get(Name); 6517 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 6518 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6519 6520 const VarDecl *VD = nullptr; 6521 for (const auto &Result : DC->lookup(&II)) 6522 if ((VD = dyn_cast<VarDecl>(Result))) 6523 break; 6524 6525 if (!VD) 6526 return llvm::GlobalValue::DLLImportStorageClass; 6527 if (VD->hasAttr<DLLExportAttr>()) 6528 return llvm::GlobalValue::DLLExportStorageClass; 6529 if (VD->hasAttr<DLLImportAttr>()) 6530 return llvm::GlobalValue::DLLImportStorageClass; 6531 return llvm::GlobalValue::DefaultStorageClass; 6532 } 6533 6534 void CGObjCNonFragileABIMac::GenerateClass(const ObjCImplementationDecl *ID) { 6535 if (!ObjCEmptyCacheVar) { 6536 ObjCEmptyCacheVar = 6537 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.CacheTy, false, 6538 llvm::GlobalValue::ExternalLinkage, nullptr, 6539 "_objc_empty_cache"); 6540 if (CGM.getTriple().isOSBinFormatCOFF()) 6541 ObjCEmptyCacheVar->setDLLStorageClass(getStorage(CGM, "_objc_empty_cache")); 6542 6543 // Only OS X with deployment version <10.9 use the empty vtable symbol 6544 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 6545 if (Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 9)) 6546 ObjCEmptyVtableVar = 6547 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ImpnfABITy, false, 6548 llvm::GlobalValue::ExternalLinkage, nullptr, 6549 "_objc_empty_vtable"); 6550 else 6551 ObjCEmptyVtableVar = 6552 llvm::ConstantPointerNull::get(ObjCTypes.ImpnfABITy->getPointerTo()); 6553 } 6554 6555 // FIXME: Is this correct (that meta class size is never computed)? 6556 uint32_t InstanceStart = 6557 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassnfABITy); 6558 uint32_t InstanceSize = InstanceStart; 6559 uint32_t flags = NonFragileABI_Class_Meta; 6560 6561 llvm::Constant *SuperClassGV, *IsAGV; 6562 6563 const auto *CI = ID->getClassInterface(); 6564 assert(CI && "CGObjCNonFragileABIMac::GenerateClass - class is 0"); 6565 6566 // Build the flags for the metaclass. 6567 bool classIsHidden = (CGM.getTriple().isOSBinFormatCOFF()) 6568 ? !CI->hasAttr<DLLExportAttr>() 6569 : CI->getVisibility() == HiddenVisibility; 6570 if (classIsHidden) 6571 flags |= NonFragileABI_Class_Hidden; 6572 6573 // FIXME: why is this flag set on the metaclass? 6574 // ObjC metaclasses have no fields and don't really get constructed. 6575 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 6576 flags |= NonFragileABI_Class_HasCXXStructors; 6577 if (!ID->hasNonZeroConstructors()) 6578 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 6579 } 6580 6581 if (!CI->getSuperClass()) { 6582 // class is root 6583 flags |= NonFragileABI_Class_Root; 6584 6585 SuperClassGV = GetClassGlobal(CI, /*metaclass*/ false, NotForDefinition); 6586 IsAGV = GetClassGlobal(CI, /*metaclass*/ true, NotForDefinition); 6587 } else { 6588 // Has a root. Current class is not a root. 6589 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 6590 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 6591 Root = Super; 6592 6593 const auto *Super = CI->getSuperClass(); 6594 IsAGV = GetClassGlobal(Root, /*metaclass*/ true, NotForDefinition); 6595 SuperClassGV = GetClassGlobal(Super, /*metaclass*/ true, NotForDefinition); 6596 } 6597 6598 llvm::GlobalVariable *CLASS_RO_GV = 6599 BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID); 6600 6601 llvm::GlobalVariable *MetaTClass = 6602 BuildClassObject(CI, /*metaclass*/ true, 6603 IsAGV, SuperClassGV, CLASS_RO_GV, classIsHidden); 6604 CGM.setGVProperties(MetaTClass, CI); 6605 DefinedMetaClasses.push_back(MetaTClass); 6606 6607 // Metadata for the class 6608 flags = 0; 6609 if (classIsHidden) 6610 flags |= NonFragileABI_Class_Hidden; 6611 6612 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 6613 flags |= NonFragileABI_Class_HasCXXStructors; 6614 6615 // Set a flag to enable a runtime optimization when a class has 6616 // fields that require destruction but which don't require 6617 // anything except zero-initialization during construction. This 6618 // is most notably true of __strong and __weak types, but you can 6619 // also imagine there being C++ types with non-trivial default 6620 // constructors that merely set all fields to null. 6621 if (!ID->hasNonZeroConstructors()) 6622 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 6623 } 6624 6625 if (hasObjCExceptionAttribute(CGM.getContext(), CI)) 6626 flags |= NonFragileABI_Class_Exception; 6627 6628 if (!CI->getSuperClass()) { 6629 flags |= NonFragileABI_Class_Root; 6630 SuperClassGV = nullptr; 6631 } else { 6632 // Has a root. Current class is not a root. 6633 const auto *Super = CI->getSuperClass(); 6634 SuperClassGV = GetClassGlobal(Super, /*metaclass*/ false, NotForDefinition); 6635 } 6636 6637 GetClassSizeInfo(ID, InstanceStart, InstanceSize); 6638 CLASS_RO_GV = 6639 BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID); 6640 6641 llvm::GlobalVariable *ClassMD = 6642 BuildClassObject(CI, /*metaclass*/ false, 6643 MetaTClass, SuperClassGV, CLASS_RO_GV, classIsHidden); 6644 CGM.setGVProperties(ClassMD, CI); 6645 DefinedClasses.push_back(ClassMD); 6646 ImplementedClasses.push_back(CI); 6647 6648 // Determine if this class is also "non-lazy". 6649 if (ImplementationIsNonLazy(ID)) 6650 DefinedNonLazyClasses.push_back(ClassMD); 6651 6652 // Force the definition of the EHType if necessary. 6653 if (flags & NonFragileABI_Class_Exception) 6654 (void) GetInterfaceEHType(CI, ForDefinition); 6655 // Make sure method definition entries are all clear for next implementation. 6656 MethodDefinitions.clear(); 6657 } 6658 6659 /// GenerateProtocolRef - This routine is called to generate code for 6660 /// a protocol reference expression; as in: 6661 /// @code 6662 /// @protocol(Proto1); 6663 /// @endcode 6664 /// It generates a weak reference to l_OBJC_PROTOCOL_REFERENCE_$_Proto1 6665 /// which will hold address of the protocol meta-data. 6666 /// 6667 llvm::Value *CGObjCNonFragileABIMac::GenerateProtocolRef(CodeGenFunction &CGF, 6668 const ObjCProtocolDecl *PD) { 6669 6670 // This routine is called for @protocol only. So, we must build definition 6671 // of protocol's meta-data (not a reference to it!) 6672 assert(!PD->isNonRuntimeProtocol() && 6673 "attempting to get a protocol ref to a static protocol."); 6674 llvm::Constant *Init = 6675 llvm::ConstantExpr::getBitCast(GetOrEmitProtocol(PD), 6676 ObjCTypes.getExternalProtocolPtrTy()); 6677 6678 std::string ProtocolName("_OBJC_PROTOCOL_REFERENCE_$_"); 6679 ProtocolName += PD->getObjCRuntimeNameAsString(); 6680 6681 CharUnits Align = CGF.getPointerAlign(); 6682 6683 llvm::GlobalVariable *PTGV = CGM.getModule().getGlobalVariable(ProtocolName); 6684 if (PTGV) 6685 return CGF.Builder.CreateAlignedLoad(PTGV, Align); 6686 PTGV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 6687 llvm::GlobalValue::WeakAnyLinkage, Init, 6688 ProtocolName); 6689 PTGV->setSection(GetSectionName("__objc_protorefs", 6690 "coalesced,no_dead_strip")); 6691 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6692 PTGV->setAlignment(Align.getAsAlign()); 6693 if (!CGM.getTriple().isOSBinFormatMachO()) 6694 PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolName)); 6695 CGM.addUsedGlobal(PTGV); 6696 return CGF.Builder.CreateAlignedLoad(PTGV, Align); 6697 } 6698 6699 /// GenerateCategory - Build metadata for a category implementation. 6700 /// struct _category_t { 6701 /// const char * const name; 6702 /// struct _class_t *const cls; 6703 /// const struct _method_list_t * const instance_methods; 6704 /// const struct _method_list_t * const class_methods; 6705 /// const struct _protocol_list_t * const protocols; 6706 /// const struct _prop_list_t * const properties; 6707 /// const struct _prop_list_t * const class_properties; 6708 /// const uint32_t size; 6709 /// } 6710 /// 6711 void CGObjCNonFragileABIMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 6712 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 6713 const char *Prefix = "_OBJC_$_CATEGORY_"; 6714 6715 llvm::SmallString<64> ExtCatName(Prefix); 6716 ExtCatName += Interface->getObjCRuntimeNameAsString(); 6717 ExtCatName += "_$_"; 6718 ExtCatName += OCD->getNameAsString(); 6719 6720 ConstantInitBuilder builder(CGM); 6721 auto values = builder.beginStruct(ObjCTypes.CategorynfABITy); 6722 values.add(GetClassName(OCD->getIdentifier()->getName())); 6723 // meta-class entry symbol 6724 values.add(GetClassGlobal(Interface, /*metaclass*/ false, NotForDefinition)); 6725 std::string listName = 6726 (Interface->getObjCRuntimeNameAsString() + "_$_" + OCD->getName()).str(); 6727 6728 SmallVector<const ObjCMethodDecl *, 16> instanceMethods; 6729 SmallVector<const ObjCMethodDecl *, 8> classMethods; 6730 for (const auto *MD : OCD->methods()) { 6731 if (MD->isDirectMethod()) 6732 continue; 6733 if (MD->isInstanceMethod()) { 6734 instanceMethods.push_back(MD); 6735 } else { 6736 classMethods.push_back(MD); 6737 } 6738 } 6739 6740 values.add(emitMethodList(listName, MethodListType::CategoryInstanceMethods, 6741 instanceMethods)); 6742 values.add(emitMethodList(listName, MethodListType::CategoryClassMethods, 6743 classMethods)); 6744 6745 const ObjCCategoryDecl *Category = 6746 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 6747 if (Category) { 6748 SmallString<256> ExtName; 6749 llvm::raw_svector_ostream(ExtName) << Interface->getObjCRuntimeNameAsString() << "_$_" 6750 << OCD->getName(); 6751 values.add(EmitProtocolList("_OBJC_CATEGORY_PROTOCOLS_$_" 6752 + Interface->getObjCRuntimeNameAsString() + "_$_" 6753 + Category->getName(), 6754 Category->protocol_begin(), 6755 Category->protocol_end())); 6756 values.add(EmitPropertyList("_OBJC_$_PROP_LIST_" + ExtName.str(), 6757 OCD, Category, ObjCTypes, false)); 6758 values.add(EmitPropertyList("_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), 6759 OCD, Category, ObjCTypes, true)); 6760 } else { 6761 values.addNullPointer(ObjCTypes.ProtocolListnfABIPtrTy); 6762 values.addNullPointer(ObjCTypes.PropertyListPtrTy); 6763 values.addNullPointer(ObjCTypes.PropertyListPtrTy); 6764 } 6765 6766 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategorynfABITy); 6767 values.addInt(ObjCTypes.IntTy, Size); 6768 6769 llvm::GlobalVariable *GCATV = 6770 finishAndCreateGlobal(values, ExtCatName.str(), CGM); 6771 CGM.addCompilerUsedGlobal(GCATV); 6772 if (Interface->hasAttr<ObjCClassStubAttr>()) 6773 DefinedStubCategories.push_back(GCATV); 6774 else 6775 DefinedCategories.push_back(GCATV); 6776 6777 // Determine if this category is also "non-lazy". 6778 if (ImplementationIsNonLazy(OCD)) 6779 DefinedNonLazyCategories.push_back(GCATV); 6780 // method definition entries must be clear for next implementation. 6781 MethodDefinitions.clear(); 6782 } 6783 6784 /// emitMethodConstant - Return a struct objc_method constant. If 6785 /// forProtocol is true, the implementation will be null; otherwise, 6786 /// the method must have a definition registered with the runtime. 6787 /// 6788 /// struct _objc_method { 6789 /// SEL _cmd; 6790 /// char *method_type; 6791 /// char *_imp; 6792 /// } 6793 void CGObjCNonFragileABIMac::emitMethodConstant(ConstantArrayBuilder &builder, 6794 const ObjCMethodDecl *MD, 6795 bool forProtocol) { 6796 auto method = builder.beginStruct(ObjCTypes.MethodTy); 6797 method.addBitCast(GetMethodVarName(MD->getSelector()), 6798 ObjCTypes.SelectorPtrTy); 6799 method.add(GetMethodVarType(MD)); 6800 6801 if (forProtocol) { 6802 // Protocol methods have no implementation. So, this entry is always NULL. 6803 method.addNullPointer(ObjCTypes.Int8PtrTy); 6804 } else { 6805 llvm::Function *fn = GetMethodDefinition(MD); 6806 assert(fn && "no definition for method?"); 6807 method.addBitCast(fn, ObjCTypes.Int8PtrTy); 6808 } 6809 6810 method.finishAndAddTo(builder); 6811 } 6812 6813 /// Build meta-data for method declarations. 6814 /// 6815 /// struct _method_list_t { 6816 /// uint32_t entsize; // sizeof(struct _objc_method) 6817 /// uint32_t method_count; 6818 /// struct _objc_method method_list[method_count]; 6819 /// } 6820 /// 6821 llvm::Constant * 6822 CGObjCNonFragileABIMac::emitMethodList(Twine name, MethodListType kind, 6823 ArrayRef<const ObjCMethodDecl *> methods) { 6824 // Return null for empty list. 6825 if (methods.empty()) 6826 return llvm::Constant::getNullValue(ObjCTypes.MethodListnfABIPtrTy); 6827 6828 StringRef prefix; 6829 bool forProtocol; 6830 switch (kind) { 6831 case MethodListType::CategoryInstanceMethods: 6832 prefix = "_OBJC_$_CATEGORY_INSTANCE_METHODS_"; 6833 forProtocol = false; 6834 break; 6835 case MethodListType::CategoryClassMethods: 6836 prefix = "_OBJC_$_CATEGORY_CLASS_METHODS_"; 6837 forProtocol = false; 6838 break; 6839 case MethodListType::InstanceMethods: 6840 prefix = "_OBJC_$_INSTANCE_METHODS_"; 6841 forProtocol = false; 6842 break; 6843 case MethodListType::ClassMethods: 6844 prefix = "_OBJC_$_CLASS_METHODS_"; 6845 forProtocol = false; 6846 break; 6847 6848 case MethodListType::ProtocolInstanceMethods: 6849 prefix = "_OBJC_$_PROTOCOL_INSTANCE_METHODS_"; 6850 forProtocol = true; 6851 break; 6852 case MethodListType::ProtocolClassMethods: 6853 prefix = "_OBJC_$_PROTOCOL_CLASS_METHODS_"; 6854 forProtocol = true; 6855 break; 6856 case MethodListType::OptionalProtocolInstanceMethods: 6857 prefix = "_OBJC_$_PROTOCOL_INSTANCE_METHODS_OPT_"; 6858 forProtocol = true; 6859 break; 6860 case MethodListType::OptionalProtocolClassMethods: 6861 prefix = "_OBJC_$_PROTOCOL_CLASS_METHODS_OPT_"; 6862 forProtocol = true; 6863 break; 6864 } 6865 6866 ConstantInitBuilder builder(CGM); 6867 auto values = builder.beginStruct(); 6868 6869 // sizeof(struct _objc_method) 6870 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.MethodTy); 6871 values.addInt(ObjCTypes.IntTy, Size); 6872 // method_count 6873 values.addInt(ObjCTypes.IntTy, methods.size()); 6874 auto methodArray = values.beginArray(ObjCTypes.MethodTy); 6875 for (auto MD : methods) 6876 emitMethodConstant(methodArray, MD, forProtocol); 6877 methodArray.finishAndAddTo(values); 6878 6879 llvm::GlobalVariable *GV = finishAndCreateGlobal(values, prefix + name, CGM); 6880 CGM.addCompilerUsedGlobal(GV); 6881 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListnfABIPtrTy); 6882 } 6883 6884 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 6885 /// the given ivar. 6886 llvm::GlobalVariable * 6887 CGObjCNonFragileABIMac::ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID, 6888 const ObjCIvarDecl *Ivar) { 6889 const ObjCInterfaceDecl *Container = Ivar->getContainingInterface(); 6890 llvm::SmallString<64> Name("OBJC_IVAR_$_"); 6891 Name += Container->getObjCRuntimeNameAsString(); 6892 Name += "."; 6893 Name += Ivar->getName(); 6894 llvm::GlobalVariable *IvarOffsetGV = CGM.getModule().getGlobalVariable(Name); 6895 if (!IvarOffsetGV) { 6896 IvarOffsetGV = 6897 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.IvarOffsetVarTy, 6898 false, llvm::GlobalValue::ExternalLinkage, 6899 nullptr, Name.str()); 6900 if (CGM.getTriple().isOSBinFormatCOFF()) { 6901 bool IsPrivateOrPackage = 6902 Ivar->getAccessControl() == ObjCIvarDecl::Private || 6903 Ivar->getAccessControl() == ObjCIvarDecl::Package; 6904 6905 const ObjCInterfaceDecl *ContainingID = Ivar->getContainingInterface(); 6906 6907 if (ContainingID->hasAttr<DLLImportAttr>()) 6908 IvarOffsetGV 6909 ->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6910 else if (ContainingID->hasAttr<DLLExportAttr>() && !IsPrivateOrPackage) 6911 IvarOffsetGV 6912 ->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6913 } 6914 } 6915 return IvarOffsetGV; 6916 } 6917 6918 llvm::Constant * 6919 CGObjCNonFragileABIMac::EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 6920 const ObjCIvarDecl *Ivar, 6921 unsigned long int Offset) { 6922 llvm::GlobalVariable *IvarOffsetGV = ObjCIvarOffsetVariable(ID, Ivar); 6923 IvarOffsetGV->setInitializer( 6924 llvm::ConstantInt::get(ObjCTypes.IvarOffsetVarTy, Offset)); 6925 IvarOffsetGV->setAlignment(llvm::Align( 6926 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.IvarOffsetVarTy))); 6927 6928 if (!CGM.getTriple().isOSBinFormatCOFF()) { 6929 // FIXME: This matches gcc, but shouldn't the visibility be set on the use 6930 // as well (i.e., in ObjCIvarOffsetVariable). 6931 if (Ivar->getAccessControl() == ObjCIvarDecl::Private || 6932 Ivar->getAccessControl() == ObjCIvarDecl::Package || 6933 ID->getVisibility() == HiddenVisibility) 6934 IvarOffsetGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6935 else 6936 IvarOffsetGV->setVisibility(llvm::GlobalValue::DefaultVisibility); 6937 } 6938 6939 // If ID's layout is known, then make the global constant. This serves as a 6940 // useful assertion: we'll never use this variable to calculate ivar offsets, 6941 // so if the runtime tries to patch it then we should crash. 6942 if (isClassLayoutKnownStatically(ID)) 6943 IvarOffsetGV->setConstant(true); 6944 6945 if (CGM.getTriple().isOSBinFormatMachO()) 6946 IvarOffsetGV->setSection("__DATA, __objc_ivar"); 6947 return IvarOffsetGV; 6948 } 6949 6950 /// EmitIvarList - Emit the ivar list for the given 6951 /// implementation. The return value has type 6952 /// IvarListnfABIPtrTy. 6953 /// struct _ivar_t { 6954 /// unsigned [long] int *offset; // pointer to ivar offset location 6955 /// char *name; 6956 /// char *type; 6957 /// uint32_t alignment; 6958 /// uint32_t size; 6959 /// } 6960 /// struct _ivar_list_t { 6961 /// uint32 entsize; // sizeof(struct _ivar_t) 6962 /// uint32 count; 6963 /// struct _iver_t list[count]; 6964 /// } 6965 /// 6966 6967 llvm::Constant *CGObjCNonFragileABIMac::EmitIvarList( 6968 const ObjCImplementationDecl *ID) { 6969 6970 ConstantInitBuilder builder(CGM); 6971 auto ivarList = builder.beginStruct(); 6972 ivarList.addInt(ObjCTypes.IntTy, 6973 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.IvarnfABITy)); 6974 auto ivarCountSlot = ivarList.addPlaceholder(); 6975 auto ivars = ivarList.beginArray(ObjCTypes.IvarnfABITy); 6976 6977 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6978 assert(OID && "CGObjCNonFragileABIMac::EmitIvarList - null interface"); 6979 6980 // FIXME. Consolidate this with similar code in GenerateClass. 6981 6982 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 6983 IVD; IVD = IVD->getNextIvar()) { 6984 // Ignore unnamed bit-fields. 6985 if (!IVD->getDeclName()) 6986 continue; 6987 6988 auto ivar = ivars.beginStruct(ObjCTypes.IvarnfABITy); 6989 ivar.add(EmitIvarOffsetVar(ID->getClassInterface(), IVD, 6990 ComputeIvarBaseOffset(CGM, ID, IVD))); 6991 ivar.add(GetMethodVarName(IVD->getIdentifier())); 6992 ivar.add(GetMethodVarType(IVD)); 6993 llvm::Type *FieldTy = 6994 CGM.getTypes().ConvertTypeForMem(IVD->getType()); 6995 unsigned Size = CGM.getDataLayout().getTypeAllocSize(FieldTy); 6996 unsigned Align = CGM.getContext().getPreferredTypeAlign( 6997 IVD->getType().getTypePtr()) >> 3; 6998 Align = llvm::Log2_32(Align); 6999 ivar.addInt(ObjCTypes.IntTy, Align); 7000 // NOTE. Size of a bitfield does not match gcc's, because of the 7001 // way bitfields are treated special in each. But I am told that 7002 // 'size' for bitfield ivars is ignored by the runtime so it does 7003 // not matter. If it matters, there is enough info to get the 7004 // bitfield right! 7005 ivar.addInt(ObjCTypes.IntTy, Size); 7006 ivar.finishAndAddTo(ivars); 7007 } 7008 // Return null for empty list. 7009 if (ivars.empty()) { 7010 ivars.abandon(); 7011 ivarList.abandon(); 7012 return llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy); 7013 } 7014 7015 auto ivarCount = ivars.size(); 7016 ivars.finishAndAddTo(ivarList); 7017 ivarList.fillPlaceholderWithInt(ivarCountSlot, ObjCTypes.IntTy, ivarCount); 7018 7019 const char *Prefix = "_OBJC_$_INSTANCE_VARIABLES_"; 7020 llvm::GlobalVariable *GV = finishAndCreateGlobal( 7021 ivarList, Prefix + OID->getObjCRuntimeNameAsString(), CGM); 7022 CGM.addCompilerUsedGlobal(GV); 7023 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListnfABIPtrTy); 7024 } 7025 7026 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocolRef( 7027 const ObjCProtocolDecl *PD) { 7028 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 7029 7030 assert(!PD->isNonRuntimeProtocol() && 7031 "attempting to GetOrEmit a non-runtime protocol"); 7032 if (!Entry) { 7033 // We use the initializer as a marker of whether this is a forward 7034 // reference or not. At module finalization we add the empty 7035 // contents for protocols which were referenced but never defined. 7036 llvm::SmallString<64> Protocol; 7037 llvm::raw_svector_ostream(Protocol) << "_OBJC_PROTOCOL_$_" 7038 << PD->getObjCRuntimeNameAsString(); 7039 7040 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy, 7041 false, llvm::GlobalValue::ExternalLinkage, 7042 nullptr, Protocol); 7043 if (!CGM.getTriple().isOSBinFormatMachO()) 7044 Entry->setComdat(CGM.getModule().getOrInsertComdat(Protocol)); 7045 } 7046 7047 return Entry; 7048 } 7049 7050 /// GetOrEmitProtocol - Generate the protocol meta-data: 7051 /// @code 7052 /// struct _protocol_t { 7053 /// id isa; // NULL 7054 /// const char * const protocol_name; 7055 /// const struct _protocol_list_t * protocol_list; // super protocols 7056 /// const struct method_list_t * const instance_methods; 7057 /// const struct method_list_t * const class_methods; 7058 /// const struct method_list_t *optionalInstanceMethods; 7059 /// const struct method_list_t *optionalClassMethods; 7060 /// const struct _prop_list_t * properties; 7061 /// const uint32_t size; // sizeof(struct _protocol_t) 7062 /// const uint32_t flags; // = 0 7063 /// const char ** extendedMethodTypes; 7064 /// const char *demangledName; 7065 /// const struct _prop_list_t * class_properties; 7066 /// } 7067 /// @endcode 7068 /// 7069 7070 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocol( 7071 const ObjCProtocolDecl *PD) { 7072 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 7073 7074 // Early exit if a defining object has already been generated. 7075 if (Entry && Entry->hasInitializer()) 7076 return Entry; 7077 7078 // Use the protocol definition, if there is one. 7079 assert(PD->hasDefinition() && 7080 "emitting protocol metadata without definition"); 7081 PD = PD->getDefinition(); 7082 7083 auto methodLists = ProtocolMethodLists::get(PD); 7084 7085 ConstantInitBuilder builder(CGM); 7086 auto values = builder.beginStruct(ObjCTypes.ProtocolnfABITy); 7087 7088 // isa is NULL 7089 values.addNullPointer(ObjCTypes.ObjectPtrTy); 7090 values.add(GetClassName(PD->getObjCRuntimeNameAsString())); 7091 values.add(EmitProtocolList("_OBJC_$_PROTOCOL_REFS_" 7092 + PD->getObjCRuntimeNameAsString(), 7093 PD->protocol_begin(), 7094 PD->protocol_end())); 7095 values.add(methodLists.emitMethodList(this, PD, 7096 ProtocolMethodLists::RequiredInstanceMethods)); 7097 values.add(methodLists.emitMethodList(this, PD, 7098 ProtocolMethodLists::RequiredClassMethods)); 7099 values.add(methodLists.emitMethodList(this, PD, 7100 ProtocolMethodLists::OptionalInstanceMethods)); 7101 values.add(methodLists.emitMethodList(this, PD, 7102 ProtocolMethodLists::OptionalClassMethods)); 7103 values.add(EmitPropertyList( 7104 "_OBJC_$_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 7105 nullptr, PD, ObjCTypes, false)); 7106 uint32_t Size = 7107 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolnfABITy); 7108 values.addInt(ObjCTypes.IntTy, Size); 7109 values.addInt(ObjCTypes.IntTy, 0); 7110 values.add(EmitProtocolMethodTypes("_OBJC_$_PROTOCOL_METHOD_TYPES_" 7111 + PD->getObjCRuntimeNameAsString(), 7112 methodLists.emitExtendedTypesArray(this), 7113 ObjCTypes)); 7114 7115 // const char *demangledName; 7116 values.addNullPointer(ObjCTypes.Int8PtrTy); 7117 7118 values.add(EmitPropertyList( 7119 "_OBJC_$_CLASS_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 7120 nullptr, PD, ObjCTypes, true)); 7121 7122 if (Entry) { 7123 // Already created, fix the linkage and update the initializer. 7124 Entry->setLinkage(llvm::GlobalValue::WeakAnyLinkage); 7125 values.finishAndSetAsInitializer(Entry); 7126 } else { 7127 llvm::SmallString<64> symbolName; 7128 llvm::raw_svector_ostream(symbolName) 7129 << "_OBJC_PROTOCOL_$_" << PD->getObjCRuntimeNameAsString(); 7130 7131 Entry = values.finishAndCreateGlobal(symbolName, CGM.getPointerAlign(), 7132 /*constant*/ false, 7133 llvm::GlobalValue::WeakAnyLinkage); 7134 if (!CGM.getTriple().isOSBinFormatMachO()) 7135 Entry->setComdat(CGM.getModule().getOrInsertComdat(symbolName)); 7136 7137 Protocols[PD->getIdentifier()] = Entry; 7138 } 7139 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 7140 CGM.addUsedGlobal(Entry); 7141 7142 // Use this protocol meta-data to build protocol list table in section 7143 // __DATA, __objc_protolist 7144 llvm::SmallString<64> ProtocolRef; 7145 llvm::raw_svector_ostream(ProtocolRef) << "_OBJC_LABEL_PROTOCOL_$_" 7146 << PD->getObjCRuntimeNameAsString(); 7147 7148 llvm::GlobalVariable *PTGV = 7149 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABIPtrTy, 7150 false, llvm::GlobalValue::WeakAnyLinkage, Entry, 7151 ProtocolRef); 7152 if (!CGM.getTriple().isOSBinFormatMachO()) 7153 PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolRef)); 7154 PTGV->setAlignment(llvm::Align( 7155 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ProtocolnfABIPtrTy))); 7156 PTGV->setSection(GetSectionName("__objc_protolist", 7157 "coalesced,no_dead_strip")); 7158 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 7159 CGM.addUsedGlobal(PTGV); 7160 return Entry; 7161 } 7162 7163 /// EmitProtocolList - Generate protocol list meta-data: 7164 /// @code 7165 /// struct _protocol_list_t { 7166 /// long protocol_count; // Note, this is 32/64 bit 7167 /// struct _protocol_t[protocol_count]; 7168 /// } 7169 /// @endcode 7170 /// 7171 llvm::Constant * 7172 CGObjCNonFragileABIMac::EmitProtocolList(Twine Name, 7173 ObjCProtocolDecl::protocol_iterator begin, 7174 ObjCProtocolDecl::protocol_iterator end) { 7175 // Just return null for empty protocol lists 7176 auto Protocols = GetRuntimeProtocolList(begin, end); 7177 if (Protocols.empty()) 7178 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy); 7179 7180 SmallVector<llvm::Constant *, 16> ProtocolRefs; 7181 ProtocolRefs.reserve(Protocols.size()); 7182 7183 for (const auto *PD : Protocols) 7184 ProtocolRefs.push_back(GetProtocolRef(PD)); 7185 7186 // If all of the protocols in the protocol list are objc_non_runtime_protocol 7187 // just return null 7188 if (ProtocolRefs.size() == 0) 7189 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy); 7190 7191 // FIXME: We shouldn't need to do this lookup here, should we? 7192 SmallString<256> TmpName; 7193 Name.toVector(TmpName); 7194 llvm::GlobalVariable *GV = 7195 CGM.getModule().getGlobalVariable(TmpName.str(), true); 7196 if (GV) 7197 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListnfABIPtrTy); 7198 7199 ConstantInitBuilder builder(CGM); 7200 auto values = builder.beginStruct(); 7201 auto countSlot = values.addPlaceholder(); 7202 7203 // A null-terminated array of protocols. 7204 auto array = values.beginArray(ObjCTypes.ProtocolnfABIPtrTy); 7205 for (auto const &proto : ProtocolRefs) 7206 array.add(proto); 7207 auto count = array.size(); 7208 array.addNullPointer(ObjCTypes.ProtocolnfABIPtrTy); 7209 7210 array.finishAndAddTo(values); 7211 values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count); 7212 7213 GV = finishAndCreateGlobal(values, Name, CGM); 7214 CGM.addCompilerUsedGlobal(GV); 7215 return llvm::ConstantExpr::getBitCast(GV, 7216 ObjCTypes.ProtocolListnfABIPtrTy); 7217 } 7218 7219 /// EmitObjCValueForIvar - Code Gen for nonfragile ivar reference. 7220 /// This code gen. amounts to generating code for: 7221 /// @code 7222 /// (type *)((char *)base + _OBJC_IVAR_$_.ivar; 7223 /// @encode 7224 /// 7225 LValue CGObjCNonFragileABIMac::EmitObjCValueForIvar( 7226 CodeGen::CodeGenFunction &CGF, 7227 QualType ObjectTy, 7228 llvm::Value *BaseValue, 7229 const ObjCIvarDecl *Ivar, 7230 unsigned CVRQualifiers) { 7231 ObjCInterfaceDecl *ID = ObjectTy->castAs<ObjCObjectType>()->getInterface(); 7232 llvm::Value *Offset = EmitIvarOffset(CGF, ID, Ivar); 7233 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 7234 Offset); 7235 } 7236 7237 llvm::Value * 7238 CGObjCNonFragileABIMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 7239 const ObjCInterfaceDecl *Interface, 7240 const ObjCIvarDecl *Ivar) { 7241 llvm::Value *IvarOffsetValue; 7242 if (isClassLayoutKnownStatically(Interface)) { 7243 IvarOffsetValue = llvm::ConstantInt::get( 7244 ObjCTypes.IvarOffsetVarTy, 7245 ComputeIvarBaseOffset(CGM, Interface->getImplementation(), Ivar)); 7246 } else { 7247 llvm::GlobalVariable *GV = ObjCIvarOffsetVariable(Interface, Ivar); 7248 IvarOffsetValue = 7249 CGF.Builder.CreateAlignedLoad(GV, CGF.getSizeAlign(), "ivar"); 7250 if (IsIvarOffsetKnownIdempotent(CGF, Ivar)) 7251 cast<llvm::LoadInst>(IvarOffsetValue) 7252 ->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 7253 llvm::MDNode::get(VMContext, None)); 7254 } 7255 7256 // This could be 32bit int or 64bit integer depending on the architecture. 7257 // Cast it to 64bit integer value, if it is a 32bit integer ivar offset value 7258 // as this is what caller always expects. 7259 if (ObjCTypes.IvarOffsetVarTy == ObjCTypes.IntTy) 7260 IvarOffsetValue = CGF.Builder.CreateIntCast( 7261 IvarOffsetValue, ObjCTypes.LongTy, true, "ivar.conv"); 7262 return IvarOffsetValue; 7263 } 7264 7265 static void appendSelectorForMessageRefTable(std::string &buffer, 7266 Selector selector) { 7267 if (selector.isUnarySelector()) { 7268 buffer += selector.getNameForSlot(0); 7269 return; 7270 } 7271 7272 for (unsigned i = 0, e = selector.getNumArgs(); i != e; ++i) { 7273 buffer += selector.getNameForSlot(i); 7274 buffer += '_'; 7275 } 7276 } 7277 7278 /// Emit a "vtable" message send. We emit a weak hidden-visibility 7279 /// struct, initially containing the selector pointer and a pointer to 7280 /// a "fixup" variant of the appropriate objc_msgSend. To call, we 7281 /// load and call the function pointer, passing the address of the 7282 /// struct as the second parameter. The runtime determines whether 7283 /// the selector is currently emitted using vtable dispatch; if so, it 7284 /// substitutes a stub function which simply tail-calls through the 7285 /// appropriate vtable slot, and if not, it substitues a stub function 7286 /// which tail-calls objc_msgSend. Both stubs adjust the selector 7287 /// argument to correctly point to the selector. 7288 RValue 7289 CGObjCNonFragileABIMac::EmitVTableMessageSend(CodeGenFunction &CGF, 7290 ReturnValueSlot returnSlot, 7291 QualType resultType, 7292 Selector selector, 7293 llvm::Value *arg0, 7294 QualType arg0Type, 7295 bool isSuper, 7296 const CallArgList &formalArgs, 7297 const ObjCMethodDecl *method) { 7298 // Compute the actual arguments. 7299 CallArgList args; 7300 7301 // First argument: the receiver / super-call structure. 7302 if (!isSuper) 7303 arg0 = CGF.Builder.CreateBitCast(arg0, ObjCTypes.ObjectPtrTy); 7304 args.add(RValue::get(arg0), arg0Type); 7305 7306 // Second argument: a pointer to the message ref structure. Leave 7307 // the actual argument value blank for now. 7308 args.add(RValue::get(nullptr), ObjCTypes.MessageRefCPtrTy); 7309 7310 args.insert(args.end(), formalArgs.begin(), formalArgs.end()); 7311 7312 MessageSendInfo MSI = getMessageSendInfo(method, resultType, args); 7313 7314 NullReturnState nullReturn; 7315 7316 // Find the function to call and the mangled name for the message 7317 // ref structure. Using a different mangled name wouldn't actually 7318 // be a problem; it would just be a waste. 7319 // 7320 // The runtime currently never uses vtable dispatch for anything 7321 // except normal, non-super message-sends. 7322 // FIXME: don't use this for that. 7323 llvm::FunctionCallee fn = nullptr; 7324 std::string messageRefName("_"); 7325 if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 7326 if (isSuper) { 7327 fn = ObjCTypes.getMessageSendSuper2StretFixupFn(); 7328 messageRefName += "objc_msgSendSuper2_stret_fixup"; 7329 } else { 7330 nullReturn.init(CGF, arg0); 7331 fn = ObjCTypes.getMessageSendStretFixupFn(); 7332 messageRefName += "objc_msgSend_stret_fixup"; 7333 } 7334 } else if (!isSuper && CGM.ReturnTypeUsesFPRet(resultType)) { 7335 fn = ObjCTypes.getMessageSendFpretFixupFn(); 7336 messageRefName += "objc_msgSend_fpret_fixup"; 7337 } else { 7338 if (isSuper) { 7339 fn = ObjCTypes.getMessageSendSuper2FixupFn(); 7340 messageRefName += "objc_msgSendSuper2_fixup"; 7341 } else { 7342 fn = ObjCTypes.getMessageSendFixupFn(); 7343 messageRefName += "objc_msgSend_fixup"; 7344 } 7345 } 7346 assert(fn && "CGObjCNonFragileABIMac::EmitMessageSend"); 7347 messageRefName += '_'; 7348 7349 // Append the selector name, except use underscores anywhere we 7350 // would have used colons. 7351 appendSelectorForMessageRefTable(messageRefName, selector); 7352 7353 llvm::GlobalVariable *messageRef 7354 = CGM.getModule().getGlobalVariable(messageRefName); 7355 if (!messageRef) { 7356 // Build the message ref structure. 7357 ConstantInitBuilder builder(CGM); 7358 auto values = builder.beginStruct(); 7359 values.add(cast<llvm::Constant>(fn.getCallee())); 7360 values.add(GetMethodVarName(selector)); 7361 messageRef = values.finishAndCreateGlobal(messageRefName, 7362 CharUnits::fromQuantity(16), 7363 /*constant*/ false, 7364 llvm::GlobalValue::WeakAnyLinkage); 7365 messageRef->setVisibility(llvm::GlobalValue::HiddenVisibility); 7366 messageRef->setSection(GetSectionName("__objc_msgrefs", "coalesced")); 7367 } 7368 7369 bool requiresnullCheck = false; 7370 if (CGM.getLangOpts().ObjCAutoRefCount && method) 7371 for (const auto *ParamDecl : method->parameters()) { 7372 if (ParamDecl->isDestroyedInCallee()) { 7373 if (!nullReturn.NullBB) 7374 nullReturn.init(CGF, arg0); 7375 requiresnullCheck = true; 7376 break; 7377 } 7378 } 7379 7380 Address mref = 7381 Address(CGF.Builder.CreateBitCast(messageRef, ObjCTypes.MessageRefPtrTy), 7382 CGF.getPointerAlign()); 7383 7384 // Update the message ref argument. 7385 args[1].setRValue(RValue::get(mref.getPointer())); 7386 7387 // Load the function to call from the message ref table. 7388 Address calleeAddr = CGF.Builder.CreateStructGEP(mref, 0); 7389 llvm::Value *calleePtr = CGF.Builder.CreateLoad(calleeAddr, "msgSend_fn"); 7390 7391 calleePtr = CGF.Builder.CreateBitCast(calleePtr, MSI.MessengerType); 7392 CGCallee callee(CGCalleeInfo(), calleePtr); 7393 7394 RValue result = CGF.EmitCall(MSI.CallInfo, callee, returnSlot, args); 7395 return nullReturn.complete(CGF, returnSlot, result, resultType, formalArgs, 7396 requiresnullCheck ? method : nullptr); 7397 } 7398 7399 /// Generate code for a message send expression in the nonfragile abi. 7400 CodeGen::RValue 7401 CGObjCNonFragileABIMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 7402 ReturnValueSlot Return, 7403 QualType ResultType, 7404 Selector Sel, 7405 llvm::Value *Receiver, 7406 const CallArgList &CallArgs, 7407 const ObjCInterfaceDecl *Class, 7408 const ObjCMethodDecl *Method) { 7409 return isVTableDispatchedSelector(Sel) 7410 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 7411 Receiver, CGF.getContext().getObjCIdType(), 7412 false, CallArgs, Method) 7413 : EmitMessageSend(CGF, Return, ResultType, Sel, 7414 Receiver, CGF.getContext().getObjCIdType(), 7415 false, CallArgs, Method, Class, ObjCTypes); 7416 } 7417 7418 llvm::Constant * 7419 CGObjCNonFragileABIMac::GetClassGlobal(const ObjCInterfaceDecl *ID, 7420 bool metaclass, 7421 ForDefinition_t isForDefinition) { 7422 auto prefix = 7423 (metaclass ? getMetaclassSymbolPrefix() : getClassSymbolPrefix()); 7424 return GetClassGlobal((prefix + ID->getObjCRuntimeNameAsString()).str(), 7425 isForDefinition, 7426 ID->isWeakImported(), 7427 !isForDefinition 7428 && CGM.getTriple().isOSBinFormatCOFF() 7429 && ID->hasAttr<DLLImportAttr>()); 7430 } 7431 7432 llvm::Constant * 7433 CGObjCNonFragileABIMac::GetClassGlobal(StringRef Name, 7434 ForDefinition_t IsForDefinition, 7435 bool Weak, bool DLLImport) { 7436 llvm::GlobalValue::LinkageTypes L = 7437 Weak ? llvm::GlobalValue::ExternalWeakLinkage 7438 : llvm::GlobalValue::ExternalLinkage; 7439 7440 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name); 7441 if (!GV || GV->getType() != ObjCTypes.ClassnfABITy->getPointerTo()) { 7442 auto *NewGV = new llvm::GlobalVariable(ObjCTypes.ClassnfABITy, false, L, 7443 nullptr, Name); 7444 7445 if (DLLImport) 7446 NewGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 7447 7448 if (GV) { 7449 GV->replaceAllUsesWith( 7450 llvm::ConstantExpr::getBitCast(NewGV, GV->getType())); 7451 GV->eraseFromParent(); 7452 } 7453 GV = NewGV; 7454 CGM.getModule().getGlobalList().push_back(GV); 7455 } 7456 7457 assert(GV->getLinkage() == L); 7458 return GV; 7459 } 7460 7461 llvm::Constant * 7462 CGObjCNonFragileABIMac::GetClassGlobalForClassRef(const ObjCInterfaceDecl *ID) { 7463 llvm::Constant *ClassGV = GetClassGlobal(ID, /*metaclass*/ false, 7464 NotForDefinition); 7465 7466 if (!ID->hasAttr<ObjCClassStubAttr>()) 7467 return ClassGV; 7468 7469 ClassGV = llvm::ConstantExpr::getPointerCast(ClassGV, ObjCTypes.Int8PtrTy); 7470 7471 // Stub classes are pointer-aligned. Classrefs pointing at stub classes 7472 // must set the least significant bit set to 1. 7473 auto *Idx = llvm::ConstantInt::get(CGM.Int32Ty, 1); 7474 return llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, ClassGV, Idx); 7475 } 7476 7477 llvm::Value * 7478 CGObjCNonFragileABIMac::EmitLoadOfClassRef(CodeGenFunction &CGF, 7479 const ObjCInterfaceDecl *ID, 7480 llvm::GlobalVariable *Entry) { 7481 if (ID && ID->hasAttr<ObjCClassStubAttr>()) { 7482 // Classrefs pointing at Objective-C stub classes must be loaded by calling 7483 // a special runtime function. 7484 return CGF.EmitRuntimeCall( 7485 ObjCTypes.getLoadClassrefFn(), Entry, "load_classref_result"); 7486 } 7487 7488 CharUnits Align = CGF.getPointerAlign(); 7489 return CGF.Builder.CreateAlignedLoad(Entry, Align); 7490 } 7491 7492 llvm::Value * 7493 CGObjCNonFragileABIMac::EmitClassRefFromId(CodeGenFunction &CGF, 7494 IdentifierInfo *II, 7495 const ObjCInterfaceDecl *ID) { 7496 llvm::GlobalVariable *&Entry = ClassReferences[II]; 7497 7498 if (!Entry) { 7499 llvm::Constant *ClassGV; 7500 if (ID) { 7501 ClassGV = GetClassGlobalForClassRef(ID); 7502 } else { 7503 ClassGV = GetClassGlobal((getClassSymbolPrefix() + II->getName()).str(), 7504 NotForDefinition); 7505 assert(ClassGV->getType() == ObjCTypes.ClassnfABIPtrTy && 7506 "classref was emitted with the wrong type?"); 7507 } 7508 7509 std::string SectionName = 7510 GetSectionName("__objc_classrefs", "regular,no_dead_strip"); 7511 Entry = new llvm::GlobalVariable( 7512 CGM.getModule(), ClassGV->getType(), false, 7513 getLinkageTypeForObjCMetadata(CGM, SectionName), ClassGV, 7514 "OBJC_CLASSLIST_REFERENCES_$_"); 7515 Entry->setAlignment(CGF.getPointerAlign().getAsAlign()); 7516 if (!ID || !ID->hasAttr<ObjCClassStubAttr>()) 7517 Entry->setSection(SectionName); 7518 7519 CGM.addCompilerUsedGlobal(Entry); 7520 } 7521 7522 return EmitLoadOfClassRef(CGF, ID, Entry); 7523 } 7524 7525 llvm::Value *CGObjCNonFragileABIMac::EmitClassRef(CodeGenFunction &CGF, 7526 const ObjCInterfaceDecl *ID) { 7527 // If the class has the objc_runtime_visible attribute, we need to 7528 // use the Objective-C runtime to get the class. 7529 if (ID->hasAttr<ObjCRuntimeVisibleAttr>()) 7530 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes); 7531 7532 return EmitClassRefFromId(CGF, ID->getIdentifier(), ID); 7533 } 7534 7535 llvm::Value *CGObjCNonFragileABIMac::EmitNSAutoreleasePoolClassRef( 7536 CodeGenFunction &CGF) { 7537 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 7538 return EmitClassRefFromId(CGF, II, nullptr); 7539 } 7540 7541 llvm::Value * 7542 CGObjCNonFragileABIMac::EmitSuperClassRef(CodeGenFunction &CGF, 7543 const ObjCInterfaceDecl *ID) { 7544 llvm::GlobalVariable *&Entry = SuperClassReferences[ID->getIdentifier()]; 7545 7546 if (!Entry) { 7547 llvm::Constant *ClassGV = GetClassGlobalForClassRef(ID); 7548 std::string SectionName = 7549 GetSectionName("__objc_superrefs", "regular,no_dead_strip"); 7550 Entry = new llvm::GlobalVariable(CGM.getModule(), ClassGV->getType(), false, 7551 llvm::GlobalValue::PrivateLinkage, ClassGV, 7552 "OBJC_CLASSLIST_SUP_REFS_$_"); 7553 Entry->setAlignment(CGF.getPointerAlign().getAsAlign()); 7554 Entry->setSection(SectionName); 7555 CGM.addCompilerUsedGlobal(Entry); 7556 } 7557 7558 return EmitLoadOfClassRef(CGF, ID, Entry); 7559 } 7560 7561 /// EmitMetaClassRef - Return a Value * of the address of _class_t 7562 /// meta-data 7563 /// 7564 llvm::Value *CGObjCNonFragileABIMac::EmitMetaClassRef(CodeGenFunction &CGF, 7565 const ObjCInterfaceDecl *ID, 7566 bool Weak) { 7567 CharUnits Align = CGF.getPointerAlign(); 7568 llvm::GlobalVariable * &Entry = MetaClassReferences[ID->getIdentifier()]; 7569 if (!Entry) { 7570 auto MetaClassGV = GetClassGlobal(ID, /*metaclass*/ true, NotForDefinition); 7571 std::string SectionName = 7572 GetSectionName("__objc_superrefs", "regular,no_dead_strip"); 7573 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, 7574 false, llvm::GlobalValue::PrivateLinkage, 7575 MetaClassGV, "OBJC_CLASSLIST_SUP_REFS_$_"); 7576 Entry->setAlignment(Align.getAsAlign()); 7577 Entry->setSection(SectionName); 7578 CGM.addCompilerUsedGlobal(Entry); 7579 } 7580 7581 return CGF.Builder.CreateAlignedLoad(Entry, Align); 7582 } 7583 7584 /// GetClass - Return a reference to the class for the given interface 7585 /// decl. 7586 llvm::Value *CGObjCNonFragileABIMac::GetClass(CodeGenFunction &CGF, 7587 const ObjCInterfaceDecl *ID) { 7588 if (ID->isWeakImported()) { 7589 auto ClassGV = GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition); 7590 (void)ClassGV; 7591 assert(!isa<llvm::GlobalVariable>(ClassGV) || 7592 cast<llvm::GlobalVariable>(ClassGV)->hasExternalWeakLinkage()); 7593 } 7594 7595 return EmitClassRef(CGF, ID); 7596 } 7597 7598 /// Generates a message send where the super is the receiver. This is 7599 /// a message send to self with special delivery semantics indicating 7600 /// which class's method should be called. 7601 CodeGen::RValue 7602 CGObjCNonFragileABIMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 7603 ReturnValueSlot Return, 7604 QualType ResultType, 7605 Selector Sel, 7606 const ObjCInterfaceDecl *Class, 7607 bool isCategoryImpl, 7608 llvm::Value *Receiver, 7609 bool IsClassMessage, 7610 const CodeGen::CallArgList &CallArgs, 7611 const ObjCMethodDecl *Method) { 7612 // ... 7613 // Create and init a super structure; this is a (receiver, class) 7614 // pair we will pass to objc_msgSendSuper. 7615 Address ObjCSuper = 7616 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 7617 "objc_super"); 7618 7619 llvm::Value *ReceiverAsObject = 7620 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 7621 CGF.Builder.CreateStore(ReceiverAsObject, 7622 CGF.Builder.CreateStructGEP(ObjCSuper, 0)); 7623 7624 // If this is a class message the metaclass is passed as the target. 7625 llvm::Value *Target; 7626 if (IsClassMessage) 7627 Target = EmitMetaClassRef(CGF, Class, Class->isWeakImported()); 7628 else 7629 Target = EmitSuperClassRef(CGF, Class); 7630 7631 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 7632 // ObjCTypes types. 7633 llvm::Type *ClassTy = 7634 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 7635 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 7636 CGF.Builder.CreateStore(Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1)); 7637 7638 return (isVTableDispatchedSelector(Sel)) 7639 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 7640 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 7641 true, CallArgs, Method) 7642 : EmitMessageSend(CGF, Return, ResultType, Sel, 7643 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 7644 true, CallArgs, Method, Class, ObjCTypes); 7645 } 7646 7647 llvm::Value *CGObjCNonFragileABIMac::EmitSelector(CodeGenFunction &CGF, 7648 Selector Sel) { 7649 Address Addr = EmitSelectorAddr(Sel); 7650 7651 llvm::LoadInst* LI = CGF.Builder.CreateLoad(Addr); 7652 LI->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 7653 llvm::MDNode::get(VMContext, None)); 7654 return LI; 7655 } 7656 7657 Address CGObjCNonFragileABIMac::EmitSelectorAddr(Selector Sel) { 7658 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 7659 CharUnits Align = CGM.getPointerAlign(); 7660 if (!Entry) { 7661 llvm::Constant *Casted = 7662 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 7663 ObjCTypes.SelectorPtrTy); 7664 std::string SectionName = 7665 GetSectionName("__objc_selrefs", "literal_pointers,no_dead_strip"); 7666 Entry = new llvm::GlobalVariable( 7667 CGM.getModule(), ObjCTypes.SelectorPtrTy, false, 7668 getLinkageTypeForObjCMetadata(CGM, SectionName), Casted, 7669 "OBJC_SELECTOR_REFERENCES_"); 7670 Entry->setExternallyInitialized(true); 7671 Entry->setSection(SectionName); 7672 Entry->setAlignment(Align.getAsAlign()); 7673 CGM.addCompilerUsedGlobal(Entry); 7674 } 7675 7676 return Address(Entry, Align); 7677 } 7678 7679 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 7680 /// objc_assign_ivar (id src, id *dst, ptrdiff_t) 7681 /// 7682 void CGObjCNonFragileABIMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 7683 llvm::Value *src, 7684 Address dst, 7685 llvm::Value *ivarOffset) { 7686 llvm::Type * SrcTy = src->getType(); 7687 if (!isa<llvm::PointerType>(SrcTy)) { 7688 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7689 assert(Size <= 8 && "does not support size > 8"); 7690 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7691 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7692 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7693 } 7694 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7695 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7696 llvm::Value *args[] = { src, dst.getPointer(), ivarOffset }; 7697 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 7698 } 7699 7700 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 7701 /// objc_assign_strongCast (id src, id *dst) 7702 /// 7703 void CGObjCNonFragileABIMac::EmitObjCStrongCastAssign( 7704 CodeGen::CodeGenFunction &CGF, 7705 llvm::Value *src, Address dst) { 7706 llvm::Type * SrcTy = src->getType(); 7707 if (!isa<llvm::PointerType>(SrcTy)) { 7708 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7709 assert(Size <= 8 && "does not support size > 8"); 7710 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7711 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7712 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7713 } 7714 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7715 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7716 llvm::Value *args[] = { src, dst.getPointer() }; 7717 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 7718 args, "weakassign"); 7719 } 7720 7721 void CGObjCNonFragileABIMac::EmitGCMemmoveCollectable( 7722 CodeGen::CodeGenFunction &CGF, 7723 Address DestPtr, 7724 Address SrcPtr, 7725 llvm::Value *Size) { 7726 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 7727 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 7728 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), Size }; 7729 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 7730 } 7731 7732 /// EmitObjCWeakRead - Code gen for loading value of a __weak 7733 /// object: objc_read_weak (id *src) 7734 /// 7735 llvm::Value * CGObjCNonFragileABIMac::EmitObjCWeakRead( 7736 CodeGen::CodeGenFunction &CGF, 7737 Address AddrWeakObj) { 7738 llvm::Type *DestTy = AddrWeakObj.getElementType(); 7739 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, ObjCTypes.PtrObjectPtrTy); 7740 llvm::Value *read_weak = 7741 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 7742 AddrWeakObj.getPointer(), "weakread"); 7743 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 7744 return read_weak; 7745 } 7746 7747 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 7748 /// objc_assign_weak (id src, id *dst) 7749 /// 7750 void CGObjCNonFragileABIMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 7751 llvm::Value *src, Address dst) { 7752 llvm::Type * SrcTy = src->getType(); 7753 if (!isa<llvm::PointerType>(SrcTy)) { 7754 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7755 assert(Size <= 8 && "does not support size > 8"); 7756 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7757 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7758 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7759 } 7760 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7761 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7762 llvm::Value *args[] = { src, dst.getPointer() }; 7763 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 7764 args, "weakassign"); 7765 } 7766 7767 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 7768 /// objc_assign_global (id src, id *dst) 7769 /// 7770 void CGObjCNonFragileABIMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 7771 llvm::Value *src, Address dst, 7772 bool threadlocal) { 7773 llvm::Type * SrcTy = src->getType(); 7774 if (!isa<llvm::PointerType>(SrcTy)) { 7775 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7776 assert(Size <= 8 && "does not support size > 8"); 7777 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7778 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7779 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7780 } 7781 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7782 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7783 llvm::Value *args[] = { src, dst.getPointer() }; 7784 if (!threadlocal) 7785 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 7786 args, "globalassign"); 7787 else 7788 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 7789 args, "threadlocalassign"); 7790 } 7791 7792 void 7793 CGObjCNonFragileABIMac::EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 7794 const ObjCAtSynchronizedStmt &S) { 7795 EmitAtSynchronizedStmt(CGF, S, ObjCTypes.getSyncEnterFn(), 7796 ObjCTypes.getSyncExitFn()); 7797 } 7798 7799 llvm::Constant * 7800 CGObjCNonFragileABIMac::GetEHType(QualType T) { 7801 // There's a particular fixed type info for 'id'. 7802 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) { 7803 auto *IDEHType = CGM.getModule().getGlobalVariable("OBJC_EHTYPE_id"); 7804 if (!IDEHType) { 7805 IDEHType = 7806 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false, 7807 llvm::GlobalValue::ExternalLinkage, nullptr, 7808 "OBJC_EHTYPE_id"); 7809 if (CGM.getTriple().isOSBinFormatCOFF()) 7810 IDEHType->setDLLStorageClass(getStorage(CGM, "OBJC_EHTYPE_id")); 7811 } 7812 return IDEHType; 7813 } 7814 7815 // All other types should be Objective-C interface pointer types. 7816 const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>(); 7817 assert(PT && "Invalid @catch type."); 7818 7819 const ObjCInterfaceType *IT = PT->getInterfaceType(); 7820 assert(IT && "Invalid @catch type."); 7821 7822 return GetInterfaceEHType(IT->getDecl(), NotForDefinition); 7823 } 7824 7825 void CGObjCNonFragileABIMac::EmitTryStmt(CodeGen::CodeGenFunction &CGF, 7826 const ObjCAtTryStmt &S) { 7827 EmitTryCatchStmt(CGF, S, ObjCTypes.getObjCBeginCatchFn(), 7828 ObjCTypes.getObjCEndCatchFn(), 7829 ObjCTypes.getExceptionRethrowFn()); 7830 } 7831 7832 /// EmitThrowStmt - Generate code for a throw statement. 7833 void CGObjCNonFragileABIMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 7834 const ObjCAtThrowStmt &S, 7835 bool ClearInsertionPoint) { 7836 if (const Expr *ThrowExpr = S.getThrowExpr()) { 7837 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 7838 Exception = CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 7839 llvm::CallBase *Call = 7840 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionThrowFn(), Exception); 7841 Call->setDoesNotReturn(); 7842 } else { 7843 llvm::CallBase *Call = 7844 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionRethrowFn()); 7845 Call->setDoesNotReturn(); 7846 } 7847 7848 CGF.Builder.CreateUnreachable(); 7849 if (ClearInsertionPoint) 7850 CGF.Builder.ClearInsertionPoint(); 7851 } 7852 7853 llvm::Constant * 7854 CGObjCNonFragileABIMac::GetInterfaceEHType(const ObjCInterfaceDecl *ID, 7855 ForDefinition_t IsForDefinition) { 7856 llvm::GlobalVariable * &Entry = EHTypeReferences[ID->getIdentifier()]; 7857 StringRef ClassName = ID->getObjCRuntimeNameAsString(); 7858 7859 // If we don't need a definition, return the entry if found or check 7860 // if we use an external reference. 7861 if (!IsForDefinition) { 7862 if (Entry) 7863 return Entry; 7864 7865 // If this type (or a super class) has the __objc_exception__ 7866 // attribute, emit an external reference. 7867 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) { 7868 std::string EHTypeName = ("OBJC_EHTYPE_$_" + ClassName).str(); 7869 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, 7870 false, llvm::GlobalValue::ExternalLinkage, 7871 nullptr, EHTypeName); 7872 CGM.setGVProperties(Entry, ID); 7873 return Entry; 7874 } 7875 } 7876 7877 // Otherwise we need to either make a new entry or fill in the initializer. 7878 assert((!Entry || !Entry->hasInitializer()) && "Duplicate EHType definition"); 7879 7880 std::string VTableName = "objc_ehtype_vtable"; 7881 auto *VTableGV = CGM.getModule().getGlobalVariable(VTableName); 7882 if (!VTableGV) { 7883 VTableGV = 7884 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.Int8PtrTy, false, 7885 llvm::GlobalValue::ExternalLinkage, nullptr, 7886 VTableName); 7887 if (CGM.getTriple().isOSBinFormatCOFF()) 7888 VTableGV->setDLLStorageClass(getStorage(CGM, VTableName)); 7889 } 7890 7891 llvm::Value *VTableIdx = llvm::ConstantInt::get(CGM.Int32Ty, 2); 7892 ConstantInitBuilder builder(CGM); 7893 auto values = builder.beginStruct(ObjCTypes.EHTypeTy); 7894 values.add( 7895 llvm::ConstantExpr::getInBoundsGetElementPtr(VTableGV->getValueType(), 7896 VTableGV, VTableIdx)); 7897 values.add(GetClassName(ClassName)); 7898 values.add(GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition)); 7899 7900 llvm::GlobalValue::LinkageTypes L = IsForDefinition 7901 ? llvm::GlobalValue::ExternalLinkage 7902 : llvm::GlobalValue::WeakAnyLinkage; 7903 if (Entry) { 7904 values.finishAndSetAsInitializer(Entry); 7905 Entry->setAlignment(CGM.getPointerAlign().getAsAlign()); 7906 } else { 7907 Entry = values.finishAndCreateGlobal("OBJC_EHTYPE_$_" + ClassName, 7908 CGM.getPointerAlign(), 7909 /*constant*/ false, 7910 L); 7911 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) 7912 CGM.setGVProperties(Entry, ID); 7913 } 7914 assert(Entry->getLinkage() == L); 7915 7916 if (!CGM.getTriple().isOSBinFormatCOFF()) 7917 if (ID->getVisibility() == HiddenVisibility) 7918 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 7919 7920 if (IsForDefinition) 7921 if (CGM.getTriple().isOSBinFormatMachO()) 7922 Entry->setSection("__DATA,__objc_const"); 7923 7924 return Entry; 7925 } 7926 7927 /* *** */ 7928 7929 CodeGen::CGObjCRuntime * 7930 CodeGen::CreateMacObjCRuntime(CodeGen::CodeGenModule &CGM) { 7931 switch (CGM.getLangOpts().ObjCRuntime.getKind()) { 7932 case ObjCRuntime::FragileMacOSX: 7933 return new CGObjCMac(CGM); 7934 7935 case ObjCRuntime::MacOSX: 7936 case ObjCRuntime::iOS: 7937 case ObjCRuntime::WatchOS: 7938 return new CGObjCNonFragileABIMac(CGM); 7939 7940 case ObjCRuntime::GNUstep: 7941 case ObjCRuntime::GCC: 7942 case ObjCRuntime::ObjFW: 7943 llvm_unreachable("these runtimes are not Mac runtimes"); 7944 } 7945 llvm_unreachable("bad runtime"); 7946 } 7947