1 //===------- CGObjCMac.cpp - Interface to Apple Objective-C Runtime -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides Objective-C code generation targeting the Apple runtime. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCleanup.h" 15 #include "CGObjCRuntime.h" 16 #include "CGRecordLayout.h" 17 #include "CodeGenFunction.h" 18 #include "CodeGenModule.h" 19 #include "clang/CodeGen/ConstantInitBuilder.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/RecordLayout.h" 24 #include "clang/AST/StmtObjC.h" 25 #include "clang/Basic/CodeGenOptions.h" 26 #include "clang/Basic/LangOptions.h" 27 #include "clang/CodeGen/CGFunctionInfo.h" 28 #include "llvm/ADT/CachedHashString.h" 29 #include "llvm/ADT/DenseSet.h" 30 #include "llvm/ADT/SetVector.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallString.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/Support/ScopedPrinter.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include <cstdio> 41 42 using namespace clang; 43 using namespace CodeGen; 44 45 namespace { 46 47 // FIXME: We should find a nicer way to make the labels for metadata, string 48 // concatenation is lame. 49 50 class ObjCCommonTypesHelper { 51 protected: 52 llvm::LLVMContext &VMContext; 53 54 private: 55 // The types of these functions don't really matter because we 56 // should always bitcast before calling them. 57 58 /// id objc_msgSend (id, SEL, ...) 59 /// 60 /// The default messenger, used for sends whose ABI is unchanged from 61 /// the all-integer/pointer case. 62 llvm::FunctionCallee getMessageSendFn() const { 63 // Add the non-lazy-bind attribute, since objc_msgSend is likely to 64 // be called a lot. 65 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 66 return CGM.CreateRuntimeFunction( 67 llvm::FunctionType::get(ObjectPtrTy, params, true), "objc_msgSend", 68 llvm::AttributeList::get(CGM.getLLVMContext(), 69 llvm::AttributeList::FunctionIndex, 70 llvm::Attribute::NonLazyBind)); 71 } 72 73 /// void objc_msgSend_stret (id, SEL, ...) 74 /// 75 /// The messenger used when the return value is an aggregate returned 76 /// by indirect reference in the first argument, and therefore the 77 /// self and selector parameters are shifted over by one. 78 llvm::FunctionCallee getMessageSendStretFn() const { 79 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 80 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, 81 params, true), 82 "objc_msgSend_stret"); 83 } 84 85 /// [double | long double] objc_msgSend_fpret(id self, SEL op, ...) 86 /// 87 /// The messenger used when the return value is returned on the x87 88 /// floating-point stack; without a special entrypoint, the nil case 89 /// would be unbalanced. 90 llvm::FunctionCallee getMessageSendFpretFn() const { 91 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 92 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.DoubleTy, 93 params, true), 94 "objc_msgSend_fpret"); 95 } 96 97 /// _Complex long double objc_msgSend_fp2ret(id self, SEL op, ...) 98 /// 99 /// The messenger used when the return value is returned in two values on the 100 /// x87 floating point stack; without a special entrypoint, the nil case 101 /// would be unbalanced. Only used on 64-bit X86. 102 llvm::FunctionCallee getMessageSendFp2retFn() const { 103 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 104 llvm::Type *longDoubleType = llvm::Type::getX86_FP80Ty(VMContext); 105 llvm::Type *resultType = 106 llvm::StructType::get(longDoubleType, longDoubleType); 107 108 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(resultType, 109 params, true), 110 "objc_msgSend_fp2ret"); 111 } 112 113 /// id objc_msgSendSuper(struct objc_super *super, SEL op, ...) 114 /// 115 /// The messenger used for super calls, which have different dispatch 116 /// semantics. The class passed is the superclass of the current 117 /// class. 118 llvm::FunctionCallee getMessageSendSuperFn() const { 119 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 120 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 121 params, true), 122 "objc_msgSendSuper"); 123 } 124 125 /// id objc_msgSendSuper2(struct objc_super *super, SEL op, ...) 126 /// 127 /// A slightly different messenger used for super calls. The class 128 /// passed is the current class. 129 llvm::FunctionCallee getMessageSendSuperFn2() const { 130 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 131 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 132 params, true), 133 "objc_msgSendSuper2"); 134 } 135 136 /// void objc_msgSendSuper_stret(void *stretAddr, struct objc_super *super, 137 /// SEL op, ...) 138 /// 139 /// The messenger used for super calls which return an aggregate indirectly. 140 llvm::FunctionCallee getMessageSendSuperStretFn() const { 141 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 142 return CGM.CreateRuntimeFunction( 143 llvm::FunctionType::get(CGM.VoidTy, params, true), 144 "objc_msgSendSuper_stret"); 145 } 146 147 /// void objc_msgSendSuper2_stret(void * stretAddr, struct objc_super *super, 148 /// SEL op, ...) 149 /// 150 /// objc_msgSendSuper_stret with the super2 semantics. 151 llvm::FunctionCallee getMessageSendSuperStretFn2() const { 152 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 153 return CGM.CreateRuntimeFunction( 154 llvm::FunctionType::get(CGM.VoidTy, params, true), 155 "objc_msgSendSuper2_stret"); 156 } 157 158 llvm::FunctionCallee getMessageSendSuperFpretFn() const { 159 // There is no objc_msgSendSuper_fpret? How can that work? 160 return getMessageSendSuperFn(); 161 } 162 163 llvm::FunctionCallee getMessageSendSuperFpretFn2() const { 164 // There is no objc_msgSendSuper_fpret? How can that work? 165 return getMessageSendSuperFn2(); 166 } 167 168 protected: 169 CodeGen::CodeGenModule &CGM; 170 171 public: 172 llvm::IntegerType *ShortTy, *IntTy, *LongTy; 173 llvm::PointerType *Int8PtrTy, *Int8PtrPtrTy; 174 llvm::Type *IvarOffsetVarTy; 175 176 /// ObjectPtrTy - LLVM type for object handles (typeof(id)) 177 llvm::PointerType *ObjectPtrTy; 178 179 /// PtrObjectPtrTy - LLVM type for id * 180 llvm::PointerType *PtrObjectPtrTy; 181 182 /// SelectorPtrTy - LLVM type for selector handles (typeof(SEL)) 183 llvm::PointerType *SelectorPtrTy; 184 185 private: 186 /// ProtocolPtrTy - LLVM type for external protocol handles 187 /// (typeof(Protocol)) 188 llvm::Type *ExternalProtocolPtrTy; 189 190 public: 191 llvm::Type *getExternalProtocolPtrTy() { 192 if (!ExternalProtocolPtrTy) { 193 // FIXME: It would be nice to unify this with the opaque type, so that the 194 // IR comes out a bit cleaner. 195 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 196 ASTContext &Ctx = CGM.getContext(); 197 llvm::Type *T = Types.ConvertType(Ctx.getObjCProtoType()); 198 ExternalProtocolPtrTy = llvm::PointerType::getUnqual(T); 199 } 200 201 return ExternalProtocolPtrTy; 202 } 203 204 // SuperCTy - clang type for struct objc_super. 205 QualType SuperCTy; 206 // SuperPtrCTy - clang type for struct objc_super *. 207 QualType SuperPtrCTy; 208 209 /// SuperTy - LLVM type for struct objc_super. 210 llvm::StructType *SuperTy; 211 /// SuperPtrTy - LLVM type for struct objc_super *. 212 llvm::PointerType *SuperPtrTy; 213 214 /// PropertyTy - LLVM type for struct objc_property (struct _prop_t 215 /// in GCC parlance). 216 llvm::StructType *PropertyTy; 217 218 /// PropertyListTy - LLVM type for struct objc_property_list 219 /// (_prop_list_t in GCC parlance). 220 llvm::StructType *PropertyListTy; 221 /// PropertyListPtrTy - LLVM type for struct objc_property_list*. 222 llvm::PointerType *PropertyListPtrTy; 223 224 // MethodTy - LLVM type for struct objc_method. 225 llvm::StructType *MethodTy; 226 227 /// CacheTy - LLVM type for struct objc_cache. 228 llvm::Type *CacheTy; 229 /// CachePtrTy - LLVM type for struct objc_cache *. 230 llvm::PointerType *CachePtrTy; 231 232 llvm::FunctionCallee getGetPropertyFn() { 233 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 234 ASTContext &Ctx = CGM.getContext(); 235 // id objc_getProperty (id, SEL, ptrdiff_t, bool) 236 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 237 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 238 CanQualType Params[] = { 239 IdType, SelType, 240 Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), Ctx.BoolTy}; 241 llvm::FunctionType *FTy = 242 Types.GetFunctionType( 243 Types.arrangeBuiltinFunctionDeclaration(IdType, Params)); 244 return CGM.CreateRuntimeFunction(FTy, "objc_getProperty"); 245 } 246 247 llvm::FunctionCallee getSetPropertyFn() { 248 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 249 ASTContext &Ctx = CGM.getContext(); 250 // void objc_setProperty (id, SEL, ptrdiff_t, id, bool, bool) 251 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 252 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 253 CanQualType Params[] = { 254 IdType, 255 SelType, 256 Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), 257 IdType, 258 Ctx.BoolTy, 259 Ctx.BoolTy}; 260 llvm::FunctionType *FTy = 261 Types.GetFunctionType( 262 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 263 return CGM.CreateRuntimeFunction(FTy, "objc_setProperty"); 264 } 265 266 llvm::FunctionCallee getOptimizedSetPropertyFn(bool atomic, bool copy) { 267 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 268 ASTContext &Ctx = CGM.getContext(); 269 // void objc_setProperty_atomic(id self, SEL _cmd, 270 // id newValue, ptrdiff_t offset); 271 // void objc_setProperty_nonatomic(id self, SEL _cmd, 272 // id newValue, ptrdiff_t offset); 273 // void objc_setProperty_atomic_copy(id self, SEL _cmd, 274 // id newValue, ptrdiff_t offset); 275 // void objc_setProperty_nonatomic_copy(id self, SEL _cmd, 276 // id newValue, ptrdiff_t offset); 277 278 SmallVector<CanQualType,4> Params; 279 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 280 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 281 Params.push_back(IdType); 282 Params.push_back(SelType); 283 Params.push_back(IdType); 284 Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified()); 285 llvm::FunctionType *FTy = 286 Types.GetFunctionType( 287 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 288 const char *name; 289 if (atomic && copy) 290 name = "objc_setProperty_atomic_copy"; 291 else if (atomic && !copy) 292 name = "objc_setProperty_atomic"; 293 else if (!atomic && copy) 294 name = "objc_setProperty_nonatomic_copy"; 295 else 296 name = "objc_setProperty_nonatomic"; 297 298 return CGM.CreateRuntimeFunction(FTy, name); 299 } 300 301 llvm::FunctionCallee getCopyStructFn() { 302 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 303 ASTContext &Ctx = CGM.getContext(); 304 // void objc_copyStruct (void *, const void *, size_t, bool, bool) 305 SmallVector<CanQualType,5> Params; 306 Params.push_back(Ctx.VoidPtrTy); 307 Params.push_back(Ctx.VoidPtrTy); 308 Params.push_back(Ctx.getSizeType()); 309 Params.push_back(Ctx.BoolTy); 310 Params.push_back(Ctx.BoolTy); 311 llvm::FunctionType *FTy = 312 Types.GetFunctionType( 313 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 314 return CGM.CreateRuntimeFunction(FTy, "objc_copyStruct"); 315 } 316 317 /// This routine declares and returns address of: 318 /// void objc_copyCppObjectAtomic( 319 /// void *dest, const void *src, 320 /// void (*copyHelper) (void *dest, const void *source)); 321 llvm::FunctionCallee getCppAtomicObjectFunction() { 322 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 323 ASTContext &Ctx = CGM.getContext(); 324 /// void objc_copyCppObjectAtomic(void *dest, const void *src, void *helper); 325 SmallVector<CanQualType,3> Params; 326 Params.push_back(Ctx.VoidPtrTy); 327 Params.push_back(Ctx.VoidPtrTy); 328 Params.push_back(Ctx.VoidPtrTy); 329 llvm::FunctionType *FTy = 330 Types.GetFunctionType( 331 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 332 return CGM.CreateRuntimeFunction(FTy, "objc_copyCppObjectAtomic"); 333 } 334 335 llvm::FunctionCallee getEnumerationMutationFn() { 336 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 337 ASTContext &Ctx = CGM.getContext(); 338 // void objc_enumerationMutation (id) 339 SmallVector<CanQualType,1> Params; 340 Params.push_back(Ctx.getCanonicalParamType(Ctx.getObjCIdType())); 341 llvm::FunctionType *FTy = 342 Types.GetFunctionType( 343 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 344 return CGM.CreateRuntimeFunction(FTy, "objc_enumerationMutation"); 345 } 346 347 llvm::FunctionCallee getLookUpClassFn() { 348 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 349 ASTContext &Ctx = CGM.getContext(); 350 // Class objc_lookUpClass (const char *) 351 SmallVector<CanQualType,1> Params; 352 Params.push_back( 353 Ctx.getCanonicalType(Ctx.getPointerType(Ctx.CharTy.withConst()))); 354 llvm::FunctionType *FTy = 355 Types.GetFunctionType(Types.arrangeBuiltinFunctionDeclaration( 356 Ctx.getCanonicalType(Ctx.getObjCClassType()), 357 Params)); 358 return CGM.CreateRuntimeFunction(FTy, "objc_lookUpClass"); 359 } 360 361 /// GcReadWeakFn -- LLVM objc_read_weak (id *src) function. 362 llvm::FunctionCallee getGcReadWeakFn() { 363 // id objc_read_weak (id *) 364 llvm::Type *args[] = { ObjectPtrTy->getPointerTo() }; 365 llvm::FunctionType *FTy = 366 llvm::FunctionType::get(ObjectPtrTy, args, false); 367 return CGM.CreateRuntimeFunction(FTy, "objc_read_weak"); 368 } 369 370 /// GcAssignWeakFn -- LLVM objc_assign_weak function. 371 llvm::FunctionCallee getGcAssignWeakFn() { 372 // id objc_assign_weak (id, id *) 373 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 374 llvm::FunctionType *FTy = 375 llvm::FunctionType::get(ObjectPtrTy, args, false); 376 return CGM.CreateRuntimeFunction(FTy, "objc_assign_weak"); 377 } 378 379 /// GcAssignGlobalFn -- LLVM objc_assign_global function. 380 llvm::FunctionCallee getGcAssignGlobalFn() { 381 // id objc_assign_global(id, id *) 382 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 383 llvm::FunctionType *FTy = 384 llvm::FunctionType::get(ObjectPtrTy, args, false); 385 return CGM.CreateRuntimeFunction(FTy, "objc_assign_global"); 386 } 387 388 /// GcAssignThreadLocalFn -- LLVM objc_assign_threadlocal function. 389 llvm::FunctionCallee getGcAssignThreadLocalFn() { 390 // id objc_assign_threadlocal(id src, id * dest) 391 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 392 llvm::FunctionType *FTy = 393 llvm::FunctionType::get(ObjectPtrTy, args, false); 394 return CGM.CreateRuntimeFunction(FTy, "objc_assign_threadlocal"); 395 } 396 397 /// GcAssignIvarFn -- LLVM objc_assign_ivar function. 398 llvm::FunctionCallee getGcAssignIvarFn() { 399 // id objc_assign_ivar(id, id *, ptrdiff_t) 400 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo(), 401 CGM.PtrDiffTy }; 402 llvm::FunctionType *FTy = 403 llvm::FunctionType::get(ObjectPtrTy, args, false); 404 return CGM.CreateRuntimeFunction(FTy, "objc_assign_ivar"); 405 } 406 407 /// GcMemmoveCollectableFn -- LLVM objc_memmove_collectable function. 408 llvm::FunctionCallee GcMemmoveCollectableFn() { 409 // void *objc_memmove_collectable(void *dst, const void *src, size_t size) 410 llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, LongTy }; 411 llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, args, false); 412 return CGM.CreateRuntimeFunction(FTy, "objc_memmove_collectable"); 413 } 414 415 /// GcAssignStrongCastFn -- LLVM objc_assign_strongCast function. 416 llvm::FunctionCallee getGcAssignStrongCastFn() { 417 // id objc_assign_strongCast(id, id *) 418 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 419 llvm::FunctionType *FTy = 420 llvm::FunctionType::get(ObjectPtrTy, args, false); 421 return CGM.CreateRuntimeFunction(FTy, "objc_assign_strongCast"); 422 } 423 424 /// ExceptionThrowFn - LLVM objc_exception_throw function. 425 llvm::FunctionCallee getExceptionThrowFn() { 426 // void objc_exception_throw(id) 427 llvm::Type *args[] = { ObjectPtrTy }; 428 llvm::FunctionType *FTy = 429 llvm::FunctionType::get(CGM.VoidTy, args, false); 430 return CGM.CreateRuntimeFunction(FTy, "objc_exception_throw"); 431 } 432 433 /// ExceptionRethrowFn - LLVM objc_exception_rethrow function. 434 llvm::FunctionCallee getExceptionRethrowFn() { 435 // void objc_exception_rethrow(void) 436 llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, false); 437 return CGM.CreateRuntimeFunction(FTy, "objc_exception_rethrow"); 438 } 439 440 /// SyncEnterFn - LLVM object_sync_enter function. 441 llvm::FunctionCallee getSyncEnterFn() { 442 // int objc_sync_enter (id) 443 llvm::Type *args[] = { ObjectPtrTy }; 444 llvm::FunctionType *FTy = 445 llvm::FunctionType::get(CGM.IntTy, args, false); 446 return CGM.CreateRuntimeFunction(FTy, "objc_sync_enter"); 447 } 448 449 /// SyncExitFn - LLVM object_sync_exit function. 450 llvm::FunctionCallee getSyncExitFn() { 451 // int objc_sync_exit (id) 452 llvm::Type *args[] = { ObjectPtrTy }; 453 llvm::FunctionType *FTy = 454 llvm::FunctionType::get(CGM.IntTy, args, false); 455 return CGM.CreateRuntimeFunction(FTy, "objc_sync_exit"); 456 } 457 458 llvm::FunctionCallee getSendFn(bool IsSuper) const { 459 return IsSuper ? getMessageSendSuperFn() : getMessageSendFn(); 460 } 461 462 llvm::FunctionCallee getSendFn2(bool IsSuper) const { 463 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFn(); 464 } 465 466 llvm::FunctionCallee getSendStretFn(bool IsSuper) const { 467 return IsSuper ? getMessageSendSuperStretFn() : getMessageSendStretFn(); 468 } 469 470 llvm::FunctionCallee getSendStretFn2(bool IsSuper) const { 471 return IsSuper ? getMessageSendSuperStretFn2() : getMessageSendStretFn(); 472 } 473 474 llvm::FunctionCallee getSendFpretFn(bool IsSuper) const { 475 return IsSuper ? getMessageSendSuperFpretFn() : getMessageSendFpretFn(); 476 } 477 478 llvm::FunctionCallee getSendFpretFn2(bool IsSuper) const { 479 return IsSuper ? getMessageSendSuperFpretFn2() : getMessageSendFpretFn(); 480 } 481 482 llvm::FunctionCallee getSendFp2retFn(bool IsSuper) const { 483 return IsSuper ? getMessageSendSuperFn() : getMessageSendFp2retFn(); 484 } 485 486 llvm::FunctionCallee getSendFp2RetFn2(bool IsSuper) const { 487 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFp2retFn(); 488 } 489 490 ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm); 491 }; 492 493 /// ObjCTypesHelper - Helper class that encapsulates lazy 494 /// construction of varies types used during ObjC generation. 495 class ObjCTypesHelper : public ObjCCommonTypesHelper { 496 public: 497 /// SymtabTy - LLVM type for struct objc_symtab. 498 llvm::StructType *SymtabTy; 499 /// SymtabPtrTy - LLVM type for struct objc_symtab *. 500 llvm::PointerType *SymtabPtrTy; 501 /// ModuleTy - LLVM type for struct objc_module. 502 llvm::StructType *ModuleTy; 503 504 /// ProtocolTy - LLVM type for struct objc_protocol. 505 llvm::StructType *ProtocolTy; 506 /// ProtocolPtrTy - LLVM type for struct objc_protocol *. 507 llvm::PointerType *ProtocolPtrTy; 508 /// ProtocolExtensionTy - LLVM type for struct 509 /// objc_protocol_extension. 510 llvm::StructType *ProtocolExtensionTy; 511 /// ProtocolExtensionTy - LLVM type for struct 512 /// objc_protocol_extension *. 513 llvm::PointerType *ProtocolExtensionPtrTy; 514 /// MethodDescriptionTy - LLVM type for struct 515 /// objc_method_description. 516 llvm::StructType *MethodDescriptionTy; 517 /// MethodDescriptionListTy - LLVM type for struct 518 /// objc_method_description_list. 519 llvm::StructType *MethodDescriptionListTy; 520 /// MethodDescriptionListPtrTy - LLVM type for struct 521 /// objc_method_description_list *. 522 llvm::PointerType *MethodDescriptionListPtrTy; 523 /// ProtocolListTy - LLVM type for struct objc_property_list. 524 llvm::StructType *ProtocolListTy; 525 /// ProtocolListPtrTy - LLVM type for struct objc_property_list*. 526 llvm::PointerType *ProtocolListPtrTy; 527 /// CategoryTy - LLVM type for struct objc_category. 528 llvm::StructType *CategoryTy; 529 /// ClassTy - LLVM type for struct objc_class. 530 llvm::StructType *ClassTy; 531 /// ClassPtrTy - LLVM type for struct objc_class *. 532 llvm::PointerType *ClassPtrTy; 533 /// ClassExtensionTy - LLVM type for struct objc_class_ext. 534 llvm::StructType *ClassExtensionTy; 535 /// ClassExtensionPtrTy - LLVM type for struct objc_class_ext *. 536 llvm::PointerType *ClassExtensionPtrTy; 537 // IvarTy - LLVM type for struct objc_ivar. 538 llvm::StructType *IvarTy; 539 /// IvarListTy - LLVM type for struct objc_ivar_list. 540 llvm::StructType *IvarListTy; 541 /// IvarListPtrTy - LLVM type for struct objc_ivar_list *. 542 llvm::PointerType *IvarListPtrTy; 543 /// MethodListTy - LLVM type for struct objc_method_list. 544 llvm::StructType *MethodListTy; 545 /// MethodListPtrTy - LLVM type for struct objc_method_list *. 546 llvm::PointerType *MethodListPtrTy; 547 548 /// ExceptionDataTy - LLVM type for struct _objc_exception_data. 549 llvm::StructType *ExceptionDataTy; 550 551 /// ExceptionTryEnterFn - LLVM objc_exception_try_enter function. 552 llvm::FunctionCallee getExceptionTryEnterFn() { 553 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 554 return CGM.CreateRuntimeFunction( 555 llvm::FunctionType::get(CGM.VoidTy, params, false), 556 "objc_exception_try_enter"); 557 } 558 559 /// ExceptionTryExitFn - LLVM objc_exception_try_exit function. 560 llvm::FunctionCallee getExceptionTryExitFn() { 561 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 562 return CGM.CreateRuntimeFunction( 563 llvm::FunctionType::get(CGM.VoidTy, params, false), 564 "objc_exception_try_exit"); 565 } 566 567 /// ExceptionExtractFn - LLVM objc_exception_extract function. 568 llvm::FunctionCallee getExceptionExtractFn() { 569 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 570 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 571 params, false), 572 "objc_exception_extract"); 573 } 574 575 /// ExceptionMatchFn - LLVM objc_exception_match function. 576 llvm::FunctionCallee getExceptionMatchFn() { 577 llvm::Type *params[] = { ClassPtrTy, ObjectPtrTy }; 578 return CGM.CreateRuntimeFunction( 579 llvm::FunctionType::get(CGM.Int32Ty, params, false), 580 "objc_exception_match"); 581 } 582 583 /// SetJmpFn - LLVM _setjmp function. 584 llvm::FunctionCallee getSetJmpFn() { 585 // This is specifically the prototype for x86. 586 llvm::Type *params[] = { CGM.Int32Ty->getPointerTo() }; 587 return CGM.CreateRuntimeFunction( 588 llvm::FunctionType::get(CGM.Int32Ty, params, false), "_setjmp", 589 llvm::AttributeList::get(CGM.getLLVMContext(), 590 llvm::AttributeList::FunctionIndex, 591 llvm::Attribute::NonLazyBind)); 592 } 593 594 public: 595 ObjCTypesHelper(CodeGen::CodeGenModule &cgm); 596 }; 597 598 /// ObjCNonFragileABITypesHelper - will have all types needed by objective-c's 599 /// modern abi 600 class ObjCNonFragileABITypesHelper : public ObjCCommonTypesHelper { 601 public: 602 // MethodListnfABITy - LLVM for struct _method_list_t 603 llvm::StructType *MethodListnfABITy; 604 605 // MethodListnfABIPtrTy - LLVM for struct _method_list_t* 606 llvm::PointerType *MethodListnfABIPtrTy; 607 608 // ProtocolnfABITy = LLVM for struct _protocol_t 609 llvm::StructType *ProtocolnfABITy; 610 611 // ProtocolnfABIPtrTy = LLVM for struct _protocol_t* 612 llvm::PointerType *ProtocolnfABIPtrTy; 613 614 // ProtocolListnfABITy - LLVM for struct _objc_protocol_list 615 llvm::StructType *ProtocolListnfABITy; 616 617 // ProtocolListnfABIPtrTy - LLVM for struct _objc_protocol_list* 618 llvm::PointerType *ProtocolListnfABIPtrTy; 619 620 // ClassnfABITy - LLVM for struct _class_t 621 llvm::StructType *ClassnfABITy; 622 623 // ClassnfABIPtrTy - LLVM for struct _class_t* 624 llvm::PointerType *ClassnfABIPtrTy; 625 626 // IvarnfABITy - LLVM for struct _ivar_t 627 llvm::StructType *IvarnfABITy; 628 629 // IvarListnfABITy - LLVM for struct _ivar_list_t 630 llvm::StructType *IvarListnfABITy; 631 632 // IvarListnfABIPtrTy = LLVM for struct _ivar_list_t* 633 llvm::PointerType *IvarListnfABIPtrTy; 634 635 // ClassRonfABITy - LLVM for struct _class_ro_t 636 llvm::StructType *ClassRonfABITy; 637 638 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 639 llvm::PointerType *ImpnfABITy; 640 641 // CategorynfABITy - LLVM for struct _category_t 642 llvm::StructType *CategorynfABITy; 643 644 // New types for nonfragile abi messaging. 645 646 // MessageRefTy - LLVM for: 647 // struct _message_ref_t { 648 // IMP messenger; 649 // SEL name; 650 // }; 651 llvm::StructType *MessageRefTy; 652 // MessageRefCTy - clang type for struct _message_ref_t 653 QualType MessageRefCTy; 654 655 // MessageRefPtrTy - LLVM for struct _message_ref_t* 656 llvm::Type *MessageRefPtrTy; 657 // MessageRefCPtrTy - clang type for struct _message_ref_t* 658 QualType MessageRefCPtrTy; 659 660 // SuperMessageRefTy - LLVM for: 661 // struct _super_message_ref_t { 662 // SUPER_IMP messenger; 663 // SEL name; 664 // }; 665 llvm::StructType *SuperMessageRefTy; 666 667 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 668 llvm::PointerType *SuperMessageRefPtrTy; 669 670 llvm::FunctionCallee getMessageSendFixupFn() { 671 // id objc_msgSend_fixup(id, struct message_ref_t*, ...) 672 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 673 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 674 params, true), 675 "objc_msgSend_fixup"); 676 } 677 678 llvm::FunctionCallee getMessageSendFpretFixupFn() { 679 // id objc_msgSend_fpret_fixup(id, struct message_ref_t*, ...) 680 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 681 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 682 params, true), 683 "objc_msgSend_fpret_fixup"); 684 } 685 686 llvm::FunctionCallee getMessageSendStretFixupFn() { 687 // id objc_msgSend_stret_fixup(id, struct message_ref_t*, ...) 688 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 689 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 690 params, true), 691 "objc_msgSend_stret_fixup"); 692 } 693 694 llvm::FunctionCallee getMessageSendSuper2FixupFn() { 695 // id objc_msgSendSuper2_fixup (struct objc_super *, 696 // struct _super_message_ref_t*, ...) 697 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 698 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 699 params, true), 700 "objc_msgSendSuper2_fixup"); 701 } 702 703 llvm::FunctionCallee getMessageSendSuper2StretFixupFn() { 704 // id objc_msgSendSuper2_stret_fixup(struct objc_super *, 705 // struct _super_message_ref_t*, ...) 706 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 707 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 708 params, true), 709 "objc_msgSendSuper2_stret_fixup"); 710 } 711 712 llvm::FunctionCallee getObjCEndCatchFn() { 713 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, false), 714 "objc_end_catch"); 715 } 716 717 llvm::FunctionCallee getObjCBeginCatchFn() { 718 llvm::Type *params[] = { Int8PtrTy }; 719 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(Int8PtrTy, 720 params, false), 721 "objc_begin_catch"); 722 } 723 724 /// Class objc_loadClassref (void *) 725 /// 726 /// Loads from a classref. For Objective-C stub classes, this invokes the 727 /// initialization callback stored inside the stub. For all other classes 728 /// this simply dereferences the pointer. 729 llvm::FunctionCallee getLoadClassrefFn() const { 730 // Add the non-lazy-bind attribute, since objc_loadClassref is likely to 731 // be called a lot. 732 // 733 // Also it is safe to make it readnone, since we never load or store the 734 // classref except by calling this function. 735 llvm::Type *params[] = { Int8PtrPtrTy }; 736 llvm::FunctionCallee F = CGM.CreateRuntimeFunction( 737 llvm::FunctionType::get(ClassnfABIPtrTy, params, false), 738 "objc_loadClassref", 739 llvm::AttributeList::get(CGM.getLLVMContext(), 740 llvm::AttributeList::FunctionIndex, 741 {llvm::Attribute::NonLazyBind, 742 llvm::Attribute::ReadNone, 743 llvm::Attribute::NoUnwind})); 744 if (!CGM.getTriple().isOSBinFormatCOFF()) 745 cast<llvm::Function>(F.getCallee())->setLinkage( 746 llvm::Function::ExternalWeakLinkage); 747 748 return F; 749 } 750 751 llvm::StructType *EHTypeTy; 752 llvm::Type *EHTypePtrTy; 753 754 ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm); 755 }; 756 757 enum class ObjCLabelType { 758 ClassName, 759 MethodVarName, 760 MethodVarType, 761 PropertyName, 762 }; 763 764 class CGObjCCommonMac : public CodeGen::CGObjCRuntime { 765 public: 766 class SKIP_SCAN { 767 public: 768 unsigned skip; 769 unsigned scan; 770 SKIP_SCAN(unsigned _skip = 0, unsigned _scan = 0) 771 : skip(_skip), scan(_scan) {} 772 }; 773 774 /// opcode for captured block variables layout 'instructions'. 775 /// In the following descriptions, 'I' is the value of the immediate field. 776 /// (field following the opcode). 777 /// 778 enum BLOCK_LAYOUT_OPCODE { 779 /// An operator which affects how the following layout should be 780 /// interpreted. 781 /// I == 0: Halt interpretation and treat everything else as 782 /// a non-pointer. Note that this instruction is equal 783 /// to '\0'. 784 /// I != 0: Currently unused. 785 BLOCK_LAYOUT_OPERATOR = 0, 786 787 /// The next I+1 bytes do not contain a value of object pointer type. 788 /// Note that this can leave the stream unaligned, meaning that 789 /// subsequent word-size instructions do not begin at a multiple of 790 /// the pointer size. 791 BLOCK_LAYOUT_NON_OBJECT_BYTES = 1, 792 793 /// The next I+1 words do not contain a value of object pointer type. 794 /// This is simply an optimized version of BLOCK_LAYOUT_BYTES for 795 /// when the required skip quantity is a multiple of the pointer size. 796 BLOCK_LAYOUT_NON_OBJECT_WORDS = 2, 797 798 /// The next I+1 words are __strong pointers to Objective-C 799 /// objects or blocks. 800 BLOCK_LAYOUT_STRONG = 3, 801 802 /// The next I+1 words are pointers to __block variables. 803 BLOCK_LAYOUT_BYREF = 4, 804 805 /// The next I+1 words are __weak pointers to Objective-C 806 /// objects or blocks. 807 BLOCK_LAYOUT_WEAK = 5, 808 809 /// The next I+1 words are __unsafe_unretained pointers to 810 /// Objective-C objects or blocks. 811 BLOCK_LAYOUT_UNRETAINED = 6 812 813 /// The next I+1 words are block or object pointers with some 814 /// as-yet-unspecified ownership semantics. If we add more 815 /// flavors of ownership semantics, values will be taken from 816 /// this range. 817 /// 818 /// This is included so that older tools can at least continue 819 /// processing the layout past such things. 820 //BLOCK_LAYOUT_OWNERSHIP_UNKNOWN = 7..10, 821 822 /// All other opcodes are reserved. Halt interpretation and 823 /// treat everything else as opaque. 824 }; 825 826 class RUN_SKIP { 827 public: 828 enum BLOCK_LAYOUT_OPCODE opcode; 829 CharUnits block_var_bytepos; 830 CharUnits block_var_size; 831 RUN_SKIP(enum BLOCK_LAYOUT_OPCODE Opcode = BLOCK_LAYOUT_OPERATOR, 832 CharUnits BytePos = CharUnits::Zero(), 833 CharUnits Size = CharUnits::Zero()) 834 : opcode(Opcode), block_var_bytepos(BytePos), block_var_size(Size) {} 835 836 // Allow sorting based on byte pos. 837 bool operator<(const RUN_SKIP &b) const { 838 return block_var_bytepos < b.block_var_bytepos; 839 } 840 }; 841 842 protected: 843 llvm::LLVMContext &VMContext; 844 // FIXME! May not be needing this after all. 845 unsigned ObjCABI; 846 847 // arc/mrr layout of captured block literal variables. 848 SmallVector<RUN_SKIP, 16> RunSkipBlockVars; 849 850 /// LazySymbols - Symbols to generate a lazy reference for. See 851 /// DefinedSymbols and FinishModule(). 852 llvm::SetVector<IdentifierInfo*> LazySymbols; 853 854 /// DefinedSymbols - External symbols which are defined by this 855 /// module. The symbols in this list and LazySymbols are used to add 856 /// special linker symbols which ensure that Objective-C modules are 857 /// linked properly. 858 llvm::SetVector<IdentifierInfo*> DefinedSymbols; 859 860 /// ClassNames - uniqued class names. 861 llvm::StringMap<llvm::GlobalVariable*> ClassNames; 862 863 /// MethodVarNames - uniqued method variable names. 864 llvm::DenseMap<Selector, llvm::GlobalVariable*> MethodVarNames; 865 866 /// DefinedCategoryNames - list of category names in form Class_Category. 867 llvm::SmallSetVector<llvm::CachedHashString, 16> DefinedCategoryNames; 868 869 /// MethodVarTypes - uniqued method type signatures. We have to use 870 /// a StringMap here because have no other unique reference. 871 llvm::StringMap<llvm::GlobalVariable*> MethodVarTypes; 872 873 /// MethodDefinitions - map of methods which have been defined in 874 /// this translation unit. 875 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> MethodDefinitions; 876 877 /// PropertyNames - uniqued method variable names. 878 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> PropertyNames; 879 880 /// ClassReferences - uniqued class references. 881 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> ClassReferences; 882 883 /// SelectorReferences - uniqued selector references. 884 llvm::DenseMap<Selector, llvm::GlobalVariable*> SelectorReferences; 885 886 /// Protocols - Protocols for which an objc_protocol structure has 887 /// been emitted. Forward declarations are handled by creating an 888 /// empty structure whose initializer is filled in when/if defined. 889 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> Protocols; 890 891 /// DefinedProtocols - Protocols which have actually been 892 /// defined. We should not need this, see FIXME in GenerateProtocol. 893 llvm::DenseSet<IdentifierInfo*> DefinedProtocols; 894 895 /// DefinedClasses - List of defined classes. 896 SmallVector<llvm::GlobalValue*, 16> DefinedClasses; 897 898 /// ImplementedClasses - List of @implemented classes. 899 SmallVector<const ObjCInterfaceDecl*, 16> ImplementedClasses; 900 901 /// DefinedNonLazyClasses - List of defined "non-lazy" classes. 902 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyClasses; 903 904 /// DefinedCategories - List of defined categories. 905 SmallVector<llvm::GlobalValue*, 16> DefinedCategories; 906 907 /// DefinedStubCategories - List of defined categories on class stubs. 908 SmallVector<llvm::GlobalValue*, 16> DefinedStubCategories; 909 910 /// DefinedNonLazyCategories - List of defined "non-lazy" categories. 911 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyCategories; 912 913 /// Cached reference to the class for constant strings. This value has type 914 /// int * but is actually an Obj-C class pointer. 915 llvm::WeakTrackingVH ConstantStringClassRef; 916 917 /// The LLVM type corresponding to NSConstantString. 918 llvm::StructType *NSConstantStringType = nullptr; 919 920 llvm::StringMap<llvm::GlobalVariable *> NSConstantStringMap; 921 922 /// GetNameForMethod - Return a name for the given method. 923 /// \param[out] NameOut - The return value. 924 void GetNameForMethod(const ObjCMethodDecl *OMD, 925 const ObjCContainerDecl *CD, 926 SmallVectorImpl<char> &NameOut); 927 928 /// GetMethodVarName - Return a unique constant for the given 929 /// selector's name. The return value has type char *. 930 llvm::Constant *GetMethodVarName(Selector Sel); 931 llvm::Constant *GetMethodVarName(IdentifierInfo *Ident); 932 933 /// GetMethodVarType - Return a unique constant for the given 934 /// method's type encoding string. The return value has type char *. 935 936 // FIXME: This is a horrible name. 937 llvm::Constant *GetMethodVarType(const ObjCMethodDecl *D, 938 bool Extended = false); 939 llvm::Constant *GetMethodVarType(const FieldDecl *D); 940 941 /// GetPropertyName - Return a unique constant for the given 942 /// name. The return value has type char *. 943 llvm::Constant *GetPropertyName(IdentifierInfo *Ident); 944 945 // FIXME: This can be dropped once string functions are unified. 946 llvm::Constant *GetPropertyTypeString(const ObjCPropertyDecl *PD, 947 const Decl *Container); 948 949 /// GetClassName - Return a unique constant for the given selector's 950 /// runtime name (which may change via use of objc_runtime_name attribute on 951 /// class or protocol definition. The return value has type char *. 952 llvm::Constant *GetClassName(StringRef RuntimeName); 953 954 llvm::Function *GetMethodDefinition(const ObjCMethodDecl *MD); 955 956 /// BuildIvarLayout - Builds ivar layout bitmap for the class 957 /// implementation for the __strong or __weak case. 958 /// 959 /// \param hasMRCWeakIvars - Whether we are compiling in MRC and there 960 /// are any weak ivars defined directly in the class. Meaningless unless 961 /// building a weak layout. Does not guarantee that the layout will 962 /// actually have any entries, because the ivar might be under-aligned. 963 llvm::Constant *BuildIvarLayout(const ObjCImplementationDecl *OI, 964 CharUnits beginOffset, 965 CharUnits endOffset, 966 bool forStrongLayout, 967 bool hasMRCWeakIvars); 968 969 llvm::Constant *BuildStrongIvarLayout(const ObjCImplementationDecl *OI, 970 CharUnits beginOffset, 971 CharUnits endOffset) { 972 return BuildIvarLayout(OI, beginOffset, endOffset, true, false); 973 } 974 975 llvm::Constant *BuildWeakIvarLayout(const ObjCImplementationDecl *OI, 976 CharUnits beginOffset, 977 CharUnits endOffset, 978 bool hasMRCWeakIvars) { 979 return BuildIvarLayout(OI, beginOffset, endOffset, false, hasMRCWeakIvars); 980 } 981 982 Qualifiers::ObjCLifetime getBlockCaptureLifetime(QualType QT, bool ByrefLayout); 983 984 void UpdateRunSkipBlockVars(bool IsByref, 985 Qualifiers::ObjCLifetime LifeTime, 986 CharUnits FieldOffset, 987 CharUnits FieldSize); 988 989 void BuildRCBlockVarRecordLayout(const RecordType *RT, 990 CharUnits BytePos, bool &HasUnion, 991 bool ByrefLayout=false); 992 993 void BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 994 const RecordDecl *RD, 995 ArrayRef<const FieldDecl*> RecFields, 996 CharUnits BytePos, bool &HasUnion, 997 bool ByrefLayout); 998 999 uint64_t InlineLayoutInstruction(SmallVectorImpl<unsigned char> &Layout); 1000 1001 llvm::Constant *getBitmapBlockLayout(bool ComputeByrefLayout); 1002 1003 /// GetIvarLayoutName - Returns a unique constant for the given 1004 /// ivar layout bitmap. 1005 llvm::Constant *GetIvarLayoutName(IdentifierInfo *Ident, 1006 const ObjCCommonTypesHelper &ObjCTypes); 1007 1008 /// EmitPropertyList - Emit the given property list. The return 1009 /// value has type PropertyListPtrTy. 1010 llvm::Constant *EmitPropertyList(Twine Name, 1011 const Decl *Container, 1012 const ObjCContainerDecl *OCD, 1013 const ObjCCommonTypesHelper &ObjCTypes, 1014 bool IsClassProperty); 1015 1016 /// EmitProtocolMethodTypes - Generate the array of extended method type 1017 /// strings. The return value has type Int8PtrPtrTy. 1018 llvm::Constant *EmitProtocolMethodTypes(Twine Name, 1019 ArrayRef<llvm::Constant*> MethodTypes, 1020 const ObjCCommonTypesHelper &ObjCTypes); 1021 1022 /// GetProtocolRef - Return a reference to the internal protocol 1023 /// description, creating an empty one if it has not been 1024 /// defined. The return value has type ProtocolPtrTy. 1025 llvm::Constant *GetProtocolRef(const ObjCProtocolDecl *PD); 1026 1027 /// Return a reference to the given Class using runtime calls rather than 1028 /// by a symbol reference. 1029 llvm::Value *EmitClassRefViaRuntime(CodeGenFunction &CGF, 1030 const ObjCInterfaceDecl *ID, 1031 ObjCCommonTypesHelper &ObjCTypes); 1032 1033 std::string GetSectionName(StringRef Section, StringRef MachOAttributes); 1034 1035 public: 1036 /// CreateMetadataVar - Create a global variable with internal 1037 /// linkage for use by the Objective-C runtime. 1038 /// 1039 /// This is a convenience wrapper which not only creates the 1040 /// variable, but also sets the section and alignment and adds the 1041 /// global to the "llvm.used" list. 1042 /// 1043 /// \param Name - The variable name. 1044 /// \param Init - The variable initializer; this is also used to 1045 /// define the type of the variable. 1046 /// \param Section - The section the variable should go into, or empty. 1047 /// \param Align - The alignment for the variable, or 0. 1048 /// \param AddToUsed - Whether the variable should be added to 1049 /// "llvm.used". 1050 llvm::GlobalVariable *CreateMetadataVar(Twine Name, 1051 ConstantStructBuilder &Init, 1052 StringRef Section, CharUnits Align, 1053 bool AddToUsed); 1054 llvm::GlobalVariable *CreateMetadataVar(Twine Name, 1055 llvm::Constant *Init, 1056 StringRef Section, CharUnits Align, 1057 bool AddToUsed); 1058 1059 llvm::GlobalVariable *CreateCStringLiteral(StringRef Name, 1060 ObjCLabelType LabelType, 1061 bool ForceNonFragileABI = false, 1062 bool NullTerminate = true); 1063 1064 protected: 1065 CodeGen::RValue EmitMessageSend(CodeGen::CodeGenFunction &CGF, 1066 ReturnValueSlot Return, 1067 QualType ResultType, 1068 llvm::Value *Sel, 1069 llvm::Value *Arg0, 1070 QualType Arg0Ty, 1071 bool IsSuper, 1072 const CallArgList &CallArgs, 1073 const ObjCMethodDecl *OMD, 1074 const ObjCInterfaceDecl *ClassReceiver, 1075 const ObjCCommonTypesHelper &ObjCTypes); 1076 1077 /// EmitImageInfo - Emit the image info marker used to encode some module 1078 /// level information. 1079 void EmitImageInfo(); 1080 1081 public: 1082 CGObjCCommonMac(CodeGen::CodeGenModule &cgm) : 1083 CGObjCRuntime(cgm), VMContext(cgm.getLLVMContext()) { } 1084 1085 bool isNonFragileABI() const { 1086 return ObjCABI == 2; 1087 } 1088 1089 ConstantAddress GenerateConstantString(const StringLiteral *SL) override; 1090 ConstantAddress GenerateConstantNSString(const StringLiteral *SL); 1091 1092 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD, 1093 const ObjCContainerDecl *CD=nullptr) override; 1094 1095 void GenerateProtocol(const ObjCProtocolDecl *PD) override; 1096 1097 /// GetOrEmitProtocol - Get the protocol object for the given 1098 /// declaration, emitting it if necessary. The return value has type 1099 /// ProtocolPtrTy. 1100 virtual llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD)=0; 1101 1102 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1103 /// object for the given declaration, emitting it if needed. These 1104 /// forward references will be filled in with empty bodies if no 1105 /// definition is seen. The return value has type ProtocolPtrTy. 1106 virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD)=0; 1107 1108 virtual llvm::Constant *getNSConstantStringClassRef() = 0; 1109 1110 llvm::Constant *BuildGCBlockLayout(CodeGen::CodeGenModule &CGM, 1111 const CGBlockInfo &blockInfo) override; 1112 llvm::Constant *BuildRCBlockLayout(CodeGen::CodeGenModule &CGM, 1113 const CGBlockInfo &blockInfo) override; 1114 std::string getRCBlockLayoutStr(CodeGen::CodeGenModule &CGM, 1115 const CGBlockInfo &blockInfo) override; 1116 1117 llvm::Constant *BuildByrefLayout(CodeGen::CodeGenModule &CGM, 1118 QualType T) override; 1119 1120 private: 1121 void fillRunSkipBlockVars(CodeGenModule &CGM, const CGBlockInfo &blockInfo); 1122 }; 1123 1124 namespace { 1125 1126 enum class MethodListType { 1127 CategoryInstanceMethods, 1128 CategoryClassMethods, 1129 InstanceMethods, 1130 ClassMethods, 1131 ProtocolInstanceMethods, 1132 ProtocolClassMethods, 1133 OptionalProtocolInstanceMethods, 1134 OptionalProtocolClassMethods, 1135 }; 1136 1137 /// A convenience class for splitting the methods of a protocol into 1138 /// the four interesting groups. 1139 class ProtocolMethodLists { 1140 public: 1141 enum Kind { 1142 RequiredInstanceMethods, 1143 RequiredClassMethods, 1144 OptionalInstanceMethods, 1145 OptionalClassMethods 1146 }; 1147 enum { 1148 NumProtocolMethodLists = 4 1149 }; 1150 1151 static MethodListType getMethodListKind(Kind kind) { 1152 switch (kind) { 1153 case RequiredInstanceMethods: 1154 return MethodListType::ProtocolInstanceMethods; 1155 case RequiredClassMethods: 1156 return MethodListType::ProtocolClassMethods; 1157 case OptionalInstanceMethods: 1158 return MethodListType::OptionalProtocolInstanceMethods; 1159 case OptionalClassMethods: 1160 return MethodListType::OptionalProtocolClassMethods; 1161 } 1162 llvm_unreachable("bad kind"); 1163 } 1164 1165 SmallVector<const ObjCMethodDecl *, 4> Methods[NumProtocolMethodLists]; 1166 1167 static ProtocolMethodLists get(const ObjCProtocolDecl *PD) { 1168 ProtocolMethodLists result; 1169 1170 for (auto MD : PD->methods()) { 1171 size_t index = (2 * size_t(MD->isOptional())) 1172 + (size_t(MD->isClassMethod())); 1173 result.Methods[index].push_back(MD); 1174 } 1175 1176 return result; 1177 } 1178 1179 template <class Self> 1180 SmallVector<llvm::Constant*, 8> emitExtendedTypesArray(Self *self) const { 1181 // In both ABIs, the method types list is parallel with the 1182 // concatenation of the methods arrays in the following order: 1183 // instance methods 1184 // class methods 1185 // optional instance methods 1186 // optional class methods 1187 SmallVector<llvm::Constant*, 8> result; 1188 1189 // Methods is already in the correct order for both ABIs. 1190 for (auto &list : Methods) { 1191 for (auto MD : list) { 1192 result.push_back(self->GetMethodVarType(MD, true)); 1193 } 1194 } 1195 1196 return result; 1197 } 1198 1199 template <class Self> 1200 llvm::Constant *emitMethodList(Self *self, const ObjCProtocolDecl *PD, 1201 Kind kind) const { 1202 return self->emitMethodList(PD->getObjCRuntimeNameAsString(), 1203 getMethodListKind(kind), Methods[kind]); 1204 } 1205 }; 1206 1207 } // end anonymous namespace 1208 1209 class CGObjCMac : public CGObjCCommonMac { 1210 private: 1211 friend ProtocolMethodLists; 1212 1213 ObjCTypesHelper ObjCTypes; 1214 1215 /// EmitModuleInfo - Another marker encoding module level 1216 /// information. 1217 void EmitModuleInfo(); 1218 1219 /// EmitModuleSymols - Emit module symbols, the list of defined 1220 /// classes and categories. The result has type SymtabPtrTy. 1221 llvm::Constant *EmitModuleSymbols(); 1222 1223 /// FinishModule - Write out global data structures at the end of 1224 /// processing a translation unit. 1225 void FinishModule(); 1226 1227 /// EmitClassExtension - Generate the class extension structure used 1228 /// to store the weak ivar layout and properties. The return value 1229 /// has type ClassExtensionPtrTy. 1230 llvm::Constant *EmitClassExtension(const ObjCImplementationDecl *ID, 1231 CharUnits instanceSize, 1232 bool hasMRCWeakIvars, 1233 bool isMetaclass); 1234 1235 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1236 /// for the given class. 1237 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1238 const ObjCInterfaceDecl *ID); 1239 1240 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1241 IdentifierInfo *II); 1242 1243 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1244 1245 /// EmitSuperClassRef - Emits reference to class's main metadata class. 1246 llvm::Value *EmitSuperClassRef(const ObjCInterfaceDecl *ID); 1247 1248 /// EmitIvarList - Emit the ivar list for the given 1249 /// implementation. If ForClass is true the list of class ivars 1250 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1251 /// interface ivars will be emitted. The return value has type 1252 /// IvarListPtrTy. 1253 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID, 1254 bool ForClass); 1255 1256 /// EmitMetaClass - Emit a forward reference to the class structure 1257 /// for the metaclass of the given interface. The return value has 1258 /// type ClassPtrTy. 1259 llvm::Constant *EmitMetaClassRef(const ObjCInterfaceDecl *ID); 1260 1261 /// EmitMetaClass - Emit a class structure for the metaclass of the 1262 /// given implementation. The return value has type ClassPtrTy. 1263 llvm::Constant *EmitMetaClass(const ObjCImplementationDecl *ID, 1264 llvm::Constant *Protocols, 1265 ArrayRef<const ObjCMethodDecl *> Methods); 1266 1267 void emitMethodConstant(ConstantArrayBuilder &builder, 1268 const ObjCMethodDecl *MD); 1269 1270 void emitMethodDescriptionConstant(ConstantArrayBuilder &builder, 1271 const ObjCMethodDecl *MD); 1272 1273 /// EmitMethodList - Emit the method list for the given 1274 /// implementation. The return value has type MethodListPtrTy. 1275 llvm::Constant *emitMethodList(Twine Name, MethodListType MLT, 1276 ArrayRef<const ObjCMethodDecl *> Methods); 1277 1278 /// GetOrEmitProtocol - Get the protocol object for the given 1279 /// declaration, emitting it if necessary. The return value has type 1280 /// ProtocolPtrTy. 1281 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1282 1283 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1284 /// object for the given declaration, emitting it if needed. These 1285 /// forward references will be filled in with empty bodies if no 1286 /// definition is seen. The return value has type ProtocolPtrTy. 1287 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1288 1289 /// EmitProtocolExtension - Generate the protocol extension 1290 /// structure used to store optional instance and class methods, and 1291 /// protocol properties. The return value has type 1292 /// ProtocolExtensionPtrTy. 1293 llvm::Constant * 1294 EmitProtocolExtension(const ObjCProtocolDecl *PD, 1295 const ProtocolMethodLists &methodLists); 1296 1297 /// EmitProtocolList - Generate the list of referenced 1298 /// protocols. The return value has type ProtocolListPtrTy. 1299 llvm::Constant *EmitProtocolList(Twine Name, 1300 ObjCProtocolDecl::protocol_iterator begin, 1301 ObjCProtocolDecl::protocol_iterator end); 1302 1303 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1304 /// for the given selector. 1305 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1306 Address EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel); 1307 1308 public: 1309 CGObjCMac(CodeGen::CodeGenModule &cgm); 1310 1311 llvm::Constant *getNSConstantStringClassRef() override; 1312 1313 llvm::Function *ModuleInitFunction() override; 1314 1315 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1316 ReturnValueSlot Return, 1317 QualType ResultType, 1318 Selector Sel, llvm::Value *Receiver, 1319 const CallArgList &CallArgs, 1320 const ObjCInterfaceDecl *Class, 1321 const ObjCMethodDecl *Method) override; 1322 1323 CodeGen::RValue 1324 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1325 ReturnValueSlot Return, QualType ResultType, 1326 Selector Sel, const ObjCInterfaceDecl *Class, 1327 bool isCategoryImpl, llvm::Value *Receiver, 1328 bool IsClassMessage, const CallArgList &CallArgs, 1329 const ObjCMethodDecl *Method) override; 1330 1331 llvm::Value *GetClass(CodeGenFunction &CGF, 1332 const ObjCInterfaceDecl *ID) override; 1333 1334 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override; 1335 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override; 1336 1337 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1338 /// untyped one. 1339 llvm::Value *GetSelector(CodeGenFunction &CGF, 1340 const ObjCMethodDecl *Method) override; 1341 1342 llvm::Constant *GetEHType(QualType T) override; 1343 1344 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1345 1346 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1347 1348 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1349 1350 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1351 const ObjCProtocolDecl *PD) override; 1352 1353 llvm::FunctionCallee GetPropertyGetFunction() override; 1354 llvm::FunctionCallee GetPropertySetFunction() override; 1355 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 1356 bool copy) override; 1357 llvm::FunctionCallee GetGetStructFunction() override; 1358 llvm::FunctionCallee GetSetStructFunction() override; 1359 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override; 1360 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override; 1361 llvm::FunctionCallee EnumerationMutationFunction() override; 1362 1363 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1364 const ObjCAtTryStmt &S) override; 1365 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1366 const ObjCAtSynchronizedStmt &S) override; 1367 void EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const Stmt &S); 1368 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1369 bool ClearInsertionPoint=true) override; 1370 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1371 Address AddrWeakObj) override; 1372 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1373 llvm::Value *src, Address dst) override; 1374 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1375 llvm::Value *src, Address dest, 1376 bool threadlocal = false) override; 1377 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1378 llvm::Value *src, Address dest, 1379 llvm::Value *ivarOffset) override; 1380 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1381 llvm::Value *src, Address dest) override; 1382 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1383 Address dest, Address src, 1384 llvm::Value *size) override; 1385 1386 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1387 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1388 unsigned CVRQualifiers) override; 1389 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1390 const ObjCInterfaceDecl *Interface, 1391 const ObjCIvarDecl *Ivar) override; 1392 }; 1393 1394 class CGObjCNonFragileABIMac : public CGObjCCommonMac { 1395 private: 1396 friend ProtocolMethodLists; 1397 ObjCNonFragileABITypesHelper ObjCTypes; 1398 llvm::GlobalVariable* ObjCEmptyCacheVar; 1399 llvm::Constant* ObjCEmptyVtableVar; 1400 1401 /// SuperClassReferences - uniqued super class references. 1402 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> SuperClassReferences; 1403 1404 /// MetaClassReferences - uniqued meta class references. 1405 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> MetaClassReferences; 1406 1407 /// EHTypeReferences - uniqued class ehtype references. 1408 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> EHTypeReferences; 1409 1410 /// VTableDispatchMethods - List of methods for which we generate 1411 /// vtable-based message dispatch. 1412 llvm::DenseSet<Selector> VTableDispatchMethods; 1413 1414 /// DefinedMetaClasses - List of defined meta-classes. 1415 std::vector<llvm::GlobalValue*> DefinedMetaClasses; 1416 1417 /// isVTableDispatchedSelector - Returns true if SEL is a 1418 /// vtable-based selector. 1419 bool isVTableDispatchedSelector(Selector Sel); 1420 1421 /// FinishNonFragileABIModule - Write out global data structures at the end of 1422 /// processing a translation unit. 1423 void FinishNonFragileABIModule(); 1424 1425 /// AddModuleClassList - Add the given list of class pointers to the 1426 /// module with the provided symbol and section names. 1427 void AddModuleClassList(ArrayRef<llvm::GlobalValue *> Container, 1428 StringRef SymbolName, StringRef SectionName); 1429 1430 llvm::GlobalVariable * BuildClassRoTInitializer(unsigned flags, 1431 unsigned InstanceStart, 1432 unsigned InstanceSize, 1433 const ObjCImplementationDecl *ID); 1434 llvm::GlobalVariable *BuildClassObject(const ObjCInterfaceDecl *CI, 1435 bool isMetaclass, 1436 llvm::Constant *IsAGV, 1437 llvm::Constant *SuperClassGV, 1438 llvm::Constant *ClassRoGV, 1439 bool HiddenVisibility); 1440 1441 void emitMethodConstant(ConstantArrayBuilder &builder, 1442 const ObjCMethodDecl *MD, 1443 bool forProtocol); 1444 1445 /// Emit the method list for the given implementation. The return value 1446 /// has type MethodListnfABITy. 1447 llvm::Constant *emitMethodList(Twine Name, MethodListType MLT, 1448 ArrayRef<const ObjCMethodDecl *> Methods); 1449 1450 /// EmitIvarList - Emit the ivar list for the given 1451 /// implementation. If ForClass is true the list of class ivars 1452 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1453 /// interface ivars will be emitted. The return value has type 1454 /// IvarListnfABIPtrTy. 1455 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID); 1456 1457 llvm::Constant *EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 1458 const ObjCIvarDecl *Ivar, 1459 unsigned long int offset); 1460 1461 /// GetOrEmitProtocol - Get the protocol object for the given 1462 /// declaration, emitting it if necessary. The return value has type 1463 /// ProtocolPtrTy. 1464 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1465 1466 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1467 /// object for the given declaration, emitting it if needed. These 1468 /// forward references will be filled in with empty bodies if no 1469 /// definition is seen. The return value has type ProtocolPtrTy. 1470 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1471 1472 /// EmitProtocolList - Generate the list of referenced 1473 /// protocols. The return value has type ProtocolListPtrTy. 1474 llvm::Constant *EmitProtocolList(Twine Name, 1475 ObjCProtocolDecl::protocol_iterator begin, 1476 ObjCProtocolDecl::protocol_iterator end); 1477 1478 CodeGen::RValue EmitVTableMessageSend(CodeGen::CodeGenFunction &CGF, 1479 ReturnValueSlot Return, 1480 QualType ResultType, 1481 Selector Sel, 1482 llvm::Value *Receiver, 1483 QualType Arg0Ty, 1484 bool IsSuper, 1485 const CallArgList &CallArgs, 1486 const ObjCMethodDecl *Method); 1487 1488 /// GetClassGlobal - Return the global variable for the Objective-C 1489 /// class of the given name. 1490 llvm::Constant *GetClassGlobal(StringRef Name, 1491 ForDefinition_t IsForDefinition, 1492 bool Weak = false, bool DLLImport = false); 1493 llvm::Constant *GetClassGlobal(const ObjCInterfaceDecl *ID, 1494 bool isMetaclass, 1495 ForDefinition_t isForDefinition); 1496 1497 llvm::Constant *GetClassGlobalForClassRef(const ObjCInterfaceDecl *ID); 1498 1499 llvm::Value *EmitLoadOfClassRef(CodeGenFunction &CGF, 1500 const ObjCInterfaceDecl *ID, 1501 llvm::GlobalVariable *Entry); 1502 1503 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1504 /// for the given class reference. 1505 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1506 const ObjCInterfaceDecl *ID); 1507 1508 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1509 IdentifierInfo *II, 1510 const ObjCInterfaceDecl *ID); 1511 1512 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1513 1514 /// EmitSuperClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1515 /// for the given super class reference. 1516 llvm::Value *EmitSuperClassRef(CodeGenFunction &CGF, 1517 const ObjCInterfaceDecl *ID); 1518 1519 /// EmitMetaClassRef - Return a Value * of the address of _class_t 1520 /// meta-data 1521 llvm::Value *EmitMetaClassRef(CodeGenFunction &CGF, 1522 const ObjCInterfaceDecl *ID, bool Weak); 1523 1524 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 1525 /// the given ivar. 1526 /// 1527 llvm::GlobalVariable * ObjCIvarOffsetVariable( 1528 const ObjCInterfaceDecl *ID, 1529 const ObjCIvarDecl *Ivar); 1530 1531 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1532 /// for the given selector. 1533 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1534 Address EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel); 1535 1536 /// GetInterfaceEHType - Get the cached ehtype for the given Objective-C 1537 /// interface. The return value has type EHTypePtrTy. 1538 llvm::Constant *GetInterfaceEHType(const ObjCInterfaceDecl *ID, 1539 ForDefinition_t IsForDefinition); 1540 1541 StringRef getMetaclassSymbolPrefix() const { return "OBJC_METACLASS_$_"; } 1542 1543 StringRef getClassSymbolPrefix() const { return "OBJC_CLASS_$_"; } 1544 1545 void GetClassSizeInfo(const ObjCImplementationDecl *OID, 1546 uint32_t &InstanceStart, 1547 uint32_t &InstanceSize); 1548 1549 // Shamelessly stolen from Analysis/CFRefCount.cpp 1550 Selector GetNullarySelector(const char* name) const { 1551 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1552 return CGM.getContext().Selectors.getSelector(0, &II); 1553 } 1554 1555 Selector GetUnarySelector(const char* name) const { 1556 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1557 return CGM.getContext().Selectors.getSelector(1, &II); 1558 } 1559 1560 /// ImplementationIsNonLazy - Check whether the given category or 1561 /// class implementation is "non-lazy". 1562 bool ImplementationIsNonLazy(const ObjCImplDecl *OD) const; 1563 1564 bool IsIvarOffsetKnownIdempotent(const CodeGen::CodeGenFunction &CGF, 1565 const ObjCIvarDecl *IV) { 1566 // Annotate the load as an invariant load iff inside an instance method 1567 // and ivar belongs to instance method's class and one of its super class. 1568 // This check is needed because the ivar offset is a lazily 1569 // initialised value that may depend on objc_msgSend to perform a fixup on 1570 // the first message dispatch. 1571 // 1572 // An additional opportunity to mark the load as invariant arises when the 1573 // base of the ivar access is a parameter to an Objective C method. 1574 // However, because the parameters are not available in the current 1575 // interface, we cannot perform this check. 1576 if (const ObjCMethodDecl *MD = 1577 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurFuncDecl)) 1578 if (MD->isInstanceMethod()) 1579 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 1580 return IV->getContainingInterface()->isSuperClassOf(ID); 1581 return false; 1582 } 1583 1584 bool isClassLayoutKnownStatically(const ObjCInterfaceDecl *ID) { 1585 // NSObject is a fixed size. If we can see the @implementation of a class 1586 // which inherits from NSObject then we know that all it's offsets also must 1587 // be fixed. FIXME: Can we do this if see a chain of super classes with 1588 // implementations leading to NSObject? 1589 return ID->getImplementation() && ID->getSuperClass() && 1590 ID->getSuperClass()->getName() == "NSObject"; 1591 } 1592 1593 public: 1594 CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm); 1595 1596 llvm::Constant *getNSConstantStringClassRef() override; 1597 1598 llvm::Function *ModuleInitFunction() override; 1599 1600 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1601 ReturnValueSlot Return, 1602 QualType ResultType, Selector Sel, 1603 llvm::Value *Receiver, 1604 const CallArgList &CallArgs, 1605 const ObjCInterfaceDecl *Class, 1606 const ObjCMethodDecl *Method) override; 1607 1608 CodeGen::RValue 1609 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1610 ReturnValueSlot Return, QualType ResultType, 1611 Selector Sel, const ObjCInterfaceDecl *Class, 1612 bool isCategoryImpl, llvm::Value *Receiver, 1613 bool IsClassMessage, const CallArgList &CallArgs, 1614 const ObjCMethodDecl *Method) override; 1615 1616 llvm::Value *GetClass(CodeGenFunction &CGF, 1617 const ObjCInterfaceDecl *ID) override; 1618 1619 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override 1620 { return EmitSelector(CGF, Sel); } 1621 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override 1622 { return EmitSelectorAddr(CGF, Sel); } 1623 1624 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1625 /// untyped one. 1626 llvm::Value *GetSelector(CodeGenFunction &CGF, 1627 const ObjCMethodDecl *Method) override 1628 { return EmitSelector(CGF, Method->getSelector()); } 1629 1630 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1631 1632 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1633 1634 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1635 1636 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1637 const ObjCProtocolDecl *PD) override; 1638 1639 llvm::Constant *GetEHType(QualType T) override; 1640 1641 llvm::FunctionCallee GetPropertyGetFunction() override { 1642 return ObjCTypes.getGetPropertyFn(); 1643 } 1644 llvm::FunctionCallee GetPropertySetFunction() override { 1645 return ObjCTypes.getSetPropertyFn(); 1646 } 1647 1648 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 1649 bool copy) override { 1650 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 1651 } 1652 1653 llvm::FunctionCallee GetSetStructFunction() override { 1654 return ObjCTypes.getCopyStructFn(); 1655 } 1656 1657 llvm::FunctionCallee GetGetStructFunction() override { 1658 return ObjCTypes.getCopyStructFn(); 1659 } 1660 1661 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override { 1662 return ObjCTypes.getCppAtomicObjectFunction(); 1663 } 1664 1665 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override { 1666 return ObjCTypes.getCppAtomicObjectFunction(); 1667 } 1668 1669 llvm::FunctionCallee EnumerationMutationFunction() override { 1670 return ObjCTypes.getEnumerationMutationFn(); 1671 } 1672 1673 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1674 const ObjCAtTryStmt &S) override; 1675 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1676 const ObjCAtSynchronizedStmt &S) override; 1677 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1678 bool ClearInsertionPoint=true) override; 1679 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1680 Address AddrWeakObj) override; 1681 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1682 llvm::Value *src, Address edst) override; 1683 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1684 llvm::Value *src, Address dest, 1685 bool threadlocal = false) override; 1686 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1687 llvm::Value *src, Address dest, 1688 llvm::Value *ivarOffset) override; 1689 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1690 llvm::Value *src, Address dest) override; 1691 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1692 Address dest, Address src, 1693 llvm::Value *size) override; 1694 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1695 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1696 unsigned CVRQualifiers) override; 1697 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1698 const ObjCInterfaceDecl *Interface, 1699 const ObjCIvarDecl *Ivar) override; 1700 }; 1701 1702 /// A helper class for performing the null-initialization of a return 1703 /// value. 1704 struct NullReturnState { 1705 llvm::BasicBlock *NullBB; 1706 NullReturnState() : NullBB(nullptr) {} 1707 1708 /// Perform a null-check of the given receiver. 1709 void init(CodeGenFunction &CGF, llvm::Value *receiver) { 1710 // Make blocks for the null-receiver and call edges. 1711 NullBB = CGF.createBasicBlock("msgSend.null-receiver"); 1712 llvm::BasicBlock *callBB = CGF.createBasicBlock("msgSend.call"); 1713 1714 // Check for a null receiver and, if there is one, jump to the 1715 // null-receiver block. There's no point in trying to avoid it: 1716 // we're always going to put *something* there, because otherwise 1717 // we shouldn't have done this null-check in the first place. 1718 llvm::Value *isNull = CGF.Builder.CreateIsNull(receiver); 1719 CGF.Builder.CreateCondBr(isNull, NullBB, callBB); 1720 1721 // Otherwise, start performing the call. 1722 CGF.EmitBlock(callBB); 1723 } 1724 1725 /// Complete the null-return operation. It is valid to call this 1726 /// regardless of whether 'init' has been called. 1727 RValue complete(CodeGenFunction &CGF, 1728 ReturnValueSlot returnSlot, 1729 RValue result, 1730 QualType resultType, 1731 const CallArgList &CallArgs, 1732 const ObjCMethodDecl *Method) { 1733 // If we never had to do a null-check, just use the raw result. 1734 if (!NullBB) return result; 1735 1736 // The continuation block. This will be left null if we don't have an 1737 // IP, which can happen if the method we're calling is marked noreturn. 1738 llvm::BasicBlock *contBB = nullptr; 1739 1740 // Finish the call path. 1741 llvm::BasicBlock *callBB = CGF.Builder.GetInsertBlock(); 1742 if (callBB) { 1743 contBB = CGF.createBasicBlock("msgSend.cont"); 1744 CGF.Builder.CreateBr(contBB); 1745 } 1746 1747 // Okay, start emitting the null-receiver block. 1748 CGF.EmitBlock(NullBB); 1749 1750 // Release any consumed arguments we've got. 1751 if (Method) { 1752 CallArgList::const_iterator I = CallArgs.begin(); 1753 for (ObjCMethodDecl::param_const_iterator i = Method->param_begin(), 1754 e = Method->param_end(); i != e; ++i, ++I) { 1755 const ParmVarDecl *ParamDecl = (*i); 1756 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 1757 RValue RV = I->getRValue(CGF); 1758 assert(RV.isScalar() && 1759 "NullReturnState::complete - arg not on object"); 1760 CGF.EmitARCRelease(RV.getScalarVal(), ARCImpreciseLifetime); 1761 } 1762 } 1763 } 1764 1765 // The phi code below assumes that we haven't needed any control flow yet. 1766 assert(CGF.Builder.GetInsertBlock() == NullBB); 1767 1768 // If we've got a void return, just jump to the continuation block. 1769 if (result.isScalar() && resultType->isVoidType()) { 1770 // No jumps required if the message-send was noreturn. 1771 if (contBB) CGF.EmitBlock(contBB); 1772 return result; 1773 } 1774 1775 // If we've got a scalar return, build a phi. 1776 if (result.isScalar()) { 1777 // Derive the null-initialization value. 1778 llvm::Constant *null = CGF.CGM.EmitNullConstant(resultType); 1779 1780 // If no join is necessary, just flow out. 1781 if (!contBB) return RValue::get(null); 1782 1783 // Otherwise, build a phi. 1784 CGF.EmitBlock(contBB); 1785 llvm::PHINode *phi = CGF.Builder.CreatePHI(null->getType(), 2); 1786 phi->addIncoming(result.getScalarVal(), callBB); 1787 phi->addIncoming(null, NullBB); 1788 return RValue::get(phi); 1789 } 1790 1791 // If we've got an aggregate return, null the buffer out. 1792 // FIXME: maybe we should be doing things differently for all the 1793 // cases where the ABI has us returning (1) non-agg values in 1794 // memory or (2) agg values in registers. 1795 if (result.isAggregate()) { 1796 assert(result.isAggregate() && "null init of non-aggregate result?"); 1797 if (!returnSlot.isUnused()) 1798 CGF.EmitNullInitialization(result.getAggregateAddress(), resultType); 1799 if (contBB) CGF.EmitBlock(contBB); 1800 return result; 1801 } 1802 1803 // Complex types. 1804 CGF.EmitBlock(contBB); 1805 CodeGenFunction::ComplexPairTy callResult = result.getComplexVal(); 1806 1807 // Find the scalar type and its zero value. 1808 llvm::Type *scalarTy = callResult.first->getType(); 1809 llvm::Constant *scalarZero = llvm::Constant::getNullValue(scalarTy); 1810 1811 // Build phis for both coordinates. 1812 llvm::PHINode *real = CGF.Builder.CreatePHI(scalarTy, 2); 1813 real->addIncoming(callResult.first, callBB); 1814 real->addIncoming(scalarZero, NullBB); 1815 llvm::PHINode *imag = CGF.Builder.CreatePHI(scalarTy, 2); 1816 imag->addIncoming(callResult.second, callBB); 1817 imag->addIncoming(scalarZero, NullBB); 1818 return RValue::getComplex(real, imag); 1819 } 1820 }; 1821 1822 } // end anonymous namespace 1823 1824 /* *** Helper Functions *** */ 1825 1826 /// getConstantGEP() - Help routine to construct simple GEPs. 1827 static llvm::Constant *getConstantGEP(llvm::LLVMContext &VMContext, 1828 llvm::GlobalVariable *C, unsigned idx0, 1829 unsigned idx1) { 1830 llvm::Value *Idxs[] = { 1831 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx0), 1832 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx1) 1833 }; 1834 return llvm::ConstantExpr::getGetElementPtr(C->getValueType(), C, Idxs); 1835 } 1836 1837 /// hasObjCExceptionAttribute - Return true if this class or any super 1838 /// class has the __objc_exception__ attribute. 1839 static bool hasObjCExceptionAttribute(ASTContext &Context, 1840 const ObjCInterfaceDecl *OID) { 1841 if (OID->hasAttr<ObjCExceptionAttr>()) 1842 return true; 1843 if (const ObjCInterfaceDecl *Super = OID->getSuperClass()) 1844 return hasObjCExceptionAttribute(Context, Super); 1845 return false; 1846 } 1847 1848 static llvm::GlobalValue::LinkageTypes 1849 getLinkageTypeForObjCMetadata(CodeGenModule &CGM, StringRef Section) { 1850 if (CGM.getTriple().isOSBinFormatMachO() && 1851 (Section.empty() || Section.startswith("__DATA"))) 1852 return llvm::GlobalValue::InternalLinkage; 1853 return llvm::GlobalValue::PrivateLinkage; 1854 } 1855 1856 /// A helper function to create an internal or private global variable. 1857 static llvm::GlobalVariable * 1858 finishAndCreateGlobal(ConstantInitBuilder::StructBuilder &Builder, 1859 const llvm::Twine &Name, CodeGenModule &CGM) { 1860 std::string SectionName; 1861 if (CGM.getTriple().isOSBinFormatMachO()) 1862 SectionName = "__DATA, __objc_const"; 1863 auto *GV = Builder.finishAndCreateGlobal( 1864 Name, CGM.getPointerAlign(), /*constant*/ false, 1865 getLinkageTypeForObjCMetadata(CGM, SectionName)); 1866 GV->setSection(SectionName); 1867 return GV; 1868 } 1869 1870 /* *** CGObjCMac Public Interface *** */ 1871 1872 CGObjCMac::CGObjCMac(CodeGen::CodeGenModule &cgm) : CGObjCCommonMac(cgm), 1873 ObjCTypes(cgm) { 1874 ObjCABI = 1; 1875 EmitImageInfo(); 1876 } 1877 1878 /// GetClass - Return a reference to the class for the given interface 1879 /// decl. 1880 llvm::Value *CGObjCMac::GetClass(CodeGenFunction &CGF, 1881 const ObjCInterfaceDecl *ID) { 1882 return EmitClassRef(CGF, ID); 1883 } 1884 1885 /// GetSelector - Return the pointer to the unique'd string for this selector. 1886 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, Selector Sel) { 1887 return EmitSelector(CGF, Sel); 1888 } 1889 Address CGObjCMac::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) { 1890 return EmitSelectorAddr(CGF, Sel); 1891 } 1892 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, const ObjCMethodDecl 1893 *Method) { 1894 return EmitSelector(CGF, Method->getSelector()); 1895 } 1896 1897 llvm::Constant *CGObjCMac::GetEHType(QualType T) { 1898 if (T->isObjCIdType() || 1899 T->isObjCQualifiedIdType()) { 1900 return CGM.GetAddrOfRTTIDescriptor( 1901 CGM.getContext().getObjCIdRedefinitionType(), /*ForEH=*/true); 1902 } 1903 if (T->isObjCClassType() || 1904 T->isObjCQualifiedClassType()) { 1905 return CGM.GetAddrOfRTTIDescriptor( 1906 CGM.getContext().getObjCClassRedefinitionType(), /*ForEH=*/true); 1907 } 1908 if (T->isObjCObjectPointerType()) 1909 return CGM.GetAddrOfRTTIDescriptor(T, /*ForEH=*/true); 1910 1911 llvm_unreachable("asking for catch type for ObjC type in fragile runtime"); 1912 } 1913 1914 /// Generate a constant CFString object. 1915 /* 1916 struct __builtin_CFString { 1917 const int *isa; // point to __CFConstantStringClassReference 1918 int flags; 1919 const char *str; 1920 long length; 1921 }; 1922 */ 1923 1924 /// or Generate a constant NSString object. 1925 /* 1926 struct __builtin_NSString { 1927 const int *isa; // point to __NSConstantStringClassReference 1928 const char *str; 1929 unsigned int length; 1930 }; 1931 */ 1932 1933 ConstantAddress 1934 CGObjCCommonMac::GenerateConstantString(const StringLiteral *SL) { 1935 return (!CGM.getLangOpts().NoConstantCFStrings 1936 ? CGM.GetAddrOfConstantCFString(SL) 1937 : GenerateConstantNSString(SL)); 1938 } 1939 1940 static llvm::StringMapEntry<llvm::GlobalVariable *> & 1941 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 1942 const StringLiteral *Literal, unsigned &StringLength) { 1943 StringRef String = Literal->getString(); 1944 StringLength = String.size(); 1945 return *Map.insert(std::make_pair(String, nullptr)).first; 1946 } 1947 1948 llvm::Constant *CGObjCMac::getNSConstantStringClassRef() { 1949 if (llvm::Value *V = ConstantStringClassRef) 1950 return cast<llvm::Constant>(V); 1951 1952 auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1953 std::string str = 1954 StringClass.empty() ? "_NSConstantStringClassReference" 1955 : "_" + StringClass + "ClassReference"; 1956 1957 llvm::Type *PTy = llvm::ArrayType::get(CGM.IntTy, 0); 1958 auto GV = CGM.CreateRuntimeVariable(PTy, str); 1959 auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo()); 1960 ConstantStringClassRef = V; 1961 return V; 1962 } 1963 1964 llvm::Constant *CGObjCNonFragileABIMac::getNSConstantStringClassRef() { 1965 if (llvm::Value *V = ConstantStringClassRef) 1966 return cast<llvm::Constant>(V); 1967 1968 auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1969 std::string str = 1970 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 1971 : "OBJC_CLASS_$_" + StringClass; 1972 llvm::Constant *GV = GetClassGlobal(str, NotForDefinition); 1973 1974 // Make sure the result is of the correct type. 1975 auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo()); 1976 1977 ConstantStringClassRef = V; 1978 return V; 1979 } 1980 1981 ConstantAddress 1982 CGObjCCommonMac::GenerateConstantNSString(const StringLiteral *Literal) { 1983 unsigned StringLength = 0; 1984 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 1985 GetConstantStringEntry(NSConstantStringMap, Literal, StringLength); 1986 1987 if (auto *C = Entry.second) 1988 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 1989 1990 // If we don't already have it, get _NSConstantStringClassReference. 1991 llvm::Constant *Class = getNSConstantStringClassRef(); 1992 1993 // If we don't already have it, construct the type for a constant NSString. 1994 if (!NSConstantStringType) { 1995 NSConstantStringType = 1996 llvm::StructType::create({ 1997 CGM.Int32Ty->getPointerTo(), 1998 CGM.Int8PtrTy, 1999 CGM.IntTy 2000 }, "struct.__builtin_NSString"); 2001 } 2002 2003 ConstantInitBuilder Builder(CGM); 2004 auto Fields = Builder.beginStruct(NSConstantStringType); 2005 2006 // Class pointer. 2007 Fields.add(Class); 2008 2009 // String pointer. 2010 llvm::Constant *C = 2011 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2012 2013 llvm::GlobalValue::LinkageTypes Linkage = llvm::GlobalValue::PrivateLinkage; 2014 bool isConstant = !CGM.getLangOpts().WritableStrings; 2015 2016 auto *GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), isConstant, 2017 Linkage, C, ".str"); 2018 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2019 // Don't enforce the target's minimum global alignment, since the only use 2020 // of the string is via this class initializer. 2021 GV->setAlignment(1); 2022 Fields.addBitCast(GV, CGM.Int8PtrTy); 2023 2024 // String length. 2025 Fields.addInt(CGM.IntTy, StringLength); 2026 2027 // The struct. 2028 CharUnits Alignment = CGM.getPointerAlign(); 2029 GV = Fields.finishAndCreateGlobal("_unnamed_nsstring_", Alignment, 2030 /*constant*/ true, 2031 llvm::GlobalVariable::PrivateLinkage); 2032 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2033 const char *NSStringNonFragileABISection = 2034 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2035 // FIXME. Fix section. 2036 GV->setSection(CGM.getLangOpts().ObjCRuntime.isNonFragile() 2037 ? NSStringNonFragileABISection 2038 : NSStringSection); 2039 Entry.second = GV; 2040 2041 return ConstantAddress(GV, Alignment); 2042 } 2043 2044 enum { 2045 kCFTaggedObjectID_Integer = (1 << 1) + 1 2046 }; 2047 2048 /// Generates a message send where the super is the receiver. This is 2049 /// a message send to self with special delivery semantics indicating 2050 /// which class's method should be called. 2051 CodeGen::RValue 2052 CGObjCMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 2053 ReturnValueSlot Return, 2054 QualType ResultType, 2055 Selector Sel, 2056 const ObjCInterfaceDecl *Class, 2057 bool isCategoryImpl, 2058 llvm::Value *Receiver, 2059 bool IsClassMessage, 2060 const CodeGen::CallArgList &CallArgs, 2061 const ObjCMethodDecl *Method) { 2062 // Create and init a super structure; this is a (receiver, class) 2063 // pair we will pass to objc_msgSendSuper. 2064 Address ObjCSuper = 2065 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 2066 "objc_super"); 2067 llvm::Value *ReceiverAsObject = 2068 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 2069 CGF.Builder.CreateStore(ReceiverAsObject, 2070 CGF.Builder.CreateStructGEP(ObjCSuper, 0)); 2071 2072 // If this is a class message the metaclass is passed as the target. 2073 llvm::Value *Target; 2074 if (IsClassMessage) { 2075 if (isCategoryImpl) { 2076 // Message sent to 'super' in a class method defined in a category 2077 // implementation requires an odd treatment. 2078 // If we are in a class method, we must retrieve the 2079 // _metaclass_ for the current class, pointed at by 2080 // the class's "isa" pointer. The following assumes that 2081 // isa" is the first ivar in a class (which it must be). 2082 Target = EmitClassRef(CGF, Class->getSuperClass()); 2083 Target = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, Target, 0); 2084 Target = CGF.Builder.CreateAlignedLoad(Target, CGF.getPointerAlign()); 2085 } else { 2086 llvm::Constant *MetaClassPtr = EmitMetaClassRef(Class); 2087 llvm::Value *SuperPtr = 2088 CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, MetaClassPtr, 1); 2089 llvm::Value *Super = 2090 CGF.Builder.CreateAlignedLoad(SuperPtr, CGF.getPointerAlign()); 2091 Target = Super; 2092 } 2093 } else if (isCategoryImpl) 2094 Target = EmitClassRef(CGF, Class->getSuperClass()); 2095 else { 2096 llvm::Value *ClassPtr = EmitSuperClassRef(Class); 2097 ClassPtr = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, ClassPtr, 1); 2098 Target = CGF.Builder.CreateAlignedLoad(ClassPtr, CGF.getPointerAlign()); 2099 } 2100 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 2101 // ObjCTypes types. 2102 llvm::Type *ClassTy = 2103 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 2104 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 2105 CGF.Builder.CreateStore(Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1)); 2106 return EmitMessageSend(CGF, Return, ResultType, 2107 EmitSelector(CGF, Sel), 2108 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 2109 true, CallArgs, Method, Class, ObjCTypes); 2110 } 2111 2112 /// Generate code for a message send expression. 2113 CodeGen::RValue CGObjCMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 2114 ReturnValueSlot Return, 2115 QualType ResultType, 2116 Selector Sel, 2117 llvm::Value *Receiver, 2118 const CallArgList &CallArgs, 2119 const ObjCInterfaceDecl *Class, 2120 const ObjCMethodDecl *Method) { 2121 return EmitMessageSend(CGF, Return, ResultType, 2122 EmitSelector(CGF, Sel), 2123 Receiver, CGF.getContext().getObjCIdType(), 2124 false, CallArgs, Method, Class, ObjCTypes); 2125 } 2126 2127 static bool isWeakLinkedClass(const ObjCInterfaceDecl *ID) { 2128 do { 2129 if (ID->isWeakImported()) 2130 return true; 2131 } while ((ID = ID->getSuperClass())); 2132 2133 return false; 2134 } 2135 2136 CodeGen::RValue 2137 CGObjCCommonMac::EmitMessageSend(CodeGen::CodeGenFunction &CGF, 2138 ReturnValueSlot Return, 2139 QualType ResultType, 2140 llvm::Value *Sel, 2141 llvm::Value *Arg0, 2142 QualType Arg0Ty, 2143 bool IsSuper, 2144 const CallArgList &CallArgs, 2145 const ObjCMethodDecl *Method, 2146 const ObjCInterfaceDecl *ClassReceiver, 2147 const ObjCCommonTypesHelper &ObjCTypes) { 2148 CallArgList ActualArgs; 2149 if (!IsSuper) 2150 Arg0 = CGF.Builder.CreateBitCast(Arg0, ObjCTypes.ObjectPtrTy); 2151 ActualArgs.add(RValue::get(Arg0), Arg0Ty); 2152 ActualArgs.add(RValue::get(Sel), CGF.getContext().getObjCSelType()); 2153 ActualArgs.addFrom(CallArgs); 2154 2155 // If we're calling a method, use the formal signature. 2156 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 2157 2158 if (Method) 2159 assert(CGM.getContext().getCanonicalType(Method->getReturnType()) == 2160 CGM.getContext().getCanonicalType(ResultType) && 2161 "Result type mismatch!"); 2162 2163 bool ReceiverCanBeNull = true; 2164 2165 // Super dispatch assumes that self is non-null; even the messenger 2166 // doesn't have a null check internally. 2167 if (IsSuper) { 2168 ReceiverCanBeNull = false; 2169 2170 // If this is a direct dispatch of a class method, check whether the class, 2171 // or anything in its hierarchy, was weak-linked. 2172 } else if (ClassReceiver && Method && Method->isClassMethod()) { 2173 ReceiverCanBeNull = isWeakLinkedClass(ClassReceiver); 2174 2175 // If we're emitting a method, and self is const (meaning just ARC, for now), 2176 // and the receiver is a load of self, then self is a valid object. 2177 } else if (auto CurMethod = 2178 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl)) { 2179 auto Self = CurMethod->getSelfDecl(); 2180 if (Self->getType().isConstQualified()) { 2181 if (auto LI = dyn_cast<llvm::LoadInst>(Arg0->stripPointerCasts())) { 2182 llvm::Value *SelfAddr = CGF.GetAddrOfLocalVar(Self).getPointer(); 2183 if (SelfAddr == LI->getPointerOperand()) { 2184 ReceiverCanBeNull = false; 2185 } 2186 } 2187 } 2188 } 2189 2190 bool RequiresNullCheck = false; 2191 2192 llvm::FunctionCallee Fn = nullptr; 2193 if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 2194 if (ReceiverCanBeNull) RequiresNullCheck = true; 2195 Fn = (ObjCABI == 2) ? ObjCTypes.getSendStretFn2(IsSuper) 2196 : ObjCTypes.getSendStretFn(IsSuper); 2197 } else if (CGM.ReturnTypeUsesFPRet(ResultType)) { 2198 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFpretFn2(IsSuper) 2199 : ObjCTypes.getSendFpretFn(IsSuper); 2200 } else if (CGM.ReturnTypeUsesFP2Ret(ResultType)) { 2201 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFp2RetFn2(IsSuper) 2202 : ObjCTypes.getSendFp2retFn(IsSuper); 2203 } else { 2204 // arm64 uses objc_msgSend for stret methods and yet null receiver check 2205 // must be made for it. 2206 if (ReceiverCanBeNull && CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 2207 RequiresNullCheck = true; 2208 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFn2(IsSuper) 2209 : ObjCTypes.getSendFn(IsSuper); 2210 } 2211 2212 // Cast function to proper signature 2213 llvm::Constant *BitcastFn = cast<llvm::Constant>( 2214 CGF.Builder.CreateBitCast(Fn.getCallee(), MSI.MessengerType)); 2215 2216 // We don't need to emit a null check to zero out an indirect result if the 2217 // result is ignored. 2218 if (Return.isUnused()) 2219 RequiresNullCheck = false; 2220 2221 // Emit a null-check if there's a consumed argument other than the receiver. 2222 if (!RequiresNullCheck && CGM.getLangOpts().ObjCAutoRefCount && Method) { 2223 for (const auto *ParamDecl : Method->parameters()) { 2224 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 2225 RequiresNullCheck = true; 2226 break; 2227 } 2228 } 2229 } 2230 2231 NullReturnState nullReturn; 2232 if (RequiresNullCheck) { 2233 nullReturn.init(CGF, Arg0); 2234 } 2235 2236 llvm::CallBase *CallSite; 2237 CGCallee Callee = CGCallee::forDirect(BitcastFn); 2238 RValue rvalue = CGF.EmitCall(MSI.CallInfo, Callee, Return, ActualArgs, 2239 &CallSite); 2240 2241 // Mark the call as noreturn if the method is marked noreturn and the 2242 // receiver cannot be null. 2243 if (Method && Method->hasAttr<NoReturnAttr>() && !ReceiverCanBeNull) { 2244 CallSite->setDoesNotReturn(); 2245 } 2246 2247 return nullReturn.complete(CGF, Return, rvalue, ResultType, CallArgs, 2248 RequiresNullCheck ? Method : nullptr); 2249 } 2250 2251 static Qualifiers::GC GetGCAttrTypeForType(ASTContext &Ctx, QualType FQT, 2252 bool pointee = false) { 2253 // Note that GC qualification applies recursively to C pointer types 2254 // that aren't otherwise decorated. This is weird, but it's probably 2255 // an intentional workaround to the unreliable placement of GC qualifiers. 2256 if (FQT.isObjCGCStrong()) 2257 return Qualifiers::Strong; 2258 2259 if (FQT.isObjCGCWeak()) 2260 return Qualifiers::Weak; 2261 2262 if (auto ownership = FQT.getObjCLifetime()) { 2263 // Ownership does not apply recursively to C pointer types. 2264 if (pointee) return Qualifiers::GCNone; 2265 switch (ownership) { 2266 case Qualifiers::OCL_Weak: return Qualifiers::Weak; 2267 case Qualifiers::OCL_Strong: return Qualifiers::Strong; 2268 case Qualifiers::OCL_ExplicitNone: return Qualifiers::GCNone; 2269 case Qualifiers::OCL_Autoreleasing: llvm_unreachable("autoreleasing ivar?"); 2270 case Qualifiers::OCL_None: llvm_unreachable("known nonzero"); 2271 } 2272 llvm_unreachable("bad objc ownership"); 2273 } 2274 2275 // Treat unqualified retainable pointers as strong. 2276 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2277 return Qualifiers::Strong; 2278 2279 // Walk into C pointer types, but only in GC. 2280 if (Ctx.getLangOpts().getGC() != LangOptions::NonGC) { 2281 if (const PointerType *PT = FQT->getAs<PointerType>()) 2282 return GetGCAttrTypeForType(Ctx, PT->getPointeeType(), /*pointee*/ true); 2283 } 2284 2285 return Qualifiers::GCNone; 2286 } 2287 2288 namespace { 2289 struct IvarInfo { 2290 CharUnits Offset; 2291 uint64_t SizeInWords; 2292 IvarInfo(CharUnits offset, uint64_t sizeInWords) 2293 : Offset(offset), SizeInWords(sizeInWords) {} 2294 2295 // Allow sorting based on byte pos. 2296 bool operator<(const IvarInfo &other) const { 2297 return Offset < other.Offset; 2298 } 2299 }; 2300 2301 /// A helper class for building GC layout strings. 2302 class IvarLayoutBuilder { 2303 CodeGenModule &CGM; 2304 2305 /// The start of the layout. Offsets will be relative to this value, 2306 /// and entries less than this value will be silently discarded. 2307 CharUnits InstanceBegin; 2308 2309 /// The end of the layout. Offsets will never exceed this value. 2310 CharUnits InstanceEnd; 2311 2312 /// Whether we're generating the strong layout or the weak layout. 2313 bool ForStrongLayout; 2314 2315 /// Whether the offsets in IvarsInfo might be out-of-order. 2316 bool IsDisordered = false; 2317 2318 llvm::SmallVector<IvarInfo, 8> IvarsInfo; 2319 2320 public: 2321 IvarLayoutBuilder(CodeGenModule &CGM, CharUnits instanceBegin, 2322 CharUnits instanceEnd, bool forStrongLayout) 2323 : CGM(CGM), InstanceBegin(instanceBegin), InstanceEnd(instanceEnd), 2324 ForStrongLayout(forStrongLayout) { 2325 } 2326 2327 void visitRecord(const RecordType *RT, CharUnits offset); 2328 2329 template <class Iterator, class GetOffsetFn> 2330 void visitAggregate(Iterator begin, Iterator end, 2331 CharUnits aggrOffset, 2332 const GetOffsetFn &getOffset); 2333 2334 void visitField(const FieldDecl *field, CharUnits offset); 2335 2336 /// Add the layout of a block implementation. 2337 void visitBlock(const CGBlockInfo &blockInfo); 2338 2339 /// Is there any information for an interesting bitmap? 2340 bool hasBitmapData() const { return !IvarsInfo.empty(); } 2341 2342 llvm::Constant *buildBitmap(CGObjCCommonMac &CGObjC, 2343 llvm::SmallVectorImpl<unsigned char> &buffer); 2344 2345 static void dump(ArrayRef<unsigned char> buffer) { 2346 const unsigned char *s = buffer.data(); 2347 for (unsigned i = 0, e = buffer.size(); i < e; i++) 2348 if (!(s[i] & 0xf0)) 2349 printf("0x0%x%s", s[i], s[i] != 0 ? ", " : ""); 2350 else 2351 printf("0x%x%s", s[i], s[i] != 0 ? ", " : ""); 2352 printf("\n"); 2353 } 2354 }; 2355 } // end anonymous namespace 2356 2357 llvm::Constant *CGObjCCommonMac::BuildGCBlockLayout(CodeGenModule &CGM, 2358 const CGBlockInfo &blockInfo) { 2359 2360 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2361 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) 2362 return nullPtr; 2363 2364 IvarLayoutBuilder builder(CGM, CharUnits::Zero(), blockInfo.BlockSize, 2365 /*for strong layout*/ true); 2366 2367 builder.visitBlock(blockInfo); 2368 2369 if (!builder.hasBitmapData()) 2370 return nullPtr; 2371 2372 llvm::SmallVector<unsigned char, 32> buffer; 2373 llvm::Constant *C = builder.buildBitmap(*this, buffer); 2374 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 2375 printf("\n block variable layout for block: "); 2376 builder.dump(buffer); 2377 } 2378 2379 return C; 2380 } 2381 2382 void IvarLayoutBuilder::visitBlock(const CGBlockInfo &blockInfo) { 2383 // __isa is the first field in block descriptor and must assume by runtime's 2384 // convention that it is GC'able. 2385 IvarsInfo.push_back(IvarInfo(CharUnits::Zero(), 1)); 2386 2387 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2388 2389 // Ignore the optional 'this' capture: C++ objects are not assumed 2390 // to be GC'ed. 2391 2392 CharUnits lastFieldOffset; 2393 2394 // Walk the captured variables. 2395 for (const auto &CI : blockDecl->captures()) { 2396 const VarDecl *variable = CI.getVariable(); 2397 QualType type = variable->getType(); 2398 2399 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2400 2401 // Ignore constant captures. 2402 if (capture.isConstant()) continue; 2403 2404 CharUnits fieldOffset = capture.getOffset(); 2405 2406 // Block fields are not necessarily ordered; if we detect that we're 2407 // adding them out-of-order, make sure we sort later. 2408 if (fieldOffset < lastFieldOffset) 2409 IsDisordered = true; 2410 lastFieldOffset = fieldOffset; 2411 2412 // __block variables are passed by their descriptor address. 2413 if (CI.isByRef()) { 2414 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2415 continue; 2416 } 2417 2418 assert(!type->isArrayType() && "array variable should not be caught"); 2419 if (const RecordType *record = type->getAs<RecordType>()) { 2420 visitRecord(record, fieldOffset); 2421 continue; 2422 } 2423 2424 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), type); 2425 2426 if (GCAttr == Qualifiers::Strong) { 2427 assert(CGM.getContext().getTypeSize(type) 2428 == CGM.getTarget().getPointerWidth(0)); 2429 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2430 } 2431 } 2432 } 2433 2434 /// getBlockCaptureLifetime - This routine returns life time of the captured 2435 /// block variable for the purpose of block layout meta-data generation. FQT is 2436 /// the type of the variable captured in the block. 2437 Qualifiers::ObjCLifetime CGObjCCommonMac::getBlockCaptureLifetime(QualType FQT, 2438 bool ByrefLayout) { 2439 // If it has an ownership qualifier, we're done. 2440 if (auto lifetime = FQT.getObjCLifetime()) 2441 return lifetime; 2442 2443 // If it doesn't, and this is ARC, it has no ownership. 2444 if (CGM.getLangOpts().ObjCAutoRefCount) 2445 return Qualifiers::OCL_None; 2446 2447 // In MRC, retainable pointers are owned by non-__block variables. 2448 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2449 return ByrefLayout ? Qualifiers::OCL_ExplicitNone : Qualifiers::OCL_Strong; 2450 2451 return Qualifiers::OCL_None; 2452 } 2453 2454 void CGObjCCommonMac::UpdateRunSkipBlockVars(bool IsByref, 2455 Qualifiers::ObjCLifetime LifeTime, 2456 CharUnits FieldOffset, 2457 CharUnits FieldSize) { 2458 // __block variables are passed by their descriptor address. 2459 if (IsByref) 2460 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_BYREF, FieldOffset, 2461 FieldSize)); 2462 else if (LifeTime == Qualifiers::OCL_Strong) 2463 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_STRONG, FieldOffset, 2464 FieldSize)); 2465 else if (LifeTime == Qualifiers::OCL_Weak) 2466 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_WEAK, FieldOffset, 2467 FieldSize)); 2468 else if (LifeTime == Qualifiers::OCL_ExplicitNone) 2469 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_UNRETAINED, FieldOffset, 2470 FieldSize)); 2471 else 2472 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_NON_OBJECT_BYTES, 2473 FieldOffset, 2474 FieldSize)); 2475 } 2476 2477 void CGObjCCommonMac::BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 2478 const RecordDecl *RD, 2479 ArrayRef<const FieldDecl*> RecFields, 2480 CharUnits BytePos, bool &HasUnion, 2481 bool ByrefLayout) { 2482 bool IsUnion = (RD && RD->isUnion()); 2483 CharUnits MaxUnionSize = CharUnits::Zero(); 2484 const FieldDecl *MaxField = nullptr; 2485 const FieldDecl *LastFieldBitfieldOrUnnamed = nullptr; 2486 CharUnits MaxFieldOffset = CharUnits::Zero(); 2487 CharUnits LastBitfieldOrUnnamedOffset = CharUnits::Zero(); 2488 2489 if (RecFields.empty()) 2490 return; 2491 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2492 2493 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 2494 const FieldDecl *Field = RecFields[i]; 2495 // Note that 'i' here is actually the field index inside RD of Field, 2496 // although this dependency is hidden. 2497 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); 2498 CharUnits FieldOffset = 2499 CGM.getContext().toCharUnitsFromBits(RL.getFieldOffset(i)); 2500 2501 // Skip over unnamed or bitfields 2502 if (!Field->getIdentifier() || Field->isBitField()) { 2503 LastFieldBitfieldOrUnnamed = Field; 2504 LastBitfieldOrUnnamedOffset = FieldOffset; 2505 continue; 2506 } 2507 2508 LastFieldBitfieldOrUnnamed = nullptr; 2509 QualType FQT = Field->getType(); 2510 if (FQT->isRecordType() || FQT->isUnionType()) { 2511 if (FQT->isUnionType()) 2512 HasUnion = true; 2513 2514 BuildRCBlockVarRecordLayout(FQT->getAs<RecordType>(), 2515 BytePos + FieldOffset, HasUnion); 2516 continue; 2517 } 2518 2519 if (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2520 const ConstantArrayType *CArray = 2521 dyn_cast_or_null<ConstantArrayType>(Array); 2522 uint64_t ElCount = CArray->getSize().getZExtValue(); 2523 assert(CArray && "only array with known element size is supported"); 2524 FQT = CArray->getElementType(); 2525 while (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2526 const ConstantArrayType *CArray = 2527 dyn_cast_or_null<ConstantArrayType>(Array); 2528 ElCount *= CArray->getSize().getZExtValue(); 2529 FQT = CArray->getElementType(); 2530 } 2531 if (FQT->isRecordType() && ElCount) { 2532 int OldIndex = RunSkipBlockVars.size() - 1; 2533 const RecordType *RT = FQT->getAs<RecordType>(); 2534 BuildRCBlockVarRecordLayout(RT, BytePos + FieldOffset, 2535 HasUnion); 2536 2537 // Replicate layout information for each array element. Note that 2538 // one element is already done. 2539 uint64_t ElIx = 1; 2540 for (int FirstIndex = RunSkipBlockVars.size() - 1 ;ElIx < ElCount; ElIx++) { 2541 CharUnits Size = CGM.getContext().getTypeSizeInChars(RT); 2542 for (int i = OldIndex+1; i <= FirstIndex; ++i) 2543 RunSkipBlockVars.push_back( 2544 RUN_SKIP(RunSkipBlockVars[i].opcode, 2545 RunSkipBlockVars[i].block_var_bytepos + Size*ElIx, 2546 RunSkipBlockVars[i].block_var_size)); 2547 } 2548 continue; 2549 } 2550 } 2551 CharUnits FieldSize = CGM.getContext().getTypeSizeInChars(Field->getType()); 2552 if (IsUnion) { 2553 CharUnits UnionIvarSize = FieldSize; 2554 if (UnionIvarSize > MaxUnionSize) { 2555 MaxUnionSize = UnionIvarSize; 2556 MaxField = Field; 2557 MaxFieldOffset = FieldOffset; 2558 } 2559 } else { 2560 UpdateRunSkipBlockVars(false, 2561 getBlockCaptureLifetime(FQT, ByrefLayout), 2562 BytePos + FieldOffset, 2563 FieldSize); 2564 } 2565 } 2566 2567 if (LastFieldBitfieldOrUnnamed) { 2568 if (LastFieldBitfieldOrUnnamed->isBitField()) { 2569 // Last field was a bitfield. Must update the info. 2570 uint64_t BitFieldSize 2571 = LastFieldBitfieldOrUnnamed->getBitWidthValue(CGM.getContext()); 2572 unsigned UnsSize = (BitFieldSize / ByteSizeInBits) + 2573 ((BitFieldSize % ByteSizeInBits) != 0); 2574 CharUnits Size = CharUnits::fromQuantity(UnsSize); 2575 Size += LastBitfieldOrUnnamedOffset; 2576 UpdateRunSkipBlockVars(false, 2577 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2578 ByrefLayout), 2579 BytePos + LastBitfieldOrUnnamedOffset, 2580 Size); 2581 } else { 2582 assert(!LastFieldBitfieldOrUnnamed->getIdentifier() &&"Expected unnamed"); 2583 // Last field was unnamed. Must update skip info. 2584 CharUnits FieldSize 2585 = CGM.getContext().getTypeSizeInChars(LastFieldBitfieldOrUnnamed->getType()); 2586 UpdateRunSkipBlockVars(false, 2587 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2588 ByrefLayout), 2589 BytePos + LastBitfieldOrUnnamedOffset, 2590 FieldSize); 2591 } 2592 } 2593 2594 if (MaxField) 2595 UpdateRunSkipBlockVars(false, 2596 getBlockCaptureLifetime(MaxField->getType(), ByrefLayout), 2597 BytePos + MaxFieldOffset, 2598 MaxUnionSize); 2599 } 2600 2601 void CGObjCCommonMac::BuildRCBlockVarRecordLayout(const RecordType *RT, 2602 CharUnits BytePos, 2603 bool &HasUnion, 2604 bool ByrefLayout) { 2605 const RecordDecl *RD = RT->getDecl(); 2606 SmallVector<const FieldDecl*, 16> Fields(RD->fields()); 2607 llvm::Type *Ty = CGM.getTypes().ConvertType(QualType(RT, 0)); 2608 const llvm::StructLayout *RecLayout = 2609 CGM.getDataLayout().getStructLayout(cast<llvm::StructType>(Ty)); 2610 2611 BuildRCRecordLayout(RecLayout, RD, Fields, BytePos, HasUnion, ByrefLayout); 2612 } 2613 2614 /// InlineLayoutInstruction - This routine produce an inline instruction for the 2615 /// block variable layout if it can. If not, it returns 0. Rules are as follow: 2616 /// If ((uintptr_t) layout) < (1 << 12), the layout is inline. In the 64bit world, 2617 /// an inline layout of value 0x0000000000000xyz is interpreted as follows: 2618 /// x captured object pointers of BLOCK_LAYOUT_STRONG. Followed by 2619 /// y captured object of BLOCK_LAYOUT_BYREF. Followed by 2620 /// z captured object of BLOCK_LAYOUT_WEAK. If any of the above is missing, zero 2621 /// replaces it. For example, 0x00000x00 means x BLOCK_LAYOUT_STRONG and no 2622 /// BLOCK_LAYOUT_BYREF and no BLOCK_LAYOUT_WEAK objects are captured. 2623 uint64_t CGObjCCommonMac::InlineLayoutInstruction( 2624 SmallVectorImpl<unsigned char> &Layout) { 2625 uint64_t Result = 0; 2626 if (Layout.size() <= 3) { 2627 unsigned size = Layout.size(); 2628 unsigned strong_word_count = 0, byref_word_count=0, weak_word_count=0; 2629 unsigned char inst; 2630 enum BLOCK_LAYOUT_OPCODE opcode ; 2631 switch (size) { 2632 case 3: 2633 inst = Layout[0]; 2634 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2635 if (opcode == BLOCK_LAYOUT_STRONG) 2636 strong_word_count = (inst & 0xF)+1; 2637 else 2638 return 0; 2639 inst = Layout[1]; 2640 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2641 if (opcode == BLOCK_LAYOUT_BYREF) 2642 byref_word_count = (inst & 0xF)+1; 2643 else 2644 return 0; 2645 inst = Layout[2]; 2646 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2647 if (opcode == BLOCK_LAYOUT_WEAK) 2648 weak_word_count = (inst & 0xF)+1; 2649 else 2650 return 0; 2651 break; 2652 2653 case 2: 2654 inst = Layout[0]; 2655 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2656 if (opcode == BLOCK_LAYOUT_STRONG) { 2657 strong_word_count = (inst & 0xF)+1; 2658 inst = Layout[1]; 2659 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2660 if (opcode == BLOCK_LAYOUT_BYREF) 2661 byref_word_count = (inst & 0xF)+1; 2662 else if (opcode == BLOCK_LAYOUT_WEAK) 2663 weak_word_count = (inst & 0xF)+1; 2664 else 2665 return 0; 2666 } 2667 else if (opcode == BLOCK_LAYOUT_BYREF) { 2668 byref_word_count = (inst & 0xF)+1; 2669 inst = Layout[1]; 2670 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2671 if (opcode == BLOCK_LAYOUT_WEAK) 2672 weak_word_count = (inst & 0xF)+1; 2673 else 2674 return 0; 2675 } 2676 else 2677 return 0; 2678 break; 2679 2680 case 1: 2681 inst = Layout[0]; 2682 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2683 if (opcode == BLOCK_LAYOUT_STRONG) 2684 strong_word_count = (inst & 0xF)+1; 2685 else if (opcode == BLOCK_LAYOUT_BYREF) 2686 byref_word_count = (inst & 0xF)+1; 2687 else if (opcode == BLOCK_LAYOUT_WEAK) 2688 weak_word_count = (inst & 0xF)+1; 2689 else 2690 return 0; 2691 break; 2692 2693 default: 2694 return 0; 2695 } 2696 2697 // Cannot inline when any of the word counts is 15. Because this is one less 2698 // than the actual work count (so 15 means 16 actual word counts), 2699 // and we can only display 0 thru 15 word counts. 2700 if (strong_word_count == 16 || byref_word_count == 16 || weak_word_count == 16) 2701 return 0; 2702 2703 unsigned count = 2704 (strong_word_count != 0) + (byref_word_count != 0) + (weak_word_count != 0); 2705 2706 if (size == count) { 2707 if (strong_word_count) 2708 Result = strong_word_count; 2709 Result <<= 4; 2710 if (byref_word_count) 2711 Result += byref_word_count; 2712 Result <<= 4; 2713 if (weak_word_count) 2714 Result += weak_word_count; 2715 } 2716 } 2717 return Result; 2718 } 2719 2720 llvm::Constant *CGObjCCommonMac::getBitmapBlockLayout(bool ComputeByrefLayout) { 2721 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2722 if (RunSkipBlockVars.empty()) 2723 return nullPtr; 2724 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 2725 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2726 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2727 2728 // Sort on byte position; captures might not be allocated in order, 2729 // and unions can do funny things. 2730 llvm::array_pod_sort(RunSkipBlockVars.begin(), RunSkipBlockVars.end()); 2731 SmallVector<unsigned char, 16> Layout; 2732 2733 unsigned size = RunSkipBlockVars.size(); 2734 for (unsigned i = 0; i < size; i++) { 2735 enum BLOCK_LAYOUT_OPCODE opcode = RunSkipBlockVars[i].opcode; 2736 CharUnits start_byte_pos = RunSkipBlockVars[i].block_var_bytepos; 2737 CharUnits end_byte_pos = start_byte_pos; 2738 unsigned j = i+1; 2739 while (j < size) { 2740 if (opcode == RunSkipBlockVars[j].opcode) { 2741 end_byte_pos = RunSkipBlockVars[j++].block_var_bytepos; 2742 i++; 2743 } 2744 else 2745 break; 2746 } 2747 CharUnits size_in_bytes = 2748 end_byte_pos - start_byte_pos + RunSkipBlockVars[j-1].block_var_size; 2749 if (j < size) { 2750 CharUnits gap = 2751 RunSkipBlockVars[j].block_var_bytepos - 2752 RunSkipBlockVars[j-1].block_var_bytepos - RunSkipBlockVars[j-1].block_var_size; 2753 size_in_bytes += gap; 2754 } 2755 CharUnits residue_in_bytes = CharUnits::Zero(); 2756 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES) { 2757 residue_in_bytes = size_in_bytes % WordSizeInBytes; 2758 size_in_bytes -= residue_in_bytes; 2759 opcode = BLOCK_LAYOUT_NON_OBJECT_WORDS; 2760 } 2761 2762 unsigned size_in_words = size_in_bytes.getQuantity() / WordSizeInBytes; 2763 while (size_in_words >= 16) { 2764 // Note that value in imm. is one less that the actual 2765 // value. So, 0xf means 16 words follow! 2766 unsigned char inst = (opcode << 4) | 0xf; 2767 Layout.push_back(inst); 2768 size_in_words -= 16; 2769 } 2770 if (size_in_words > 0) { 2771 // Note that value in imm. is one less that the actual 2772 // value. So, we subtract 1 away! 2773 unsigned char inst = (opcode << 4) | (size_in_words-1); 2774 Layout.push_back(inst); 2775 } 2776 if (residue_in_bytes > CharUnits::Zero()) { 2777 unsigned char inst = 2778 (BLOCK_LAYOUT_NON_OBJECT_BYTES << 4) | (residue_in_bytes.getQuantity()-1); 2779 Layout.push_back(inst); 2780 } 2781 } 2782 2783 while (!Layout.empty()) { 2784 unsigned char inst = Layout.back(); 2785 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2786 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES || opcode == BLOCK_LAYOUT_NON_OBJECT_WORDS) 2787 Layout.pop_back(); 2788 else 2789 break; 2790 } 2791 2792 uint64_t Result = InlineLayoutInstruction(Layout); 2793 if (Result != 0) { 2794 // Block variable layout instruction has been inlined. 2795 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2796 if (ComputeByrefLayout) 2797 printf("\n Inline BYREF variable layout: "); 2798 else 2799 printf("\n Inline block variable layout: "); 2800 printf("0x0%" PRIx64 "", Result); 2801 if (auto numStrong = (Result & 0xF00) >> 8) 2802 printf(", BL_STRONG:%d", (int) numStrong); 2803 if (auto numByref = (Result & 0x0F0) >> 4) 2804 printf(", BL_BYREF:%d", (int) numByref); 2805 if (auto numWeak = (Result & 0x00F) >> 0) 2806 printf(", BL_WEAK:%d", (int) numWeak); 2807 printf(", BL_OPERATOR:0\n"); 2808 } 2809 return llvm::ConstantInt::get(CGM.IntPtrTy, Result); 2810 } 2811 2812 unsigned char inst = (BLOCK_LAYOUT_OPERATOR << 4) | 0; 2813 Layout.push_back(inst); 2814 std::string BitMap; 2815 for (unsigned i = 0, e = Layout.size(); i != e; i++) 2816 BitMap += Layout[i]; 2817 2818 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2819 if (ComputeByrefLayout) 2820 printf("\n Byref variable layout: "); 2821 else 2822 printf("\n Block variable layout: "); 2823 for (unsigned i = 0, e = BitMap.size(); i != e; i++) { 2824 unsigned char inst = BitMap[i]; 2825 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2826 unsigned delta = 1; 2827 switch (opcode) { 2828 case BLOCK_LAYOUT_OPERATOR: 2829 printf("BL_OPERATOR:"); 2830 delta = 0; 2831 break; 2832 case BLOCK_LAYOUT_NON_OBJECT_BYTES: 2833 printf("BL_NON_OBJECT_BYTES:"); 2834 break; 2835 case BLOCK_LAYOUT_NON_OBJECT_WORDS: 2836 printf("BL_NON_OBJECT_WORD:"); 2837 break; 2838 case BLOCK_LAYOUT_STRONG: 2839 printf("BL_STRONG:"); 2840 break; 2841 case BLOCK_LAYOUT_BYREF: 2842 printf("BL_BYREF:"); 2843 break; 2844 case BLOCK_LAYOUT_WEAK: 2845 printf("BL_WEAK:"); 2846 break; 2847 case BLOCK_LAYOUT_UNRETAINED: 2848 printf("BL_UNRETAINED:"); 2849 break; 2850 } 2851 // Actual value of word count is one more that what is in the imm. 2852 // field of the instruction 2853 printf("%d", (inst & 0xf) + delta); 2854 if (i < e-1) 2855 printf(", "); 2856 else 2857 printf("\n"); 2858 } 2859 } 2860 2861 auto *Entry = CreateCStringLiteral(BitMap, ObjCLabelType::ClassName, 2862 /*ForceNonFragileABI=*/true, 2863 /*NullTerminate=*/false); 2864 return getConstantGEP(VMContext, Entry, 0, 0); 2865 } 2866 2867 static std::string getBlockLayoutInfoString( 2868 const SmallVectorImpl<CGObjCCommonMac::RUN_SKIP> &RunSkipBlockVars, 2869 bool HasCopyDisposeHelpers) { 2870 std::string Str; 2871 for (const CGObjCCommonMac::RUN_SKIP &R : RunSkipBlockVars) { 2872 if (R.opcode == CGObjCCommonMac::BLOCK_LAYOUT_UNRETAINED) { 2873 // Copy/dispose helpers don't have any information about 2874 // __unsafe_unretained captures, so unconditionally concatenate a string. 2875 Str += "u"; 2876 } else if (HasCopyDisposeHelpers) { 2877 // Information about __strong, __weak, or byref captures has already been 2878 // encoded into the names of the copy/dispose helpers. We have to add a 2879 // string here only when the copy/dispose helpers aren't generated (which 2880 // happens when the block is non-escaping). 2881 continue; 2882 } else { 2883 switch (R.opcode) { 2884 case CGObjCCommonMac::BLOCK_LAYOUT_STRONG: 2885 Str += "s"; 2886 break; 2887 case CGObjCCommonMac::BLOCK_LAYOUT_BYREF: 2888 Str += "r"; 2889 break; 2890 case CGObjCCommonMac::BLOCK_LAYOUT_WEAK: 2891 Str += "w"; 2892 break; 2893 default: 2894 continue; 2895 } 2896 } 2897 Str += llvm::to_string(R.block_var_bytepos.getQuantity()); 2898 Str += "l" + llvm::to_string(R.block_var_size.getQuantity()); 2899 } 2900 return Str; 2901 } 2902 2903 void CGObjCCommonMac::fillRunSkipBlockVars(CodeGenModule &CGM, 2904 const CGBlockInfo &blockInfo) { 2905 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2906 2907 RunSkipBlockVars.clear(); 2908 bool hasUnion = false; 2909 2910 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 2911 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2912 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2913 2914 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2915 2916 // Calculate the basic layout of the block structure. 2917 const llvm::StructLayout *layout = 2918 CGM.getDataLayout().getStructLayout(blockInfo.StructureType); 2919 2920 // Ignore the optional 'this' capture: C++ objects are not assumed 2921 // to be GC'ed. 2922 if (blockInfo.BlockHeaderForcedGapSize != CharUnits::Zero()) 2923 UpdateRunSkipBlockVars(false, Qualifiers::OCL_None, 2924 blockInfo.BlockHeaderForcedGapOffset, 2925 blockInfo.BlockHeaderForcedGapSize); 2926 // Walk the captured variables. 2927 for (const auto &CI : blockDecl->captures()) { 2928 const VarDecl *variable = CI.getVariable(); 2929 QualType type = variable->getType(); 2930 2931 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2932 2933 // Ignore constant captures. 2934 if (capture.isConstant()) continue; 2935 2936 CharUnits fieldOffset = 2937 CharUnits::fromQuantity(layout->getElementOffset(capture.getIndex())); 2938 2939 assert(!type->isArrayType() && "array variable should not be caught"); 2940 if (!CI.isByRef()) 2941 if (const RecordType *record = type->getAs<RecordType>()) { 2942 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion); 2943 continue; 2944 } 2945 CharUnits fieldSize; 2946 if (CI.isByRef()) 2947 fieldSize = CharUnits::fromQuantity(WordSizeInBytes); 2948 else 2949 fieldSize = CGM.getContext().getTypeSizeInChars(type); 2950 UpdateRunSkipBlockVars(CI.isByRef(), getBlockCaptureLifetime(type, false), 2951 fieldOffset, fieldSize); 2952 } 2953 } 2954 2955 llvm::Constant * 2956 CGObjCCommonMac::BuildRCBlockLayout(CodeGenModule &CGM, 2957 const CGBlockInfo &blockInfo) { 2958 fillRunSkipBlockVars(CGM, blockInfo); 2959 return getBitmapBlockLayout(false); 2960 } 2961 2962 std::string CGObjCCommonMac::getRCBlockLayoutStr(CodeGenModule &CGM, 2963 const CGBlockInfo &blockInfo) { 2964 fillRunSkipBlockVars(CGM, blockInfo); 2965 return getBlockLayoutInfoString(RunSkipBlockVars, 2966 blockInfo.needsCopyDisposeHelpers()); 2967 } 2968 2969 llvm::Constant *CGObjCCommonMac::BuildByrefLayout(CodeGen::CodeGenModule &CGM, 2970 QualType T) { 2971 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2972 assert(!T->isArrayType() && "__block array variable should not be caught"); 2973 CharUnits fieldOffset; 2974 RunSkipBlockVars.clear(); 2975 bool hasUnion = false; 2976 if (const RecordType *record = T->getAs<RecordType>()) { 2977 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion, true /*ByrefLayout */); 2978 llvm::Constant *Result = getBitmapBlockLayout(true); 2979 if (isa<llvm::ConstantInt>(Result)) 2980 Result = llvm::ConstantExpr::getIntToPtr(Result, CGM.Int8PtrTy); 2981 return Result; 2982 } 2983 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2984 return nullPtr; 2985 } 2986 2987 llvm::Value *CGObjCMac::GenerateProtocolRef(CodeGenFunction &CGF, 2988 const ObjCProtocolDecl *PD) { 2989 // FIXME: I don't understand why gcc generates this, or where it is 2990 // resolved. Investigate. Its also wasteful to look this up over and over. 2991 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 2992 2993 return llvm::ConstantExpr::getBitCast(GetProtocolRef(PD), 2994 ObjCTypes.getExternalProtocolPtrTy()); 2995 } 2996 2997 void CGObjCCommonMac::GenerateProtocol(const ObjCProtocolDecl *PD) { 2998 // FIXME: We shouldn't need this, the protocol decl should contain enough 2999 // information to tell us whether this was a declaration or a definition. 3000 DefinedProtocols.insert(PD->getIdentifier()); 3001 3002 // If we have generated a forward reference to this protocol, emit 3003 // it now. Otherwise do nothing, the protocol objects are lazily 3004 // emitted. 3005 if (Protocols.count(PD->getIdentifier())) 3006 GetOrEmitProtocol(PD); 3007 } 3008 3009 llvm::Constant *CGObjCCommonMac::GetProtocolRef(const ObjCProtocolDecl *PD) { 3010 if (DefinedProtocols.count(PD->getIdentifier())) 3011 return GetOrEmitProtocol(PD); 3012 3013 return GetOrEmitProtocolRef(PD); 3014 } 3015 3016 llvm::Value *CGObjCCommonMac::EmitClassRefViaRuntime( 3017 CodeGenFunction &CGF, 3018 const ObjCInterfaceDecl *ID, 3019 ObjCCommonTypesHelper &ObjCTypes) { 3020 llvm::FunctionCallee lookUpClassFn = ObjCTypes.getLookUpClassFn(); 3021 3022 llvm::Value *className = 3023 CGF.CGM.GetAddrOfConstantCString(ID->getObjCRuntimeNameAsString()) 3024 .getPointer(); 3025 ASTContext &ctx = CGF.CGM.getContext(); 3026 className = 3027 CGF.Builder.CreateBitCast(className, 3028 CGF.ConvertType( 3029 ctx.getPointerType(ctx.CharTy.withConst()))); 3030 llvm::CallInst *call = CGF.Builder.CreateCall(lookUpClassFn, className); 3031 call->setDoesNotThrow(); 3032 return call; 3033 } 3034 3035 /* 3036 // Objective-C 1.0 extensions 3037 struct _objc_protocol { 3038 struct _objc_protocol_extension *isa; 3039 char *protocol_name; 3040 struct _objc_protocol_list *protocol_list; 3041 struct _objc__method_prototype_list *instance_methods; 3042 struct _objc__method_prototype_list *class_methods 3043 }; 3044 3045 See EmitProtocolExtension(). 3046 */ 3047 llvm::Constant *CGObjCMac::GetOrEmitProtocol(const ObjCProtocolDecl *PD) { 3048 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 3049 3050 // Early exit if a defining object has already been generated. 3051 if (Entry && Entry->hasInitializer()) 3052 return Entry; 3053 3054 // Use the protocol definition, if there is one. 3055 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 3056 PD = Def; 3057 3058 // FIXME: I don't understand why gcc generates this, or where it is 3059 // resolved. Investigate. Its also wasteful to look this up over and over. 3060 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 3061 3062 // Construct method lists. 3063 auto methodLists = ProtocolMethodLists::get(PD); 3064 3065 ConstantInitBuilder builder(CGM); 3066 auto values = builder.beginStruct(ObjCTypes.ProtocolTy); 3067 values.add(EmitProtocolExtension(PD, methodLists)); 3068 values.add(GetClassName(PD->getObjCRuntimeNameAsString())); 3069 values.add(EmitProtocolList("OBJC_PROTOCOL_REFS_" + PD->getName(), 3070 PD->protocol_begin(), PD->protocol_end())); 3071 values.add(methodLists.emitMethodList(this, PD, 3072 ProtocolMethodLists::RequiredInstanceMethods)); 3073 values.add(methodLists.emitMethodList(this, PD, 3074 ProtocolMethodLists::RequiredClassMethods)); 3075 3076 if (Entry) { 3077 // Already created, update the initializer. 3078 assert(Entry->hasPrivateLinkage()); 3079 values.finishAndSetAsInitializer(Entry); 3080 } else { 3081 Entry = values.finishAndCreateGlobal("OBJC_PROTOCOL_" + PD->getName(), 3082 CGM.getPointerAlign(), 3083 /*constant*/ false, 3084 llvm::GlobalValue::PrivateLinkage); 3085 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 3086 3087 Protocols[PD->getIdentifier()] = Entry; 3088 } 3089 CGM.addCompilerUsedGlobal(Entry); 3090 3091 return Entry; 3092 } 3093 3094 llvm::Constant *CGObjCMac::GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) { 3095 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 3096 3097 if (!Entry) { 3098 // We use the initializer as a marker of whether this is a forward 3099 // reference or not. At module finalization we add the empty 3100 // contents for protocols which were referenced but never defined. 3101 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy, 3102 false, llvm::GlobalValue::PrivateLinkage, 3103 nullptr, "OBJC_PROTOCOL_" + PD->getName()); 3104 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 3105 // FIXME: Is this necessary? Why only for protocol? 3106 Entry->setAlignment(4); 3107 } 3108 3109 return Entry; 3110 } 3111 3112 /* 3113 struct _objc_protocol_extension { 3114 uint32_t size; 3115 struct objc_method_description_list *optional_instance_methods; 3116 struct objc_method_description_list *optional_class_methods; 3117 struct objc_property_list *instance_properties; 3118 const char ** extendedMethodTypes; 3119 struct objc_property_list *class_properties; 3120 }; 3121 */ 3122 llvm::Constant * 3123 CGObjCMac::EmitProtocolExtension(const ObjCProtocolDecl *PD, 3124 const ProtocolMethodLists &methodLists) { 3125 auto optInstanceMethods = 3126 methodLists.emitMethodList(this, PD, 3127 ProtocolMethodLists::OptionalInstanceMethods); 3128 auto optClassMethods = 3129 methodLists.emitMethodList(this, PD, 3130 ProtocolMethodLists::OptionalClassMethods); 3131 3132 auto extendedMethodTypes = 3133 EmitProtocolMethodTypes("OBJC_PROTOCOL_METHOD_TYPES_" + PD->getName(), 3134 methodLists.emitExtendedTypesArray(this), 3135 ObjCTypes); 3136 3137 auto instanceProperties = 3138 EmitPropertyList("OBJC_$_PROP_PROTO_LIST_" + PD->getName(), nullptr, PD, 3139 ObjCTypes, false); 3140 auto classProperties = 3141 EmitPropertyList("OBJC_$_CLASS_PROP_PROTO_LIST_" + PD->getName(), nullptr, 3142 PD, ObjCTypes, true); 3143 3144 // Return null if no extension bits are used. 3145 if (optInstanceMethods->isNullValue() && 3146 optClassMethods->isNullValue() && 3147 extendedMethodTypes->isNullValue() && 3148 instanceProperties->isNullValue() && 3149 classProperties->isNullValue()) { 3150 return llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy); 3151 } 3152 3153 uint64_t size = 3154 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolExtensionTy); 3155 3156 ConstantInitBuilder builder(CGM); 3157 auto values = builder.beginStruct(ObjCTypes.ProtocolExtensionTy); 3158 values.addInt(ObjCTypes.IntTy, size); 3159 values.add(optInstanceMethods); 3160 values.add(optClassMethods); 3161 values.add(instanceProperties); 3162 values.add(extendedMethodTypes); 3163 values.add(classProperties); 3164 3165 // No special section, but goes in llvm.used 3166 return CreateMetadataVar("_OBJC_PROTOCOLEXT_" + PD->getName(), values, 3167 StringRef(), CGM.getPointerAlign(), true); 3168 } 3169 3170 /* 3171 struct objc_protocol_list { 3172 struct objc_protocol_list *next; 3173 long count; 3174 Protocol *list[]; 3175 }; 3176 */ 3177 llvm::Constant * 3178 CGObjCMac::EmitProtocolList(Twine name, 3179 ObjCProtocolDecl::protocol_iterator begin, 3180 ObjCProtocolDecl::protocol_iterator end) { 3181 // Just return null for empty protocol lists 3182 if (begin == end) 3183 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 3184 3185 ConstantInitBuilder builder(CGM); 3186 auto values = builder.beginStruct(); 3187 3188 // This field is only used by the runtime. 3189 values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 3190 3191 // Reserve a slot for the count. 3192 auto countSlot = values.addPlaceholder(); 3193 3194 auto refsArray = values.beginArray(ObjCTypes.ProtocolPtrTy); 3195 for (; begin != end; ++begin) { 3196 refsArray.add(GetProtocolRef(*begin)); 3197 } 3198 auto count = refsArray.size(); 3199 3200 // This list is null terminated. 3201 refsArray.addNullPointer(ObjCTypes.ProtocolPtrTy); 3202 3203 refsArray.finishAndAddTo(values); 3204 values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count); 3205 3206 StringRef section; 3207 if (CGM.getTriple().isOSBinFormatMachO()) 3208 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3209 3210 llvm::GlobalVariable *GV = 3211 CreateMetadataVar(name, values, section, CGM.getPointerAlign(), false); 3212 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListPtrTy); 3213 } 3214 3215 static void 3216 PushProtocolProperties(llvm::SmallPtrSet<const IdentifierInfo*,16> &PropertySet, 3217 SmallVectorImpl<const ObjCPropertyDecl *> &Properties, 3218 const ObjCProtocolDecl *Proto, 3219 bool IsClassProperty) { 3220 for (const auto *P : Proto->protocols()) 3221 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3222 3223 for (const auto *PD : Proto->properties()) { 3224 if (IsClassProperty != PD->isClassProperty()) 3225 continue; 3226 if (!PropertySet.insert(PD->getIdentifier()).second) 3227 continue; 3228 Properties.push_back(PD); 3229 } 3230 } 3231 3232 /* 3233 struct _objc_property { 3234 const char * const name; 3235 const char * const attributes; 3236 }; 3237 3238 struct _objc_property_list { 3239 uint32_t entsize; // sizeof (struct _objc_property) 3240 uint32_t prop_count; 3241 struct _objc_property[prop_count]; 3242 }; 3243 */ 3244 llvm::Constant *CGObjCCommonMac::EmitPropertyList(Twine Name, 3245 const Decl *Container, 3246 const ObjCContainerDecl *OCD, 3247 const ObjCCommonTypesHelper &ObjCTypes, 3248 bool IsClassProperty) { 3249 if (IsClassProperty) { 3250 // Make this entry NULL for OS X with deployment target < 10.11, for iOS 3251 // with deployment target < 9.0. 3252 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 3253 if ((Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 11)) || 3254 (Triple.isiOS() && Triple.isOSVersionLT(9))) 3255 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3256 } 3257 3258 SmallVector<const ObjCPropertyDecl *, 16> Properties; 3259 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet; 3260 3261 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) 3262 for (const ObjCCategoryDecl *ClassExt : OID->known_extensions()) 3263 for (auto *PD : ClassExt->properties()) { 3264 if (IsClassProperty != PD->isClassProperty()) 3265 continue; 3266 PropertySet.insert(PD->getIdentifier()); 3267 Properties.push_back(PD); 3268 } 3269 3270 for (const auto *PD : OCD->properties()) { 3271 if (IsClassProperty != PD->isClassProperty()) 3272 continue; 3273 // Don't emit duplicate metadata for properties that were already in a 3274 // class extension. 3275 if (!PropertySet.insert(PD->getIdentifier()).second) 3276 continue; 3277 Properties.push_back(PD); 3278 } 3279 3280 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) { 3281 for (const auto *P : OID->all_referenced_protocols()) 3282 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3283 } 3284 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) { 3285 for (const auto *P : CD->protocols()) 3286 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3287 } 3288 3289 // Return null for empty list. 3290 if (Properties.empty()) 3291 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3292 3293 unsigned propertySize = 3294 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.PropertyTy); 3295 3296 ConstantInitBuilder builder(CGM); 3297 auto values = builder.beginStruct(); 3298 values.addInt(ObjCTypes.IntTy, propertySize); 3299 values.addInt(ObjCTypes.IntTy, Properties.size()); 3300 auto propertiesArray = values.beginArray(ObjCTypes.PropertyTy); 3301 for (auto PD : Properties) { 3302 auto property = propertiesArray.beginStruct(ObjCTypes.PropertyTy); 3303 property.add(GetPropertyName(PD->getIdentifier())); 3304 property.add(GetPropertyTypeString(PD, Container)); 3305 property.finishAndAddTo(propertiesArray); 3306 } 3307 propertiesArray.finishAndAddTo(values); 3308 3309 StringRef Section; 3310 if (CGM.getTriple().isOSBinFormatMachO()) 3311 Section = (ObjCABI == 2) ? "__DATA, __objc_const" 3312 : "__OBJC,__property,regular,no_dead_strip"; 3313 3314 llvm::GlobalVariable *GV = 3315 CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true); 3316 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.PropertyListPtrTy); 3317 } 3318 3319 llvm::Constant * 3320 CGObjCCommonMac::EmitProtocolMethodTypes(Twine Name, 3321 ArrayRef<llvm::Constant*> MethodTypes, 3322 const ObjCCommonTypesHelper &ObjCTypes) { 3323 // Return null for empty list. 3324 if (MethodTypes.empty()) 3325 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrPtrTy); 3326 3327 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 3328 MethodTypes.size()); 3329 llvm::Constant *Init = llvm::ConstantArray::get(AT, MethodTypes); 3330 3331 StringRef Section; 3332 if (CGM.getTriple().isOSBinFormatMachO() && ObjCABI == 2) 3333 Section = "__DATA, __objc_const"; 3334 3335 llvm::GlobalVariable *GV = 3336 CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true); 3337 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.Int8PtrPtrTy); 3338 } 3339 3340 /* 3341 struct _objc_category { 3342 char *category_name; 3343 char *class_name; 3344 struct _objc_method_list *instance_methods; 3345 struct _objc_method_list *class_methods; 3346 struct _objc_protocol_list *protocols; 3347 uint32_t size; // <rdar://4585769> 3348 struct _objc_property_list *instance_properties; 3349 struct _objc_property_list *class_properties; 3350 }; 3351 */ 3352 void CGObjCMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 3353 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategoryTy); 3354 3355 // FIXME: This is poor design, the OCD should have a pointer to the category 3356 // decl. Additionally, note that Category can be null for the @implementation 3357 // w/o an @interface case. Sema should just create one for us as it does for 3358 // @implementation so everyone else can live life under a clear blue sky. 3359 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 3360 const ObjCCategoryDecl *Category = 3361 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 3362 3363 SmallString<256> ExtName; 3364 llvm::raw_svector_ostream(ExtName) << Interface->getName() << '_' 3365 << OCD->getName(); 3366 3367 ConstantInitBuilder Builder(CGM); 3368 auto Values = Builder.beginStruct(ObjCTypes.CategoryTy); 3369 3370 enum { 3371 InstanceMethods, 3372 ClassMethods, 3373 NumMethodLists 3374 }; 3375 SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists]; 3376 for (const auto *MD : OCD->methods()) { 3377 Methods[unsigned(MD->isClassMethod())].push_back(MD); 3378 } 3379 3380 Values.add(GetClassName(OCD->getName())); 3381 Values.add(GetClassName(Interface->getObjCRuntimeNameAsString())); 3382 LazySymbols.insert(Interface->getIdentifier()); 3383 3384 Values.add(emitMethodList(ExtName, MethodListType::CategoryInstanceMethods, 3385 Methods[InstanceMethods])); 3386 Values.add(emitMethodList(ExtName, MethodListType::CategoryClassMethods, 3387 Methods[ClassMethods])); 3388 if (Category) { 3389 Values.add( 3390 EmitProtocolList("OBJC_CATEGORY_PROTOCOLS_" + ExtName.str(), 3391 Category->protocol_begin(), Category->protocol_end())); 3392 } else { 3393 Values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 3394 } 3395 Values.addInt(ObjCTypes.IntTy, Size); 3396 3397 // If there is no category @interface then there can be no properties. 3398 if (Category) { 3399 Values.add(EmitPropertyList("_OBJC_$_PROP_LIST_" + ExtName.str(), 3400 OCD, Category, ObjCTypes, false)); 3401 Values.add(EmitPropertyList("_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), 3402 OCD, Category, ObjCTypes, true)); 3403 } else { 3404 Values.addNullPointer(ObjCTypes.PropertyListPtrTy); 3405 Values.addNullPointer(ObjCTypes.PropertyListPtrTy); 3406 } 3407 3408 llvm::GlobalVariable *GV = 3409 CreateMetadataVar("OBJC_CATEGORY_" + ExtName.str(), Values, 3410 "__OBJC,__category,regular,no_dead_strip", 3411 CGM.getPointerAlign(), true); 3412 DefinedCategories.push_back(GV); 3413 DefinedCategoryNames.insert(llvm::CachedHashString(ExtName)); 3414 // method definition entries must be clear for next implementation. 3415 MethodDefinitions.clear(); 3416 } 3417 3418 enum FragileClassFlags { 3419 /// Apparently: is not a meta-class. 3420 FragileABI_Class_Factory = 0x00001, 3421 3422 /// Is a meta-class. 3423 FragileABI_Class_Meta = 0x00002, 3424 3425 /// Has a non-trivial constructor or destructor. 3426 FragileABI_Class_HasCXXStructors = 0x02000, 3427 3428 /// Has hidden visibility. 3429 FragileABI_Class_Hidden = 0x20000, 3430 3431 /// Class implementation was compiled under ARC. 3432 FragileABI_Class_CompiledByARC = 0x04000000, 3433 3434 /// Class implementation was compiled under MRC and has MRC weak ivars. 3435 /// Exclusive with CompiledByARC. 3436 FragileABI_Class_HasMRCWeakIvars = 0x08000000, 3437 }; 3438 3439 enum NonFragileClassFlags { 3440 /// Is a meta-class. 3441 NonFragileABI_Class_Meta = 0x00001, 3442 3443 /// Is a root class. 3444 NonFragileABI_Class_Root = 0x00002, 3445 3446 /// Has a non-trivial constructor or destructor. 3447 NonFragileABI_Class_HasCXXStructors = 0x00004, 3448 3449 /// Has hidden visibility. 3450 NonFragileABI_Class_Hidden = 0x00010, 3451 3452 /// Has the exception attribute. 3453 NonFragileABI_Class_Exception = 0x00020, 3454 3455 /// (Obsolete) ARC-specific: this class has a .release_ivars method 3456 NonFragileABI_Class_HasIvarReleaser = 0x00040, 3457 3458 /// Class implementation was compiled under ARC. 3459 NonFragileABI_Class_CompiledByARC = 0x00080, 3460 3461 /// Class has non-trivial destructors, but zero-initialization is okay. 3462 NonFragileABI_Class_HasCXXDestructorOnly = 0x00100, 3463 3464 /// Class implementation was compiled under MRC and has MRC weak ivars. 3465 /// Exclusive with CompiledByARC. 3466 NonFragileABI_Class_HasMRCWeakIvars = 0x00200, 3467 }; 3468 3469 static bool hasWeakMember(QualType type) { 3470 if (type.getObjCLifetime() == Qualifiers::OCL_Weak) { 3471 return true; 3472 } 3473 3474 if (auto recType = type->getAs<RecordType>()) { 3475 for (auto field : recType->getDecl()->fields()) { 3476 if (hasWeakMember(field->getType())) 3477 return true; 3478 } 3479 } 3480 3481 return false; 3482 } 3483 3484 /// For compatibility, we only want to set the "HasMRCWeakIvars" flag 3485 /// (and actually fill in a layout string) if we really do have any 3486 /// __weak ivars. 3487 static bool hasMRCWeakIvars(CodeGenModule &CGM, 3488 const ObjCImplementationDecl *ID) { 3489 if (!CGM.getLangOpts().ObjCWeak) return false; 3490 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 3491 3492 for (const ObjCIvarDecl *ivar = 3493 ID->getClassInterface()->all_declared_ivar_begin(); 3494 ivar; ivar = ivar->getNextIvar()) { 3495 if (hasWeakMember(ivar->getType())) 3496 return true; 3497 } 3498 3499 return false; 3500 } 3501 3502 /* 3503 struct _objc_class { 3504 Class isa; 3505 Class super_class; 3506 const char *name; 3507 long version; 3508 long info; 3509 long instance_size; 3510 struct _objc_ivar_list *ivars; 3511 struct _objc_method_list *methods; 3512 struct _objc_cache *cache; 3513 struct _objc_protocol_list *protocols; 3514 // Objective-C 1.0 extensions (<rdr://4585769>) 3515 const char *ivar_layout; 3516 struct _objc_class_ext *ext; 3517 }; 3518 3519 See EmitClassExtension(); 3520 */ 3521 void CGObjCMac::GenerateClass(const ObjCImplementationDecl *ID) { 3522 IdentifierInfo *RuntimeName = 3523 &CGM.getContext().Idents.get(ID->getObjCRuntimeNameAsString()); 3524 DefinedSymbols.insert(RuntimeName); 3525 3526 std::string ClassName = ID->getNameAsString(); 3527 // FIXME: Gross 3528 ObjCInterfaceDecl *Interface = 3529 const_cast<ObjCInterfaceDecl*>(ID->getClassInterface()); 3530 llvm::Constant *Protocols = 3531 EmitProtocolList("OBJC_CLASS_PROTOCOLS_" + ID->getName(), 3532 Interface->all_referenced_protocol_begin(), 3533 Interface->all_referenced_protocol_end()); 3534 unsigned Flags = FragileABI_Class_Factory; 3535 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) 3536 Flags |= FragileABI_Class_HasCXXStructors; 3537 3538 bool hasMRCWeak = false; 3539 3540 if (CGM.getLangOpts().ObjCAutoRefCount) 3541 Flags |= FragileABI_Class_CompiledByARC; 3542 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 3543 Flags |= FragileABI_Class_HasMRCWeakIvars; 3544 3545 CharUnits Size = 3546 CGM.getContext().getASTObjCImplementationLayout(ID).getSize(); 3547 3548 // FIXME: Set CXX-structors flag. 3549 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3550 Flags |= FragileABI_Class_Hidden; 3551 3552 enum { 3553 InstanceMethods, 3554 ClassMethods, 3555 NumMethodLists 3556 }; 3557 SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists]; 3558 for (const auto *MD : ID->methods()) { 3559 Methods[unsigned(MD->isClassMethod())].push_back(MD); 3560 } 3561 3562 for (const auto *PID : ID->property_impls()) { 3563 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3564 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3565 3566 if (ObjCMethodDecl *MD = PD->getGetterMethodDecl()) 3567 if (GetMethodDefinition(MD)) 3568 Methods[InstanceMethods].push_back(MD); 3569 if (ObjCMethodDecl *MD = PD->getSetterMethodDecl()) 3570 if (GetMethodDefinition(MD)) 3571 Methods[InstanceMethods].push_back(MD); 3572 } 3573 } 3574 3575 ConstantInitBuilder builder(CGM); 3576 auto values = builder.beginStruct(ObjCTypes.ClassTy); 3577 values.add(EmitMetaClass(ID, Protocols, Methods[ClassMethods])); 3578 if (ObjCInterfaceDecl *Super = Interface->getSuperClass()) { 3579 // Record a reference to the super class. 3580 LazySymbols.insert(Super->getIdentifier()); 3581 3582 values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3583 ObjCTypes.ClassPtrTy); 3584 } else { 3585 values.addNullPointer(ObjCTypes.ClassPtrTy); 3586 } 3587 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 3588 // Version is always 0. 3589 values.addInt(ObjCTypes.LongTy, 0); 3590 values.addInt(ObjCTypes.LongTy, Flags); 3591 values.addInt(ObjCTypes.LongTy, Size.getQuantity()); 3592 values.add(EmitIvarList(ID, false)); 3593 values.add(emitMethodList(ID->getName(), MethodListType::InstanceMethods, 3594 Methods[InstanceMethods])); 3595 // cache is always NULL. 3596 values.addNullPointer(ObjCTypes.CachePtrTy); 3597 values.add(Protocols); 3598 values.add(BuildStrongIvarLayout(ID, CharUnits::Zero(), Size)); 3599 values.add(EmitClassExtension(ID, Size, hasMRCWeak, 3600 /*isMetaclass*/ false)); 3601 3602 std::string Name("OBJC_CLASS_"); 3603 Name += ClassName; 3604 const char *Section = "__OBJC,__class,regular,no_dead_strip"; 3605 // Check for a forward reference. 3606 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3607 if (GV) { 3608 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3609 "Forward metaclass reference has incorrect type."); 3610 values.finishAndSetAsInitializer(GV); 3611 GV->setSection(Section); 3612 GV->setAlignment(CGM.getPointerAlign().getQuantity()); 3613 CGM.addCompilerUsedGlobal(GV); 3614 } else 3615 GV = CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true); 3616 DefinedClasses.push_back(GV); 3617 ImplementedClasses.push_back(Interface); 3618 // method definition entries must be clear for next implementation. 3619 MethodDefinitions.clear(); 3620 } 3621 3622 llvm::Constant *CGObjCMac::EmitMetaClass(const ObjCImplementationDecl *ID, 3623 llvm::Constant *Protocols, 3624 ArrayRef<const ObjCMethodDecl*> Methods) { 3625 unsigned Flags = FragileABI_Class_Meta; 3626 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassTy); 3627 3628 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3629 Flags |= FragileABI_Class_Hidden; 3630 3631 ConstantInitBuilder builder(CGM); 3632 auto values = builder.beginStruct(ObjCTypes.ClassTy); 3633 // The isa for the metaclass is the root of the hierarchy. 3634 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 3635 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 3636 Root = Super; 3637 values.addBitCast(GetClassName(Root->getObjCRuntimeNameAsString()), 3638 ObjCTypes.ClassPtrTy); 3639 // The super class for the metaclass is emitted as the name of the 3640 // super class. The runtime fixes this up to point to the 3641 // *metaclass* for the super class. 3642 if (ObjCInterfaceDecl *Super = ID->getClassInterface()->getSuperClass()) { 3643 values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3644 ObjCTypes.ClassPtrTy); 3645 } else { 3646 values.addNullPointer(ObjCTypes.ClassPtrTy); 3647 } 3648 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 3649 // Version is always 0. 3650 values.addInt(ObjCTypes.LongTy, 0); 3651 values.addInt(ObjCTypes.LongTy, Flags); 3652 values.addInt(ObjCTypes.LongTy, Size); 3653 values.add(EmitIvarList(ID, true)); 3654 values.add(emitMethodList(ID->getName(), MethodListType::ClassMethods, 3655 Methods)); 3656 // cache is always NULL. 3657 values.addNullPointer(ObjCTypes.CachePtrTy); 3658 values.add(Protocols); 3659 // ivar_layout for metaclass is always NULL. 3660 values.addNullPointer(ObjCTypes.Int8PtrTy); 3661 // The class extension is used to store class properties for metaclasses. 3662 values.add(EmitClassExtension(ID, CharUnits::Zero(), false/*hasMRCWeak*/, 3663 /*isMetaclass*/true)); 3664 3665 std::string Name("OBJC_METACLASS_"); 3666 Name += ID->getName(); 3667 3668 // Check for a forward reference. 3669 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3670 if (GV) { 3671 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3672 "Forward metaclass reference has incorrect type."); 3673 values.finishAndSetAsInitializer(GV); 3674 } else { 3675 GV = values.finishAndCreateGlobal(Name, CGM.getPointerAlign(), 3676 /*constant*/ false, 3677 llvm::GlobalValue::PrivateLinkage); 3678 } 3679 GV->setSection("__OBJC,__meta_class,regular,no_dead_strip"); 3680 CGM.addCompilerUsedGlobal(GV); 3681 3682 return GV; 3683 } 3684 3685 llvm::Constant *CGObjCMac::EmitMetaClassRef(const ObjCInterfaceDecl *ID) { 3686 std::string Name = "OBJC_METACLASS_" + ID->getNameAsString(); 3687 3688 // FIXME: Should we look these up somewhere other than the module. Its a bit 3689 // silly since we only generate these while processing an implementation, so 3690 // exactly one pointer would work if know when we entered/exitted an 3691 // implementation block. 3692 3693 // Check for an existing forward reference. 3694 // Previously, metaclass with internal linkage may have been defined. 3695 // pass 'true' as 2nd argument so it is returned. 3696 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3697 if (!GV) 3698 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3699 llvm::GlobalValue::PrivateLinkage, nullptr, 3700 Name); 3701 3702 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3703 "Forward metaclass reference has incorrect type."); 3704 return GV; 3705 } 3706 3707 llvm::Value *CGObjCMac::EmitSuperClassRef(const ObjCInterfaceDecl *ID) { 3708 std::string Name = "OBJC_CLASS_" + ID->getNameAsString(); 3709 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3710 3711 if (!GV) 3712 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3713 llvm::GlobalValue::PrivateLinkage, nullptr, 3714 Name); 3715 3716 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3717 "Forward class metadata reference has incorrect type."); 3718 return GV; 3719 } 3720 3721 /* 3722 Emit a "class extension", which in this specific context means extra 3723 data that doesn't fit in the normal fragile-ABI class structure, and 3724 has nothing to do with the language concept of a class extension. 3725 3726 struct objc_class_ext { 3727 uint32_t size; 3728 const char *weak_ivar_layout; 3729 struct _objc_property_list *properties; 3730 }; 3731 */ 3732 llvm::Constant * 3733 CGObjCMac::EmitClassExtension(const ObjCImplementationDecl *ID, 3734 CharUnits InstanceSize, bool hasMRCWeakIvars, 3735 bool isMetaclass) { 3736 // Weak ivar layout. 3737 llvm::Constant *layout; 3738 if (isMetaclass) { 3739 layout = llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 3740 } else { 3741 layout = BuildWeakIvarLayout(ID, CharUnits::Zero(), InstanceSize, 3742 hasMRCWeakIvars); 3743 } 3744 3745 // Properties. 3746 llvm::Constant *propertyList = 3747 EmitPropertyList((isMetaclass ? Twine("_OBJC_$_CLASS_PROP_LIST_") 3748 : Twine("_OBJC_$_PROP_LIST_")) 3749 + ID->getName(), 3750 ID, ID->getClassInterface(), ObjCTypes, isMetaclass); 3751 3752 // Return null if no extension bits are used. 3753 if (layout->isNullValue() && propertyList->isNullValue()) { 3754 return llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy); 3755 } 3756 3757 uint64_t size = 3758 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassExtensionTy); 3759 3760 ConstantInitBuilder builder(CGM); 3761 auto values = builder.beginStruct(ObjCTypes.ClassExtensionTy); 3762 values.addInt(ObjCTypes.IntTy, size); 3763 values.add(layout); 3764 values.add(propertyList); 3765 3766 return CreateMetadataVar("OBJC_CLASSEXT_" + ID->getName(), values, 3767 "__OBJC,__class_ext,regular,no_dead_strip", 3768 CGM.getPointerAlign(), true); 3769 } 3770 3771 /* 3772 struct objc_ivar { 3773 char *ivar_name; 3774 char *ivar_type; 3775 int ivar_offset; 3776 }; 3777 3778 struct objc_ivar_list { 3779 int ivar_count; 3780 struct objc_ivar list[count]; 3781 }; 3782 */ 3783 llvm::Constant *CGObjCMac::EmitIvarList(const ObjCImplementationDecl *ID, 3784 bool ForClass) { 3785 // When emitting the root class GCC emits ivar entries for the 3786 // actual class structure. It is not clear if we need to follow this 3787 // behavior; for now lets try and get away with not doing it. If so, 3788 // the cleanest solution would be to make up an ObjCInterfaceDecl 3789 // for the class. 3790 if (ForClass) 3791 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3792 3793 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 3794 3795 ConstantInitBuilder builder(CGM); 3796 auto ivarList = builder.beginStruct(); 3797 auto countSlot = ivarList.addPlaceholder(); 3798 auto ivars = ivarList.beginArray(ObjCTypes.IvarTy); 3799 3800 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 3801 IVD; IVD = IVD->getNextIvar()) { 3802 // Ignore unnamed bit-fields. 3803 if (!IVD->getDeclName()) 3804 continue; 3805 3806 auto ivar = ivars.beginStruct(ObjCTypes.IvarTy); 3807 ivar.add(GetMethodVarName(IVD->getIdentifier())); 3808 ivar.add(GetMethodVarType(IVD)); 3809 ivar.addInt(ObjCTypes.IntTy, ComputeIvarBaseOffset(CGM, OID, IVD)); 3810 ivar.finishAndAddTo(ivars); 3811 } 3812 3813 // Return null for empty list. 3814 auto count = ivars.size(); 3815 if (count == 0) { 3816 ivars.abandon(); 3817 ivarList.abandon(); 3818 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3819 } 3820 3821 ivars.finishAndAddTo(ivarList); 3822 ivarList.fillPlaceholderWithInt(countSlot, ObjCTypes.IntTy, count); 3823 3824 llvm::GlobalVariable *GV; 3825 if (ForClass) 3826 GV = 3827 CreateMetadataVar("OBJC_CLASS_VARIABLES_" + ID->getName(), ivarList, 3828 "__OBJC,__class_vars,regular,no_dead_strip", 3829 CGM.getPointerAlign(), true); 3830 else 3831 GV = CreateMetadataVar("OBJC_INSTANCE_VARIABLES_" + ID->getName(), ivarList, 3832 "__OBJC,__instance_vars,regular,no_dead_strip", 3833 CGM.getPointerAlign(), true); 3834 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListPtrTy); 3835 } 3836 3837 /// Build a struct objc_method_description constant for the given method. 3838 /// 3839 /// struct objc_method_description { 3840 /// SEL method_name; 3841 /// char *method_types; 3842 /// }; 3843 void CGObjCMac::emitMethodDescriptionConstant(ConstantArrayBuilder &builder, 3844 const ObjCMethodDecl *MD) { 3845 auto description = builder.beginStruct(ObjCTypes.MethodDescriptionTy); 3846 description.addBitCast(GetMethodVarName(MD->getSelector()), 3847 ObjCTypes.SelectorPtrTy); 3848 description.add(GetMethodVarType(MD)); 3849 description.finishAndAddTo(builder); 3850 } 3851 3852 /// Build a struct objc_method constant for the given method. 3853 /// 3854 /// struct objc_method { 3855 /// SEL method_name; 3856 /// char *method_types; 3857 /// void *method; 3858 /// }; 3859 void CGObjCMac::emitMethodConstant(ConstantArrayBuilder &builder, 3860 const ObjCMethodDecl *MD) { 3861 llvm::Function *fn = GetMethodDefinition(MD); 3862 assert(fn && "no definition registered for method"); 3863 3864 auto method = builder.beginStruct(ObjCTypes.MethodTy); 3865 method.addBitCast(GetMethodVarName(MD->getSelector()), 3866 ObjCTypes.SelectorPtrTy); 3867 method.add(GetMethodVarType(MD)); 3868 method.addBitCast(fn, ObjCTypes.Int8PtrTy); 3869 method.finishAndAddTo(builder); 3870 } 3871 3872 /// Build a struct objc_method_list or struct objc_method_description_list, 3873 /// as appropriate. 3874 /// 3875 /// struct objc_method_list { 3876 /// struct objc_method_list *obsolete; 3877 /// int count; 3878 /// struct objc_method methods_list[count]; 3879 /// }; 3880 /// 3881 /// struct objc_method_description_list { 3882 /// int count; 3883 /// struct objc_method_description list[count]; 3884 /// }; 3885 llvm::Constant *CGObjCMac::emitMethodList(Twine name, MethodListType MLT, 3886 ArrayRef<const ObjCMethodDecl *> methods) { 3887 StringRef prefix; 3888 StringRef section; 3889 bool forProtocol = false; 3890 switch (MLT) { 3891 case MethodListType::CategoryInstanceMethods: 3892 prefix = "OBJC_CATEGORY_INSTANCE_METHODS_"; 3893 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3894 forProtocol = false; 3895 break; 3896 case MethodListType::CategoryClassMethods: 3897 prefix = "OBJC_CATEGORY_CLASS_METHODS_"; 3898 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3899 forProtocol = false; 3900 break; 3901 case MethodListType::InstanceMethods: 3902 prefix = "OBJC_INSTANCE_METHODS_"; 3903 section = "__OBJC,__inst_meth,regular,no_dead_strip"; 3904 forProtocol = false; 3905 break; 3906 case MethodListType::ClassMethods: 3907 prefix = "OBJC_CLASS_METHODS_"; 3908 section = "__OBJC,__cls_meth,regular,no_dead_strip"; 3909 forProtocol = false; 3910 break; 3911 case MethodListType::ProtocolInstanceMethods: 3912 prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_"; 3913 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3914 forProtocol = true; 3915 break; 3916 case MethodListType::ProtocolClassMethods: 3917 prefix = "OBJC_PROTOCOL_CLASS_METHODS_"; 3918 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3919 forProtocol = true; 3920 break; 3921 case MethodListType::OptionalProtocolInstanceMethods: 3922 prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_OPT_"; 3923 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3924 forProtocol = true; 3925 break; 3926 case MethodListType::OptionalProtocolClassMethods: 3927 prefix = "OBJC_PROTOCOL_CLASS_METHODS_OPT_"; 3928 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3929 forProtocol = true; 3930 break; 3931 } 3932 3933 // Return null for empty list. 3934 if (methods.empty()) 3935 return llvm::Constant::getNullValue(forProtocol 3936 ? ObjCTypes.MethodDescriptionListPtrTy 3937 : ObjCTypes.MethodListPtrTy); 3938 3939 // For protocols, this is an objc_method_description_list, which has 3940 // a slightly different structure. 3941 if (forProtocol) { 3942 ConstantInitBuilder builder(CGM); 3943 auto values = builder.beginStruct(); 3944 values.addInt(ObjCTypes.IntTy, methods.size()); 3945 auto methodArray = values.beginArray(ObjCTypes.MethodDescriptionTy); 3946 for (auto MD : methods) { 3947 emitMethodDescriptionConstant(methodArray, MD); 3948 } 3949 methodArray.finishAndAddTo(values); 3950 3951 llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section, 3952 CGM.getPointerAlign(), true); 3953 return llvm::ConstantExpr::getBitCast(GV, 3954 ObjCTypes.MethodDescriptionListPtrTy); 3955 } 3956 3957 // Otherwise, it's an objc_method_list. 3958 ConstantInitBuilder builder(CGM); 3959 auto values = builder.beginStruct(); 3960 values.addNullPointer(ObjCTypes.Int8PtrTy); 3961 values.addInt(ObjCTypes.IntTy, methods.size()); 3962 auto methodArray = values.beginArray(ObjCTypes.MethodTy); 3963 for (auto MD : methods) { 3964 emitMethodConstant(methodArray, MD); 3965 } 3966 methodArray.finishAndAddTo(values); 3967 3968 llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section, 3969 CGM.getPointerAlign(), true); 3970 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListPtrTy); 3971 } 3972 3973 llvm::Function *CGObjCCommonMac::GenerateMethod(const ObjCMethodDecl *OMD, 3974 const ObjCContainerDecl *CD) { 3975 SmallString<256> Name; 3976 GetNameForMethod(OMD, CD, Name); 3977 3978 CodeGenTypes &Types = CGM.getTypes(); 3979 llvm::FunctionType *MethodTy = 3980 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 3981 llvm::Function *Method = 3982 llvm::Function::Create(MethodTy, 3983 llvm::GlobalValue::InternalLinkage, 3984 Name.str(), 3985 &CGM.getModule()); 3986 MethodDefinitions.insert(std::make_pair(OMD, Method)); 3987 3988 return Method; 3989 } 3990 3991 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name, 3992 ConstantStructBuilder &Init, 3993 StringRef Section, 3994 CharUnits Align, 3995 bool AddToUsed) { 3996 llvm::GlobalValue::LinkageTypes LT = 3997 getLinkageTypeForObjCMetadata(CGM, Section); 3998 llvm::GlobalVariable *GV = 3999 Init.finishAndCreateGlobal(Name, Align, /*constant*/ false, LT); 4000 if (!Section.empty()) 4001 GV->setSection(Section); 4002 if (AddToUsed) 4003 CGM.addCompilerUsedGlobal(GV); 4004 return GV; 4005 } 4006 4007 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name, 4008 llvm::Constant *Init, 4009 StringRef Section, 4010 CharUnits Align, 4011 bool AddToUsed) { 4012 llvm::Type *Ty = Init->getType(); 4013 llvm::GlobalValue::LinkageTypes LT = 4014 getLinkageTypeForObjCMetadata(CGM, Section); 4015 llvm::GlobalVariable *GV = 4016 new llvm::GlobalVariable(CGM.getModule(), Ty, false, LT, Init, Name); 4017 if (!Section.empty()) 4018 GV->setSection(Section); 4019 GV->setAlignment(Align.getQuantity()); 4020 if (AddToUsed) 4021 CGM.addCompilerUsedGlobal(GV); 4022 return GV; 4023 } 4024 4025 llvm::GlobalVariable * 4026 CGObjCCommonMac::CreateCStringLiteral(StringRef Name, ObjCLabelType Type, 4027 bool ForceNonFragileABI, 4028 bool NullTerminate) { 4029 StringRef Label; 4030 switch (Type) { 4031 case ObjCLabelType::ClassName: Label = "OBJC_CLASS_NAME_"; break; 4032 case ObjCLabelType::MethodVarName: Label = "OBJC_METH_VAR_NAME_"; break; 4033 case ObjCLabelType::MethodVarType: Label = "OBJC_METH_VAR_TYPE_"; break; 4034 case ObjCLabelType::PropertyName: Label = "OBJC_PROP_NAME_ATTR_"; break; 4035 } 4036 4037 bool NonFragile = ForceNonFragileABI || isNonFragileABI(); 4038 4039 StringRef Section; 4040 switch (Type) { 4041 case ObjCLabelType::ClassName: 4042 Section = NonFragile ? "__TEXT,__objc_classname,cstring_literals" 4043 : "__TEXT,__cstring,cstring_literals"; 4044 break; 4045 case ObjCLabelType::MethodVarName: 4046 Section = NonFragile ? "__TEXT,__objc_methname,cstring_literals" 4047 : "__TEXT,__cstring,cstring_literals"; 4048 break; 4049 case ObjCLabelType::MethodVarType: 4050 Section = NonFragile ? "__TEXT,__objc_methtype,cstring_literals" 4051 : "__TEXT,__cstring,cstring_literals"; 4052 break; 4053 case ObjCLabelType::PropertyName: 4054 Section = "__TEXT,__cstring,cstring_literals"; 4055 break; 4056 } 4057 4058 llvm::Constant *Value = 4059 llvm::ConstantDataArray::getString(VMContext, Name, NullTerminate); 4060 llvm::GlobalVariable *GV = 4061 new llvm::GlobalVariable(CGM.getModule(), Value->getType(), 4062 /*isConstant=*/true, 4063 llvm::GlobalValue::PrivateLinkage, Value, Label); 4064 if (CGM.getTriple().isOSBinFormatMachO()) 4065 GV->setSection(Section); 4066 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4067 GV->setAlignment(CharUnits::One().getQuantity()); 4068 CGM.addCompilerUsedGlobal(GV); 4069 4070 return GV; 4071 } 4072 4073 llvm::Function *CGObjCMac::ModuleInitFunction() { 4074 // Abuse this interface function as a place to finalize. 4075 FinishModule(); 4076 return nullptr; 4077 } 4078 4079 llvm::FunctionCallee CGObjCMac::GetPropertyGetFunction() { 4080 return ObjCTypes.getGetPropertyFn(); 4081 } 4082 4083 llvm::FunctionCallee CGObjCMac::GetPropertySetFunction() { 4084 return ObjCTypes.getSetPropertyFn(); 4085 } 4086 4087 llvm::FunctionCallee CGObjCMac::GetOptimizedPropertySetFunction(bool atomic, 4088 bool copy) { 4089 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 4090 } 4091 4092 llvm::FunctionCallee CGObjCMac::GetGetStructFunction() { 4093 return ObjCTypes.getCopyStructFn(); 4094 } 4095 4096 llvm::FunctionCallee CGObjCMac::GetSetStructFunction() { 4097 return ObjCTypes.getCopyStructFn(); 4098 } 4099 4100 llvm::FunctionCallee CGObjCMac::GetCppAtomicObjectGetFunction() { 4101 return ObjCTypes.getCppAtomicObjectFunction(); 4102 } 4103 4104 llvm::FunctionCallee CGObjCMac::GetCppAtomicObjectSetFunction() { 4105 return ObjCTypes.getCppAtomicObjectFunction(); 4106 } 4107 4108 llvm::FunctionCallee CGObjCMac::EnumerationMutationFunction() { 4109 return ObjCTypes.getEnumerationMutationFn(); 4110 } 4111 4112 void CGObjCMac::EmitTryStmt(CodeGenFunction &CGF, const ObjCAtTryStmt &S) { 4113 return EmitTryOrSynchronizedStmt(CGF, S); 4114 } 4115 4116 void CGObjCMac::EmitSynchronizedStmt(CodeGenFunction &CGF, 4117 const ObjCAtSynchronizedStmt &S) { 4118 return EmitTryOrSynchronizedStmt(CGF, S); 4119 } 4120 4121 namespace { 4122 struct PerformFragileFinally final : EHScopeStack::Cleanup { 4123 const Stmt &S; 4124 Address SyncArgSlot; 4125 Address CallTryExitVar; 4126 Address ExceptionData; 4127 ObjCTypesHelper &ObjCTypes; 4128 PerformFragileFinally(const Stmt *S, 4129 Address SyncArgSlot, 4130 Address CallTryExitVar, 4131 Address ExceptionData, 4132 ObjCTypesHelper *ObjCTypes) 4133 : S(*S), SyncArgSlot(SyncArgSlot), CallTryExitVar(CallTryExitVar), 4134 ExceptionData(ExceptionData), ObjCTypes(*ObjCTypes) {} 4135 4136 void Emit(CodeGenFunction &CGF, Flags flags) override { 4137 // Check whether we need to call objc_exception_try_exit. 4138 // In optimized code, this branch will always be folded. 4139 llvm::BasicBlock *FinallyCallExit = 4140 CGF.createBasicBlock("finally.call_exit"); 4141 llvm::BasicBlock *FinallyNoCallExit = 4142 CGF.createBasicBlock("finally.no_call_exit"); 4143 CGF.Builder.CreateCondBr(CGF.Builder.CreateLoad(CallTryExitVar), 4144 FinallyCallExit, FinallyNoCallExit); 4145 4146 CGF.EmitBlock(FinallyCallExit); 4147 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryExitFn(), 4148 ExceptionData.getPointer()); 4149 4150 CGF.EmitBlock(FinallyNoCallExit); 4151 4152 if (isa<ObjCAtTryStmt>(S)) { 4153 if (const ObjCAtFinallyStmt* FinallyStmt = 4154 cast<ObjCAtTryStmt>(S).getFinallyStmt()) { 4155 // Don't try to do the @finally if this is an EH cleanup. 4156 if (flags.isForEHCleanup()) return; 4157 4158 // Save the current cleanup destination in case there's 4159 // control flow inside the finally statement. 4160 llvm::Value *CurCleanupDest = 4161 CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot()); 4162 4163 CGF.EmitStmt(FinallyStmt->getFinallyBody()); 4164 4165 if (CGF.HaveInsertPoint()) { 4166 CGF.Builder.CreateStore(CurCleanupDest, 4167 CGF.getNormalCleanupDestSlot()); 4168 } else { 4169 // Currently, the end of the cleanup must always exist. 4170 CGF.EnsureInsertPoint(); 4171 } 4172 } 4173 } else { 4174 // Emit objc_sync_exit(expr); as finally's sole statement for 4175 // @synchronized. 4176 llvm::Value *SyncArg = CGF.Builder.CreateLoad(SyncArgSlot); 4177 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncExitFn(), SyncArg); 4178 } 4179 } 4180 }; 4181 4182 class FragileHazards { 4183 CodeGenFunction &CGF; 4184 SmallVector<llvm::Value*, 20> Locals; 4185 llvm::DenseSet<llvm::BasicBlock*> BlocksBeforeTry; 4186 4187 llvm::InlineAsm *ReadHazard; 4188 llvm::InlineAsm *WriteHazard; 4189 4190 llvm::FunctionType *GetAsmFnType(); 4191 4192 void collectLocals(); 4193 void emitReadHazard(CGBuilderTy &Builder); 4194 4195 public: 4196 FragileHazards(CodeGenFunction &CGF); 4197 4198 void emitWriteHazard(); 4199 void emitHazardsInNewBlocks(); 4200 }; 4201 } // end anonymous namespace 4202 4203 /// Create the fragile-ABI read and write hazards based on the current 4204 /// state of the function, which is presumed to be immediately prior 4205 /// to a @try block. These hazards are used to maintain correct 4206 /// semantics in the face of optimization and the fragile ABI's 4207 /// cavalier use of setjmp/longjmp. 4208 FragileHazards::FragileHazards(CodeGenFunction &CGF) : CGF(CGF) { 4209 collectLocals(); 4210 4211 if (Locals.empty()) return; 4212 4213 // Collect all the blocks in the function. 4214 for (llvm::Function::iterator 4215 I = CGF.CurFn->begin(), E = CGF.CurFn->end(); I != E; ++I) 4216 BlocksBeforeTry.insert(&*I); 4217 4218 llvm::FunctionType *AsmFnTy = GetAsmFnType(); 4219 4220 // Create a read hazard for the allocas. This inhibits dead-store 4221 // optimizations and forces the values to memory. This hazard is 4222 // inserted before any 'throwing' calls in the protected scope to 4223 // reflect the possibility that the variables might be read from the 4224 // catch block if the call throws. 4225 { 4226 std::string Constraint; 4227 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 4228 if (I) Constraint += ','; 4229 Constraint += "*m"; 4230 } 4231 4232 ReadHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 4233 } 4234 4235 // Create a write hazard for the allocas. This inhibits folding 4236 // loads across the hazard. This hazard is inserted at the 4237 // beginning of the catch path to reflect the possibility that the 4238 // variables might have been written within the protected scope. 4239 { 4240 std::string Constraint; 4241 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 4242 if (I) Constraint += ','; 4243 Constraint += "=*m"; 4244 } 4245 4246 WriteHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 4247 } 4248 } 4249 4250 /// Emit a write hazard at the current location. 4251 void FragileHazards::emitWriteHazard() { 4252 if (Locals.empty()) return; 4253 4254 CGF.EmitNounwindRuntimeCall(WriteHazard, Locals); 4255 } 4256 4257 void FragileHazards::emitReadHazard(CGBuilderTy &Builder) { 4258 assert(!Locals.empty()); 4259 llvm::CallInst *call = Builder.CreateCall(ReadHazard, Locals); 4260 call->setDoesNotThrow(); 4261 call->setCallingConv(CGF.getRuntimeCC()); 4262 } 4263 4264 /// Emit read hazards in all the protected blocks, i.e. all the blocks 4265 /// which have been inserted since the beginning of the try. 4266 void FragileHazards::emitHazardsInNewBlocks() { 4267 if (Locals.empty()) return; 4268 4269 CGBuilderTy Builder(CGF, CGF.getLLVMContext()); 4270 4271 // Iterate through all blocks, skipping those prior to the try. 4272 for (llvm::Function::iterator 4273 FI = CGF.CurFn->begin(), FE = CGF.CurFn->end(); FI != FE; ++FI) { 4274 llvm::BasicBlock &BB = *FI; 4275 if (BlocksBeforeTry.count(&BB)) continue; 4276 4277 // Walk through all the calls in the block. 4278 for (llvm::BasicBlock::iterator 4279 BI = BB.begin(), BE = BB.end(); BI != BE; ++BI) { 4280 llvm::Instruction &I = *BI; 4281 4282 // Ignore instructions that aren't non-intrinsic calls. 4283 // These are the only calls that can possibly call longjmp. 4284 if (!isa<llvm::CallInst>(I) && !isa<llvm::InvokeInst>(I)) 4285 continue; 4286 if (isa<llvm::IntrinsicInst>(I)) 4287 continue; 4288 4289 // Ignore call sites marked nounwind. This may be questionable, 4290 // since 'nounwind' doesn't necessarily mean 'does not call longjmp'. 4291 if (cast<llvm::CallBase>(I).doesNotThrow()) 4292 continue; 4293 4294 // Insert a read hazard before the call. This will ensure that 4295 // any writes to the locals are performed before making the 4296 // call. If the call throws, then this is sufficient to 4297 // guarantee correctness as long as it doesn't also write to any 4298 // locals. 4299 Builder.SetInsertPoint(&BB, BI); 4300 emitReadHazard(Builder); 4301 } 4302 } 4303 } 4304 4305 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, Address V) { 4306 if (V.isValid()) S.insert(V.getPointer()); 4307 } 4308 4309 void FragileHazards::collectLocals() { 4310 // Compute a set of allocas to ignore. 4311 llvm::DenseSet<llvm::Value*> AllocasToIgnore; 4312 addIfPresent(AllocasToIgnore, CGF.ReturnValue); 4313 addIfPresent(AllocasToIgnore, CGF.NormalCleanupDest); 4314 4315 // Collect all the allocas currently in the function. This is 4316 // probably way too aggressive. 4317 llvm::BasicBlock &Entry = CGF.CurFn->getEntryBlock(); 4318 for (llvm::BasicBlock::iterator 4319 I = Entry.begin(), E = Entry.end(); I != E; ++I) 4320 if (isa<llvm::AllocaInst>(*I) && !AllocasToIgnore.count(&*I)) 4321 Locals.push_back(&*I); 4322 } 4323 4324 llvm::FunctionType *FragileHazards::GetAsmFnType() { 4325 SmallVector<llvm::Type *, 16> tys(Locals.size()); 4326 for (unsigned i = 0, e = Locals.size(); i != e; ++i) 4327 tys[i] = Locals[i]->getType(); 4328 return llvm::FunctionType::get(CGF.VoidTy, tys, false); 4329 } 4330 4331 /* 4332 4333 Objective-C setjmp-longjmp (sjlj) Exception Handling 4334 -- 4335 4336 A catch buffer is a setjmp buffer plus: 4337 - a pointer to the exception that was caught 4338 - a pointer to the previous exception data buffer 4339 - two pointers of reserved storage 4340 Therefore catch buffers form a stack, with a pointer to the top 4341 of the stack kept in thread-local storage. 4342 4343 objc_exception_try_enter pushes a catch buffer onto the EH stack. 4344 objc_exception_try_exit pops the given catch buffer, which is 4345 required to be the top of the EH stack. 4346 objc_exception_throw pops the top of the EH stack, writes the 4347 thrown exception into the appropriate field, and longjmps 4348 to the setjmp buffer. It crashes the process (with a printf 4349 and an abort()) if there are no catch buffers on the stack. 4350 objc_exception_extract just reads the exception pointer out of the 4351 catch buffer. 4352 4353 There's no reason an implementation couldn't use a light-weight 4354 setjmp here --- something like __builtin_setjmp, but API-compatible 4355 with the heavyweight setjmp. This will be more important if we ever 4356 want to implement correct ObjC/C++ exception interactions for the 4357 fragile ABI. 4358 4359 Note that for this use of setjmp/longjmp to be correct, we may need 4360 to mark some local variables volatile: if a non-volatile local 4361 variable is modified between the setjmp and the longjmp, it has 4362 indeterminate value. For the purposes of LLVM IR, it may be 4363 sufficient to make loads and stores within the @try (to variables 4364 declared outside the @try) volatile. This is necessary for 4365 optimized correctness, but is not currently being done; this is 4366 being tracked as rdar://problem/8160285 4367 4368 The basic framework for a @try-catch-finally is as follows: 4369 { 4370 objc_exception_data d; 4371 id _rethrow = null; 4372 bool _call_try_exit = true; 4373 4374 objc_exception_try_enter(&d); 4375 if (!setjmp(d.jmp_buf)) { 4376 ... try body ... 4377 } else { 4378 // exception path 4379 id _caught = objc_exception_extract(&d); 4380 4381 // enter new try scope for handlers 4382 if (!setjmp(d.jmp_buf)) { 4383 ... match exception and execute catch blocks ... 4384 4385 // fell off end, rethrow. 4386 _rethrow = _caught; 4387 ... jump-through-finally to finally_rethrow ... 4388 } else { 4389 // exception in catch block 4390 _rethrow = objc_exception_extract(&d); 4391 _call_try_exit = false; 4392 ... jump-through-finally to finally_rethrow ... 4393 } 4394 } 4395 ... jump-through-finally to finally_end ... 4396 4397 finally: 4398 if (_call_try_exit) 4399 objc_exception_try_exit(&d); 4400 4401 ... finally block .... 4402 ... dispatch to finally destination ... 4403 4404 finally_rethrow: 4405 objc_exception_throw(_rethrow); 4406 4407 finally_end: 4408 } 4409 4410 This framework differs slightly from the one gcc uses, in that gcc 4411 uses _rethrow to determine if objc_exception_try_exit should be called 4412 and if the object should be rethrown. This breaks in the face of 4413 throwing nil and introduces unnecessary branches. 4414 4415 We specialize this framework for a few particular circumstances: 4416 4417 - If there are no catch blocks, then we avoid emitting the second 4418 exception handling context. 4419 4420 - If there is a catch-all catch block (i.e. @catch(...) or @catch(id 4421 e)) we avoid emitting the code to rethrow an uncaught exception. 4422 4423 - FIXME: If there is no @finally block we can do a few more 4424 simplifications. 4425 4426 Rethrows and Jumps-Through-Finally 4427 -- 4428 4429 '@throw;' is supported by pushing the currently-caught exception 4430 onto ObjCEHStack while the @catch blocks are emitted. 4431 4432 Branches through the @finally block are handled with an ordinary 4433 normal cleanup. We do not register an EH cleanup; fragile-ABI ObjC 4434 exceptions are not compatible with C++ exceptions, and this is 4435 hardly the only place where this will go wrong. 4436 4437 @synchronized(expr) { stmt; } is emitted as if it were: 4438 id synch_value = expr; 4439 objc_sync_enter(synch_value); 4440 @try { stmt; } @finally { objc_sync_exit(synch_value); } 4441 */ 4442 4443 void CGObjCMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 4444 const Stmt &S) { 4445 bool isTry = isa<ObjCAtTryStmt>(S); 4446 4447 // A destination for the fall-through edges of the catch handlers to 4448 // jump to. 4449 CodeGenFunction::JumpDest FinallyEnd = 4450 CGF.getJumpDestInCurrentScope("finally.end"); 4451 4452 // A destination for the rethrow edge of the catch handlers to jump 4453 // to. 4454 CodeGenFunction::JumpDest FinallyRethrow = 4455 CGF.getJumpDestInCurrentScope("finally.rethrow"); 4456 4457 // For @synchronized, call objc_sync_enter(sync.expr). The 4458 // evaluation of the expression must occur before we enter the 4459 // @synchronized. We can't avoid a temp here because we need the 4460 // value to be preserved. If the backend ever does liveness 4461 // correctly after setjmp, this will be unnecessary. 4462 Address SyncArgSlot = Address::invalid(); 4463 if (!isTry) { 4464 llvm::Value *SyncArg = 4465 CGF.EmitScalarExpr(cast<ObjCAtSynchronizedStmt>(S).getSynchExpr()); 4466 SyncArg = CGF.Builder.CreateBitCast(SyncArg, ObjCTypes.ObjectPtrTy); 4467 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncEnterFn(), SyncArg); 4468 4469 SyncArgSlot = CGF.CreateTempAlloca(SyncArg->getType(), 4470 CGF.getPointerAlign(), "sync.arg"); 4471 CGF.Builder.CreateStore(SyncArg, SyncArgSlot); 4472 } 4473 4474 // Allocate memory for the setjmp buffer. This needs to be kept 4475 // live throughout the try and catch blocks. 4476 Address ExceptionData = CGF.CreateTempAlloca(ObjCTypes.ExceptionDataTy, 4477 CGF.getPointerAlign(), 4478 "exceptiondata.ptr"); 4479 4480 // Create the fragile hazards. Note that this will not capture any 4481 // of the allocas required for exception processing, but will 4482 // capture the current basic block (which extends all the way to the 4483 // setjmp call) as "before the @try". 4484 FragileHazards Hazards(CGF); 4485 4486 // Create a flag indicating whether the cleanup needs to call 4487 // objc_exception_try_exit. This is true except when 4488 // - no catches match and we're branching through the cleanup 4489 // just to rethrow the exception, or 4490 // - a catch matched and we're falling out of the catch handler. 4491 // The setjmp-safety rule here is that we should always store to this 4492 // variable in a place that dominates the branch through the cleanup 4493 // without passing through any setjmps. 4494 Address CallTryExitVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), 4495 CharUnits::One(), 4496 "_call_try_exit"); 4497 4498 // A slot containing the exception to rethrow. Only needed when we 4499 // have both a @catch and a @finally. 4500 Address PropagatingExnVar = Address::invalid(); 4501 4502 // Push a normal cleanup to leave the try scope. 4503 CGF.EHStack.pushCleanup<PerformFragileFinally>(NormalAndEHCleanup, &S, 4504 SyncArgSlot, 4505 CallTryExitVar, 4506 ExceptionData, 4507 &ObjCTypes); 4508 4509 // Enter a try block: 4510 // - Call objc_exception_try_enter to push ExceptionData on top of 4511 // the EH stack. 4512 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4513 ExceptionData.getPointer()); 4514 4515 // - Call setjmp on the exception data buffer. 4516 llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0); 4517 llvm::Value *GEPIndexes[] = { Zero, Zero, Zero }; 4518 llvm::Value *SetJmpBuffer = CGF.Builder.CreateGEP( 4519 ObjCTypes.ExceptionDataTy, ExceptionData.getPointer(), GEPIndexes, 4520 "setjmp_buffer"); 4521 llvm::CallInst *SetJmpResult = CGF.EmitNounwindRuntimeCall( 4522 ObjCTypes.getSetJmpFn(), SetJmpBuffer, "setjmp_result"); 4523 SetJmpResult->setCanReturnTwice(); 4524 4525 // If setjmp returned 0, enter the protected block; otherwise, 4526 // branch to the handler. 4527 llvm::BasicBlock *TryBlock = CGF.createBasicBlock("try"); 4528 llvm::BasicBlock *TryHandler = CGF.createBasicBlock("try.handler"); 4529 llvm::Value *DidCatch = 4530 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4531 CGF.Builder.CreateCondBr(DidCatch, TryHandler, TryBlock); 4532 4533 // Emit the protected block. 4534 CGF.EmitBlock(TryBlock); 4535 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4536 CGF.EmitStmt(isTry ? cast<ObjCAtTryStmt>(S).getTryBody() 4537 : cast<ObjCAtSynchronizedStmt>(S).getSynchBody()); 4538 4539 CGBuilderTy::InsertPoint TryFallthroughIP = CGF.Builder.saveAndClearIP(); 4540 4541 // Emit the exception handler block. 4542 CGF.EmitBlock(TryHandler); 4543 4544 // Don't optimize loads of the in-scope locals across this point. 4545 Hazards.emitWriteHazard(); 4546 4547 // For a @synchronized (or a @try with no catches), just branch 4548 // through the cleanup to the rethrow block. 4549 if (!isTry || !cast<ObjCAtTryStmt>(S).getNumCatchStmts()) { 4550 // Tell the cleanup not to re-pop the exit. 4551 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4552 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4553 4554 // Otherwise, we have to match against the caught exceptions. 4555 } else { 4556 // Retrieve the exception object. We may emit multiple blocks but 4557 // nothing can cross this so the value is already in SSA form. 4558 llvm::CallInst *Caught = 4559 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4560 ExceptionData.getPointer(), "caught"); 4561 4562 // Push the exception to rethrow onto the EH value stack for the 4563 // benefit of any @throws in the handlers. 4564 CGF.ObjCEHValueStack.push_back(Caught); 4565 4566 const ObjCAtTryStmt* AtTryStmt = cast<ObjCAtTryStmt>(&S); 4567 4568 bool HasFinally = (AtTryStmt->getFinallyStmt() != nullptr); 4569 4570 llvm::BasicBlock *CatchBlock = nullptr; 4571 llvm::BasicBlock *CatchHandler = nullptr; 4572 if (HasFinally) { 4573 // Save the currently-propagating exception before 4574 // objc_exception_try_enter clears the exception slot. 4575 PropagatingExnVar = CGF.CreateTempAlloca(Caught->getType(), 4576 CGF.getPointerAlign(), 4577 "propagating_exception"); 4578 CGF.Builder.CreateStore(Caught, PropagatingExnVar); 4579 4580 // Enter a new exception try block (in case a @catch block 4581 // throws an exception). 4582 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4583 ExceptionData.getPointer()); 4584 4585 llvm::CallInst *SetJmpResult = 4586 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSetJmpFn(), 4587 SetJmpBuffer, "setjmp.result"); 4588 SetJmpResult->setCanReturnTwice(); 4589 4590 llvm::Value *Threw = 4591 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4592 4593 CatchBlock = CGF.createBasicBlock("catch"); 4594 CatchHandler = CGF.createBasicBlock("catch_for_catch"); 4595 CGF.Builder.CreateCondBr(Threw, CatchHandler, CatchBlock); 4596 4597 CGF.EmitBlock(CatchBlock); 4598 } 4599 4600 CGF.Builder.CreateStore(CGF.Builder.getInt1(HasFinally), CallTryExitVar); 4601 4602 // Handle catch list. As a special case we check if everything is 4603 // matched and avoid generating code for falling off the end if 4604 // so. 4605 bool AllMatched = false; 4606 for (unsigned I = 0, N = AtTryStmt->getNumCatchStmts(); I != N; ++I) { 4607 const ObjCAtCatchStmt *CatchStmt = AtTryStmt->getCatchStmt(I); 4608 4609 const VarDecl *CatchParam = CatchStmt->getCatchParamDecl(); 4610 const ObjCObjectPointerType *OPT = nullptr; 4611 4612 // catch(...) always matches. 4613 if (!CatchParam) { 4614 AllMatched = true; 4615 } else { 4616 OPT = CatchParam->getType()->getAs<ObjCObjectPointerType>(); 4617 4618 // catch(id e) always matches under this ABI, since only 4619 // ObjC exceptions end up here in the first place. 4620 // FIXME: For the time being we also match id<X>; this should 4621 // be rejected by Sema instead. 4622 if (OPT && (OPT->isObjCIdType() || OPT->isObjCQualifiedIdType())) 4623 AllMatched = true; 4624 } 4625 4626 // If this is a catch-all, we don't need to test anything. 4627 if (AllMatched) { 4628 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4629 4630 if (CatchParam) { 4631 CGF.EmitAutoVarDecl(*CatchParam); 4632 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4633 4634 // These types work out because ConvertType(id) == i8*. 4635 EmitInitOfCatchParam(CGF, Caught, CatchParam); 4636 } 4637 4638 CGF.EmitStmt(CatchStmt->getCatchBody()); 4639 4640 // The scope of the catch variable ends right here. 4641 CatchVarCleanups.ForceCleanup(); 4642 4643 CGF.EmitBranchThroughCleanup(FinallyEnd); 4644 break; 4645 } 4646 4647 assert(OPT && "Unexpected non-object pointer type in @catch"); 4648 const ObjCObjectType *ObjTy = OPT->getObjectType(); 4649 4650 // FIXME: @catch (Class c) ? 4651 ObjCInterfaceDecl *IDecl = ObjTy->getInterface(); 4652 assert(IDecl && "Catch parameter must have Objective-C type!"); 4653 4654 // Check if the @catch block matches the exception object. 4655 llvm::Value *Class = EmitClassRef(CGF, IDecl); 4656 4657 llvm::Value *matchArgs[] = { Class, Caught }; 4658 llvm::CallInst *Match = 4659 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionMatchFn(), 4660 matchArgs, "match"); 4661 4662 llvm::BasicBlock *MatchedBlock = CGF.createBasicBlock("match"); 4663 llvm::BasicBlock *NextCatchBlock = CGF.createBasicBlock("catch.next"); 4664 4665 CGF.Builder.CreateCondBr(CGF.Builder.CreateIsNotNull(Match, "matched"), 4666 MatchedBlock, NextCatchBlock); 4667 4668 // Emit the @catch block. 4669 CGF.EmitBlock(MatchedBlock); 4670 4671 // Collect any cleanups for the catch variable. The scope lasts until 4672 // the end of the catch body. 4673 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4674 4675 CGF.EmitAutoVarDecl(*CatchParam); 4676 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4677 4678 // Initialize the catch variable. 4679 llvm::Value *Tmp = 4680 CGF.Builder.CreateBitCast(Caught, 4681 CGF.ConvertType(CatchParam->getType())); 4682 EmitInitOfCatchParam(CGF, Tmp, CatchParam); 4683 4684 CGF.EmitStmt(CatchStmt->getCatchBody()); 4685 4686 // We're done with the catch variable. 4687 CatchVarCleanups.ForceCleanup(); 4688 4689 CGF.EmitBranchThroughCleanup(FinallyEnd); 4690 4691 CGF.EmitBlock(NextCatchBlock); 4692 } 4693 4694 CGF.ObjCEHValueStack.pop_back(); 4695 4696 // If nothing wanted anything to do with the caught exception, 4697 // kill the extract call. 4698 if (Caught->use_empty()) 4699 Caught->eraseFromParent(); 4700 4701 if (!AllMatched) 4702 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4703 4704 if (HasFinally) { 4705 // Emit the exception handler for the @catch blocks. 4706 CGF.EmitBlock(CatchHandler); 4707 4708 // In theory we might now need a write hazard, but actually it's 4709 // unnecessary because there's no local-accessing code between 4710 // the try's write hazard and here. 4711 //Hazards.emitWriteHazard(); 4712 4713 // Extract the new exception and save it to the 4714 // propagating-exception slot. 4715 assert(PropagatingExnVar.isValid()); 4716 llvm::CallInst *NewCaught = 4717 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4718 ExceptionData.getPointer(), "caught"); 4719 CGF.Builder.CreateStore(NewCaught, PropagatingExnVar); 4720 4721 // Don't pop the catch handler; the throw already did. 4722 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4723 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4724 } 4725 } 4726 4727 // Insert read hazards as required in the new blocks. 4728 Hazards.emitHazardsInNewBlocks(); 4729 4730 // Pop the cleanup. 4731 CGF.Builder.restoreIP(TryFallthroughIP); 4732 if (CGF.HaveInsertPoint()) 4733 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4734 CGF.PopCleanupBlock(); 4735 CGF.EmitBlock(FinallyEnd.getBlock(), true); 4736 4737 // Emit the rethrow block. 4738 CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); 4739 CGF.EmitBlock(FinallyRethrow.getBlock(), true); 4740 if (CGF.HaveInsertPoint()) { 4741 // If we have a propagating-exception variable, check it. 4742 llvm::Value *PropagatingExn; 4743 if (PropagatingExnVar.isValid()) { 4744 PropagatingExn = CGF.Builder.CreateLoad(PropagatingExnVar); 4745 4746 // Otherwise, just look in the buffer for the exception to throw. 4747 } else { 4748 llvm::CallInst *Caught = 4749 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4750 ExceptionData.getPointer()); 4751 PropagatingExn = Caught; 4752 } 4753 4754 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionThrowFn(), 4755 PropagatingExn); 4756 CGF.Builder.CreateUnreachable(); 4757 } 4758 4759 CGF.Builder.restoreIP(SavedIP); 4760 } 4761 4762 void CGObjCMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 4763 const ObjCAtThrowStmt &S, 4764 bool ClearInsertionPoint) { 4765 llvm::Value *ExceptionAsObject; 4766 4767 if (const Expr *ThrowExpr = S.getThrowExpr()) { 4768 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 4769 ExceptionAsObject = 4770 CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 4771 } else { 4772 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && 4773 "Unexpected rethrow outside @catch block."); 4774 ExceptionAsObject = CGF.ObjCEHValueStack.back(); 4775 } 4776 4777 CGF.EmitRuntimeCall(ObjCTypes.getExceptionThrowFn(), ExceptionAsObject) 4778 ->setDoesNotReturn(); 4779 CGF.Builder.CreateUnreachable(); 4780 4781 // Clear the insertion point to indicate we are in unreachable code. 4782 if (ClearInsertionPoint) 4783 CGF.Builder.ClearInsertionPoint(); 4784 } 4785 4786 /// EmitObjCWeakRead - Code gen for loading value of a __weak 4787 /// object: objc_read_weak (id *src) 4788 /// 4789 llvm::Value * CGObjCMac::EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 4790 Address AddrWeakObj) { 4791 llvm::Type* DestTy = AddrWeakObj.getElementType(); 4792 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, 4793 ObjCTypes.PtrObjectPtrTy); 4794 llvm::Value *read_weak = 4795 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 4796 AddrWeakObj.getPointer(), "weakread"); 4797 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 4798 return read_weak; 4799 } 4800 4801 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 4802 /// objc_assign_weak (id src, id *dst) 4803 /// 4804 void CGObjCMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 4805 llvm::Value *src, Address dst) { 4806 llvm::Type * SrcTy = src->getType(); 4807 if (!isa<llvm::PointerType>(SrcTy)) { 4808 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4809 assert(Size <= 8 && "does not support size > 8"); 4810 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4811 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4812 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4813 } 4814 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4815 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4816 llvm::Value *args[] = { src, dst.getPointer() }; 4817 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 4818 args, "weakassign"); 4819 } 4820 4821 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 4822 /// objc_assign_global (id src, id *dst) 4823 /// 4824 void CGObjCMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 4825 llvm::Value *src, Address dst, 4826 bool threadlocal) { 4827 llvm::Type * SrcTy = src->getType(); 4828 if (!isa<llvm::PointerType>(SrcTy)) { 4829 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4830 assert(Size <= 8 && "does not support size > 8"); 4831 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4832 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4833 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4834 } 4835 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4836 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4837 llvm::Value *args[] = { src, dst.getPointer() }; 4838 if (!threadlocal) 4839 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 4840 args, "globalassign"); 4841 else 4842 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 4843 args, "threadlocalassign"); 4844 } 4845 4846 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 4847 /// objc_assign_ivar (id src, id *dst, ptrdiff_t ivaroffset) 4848 /// 4849 void CGObjCMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 4850 llvm::Value *src, Address dst, 4851 llvm::Value *ivarOffset) { 4852 assert(ivarOffset && "EmitObjCIvarAssign - ivarOffset is NULL"); 4853 llvm::Type * SrcTy = src->getType(); 4854 if (!isa<llvm::PointerType>(SrcTy)) { 4855 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4856 assert(Size <= 8 && "does not support size > 8"); 4857 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4858 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4859 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4860 } 4861 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4862 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4863 llvm::Value *args[] = { src, dst.getPointer(), ivarOffset }; 4864 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 4865 } 4866 4867 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 4868 /// objc_assign_strongCast (id src, id *dst) 4869 /// 4870 void CGObjCMac::EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 4871 llvm::Value *src, Address dst) { 4872 llvm::Type * SrcTy = src->getType(); 4873 if (!isa<llvm::PointerType>(SrcTy)) { 4874 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4875 assert(Size <= 8 && "does not support size > 8"); 4876 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4877 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4878 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4879 } 4880 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4881 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4882 llvm::Value *args[] = { src, dst.getPointer() }; 4883 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 4884 args, "strongassign"); 4885 } 4886 4887 void CGObjCMac::EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 4888 Address DestPtr, 4889 Address SrcPtr, 4890 llvm::Value *size) { 4891 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 4892 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 4893 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), size }; 4894 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 4895 } 4896 4897 /// EmitObjCValueForIvar - Code Gen for ivar reference. 4898 /// 4899 LValue CGObjCMac::EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, 4900 QualType ObjectTy, 4901 llvm::Value *BaseValue, 4902 const ObjCIvarDecl *Ivar, 4903 unsigned CVRQualifiers) { 4904 const ObjCInterfaceDecl *ID = 4905 ObjectTy->getAs<ObjCObjectType>()->getInterface(); 4906 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 4907 EmitIvarOffset(CGF, ID, Ivar)); 4908 } 4909 4910 llvm::Value *CGObjCMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 4911 const ObjCInterfaceDecl *Interface, 4912 const ObjCIvarDecl *Ivar) { 4913 uint64_t Offset = ComputeIvarBaseOffset(CGM, Interface, Ivar); 4914 return llvm::ConstantInt::get( 4915 CGM.getTypes().ConvertType(CGM.getContext().LongTy), 4916 Offset); 4917 } 4918 4919 /* *** Private Interface *** */ 4920 4921 std::string CGObjCCommonMac::GetSectionName(StringRef Section, 4922 StringRef MachOAttributes) { 4923 switch (CGM.getTriple().getObjectFormat()) { 4924 case llvm::Triple::UnknownObjectFormat: 4925 llvm_unreachable("unexpected object file format"); 4926 case llvm::Triple::MachO: { 4927 if (MachOAttributes.empty()) 4928 return ("__DATA," + Section).str(); 4929 return ("__DATA," + Section + "," + MachOAttributes).str(); 4930 } 4931 case llvm::Triple::ELF: 4932 assert(Section.substr(0, 2) == "__" && 4933 "expected the name to begin with __"); 4934 return Section.substr(2).str(); 4935 case llvm::Triple::COFF: 4936 assert(Section.substr(0, 2) == "__" && 4937 "expected the name to begin with __"); 4938 return ("." + Section.substr(2) + "$B").str(); 4939 case llvm::Triple::Wasm: 4940 case llvm::Triple::XCOFF: 4941 llvm::report_fatal_error( 4942 "Objective-C support is unimplemented for object file format."); 4943 } 4944 4945 llvm_unreachable("Unhandled llvm::Triple::ObjectFormatType enum"); 4946 } 4947 4948 /// EmitImageInfo - Emit the image info marker used to encode some module 4949 /// level information. 4950 /// 4951 /// See: <rdr://4810609&4810587&4810587> 4952 /// struct IMAGE_INFO { 4953 /// unsigned version; 4954 /// unsigned flags; 4955 /// }; 4956 enum ImageInfoFlags { 4957 eImageInfo_FixAndContinue = (1 << 0), // This flag is no longer set by clang. 4958 eImageInfo_GarbageCollected = (1 << 1), 4959 eImageInfo_GCOnly = (1 << 2), 4960 eImageInfo_OptimizedByDyld = (1 << 3), // This flag is set by the dyld shared cache. 4961 4962 // A flag indicating that the module has no instances of a @synthesize of a 4963 // superclass variable. <rdar://problem/6803242> 4964 eImageInfo_CorrectedSynthesize = (1 << 4), // This flag is no longer set by clang. 4965 eImageInfo_ImageIsSimulated = (1 << 5), 4966 eImageInfo_ClassProperties = (1 << 6) 4967 }; 4968 4969 void CGObjCCommonMac::EmitImageInfo() { 4970 unsigned version = 0; // Version is unused? 4971 std::string Section = 4972 (ObjCABI == 1) 4973 ? "__OBJC,__image_info,regular" 4974 : GetSectionName("__objc_imageinfo", "regular,no_dead_strip"); 4975 4976 // Generate module-level named metadata to convey this information to the 4977 // linker and code-gen. 4978 llvm::Module &Mod = CGM.getModule(); 4979 4980 // Add the ObjC ABI version to the module flags. 4981 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Version", ObjCABI); 4982 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Version", 4983 version); 4984 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Section", 4985 llvm::MDString::get(VMContext, Section)); 4986 4987 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 4988 // Non-GC overrides those files which specify GC. 4989 Mod.addModuleFlag(llvm::Module::Override, 4990 "Objective-C Garbage Collection", (uint32_t)0); 4991 } else { 4992 // Add the ObjC garbage collection value. 4993 Mod.addModuleFlag(llvm::Module::Error, 4994 "Objective-C Garbage Collection", 4995 eImageInfo_GarbageCollected); 4996 4997 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 4998 // Add the ObjC GC Only value. 4999 Mod.addModuleFlag(llvm::Module::Error, "Objective-C GC Only", 5000 eImageInfo_GCOnly); 5001 5002 // Require that GC be specified and set to eImageInfo_GarbageCollected. 5003 llvm::Metadata *Ops[2] = { 5004 llvm::MDString::get(VMContext, "Objective-C Garbage Collection"), 5005 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 5006 llvm::Type::getInt32Ty(VMContext), eImageInfo_GarbageCollected))}; 5007 Mod.addModuleFlag(llvm::Module::Require, "Objective-C GC Only", 5008 llvm::MDNode::get(VMContext, Ops)); 5009 } 5010 } 5011 5012 // Indicate whether we're compiling this to run on a simulator. 5013 if (CGM.getTarget().getTriple().isSimulatorEnvironment()) 5014 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Is Simulated", 5015 eImageInfo_ImageIsSimulated); 5016 5017 // Indicate whether we are generating class properties. 5018 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Class Properties", 5019 eImageInfo_ClassProperties); 5020 } 5021 5022 // struct objc_module { 5023 // unsigned long version; 5024 // unsigned long size; 5025 // const char *name; 5026 // Symtab symtab; 5027 // }; 5028 5029 // FIXME: Get from somewhere 5030 static const int ModuleVersion = 7; 5031 5032 void CGObjCMac::EmitModuleInfo() { 5033 uint64_t Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ModuleTy); 5034 5035 ConstantInitBuilder builder(CGM); 5036 auto values = builder.beginStruct(ObjCTypes.ModuleTy); 5037 values.addInt(ObjCTypes.LongTy, ModuleVersion); 5038 values.addInt(ObjCTypes.LongTy, Size); 5039 // This used to be the filename, now it is unused. <rdr://4327263> 5040 values.add(GetClassName(StringRef(""))); 5041 values.add(EmitModuleSymbols()); 5042 CreateMetadataVar("OBJC_MODULES", values, 5043 "__OBJC,__module_info,regular,no_dead_strip", 5044 CGM.getPointerAlign(), true); 5045 } 5046 5047 llvm::Constant *CGObjCMac::EmitModuleSymbols() { 5048 unsigned NumClasses = DefinedClasses.size(); 5049 unsigned NumCategories = DefinedCategories.size(); 5050 5051 // Return null if no symbols were defined. 5052 if (!NumClasses && !NumCategories) 5053 return llvm::Constant::getNullValue(ObjCTypes.SymtabPtrTy); 5054 5055 ConstantInitBuilder builder(CGM); 5056 auto values = builder.beginStruct(); 5057 values.addInt(ObjCTypes.LongTy, 0); 5058 values.addNullPointer(ObjCTypes.SelectorPtrTy); 5059 values.addInt(ObjCTypes.ShortTy, NumClasses); 5060 values.addInt(ObjCTypes.ShortTy, NumCategories); 5061 5062 // The runtime expects exactly the list of defined classes followed 5063 // by the list of defined categories, in a single array. 5064 auto array = values.beginArray(ObjCTypes.Int8PtrTy); 5065 for (unsigned i=0; i<NumClasses; i++) { 5066 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 5067 assert(ID); 5068 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 5069 // We are implementing a weak imported interface. Give it external linkage 5070 if (ID->isWeakImported() && !IMP->isWeakImported()) 5071 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 5072 5073 array.addBitCast(DefinedClasses[i], ObjCTypes.Int8PtrTy); 5074 } 5075 for (unsigned i=0; i<NumCategories; i++) 5076 array.addBitCast(DefinedCategories[i], ObjCTypes.Int8PtrTy); 5077 5078 array.finishAndAddTo(values); 5079 5080 llvm::GlobalVariable *GV = CreateMetadataVar( 5081 "OBJC_SYMBOLS", values, "__OBJC,__symbols,regular,no_dead_strip", 5082 CGM.getPointerAlign(), true); 5083 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.SymtabPtrTy); 5084 } 5085 5086 llvm::Value *CGObjCMac::EmitClassRefFromId(CodeGenFunction &CGF, 5087 IdentifierInfo *II) { 5088 LazySymbols.insert(II); 5089 5090 llvm::GlobalVariable *&Entry = ClassReferences[II]; 5091 5092 if (!Entry) { 5093 llvm::Constant *Casted = 5094 llvm::ConstantExpr::getBitCast(GetClassName(II->getName()), 5095 ObjCTypes.ClassPtrTy); 5096 Entry = CreateMetadataVar( 5097 "OBJC_CLASS_REFERENCES_", Casted, 5098 "__OBJC,__cls_refs,literal_pointers,no_dead_strip", 5099 CGM.getPointerAlign(), true); 5100 } 5101 5102 return CGF.Builder.CreateAlignedLoad(Entry, CGF.getPointerAlign()); 5103 } 5104 5105 llvm::Value *CGObjCMac::EmitClassRef(CodeGenFunction &CGF, 5106 const ObjCInterfaceDecl *ID) { 5107 // If the class has the objc_runtime_visible attribute, we need to 5108 // use the Objective-C runtime to get the class. 5109 if (ID->hasAttr<ObjCRuntimeVisibleAttr>()) 5110 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes); 5111 5112 IdentifierInfo *RuntimeName = 5113 &CGM.getContext().Idents.get(ID->getObjCRuntimeNameAsString()); 5114 return EmitClassRefFromId(CGF, RuntimeName); 5115 } 5116 5117 llvm::Value *CGObjCMac::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) { 5118 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 5119 return EmitClassRefFromId(CGF, II); 5120 } 5121 5122 llvm::Value *CGObjCMac::EmitSelector(CodeGenFunction &CGF, Selector Sel) { 5123 return CGF.Builder.CreateLoad(EmitSelectorAddr(CGF, Sel)); 5124 } 5125 5126 Address CGObjCMac::EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel) { 5127 CharUnits Align = CGF.getPointerAlign(); 5128 5129 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 5130 if (!Entry) { 5131 llvm::Constant *Casted = 5132 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 5133 ObjCTypes.SelectorPtrTy); 5134 Entry = CreateMetadataVar( 5135 "OBJC_SELECTOR_REFERENCES_", Casted, 5136 "__OBJC,__message_refs,literal_pointers,no_dead_strip", Align, true); 5137 Entry->setExternallyInitialized(true); 5138 } 5139 5140 return Address(Entry, Align); 5141 } 5142 5143 llvm::Constant *CGObjCCommonMac::GetClassName(StringRef RuntimeName) { 5144 llvm::GlobalVariable *&Entry = ClassNames[RuntimeName]; 5145 if (!Entry) 5146 Entry = CreateCStringLiteral(RuntimeName, ObjCLabelType::ClassName); 5147 return getConstantGEP(VMContext, Entry, 0, 0); 5148 } 5149 5150 llvm::Function *CGObjCCommonMac::GetMethodDefinition(const ObjCMethodDecl *MD) { 5151 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*>::iterator 5152 I = MethodDefinitions.find(MD); 5153 if (I != MethodDefinitions.end()) 5154 return I->second; 5155 5156 return nullptr; 5157 } 5158 5159 /// GetIvarLayoutName - Returns a unique constant for the given 5160 /// ivar layout bitmap. 5161 llvm::Constant *CGObjCCommonMac::GetIvarLayoutName(IdentifierInfo *Ident, 5162 const ObjCCommonTypesHelper &ObjCTypes) { 5163 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 5164 } 5165 5166 void IvarLayoutBuilder::visitRecord(const RecordType *RT, 5167 CharUnits offset) { 5168 const RecordDecl *RD = RT->getDecl(); 5169 5170 // If this is a union, remember that we had one, because it might mess 5171 // up the ordering of layout entries. 5172 if (RD->isUnion()) 5173 IsDisordered = true; 5174 5175 const ASTRecordLayout *recLayout = nullptr; 5176 visitAggregate(RD->field_begin(), RD->field_end(), offset, 5177 [&](const FieldDecl *field) -> CharUnits { 5178 if (!recLayout) 5179 recLayout = &CGM.getContext().getASTRecordLayout(RD); 5180 auto offsetInBits = recLayout->getFieldOffset(field->getFieldIndex()); 5181 return CGM.getContext().toCharUnitsFromBits(offsetInBits); 5182 }); 5183 } 5184 5185 template <class Iterator, class GetOffsetFn> 5186 void IvarLayoutBuilder::visitAggregate(Iterator begin, Iterator end, 5187 CharUnits aggregateOffset, 5188 const GetOffsetFn &getOffset) { 5189 for (; begin != end; ++begin) { 5190 auto field = *begin; 5191 5192 // Skip over bitfields. 5193 if (field->isBitField()) { 5194 continue; 5195 } 5196 5197 // Compute the offset of the field within the aggregate. 5198 CharUnits fieldOffset = aggregateOffset + getOffset(field); 5199 5200 visitField(field, fieldOffset); 5201 } 5202 } 5203 5204 /// Collect layout information for the given fields into IvarsInfo. 5205 void IvarLayoutBuilder::visitField(const FieldDecl *field, 5206 CharUnits fieldOffset) { 5207 QualType fieldType = field->getType(); 5208 5209 // Drill down into arrays. 5210 uint64_t numElts = 1; 5211 if (auto arrayType = CGM.getContext().getAsIncompleteArrayType(fieldType)) { 5212 numElts = 0; 5213 fieldType = arrayType->getElementType(); 5214 } 5215 // Unlike incomplete arrays, constant arrays can be nested. 5216 while (auto arrayType = CGM.getContext().getAsConstantArrayType(fieldType)) { 5217 numElts *= arrayType->getSize().getZExtValue(); 5218 fieldType = arrayType->getElementType(); 5219 } 5220 5221 assert(!fieldType->isArrayType() && "ivar of non-constant array type?"); 5222 5223 // If we ended up with a zero-sized array, we've done what we can do within 5224 // the limits of this layout encoding. 5225 if (numElts == 0) return; 5226 5227 // Recurse if the base element type is a record type. 5228 if (auto recType = fieldType->getAs<RecordType>()) { 5229 size_t oldEnd = IvarsInfo.size(); 5230 5231 visitRecord(recType, fieldOffset); 5232 5233 // If we have an array, replicate the first entry's layout information. 5234 auto numEltEntries = IvarsInfo.size() - oldEnd; 5235 if (numElts != 1 && numEltEntries != 0) { 5236 CharUnits eltSize = CGM.getContext().getTypeSizeInChars(recType); 5237 for (uint64_t eltIndex = 1; eltIndex != numElts; ++eltIndex) { 5238 // Copy the last numEltEntries onto the end of the array, adjusting 5239 // each for the element size. 5240 for (size_t i = 0; i != numEltEntries; ++i) { 5241 auto firstEntry = IvarsInfo[oldEnd + i]; 5242 IvarsInfo.push_back(IvarInfo(firstEntry.Offset + eltIndex * eltSize, 5243 firstEntry.SizeInWords)); 5244 } 5245 } 5246 } 5247 5248 return; 5249 } 5250 5251 // Classify the element type. 5252 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), fieldType); 5253 5254 // If it matches what we're looking for, add an entry. 5255 if ((ForStrongLayout && GCAttr == Qualifiers::Strong) 5256 || (!ForStrongLayout && GCAttr == Qualifiers::Weak)) { 5257 assert(CGM.getContext().getTypeSizeInChars(fieldType) 5258 == CGM.getPointerSize()); 5259 IvarsInfo.push_back(IvarInfo(fieldOffset, numElts)); 5260 } 5261 } 5262 5263 /// buildBitmap - This routine does the horsework of taking the offsets of 5264 /// strong/weak references and creating a bitmap. The bitmap is also 5265 /// returned in the given buffer, suitable for being passed to \c dump(). 5266 llvm::Constant *IvarLayoutBuilder::buildBitmap(CGObjCCommonMac &CGObjC, 5267 llvm::SmallVectorImpl<unsigned char> &buffer) { 5268 // The bitmap is a series of skip/scan instructions, aligned to word 5269 // boundaries. The skip is performed first. 5270 const unsigned char MaxNibble = 0xF; 5271 const unsigned char SkipMask = 0xF0, SkipShift = 4; 5272 const unsigned char ScanMask = 0x0F, ScanShift = 0; 5273 5274 assert(!IvarsInfo.empty() && "generating bitmap for no data"); 5275 5276 // Sort the ivar info on byte position in case we encounterred a 5277 // union nested in the ivar list. 5278 if (IsDisordered) { 5279 // This isn't a stable sort, but our algorithm should handle it fine. 5280 llvm::array_pod_sort(IvarsInfo.begin(), IvarsInfo.end()); 5281 } else { 5282 assert(std::is_sorted(IvarsInfo.begin(), IvarsInfo.end())); 5283 } 5284 assert(IvarsInfo.back().Offset < InstanceEnd); 5285 5286 assert(buffer.empty()); 5287 5288 // Skip the next N words. 5289 auto skip = [&](unsigned numWords) { 5290 assert(numWords > 0); 5291 5292 // Try to merge into the previous byte. Since scans happen second, we 5293 // can't do this if it includes a scan. 5294 if (!buffer.empty() && !(buffer.back() & ScanMask)) { 5295 unsigned lastSkip = buffer.back() >> SkipShift; 5296 if (lastSkip < MaxNibble) { 5297 unsigned claimed = std::min(MaxNibble - lastSkip, numWords); 5298 numWords -= claimed; 5299 lastSkip += claimed; 5300 buffer.back() = (lastSkip << SkipShift); 5301 } 5302 } 5303 5304 while (numWords >= MaxNibble) { 5305 buffer.push_back(MaxNibble << SkipShift); 5306 numWords -= MaxNibble; 5307 } 5308 if (numWords) { 5309 buffer.push_back(numWords << SkipShift); 5310 } 5311 }; 5312 5313 // Scan the next N words. 5314 auto scan = [&](unsigned numWords) { 5315 assert(numWords > 0); 5316 5317 // Try to merge into the previous byte. Since scans happen second, we can 5318 // do this even if it includes a skip. 5319 if (!buffer.empty()) { 5320 unsigned lastScan = (buffer.back() & ScanMask) >> ScanShift; 5321 if (lastScan < MaxNibble) { 5322 unsigned claimed = std::min(MaxNibble - lastScan, numWords); 5323 numWords -= claimed; 5324 lastScan += claimed; 5325 buffer.back() = (buffer.back() & SkipMask) | (lastScan << ScanShift); 5326 } 5327 } 5328 5329 while (numWords >= MaxNibble) { 5330 buffer.push_back(MaxNibble << ScanShift); 5331 numWords -= MaxNibble; 5332 } 5333 if (numWords) { 5334 buffer.push_back(numWords << ScanShift); 5335 } 5336 }; 5337 5338 // One past the end of the last scan. 5339 unsigned endOfLastScanInWords = 0; 5340 const CharUnits WordSize = CGM.getPointerSize(); 5341 5342 // Consider all the scan requests. 5343 for (auto &request : IvarsInfo) { 5344 CharUnits beginOfScan = request.Offset - InstanceBegin; 5345 5346 // Ignore scan requests that don't start at an even multiple of the 5347 // word size. We can't encode them. 5348 if ((beginOfScan % WordSize) != 0) continue; 5349 5350 // Ignore scan requests that start before the instance start. 5351 // This assumes that scans never span that boundary. The boundary 5352 // isn't the true start of the ivars, because in the fragile-ARC case 5353 // it's rounded up to word alignment, but the test above should leave 5354 // us ignoring that possibility. 5355 if (beginOfScan.isNegative()) { 5356 assert(request.Offset + request.SizeInWords * WordSize <= InstanceBegin); 5357 continue; 5358 } 5359 5360 unsigned beginOfScanInWords = beginOfScan / WordSize; 5361 unsigned endOfScanInWords = beginOfScanInWords + request.SizeInWords; 5362 5363 // If the scan starts some number of words after the last one ended, 5364 // skip forward. 5365 if (beginOfScanInWords > endOfLastScanInWords) { 5366 skip(beginOfScanInWords - endOfLastScanInWords); 5367 5368 // Otherwise, start scanning where the last left off. 5369 } else { 5370 beginOfScanInWords = endOfLastScanInWords; 5371 5372 // If that leaves us with nothing to scan, ignore this request. 5373 if (beginOfScanInWords >= endOfScanInWords) continue; 5374 } 5375 5376 // Scan to the end of the request. 5377 assert(beginOfScanInWords < endOfScanInWords); 5378 scan(endOfScanInWords - beginOfScanInWords); 5379 endOfLastScanInWords = endOfScanInWords; 5380 } 5381 5382 if (buffer.empty()) 5383 return llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 5384 5385 // For GC layouts, emit a skip to the end of the allocation so that we 5386 // have precise information about the entire thing. This isn't useful 5387 // or necessary for the ARC-style layout strings. 5388 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 5389 unsigned lastOffsetInWords = 5390 (InstanceEnd - InstanceBegin + WordSize - CharUnits::One()) / WordSize; 5391 if (lastOffsetInWords > endOfLastScanInWords) { 5392 skip(lastOffsetInWords - endOfLastScanInWords); 5393 } 5394 } 5395 5396 // Null terminate the string. 5397 buffer.push_back(0); 5398 5399 auto *Entry = CGObjC.CreateCStringLiteral( 5400 reinterpret_cast<char *>(buffer.data()), ObjCLabelType::ClassName); 5401 return getConstantGEP(CGM.getLLVMContext(), Entry, 0, 0); 5402 } 5403 5404 /// BuildIvarLayout - Builds ivar layout bitmap for the class 5405 /// implementation for the __strong or __weak case. 5406 /// The layout map displays which words in ivar list must be skipped 5407 /// and which must be scanned by GC (see below). String is built of bytes. 5408 /// Each byte is divided up in two nibbles (4-bit each). Left nibble is count 5409 /// of words to skip and right nibble is count of words to scan. So, each 5410 /// nibble represents up to 15 workds to skip or scan. Skipping the rest is 5411 /// represented by a 0x00 byte which also ends the string. 5412 /// 1. when ForStrongLayout is true, following ivars are scanned: 5413 /// - id, Class 5414 /// - object * 5415 /// - __strong anything 5416 /// 5417 /// 2. When ForStrongLayout is false, following ivars are scanned: 5418 /// - __weak anything 5419 /// 5420 llvm::Constant * 5421 CGObjCCommonMac::BuildIvarLayout(const ObjCImplementationDecl *OMD, 5422 CharUnits beginOffset, CharUnits endOffset, 5423 bool ForStrongLayout, bool HasMRCWeakIvars) { 5424 // If this is MRC, and we're either building a strong layout or there 5425 // are no weak ivars, bail out early. 5426 llvm::Type *PtrTy = CGM.Int8PtrTy; 5427 if (CGM.getLangOpts().getGC() == LangOptions::NonGC && 5428 !CGM.getLangOpts().ObjCAutoRefCount && 5429 (ForStrongLayout || !HasMRCWeakIvars)) 5430 return llvm::Constant::getNullValue(PtrTy); 5431 5432 const ObjCInterfaceDecl *OI = OMD->getClassInterface(); 5433 SmallVector<const ObjCIvarDecl*, 32> ivars; 5434 5435 // GC layout strings include the complete object layout, possibly 5436 // inaccurately in the non-fragile ABI; the runtime knows how to fix this 5437 // up. 5438 // 5439 // ARC layout strings only include the class's ivars. In non-fragile 5440 // runtimes, that means starting at InstanceStart, rounded up to word 5441 // alignment. In fragile runtimes, there's no InstanceStart, so it means 5442 // starting at the offset of the first ivar, rounded up to word alignment. 5443 // 5444 // MRC weak layout strings follow the ARC style. 5445 CharUnits baseOffset; 5446 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 5447 for (const ObjCIvarDecl *IVD = OI->all_declared_ivar_begin(); 5448 IVD; IVD = IVD->getNextIvar()) 5449 ivars.push_back(IVD); 5450 5451 if (isNonFragileABI()) { 5452 baseOffset = beginOffset; // InstanceStart 5453 } else if (!ivars.empty()) { 5454 baseOffset = 5455 CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivars[0])); 5456 } else { 5457 baseOffset = CharUnits::Zero(); 5458 } 5459 5460 baseOffset = baseOffset.alignTo(CGM.getPointerAlign()); 5461 } 5462 else { 5463 CGM.getContext().DeepCollectObjCIvars(OI, true, ivars); 5464 5465 baseOffset = CharUnits::Zero(); 5466 } 5467 5468 if (ivars.empty()) 5469 return llvm::Constant::getNullValue(PtrTy); 5470 5471 IvarLayoutBuilder builder(CGM, baseOffset, endOffset, ForStrongLayout); 5472 5473 builder.visitAggregate(ivars.begin(), ivars.end(), CharUnits::Zero(), 5474 [&](const ObjCIvarDecl *ivar) -> CharUnits { 5475 return CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivar)); 5476 }); 5477 5478 if (!builder.hasBitmapData()) 5479 return llvm::Constant::getNullValue(PtrTy); 5480 5481 llvm::SmallVector<unsigned char, 4> buffer; 5482 llvm::Constant *C = builder.buildBitmap(*this, buffer); 5483 5484 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 5485 printf("\n%s ivar layout for class '%s': ", 5486 ForStrongLayout ? "strong" : "weak", 5487 OMD->getClassInterface()->getName().str().c_str()); 5488 builder.dump(buffer); 5489 } 5490 return C; 5491 } 5492 5493 llvm::Constant *CGObjCCommonMac::GetMethodVarName(Selector Sel) { 5494 llvm::GlobalVariable *&Entry = MethodVarNames[Sel]; 5495 // FIXME: Avoid std::string in "Sel.getAsString()" 5496 if (!Entry) 5497 Entry = CreateCStringLiteral(Sel.getAsString(), ObjCLabelType::MethodVarName); 5498 return getConstantGEP(VMContext, Entry, 0, 0); 5499 } 5500 5501 // FIXME: Merge into a single cstring creation function. 5502 llvm::Constant *CGObjCCommonMac::GetMethodVarName(IdentifierInfo *ID) { 5503 return GetMethodVarName(CGM.getContext().Selectors.getNullarySelector(ID)); 5504 } 5505 5506 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const FieldDecl *Field) { 5507 std::string TypeStr; 5508 CGM.getContext().getObjCEncodingForType(Field->getType(), TypeStr, Field); 5509 5510 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5511 if (!Entry) 5512 Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType); 5513 return getConstantGEP(VMContext, Entry, 0, 0); 5514 } 5515 5516 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const ObjCMethodDecl *D, 5517 bool Extended) { 5518 std::string TypeStr = 5519 CGM.getContext().getObjCEncodingForMethodDecl(D, Extended); 5520 5521 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5522 if (!Entry) 5523 Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType); 5524 return getConstantGEP(VMContext, Entry, 0, 0); 5525 } 5526 5527 // FIXME: Merge into a single cstring creation function. 5528 llvm::Constant *CGObjCCommonMac::GetPropertyName(IdentifierInfo *Ident) { 5529 llvm::GlobalVariable *&Entry = PropertyNames[Ident]; 5530 if (!Entry) 5531 Entry = CreateCStringLiteral(Ident->getName(), ObjCLabelType::PropertyName); 5532 return getConstantGEP(VMContext, Entry, 0, 0); 5533 } 5534 5535 // FIXME: Merge into a single cstring creation function. 5536 // FIXME: This Decl should be more precise. 5537 llvm::Constant * 5538 CGObjCCommonMac::GetPropertyTypeString(const ObjCPropertyDecl *PD, 5539 const Decl *Container) { 5540 std::string TypeStr = 5541 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container); 5542 return GetPropertyName(&CGM.getContext().Idents.get(TypeStr)); 5543 } 5544 5545 void CGObjCCommonMac::GetNameForMethod(const ObjCMethodDecl *D, 5546 const ObjCContainerDecl *CD, 5547 SmallVectorImpl<char> &Name) { 5548 llvm::raw_svector_ostream OS(Name); 5549 assert (CD && "Missing container decl in GetNameForMethod"); 5550 OS << '\01' << (D->isInstanceMethod() ? '-' : '+') 5551 << '[' << CD->getName(); 5552 if (const ObjCCategoryImplDecl *CID = 5553 dyn_cast<ObjCCategoryImplDecl>(D->getDeclContext())) 5554 OS << '(' << *CID << ')'; 5555 OS << ' ' << D->getSelector().getAsString() << ']'; 5556 } 5557 5558 void CGObjCMac::FinishModule() { 5559 EmitModuleInfo(); 5560 5561 // Emit the dummy bodies for any protocols which were referenced but 5562 // never defined. 5563 for (auto &entry : Protocols) { 5564 llvm::GlobalVariable *global = entry.second; 5565 if (global->hasInitializer()) 5566 continue; 5567 5568 ConstantInitBuilder builder(CGM); 5569 auto values = builder.beginStruct(ObjCTypes.ProtocolTy); 5570 values.addNullPointer(ObjCTypes.ProtocolExtensionPtrTy); 5571 values.add(GetClassName(entry.first->getName())); 5572 values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 5573 values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy); 5574 values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy); 5575 values.finishAndSetAsInitializer(global); 5576 CGM.addCompilerUsedGlobal(global); 5577 } 5578 5579 // Add assembler directives to add lazy undefined symbol references 5580 // for classes which are referenced but not defined. This is 5581 // important for correct linker interaction. 5582 // 5583 // FIXME: It would be nice if we had an LLVM construct for this. 5584 if ((!LazySymbols.empty() || !DefinedSymbols.empty()) && 5585 CGM.getTriple().isOSBinFormatMachO()) { 5586 SmallString<256> Asm; 5587 Asm += CGM.getModule().getModuleInlineAsm(); 5588 if (!Asm.empty() && Asm.back() != '\n') 5589 Asm += '\n'; 5590 5591 llvm::raw_svector_ostream OS(Asm); 5592 for (const auto *Sym : DefinedSymbols) 5593 OS << "\t.objc_class_name_" << Sym->getName() << "=0\n" 5594 << "\t.globl .objc_class_name_" << Sym->getName() << "\n"; 5595 for (const auto *Sym : LazySymbols) 5596 OS << "\t.lazy_reference .objc_class_name_" << Sym->getName() << "\n"; 5597 for (const auto &Category : DefinedCategoryNames) 5598 OS << "\t.objc_category_name_" << Category << "=0\n" 5599 << "\t.globl .objc_category_name_" << Category << "\n"; 5600 5601 CGM.getModule().setModuleInlineAsm(OS.str()); 5602 } 5603 } 5604 5605 CGObjCNonFragileABIMac::CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm) 5606 : CGObjCCommonMac(cgm), ObjCTypes(cgm), ObjCEmptyCacheVar(nullptr), 5607 ObjCEmptyVtableVar(nullptr) { 5608 ObjCABI = 2; 5609 } 5610 5611 /* *** */ 5612 5613 ObjCCommonTypesHelper::ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm) 5614 : VMContext(cgm.getLLVMContext()), CGM(cgm), ExternalProtocolPtrTy(nullptr) 5615 { 5616 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 5617 ASTContext &Ctx = CGM.getContext(); 5618 5619 ShortTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.ShortTy)); 5620 IntTy = CGM.IntTy; 5621 LongTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.LongTy)); 5622 Int8PtrTy = CGM.Int8PtrTy; 5623 Int8PtrPtrTy = CGM.Int8PtrPtrTy; 5624 5625 // arm64 targets use "int" ivar offset variables. All others, 5626 // including OS X x86_64 and Windows x86_64, use "long" ivar offsets. 5627 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::aarch64) 5628 IvarOffsetVarTy = IntTy; 5629 else 5630 IvarOffsetVarTy = LongTy; 5631 5632 ObjectPtrTy = 5633 cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCIdType())); 5634 PtrObjectPtrTy = 5635 llvm::PointerType::getUnqual(ObjectPtrTy); 5636 SelectorPtrTy = 5637 cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCSelType())); 5638 5639 // I'm not sure I like this. The implicit coordination is a bit 5640 // gross. We should solve this in a reasonable fashion because this 5641 // is a pretty common task (match some runtime data structure with 5642 // an LLVM data structure). 5643 5644 // FIXME: This is leaked. 5645 // FIXME: Merge with rewriter code? 5646 5647 // struct _objc_super { 5648 // id self; 5649 // Class cls; 5650 // } 5651 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 5652 Ctx.getTranslationUnitDecl(), 5653 SourceLocation(), SourceLocation(), 5654 &Ctx.Idents.get("_objc_super")); 5655 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5656 nullptr, Ctx.getObjCIdType(), nullptr, nullptr, 5657 false, ICIS_NoInit)); 5658 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5659 nullptr, Ctx.getObjCClassType(), nullptr, 5660 nullptr, false, ICIS_NoInit)); 5661 RD->completeDefinition(); 5662 5663 SuperCTy = Ctx.getTagDeclType(RD); 5664 SuperPtrCTy = Ctx.getPointerType(SuperCTy); 5665 5666 SuperTy = cast<llvm::StructType>(Types.ConvertType(SuperCTy)); 5667 SuperPtrTy = llvm::PointerType::getUnqual(SuperTy); 5668 5669 // struct _prop_t { 5670 // char *name; 5671 // char *attributes; 5672 // } 5673 PropertyTy = llvm::StructType::create("struct._prop_t", Int8PtrTy, Int8PtrTy); 5674 5675 // struct _prop_list_t { 5676 // uint32_t entsize; // sizeof(struct _prop_t) 5677 // uint32_t count_of_properties; 5678 // struct _prop_t prop_list[count_of_properties]; 5679 // } 5680 PropertyListTy = llvm::StructType::create( 5681 "struct._prop_list_t", IntTy, IntTy, llvm::ArrayType::get(PropertyTy, 0)); 5682 // struct _prop_list_t * 5683 PropertyListPtrTy = llvm::PointerType::getUnqual(PropertyListTy); 5684 5685 // struct _objc_method { 5686 // SEL _cmd; 5687 // char *method_type; 5688 // char *_imp; 5689 // } 5690 MethodTy = llvm::StructType::create("struct._objc_method", SelectorPtrTy, 5691 Int8PtrTy, Int8PtrTy); 5692 5693 // struct _objc_cache * 5694 CacheTy = llvm::StructType::create(VMContext, "struct._objc_cache"); 5695 CachePtrTy = llvm::PointerType::getUnqual(CacheTy); 5696 } 5697 5698 ObjCTypesHelper::ObjCTypesHelper(CodeGen::CodeGenModule &cgm) 5699 : ObjCCommonTypesHelper(cgm) { 5700 // struct _objc_method_description { 5701 // SEL name; 5702 // char *types; 5703 // } 5704 MethodDescriptionTy = llvm::StructType::create( 5705 "struct._objc_method_description", SelectorPtrTy, Int8PtrTy); 5706 5707 // struct _objc_method_description_list { 5708 // int count; 5709 // struct _objc_method_description[1]; 5710 // } 5711 MethodDescriptionListTy = 5712 llvm::StructType::create("struct._objc_method_description_list", IntTy, 5713 llvm::ArrayType::get(MethodDescriptionTy, 0)); 5714 5715 // struct _objc_method_description_list * 5716 MethodDescriptionListPtrTy = 5717 llvm::PointerType::getUnqual(MethodDescriptionListTy); 5718 5719 // Protocol description structures 5720 5721 // struct _objc_protocol_extension { 5722 // uint32_t size; // sizeof(struct _objc_protocol_extension) 5723 // struct _objc_method_description_list *optional_instance_methods; 5724 // struct _objc_method_description_list *optional_class_methods; 5725 // struct _objc_property_list *instance_properties; 5726 // const char ** extendedMethodTypes; 5727 // struct _objc_property_list *class_properties; 5728 // } 5729 ProtocolExtensionTy = llvm::StructType::create( 5730 "struct._objc_protocol_extension", IntTy, MethodDescriptionListPtrTy, 5731 MethodDescriptionListPtrTy, PropertyListPtrTy, Int8PtrPtrTy, 5732 PropertyListPtrTy); 5733 5734 // struct _objc_protocol_extension * 5735 ProtocolExtensionPtrTy = llvm::PointerType::getUnqual(ProtocolExtensionTy); 5736 5737 // Handle recursive construction of Protocol and ProtocolList types 5738 5739 ProtocolTy = 5740 llvm::StructType::create(VMContext, "struct._objc_protocol"); 5741 5742 ProtocolListTy = 5743 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 5744 ProtocolListTy->setBody(llvm::PointerType::getUnqual(ProtocolListTy), LongTy, 5745 llvm::ArrayType::get(ProtocolTy, 0)); 5746 5747 // struct _objc_protocol { 5748 // struct _objc_protocol_extension *isa; 5749 // char *protocol_name; 5750 // struct _objc_protocol **_objc_protocol_list; 5751 // struct _objc_method_description_list *instance_methods; 5752 // struct _objc_method_description_list *class_methods; 5753 // } 5754 ProtocolTy->setBody(ProtocolExtensionPtrTy, Int8PtrTy, 5755 llvm::PointerType::getUnqual(ProtocolListTy), 5756 MethodDescriptionListPtrTy, MethodDescriptionListPtrTy); 5757 5758 // struct _objc_protocol_list * 5759 ProtocolListPtrTy = llvm::PointerType::getUnqual(ProtocolListTy); 5760 5761 ProtocolPtrTy = llvm::PointerType::getUnqual(ProtocolTy); 5762 5763 // Class description structures 5764 5765 // struct _objc_ivar { 5766 // char *ivar_name; 5767 // char *ivar_type; 5768 // int ivar_offset; 5769 // } 5770 IvarTy = llvm::StructType::create("struct._objc_ivar", Int8PtrTy, Int8PtrTy, 5771 IntTy); 5772 5773 // struct _objc_ivar_list * 5774 IvarListTy = 5775 llvm::StructType::create(VMContext, "struct._objc_ivar_list"); 5776 IvarListPtrTy = llvm::PointerType::getUnqual(IvarListTy); 5777 5778 // struct _objc_method_list * 5779 MethodListTy = 5780 llvm::StructType::create(VMContext, "struct._objc_method_list"); 5781 MethodListPtrTy = llvm::PointerType::getUnqual(MethodListTy); 5782 5783 // struct _objc_class_extension * 5784 ClassExtensionTy = llvm::StructType::create( 5785 "struct._objc_class_extension", IntTy, Int8PtrTy, PropertyListPtrTy); 5786 ClassExtensionPtrTy = llvm::PointerType::getUnqual(ClassExtensionTy); 5787 5788 ClassTy = llvm::StructType::create(VMContext, "struct._objc_class"); 5789 5790 // struct _objc_class { 5791 // Class isa; 5792 // Class super_class; 5793 // char *name; 5794 // long version; 5795 // long info; 5796 // long instance_size; 5797 // struct _objc_ivar_list *ivars; 5798 // struct _objc_method_list *methods; 5799 // struct _objc_cache *cache; 5800 // struct _objc_protocol_list *protocols; 5801 // char *ivar_layout; 5802 // struct _objc_class_ext *ext; 5803 // }; 5804 ClassTy->setBody(llvm::PointerType::getUnqual(ClassTy), 5805 llvm::PointerType::getUnqual(ClassTy), Int8PtrTy, LongTy, 5806 LongTy, LongTy, IvarListPtrTy, MethodListPtrTy, CachePtrTy, 5807 ProtocolListPtrTy, Int8PtrTy, ClassExtensionPtrTy); 5808 5809 ClassPtrTy = llvm::PointerType::getUnqual(ClassTy); 5810 5811 // struct _objc_category { 5812 // char *category_name; 5813 // char *class_name; 5814 // struct _objc_method_list *instance_method; 5815 // struct _objc_method_list *class_method; 5816 // struct _objc_protocol_list *protocols; 5817 // uint32_t size; // sizeof(struct _objc_category) 5818 // struct _objc_property_list *instance_properties;// category's @property 5819 // struct _objc_property_list *class_properties; 5820 // } 5821 CategoryTy = llvm::StructType::create( 5822 "struct._objc_category", Int8PtrTy, Int8PtrTy, MethodListPtrTy, 5823 MethodListPtrTy, ProtocolListPtrTy, IntTy, PropertyListPtrTy, 5824 PropertyListPtrTy); 5825 5826 // Global metadata structures 5827 5828 // struct _objc_symtab { 5829 // long sel_ref_cnt; 5830 // SEL *refs; 5831 // short cls_def_cnt; 5832 // short cat_def_cnt; 5833 // char *defs[cls_def_cnt + cat_def_cnt]; 5834 // } 5835 SymtabTy = llvm::StructType::create("struct._objc_symtab", LongTy, 5836 SelectorPtrTy, ShortTy, ShortTy, 5837 llvm::ArrayType::get(Int8PtrTy, 0)); 5838 SymtabPtrTy = llvm::PointerType::getUnqual(SymtabTy); 5839 5840 // struct _objc_module { 5841 // long version; 5842 // long size; // sizeof(struct _objc_module) 5843 // char *name; 5844 // struct _objc_symtab* symtab; 5845 // } 5846 ModuleTy = llvm::StructType::create("struct._objc_module", LongTy, LongTy, 5847 Int8PtrTy, SymtabPtrTy); 5848 5849 // FIXME: This is the size of the setjmp buffer and should be target 5850 // specific. 18 is what's used on 32-bit X86. 5851 uint64_t SetJmpBufferSize = 18; 5852 5853 // Exceptions 5854 llvm::Type *StackPtrTy = llvm::ArrayType::get(CGM.Int8PtrTy, 4); 5855 5856 ExceptionDataTy = llvm::StructType::create( 5857 "struct._objc_exception_data", 5858 llvm::ArrayType::get(CGM.Int32Ty, SetJmpBufferSize), StackPtrTy); 5859 } 5860 5861 ObjCNonFragileABITypesHelper::ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm) 5862 : ObjCCommonTypesHelper(cgm) { 5863 // struct _method_list_t { 5864 // uint32_t entsize; // sizeof(struct _objc_method) 5865 // uint32_t method_count; 5866 // struct _objc_method method_list[method_count]; 5867 // } 5868 MethodListnfABITy = 5869 llvm::StructType::create("struct.__method_list_t", IntTy, IntTy, 5870 llvm::ArrayType::get(MethodTy, 0)); 5871 // struct method_list_t * 5872 MethodListnfABIPtrTy = llvm::PointerType::getUnqual(MethodListnfABITy); 5873 5874 // struct _protocol_t { 5875 // id isa; // NULL 5876 // const char * const protocol_name; 5877 // const struct _protocol_list_t * protocol_list; // super protocols 5878 // const struct method_list_t * const instance_methods; 5879 // const struct method_list_t * const class_methods; 5880 // const struct method_list_t *optionalInstanceMethods; 5881 // const struct method_list_t *optionalClassMethods; 5882 // const struct _prop_list_t * properties; 5883 // const uint32_t size; // sizeof(struct _protocol_t) 5884 // const uint32_t flags; // = 0 5885 // const char ** extendedMethodTypes; 5886 // const char *demangledName; 5887 // const struct _prop_list_t * class_properties; 5888 // } 5889 5890 // Holder for struct _protocol_list_t * 5891 ProtocolListnfABITy = 5892 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 5893 5894 ProtocolnfABITy = llvm::StructType::create( 5895 "struct._protocol_t", ObjectPtrTy, Int8PtrTy, 5896 llvm::PointerType::getUnqual(ProtocolListnfABITy), MethodListnfABIPtrTy, 5897 MethodListnfABIPtrTy, MethodListnfABIPtrTy, MethodListnfABIPtrTy, 5898 PropertyListPtrTy, IntTy, IntTy, Int8PtrPtrTy, Int8PtrTy, 5899 PropertyListPtrTy); 5900 5901 // struct _protocol_t* 5902 ProtocolnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolnfABITy); 5903 5904 // struct _protocol_list_t { 5905 // long protocol_count; // Note, this is 32/64 bit 5906 // struct _protocol_t *[protocol_count]; 5907 // } 5908 ProtocolListnfABITy->setBody(LongTy, 5909 llvm::ArrayType::get(ProtocolnfABIPtrTy, 0)); 5910 5911 // struct _objc_protocol_list* 5912 ProtocolListnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolListnfABITy); 5913 5914 // struct _ivar_t { 5915 // unsigned [long] int *offset; // pointer to ivar offset location 5916 // char *name; 5917 // char *type; 5918 // uint32_t alignment; 5919 // uint32_t size; 5920 // } 5921 IvarnfABITy = llvm::StructType::create( 5922 "struct._ivar_t", llvm::PointerType::getUnqual(IvarOffsetVarTy), 5923 Int8PtrTy, Int8PtrTy, IntTy, IntTy); 5924 5925 // struct _ivar_list_t { 5926 // uint32 entsize; // sizeof(struct _ivar_t) 5927 // uint32 count; 5928 // struct _iver_t list[count]; 5929 // } 5930 IvarListnfABITy = 5931 llvm::StructType::create("struct._ivar_list_t", IntTy, IntTy, 5932 llvm::ArrayType::get(IvarnfABITy, 0)); 5933 5934 IvarListnfABIPtrTy = llvm::PointerType::getUnqual(IvarListnfABITy); 5935 5936 // struct _class_ro_t { 5937 // uint32_t const flags; 5938 // uint32_t const instanceStart; 5939 // uint32_t const instanceSize; 5940 // uint32_t const reserved; // only when building for 64bit targets 5941 // const uint8_t * const ivarLayout; 5942 // const char *const name; 5943 // const struct _method_list_t * const baseMethods; 5944 // const struct _objc_protocol_list *const baseProtocols; 5945 // const struct _ivar_list_t *const ivars; 5946 // const uint8_t * const weakIvarLayout; 5947 // const struct _prop_list_t * const properties; 5948 // } 5949 5950 // FIXME. Add 'reserved' field in 64bit abi mode! 5951 ClassRonfABITy = llvm::StructType::create( 5952 "struct._class_ro_t", IntTy, IntTy, IntTy, Int8PtrTy, Int8PtrTy, 5953 MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, IvarListnfABIPtrTy, 5954 Int8PtrTy, PropertyListPtrTy); 5955 5956 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 5957 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 5958 ImpnfABITy = llvm::FunctionType::get(ObjectPtrTy, params, false) 5959 ->getPointerTo(); 5960 5961 // struct _class_t { 5962 // struct _class_t *isa; 5963 // struct _class_t * const superclass; 5964 // void *cache; 5965 // IMP *vtable; 5966 // struct class_ro_t *ro; 5967 // } 5968 5969 ClassnfABITy = llvm::StructType::create(VMContext, "struct._class_t"); 5970 ClassnfABITy->setBody(llvm::PointerType::getUnqual(ClassnfABITy), 5971 llvm::PointerType::getUnqual(ClassnfABITy), CachePtrTy, 5972 llvm::PointerType::getUnqual(ImpnfABITy), 5973 llvm::PointerType::getUnqual(ClassRonfABITy)); 5974 5975 // LLVM for struct _class_t * 5976 ClassnfABIPtrTy = llvm::PointerType::getUnqual(ClassnfABITy); 5977 5978 // struct _category_t { 5979 // const char * const name; 5980 // struct _class_t *const cls; 5981 // const struct _method_list_t * const instance_methods; 5982 // const struct _method_list_t * const class_methods; 5983 // const struct _protocol_list_t * const protocols; 5984 // const struct _prop_list_t * const properties; 5985 // const struct _prop_list_t * const class_properties; 5986 // const uint32_t size; 5987 // } 5988 CategorynfABITy = llvm::StructType::create( 5989 "struct._category_t", Int8PtrTy, ClassnfABIPtrTy, MethodListnfABIPtrTy, 5990 MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, PropertyListPtrTy, 5991 PropertyListPtrTy, IntTy); 5992 5993 // New types for nonfragile abi messaging. 5994 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 5995 ASTContext &Ctx = CGM.getContext(); 5996 5997 // MessageRefTy - LLVM for: 5998 // struct _message_ref_t { 5999 // IMP messenger; 6000 // SEL name; 6001 // }; 6002 6003 // First the clang type for struct _message_ref_t 6004 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 6005 Ctx.getTranslationUnitDecl(), 6006 SourceLocation(), SourceLocation(), 6007 &Ctx.Idents.get("_message_ref_t")); 6008 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 6009 nullptr, Ctx.VoidPtrTy, nullptr, nullptr, false, 6010 ICIS_NoInit)); 6011 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 6012 nullptr, Ctx.getObjCSelType(), nullptr, nullptr, 6013 false, ICIS_NoInit)); 6014 RD->completeDefinition(); 6015 6016 MessageRefCTy = Ctx.getTagDeclType(RD); 6017 MessageRefCPtrTy = Ctx.getPointerType(MessageRefCTy); 6018 MessageRefTy = cast<llvm::StructType>(Types.ConvertType(MessageRefCTy)); 6019 6020 // MessageRefPtrTy - LLVM for struct _message_ref_t* 6021 MessageRefPtrTy = llvm::PointerType::getUnqual(MessageRefTy); 6022 6023 // SuperMessageRefTy - LLVM for: 6024 // struct _super_message_ref_t { 6025 // SUPER_IMP messenger; 6026 // SEL name; 6027 // }; 6028 SuperMessageRefTy = llvm::StructType::create("struct._super_message_ref_t", 6029 ImpnfABITy, SelectorPtrTy); 6030 6031 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 6032 SuperMessageRefPtrTy = llvm::PointerType::getUnqual(SuperMessageRefTy); 6033 6034 6035 // struct objc_typeinfo { 6036 // const void** vtable; // objc_ehtype_vtable + 2 6037 // const char* name; // c++ typeinfo string 6038 // Class cls; 6039 // }; 6040 EHTypeTy = llvm::StructType::create("struct._objc_typeinfo", 6041 llvm::PointerType::getUnqual(Int8PtrTy), 6042 Int8PtrTy, ClassnfABIPtrTy); 6043 EHTypePtrTy = llvm::PointerType::getUnqual(EHTypeTy); 6044 } 6045 6046 llvm::Function *CGObjCNonFragileABIMac::ModuleInitFunction() { 6047 FinishNonFragileABIModule(); 6048 6049 return nullptr; 6050 } 6051 6052 void CGObjCNonFragileABIMac::AddModuleClassList( 6053 ArrayRef<llvm::GlobalValue *> Container, StringRef SymbolName, 6054 StringRef SectionName) { 6055 unsigned NumClasses = Container.size(); 6056 6057 if (!NumClasses) 6058 return; 6059 6060 SmallVector<llvm::Constant*, 8> Symbols(NumClasses); 6061 for (unsigned i=0; i<NumClasses; i++) 6062 Symbols[i] = llvm::ConstantExpr::getBitCast(Container[i], 6063 ObjCTypes.Int8PtrTy); 6064 llvm::Constant *Init = 6065 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 6066 Symbols.size()), 6067 Symbols); 6068 6069 // Section name is obtained by calling GetSectionName, which returns 6070 // sections in the __DATA segment on MachO. 6071 assert((!CGM.getTriple().isOSBinFormatMachO() || 6072 SectionName.startswith("__DATA")) && 6073 "SectionName expected to start with __DATA on MachO"); 6074 llvm::GlobalValue::LinkageTypes LT = 6075 getLinkageTypeForObjCMetadata(CGM, SectionName); 6076 llvm::GlobalVariable *GV = 6077 new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, LT, Init, 6078 SymbolName); 6079 GV->setAlignment(CGM.getDataLayout().getABITypeAlignment(Init->getType())); 6080 GV->setSection(SectionName); 6081 CGM.addCompilerUsedGlobal(GV); 6082 } 6083 6084 void CGObjCNonFragileABIMac::FinishNonFragileABIModule() { 6085 // nonfragile abi has no module definition. 6086 6087 // Build list of all implemented class addresses in array 6088 // L_OBJC_LABEL_CLASS_$. 6089 6090 for (unsigned i=0, NumClasses=ImplementedClasses.size(); i<NumClasses; i++) { 6091 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 6092 assert(ID); 6093 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 6094 // We are implementing a weak imported interface. Give it external linkage 6095 if (ID->isWeakImported() && !IMP->isWeakImported()) { 6096 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 6097 DefinedMetaClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 6098 } 6099 } 6100 6101 AddModuleClassList(DefinedClasses, "OBJC_LABEL_CLASS_$", 6102 GetSectionName("__objc_classlist", 6103 "regular,no_dead_strip")); 6104 6105 AddModuleClassList(DefinedNonLazyClasses, "OBJC_LABEL_NONLAZY_CLASS_$", 6106 GetSectionName("__objc_nlclslist", 6107 "regular,no_dead_strip")); 6108 6109 // Build list of all implemented category addresses in array 6110 // L_OBJC_LABEL_CATEGORY_$. 6111 AddModuleClassList(DefinedCategories, "OBJC_LABEL_CATEGORY_$", 6112 GetSectionName("__objc_catlist", 6113 "regular,no_dead_strip")); 6114 AddModuleClassList(DefinedStubCategories, "OBJC_LABEL_STUB_CATEGORY_$", 6115 GetSectionName("__objc_catlist2", 6116 "regular,no_dead_strip")); 6117 AddModuleClassList(DefinedNonLazyCategories, "OBJC_LABEL_NONLAZY_CATEGORY_$", 6118 GetSectionName("__objc_nlcatlist", 6119 "regular,no_dead_strip")); 6120 6121 EmitImageInfo(); 6122 } 6123 6124 /// isVTableDispatchedSelector - Returns true if SEL is not in the list of 6125 /// VTableDispatchMethods; false otherwise. What this means is that 6126 /// except for the 19 selectors in the list, we generate 32bit-style 6127 /// message dispatch call for all the rest. 6128 bool CGObjCNonFragileABIMac::isVTableDispatchedSelector(Selector Sel) { 6129 // At various points we've experimented with using vtable-based 6130 // dispatch for all methods. 6131 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) { 6132 case CodeGenOptions::Legacy: 6133 return false; 6134 case CodeGenOptions::NonLegacy: 6135 return true; 6136 case CodeGenOptions::Mixed: 6137 break; 6138 } 6139 6140 // If so, see whether this selector is in the white-list of things which must 6141 // use the new dispatch convention. We lazily build a dense set for this. 6142 if (VTableDispatchMethods.empty()) { 6143 VTableDispatchMethods.insert(GetNullarySelector("alloc")); 6144 VTableDispatchMethods.insert(GetNullarySelector("class")); 6145 VTableDispatchMethods.insert(GetNullarySelector("self")); 6146 VTableDispatchMethods.insert(GetNullarySelector("isFlipped")); 6147 VTableDispatchMethods.insert(GetNullarySelector("length")); 6148 VTableDispatchMethods.insert(GetNullarySelector("count")); 6149 6150 // These are vtable-based if GC is disabled. 6151 // Optimistically use vtable dispatch for hybrid compiles. 6152 if (CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 6153 VTableDispatchMethods.insert(GetNullarySelector("retain")); 6154 VTableDispatchMethods.insert(GetNullarySelector("release")); 6155 VTableDispatchMethods.insert(GetNullarySelector("autorelease")); 6156 } 6157 6158 VTableDispatchMethods.insert(GetUnarySelector("allocWithZone")); 6159 VTableDispatchMethods.insert(GetUnarySelector("isKindOfClass")); 6160 VTableDispatchMethods.insert(GetUnarySelector("respondsToSelector")); 6161 VTableDispatchMethods.insert(GetUnarySelector("objectForKey")); 6162 VTableDispatchMethods.insert(GetUnarySelector("objectAtIndex")); 6163 VTableDispatchMethods.insert(GetUnarySelector("isEqualToString")); 6164 VTableDispatchMethods.insert(GetUnarySelector("isEqual")); 6165 6166 // These are vtable-based if GC is enabled. 6167 // Optimistically use vtable dispatch for hybrid compiles. 6168 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 6169 VTableDispatchMethods.insert(GetNullarySelector("hash")); 6170 VTableDispatchMethods.insert(GetUnarySelector("addObject")); 6171 6172 // "countByEnumeratingWithState:objects:count" 6173 IdentifierInfo *KeyIdents[] = { 6174 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 6175 &CGM.getContext().Idents.get("objects"), 6176 &CGM.getContext().Idents.get("count") 6177 }; 6178 VTableDispatchMethods.insert( 6179 CGM.getContext().Selectors.getSelector(3, KeyIdents)); 6180 } 6181 } 6182 6183 return VTableDispatchMethods.count(Sel); 6184 } 6185 6186 /// BuildClassRoTInitializer - generate meta-data for: 6187 /// struct _class_ro_t { 6188 /// uint32_t const flags; 6189 /// uint32_t const instanceStart; 6190 /// uint32_t const instanceSize; 6191 /// uint32_t const reserved; // only when building for 64bit targets 6192 /// const uint8_t * const ivarLayout; 6193 /// const char *const name; 6194 /// const struct _method_list_t * const baseMethods; 6195 /// const struct _protocol_list_t *const baseProtocols; 6196 /// const struct _ivar_list_t *const ivars; 6197 /// const uint8_t * const weakIvarLayout; 6198 /// const struct _prop_list_t * const properties; 6199 /// } 6200 /// 6201 llvm::GlobalVariable * CGObjCNonFragileABIMac::BuildClassRoTInitializer( 6202 unsigned flags, 6203 unsigned InstanceStart, 6204 unsigned InstanceSize, 6205 const ObjCImplementationDecl *ID) { 6206 std::string ClassName = ID->getObjCRuntimeNameAsString(); 6207 6208 CharUnits beginInstance = CharUnits::fromQuantity(InstanceStart); 6209 CharUnits endInstance = CharUnits::fromQuantity(InstanceSize); 6210 6211 bool hasMRCWeak = false; 6212 if (CGM.getLangOpts().ObjCAutoRefCount) 6213 flags |= NonFragileABI_Class_CompiledByARC; 6214 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 6215 flags |= NonFragileABI_Class_HasMRCWeakIvars; 6216 6217 ConstantInitBuilder builder(CGM); 6218 auto values = builder.beginStruct(ObjCTypes.ClassRonfABITy); 6219 6220 values.addInt(ObjCTypes.IntTy, flags); 6221 values.addInt(ObjCTypes.IntTy, InstanceStart); 6222 values.addInt(ObjCTypes.IntTy, InstanceSize); 6223 values.add((flags & NonFragileABI_Class_Meta) 6224 ? GetIvarLayoutName(nullptr, ObjCTypes) 6225 : BuildStrongIvarLayout(ID, beginInstance, endInstance)); 6226 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 6227 6228 // const struct _method_list_t * const baseMethods; 6229 SmallVector<const ObjCMethodDecl*, 16> methods; 6230 if (flags & NonFragileABI_Class_Meta) { 6231 for (const auto *MD : ID->class_methods()) 6232 methods.push_back(MD); 6233 } else { 6234 for (const auto *MD : ID->instance_methods()) 6235 methods.push_back(MD); 6236 6237 for (const auto *PID : ID->property_impls()) { 6238 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize){ 6239 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6240 6241 if (auto MD = PD->getGetterMethodDecl()) 6242 if (GetMethodDefinition(MD)) 6243 methods.push_back(MD); 6244 if (auto MD = PD->getSetterMethodDecl()) 6245 if (GetMethodDefinition(MD)) 6246 methods.push_back(MD); 6247 } 6248 } 6249 } 6250 6251 values.add(emitMethodList(ID->getObjCRuntimeNameAsString(), 6252 (flags & NonFragileABI_Class_Meta) 6253 ? MethodListType::ClassMethods 6254 : MethodListType::InstanceMethods, 6255 methods)); 6256 6257 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6258 assert(OID && "CGObjCNonFragileABIMac::BuildClassRoTInitializer"); 6259 values.add(EmitProtocolList("_OBJC_CLASS_PROTOCOLS_$_" 6260 + OID->getObjCRuntimeNameAsString(), 6261 OID->all_referenced_protocol_begin(), 6262 OID->all_referenced_protocol_end())); 6263 6264 if (flags & NonFragileABI_Class_Meta) { 6265 values.addNullPointer(ObjCTypes.IvarListnfABIPtrTy); 6266 values.add(GetIvarLayoutName(nullptr, ObjCTypes)); 6267 values.add(EmitPropertyList( 6268 "_OBJC_$_CLASS_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 6269 ID, ID->getClassInterface(), ObjCTypes, true)); 6270 } else { 6271 values.add(EmitIvarList(ID)); 6272 values.add(BuildWeakIvarLayout(ID, beginInstance, endInstance, hasMRCWeak)); 6273 values.add(EmitPropertyList( 6274 "_OBJC_$_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 6275 ID, ID->getClassInterface(), ObjCTypes, false)); 6276 } 6277 6278 llvm::SmallString<64> roLabel; 6279 llvm::raw_svector_ostream(roLabel) 6280 << ((flags & NonFragileABI_Class_Meta) ? "_OBJC_METACLASS_RO_$_" 6281 : "_OBJC_CLASS_RO_$_") 6282 << ClassName; 6283 6284 return finishAndCreateGlobal(values, roLabel, CGM); 6285 } 6286 6287 /// Build the metaclass object for a class. 6288 /// 6289 /// struct _class_t { 6290 /// struct _class_t *isa; 6291 /// struct _class_t * const superclass; 6292 /// void *cache; 6293 /// IMP *vtable; 6294 /// struct class_ro_t *ro; 6295 /// } 6296 /// 6297 llvm::GlobalVariable * 6298 CGObjCNonFragileABIMac::BuildClassObject(const ObjCInterfaceDecl *CI, 6299 bool isMetaclass, 6300 llvm::Constant *IsAGV, 6301 llvm::Constant *SuperClassGV, 6302 llvm::Constant *ClassRoGV, 6303 bool HiddenVisibility) { 6304 ConstantInitBuilder builder(CGM); 6305 auto values = builder.beginStruct(ObjCTypes.ClassnfABITy); 6306 values.add(IsAGV); 6307 if (SuperClassGV) { 6308 values.add(SuperClassGV); 6309 } else { 6310 values.addNullPointer(ObjCTypes.ClassnfABIPtrTy); 6311 } 6312 values.add(ObjCEmptyCacheVar); 6313 values.add(ObjCEmptyVtableVar); 6314 values.add(ClassRoGV); 6315 6316 llvm::GlobalVariable *GV = 6317 cast<llvm::GlobalVariable>(GetClassGlobal(CI, isMetaclass, ForDefinition)); 6318 values.finishAndSetAsInitializer(GV); 6319 6320 if (CGM.getTriple().isOSBinFormatMachO()) 6321 GV->setSection("__DATA, __objc_data"); 6322 GV->setAlignment( 6323 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ClassnfABITy)); 6324 if (!CGM.getTriple().isOSBinFormatCOFF()) 6325 if (HiddenVisibility) 6326 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6327 return GV; 6328 } 6329 6330 bool CGObjCNonFragileABIMac::ImplementationIsNonLazy( 6331 const ObjCImplDecl *OD) const { 6332 return OD->getClassMethod(GetNullarySelector("load")) != nullptr || 6333 OD->getClassInterface()->hasAttr<ObjCNonLazyClassAttr>() || 6334 OD->hasAttr<ObjCNonLazyClassAttr>(); 6335 } 6336 6337 void CGObjCNonFragileABIMac::GetClassSizeInfo(const ObjCImplementationDecl *OID, 6338 uint32_t &InstanceStart, 6339 uint32_t &InstanceSize) { 6340 const ASTRecordLayout &RL = 6341 CGM.getContext().getASTObjCImplementationLayout(OID); 6342 6343 // InstanceSize is really instance end. 6344 InstanceSize = RL.getDataSize().getQuantity(); 6345 6346 // If there are no fields, the start is the same as the end. 6347 if (!RL.getFieldCount()) 6348 InstanceStart = InstanceSize; 6349 else 6350 InstanceStart = RL.getFieldOffset(0) / CGM.getContext().getCharWidth(); 6351 } 6352 6353 static llvm::GlobalValue::DLLStorageClassTypes getStorage(CodeGenModule &CGM, 6354 StringRef Name) { 6355 IdentifierInfo &II = CGM.getContext().Idents.get(Name); 6356 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 6357 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6358 6359 const VarDecl *VD = nullptr; 6360 for (const auto &Result : DC->lookup(&II)) 6361 if ((VD = dyn_cast<VarDecl>(Result))) 6362 break; 6363 6364 if (!VD) 6365 return llvm::GlobalValue::DLLImportStorageClass; 6366 if (VD->hasAttr<DLLExportAttr>()) 6367 return llvm::GlobalValue::DLLExportStorageClass; 6368 if (VD->hasAttr<DLLImportAttr>()) 6369 return llvm::GlobalValue::DLLImportStorageClass; 6370 return llvm::GlobalValue::DefaultStorageClass; 6371 } 6372 6373 void CGObjCNonFragileABIMac::GenerateClass(const ObjCImplementationDecl *ID) { 6374 if (!ObjCEmptyCacheVar) { 6375 ObjCEmptyCacheVar = 6376 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.CacheTy, false, 6377 llvm::GlobalValue::ExternalLinkage, nullptr, 6378 "_objc_empty_cache"); 6379 if (CGM.getTriple().isOSBinFormatCOFF()) 6380 ObjCEmptyCacheVar->setDLLStorageClass(getStorage(CGM, "_objc_empty_cache")); 6381 6382 // Only OS X with deployment version <10.9 use the empty vtable symbol 6383 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 6384 if (Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 9)) 6385 ObjCEmptyVtableVar = 6386 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ImpnfABITy, false, 6387 llvm::GlobalValue::ExternalLinkage, nullptr, 6388 "_objc_empty_vtable"); 6389 else 6390 ObjCEmptyVtableVar = 6391 llvm::ConstantPointerNull::get(ObjCTypes.ImpnfABITy->getPointerTo()); 6392 } 6393 6394 // FIXME: Is this correct (that meta class size is never computed)? 6395 uint32_t InstanceStart = 6396 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassnfABITy); 6397 uint32_t InstanceSize = InstanceStart; 6398 uint32_t flags = NonFragileABI_Class_Meta; 6399 6400 llvm::Constant *SuperClassGV, *IsAGV; 6401 6402 const auto *CI = ID->getClassInterface(); 6403 assert(CI && "CGObjCNonFragileABIMac::GenerateClass - class is 0"); 6404 6405 // Build the flags for the metaclass. 6406 bool classIsHidden = (CGM.getTriple().isOSBinFormatCOFF()) 6407 ? !CI->hasAttr<DLLExportAttr>() 6408 : CI->getVisibility() == HiddenVisibility; 6409 if (classIsHidden) 6410 flags |= NonFragileABI_Class_Hidden; 6411 6412 // FIXME: why is this flag set on the metaclass? 6413 // ObjC metaclasses have no fields and don't really get constructed. 6414 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 6415 flags |= NonFragileABI_Class_HasCXXStructors; 6416 if (!ID->hasNonZeroConstructors()) 6417 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 6418 } 6419 6420 if (!CI->getSuperClass()) { 6421 // class is root 6422 flags |= NonFragileABI_Class_Root; 6423 6424 SuperClassGV = GetClassGlobal(CI, /*metaclass*/ false, NotForDefinition); 6425 IsAGV = GetClassGlobal(CI, /*metaclass*/ true, NotForDefinition); 6426 } else { 6427 // Has a root. Current class is not a root. 6428 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 6429 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 6430 Root = Super; 6431 6432 const auto *Super = CI->getSuperClass(); 6433 IsAGV = GetClassGlobal(Root, /*metaclass*/ true, NotForDefinition); 6434 SuperClassGV = GetClassGlobal(Super, /*metaclass*/ true, NotForDefinition); 6435 } 6436 6437 llvm::GlobalVariable *CLASS_RO_GV = 6438 BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID); 6439 6440 llvm::GlobalVariable *MetaTClass = 6441 BuildClassObject(CI, /*metaclass*/ true, 6442 IsAGV, SuperClassGV, CLASS_RO_GV, classIsHidden); 6443 CGM.setGVProperties(MetaTClass, CI); 6444 DefinedMetaClasses.push_back(MetaTClass); 6445 6446 // Metadata for the class 6447 flags = 0; 6448 if (classIsHidden) 6449 flags |= NonFragileABI_Class_Hidden; 6450 6451 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 6452 flags |= NonFragileABI_Class_HasCXXStructors; 6453 6454 // Set a flag to enable a runtime optimization when a class has 6455 // fields that require destruction but which don't require 6456 // anything except zero-initialization during construction. This 6457 // is most notably true of __strong and __weak types, but you can 6458 // also imagine there being C++ types with non-trivial default 6459 // constructors that merely set all fields to null. 6460 if (!ID->hasNonZeroConstructors()) 6461 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 6462 } 6463 6464 if (hasObjCExceptionAttribute(CGM.getContext(), CI)) 6465 flags |= NonFragileABI_Class_Exception; 6466 6467 if (!CI->getSuperClass()) { 6468 flags |= NonFragileABI_Class_Root; 6469 SuperClassGV = nullptr; 6470 } else { 6471 // Has a root. Current class is not a root. 6472 const auto *Super = CI->getSuperClass(); 6473 SuperClassGV = GetClassGlobal(Super, /*metaclass*/ false, NotForDefinition); 6474 } 6475 6476 GetClassSizeInfo(ID, InstanceStart, InstanceSize); 6477 CLASS_RO_GV = 6478 BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID); 6479 6480 llvm::GlobalVariable *ClassMD = 6481 BuildClassObject(CI, /*metaclass*/ false, 6482 MetaTClass, SuperClassGV, CLASS_RO_GV, classIsHidden); 6483 CGM.setGVProperties(ClassMD, CI); 6484 DefinedClasses.push_back(ClassMD); 6485 ImplementedClasses.push_back(CI); 6486 6487 // Determine if this class is also "non-lazy". 6488 if (ImplementationIsNonLazy(ID)) 6489 DefinedNonLazyClasses.push_back(ClassMD); 6490 6491 // Force the definition of the EHType if necessary. 6492 if (flags & NonFragileABI_Class_Exception) 6493 (void) GetInterfaceEHType(CI, ForDefinition); 6494 // Make sure method definition entries are all clear for next implementation. 6495 MethodDefinitions.clear(); 6496 } 6497 6498 /// GenerateProtocolRef - This routine is called to generate code for 6499 /// a protocol reference expression; as in: 6500 /// @code 6501 /// @protocol(Proto1); 6502 /// @endcode 6503 /// It generates a weak reference to l_OBJC_PROTOCOL_REFERENCE_$_Proto1 6504 /// which will hold address of the protocol meta-data. 6505 /// 6506 llvm::Value *CGObjCNonFragileABIMac::GenerateProtocolRef(CodeGenFunction &CGF, 6507 const ObjCProtocolDecl *PD) { 6508 6509 // This routine is called for @protocol only. So, we must build definition 6510 // of protocol's meta-data (not a reference to it!) 6511 // 6512 llvm::Constant *Init = 6513 llvm::ConstantExpr::getBitCast(GetOrEmitProtocol(PD), 6514 ObjCTypes.getExternalProtocolPtrTy()); 6515 6516 std::string ProtocolName("_OBJC_PROTOCOL_REFERENCE_$_"); 6517 ProtocolName += PD->getObjCRuntimeNameAsString(); 6518 6519 CharUnits Align = CGF.getPointerAlign(); 6520 6521 llvm::GlobalVariable *PTGV = CGM.getModule().getGlobalVariable(ProtocolName); 6522 if (PTGV) 6523 return CGF.Builder.CreateAlignedLoad(PTGV, Align); 6524 PTGV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 6525 llvm::GlobalValue::WeakAnyLinkage, Init, 6526 ProtocolName); 6527 PTGV->setSection(GetSectionName("__objc_protorefs", 6528 "coalesced,no_dead_strip")); 6529 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6530 PTGV->setAlignment(Align.getQuantity()); 6531 if (!CGM.getTriple().isOSBinFormatMachO()) 6532 PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolName)); 6533 CGM.addUsedGlobal(PTGV); 6534 return CGF.Builder.CreateAlignedLoad(PTGV, Align); 6535 } 6536 6537 /// GenerateCategory - Build metadata for a category implementation. 6538 /// struct _category_t { 6539 /// const char * const name; 6540 /// struct _class_t *const cls; 6541 /// const struct _method_list_t * const instance_methods; 6542 /// const struct _method_list_t * const class_methods; 6543 /// const struct _protocol_list_t * const protocols; 6544 /// const struct _prop_list_t * const properties; 6545 /// const struct _prop_list_t * const class_properties; 6546 /// const uint32_t size; 6547 /// } 6548 /// 6549 void CGObjCNonFragileABIMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 6550 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 6551 const char *Prefix = "_OBJC_$_CATEGORY_"; 6552 6553 llvm::SmallString<64> ExtCatName(Prefix); 6554 ExtCatName += Interface->getObjCRuntimeNameAsString(); 6555 ExtCatName += "_$_"; 6556 ExtCatName += OCD->getNameAsString(); 6557 6558 ConstantInitBuilder builder(CGM); 6559 auto values = builder.beginStruct(ObjCTypes.CategorynfABITy); 6560 values.add(GetClassName(OCD->getIdentifier()->getName())); 6561 // meta-class entry symbol 6562 values.add(GetClassGlobal(Interface, /*metaclass*/ false, NotForDefinition)); 6563 std::string listName = 6564 (Interface->getObjCRuntimeNameAsString() + "_$_" + OCD->getName()).str(); 6565 6566 SmallVector<const ObjCMethodDecl *, 16> instanceMethods; 6567 SmallVector<const ObjCMethodDecl *, 8> classMethods; 6568 for (const auto *MD : OCD->methods()) { 6569 if (MD->isInstanceMethod()) { 6570 instanceMethods.push_back(MD); 6571 } else { 6572 classMethods.push_back(MD); 6573 } 6574 } 6575 6576 values.add(emitMethodList(listName, MethodListType::CategoryInstanceMethods, 6577 instanceMethods)); 6578 values.add(emitMethodList(listName, MethodListType::CategoryClassMethods, 6579 classMethods)); 6580 6581 const ObjCCategoryDecl *Category = 6582 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 6583 if (Category) { 6584 SmallString<256> ExtName; 6585 llvm::raw_svector_ostream(ExtName) << Interface->getObjCRuntimeNameAsString() << "_$_" 6586 << OCD->getName(); 6587 values.add(EmitProtocolList("_OBJC_CATEGORY_PROTOCOLS_$_" 6588 + Interface->getObjCRuntimeNameAsString() + "_$_" 6589 + Category->getName(), 6590 Category->protocol_begin(), 6591 Category->protocol_end())); 6592 values.add(EmitPropertyList("_OBJC_$_PROP_LIST_" + ExtName.str(), 6593 OCD, Category, ObjCTypes, false)); 6594 values.add(EmitPropertyList("_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), 6595 OCD, Category, ObjCTypes, true)); 6596 } else { 6597 values.addNullPointer(ObjCTypes.ProtocolListnfABIPtrTy); 6598 values.addNullPointer(ObjCTypes.PropertyListPtrTy); 6599 values.addNullPointer(ObjCTypes.PropertyListPtrTy); 6600 } 6601 6602 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategorynfABITy); 6603 values.addInt(ObjCTypes.IntTy, Size); 6604 6605 llvm::GlobalVariable *GCATV = 6606 finishAndCreateGlobal(values, ExtCatName.str(), CGM); 6607 CGM.addCompilerUsedGlobal(GCATV); 6608 if (Interface->hasAttr<ObjCClassStubAttr>()) 6609 DefinedStubCategories.push_back(GCATV); 6610 else 6611 DefinedCategories.push_back(GCATV); 6612 6613 // Determine if this category is also "non-lazy". 6614 if (ImplementationIsNonLazy(OCD)) 6615 DefinedNonLazyCategories.push_back(GCATV); 6616 // method definition entries must be clear for next implementation. 6617 MethodDefinitions.clear(); 6618 } 6619 6620 /// emitMethodConstant - Return a struct objc_method constant. If 6621 /// forProtocol is true, the implementation will be null; otherwise, 6622 /// the method must have a definition registered with the runtime. 6623 /// 6624 /// struct _objc_method { 6625 /// SEL _cmd; 6626 /// char *method_type; 6627 /// char *_imp; 6628 /// } 6629 void CGObjCNonFragileABIMac::emitMethodConstant(ConstantArrayBuilder &builder, 6630 const ObjCMethodDecl *MD, 6631 bool forProtocol) { 6632 auto method = builder.beginStruct(ObjCTypes.MethodTy); 6633 method.addBitCast(GetMethodVarName(MD->getSelector()), 6634 ObjCTypes.SelectorPtrTy); 6635 method.add(GetMethodVarType(MD)); 6636 6637 if (forProtocol) { 6638 // Protocol methods have no implementation. So, this entry is always NULL. 6639 method.addNullPointer(ObjCTypes.Int8PtrTy); 6640 } else { 6641 llvm::Function *fn = GetMethodDefinition(MD); 6642 assert(fn && "no definition for method?"); 6643 method.addBitCast(fn, ObjCTypes.Int8PtrTy); 6644 } 6645 6646 method.finishAndAddTo(builder); 6647 } 6648 6649 /// Build meta-data for method declarations. 6650 /// 6651 /// struct _method_list_t { 6652 /// uint32_t entsize; // sizeof(struct _objc_method) 6653 /// uint32_t method_count; 6654 /// struct _objc_method method_list[method_count]; 6655 /// } 6656 /// 6657 llvm::Constant * 6658 CGObjCNonFragileABIMac::emitMethodList(Twine name, MethodListType kind, 6659 ArrayRef<const ObjCMethodDecl *> methods) { 6660 // Return null for empty list. 6661 if (methods.empty()) 6662 return llvm::Constant::getNullValue(ObjCTypes.MethodListnfABIPtrTy); 6663 6664 StringRef prefix; 6665 bool forProtocol; 6666 switch (kind) { 6667 case MethodListType::CategoryInstanceMethods: 6668 prefix = "_OBJC_$_CATEGORY_INSTANCE_METHODS_"; 6669 forProtocol = false; 6670 break; 6671 case MethodListType::CategoryClassMethods: 6672 prefix = "_OBJC_$_CATEGORY_CLASS_METHODS_"; 6673 forProtocol = false; 6674 break; 6675 case MethodListType::InstanceMethods: 6676 prefix = "_OBJC_$_INSTANCE_METHODS_"; 6677 forProtocol = false; 6678 break; 6679 case MethodListType::ClassMethods: 6680 prefix = "_OBJC_$_CLASS_METHODS_"; 6681 forProtocol = false; 6682 break; 6683 6684 case MethodListType::ProtocolInstanceMethods: 6685 prefix = "_OBJC_$_PROTOCOL_INSTANCE_METHODS_"; 6686 forProtocol = true; 6687 break; 6688 case MethodListType::ProtocolClassMethods: 6689 prefix = "_OBJC_$_PROTOCOL_CLASS_METHODS_"; 6690 forProtocol = true; 6691 break; 6692 case MethodListType::OptionalProtocolInstanceMethods: 6693 prefix = "_OBJC_$_PROTOCOL_INSTANCE_METHODS_OPT_"; 6694 forProtocol = true; 6695 break; 6696 case MethodListType::OptionalProtocolClassMethods: 6697 prefix = "_OBJC_$_PROTOCOL_CLASS_METHODS_OPT_"; 6698 forProtocol = true; 6699 break; 6700 } 6701 6702 ConstantInitBuilder builder(CGM); 6703 auto values = builder.beginStruct(); 6704 6705 // sizeof(struct _objc_method) 6706 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.MethodTy); 6707 values.addInt(ObjCTypes.IntTy, Size); 6708 // method_count 6709 values.addInt(ObjCTypes.IntTy, methods.size()); 6710 auto methodArray = values.beginArray(ObjCTypes.MethodTy); 6711 for (auto MD : methods) { 6712 emitMethodConstant(methodArray, MD, forProtocol); 6713 } 6714 methodArray.finishAndAddTo(values); 6715 6716 llvm::GlobalVariable *GV = finishAndCreateGlobal(values, prefix + name, CGM); 6717 CGM.addCompilerUsedGlobal(GV); 6718 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListnfABIPtrTy); 6719 } 6720 6721 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 6722 /// the given ivar. 6723 llvm::GlobalVariable * 6724 CGObjCNonFragileABIMac::ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID, 6725 const ObjCIvarDecl *Ivar) { 6726 const ObjCInterfaceDecl *Container = Ivar->getContainingInterface(); 6727 llvm::SmallString<64> Name("OBJC_IVAR_$_"); 6728 Name += Container->getObjCRuntimeNameAsString(); 6729 Name += "."; 6730 Name += Ivar->getName(); 6731 llvm::GlobalVariable *IvarOffsetGV = CGM.getModule().getGlobalVariable(Name); 6732 if (!IvarOffsetGV) { 6733 IvarOffsetGV = 6734 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.IvarOffsetVarTy, 6735 false, llvm::GlobalValue::ExternalLinkage, 6736 nullptr, Name.str()); 6737 if (CGM.getTriple().isOSBinFormatCOFF()) { 6738 bool IsPrivateOrPackage = 6739 Ivar->getAccessControl() == ObjCIvarDecl::Private || 6740 Ivar->getAccessControl() == ObjCIvarDecl::Package; 6741 6742 const ObjCInterfaceDecl *ContainingID = Ivar->getContainingInterface(); 6743 6744 if (ContainingID->hasAttr<DLLImportAttr>()) 6745 IvarOffsetGV 6746 ->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6747 else if (ContainingID->hasAttr<DLLExportAttr>() && !IsPrivateOrPackage) 6748 IvarOffsetGV 6749 ->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6750 } 6751 } 6752 return IvarOffsetGV; 6753 } 6754 6755 llvm::Constant * 6756 CGObjCNonFragileABIMac::EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 6757 const ObjCIvarDecl *Ivar, 6758 unsigned long int Offset) { 6759 llvm::GlobalVariable *IvarOffsetGV = ObjCIvarOffsetVariable(ID, Ivar); 6760 IvarOffsetGV->setInitializer( 6761 llvm::ConstantInt::get(ObjCTypes.IvarOffsetVarTy, Offset)); 6762 IvarOffsetGV->setAlignment( 6763 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.IvarOffsetVarTy)); 6764 6765 if (!CGM.getTriple().isOSBinFormatCOFF()) { 6766 // FIXME: This matches gcc, but shouldn't the visibility be set on the use 6767 // as well (i.e., in ObjCIvarOffsetVariable). 6768 if (Ivar->getAccessControl() == ObjCIvarDecl::Private || 6769 Ivar->getAccessControl() == ObjCIvarDecl::Package || 6770 ID->getVisibility() == HiddenVisibility) 6771 IvarOffsetGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6772 else 6773 IvarOffsetGV->setVisibility(llvm::GlobalValue::DefaultVisibility); 6774 } 6775 6776 // If ID's layout is known, then make the global constant. This serves as a 6777 // useful assertion: we'll never use this variable to calculate ivar offsets, 6778 // so if the runtime tries to patch it then we should crash. 6779 if (isClassLayoutKnownStatically(ID)) 6780 IvarOffsetGV->setConstant(true); 6781 6782 if (CGM.getTriple().isOSBinFormatMachO()) 6783 IvarOffsetGV->setSection("__DATA, __objc_ivar"); 6784 return IvarOffsetGV; 6785 } 6786 6787 /// EmitIvarList - Emit the ivar list for the given 6788 /// implementation. The return value has type 6789 /// IvarListnfABIPtrTy. 6790 /// struct _ivar_t { 6791 /// unsigned [long] int *offset; // pointer to ivar offset location 6792 /// char *name; 6793 /// char *type; 6794 /// uint32_t alignment; 6795 /// uint32_t size; 6796 /// } 6797 /// struct _ivar_list_t { 6798 /// uint32 entsize; // sizeof(struct _ivar_t) 6799 /// uint32 count; 6800 /// struct _iver_t list[count]; 6801 /// } 6802 /// 6803 6804 llvm::Constant *CGObjCNonFragileABIMac::EmitIvarList( 6805 const ObjCImplementationDecl *ID) { 6806 6807 ConstantInitBuilder builder(CGM); 6808 auto ivarList = builder.beginStruct(); 6809 ivarList.addInt(ObjCTypes.IntTy, 6810 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.IvarnfABITy)); 6811 auto ivarCountSlot = ivarList.addPlaceholder(); 6812 auto ivars = ivarList.beginArray(ObjCTypes.IvarnfABITy); 6813 6814 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6815 assert(OID && "CGObjCNonFragileABIMac::EmitIvarList - null interface"); 6816 6817 // FIXME. Consolidate this with similar code in GenerateClass. 6818 6819 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 6820 IVD; IVD = IVD->getNextIvar()) { 6821 // Ignore unnamed bit-fields. 6822 if (!IVD->getDeclName()) 6823 continue; 6824 6825 auto ivar = ivars.beginStruct(ObjCTypes.IvarnfABITy); 6826 ivar.add(EmitIvarOffsetVar(ID->getClassInterface(), IVD, 6827 ComputeIvarBaseOffset(CGM, ID, IVD))); 6828 ivar.add(GetMethodVarName(IVD->getIdentifier())); 6829 ivar.add(GetMethodVarType(IVD)); 6830 llvm::Type *FieldTy = 6831 CGM.getTypes().ConvertTypeForMem(IVD->getType()); 6832 unsigned Size = CGM.getDataLayout().getTypeAllocSize(FieldTy); 6833 unsigned Align = CGM.getContext().getPreferredTypeAlign( 6834 IVD->getType().getTypePtr()) >> 3; 6835 Align = llvm::Log2_32(Align); 6836 ivar.addInt(ObjCTypes.IntTy, Align); 6837 // NOTE. Size of a bitfield does not match gcc's, because of the 6838 // way bitfields are treated special in each. But I am told that 6839 // 'size' for bitfield ivars is ignored by the runtime so it does 6840 // not matter. If it matters, there is enough info to get the 6841 // bitfield right! 6842 ivar.addInt(ObjCTypes.IntTy, Size); 6843 ivar.finishAndAddTo(ivars); 6844 } 6845 // Return null for empty list. 6846 if (ivars.empty()) { 6847 ivars.abandon(); 6848 ivarList.abandon(); 6849 return llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy); 6850 } 6851 6852 auto ivarCount = ivars.size(); 6853 ivars.finishAndAddTo(ivarList); 6854 ivarList.fillPlaceholderWithInt(ivarCountSlot, ObjCTypes.IntTy, ivarCount); 6855 6856 const char *Prefix = "_OBJC_$_INSTANCE_VARIABLES_"; 6857 llvm::GlobalVariable *GV = finishAndCreateGlobal( 6858 ivarList, Prefix + OID->getObjCRuntimeNameAsString(), CGM); 6859 CGM.addCompilerUsedGlobal(GV); 6860 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListnfABIPtrTy); 6861 } 6862 6863 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocolRef( 6864 const ObjCProtocolDecl *PD) { 6865 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 6866 6867 if (!Entry) { 6868 // We use the initializer as a marker of whether this is a forward 6869 // reference or not. At module finalization we add the empty 6870 // contents for protocols which were referenced but never defined. 6871 llvm::SmallString<64> Protocol; 6872 llvm::raw_svector_ostream(Protocol) << "_OBJC_PROTOCOL_$_" 6873 << PD->getObjCRuntimeNameAsString(); 6874 6875 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy, 6876 false, llvm::GlobalValue::ExternalLinkage, 6877 nullptr, Protocol); 6878 if (!CGM.getTriple().isOSBinFormatMachO()) 6879 Entry->setComdat(CGM.getModule().getOrInsertComdat(Protocol)); 6880 } 6881 6882 return Entry; 6883 } 6884 6885 /// GetOrEmitProtocol - Generate the protocol meta-data: 6886 /// @code 6887 /// struct _protocol_t { 6888 /// id isa; // NULL 6889 /// const char * const protocol_name; 6890 /// const struct _protocol_list_t * protocol_list; // super protocols 6891 /// const struct method_list_t * const instance_methods; 6892 /// const struct method_list_t * const class_methods; 6893 /// const struct method_list_t *optionalInstanceMethods; 6894 /// const struct method_list_t *optionalClassMethods; 6895 /// const struct _prop_list_t * properties; 6896 /// const uint32_t size; // sizeof(struct _protocol_t) 6897 /// const uint32_t flags; // = 0 6898 /// const char ** extendedMethodTypes; 6899 /// const char *demangledName; 6900 /// const struct _prop_list_t * class_properties; 6901 /// } 6902 /// @endcode 6903 /// 6904 6905 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocol( 6906 const ObjCProtocolDecl *PD) { 6907 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 6908 6909 // Early exit if a defining object has already been generated. 6910 if (Entry && Entry->hasInitializer()) 6911 return Entry; 6912 6913 // Use the protocol definition, if there is one. 6914 assert(PD->hasDefinition() && 6915 "emitting protocol metadata without definition"); 6916 PD = PD->getDefinition(); 6917 6918 auto methodLists = ProtocolMethodLists::get(PD); 6919 6920 ConstantInitBuilder builder(CGM); 6921 auto values = builder.beginStruct(ObjCTypes.ProtocolnfABITy); 6922 6923 // isa is NULL 6924 values.addNullPointer(ObjCTypes.ObjectPtrTy); 6925 values.add(GetClassName(PD->getObjCRuntimeNameAsString())); 6926 values.add(EmitProtocolList("_OBJC_$_PROTOCOL_REFS_" 6927 + PD->getObjCRuntimeNameAsString(), 6928 PD->protocol_begin(), 6929 PD->protocol_end())); 6930 values.add(methodLists.emitMethodList(this, PD, 6931 ProtocolMethodLists::RequiredInstanceMethods)); 6932 values.add(methodLists.emitMethodList(this, PD, 6933 ProtocolMethodLists::RequiredClassMethods)); 6934 values.add(methodLists.emitMethodList(this, PD, 6935 ProtocolMethodLists::OptionalInstanceMethods)); 6936 values.add(methodLists.emitMethodList(this, PD, 6937 ProtocolMethodLists::OptionalClassMethods)); 6938 values.add(EmitPropertyList( 6939 "_OBJC_$_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 6940 nullptr, PD, ObjCTypes, false)); 6941 uint32_t Size = 6942 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolnfABITy); 6943 values.addInt(ObjCTypes.IntTy, Size); 6944 values.addInt(ObjCTypes.IntTy, 0); 6945 values.add(EmitProtocolMethodTypes("_OBJC_$_PROTOCOL_METHOD_TYPES_" 6946 + PD->getObjCRuntimeNameAsString(), 6947 methodLists.emitExtendedTypesArray(this), 6948 ObjCTypes)); 6949 6950 // const char *demangledName; 6951 values.addNullPointer(ObjCTypes.Int8PtrTy); 6952 6953 values.add(EmitPropertyList( 6954 "_OBJC_$_CLASS_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 6955 nullptr, PD, ObjCTypes, true)); 6956 6957 if (Entry) { 6958 // Already created, fix the linkage and update the initializer. 6959 Entry->setLinkage(llvm::GlobalValue::WeakAnyLinkage); 6960 values.finishAndSetAsInitializer(Entry); 6961 } else { 6962 llvm::SmallString<64> symbolName; 6963 llvm::raw_svector_ostream(symbolName) 6964 << "_OBJC_PROTOCOL_$_" << PD->getObjCRuntimeNameAsString(); 6965 6966 Entry = values.finishAndCreateGlobal(symbolName, CGM.getPointerAlign(), 6967 /*constant*/ false, 6968 llvm::GlobalValue::WeakAnyLinkage); 6969 if (!CGM.getTriple().isOSBinFormatMachO()) 6970 Entry->setComdat(CGM.getModule().getOrInsertComdat(symbolName)); 6971 6972 Protocols[PD->getIdentifier()] = Entry; 6973 } 6974 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 6975 CGM.addUsedGlobal(Entry); 6976 6977 // Use this protocol meta-data to build protocol list table in section 6978 // __DATA, __objc_protolist 6979 llvm::SmallString<64> ProtocolRef; 6980 llvm::raw_svector_ostream(ProtocolRef) << "_OBJC_LABEL_PROTOCOL_$_" 6981 << PD->getObjCRuntimeNameAsString(); 6982 6983 llvm::GlobalVariable *PTGV = 6984 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABIPtrTy, 6985 false, llvm::GlobalValue::WeakAnyLinkage, Entry, 6986 ProtocolRef); 6987 if (!CGM.getTriple().isOSBinFormatMachO()) 6988 PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolRef)); 6989 PTGV->setAlignment( 6990 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ProtocolnfABIPtrTy)); 6991 PTGV->setSection(GetSectionName("__objc_protolist", 6992 "coalesced,no_dead_strip")); 6993 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6994 CGM.addUsedGlobal(PTGV); 6995 return Entry; 6996 } 6997 6998 /// EmitProtocolList - Generate protocol list meta-data: 6999 /// @code 7000 /// struct _protocol_list_t { 7001 /// long protocol_count; // Note, this is 32/64 bit 7002 /// struct _protocol_t[protocol_count]; 7003 /// } 7004 /// @endcode 7005 /// 7006 llvm::Constant * 7007 CGObjCNonFragileABIMac::EmitProtocolList(Twine Name, 7008 ObjCProtocolDecl::protocol_iterator begin, 7009 ObjCProtocolDecl::protocol_iterator end) { 7010 SmallVector<llvm::Constant *, 16> ProtocolRefs; 7011 7012 // Just return null for empty protocol lists 7013 if (begin == end) 7014 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy); 7015 7016 // FIXME: We shouldn't need to do this lookup here, should we? 7017 SmallString<256> TmpName; 7018 Name.toVector(TmpName); 7019 llvm::GlobalVariable *GV = 7020 CGM.getModule().getGlobalVariable(TmpName.str(), true); 7021 if (GV) 7022 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListnfABIPtrTy); 7023 7024 ConstantInitBuilder builder(CGM); 7025 auto values = builder.beginStruct(); 7026 auto countSlot = values.addPlaceholder(); 7027 7028 // A null-terminated array of protocols. 7029 auto array = values.beginArray(ObjCTypes.ProtocolnfABIPtrTy); 7030 for (; begin != end; ++begin) 7031 array.add(GetProtocolRef(*begin)); // Implemented??? 7032 auto count = array.size(); 7033 array.addNullPointer(ObjCTypes.ProtocolnfABIPtrTy); 7034 7035 array.finishAndAddTo(values); 7036 values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count); 7037 7038 GV = finishAndCreateGlobal(values, Name, CGM); 7039 CGM.addCompilerUsedGlobal(GV); 7040 return llvm::ConstantExpr::getBitCast(GV, 7041 ObjCTypes.ProtocolListnfABIPtrTy); 7042 } 7043 7044 /// EmitObjCValueForIvar - Code Gen for nonfragile ivar reference. 7045 /// This code gen. amounts to generating code for: 7046 /// @code 7047 /// (type *)((char *)base + _OBJC_IVAR_$_.ivar; 7048 /// @encode 7049 /// 7050 LValue CGObjCNonFragileABIMac::EmitObjCValueForIvar( 7051 CodeGen::CodeGenFunction &CGF, 7052 QualType ObjectTy, 7053 llvm::Value *BaseValue, 7054 const ObjCIvarDecl *Ivar, 7055 unsigned CVRQualifiers) { 7056 ObjCInterfaceDecl *ID = ObjectTy->getAs<ObjCObjectType>()->getInterface(); 7057 llvm::Value *Offset = EmitIvarOffset(CGF, ID, Ivar); 7058 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 7059 Offset); 7060 } 7061 7062 llvm::Value * 7063 CGObjCNonFragileABIMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 7064 const ObjCInterfaceDecl *Interface, 7065 const ObjCIvarDecl *Ivar) { 7066 llvm::Value *IvarOffsetValue; 7067 if (isClassLayoutKnownStatically(Interface)) { 7068 IvarOffsetValue = llvm::ConstantInt::get( 7069 ObjCTypes.IvarOffsetVarTy, 7070 ComputeIvarBaseOffset(CGM, Interface->getImplementation(), Ivar)); 7071 } else { 7072 llvm::GlobalVariable *GV = ObjCIvarOffsetVariable(Interface, Ivar); 7073 IvarOffsetValue = 7074 CGF.Builder.CreateAlignedLoad(GV, CGF.getSizeAlign(), "ivar"); 7075 if (IsIvarOffsetKnownIdempotent(CGF, Ivar)) 7076 cast<llvm::LoadInst>(IvarOffsetValue) 7077 ->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 7078 llvm::MDNode::get(VMContext, None)); 7079 } 7080 7081 // This could be 32bit int or 64bit integer depending on the architecture. 7082 // Cast it to 64bit integer value, if it is a 32bit integer ivar offset value 7083 // as this is what caller always expects. 7084 if (ObjCTypes.IvarOffsetVarTy == ObjCTypes.IntTy) 7085 IvarOffsetValue = CGF.Builder.CreateIntCast( 7086 IvarOffsetValue, ObjCTypes.LongTy, true, "ivar.conv"); 7087 return IvarOffsetValue; 7088 } 7089 7090 static void appendSelectorForMessageRefTable(std::string &buffer, 7091 Selector selector) { 7092 if (selector.isUnarySelector()) { 7093 buffer += selector.getNameForSlot(0); 7094 return; 7095 } 7096 7097 for (unsigned i = 0, e = selector.getNumArgs(); i != e; ++i) { 7098 buffer += selector.getNameForSlot(i); 7099 buffer += '_'; 7100 } 7101 } 7102 7103 /// Emit a "vtable" message send. We emit a weak hidden-visibility 7104 /// struct, initially containing the selector pointer and a pointer to 7105 /// a "fixup" variant of the appropriate objc_msgSend. To call, we 7106 /// load and call the function pointer, passing the address of the 7107 /// struct as the second parameter. The runtime determines whether 7108 /// the selector is currently emitted using vtable dispatch; if so, it 7109 /// substitutes a stub function which simply tail-calls through the 7110 /// appropriate vtable slot, and if not, it substitues a stub function 7111 /// which tail-calls objc_msgSend. Both stubs adjust the selector 7112 /// argument to correctly point to the selector. 7113 RValue 7114 CGObjCNonFragileABIMac::EmitVTableMessageSend(CodeGenFunction &CGF, 7115 ReturnValueSlot returnSlot, 7116 QualType resultType, 7117 Selector selector, 7118 llvm::Value *arg0, 7119 QualType arg0Type, 7120 bool isSuper, 7121 const CallArgList &formalArgs, 7122 const ObjCMethodDecl *method) { 7123 // Compute the actual arguments. 7124 CallArgList args; 7125 7126 // First argument: the receiver / super-call structure. 7127 if (!isSuper) 7128 arg0 = CGF.Builder.CreateBitCast(arg0, ObjCTypes.ObjectPtrTy); 7129 args.add(RValue::get(arg0), arg0Type); 7130 7131 // Second argument: a pointer to the message ref structure. Leave 7132 // the actual argument value blank for now. 7133 args.add(RValue::get(nullptr), ObjCTypes.MessageRefCPtrTy); 7134 7135 args.insert(args.end(), formalArgs.begin(), formalArgs.end()); 7136 7137 MessageSendInfo MSI = getMessageSendInfo(method, resultType, args); 7138 7139 NullReturnState nullReturn; 7140 7141 // Find the function to call and the mangled name for the message 7142 // ref structure. Using a different mangled name wouldn't actually 7143 // be a problem; it would just be a waste. 7144 // 7145 // The runtime currently never uses vtable dispatch for anything 7146 // except normal, non-super message-sends. 7147 // FIXME: don't use this for that. 7148 llvm::FunctionCallee fn = nullptr; 7149 std::string messageRefName("_"); 7150 if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 7151 if (isSuper) { 7152 fn = ObjCTypes.getMessageSendSuper2StretFixupFn(); 7153 messageRefName += "objc_msgSendSuper2_stret_fixup"; 7154 } else { 7155 nullReturn.init(CGF, arg0); 7156 fn = ObjCTypes.getMessageSendStretFixupFn(); 7157 messageRefName += "objc_msgSend_stret_fixup"; 7158 } 7159 } else if (!isSuper && CGM.ReturnTypeUsesFPRet(resultType)) { 7160 fn = ObjCTypes.getMessageSendFpretFixupFn(); 7161 messageRefName += "objc_msgSend_fpret_fixup"; 7162 } else { 7163 if (isSuper) { 7164 fn = ObjCTypes.getMessageSendSuper2FixupFn(); 7165 messageRefName += "objc_msgSendSuper2_fixup"; 7166 } else { 7167 fn = ObjCTypes.getMessageSendFixupFn(); 7168 messageRefName += "objc_msgSend_fixup"; 7169 } 7170 } 7171 assert(fn && "CGObjCNonFragileABIMac::EmitMessageSend"); 7172 messageRefName += '_'; 7173 7174 // Append the selector name, except use underscores anywhere we 7175 // would have used colons. 7176 appendSelectorForMessageRefTable(messageRefName, selector); 7177 7178 llvm::GlobalVariable *messageRef 7179 = CGM.getModule().getGlobalVariable(messageRefName); 7180 if (!messageRef) { 7181 // Build the message ref structure. 7182 ConstantInitBuilder builder(CGM); 7183 auto values = builder.beginStruct(); 7184 values.add(cast<llvm::Constant>(fn.getCallee())); 7185 values.add(GetMethodVarName(selector)); 7186 messageRef = values.finishAndCreateGlobal(messageRefName, 7187 CharUnits::fromQuantity(16), 7188 /*constant*/ false, 7189 llvm::GlobalValue::WeakAnyLinkage); 7190 messageRef->setVisibility(llvm::GlobalValue::HiddenVisibility); 7191 messageRef->setSection(GetSectionName("__objc_msgrefs", "coalesced")); 7192 } 7193 7194 bool requiresnullCheck = false; 7195 if (CGM.getLangOpts().ObjCAutoRefCount && method) 7196 for (const auto *ParamDecl : method->parameters()) { 7197 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 7198 if (!nullReturn.NullBB) 7199 nullReturn.init(CGF, arg0); 7200 requiresnullCheck = true; 7201 break; 7202 } 7203 } 7204 7205 Address mref = 7206 Address(CGF.Builder.CreateBitCast(messageRef, ObjCTypes.MessageRefPtrTy), 7207 CGF.getPointerAlign()); 7208 7209 // Update the message ref argument. 7210 args[1].setRValue(RValue::get(mref.getPointer())); 7211 7212 // Load the function to call from the message ref table. 7213 Address calleeAddr = CGF.Builder.CreateStructGEP(mref, 0); 7214 llvm::Value *calleePtr = CGF.Builder.CreateLoad(calleeAddr, "msgSend_fn"); 7215 7216 calleePtr = CGF.Builder.CreateBitCast(calleePtr, MSI.MessengerType); 7217 CGCallee callee(CGCalleeInfo(), calleePtr); 7218 7219 RValue result = CGF.EmitCall(MSI.CallInfo, callee, returnSlot, args); 7220 return nullReturn.complete(CGF, returnSlot, result, resultType, formalArgs, 7221 requiresnullCheck ? method : nullptr); 7222 } 7223 7224 /// Generate code for a message send expression in the nonfragile abi. 7225 CodeGen::RValue 7226 CGObjCNonFragileABIMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 7227 ReturnValueSlot Return, 7228 QualType ResultType, 7229 Selector Sel, 7230 llvm::Value *Receiver, 7231 const CallArgList &CallArgs, 7232 const ObjCInterfaceDecl *Class, 7233 const ObjCMethodDecl *Method) { 7234 return isVTableDispatchedSelector(Sel) 7235 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 7236 Receiver, CGF.getContext().getObjCIdType(), 7237 false, CallArgs, Method) 7238 : EmitMessageSend(CGF, Return, ResultType, 7239 EmitSelector(CGF, Sel), 7240 Receiver, CGF.getContext().getObjCIdType(), 7241 false, CallArgs, Method, Class, ObjCTypes); 7242 } 7243 7244 llvm::Constant * 7245 CGObjCNonFragileABIMac::GetClassGlobal(const ObjCInterfaceDecl *ID, 7246 bool metaclass, 7247 ForDefinition_t isForDefinition) { 7248 auto prefix = 7249 (metaclass ? getMetaclassSymbolPrefix() : getClassSymbolPrefix()); 7250 return GetClassGlobal((prefix + ID->getObjCRuntimeNameAsString()).str(), 7251 isForDefinition, 7252 ID->isWeakImported(), 7253 !isForDefinition 7254 && CGM.getTriple().isOSBinFormatCOFF() 7255 && ID->hasAttr<DLLImportAttr>()); 7256 } 7257 7258 llvm::Constant * 7259 CGObjCNonFragileABIMac::GetClassGlobal(StringRef Name, 7260 ForDefinition_t IsForDefinition, 7261 bool Weak, bool DLLImport) { 7262 llvm::GlobalValue::LinkageTypes L = 7263 Weak ? llvm::GlobalValue::ExternalWeakLinkage 7264 : llvm::GlobalValue::ExternalLinkage; 7265 7266 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name); 7267 if (!GV || GV->getType() != ObjCTypes.ClassnfABITy->getPointerTo()) { 7268 auto *NewGV = new llvm::GlobalVariable(ObjCTypes.ClassnfABITy, false, L, 7269 nullptr, Name); 7270 7271 if (DLLImport) 7272 NewGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 7273 7274 if (GV) { 7275 GV->replaceAllUsesWith( 7276 llvm::ConstantExpr::getBitCast(NewGV, GV->getType())); 7277 GV->eraseFromParent(); 7278 } 7279 GV = NewGV; 7280 CGM.getModule().getGlobalList().push_back(GV); 7281 } 7282 7283 assert(GV->getLinkage() == L); 7284 return GV; 7285 } 7286 7287 llvm::Constant * 7288 CGObjCNonFragileABIMac::GetClassGlobalForClassRef(const ObjCInterfaceDecl *ID) { 7289 llvm::Constant *ClassGV = GetClassGlobal(ID, /*metaclass*/ false, 7290 NotForDefinition); 7291 7292 if (!ID->hasAttr<ObjCClassStubAttr>()) 7293 return ClassGV; 7294 7295 ClassGV = llvm::ConstantExpr::getPointerCast(ClassGV, ObjCTypes.Int8PtrTy); 7296 7297 // Stub classes are pointer-aligned. Classrefs pointing at stub classes 7298 // must set the least significant bit set to 1. 7299 auto *Idx = llvm::ConstantInt::get(CGM.Int32Ty, 1); 7300 return llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, ClassGV, Idx); 7301 } 7302 7303 llvm::Value * 7304 CGObjCNonFragileABIMac::EmitLoadOfClassRef(CodeGenFunction &CGF, 7305 const ObjCInterfaceDecl *ID, 7306 llvm::GlobalVariable *Entry) { 7307 if (ID && ID->hasAttr<ObjCClassStubAttr>()) { 7308 // Classrefs pointing at Objective-C stub classes must be loaded by calling 7309 // a special runtime function. 7310 return CGF.EmitRuntimeCall( 7311 ObjCTypes.getLoadClassrefFn(), Entry, "load_classref_result"); 7312 } 7313 7314 CharUnits Align = CGF.getPointerAlign(); 7315 return CGF.Builder.CreateAlignedLoad(Entry, Align); 7316 } 7317 7318 llvm::Value * 7319 CGObjCNonFragileABIMac::EmitClassRefFromId(CodeGenFunction &CGF, 7320 IdentifierInfo *II, 7321 const ObjCInterfaceDecl *ID) { 7322 llvm::GlobalVariable *&Entry = ClassReferences[II]; 7323 7324 if (!Entry) { 7325 llvm::Constant *ClassGV; 7326 if (ID) { 7327 ClassGV = GetClassGlobalForClassRef(ID); 7328 } else { 7329 ClassGV = GetClassGlobal((getClassSymbolPrefix() + II->getName()).str(), 7330 NotForDefinition); 7331 assert(ClassGV->getType() == ObjCTypes.ClassnfABIPtrTy && 7332 "classref was emitted with the wrong type?"); 7333 } 7334 7335 std::string SectionName = 7336 GetSectionName("__objc_classrefs", "regular,no_dead_strip"); 7337 Entry = new llvm::GlobalVariable( 7338 CGM.getModule(), ClassGV->getType(), false, 7339 getLinkageTypeForObjCMetadata(CGM, SectionName), ClassGV, 7340 "OBJC_CLASSLIST_REFERENCES_$_"); 7341 Entry->setAlignment(CGF.getPointerAlign().getQuantity()); 7342 if (!ID || !ID->hasAttr<ObjCClassStubAttr>()) 7343 Entry->setSection(SectionName); 7344 7345 CGM.addCompilerUsedGlobal(Entry); 7346 } 7347 7348 return EmitLoadOfClassRef(CGF, ID, Entry); 7349 } 7350 7351 llvm::Value *CGObjCNonFragileABIMac::EmitClassRef(CodeGenFunction &CGF, 7352 const ObjCInterfaceDecl *ID) { 7353 // If the class has the objc_runtime_visible attribute, we need to 7354 // use the Objective-C runtime to get the class. 7355 if (ID->hasAttr<ObjCRuntimeVisibleAttr>()) 7356 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes); 7357 7358 return EmitClassRefFromId(CGF, ID->getIdentifier(), ID); 7359 } 7360 7361 llvm::Value *CGObjCNonFragileABIMac::EmitNSAutoreleasePoolClassRef( 7362 CodeGenFunction &CGF) { 7363 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 7364 return EmitClassRefFromId(CGF, II, nullptr); 7365 } 7366 7367 llvm::Value * 7368 CGObjCNonFragileABIMac::EmitSuperClassRef(CodeGenFunction &CGF, 7369 const ObjCInterfaceDecl *ID) { 7370 llvm::GlobalVariable *&Entry = SuperClassReferences[ID->getIdentifier()]; 7371 7372 if (!Entry) { 7373 llvm::Constant *ClassGV = GetClassGlobalForClassRef(ID); 7374 std::string SectionName = 7375 GetSectionName("__objc_superrefs", "regular,no_dead_strip"); 7376 Entry = new llvm::GlobalVariable( 7377 CGM.getModule(), ClassGV->getType(), false, 7378 getLinkageTypeForObjCMetadata(CGM, SectionName), ClassGV, 7379 "OBJC_CLASSLIST_SUP_REFS_$_"); 7380 Entry->setAlignment(CGF.getPointerAlign().getQuantity()); 7381 Entry->setSection(SectionName); 7382 CGM.addCompilerUsedGlobal(Entry); 7383 } 7384 7385 return EmitLoadOfClassRef(CGF, ID, Entry); 7386 } 7387 7388 /// EmitMetaClassRef - Return a Value * of the address of _class_t 7389 /// meta-data 7390 /// 7391 llvm::Value *CGObjCNonFragileABIMac::EmitMetaClassRef(CodeGenFunction &CGF, 7392 const ObjCInterfaceDecl *ID, 7393 bool Weak) { 7394 CharUnits Align = CGF.getPointerAlign(); 7395 llvm::GlobalVariable * &Entry = MetaClassReferences[ID->getIdentifier()]; 7396 if (!Entry) { 7397 auto MetaClassGV = GetClassGlobal(ID, /*metaclass*/ true, NotForDefinition); 7398 std::string SectionName = 7399 GetSectionName("__objc_superrefs", "regular,no_dead_strip"); 7400 Entry = new llvm::GlobalVariable( 7401 CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, false, 7402 getLinkageTypeForObjCMetadata(CGM, SectionName), MetaClassGV, 7403 "OBJC_CLASSLIST_SUP_REFS_$_"); 7404 Entry->setAlignment(Align.getQuantity()); 7405 Entry->setSection(SectionName); 7406 CGM.addCompilerUsedGlobal(Entry); 7407 } 7408 7409 return CGF.Builder.CreateAlignedLoad(Entry, Align); 7410 } 7411 7412 /// GetClass - Return a reference to the class for the given interface 7413 /// decl. 7414 llvm::Value *CGObjCNonFragileABIMac::GetClass(CodeGenFunction &CGF, 7415 const ObjCInterfaceDecl *ID) { 7416 if (ID->isWeakImported()) { 7417 auto ClassGV = GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition); 7418 (void)ClassGV; 7419 assert(!isa<llvm::GlobalVariable>(ClassGV) || 7420 cast<llvm::GlobalVariable>(ClassGV)->hasExternalWeakLinkage()); 7421 } 7422 7423 return EmitClassRef(CGF, ID); 7424 } 7425 7426 /// Generates a message send where the super is the receiver. This is 7427 /// a message send to self with special delivery semantics indicating 7428 /// which class's method should be called. 7429 CodeGen::RValue 7430 CGObjCNonFragileABIMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 7431 ReturnValueSlot Return, 7432 QualType ResultType, 7433 Selector Sel, 7434 const ObjCInterfaceDecl *Class, 7435 bool isCategoryImpl, 7436 llvm::Value *Receiver, 7437 bool IsClassMessage, 7438 const CodeGen::CallArgList &CallArgs, 7439 const ObjCMethodDecl *Method) { 7440 // ... 7441 // Create and init a super structure; this is a (receiver, class) 7442 // pair we will pass to objc_msgSendSuper. 7443 Address ObjCSuper = 7444 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 7445 "objc_super"); 7446 7447 llvm::Value *ReceiverAsObject = 7448 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 7449 CGF.Builder.CreateStore(ReceiverAsObject, 7450 CGF.Builder.CreateStructGEP(ObjCSuper, 0)); 7451 7452 // If this is a class message the metaclass is passed as the target. 7453 llvm::Value *Target; 7454 if (IsClassMessage) 7455 Target = EmitMetaClassRef(CGF, Class, Class->isWeakImported()); 7456 else 7457 Target = EmitSuperClassRef(CGF, Class); 7458 7459 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 7460 // ObjCTypes types. 7461 llvm::Type *ClassTy = 7462 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 7463 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 7464 CGF.Builder.CreateStore(Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1)); 7465 7466 return (isVTableDispatchedSelector(Sel)) 7467 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 7468 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 7469 true, CallArgs, Method) 7470 : EmitMessageSend(CGF, Return, ResultType, 7471 EmitSelector(CGF, Sel), 7472 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 7473 true, CallArgs, Method, Class, ObjCTypes); 7474 } 7475 7476 llvm::Value *CGObjCNonFragileABIMac::EmitSelector(CodeGenFunction &CGF, 7477 Selector Sel) { 7478 Address Addr = EmitSelectorAddr(CGF, Sel); 7479 7480 llvm::LoadInst* LI = CGF.Builder.CreateLoad(Addr); 7481 LI->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 7482 llvm::MDNode::get(VMContext, None)); 7483 return LI; 7484 } 7485 7486 Address CGObjCNonFragileABIMac::EmitSelectorAddr(CodeGenFunction &CGF, 7487 Selector Sel) { 7488 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 7489 7490 CharUnits Align = CGF.getPointerAlign(); 7491 if (!Entry) { 7492 llvm::Constant *Casted = 7493 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 7494 ObjCTypes.SelectorPtrTy); 7495 std::string SectionName = 7496 GetSectionName("__objc_selrefs", "literal_pointers,no_dead_strip"); 7497 Entry = new llvm::GlobalVariable( 7498 CGM.getModule(), ObjCTypes.SelectorPtrTy, false, 7499 getLinkageTypeForObjCMetadata(CGM, SectionName), Casted, 7500 "OBJC_SELECTOR_REFERENCES_"); 7501 Entry->setExternallyInitialized(true); 7502 Entry->setSection(SectionName); 7503 Entry->setAlignment(Align.getQuantity()); 7504 CGM.addCompilerUsedGlobal(Entry); 7505 } 7506 7507 return Address(Entry, Align); 7508 } 7509 7510 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 7511 /// objc_assign_ivar (id src, id *dst, ptrdiff_t) 7512 /// 7513 void CGObjCNonFragileABIMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 7514 llvm::Value *src, 7515 Address dst, 7516 llvm::Value *ivarOffset) { 7517 llvm::Type * SrcTy = src->getType(); 7518 if (!isa<llvm::PointerType>(SrcTy)) { 7519 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7520 assert(Size <= 8 && "does not support size > 8"); 7521 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7522 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7523 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7524 } 7525 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7526 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7527 llvm::Value *args[] = { src, dst.getPointer(), ivarOffset }; 7528 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 7529 } 7530 7531 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 7532 /// objc_assign_strongCast (id src, id *dst) 7533 /// 7534 void CGObjCNonFragileABIMac::EmitObjCStrongCastAssign( 7535 CodeGen::CodeGenFunction &CGF, 7536 llvm::Value *src, Address dst) { 7537 llvm::Type * SrcTy = src->getType(); 7538 if (!isa<llvm::PointerType>(SrcTy)) { 7539 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7540 assert(Size <= 8 && "does not support size > 8"); 7541 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7542 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7543 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7544 } 7545 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7546 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7547 llvm::Value *args[] = { src, dst.getPointer() }; 7548 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 7549 args, "weakassign"); 7550 } 7551 7552 void CGObjCNonFragileABIMac::EmitGCMemmoveCollectable( 7553 CodeGen::CodeGenFunction &CGF, 7554 Address DestPtr, 7555 Address SrcPtr, 7556 llvm::Value *Size) { 7557 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 7558 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 7559 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), Size }; 7560 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 7561 } 7562 7563 /// EmitObjCWeakRead - Code gen for loading value of a __weak 7564 /// object: objc_read_weak (id *src) 7565 /// 7566 llvm::Value * CGObjCNonFragileABIMac::EmitObjCWeakRead( 7567 CodeGen::CodeGenFunction &CGF, 7568 Address AddrWeakObj) { 7569 llvm::Type *DestTy = AddrWeakObj.getElementType(); 7570 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, ObjCTypes.PtrObjectPtrTy); 7571 llvm::Value *read_weak = 7572 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 7573 AddrWeakObj.getPointer(), "weakread"); 7574 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 7575 return read_weak; 7576 } 7577 7578 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 7579 /// objc_assign_weak (id src, id *dst) 7580 /// 7581 void CGObjCNonFragileABIMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 7582 llvm::Value *src, Address dst) { 7583 llvm::Type * SrcTy = src->getType(); 7584 if (!isa<llvm::PointerType>(SrcTy)) { 7585 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7586 assert(Size <= 8 && "does not support size > 8"); 7587 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7588 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7589 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7590 } 7591 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7592 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7593 llvm::Value *args[] = { src, dst.getPointer() }; 7594 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 7595 args, "weakassign"); 7596 } 7597 7598 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 7599 /// objc_assign_global (id src, id *dst) 7600 /// 7601 void CGObjCNonFragileABIMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 7602 llvm::Value *src, Address dst, 7603 bool threadlocal) { 7604 llvm::Type * SrcTy = src->getType(); 7605 if (!isa<llvm::PointerType>(SrcTy)) { 7606 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7607 assert(Size <= 8 && "does not support size > 8"); 7608 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7609 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7610 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7611 } 7612 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7613 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7614 llvm::Value *args[] = { src, dst.getPointer() }; 7615 if (!threadlocal) 7616 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 7617 args, "globalassign"); 7618 else 7619 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 7620 args, "threadlocalassign"); 7621 } 7622 7623 void 7624 CGObjCNonFragileABIMac::EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 7625 const ObjCAtSynchronizedStmt &S) { 7626 EmitAtSynchronizedStmt(CGF, S, ObjCTypes.getSyncEnterFn(), 7627 ObjCTypes.getSyncExitFn()); 7628 } 7629 7630 llvm::Constant * 7631 CGObjCNonFragileABIMac::GetEHType(QualType T) { 7632 // There's a particular fixed type info for 'id'. 7633 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) { 7634 auto *IDEHType = CGM.getModule().getGlobalVariable("OBJC_EHTYPE_id"); 7635 if (!IDEHType) { 7636 IDEHType = 7637 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false, 7638 llvm::GlobalValue::ExternalLinkage, nullptr, 7639 "OBJC_EHTYPE_id"); 7640 if (CGM.getTriple().isOSBinFormatCOFF()) 7641 IDEHType->setDLLStorageClass(getStorage(CGM, "OBJC_EHTYPE_id")); 7642 } 7643 return IDEHType; 7644 } 7645 7646 // All other types should be Objective-C interface pointer types. 7647 const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>(); 7648 assert(PT && "Invalid @catch type."); 7649 7650 const ObjCInterfaceType *IT = PT->getInterfaceType(); 7651 assert(IT && "Invalid @catch type."); 7652 7653 return GetInterfaceEHType(IT->getDecl(), NotForDefinition); 7654 } 7655 7656 void CGObjCNonFragileABIMac::EmitTryStmt(CodeGen::CodeGenFunction &CGF, 7657 const ObjCAtTryStmt &S) { 7658 EmitTryCatchStmt(CGF, S, ObjCTypes.getObjCBeginCatchFn(), 7659 ObjCTypes.getObjCEndCatchFn(), 7660 ObjCTypes.getExceptionRethrowFn()); 7661 } 7662 7663 /// EmitThrowStmt - Generate code for a throw statement. 7664 void CGObjCNonFragileABIMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 7665 const ObjCAtThrowStmt &S, 7666 bool ClearInsertionPoint) { 7667 if (const Expr *ThrowExpr = S.getThrowExpr()) { 7668 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 7669 Exception = CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 7670 llvm::CallBase *Call = 7671 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionThrowFn(), Exception); 7672 Call->setDoesNotReturn(); 7673 } else { 7674 llvm::CallBase *Call = 7675 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionRethrowFn()); 7676 Call->setDoesNotReturn(); 7677 } 7678 7679 CGF.Builder.CreateUnreachable(); 7680 if (ClearInsertionPoint) 7681 CGF.Builder.ClearInsertionPoint(); 7682 } 7683 7684 llvm::Constant * 7685 CGObjCNonFragileABIMac::GetInterfaceEHType(const ObjCInterfaceDecl *ID, 7686 ForDefinition_t IsForDefinition) { 7687 llvm::GlobalVariable * &Entry = EHTypeReferences[ID->getIdentifier()]; 7688 StringRef ClassName = ID->getObjCRuntimeNameAsString(); 7689 7690 // If we don't need a definition, return the entry if found or check 7691 // if we use an external reference. 7692 if (!IsForDefinition) { 7693 if (Entry) 7694 return Entry; 7695 7696 // If this type (or a super class) has the __objc_exception__ 7697 // attribute, emit an external reference. 7698 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) { 7699 std::string EHTypeName = ("OBJC_EHTYPE_$_" + ClassName).str(); 7700 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, 7701 false, llvm::GlobalValue::ExternalLinkage, 7702 nullptr, EHTypeName); 7703 CGM.setGVProperties(Entry, ID); 7704 return Entry; 7705 } 7706 } 7707 7708 // Otherwise we need to either make a new entry or fill in the initializer. 7709 assert((!Entry || !Entry->hasInitializer()) && "Duplicate EHType definition"); 7710 7711 std::string VTableName = "objc_ehtype_vtable"; 7712 auto *VTableGV = CGM.getModule().getGlobalVariable(VTableName); 7713 if (!VTableGV) { 7714 VTableGV = 7715 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.Int8PtrTy, false, 7716 llvm::GlobalValue::ExternalLinkage, nullptr, 7717 VTableName); 7718 if (CGM.getTriple().isOSBinFormatCOFF()) 7719 VTableGV->setDLLStorageClass(getStorage(CGM, VTableName)); 7720 } 7721 7722 llvm::Value *VTableIdx = llvm::ConstantInt::get(CGM.Int32Ty, 2); 7723 ConstantInitBuilder builder(CGM); 7724 auto values = builder.beginStruct(ObjCTypes.EHTypeTy); 7725 values.add( 7726 llvm::ConstantExpr::getInBoundsGetElementPtr(VTableGV->getValueType(), 7727 VTableGV, VTableIdx)); 7728 values.add(GetClassName(ClassName)); 7729 values.add(GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition)); 7730 7731 llvm::GlobalValue::LinkageTypes L = IsForDefinition 7732 ? llvm::GlobalValue::ExternalLinkage 7733 : llvm::GlobalValue::WeakAnyLinkage; 7734 if (Entry) { 7735 values.finishAndSetAsInitializer(Entry); 7736 Entry->setAlignment(CGM.getPointerAlign().getQuantity()); 7737 } else { 7738 Entry = values.finishAndCreateGlobal("OBJC_EHTYPE_$_" + ClassName, 7739 CGM.getPointerAlign(), 7740 /*constant*/ false, 7741 L); 7742 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) 7743 CGM.setGVProperties(Entry, ID); 7744 } 7745 assert(Entry->getLinkage() == L); 7746 7747 if (!CGM.getTriple().isOSBinFormatCOFF()) 7748 if (ID->getVisibility() == HiddenVisibility) 7749 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 7750 7751 if (IsForDefinition) 7752 if (CGM.getTriple().isOSBinFormatMachO()) 7753 Entry->setSection("__DATA,__objc_const"); 7754 7755 return Entry; 7756 } 7757 7758 /* *** */ 7759 7760 CodeGen::CGObjCRuntime * 7761 CodeGen::CreateMacObjCRuntime(CodeGen::CodeGenModule &CGM) { 7762 switch (CGM.getLangOpts().ObjCRuntime.getKind()) { 7763 case ObjCRuntime::FragileMacOSX: 7764 return new CGObjCMac(CGM); 7765 7766 case ObjCRuntime::MacOSX: 7767 case ObjCRuntime::iOS: 7768 case ObjCRuntime::WatchOS: 7769 return new CGObjCNonFragileABIMac(CGM); 7770 7771 case ObjCRuntime::GNUstep: 7772 case ObjCRuntime::GCC: 7773 case ObjCRuntime::ObjFW: 7774 llvm_unreachable("these runtimes are not Mac runtimes"); 7775 } 7776 llvm_unreachable("bad runtime"); 7777 } 7778